diff options
author | dos-reis <gdr@axiomatics.org> | 2008-01-19 13:50:42 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2008-01-19 13:50:42 +0000 |
commit | c33280c0ecdadbb3893e5fd112e2605fa890108d (patch) | |
tree | 6ade5c7af4816cec013bc72ccb640422a9b21f22 /src/share | |
parent | 5b2dd1e76564e109e5c1811977cf26dca89dc2b9 (diff) | |
download | open-axiom-c33280c0ecdadbb3893e5fd112e2605fa890108d.tar.gz |
* interp/construc.lisp (|loadLibNoUpdate|): Fix thinko in initial
value for empty environments.
* interp/database.boot (rebuildCDT): Likewise.
* interp/i-map.boot (addDefMap): Likewise.
(rewriteMap0): Likewise.
(rewriteMap1): Likewise.
(compileDeclaredMap): Likewise.
(analyzeUndeclaredMap): Likewise.
* interp/i-spec1.boot: Likewise.
* interp/i-syscmd.boot (reportOperations): Likewise.
* interp/i-toplev.boot (interpret): Likewise.
* interp/lisplib.boot (loadLib): Likewise.
(loadLibNoUpdate): Likewise.
* interp/setvars.boot (resetWorkspaceVariables): Likewise.
* interp/spad.lisp ($e): Move definition to sys-globals.boot.
($env): Likewise.
* interp/sys-globals.boot ($e): Define here.
($env): Likewise.
* algebra/any.spad.pamphlet (ObjectProperty): New.
(Binding): Likewise.
(Contour): Likewise.
(Scope): Likewise.
(Environment): Likewise.
* algebra/exposed.lsp.pamphlet: Expose ObjectProperty, Binding,
Contour, Scope, and Environment.
* algebra/Makefile.pamphlet (axiom_algebra_layer_0): Include
OBJPROP.o.
(axiom_algebra_layer_1): Include BINDING.o
(axiom_algebra_layer_2): Include CONTOUR.o
(axiom_algebra_layer_3): Include SCOPE.o
(axiom_algebra_layer_4): Include ENV.o
* share/algebra: Update database.
Diffstat (limited to 'src/share')
-rw-r--r-- | src/share/algebra/browse.daase | 3454 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 5575 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1367 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 9732 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 33389 |
5 files changed, 26811 insertions, 26706 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index cab36da4..89a2cab8 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2226437 . 3409486832) +(2231139 . 3409732471) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,23 +46,23 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4192 . T) (-4190 . T) (-4189 . T) ((-4197 "*") . T) (-4188 . T) (-4193 . T) (-4187 . T) (-2169 . T)) +((-4218 . T) (-4216 . T) (-4215 . T) ((-4223 "*") . T) (-4214 . T) (-4219 . T) (-4213 . T) (-2063 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) NIL NIL -(-31 R -4057) +(-31 R -4048) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) +((|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519))))) (-32 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4195))) +((|HasAttribute| |#1| (QUOTE -4221))) (-33) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-2169 . T)) +((-2063 . T)) NIL (-34) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -70,7 +70,7 @@ NIL NIL (-35 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4195 . T) (-4196 . T) (-2169 . T)) +((-4221 . T) (-4222 . T) (-2063 . T)) NIL (-36 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -78,20 +78,20 @@ NIL NIL (-37 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4189 . T) (-4190 . T) (-4192 . T)) +((-4215 . T) (-4216 . T) (-4218 . T)) NIL (-38 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-39 -4057 UP UPUP -2263) +(-39 -4048 UP UPUP -2205) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4188 |has| (-377 |#2|) (-333)) (-4193 |has| (-377 |#2|) (-333)) (-4187 |has| (-377 |#2|) (-333)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3786 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3786 (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) -(-40 R -4057) +((-4214 |has| (-379 |#2|) (-335)) (-4219 |has| (-379 |#2|) (-335)) (-4213 |has| (-379 |#2|) (-335)) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-379 |#2|) (QUOTE (-133))) (|HasCategory| (-379 |#2|) (QUOTE (-135))) (|HasCategory| (-379 |#2|) (QUOTE (-321))) (|HasCategory| (-379 |#2|) (QUOTE (-335))) (-3730 (|HasCategory| (-379 |#2|) (QUOTE (-335))) (|HasCategory| (-379 |#2|) (QUOTE (-321)))) (|HasCategory| (-379 |#2|) (QUOTE (-340))) (|HasCategory| (-379 |#2|) (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| (-379 |#2|) (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| (-379 |#2|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-340))) (-3730 (|HasCategory| (-379 |#2|) (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| (-379 |#2|) (QUOTE (-335)))) (-12 (|HasCategory| (-379 |#2|) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-379 |#2|) (QUOTE (-335)))) (-3730 (-12 (|HasCategory| (-379 |#2|) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-379 |#2|) (QUOTE (-335)))) (-12 (|HasCategory| (-379 |#2|) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-379 |#2|) (QUOTE (-321))))) (-12 (|HasCategory| (-379 |#2|) (QUOTE (-209))) (|HasCategory| (-379 |#2|) (QUOTE (-335)))) (-3730 (-12 (|HasCategory| (-379 |#2|) (QUOTE (-209))) (|HasCategory| (-379 |#2|) (QUOTE (-335)))) (|HasCategory| (-379 |#2|) (QUOTE (-321))))) +(-40 R -4048) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -400) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -402) (|devaluate| |#1|))))) (-41 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -99,34 +99,34 @@ NIL (-42 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-278)))) +((|HasCategory| |#1| (QUOTE (-280)))) (-43 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4192 |has| |#1| (-509)) (-4190 . T) (-4189 . T)) -((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) +((-4218 |has| |#1| (-511)) (-4216 . T) (-4215 . T)) +((|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-44 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (-3786 (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|))))))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))) +((-4221 . T) (-4222 . T)) +((|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-1011))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-782))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1011)))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1011)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (-12 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3100) (|devaluate| |#2|)))))) (-3730 (-12 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-782))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3100) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3100) (|devaluate| |#2|))))))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-782))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))))) (-45 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) +((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-335)))) (-46 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4215 . T) (-4216 . T) (-4218 . T)) NIL (-47) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| $ (QUOTE (-964))) (|HasCategory| $ (LIST (QUOTE -955) (QUOTE (-517))))) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| $ (QUOTE (-968))) (|HasCategory| $ (LIST (QUOTE -959) (QUOTE (-519))))) (-48) ((|constructor| (NIL "This domain implements anonymous functions"))) NIL NIL (-49 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4192 . T)) +((-4218 . T)) NIL (-50 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -140,7 +140,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-53 |Base| R -4057) +(-53 |Base| R -4048) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -150,7 +150,7 @@ NIL NIL (-55 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4195 . T) (-4196 . T) (-2169 . T)) +((-4221 . T) (-4222 . T) (-2063 . T)) NIL (-56 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -158,65 +158,65 @@ NIL NIL (-57 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) (-58 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-59 -2981) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-59 -2938) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-60 -2981) +(-60 -2938) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-61 -2981) +(-61 -2938) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -2981) +(-62 -2938) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-63 -2981) +(-63 -2938) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -2981) +(-64 -2938) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -2981) +(-65 -2938) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2981) +(-66 -2938) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -2981) +(-67 -2938) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-68 -2981) +(-68 -2938) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2981) +(-69 -2938) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-70 -2981) +(-70 -2938) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-71 -2981) +(-71 -2938) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-72 -2981) +(-72 -2938) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -228,66 +228,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -2981) +(-75 -2938) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-76 -2981) +(-76 -2938) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -2981) +(-77 -2938) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -2981) +(-78 -2938) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -2981) +(-79 -2938) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2981) +(-80 -2938) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2981) +(-81 -2938) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -2981) +(-82 -2938) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2981) +(-83 -2938) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2981) +(-84 -2938) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2981) +(-85 -2938) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2981) +(-86 -2938) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-87 -2981) +(-87 -2938) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-88 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-333)))) +((|HasCategory| |#1| (QUOTE (-335)))) (-89 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) (-90 S) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL @@ -298,15 +298,15 @@ NIL NIL (-92) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4195 . T)) +((-4221 . T)) NIL (-93) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4195 . T) ((-4197 "*") . T) (-4196 . T) (-4192 . T) (-4190 . T) (-4189 . T) (-4188 . T) (-4193 . T) (-4187 . T) (-4186 . T) (-4185 . T) (-4184 . T) (-4183 . T) (-4191 . T) (-4194 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4182 . T)) +((-4221 . T) ((-4223 "*") . T) (-4222 . T) (-4218 . T) (-4216 . T) (-4215 . T) (-4214 . T) (-4219 . T) (-4213 . T) (-4212 . T) (-4211 . T) (-4210 . T) (-4209 . T) (-4217 . T) (-4220 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4208 . T)) NIL (-94 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4192 . T)) +((-4218 . T)) NIL (-95 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -322,15 +322,15 @@ NIL NIL (-98 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) (-99 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4197 "*")))) +((|HasAttribute| |#1| (QUOTE (-4223 "*")))) (-100) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4195 . T)) +((-4221 . T)) NIL (-101 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -338,4335 +338,4355 @@ NIL NIL (-102 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4196 . T) (-2169 . T)) +((-4222 . T) (-2063 . T)) NIL (-103) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-517) (QUOTE (-833))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-940))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1053))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3786 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (|HasCategory| (-517) (QUOTE (-132))))) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-519) (QUOTE (-836))) (|HasCategory| (-519) (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| (-519) (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-135))) (|HasCategory| (-519) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-519) (QUOTE (-944))) (|HasCategory| (-519) (QUOTE (-755))) (|HasCategory| (-519) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| (-519) (QUOTE (-1058))) (|HasCategory| (-519) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| (-519) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| (-519) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| (-519) (QUOTE (-209))) (|HasCategory| (-519) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-519) (LIST (QUOTE -480) (QUOTE (-1082)) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -282) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -260) (QUOTE (-519)) (QUOTE (-519)))) (|HasCategory| (-519) (QUOTE (-280))) (|HasCategory| (-519) (QUOTE (-504))) (|HasCategory| (-519) (QUOTE (-782))) (-3730 (|HasCategory| (-519) (QUOTE (-755))) (|HasCategory| (-519) (QUOTE (-782)))) (|HasCategory| (-519) (LIST (QUOTE -581) (QUOTE (-519)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-836)))) (|HasCategory| (-519) (QUOTE (-133))))) (-104) -((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f,{} i)} sets the current byte-position to \\spad{i}.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f}.")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|ObjectProperty|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|ObjectProperty|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-105) +((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f,{} i)} sets the current byte-position to \\spad{i}.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f}.")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) +NIL +NIL +(-106) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4196 . T) (-4195 . T)) -((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1006))) (-12 (|HasCategory| (-107) (QUOTE (-1006))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))) (|HasCategory| (-107) (LIST (QUOTE -557) (QUOTE (-787))))) -(-106 R S) +((-4222 . T) (-4221 . T)) +((|HasCategory| (-108) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-108) (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| (-108) (QUOTE (-1011))) (-12 (|HasCategory| (-108) (QUOTE (-1011))) (|HasCategory| (-108) (LIST (QUOTE -282) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -559) (QUOTE (-790))))) +(-107 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4190 . T) (-4189 . T)) +((-4216 . T) (-4215 . T)) NIL -(-107) +(-108) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-108 A) +(-109 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-779)))) -(-109) +((|HasCategory| |#1| (QUOTE (-782)))) +(-110) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-110 -4057 UP) +(-111 -4048 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL -(-111 |p|) +(-112 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-112 |p|) +(-113 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-111 |#1|) (QUOTE (-833))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-134))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-111 |#1|) (QUOTE (-940))) (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-1053))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-207))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -111) (|devaluate| |#1|)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (QUOTE (-278))) (|HasCategory| (-111 |#1|) (QUOTE (-502))) (|HasCategory| (-111 |#1|) (QUOTE (-779))) (-3786 (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-833)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))))) -(-113 A S) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-112 |#1|) (QUOTE (-836))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| (-112 |#1|) (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-135))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-112 |#1|) (QUOTE (-944))) (|HasCategory| (-112 |#1|) (QUOTE (-755))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| (-112 |#1|) (QUOTE (-1058))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| (-112 |#1|) (QUOTE (-209))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -480) (QUOTE (-1082)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -282) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -260) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-280))) (|HasCategory| (-112 |#1|) (QUOTE (-504))) (|HasCategory| (-112 |#1|) (QUOTE (-782))) (-3730 (|HasCategory| (-112 |#1|) (QUOTE (-755))) (|HasCategory| (-112 |#1|) (QUOTE (-782)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-836)))) (|HasCategory| (-112 |#1|) (QUOTE (-133))))) +(-114 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4196))) -(-114 S) +((|HasAttribute| |#1| (QUOTE -4222))) +(-115 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-2169 . T)) +((-2063 . T)) NIL -(-115 UP) +(-116 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL -(-116 S) -((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) (-117 S) +((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-118 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL -(-118) +(-119) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL -(-119 A S) +(-120 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL -(-120 S) +(-121 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4195 . T) (-4196 . T) (-2169 . T)) +((-4221 . T) (-4222 . T) (-2063 . T)) NIL -(-121 S) -((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) (-122 S) +((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-123 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-123) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-124) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL -(-124) +(-125) ((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x,{} n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) NIL NIL -(-125) +(-126) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4197 "*") . T)) +(((-4223 "*") . T)) NIL -(-126 |minix| -3124 S T$) +(-127 |minix| -2670 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-127 |minix| -3124 R) +(-128 |minix| -2670 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-128) +(-129) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4195 . T) (-4185 . T) (-4196 . T)) -((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1006))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3786 (-12 (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787))))) -(-129 R Q A) +((-4221 . T) (-4211 . T) (-4222 . T)) +((|HasCategory| (-132) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-132) (QUOTE (-340))) (|HasCategory| (-132) (QUOTE (-782))) (|HasCategory| (-132) (QUOTE (-1011))) (-12 (|HasCategory| (-132) (QUOTE (-1011))) (|HasCategory| (-132) (LIST (QUOTE -282) (QUOTE (-132))))) (-3730 (-12 (|HasCategory| (-132) (QUOTE (-340))) (|HasCategory| (-132) (LIST (QUOTE -282) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1011))) (|HasCategory| (-132) (LIST (QUOTE -282) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -559) (QUOTE (-790))))) +(-130 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-130) +(-131) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n,{} m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,{}m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}r)} returns the \\spad{(n,{}r)} binomial coefficient (often denoted in the literature by \\spad{C(n,{}r)}). Note: \\spad{C(n,{}r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-131) +(-132) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|Integer|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|Integer|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-132) +(-133) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4192 . T)) +((-4218 . T)) NIL -(-133 R) +(-134 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) NIL NIL -(-134) +(-135) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4192 . T)) +((-4218 . T)) NIL -(-135 -4057 UP UPUP) +(-136 -4048 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL -(-136 R CR) +(-137 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-137 A S) +(-138 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasAttribute| |#1| (QUOTE -4195))) -(-138 S) +((|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasAttribute| |#1| (QUOTE -4221))) +(-139 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-2169 . T)) +((-2063 . T)) NIL -(-139 |n| K Q) +(-140 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4190 . T) (-4189 . T) (-4192 . T)) +((-4216 . T) (-4215 . T) (-4218 . T)) NIL -(-140) +(-141) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-141 UP |Par|) +(-142 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly,{} eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-142) +(-143) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-143 R -4057) +(-144 R -4048) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-144 I) +(-145 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,{}m)} returns the Stirling number of the second kind denoted \\spad{SS[n,{}m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,{}m)} returns the Stirling number of the first kind denoted \\spad{S[n,{}m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,{}r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,{}[m1,{}m2,{}...,{}mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-145) +(-146) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-146) +(-147) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-147) +(-148) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-148 R UP UPUP) +(-149 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,{}y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-149 S R) +(-150 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-921))) (|HasCategory| |#2| (QUOTE (-1098))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasAttribute| |#2| (QUOTE -4191)) (|HasAttribute| |#2| (QUOTE -4194)) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-779)))) -(-150 R) +((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-504))) (|HasCategory| |#2| (QUOTE (-925))) (|HasCategory| |#2| (QUOTE (-1103))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-944))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (QUOTE (-335))) (|HasAttribute| |#2| (QUOTE -4217)) (|HasAttribute| |#2| (QUOTE -4220)) (|HasCategory| |#2| (QUOTE (-280))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-782)))) +(-151 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4188 -3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4191 |has| |#1| (-6 -4191)) (-4194 |has| |#1| (-6 -4194)) (-3913 . T) (-2169 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 -3730 (|has| |#1| (-511)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4217 |has| |#1| (-6 -4217)) (-4220 |has| |#1| (-6 -4220)) (-3916 . T) (-2063 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-151 RR PR) +(-152 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-152 R S) +(-153 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-153 R) +(-154 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4188 -3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4191 |has| |#1| (-6 -4191)) (-4194 |has| |#1| (-6 -4194)) (-3913 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-1098))) (-12 (|HasCategory| |#1| (QUOTE (-921))) (|HasCategory| |#1| (QUOTE (-1098)))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1098)))) (|HasCategory| |#1| (QUOTE (-502))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-278))) (-3786 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-207))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-207))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-1098)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-833))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-833))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasAttribute| |#1| (QUOTE -4191)) (|HasAttribute| |#1| (QUOTE -4194)) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077))))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-319))))) -(-154 R S CS) +((-4214 -3730 (|has| |#1| (-511)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4217 |has| |#1| (-6 -4217)) (-4220 |has| |#1| (-6 -4220)) (-3916 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-321)))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-1103))) (-12 (|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-1103)))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -480) (QUOTE (-1082)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-763))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1103)))) (|HasCategory| |#1| (QUOTE (-504))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-280))) (-3730 (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (QUOTE (-511)))) (-3730 (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-321)))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-209))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (QUOTE (-321)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-321)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -480) (QUOTE (-1082)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-321)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-321)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-321)))) (-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-321)))) (|HasCategory| |#1| (QUOTE (-209))) (-12 (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-321)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-321)))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (QUOTE (-763)))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (QUOTE (-782)))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (QUOTE (-944)))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (QUOTE (-1103)))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495))))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-335))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (QUOTE (-836))))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (QUOTE (-836))))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-335)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasAttribute| |#1| (QUOTE -4217)) (|HasAttribute| |#1| (QUOTE -4220)) (-12 (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082))))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-321))))) +(-155 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-155) +(-156) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-156) +(-157) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-157 R) +(-158 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4197 "*") . T) (-4188 . T) (-4193 . T) (-4187 . T) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") . T) (-4214 . T) (-4219 . T) (-4213 . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-158 R) +(-159) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) +NIL +NIL +(-160 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-159 R |PolR| E) +(-161 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-160 R S CS) +(-162 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-876 |#2|) (LIST (QUOTE -810) (|devaluate| |#1|)))) -(-161 R) +((|HasCategory| (-879 |#2|) (LIST (QUOTE -813) (|devaluate| |#1|)))) +(-163 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL NIL -(-162 R UP) +(-164 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-163 S ST) +(-165 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-164 R -4057) +(-166 R -4048) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-165 R) +(-167 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-166) +(-168) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-167) +(-169) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-168) +(-170) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-169) +(-171) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-170) +(-172) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-171) +(-173) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-172) +(-174) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-173) +(-175) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-174) +(-176) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-175) +(-177) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-176) +(-178) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-177) +(-179) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-178) +(-180) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-179) +(-181) NIL NIL NIL -(-180) +(-182) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-181) +(-183) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL -(-182) +(-184) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-183) +(-185) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-184) +(-186) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-185) +(-187) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-186) +(-188) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) NIL NIL -(-187) +(-189) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-188) +(-190) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-189 S) +(-191 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-190 -4057 UP UPUP R) +(-192 -4048 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-191 -4057 FP) +(-193 -4048 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-192) +(-194) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-517) (QUOTE (-833))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-940))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1053))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3786 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (|HasCategory| (-517) (QUOTE (-132))))) -(-193 R -4057) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-519) (QUOTE (-836))) (|HasCategory| (-519) (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| (-519) (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-135))) (|HasCategory| (-519) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-519) (QUOTE (-944))) (|HasCategory| (-519) (QUOTE (-755))) (|HasCategory| (-519) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| (-519) (QUOTE (-1058))) (|HasCategory| (-519) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| (-519) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| (-519) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| (-519) (QUOTE (-209))) (|HasCategory| (-519) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-519) (LIST (QUOTE -480) (QUOTE (-1082)) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -282) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -260) (QUOTE (-519)) (QUOTE (-519)))) (|HasCategory| (-519) (QUOTE (-280))) (|HasCategory| (-519) (QUOTE (-504))) (|HasCategory| (-519) (QUOTE (-782))) (-3730 (|HasCategory| (-519) (QUOTE (-755))) (|HasCategory| (-519) (QUOTE (-782)))) (|HasCategory| (-519) (LIST (QUOTE -581) (QUOTE (-519)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-836)))) (|HasCategory| (-519) (QUOTE (-133))))) +(-195 R -4048) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-194 R) +(-196 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-195 R1 R2) +(-197 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-196 S) +(-198 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-197 |CoefRing| |listIndVar|) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-199 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4192 . T)) +((-4218 . T)) NIL -(-198 R -4057) +(-200 R -4048) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-199) +(-201) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2194 . T) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-3905 . T) (-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-200) +(-202) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-201 R) +(-203 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4197 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-202 A S) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-511))) (|HasAttribute| |#1| (QUOTE (-4223 "*"))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-204 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-203 S) +(-205 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4196 . T) (-2169 . T)) +((-4222 . T) (-2063 . T)) NIL -(-204 S R) +(-206 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207)))) -(-205 R) +((|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-209)))) +(-207 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4192 . T)) +((-4218 . T)) NIL -(-206 S) +(-208 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-207) +(-209) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4192 . T)) +((-4218 . T)) NIL -(-208 A S) +(-210 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4195))) -(-209 S) +((|HasAttribute| |#1| (QUOTE -4221))) +(-211 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4196 . T) (-2169 . T)) +((-4222 . T) (-2063 . T)) NIL -(-210) +(-212) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-211 S -3124 R) +(-213 S -2670 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasAttribute| |#3| (QUOTE -4192)) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (QUOTE (-1006)))) -(-212 -3124 R) +((|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-780))) (|HasAttribute| |#3| (QUOTE -4218)) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#3| (QUOTE (-661))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (QUOTE (-1011)))) +(-214 -2670 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4189 |has| |#2| (-964)) (-4190 |has| |#2| (-964)) (-4192 |has| |#2| (-6 -4192)) ((-4197 "*") |has| |#2| (-156)) (-4195 . T) (-2169 . T)) +((-4215 |has| |#2| (-968)) (-4216 |has| |#2| (-968)) (-4218 |has| |#2| (-6 -4218)) ((-4223 "*") |has| |#2| (-157)) (-4221 . T) (-2063 . T)) NIL -(-213 -3124 A B) +(-215 -2670 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-214 -3124 R) +(-216 -2670 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4189 |has| |#2| (-964)) (-4190 |has| |#2| (-964)) (-4192 |has| |#2| (-6 -4192)) ((-4197 "*") |has| |#2| (-156)) (-4195 . T)) -((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3786 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#2| (QUOTE (-964))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasAttribute| |#2| (QUOTE -4192)) (|HasCategory| |#2| (QUOTE (-123))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-25))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-1006)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006))))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3786 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-215) +((-4215 |has| |#2| (-968)) (-4216 |has| |#2| (-968)) (-4218 |has| |#2| (-6 -4218)) ((-4223 "*") |has| |#2| (-157)) (-4221 . T)) +((|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-780))) (-3730 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-780)))) (|HasCategory| |#2| (QUOTE (-157))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-335)))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-968)))) (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-209))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-968)))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| (-519) (QUOTE (-782))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-968)))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082))))) (|HasCategory| |#2| (QUOTE (-661))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-3730 (|HasCategory| |#2| (QUOTE (-968))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-1011)))) (|HasAttribute| |#2| (QUOTE -4218)) (|HasCategory| |#2| (QUOTE (-124))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (|HasCategory| |#2| (QUOTE (-25))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-1011)))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (-3730 (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-209)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-335)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-340)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-968)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-1011))))) (-3730 (-12 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-3730 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-1011)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-968)))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-217) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-216 S) +(-218 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-217) +(-219) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4188 . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-218 S) +(-220 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-2169 . T)) +((-2063 . T)) NIL -(-219 S) +(-221 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-220 M) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-222 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-221 |vl| R) +(-223 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4197 "*") |has| |#2| (-156)) (-4188 |has| |#2| (-509)) (-4193 |has| |#2| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-222) +(((-4223 "*") |has| |#2| (-157)) (-4214 |has| |#2| (-511)) (-4219 |has| |#2| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-157))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-511)))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-335))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#2| (QUOTE -4219)) (|HasCategory| |#2| (QUOTE (-423))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-133))))) +(-224) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 12,{} 2007. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reify| (((|Syntax|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL -(-223 |n| R M S) +(-225 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4192 -3786 (-4024 (|has| |#4| (-964)) (|has| |#4| (-207))) (-4024 (|has| |#4| (-964)) (|has| |#4| (-824 (-1077)))) (|has| |#4| (-6 -4192)) (-4024 (|has| |#4| (-964)) (|has| |#4| (-579 (-517))))) (-4189 |has| |#4| (-964)) (-4190 |has| |#4| (-964)) ((-4197 "*") |has| |#4| (-156)) (-4195 . T)) -((|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777))) (-3786 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777)))) (|HasCategory| |#4| (QUOTE (-156))) (-3786 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-964)))) (-3786 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333)))) (-3786 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-964)))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#4| (QUOTE (-207))) (-3786 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-964)))) (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#4| (QUOTE (-659))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-964)))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (-12 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517)))))) (-3786 (|HasCategory| |#4| (QUOTE (-964))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1006)))) (-3786 (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-207)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-333)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-338)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-725)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-777)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-964)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1006))))) (-3786 (|HasAttribute| |#4| (QUOTE -4192)) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-964)))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#4| (QUOTE (-123))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-3786 (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-964))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787))))) -(-224 |n| R S) +((-4218 -3730 (-4012 (|has| |#4| (-968)) (|has| |#4| (-209))) (-4012 (|has| |#4| (-968)) (|has| |#4| (-827 (-1082)))) (|has| |#4| (-6 -4218)) (-4012 (|has| |#4| (-968)) (|has| |#4| (-581 (-519))))) (-4215 |has| |#4| (-968)) (-4216 |has| |#4| (-968)) ((-4223 "*") |has| |#4| (-157)) (-4221 . T)) +((|HasCategory| |#4| (QUOTE (-335))) (|HasCategory| |#4| (QUOTE (-968))) (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (QUOTE (-780))) (-3730 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (QUOTE (-780)))) (|HasCategory| |#4| (QUOTE (-157))) (-3730 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-335))) (|HasCategory| |#4| (QUOTE (-968)))) (-3730 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-335)))) (-3730 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-968)))) (|HasCategory| |#4| (QUOTE (-340))) (|HasCategory| |#4| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#4| (QUOTE (-209))) (-3730 (|HasCategory| |#4| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-209))) (|HasCategory| |#4| (QUOTE (-968)))) (|HasCategory| |#4| (QUOTE (-1011))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#4| (QUOTE (-661))) (-12 (|HasCategory| |#4| (QUOTE (-968))) (|HasCategory| |#4| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (QUOTE (-968))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#4| (QUOTE (-209))) (|HasCategory| |#4| (QUOTE (-968)))) (-12 (|HasCategory| |#4| (QUOTE (-1011))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519))))) (-3730 (-12 (|HasCategory| |#4| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (QUOTE (-209))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (QUOTE (-335))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (QUOTE (-340))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (QUOTE (-968))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (QUOTE (-1011))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519)))))) (-3730 (|HasCategory| |#4| (QUOTE (-968))) (-12 (|HasCategory| |#4| (QUOTE (-1011))) (|HasCategory| |#4| (LIST (QUOTE -959) (QUOTE (-519)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (QUOTE (-1011)))) (-3730 (-12 (|HasCategory| |#4| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (QUOTE (-157)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (QUOTE (-209)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (QUOTE (-335)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (QUOTE (-340)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (QUOTE (-727)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (QUOTE (-780)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (QUOTE (-968)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (QUOTE (-1011))))) (-3730 (|HasAttribute| |#4| (QUOTE -4218)) (-12 (|HasCategory| |#4| (QUOTE (-209))) (|HasCategory| |#4| (QUOTE (-968)))) (-12 (|HasCategory| |#4| (QUOTE (-968))) (|HasCategory| |#4| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (QUOTE (-968))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-1082)))))) (|HasCategory| |#4| (QUOTE (-124))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1011))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (-3730 (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-209))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-335))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-340))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-780))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-968))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1011))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-1082)))))) (|HasCategory| |#4| (LIST (QUOTE -559) (QUOTE (-790))))) +(-226 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4192 -3786 (-4024 (|has| |#3| (-964)) (|has| |#3| (-207))) (-4024 (|has| |#3| (-964)) (|has| |#3| (-824 (-1077)))) (|has| |#3| (-6 -4192)) (-4024 (|has| |#3| (-964)) (|has| |#3| (-579 (-517))))) (-4189 |has| |#3| (-964)) (-4190 |has| |#3| (-964)) ((-4197 "*") |has| |#3| (-156)) (-4195 . T)) -((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3786 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964)))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-964)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-207))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517)))))) (-3786 (|HasCategory| |#3| (QUOTE (-964))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1006)))) (-3786 (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1006))))) (-3786 (|HasAttribute| |#3| (QUOTE -4192)) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3786 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787))))) -(-225 A R S V E) +((-4218 -3730 (-4012 (|has| |#3| (-968)) (|has| |#3| (-209))) (-4012 (|has| |#3| (-968)) (|has| |#3| (-827 (-1082)))) (|has| |#3| (-6 -4218)) (-4012 (|has| |#3| (-968)) (|has| |#3| (-581 (-519))))) (-4215 |has| |#3| (-968)) (-4216 |has| |#3| (-968)) ((-4223 "*") |has| |#3| (-157)) (-4221 . T)) +((|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-780))) (-3730 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-780)))) (|HasCategory| |#3| (QUOTE (-157))) (-3730 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (QUOTE (-968)))) (-3730 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-335)))) (-3730 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-968)))) (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#3| (QUOTE (-209))) (-3730 (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-968)))) (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#3| (QUOTE (-661))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-968)))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-3730 (-12 (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519)))))) (-3730 (|HasCategory| |#3| (QUOTE (-968))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-1011)))) (-3730 (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-209)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-335)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-340)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-968)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-1011))))) (-3730 (|HasAttribute| |#3| (QUOTE -4218)) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-968)))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-3730 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))))) (|HasCategory| |#3| (LIST (QUOTE -559) (QUOTE (-790))))) +(-227 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-207)))) -(-226 R S V E) +((|HasCategory| |#2| (QUOTE (-209)))) +(-228 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) NIL -(-227 S) +(-229 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4195 . T) (-4196 . T) (-2169 . T)) +((-4221 . T) (-4222 . T) (-2063 . T)) NIL -(-228) +(-230) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-229 R |Ex|) +(-231 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-230) +(-232) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-231 R) +(-233 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-232 |Ex|) +(-234 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-233) +(-235) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-234) +(-236) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-235 S) +(-237 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-236) +(-238) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-237 R S V) +(-239 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#3| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-238 A S) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#3| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#3| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#3| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#3| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#1| (QUOTE -4219)) (|HasCategory| |#1| (QUOTE (-423))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-240 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-239 S) +(-241 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-240) +(-242) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-241) +(-243) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-242) +(-244) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-243) +(-245) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-244) +(-246) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-245) +(-247) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-246) +(-248) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-247) +(-249) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-248) +(-250) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-249 R -4057) +(-251 R -4048) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-250 R -4057) +(-252 R -4048) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-251 |Coef| UTS ULS) +(-253 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-333)))) -(-252 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-335)))) +(-254 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-333)))) -(-253 A S) +((|HasCategory| |#1| (QUOTE (-335)))) +(-255 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006)))) -(-254 S) +((|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-1011)))) +(-256 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4196 . T) (-2169 . T)) +((-4222 . T) (-2063 . T)) NIL -(-255 S) +(-257 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-256) +(-258) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-257 |Coef| UTS) +(-259 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-258 S |Index|) +(-260 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-259 S |Dom| |Im|) +(-261 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4196))) -(-260 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4222))) +(-262 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-261 S R |Mod| -2563 -3824 |exactQuo|) +(-263 S R |Mod| -2536 -2500 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-262) +(-264) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4188 . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-263 R) +(-265 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-264 S R) +(-266 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-265 S) +(-267 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4192 -3786 (|has| |#1| (-964)) (|has| |#1| (-442))) (-4189 |has| |#1| (-964)) (-4190 |has| |#1| (-964))) -((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-964)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-273))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442)))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-964)))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-964)))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-659))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-1018))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (QUOTE (-21))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-964)))) (-3786 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-25))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-964)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-1006))))) -(-266 |Key| |Entry|) +((-4218 -3730 (|has| |#1| (-968)) (|has| |#1| (-444))) (-4215 |has| |#1| (-968)) (-4216 |has| |#1| (-968))) +((|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-968)))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (LIST (QUOTE -480) (QUOTE (-1082)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-275))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-444)))) (-3730 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-968)))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-968)))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-661))) (-3730 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-661)))) (|HasCategory| |#1| (QUOTE (-1023))) (-3730 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-661))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-21))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-968)))) (-3730 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-661)))) (|HasCategory| |#1| (QUOTE (-25))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-968)))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-661))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1011))))) +(-268 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-267) +((-4221 . T) (-4222 . T)) +((|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (-12 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3100) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-1011))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1011)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-269) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-268 -4057 S) +(-270 -4048 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-269 E -4057) +(-271 E -4048) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-270 A B) +(-272 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-271) +(-273) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-272 S) +(-274 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-964)))) -(-273) +((|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-968)))) +(-275) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-274 R1) +(-276 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-275 R1 R2) +(-277 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-276) +(-278) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-277 S) +(-279 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-278) +(-280) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-279 S R) +(-281 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-280 R) +(-282 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-281 -4057) +(-283 -4048) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-282) +(-284) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-283 R FE |var| |cen|) +(-285 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-833))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-940))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-1053))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-207))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -1144) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1144) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (LIST (QUOTE -258) (LIST (QUOTE -1144) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1144) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-278))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-502))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-779))) (-3786 (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-779)))) (-12 (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-833))) (|HasCategory| $ (QUOTE (-132)))) (-3786 (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (-12 (|HasCategory| (-1144 |#1| |#2| |#3| |#4|) (QUOTE (-833))) (|HasCategory| $ (QUOTE (-132)))))) -(-284 R S) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-836))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-944))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-755))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-1058))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-209))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -480) (QUOTE (-1082)) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -282) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (LIST (QUOTE -260) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-280))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-504))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-782))) (-3730 (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-755))) (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-782)))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-836))) (|HasCategory| $ (QUOTE (-133)))) (-3730 (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (-12 (|HasCategory| (-1149 |#1| |#2| |#3| |#4|) (QUOTE (-836))) (|HasCategory| $ (QUOTE (-133)))))) +(-286 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-285 R FE) +(-287 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-286 R) +(-288 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4192 -3786 (-4024 (|has| |#1| (-964)) (|has| |#1| (-579 (-517)))) (-12 (|has| |#1| (-509)) (-3786 (-4024 (|has| |#1| (-964)) (|has| |#1| (-579 (-517)))) (|has| |#1| (-964)) (|has| |#1| (-442)))) (|has| |#1| (-964)) (|has| |#1| (-442))) (-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) ((-4197 "*") |has| |#1| (-509)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-509)) (-4187 |has| |#1| (-509))) -((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-964))) (-3786 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-964)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-964)))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-964)))) (|HasCategory| |#1| (QUOTE (-21))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-964)))) (-3786 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-964)))) (-3786 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-1018))) (-3786 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-1018)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1018)))) (-3786 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1018)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))))) (|HasCategory| $ (QUOTE (-964))) (|HasCategory| $ (LIST (QUOTE -955) (QUOTE (-517))))) -(-287 R -4057) +((-4218 -3730 (-4012 (|has| |#1| (-968)) (|has| |#1| (-581 (-519)))) (-12 (|has| |#1| (-511)) (-3730 (-4012 (|has| |#1| (-968)) (|has| |#1| (-581 (-519)))) (|has| |#1| (-968)) (|has| |#1| (-444)))) (|has| |#1| (-968)) (|has| |#1| (-444))) (-4216 |has| |#1| (-157)) (-4215 |has| |#1| (-157)) ((-4223 "*") |has| |#1| (-511)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-511)) (-4213 |has| |#1| (-511))) +((|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-968))) (-3730 (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-968)))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519))))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-968)))) (-12 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511)))) (-3730 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519))))) (-3730 (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519))))) (-3730 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-968)))) (|HasCategory| |#1| (QUOTE (-21))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-968)))) (-3730 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-968)))) (-3730 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))))) (|HasCategory| |#1| (QUOTE (-1023))) (-3730 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-1023)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-1023)))) (-3730 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-511)))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))))) (|HasCategory| $ (QUOTE (-968))) (|HasCategory| $ (LIST (QUOTE -959) (QUOTE (-519))))) +(-289 R -4048) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-288) +(-290) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-289 FE |var| |cen|) +(-291 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|))))))) -(-290 M) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519))) (|devaluate| |#1|))))) (|HasCategory| (-379 (-519)) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1082)))))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-1103))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -4142) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1082))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (LIST (QUOTE -585) (QUOTE (-1082))) (|devaluate| |#1|))))))) +(-292 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-291 E OV R P) +(-293 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-292 S) +(-294 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4190 . T) (-4189 . T)) -((|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-724)))) -(-293 S E) +((-4216 . T) (-4215 . T)) +((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-726)))) +(-295 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-294 S) +(-296 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-703) (QUOTE (-724)))) -(-295 S R E) +((|HasCategory| (-705) (QUOTE (-726)))) +(-297 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156)))) -(-296 R E) +((|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-157)))) +(-298 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-297 S) +(-299 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-298 S -4057) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-300 S -4048) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-338)))) -(-299 -4057) +((|HasCategory| |#2| (QUOTE (-340)))) +(-301 -4048) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-300) +(-302) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) NIL NIL -(-301 E) +(-303 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-302) +(-304) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-303 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-305 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-304 S -4057 UP UPUP R) +(-306 S -4048 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-305 -4057 UP UPUP R) +(-307 -4048 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-306 -4057 UP UPUP R) +(-308 -4048 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-307 S R) +(-309 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-308 R) +((|HasCategory| |#2| (LIST (QUOTE -480) (QUOTE (-1082)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -260) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-310 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-309 |basicSymbols| |subscriptedSymbols| R) +(-311 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-349)))) (|HasCategory| $ (QUOTE (-964))) (|HasCategory| $ (LIST (QUOTE -955) (QUOTE (-517))))) -(-310 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-351)))) (|HasCategory| $ (QUOTE (-968))) (|HasCategory| $ (LIST (QUOTE -959) (QUOTE (-519))))) +(-312 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-311 S -4057 UP UPUP) +(-313 S -4048 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-333)))) -(-312 -4057 UP UPUP) +((|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (QUOTE (-335)))) +(-314 -4048 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4188 |has| (-377 |#2|) (-333)) (-4193 |has| (-377 |#2|) (-333)) (-4187 |has| (-377 |#2|) (-333)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 |has| (-379 |#2|) (-335)) (-4219 |has| (-379 |#2|) (-335)) (-4213 |has| (-379 |#2|) (-335)) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-313 |p| |extdeg|) +(-315 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-834 |#1|) (QUOTE (-134))) (|HasCategory| (-834 |#1|) (QUOTE (-338))) (|HasCategory| (-834 |#1|) (QUOTE (-132))) (-3786 (|HasCategory| (-834 |#1|) (QUOTE (-132))) (|HasCategory| (-834 |#1|) (QUOTE (-338))))) -(-314 GF |defpol|) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-837 |#1|) (QUOTE (-135))) (|HasCategory| (-837 |#1|) (QUOTE (-340))) (|HasCategory| (-837 |#1|) (QUOTE (-133))) (-3730 (|HasCategory| (-837 |#1|) (QUOTE (-133))) (|HasCategory| (-837 |#1|) (QUOTE (-340))))) +(-316 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) -(-315 GF |extdeg|) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-133))) (-3730 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-340))))) +(-317 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) -(-316 GF) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-133))) (-3730 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-340))))) +(-318 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-317 F1 GF F2) +(-319 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-318 S) +(-320 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-319) +(-321) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-320 R UP -4057) +(-322 R UP -4048) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-321 |p| |extdeg|) +(-323 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-834 |#1|) (QUOTE (-134))) (|HasCategory| (-834 |#1|) (QUOTE (-338))) (|HasCategory| (-834 |#1|) (QUOTE (-132))) (-3786 (|HasCategory| (-834 |#1|) (QUOTE (-132))) (|HasCategory| (-834 |#1|) (QUOTE (-338))))) -(-322 GF |uni|) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-837 |#1|) (QUOTE (-135))) (|HasCategory| (-837 |#1|) (QUOTE (-340))) (|HasCategory| (-837 |#1|) (QUOTE (-133))) (-3730 (|HasCategory| (-837 |#1|) (QUOTE (-133))) (|HasCategory| (-837 |#1|) (QUOTE (-340))))) +(-324 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) -(-323 GF |extdeg|) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-133))) (-3730 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-340))))) +(-325 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) -(-324 |p| |n|) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-133))) (-3730 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-340))))) +(-326 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-834 |#1|) (QUOTE (-134))) (|HasCategory| (-834 |#1|) (QUOTE (-338))) (|HasCategory| (-834 |#1|) (QUOTE (-132))) (-3786 (|HasCategory| (-834 |#1|) (QUOTE (-132))) (|HasCategory| (-834 |#1|) (QUOTE (-338))))) -(-325 GF |defpol|) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-837 |#1|) (QUOTE (-135))) (|HasCategory| (-837 |#1|) (QUOTE (-340))) (|HasCategory| (-837 |#1|) (QUOTE (-133))) (-3730 (|HasCategory| (-837 |#1|) (QUOTE (-133))) (|HasCategory| (-837 |#1|) (QUOTE (-340))))) +(-327 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) -(-326 -4057 GF) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-133))) (-3730 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-340))))) +(-328 -4048 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-327 GF) +(-329 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-328 -4057 FP FPP) +(-330 -4048 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-329 GF |n|) +(-331 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338))))) -(-330 R |ls|) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-133))) (-3730 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-340))))) +(-332 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-331 S) +(-333 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4192 . T)) +((-4218 . T)) NIL -(-332 S) +(-334 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-333) +(-335) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-334 |Name| S) +(-336 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-335 S) +(-337 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-336 S R) +(-338 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-509)))) -(-337 R) +((|HasCategory| |#2| (QUOTE (-511)))) +(-339 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4192 |has| |#1| (-509)) (-4190 . T) (-4189 . T)) +((-4218 |has| |#1| (-511)) (-4216 . T) (-4215 . T)) NIL -(-338) +(-340) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-339 S R UP) +(-341 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-333)))) -(-340 R UP) +((|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-335)))) +(-342 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4189 . T) (-4190 . T) (-4192 . T)) +((-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-341 S A R B) +(-343 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-342 A S) +(-344 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4196)) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006)))) -(-343 S) +((|HasAttribute| |#1| (QUOTE -4222)) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-1011)))) +(-345 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4195 . T) (-2169 . T)) +((-4221 . T) (-2063 . T)) NIL -(-344 |VarSet| R) +(-346 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4190 . T) (-4189 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4216 . T) (-4215 . T)) NIL -(-345 S V) +(-347 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-346 S R) +(-348 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) -(-347 R) +((|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) +(-349 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4192 . T)) +((-4218 . T)) NIL -(-348 |Par|) +(-350 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-349) +(-351) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4178 . T) (-4186 . T) (-2194 . T) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4204 . T) (-4212 . T) (-3905 . T) (-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-350 |Par|) +(-352 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-351 R S) +(-353 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4190 . T) (-4189 . T)) -((|HasCategory| |#1| (QUOTE (-156)))) -(-352 R |Basis|) +((-4216 . T) (-4215 . T)) +((|HasCategory| |#1| (QUOTE (-157)))) +(-354 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4190 . T) (-4189 . T)) +((-4216 . T) (-4215 . T)) NIL -(-353) +(-355) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2169 . T)) +((-2063 . T)) NIL -(-354) +(-356) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2169 . T)) +((-2063 . T)) NIL -(-355 R S) +(-357 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4190 . T) (-4189 . T)) -((|HasCategory| |#1| (QUOTE (-156)))) -(-356 S) +((-4216 . T) (-4215 . T)) +((|HasCategory| |#1| (QUOTE (-157)))) +(-358 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-779)))) -(-357) +((|HasCategory| |#1| (QUOTE (-782)))) +(-359) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-358) +(-360) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-359) +(-361) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) NIL NIL -(-360 |n| |class| R) +(-362 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4190 . T) (-4189 . T)) +((-4216 . T) (-4215 . T)) NIL -(-361) +(-363) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-362 -4057 UP UPUP R) +(-364 -4048 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-363 S) +(-365 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-364) +(-366) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL -(-365) +(-367) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-2169 . T)) +((-2063 . T)) NIL -(-366) +(-368) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2169 . T)) +((-2063 . T)) NIL -(-367) +(-369) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-368 -2981 |returnType| |arguments| |symbols|) +(-370 -2938 |returnType| |arguments| |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-369 -4057 UP) +(-371 -4048 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-370 R) +(-372 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-2169 . T)) +((-2063 . T)) NIL -(-371 S) +(-373 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-372) +(-374) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-373 S) +(-375 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4178)) (|HasAttribute| |#1| (QUOTE -4186))) -(-374) +((|HasAttribute| |#1| (QUOTE -4204)) (|HasAttribute| |#1| (QUOTE -4212))) +(-376) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2194 . T) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-3905 . T) (-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-375 R S) +(-377 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-376 A B) +(-378 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-377 S) +(-379 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4182 -12 (|has| |#1| (-6 -4193)) (|has| |#1| (-421)) (|has| |#1| (-6 -4182))) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-502))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasAttribute| |#1| (QUOTE -4193)) (|HasAttribute| |#1| (QUOTE -4182)) (|HasCategory| |#1| (QUOTE (-421)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (-3786 (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-378 S R UP) +((-4208 -12 (|has| |#1| (-6 -4219)) (|has| |#1| (-423)) (|has| |#1| (-6 -4208))) (-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (LIST (QUOTE -480) (QUOTE (-1082)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-504))) (-12 (|HasCategory| |#1| (QUOTE (-504))) (|HasCategory| |#1| (QUOTE (-763)))) (-12 (|HasAttribute| |#1| (QUOTE -4219)) (|HasAttribute| |#1| (QUOTE -4208)) (|HasCategory| |#1| (QUOTE (-423)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-504))) (|HasCategory| |#1| (QUOTE (-763)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#1| (QUOTE (-782))) (-3730 (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-782)))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-504))) (|HasCategory| |#1| (QUOTE (-763)))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-504))) (|HasCategory| |#1| (QUOTE (-763)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (QUOTE (-504))) (|HasCategory| |#1| (QUOTE (-763))))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (-12 (|HasCategory| |#1| (QUOTE (-504))) (|HasCategory| |#1| (QUOTE (-763))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-380 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-379 R UP) +(-381 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4189 . T) (-4190 . T) (-4192 . T)) +((-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-380 A S) +(-382 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) -(-381 S) +((|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) +(-383 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-382 R1 F1 U1 A1 R2 F2 U2 A2) +(-384 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-383 R -4057 UP A) +(-385 R -4048 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4192 . T)) +((-4218 . T)) NIL -(-384 R -4057 UP A |ibasis|) +(-386 R -4048 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -955) (|devaluate| |#2|)))) -(-385 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -959) (|devaluate| |#2|)))) +(-387 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-386 S R) +(-388 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-333)))) -(-387 R) +((|HasCategory| |#2| (QUOTE (-335)))) +(-389 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4192 |has| |#1| (-509)) (-4190 . T) (-4189 . T)) +((-4218 |has| |#1| (-511)) (-4216 . T) (-4215 . T)) NIL -(-388 R) +(-390 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -258) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-940))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-1116))))) -(-389 R) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -480) (QUOTE (-1082)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -282) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -260) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-944))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -480) (QUOTE (-1082)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-504))) (|HasCategory| |#1| (QUOTE (-423))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-1121))))) +(-391 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-390 R FE |x| |cen|) +(-392 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-391 R A S B) +(-393 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-392 R FE |Expon| UPS TRAN |x|) +(-394 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-393 S A R B) +(-395 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-394 A S) +(-396 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338)))) -(-395 S) +((|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-340)))) +(-397 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4195 . T) (-4185 . T) (-4196 . T) (-2169 . T)) +((-4221 . T) (-4211 . T) (-4222 . T) (-2063 . T)) NIL -(-396 R -4057) +(-398 R -4048) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-397 R E) +(-399 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4182 -12 (|has| |#1| (-6 -4182)) (|has| |#2| (-6 -4182))) (-4189 . T) (-4190 . T) (-4192 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4182)) (|HasAttribute| |#2| (QUOTE -4182)))) -(-398 R -4057) +((-4208 -12 (|has| |#1| (-6 -4208)) (|has| |#2| (-6 -4208))) (-4215 . T) (-4216 . T) (-4218 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4208)) (|HasAttribute| |#2| (QUOTE -4208)))) +(-400 R -4048) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-399 S R) +(-401 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) -(-400 R) +((|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495))))) +(-402 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4192 -3786 (|has| |#1| (-964)) (|has| |#1| (-442))) (-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) ((-4197 "*") |has| |#1| (-509)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-509)) (-4187 |has| |#1| (-509)) (-2169 . T)) +((-4218 -3730 (|has| |#1| (-968)) (|has| |#1| (-444))) (-4216 |has| |#1| (-157)) (-4215 |has| |#1| (-157)) ((-4223 "*") |has| |#1| (-511)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-511)) (-4213 |has| |#1| (-511)) (-2063 . T)) NIL -(-401 R -4057) +(-403 R -4048) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-402 R -4057) +(-404 R -4048) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-403 R -4057) +(-405 R -4048) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-404) +(-406) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-405 R -4057 UP) +(-407 R -4048 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-47))))) -(-406) +((|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-47))))) +(-408) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-407) +(-409) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL -(-408 |f|) +(-410 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-409) +(-411) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2169 . T)) +((-2063 . T)) NIL -(-410) +(-412) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2169 . T)) +((-2063 . T)) NIL -(-411 UP) +(-413 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-412 R UP -4057) +(-414 R UP -4048) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-413 R UP) +(-415 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-414 R) +(-416 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-374)))) -(-415) +((|HasCategory| |#1| (QUOTE (-376)))) +(-417) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-416 |Dom| |Expon| |VarSet| |Dpol|) +(-418 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-417 |Dom| |Expon| |VarSet| |Dpol|) +(-419 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-418 |Dom| |Expon| |VarSet| |Dpol|) +(-420 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-419 |Dom| |Expon| |VarSet| |Dpol|) +(-421 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-333)))) -(-420 S) +((|HasCategory| |#1| (QUOTE (-335)))) +(-422 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-421) +(-423) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-422 R |n| |ls| |gamma|) +(-424 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4192 |has| (-377 (-876 |#1|)) (-509)) (-4190 . T) (-4189 . T)) -((|HasCategory| (-377 (-876 |#1|)) (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-377 (-876 |#1|)) (QUOTE (-509)))) -(-423 |vl| R E) +((-4218 |has| (-379 (-879 |#1|)) (-511)) (-4216 . T) (-4215 . T)) +((|HasCategory| (-379 (-879 |#1|)) (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| (-379 (-879 |#1|)) (QUOTE (-511)))) +(-425 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4197 "*") |has| |#2| (-156)) (-4188 |has| |#2| (-509)) (-4193 |has| |#2| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-424 R BP) +(((-4223 "*") |has| |#2| (-157)) (-4214 |has| |#2| (-511)) (-4219 |has| |#2| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-157))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-511)))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-335))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#2| (QUOTE -4219)) (|HasCategory| |#2| (QUOTE (-423))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-133))))) +(-426 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-425 OV E S R P) +(-427 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-426 E OV R P) +(-428 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-427 R) +(-429 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-428 R FE) +(-430 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-429 RP TP) +(-431 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-430 |vl| R IS E |ff| P) +(-432 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4190 . T) (-4189 . T)) +((-4216 . T) (-4215 . T)) NIL -(-431 E V R P Q) +(-433 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-432 R E |VarSet| P) +(-434 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1006))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787))))) -(-433 S R E) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#4| (QUOTE (-1011))) (-12 (|HasCategory| |#4| (QUOTE (-1011))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#4| (LIST (QUOTE -559) (QUOTE (-790))))) +(-435 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-434 R E) +(-436 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-435) +(-437) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-436) +(-438) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-437) +(-439) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-438 S R E) +(-440 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-439 R E) +(-441 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-440 |lv| -4057 R) +(-442 |lv| -4048 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-441 S) +(-443 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-442) +(-444) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4192 . T)) +((-4218 . T)) NIL -(-443 |Coef| |var| |cen|) +(-445 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|))))))) -(-444 |Key| |Entry| |Tbl| |dent|) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519))) (|devaluate| |#1|))))) (|HasCategory| (-379 (-519)) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1082)))))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-1103))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -4142) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1082))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (LIST (QUOTE -585) (QUOTE (-1082))) (|devaluate| |#1|))))))) +(-446 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4196 . T)) -((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-445 R E V P) +((-4222 . T)) +((|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (QUOTE (-1011))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (-12 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3100) (|devaluate| |#2|)))))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1011)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-447 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1006))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787))))) -(-446) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#4| (QUOTE (-1011))) (-12 (|HasCategory| |#4| (QUOTE (-1011))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#4| (LIST (QUOTE -559) (QUOTE (-790))))) +(-448) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-447 |Key| |Entry| |hashfn|) +(-449 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-448) +((-4221 . T) (-4222 . T)) +((|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (-12 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3100) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-1011))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1011)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-450) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-449 |vl| R) +(-451 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4197 "*") |has| |#2| (-156)) (-4188 |has| |#2| (-509)) (-4193 |has| |#2| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-450 -3124 S) +(((-4223 "*") |has| |#2| (-157)) (-4214 |has| |#2| (-511)) (-4219 |has| |#2| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-157))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-511)))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-335))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#2| (QUOTE -4219)) (|HasCategory| |#2| (QUOTE (-423))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-133))))) +(-452 -2670 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4189 |has| |#2| (-964)) (-4190 |has| |#2| (-964)) (-4192 |has| |#2| (-6 -4192)) ((-4197 "*") |has| |#2| (-156)) (-4195 . T)) -((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3786 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#2| (QUOTE (-964))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasAttribute| |#2| (QUOTE -4192)) (|HasCategory| |#2| (QUOTE (-123))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-25))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-1006)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006))))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3786 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-451 S) +((-4215 |has| |#2| (-968)) (-4216 |has| |#2| (-968)) (-4218 |has| |#2| (-6 -4218)) ((-4223 "*") |has| |#2| (-157)) (-4221 . T)) +((|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-780))) (-3730 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-780)))) (|HasCategory| |#2| (QUOTE (-157))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-335)))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-968)))) (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-209))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-968)))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| (-519) (QUOTE (-782))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-968)))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082))))) (|HasCategory| |#2| (QUOTE (-661))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-3730 (|HasCategory| |#2| (QUOTE (-968))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-1011)))) (|HasAttribute| |#2| (QUOTE -4218)) (|HasCategory| |#2| (QUOTE (-124))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (|HasCategory| |#2| (QUOTE (-25))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-1011)))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (-3730 (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-209)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-335)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-340)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-968)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-1011))))) (-3730 (-12 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-3730 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-1011)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-968)))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-453 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-452 -4057 UP UPUP R) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-454 -4048 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-453 BP) +(-455 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-454) +(-456) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-517) (QUOTE (-833))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-940))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1053))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3786 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (|HasCategory| (-517) (QUOTE (-132))))) -(-455 A S) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-519) (QUOTE (-836))) (|HasCategory| (-519) (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| (-519) (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-135))) (|HasCategory| (-519) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-519) (QUOTE (-944))) (|HasCategory| (-519) (QUOTE (-755))) (|HasCategory| (-519) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| (-519) (QUOTE (-1058))) (|HasCategory| (-519) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| (-519) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| (-519) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| (-519) (QUOTE (-209))) (|HasCategory| (-519) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-519) (LIST (QUOTE -480) (QUOTE (-1082)) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -282) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -260) (QUOTE (-519)) (QUOTE (-519)))) (|HasCategory| (-519) (QUOTE (-280))) (|HasCategory| (-519) (QUOTE (-504))) (|HasCategory| (-519) (QUOTE (-782))) (-3730 (|HasCategory| (-519) (QUOTE (-755))) (|HasCategory| (-519) (QUOTE (-782)))) (|HasCategory| (-519) (LIST (QUOTE -581) (QUOTE (-519)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-836)))) (|HasCategory| (-519) (QUOTE (-133))))) +(-457 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4195)) (|HasAttribute| |#1| (QUOTE -4196)) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) -(-456 S) +((|HasAttribute| |#1| (QUOTE -4221)) (|HasAttribute| |#1| (QUOTE -4222)) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790))))) +(-458 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-2169 . T)) +((-2063 . T)) NIL -(-457 S) +(-459 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-458) +(-460) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-459 -4057 UP |AlExt| |AlPol|) +(-461 -4048 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-460) +(-462) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| $ (QUOTE (-964))) (|HasCategory| $ (LIST (QUOTE -955) (QUOTE (-517))))) -(-461 S |mn|) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| $ (QUOTE (-968))) (|HasCategory| $ (LIST (QUOTE -959) (QUOTE (-519))))) +(-463 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-462 R |mnRow| |mnCol|) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-464 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-463 K R UP) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-465 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-464 R UP -4057) +(-466 R UP -4048) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-465 |mn|) +(-467 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1006))) (-12 (|HasCategory| (-107) (QUOTE (-1006))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))) (|HasCategory| (-107) (LIST (QUOTE -557) (QUOTE (-787))))) -(-466 K R UP L) +((-4222 . T) (-4221 . T)) +((|HasCategory| (-108) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-108) (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| (-108) (QUOTE (-1011))) (-12 (|HasCategory| (-108) (QUOTE (-1011))) (|HasCategory| (-108) (LIST (QUOTE -282) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -559) (QUOTE (-790))))) +(-468 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-467) +(-469) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-468 R Q A B) +(-470 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-469 -4057 |Expon| |VarSet| |DPoly|) +(-471 -4048 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-1077))))) -(-470 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -560) (QUOTE (-1082))))) +(-472 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-471 A S) +(-473 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-472 A S) +(-474 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-473 A S) +(-475 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-474 A S) +(-476 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-475 A S) +(-477 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-476 A S) +(-478 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-477 S A B) +(-479 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-478 A B) +(-480 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-479 S E |un|) +(-481 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-724)))) -(-480 S |mn|) +((|HasCategory| |#2| (QUOTE (-726)))) +(-482 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-481 |p| |n|) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-483 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-530 |#1|) (QUOTE (-134))) (|HasCategory| (-530 |#1|) (QUOTE (-338))) (|HasCategory| (-530 |#1|) (QUOTE (-132))) (-3786 (|HasCategory| (-530 |#1|) (QUOTE (-132))) (|HasCategory| (-530 |#1|) (QUOTE (-338))))) -(-482 R |mnRow| |mnCol| |Row| |Col|) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-532 |#1|) (QUOTE (-135))) (|HasCategory| (-532 |#1|) (QUOTE (-340))) (|HasCategory| (-532 |#1|) (QUOTE (-133))) (-3730 (|HasCategory| (-532 |#1|) (QUOTE (-133))) (|HasCategory| (-532 |#1|) (QUOTE (-340))))) +(-484 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-483 S |mn|) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-485 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-484 R |Row| |Col| M) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-486 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4196))) -(-485 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4222))) +(-487 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4196))) -(-486 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4222))) +(-488 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4197 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-487 GF) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-511))) (|HasAttribute| |#1| (QUOTE (-4223 "*"))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-489 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-488 R) +(-490 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-489 |Varset|) +(-491 |Varset|) ((|constructor| (NIL "converts entire exponents to OutputForm"))) NIL NIL -(-490 K -4057 |Par|) +(-492 K -4048 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-491) +(-493) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-492 R) +(-494 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-493) +(-495) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-494 |Coef| UTS) +(-496 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-495 K -4057 |Par|) +(-497 K -4048 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-496 R BP |pMod| |nextMod|) +(-498 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-497 OV E R P) +(-499 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-498 K UP |Coef| UTS) +(-500 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-499 |Coef| UTS) +(-501 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-500 R UP) +(-502 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-501 S) +(-503 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-502) +(-504) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4193 . T) (-4194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4219 . T) (-4220 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-503 |Key| |Entry| |addDom|) +(-505 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-504 R -4057) +((-4221 . T) (-4222 . T)) +((|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (-12 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3100) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-1011))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1011)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-506 R -4048) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-505 R0 -4057 UP UPUP R) +(-507 R0 -4048 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-506) +(-508) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-507 R) +(-509 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-3905 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-508 S) +(-510 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-509) +(-511) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-510 R -4057) +(-512 R -4048) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-511 I) +(-513 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-512) +(-514) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-513 R -4057 L) +(-515 R -4048 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|)))) -(-514) +((|HasCategory| |#3| (LIST (QUOTE -595) (|devaluate| |#2|)))) +(-516) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-515 -4057 UP UPUP R) +(-517 -4048 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-516 -4057 UP) +(-518 -4048 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-517) +(-519) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4177 . T) (-4183 . T) (-4187 . T) (-4182 . T) (-4193 . T) (-4194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4203 . T) (-4209 . T) (-4213 . T) (-4208 . T) (-4219 . T) (-4220 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-518) +(-520) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-519 R -4057 L) +(-521 R -4048 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|)))) -(-520 R -4057) +((|HasCategory| |#3| (LIST (QUOTE -595) (|devaluate| |#2|)))) +(-522 R -4048) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-569))))) -(-521 -4057 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-571))))) +(-523 -4048 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-522 S) +(-524 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-523 -4057) +(-525 -4048) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-524 R) +(-526 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-3905 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-525) +(-527) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-526 R -4057) +(-528 R -4048) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-256))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077))))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-256)))) (|HasCategory| |#1| (QUOTE (-509)))) -(-527 -4057 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-1082))))) (-12 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-511)))) +(-529 -4048 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-528 R -4057) +(-530 R -4048) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-529 |p| |unBalanced?|) +(-531 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-530 |p|) +(-532 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338)))) -(-531) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-340)))) +(-533) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-532 R -4057) +(-534 R -4048) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-533 E -4057) +(-535 E -4048) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-534 -4057) +(-536 -4048) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4190 . T) (-4189 . T)) -((|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-1077))))) -(-535 I) +((-4216 . T) (-4215 . T)) +((|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-1082))))) +(-537 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-536 GF) +(-538 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-537 R) +(-539 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-134)))) -(-538) +((|HasCategory| |#1| (QUOTE (-135)))) +(-540) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-539 R E V P TS) +(-541 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-540 |mn|) +(-542 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4196 . T) (-4195 . T)) -((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1006))) (-3786 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1006)))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3786 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))))) -(-541 E V R P) +((-4222 . T) (-4221 . T)) +((|HasCategory| (-132) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-132) (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| (-132) (QUOTE (-1011))) (-3730 (|HasCategory| (-132) (QUOTE (-782))) (|HasCategory| (-132) (QUOTE (-1011)))) (-12 (|HasCategory| (-132) (QUOTE (-1011))) (|HasCategory| (-132) (LIST (QUOTE -282) (QUOTE (-132))))) (-3730 (-12 (|HasCategory| (-132) (QUOTE (-782))) (|HasCategory| (-132) (LIST (QUOTE -282) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1011))) (|HasCategory| (-132) (LIST (QUOTE -282) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-132) (LIST (QUOTE -559) (QUOTE (-790)))) (-12 (|HasCategory| (-132) (QUOTE (-1011))) (|HasCategory| (-132) (LIST (QUOTE -282) (QUOTE (-132))))))) +(-543 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-542 |Coef|) +(-544 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (|HasCategory| (-517) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077))))))) -(-543 |Coef|) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-519)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-519)) (|devaluate| |#1|))))) (|HasCategory| (-519) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-335))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-519))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1082))))))) +(-545 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4190 |has| |#1| (-509)) (-4189 |has| |#1| (-509)) ((-4197 "*") |has| |#1| (-509)) (-4188 |has| |#1| (-509)) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-509)))) -(-544 A B) +((-4216 |has| |#1| (-511)) (-4215 |has| |#1| (-511)) ((-4223 "*") |has| |#1| (-511)) (-4214 |has| |#1| (-511)) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-511)))) +(-546 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-545 A B C) +(-547 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-546 R -4057 FG) +(-548 R -4048 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-547 S) +(-549 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-548 R |mn|) +(-550 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-964))) (-12 (|HasCategory| |#1| (QUOTE (-921))) (|HasCategory| |#1| (QUOTE (-964)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-549 S |Index| |Entry|) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-661))) (|HasCategory| |#1| (QUOTE (-968))) (-12 (|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-968)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-551 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4196)) (|HasCategory| |#2| (QUOTE (-779))) (|HasAttribute| |#1| (QUOTE -4195)) (|HasCategory| |#3| (QUOTE (-1006)))) -(-550 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4222)) (|HasCategory| |#2| (QUOTE (-782))) (|HasAttribute| |#1| (QUOTE -4221)) (|HasCategory| |#3| (QUOTE (-1011)))) +(-552 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-2169 . T)) +((-2063 . T)) NIL -(-551 R A) +(-553 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4192 -3786 (-4024 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4190 . T) (-4189 . T)) -((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))))) -(-552 |Entry|) +((-4218 -3730 (-4012 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))) (-4216 . T) (-4215 . T)) +((|HasCategory| |#2| (LIST (QUOTE -389) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -389) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -339) (|devaluate| |#1|))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -339) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -389) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#2| (LIST (QUOTE -339) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#2| (LIST (QUOTE -389) (|devaluate| |#1|)))))) +(-554 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| (-1060) (QUOTE (-779))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (QUOTE (-1060))) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -557) (QUOTE (-787))))) -(-553 S |Key| |Entry|) +((-4221 . T) (-4222 . T)) +((|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| (-1065) (QUOTE (-782))) (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (QUOTE (-1011))) (-12 (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (QUOTE (-1065))) (LIST (QUOTE |:|) (QUOTE -3100) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (LIST (QUOTE -559) (QUOTE (-790))))) +(-555 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-554 |Key| |Entry|) +(-556 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4196 . T) (-2169 . T)) +((-4222 . T) (-2063 . T)) NIL -(-555 R S) +(-557 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-556 S) +(-558 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) -(-557 S) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) +(-559 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-558 S) +(-560 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-559 -4057 UP) +(-561 -4048 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-560 S R) +(-562 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-561 R) +(-563 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4192 . T)) +((-4218 . T)) NIL -(-562 A R S) +(-564 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-777)))) -(-563 R -4057) +((-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-780)))) +(-565 R -4048) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-564 R UP) +(-566 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4190 . T) (-4189 . T) ((-4197 "*") . T) (-4188 . T) (-4192 . T)) -((|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) -(-565 R E V P TS ST) +((-4216 . T) (-4215 . T) ((-4223 "*") . T) (-4214 . T) (-4218 . T)) +((|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519))))) +(-567 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-566 OV E Z P) +(-568 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-567 |VarSet| R |Order|) +(-569 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4192 . T)) +((-4218 . T)) NIL -(-568 R |ls|) +(-570 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-569) +(-571) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-570 R -4057) +(-572 R -4048) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-571 |lv| -4057) +(-573 |lv| -4048) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-572) +(-574) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4196 . T)) -((|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1060) (QUOTE (-779))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1006))) (-12 (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (QUOTE (-1060))) (LIST (QUOTE |:|) (QUOTE -1846) (QUOTE (-51))))))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-51) (QUOTE (-1006)))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))))) -(-573 S R) +((-4222 . T)) +((|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-1065) (QUOTE (-782))) (|HasCategory| (-51) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-51) (QUOTE (-1011))) (-12 (|HasCategory| (-51) (QUOTE (-1011))) (|HasCategory| (-51) (LIST (QUOTE -282) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (QUOTE (-1011))) (-12 (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (QUOTE (-1065))) (LIST (QUOTE |:|) (QUOTE -3100) (QUOTE (-51))))))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (QUOTE (-1011))) (|HasCategory| (-51) (QUOTE (-1011)))) (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-51) (QUOTE (-1011))) (|HasCategory| (-51) (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-51) (LIST (QUOTE -559) (QUOTE (-790)))))) +(-575 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-333)))) -(-574 R) +((|HasCategory| |#2| (QUOTE (-335)))) +(-576 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4190 . T) (-4189 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4216 . T) (-4215 . T)) NIL -(-575 R A) +(-577 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4192 -3786 (-4024 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4190 . T) (-4189 . T)) -((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))))) -(-576 R FE) +((-4218 -3730 (-4012 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))) (-4216 . T) (-4215 . T)) +((|HasCategory| |#2| (LIST (QUOTE -389) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -389) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -339) (|devaluate| |#1|))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -339) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -389) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#2| (LIST (QUOTE -339) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#2| (LIST (QUOTE -389) (|devaluate| |#1|)))))) +(-578 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-577 R) +(-579 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-578 S R) +(-580 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-333))) (-2479 (|HasCategory| |#1| (QUOTE (-333))))) -(-579 R) +((|HasCategory| |#1| (QUOTE (-335))) (-2445 (|HasCategory| |#1| (QUOTE (-335))))) +(-581 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4192 . T)) +((-4218 . T)) NIL -(-580 A B) +(-582 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-581 A B) +(-583 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-582 A B C) +(-584 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-583 S) +(-585 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-584 S) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-763))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-586 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-585 R) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-587 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-586 S E |un|) +(-588 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-587 A S) +(-589 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4196))) -(-588 S) +((|HasAttribute| |#1| (QUOTE -4222))) +(-590 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-2169 . T)) +((-2063 . T)) NIL -(-589 R -4057 L) +(-591 R -4048 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-590 A) +(-592 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333)))) -(-591 A M) +((-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-335)))) +(-593 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333)))) -(-592 S A) +((-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-335)))) +(-594 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-333)))) -(-593 A) +((|HasCategory| |#2| (QUOTE (-335)))) +(-595 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4189 . T) (-4190 . T) (-4192 . T)) +((-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-594 -4057 UP) +(-596 -4048 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-595 A -2903) +(-597 A -2625) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333)))) -(-596 A L) +((-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-335)))) +(-598 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-597 S) +(-599 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-598) +(-600) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-599 M R S) +(-601 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4190 . T) (-4189 . T)) -((|HasCategory| |#1| (QUOTE (-723)))) -(-600 R) +((-4216 . T) (-4215 . T)) +((|HasCategory| |#1| (QUOTE (-725)))) +(-602 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-601 |VarSet| R) +(-603 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4190 . T) (-4189 . T)) -((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-156)))) -(-602 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4216 . T) (-4215 . T)) +((|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-157)))) +(-604 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-603 S) +(-605 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL -(-604 -4057) +(-606 -4048) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-605 -4057 |Row| |Col| M) +(-607 -4048 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-606 R E OV P) +(-608 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-607 |n| R) +(-609 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4192 . T) (-4195 . T) (-4189 . T) (-4190 . T)) -((|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4197 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))) (-3786 (|HasAttribute| |#2| (QUOTE (-4197 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3786 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-156)))) -(-608 |VarSet|) +((-4218 . T) (-4221 . T) (-4215 . T) (-4216 . T)) +((|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-209))) (|HasAttribute| |#2| (QUOTE (-4223 "*"))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-280))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-511))) (-3730 (|HasAttribute| |#2| (QUOTE (-4223 "*"))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-209)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-3730 (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (QUOTE (-157)))) +(-610 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-609 A S) +(-611 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-610 S) +(-612 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-2169 . T)) +((-2063 . T)) NIL -(-611 R) +(-613 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-964))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-612 |VarSet|) +((|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-968))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-614 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-613 A) +(-615 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-614 A C) +(-616 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-615 A B C) +(-617 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-616 A) +(-618 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-617 A C) +(-619 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-618 A B C) +(-620 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-619 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-621 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-620 S R |Row| |Col|) +(-622 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4197 "*"))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509)))) -(-621 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4223 "*"))) (|HasCategory| |#2| (QUOTE (-280))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-511)))) +(-623 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4195 . T) (-4196 . T) (-2169 . T)) +((-4221 . T) (-4222 . T) (-2063 . T)) NIL -(-622 R |Row| |Col| M) +(-624 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509)))) -(-623 R) +((|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-511)))) +(-625 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4197 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-624 R) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-511))) (|HasAttribute| |#1| (QUOTE (-4223 "*"))) (|HasCategory| |#1| (QUOTE (-335))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-626 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-625 S -4057 FLAF FLAS) +(-627 S -4048 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-626 R Q) +(-628 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-627) +(-629) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4188 . T) (-4193 |has| (-632) (-333)) (-4187 |has| (-632) (-333)) (-3913 . T) (-4194 |has| (-632) (-6 -4194)) (-4191 |has| (-632) (-6 -4191)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-632) (QUOTE (-134))) (|HasCategory| (-632) (QUOTE (-132))) (|HasCategory| (-632) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-338))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-319))) (-3786 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (LIST (QUOTE -258) (QUOTE (-632)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -280) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-632) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-632) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-632) (QUOTE (-940))) (|HasCategory| (-632) (QUOTE (-1098))) (-12 (|HasCategory| (-632) (QUOTE (-921))) (|HasCategory| (-632) (QUOTE (-1098)))) (|HasCategory| (-632) (QUOTE (-502))) (|HasCategory| (-632) (QUOTE (-973))) (-12 (|HasCategory| (-632) (QUOTE (-973))) (|HasCategory| (-632) (QUOTE (-1098)))) (-3786 (|HasCategory| (-632) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (QUOTE (-278))) (-3786 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (QUOTE (-833))) (-12 (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-333)))) (-12 (|HasCategory| (-632) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-779))) (|HasCategory| (-632) (QUOTE (-509))) (|HasAttribute| (-632) (QUOTE -4194)) (|HasAttribute| (-632) (QUOTE -4191)) (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (|HasCategory| (-632) (QUOTE (-333))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-833))))) (-3786 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (-12 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-833)))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-833))))) (-3786 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (|HasCategory| (-632) (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (|HasCategory| (-632) (QUOTE (-509)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (|HasCategory| (-632) (QUOTE (-132)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-833)))) (|HasCategory| (-632) (QUOTE (-319))))) -(-628 S) +((-4214 . T) (-4219 |has| (-634) (-335)) (-4213 |has| (-634) (-335)) (-3916 . T) (-4220 |has| (-634) (-6 -4220)) (-4217 |has| (-634) (-6 -4217)) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-634) (QUOTE (-135))) (|HasCategory| (-634) (QUOTE (-133))) (|HasCategory| (-634) (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| (-634) (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| (-634) (QUOTE (-340))) (|HasCategory| (-634) (QUOTE (-335))) (|HasCategory| (-634) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-634) (QUOTE (-209))) (|HasCategory| (-634) (QUOTE (-321))) (-3730 (|HasCategory| (-634) (QUOTE (-335))) (|HasCategory| (-634) (QUOTE (-321)))) (|HasCategory| (-634) (LIST (QUOTE -260) (QUOTE (-634)) (QUOTE (-634)))) (|HasCategory| (-634) (LIST (QUOTE -282) (QUOTE (-634)))) (|HasCategory| (-634) (LIST (QUOTE -480) (QUOTE (-1082)) (QUOTE (-634)))) (|HasCategory| (-634) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| (-634) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| (-634) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| (-634) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| (-634) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-634) (QUOTE (-944))) (|HasCategory| (-634) (QUOTE (-1103))) (-12 (|HasCategory| (-634) (QUOTE (-925))) (|HasCategory| (-634) (QUOTE (-1103)))) (|HasCategory| (-634) (QUOTE (-504))) (|HasCategory| (-634) (QUOTE (-977))) (-12 (|HasCategory| (-634) (QUOTE (-977))) (|HasCategory| (-634) (QUOTE (-1103)))) (-3730 (|HasCategory| (-634) (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| (-634) (QUOTE (-335)))) (|HasCategory| (-634) (QUOTE (-280))) (-3730 (|HasCategory| (-634) (QUOTE (-280))) (|HasCategory| (-634) (QUOTE (-335))) (|HasCategory| (-634) (QUOTE (-321)))) (|HasCategory| (-634) (QUOTE (-836))) (-12 (|HasCategory| (-634) (QUOTE (-209))) (|HasCategory| (-634) (QUOTE (-335)))) (-12 (|HasCategory| (-634) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-634) (QUOTE (-335)))) (|HasCategory| (-634) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| (-634) (QUOTE (-782))) (|HasCategory| (-634) (QUOTE (-511))) (|HasAttribute| (-634) (QUOTE -4220)) (|HasAttribute| (-634) (QUOTE -4217)) (-12 (|HasCategory| (-634) (QUOTE (-280))) (|HasCategory| (-634) (QUOTE (-836)))) (-3730 (-12 (|HasCategory| (-634) (QUOTE (-280))) (|HasCategory| (-634) (QUOTE (-836)))) (|HasCategory| (-634) (QUOTE (-335))) (-12 (|HasCategory| (-634) (QUOTE (-321))) (|HasCategory| (-634) (QUOTE (-836))))) (-3730 (-12 (|HasCategory| (-634) (QUOTE (-280))) (|HasCategory| (-634) (QUOTE (-836)))) (-12 (|HasCategory| (-634) (QUOTE (-335))) (|HasCategory| (-634) (QUOTE (-836)))) (-12 (|HasCategory| (-634) (QUOTE (-321))) (|HasCategory| (-634) (QUOTE (-836))))) (-3730 (-12 (|HasCategory| (-634) (QUOTE (-280))) (|HasCategory| (-634) (QUOTE (-836)))) (|HasCategory| (-634) (QUOTE (-335)))) (-3730 (-12 (|HasCategory| (-634) (QUOTE (-280))) (|HasCategory| (-634) (QUOTE (-836)))) (|HasCategory| (-634) (QUOTE (-511)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-634) (QUOTE (-280))) (|HasCategory| (-634) (QUOTE (-836)))) (|HasCategory| (-634) (QUOTE (-133)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-634) (QUOTE (-280))) (|HasCategory| (-634) (QUOTE (-836)))) (|HasCategory| (-634) (QUOTE (-321))))) +(-630 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4196 . T) (-2169 . T)) +((-4222 . T) (-2063 . T)) NIL -(-629 U) +(-631 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-630) +(-632) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-631 OV E -4057 PG) +(-633 OV E -4048 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-632) +(-634) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2194 . T) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-3905 . T) (-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-633 R) +(-635 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-634) +(-636) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4194 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4220 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-635 S D1 D2 I) +(-637 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-636 S) +(-638 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-637 S) +(-639 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-638 S) +(-640 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-639 S T$) +(-641 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-640 S -3348 I) +(-642 S -2242 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-641 E OV R P) +(-643 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-642 R) +(-644 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\^= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4189 . T) (-4190 . T) (-4192 . T)) +((-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-643 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-645 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-644 R |Mod| -2563 -3824 |exactQuo|) +(-646 R |Mod| -2536 -2500 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-645 R |Rep|) +(-647 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4191 |has| |#1| (-333)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-319))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-646 IS E |ff|) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4217 |has| |#1| (-335)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| (-996) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-321))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasAttribute| |#1| (QUOTE -4219)) (|HasCategory| |#1| (QUOTE (-423))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-648 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-647 R M) +(-649 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134)))) -(-648 R |Mod| -2563 -3824 |exactQuo|) +((-4216 |has| |#1| (-157)) (-4215 |has| |#1| (-157)) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135)))) +(-650 R |Mod| -2536 -2500 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4192 . T)) +((-4218 . T)) NIL -(-649 S R) +(-651 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-650 R) +(-652 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4190 . T) (-4189 . T)) +((-4216 . T) (-4215 . T)) NIL -(-651 -4057) +(-653 -4048) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4192 . T)) +((-4218 . T)) NIL -(-652 S) +(-654 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-653) +(-655) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-654 S) +(-656 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-655) +(-657) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-656 S R UP) +(-658 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338)))) -(-657 R UP) +((|HasCategory| |#2| (QUOTE (-321))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-340)))) +(-659 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4188 |has| |#1| (-333)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 |has| |#1| (-335)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-658 S) +(-660 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-659) +(-661) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-660 -4057 UP) +(-662 -4048 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-661 |VarSet| E1 E2 R S PR PS) +(-663 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-662 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-664 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-663 E OV R PPR) +(-665 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-664 |vl| R) +(-666 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4197 "*") |has| |#2| (-156)) (-4188 |has| |#2| (-509)) (-4193 |has| |#2| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-665 E OV R PRF) +(((-4223 "*") |has| |#2| (-157)) (-4214 |has| |#2| (-511)) (-4219 |has| |#2| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-157))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-511)))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| (-792 |#1|) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-335))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#2| (QUOTE -4219)) (|HasCategory| |#2| (QUOTE (-423))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-133))))) +(-667 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-666 E OV R P) +(-668 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-667 R S M) +(-669 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-668 R M) +(-670 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) (-4192 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-779)))) -(-669 S) +((-4216 |has| |#1| (-157)) (-4215 |has| |#1| (-157)) (-4218 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#2| (QUOTE (-340)))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-782)))) +(-671 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4185 . T) (-4196 . T) (-2169 . T)) +((-4211 . T) (-4222 . T) (-2063 . T)) NIL -(-670 S) +(-672 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4195 . T) (-4185 . T) (-4196 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))) -(-671) +((-4221 . T) (-4211 . T) (-4222 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790))))) +(-673) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-672 S) +(-674 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-673 |Coef| |Var|) +(-675 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4190 . T) (-4189 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4216 . T) (-4215 . T) (-4218 . T)) NIL -(-674 OV E R P) +(-676 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-675 E OV R P) +(-677 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-676 S R) +(-678 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-677 R) +(-679 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4190 . T) (-4189 . T)) +((-4216 . T) (-4215 . T)) NIL -(-678) +(-680) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-679) +(-681) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-680) +(-682) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-681) +(-683) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-682) +(-684) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-683) +(-685) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-684) +(-686) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-685) +(-687) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-686) +(-688) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-687) +(-689) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-688) +(-690) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-689) +(-691) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-690) +(-692) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-691) +(-693) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-692) +(-694) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-693 S) +(-695 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-694) +(-696) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-695 S) +(-697 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-696) +(-698) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-697 |Par|) +(-699 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-698 -4057) +(-700 -4048) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-699 P -4057) +(-701 P -4048) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-700 UP -4057) +(-702 UP -4048) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-701) +(-703) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-702 R) +(-704 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-703) +(-705) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4197 "*") . T)) +(((-4223 "*") . T)) NIL -(-704 R -4057) +(-706 R -4048) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-705 S) +(-707 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-706) +(-708) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-707 R |PolR| E |PolE|) +(-709 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-708 R E V P TS) +(-710 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-709 -4057 |ExtF| |SUEx| |ExtP| |n|) +(-711 -4048 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-710 BP E OV R P) +(-712 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-711 |Par|) +(-713 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-712 R |VarSet|) +(-714 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077))))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))) (-2479 (|HasCategory| |#1| (QUOTE (-502)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517))))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1077)))) (-2479 (|HasCategory| |#1| (LIST (QUOTE -912) (QUOTE (-517))))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-713 R S) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-1082)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-1082))))) (|HasCategory| |#1| (QUOTE (-335))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-1082))))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-1082)))) (-2445 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-1082)))))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-1082)))) (-2445 (|HasCategory| |#1| (QUOTE (-504)))) (-2445 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-1082)))) (-2445 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-519))))) (-2445 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-1082)))) (-2445 (|HasCategory| |#1| (LIST (QUOTE -916) (QUOTE (-519))))))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#1| (QUOTE -4219)) (|HasCategory| |#1| (QUOTE (-423))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-715 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-714 R) +(-716 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4191 |has| |#1| (-333)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-715 R) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4217 |has| |#1| (-335)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| (-996) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasAttribute| |#1| (QUOTE -4219)) (|HasCategory| |#1| (QUOTE (-423))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-717 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) -(-716 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) +(-718 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL -(-717 S) +(-719 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-509))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (QUOTE (-964))) (|HasCategory| |#1| (QUOTE (-156)))) -(-718) +((|HasCategory| |#1| (QUOTE (-511))) (-12 (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-782)))) (|HasCategory| |#1| (QUOTE (-968))) (|HasCategory| |#1| (QUOTE (-157)))) +(-720) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-719) +(-721) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-720) +(-722) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-721) +(-723) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-722 |Curve|) +(-724 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-723) +(-725) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-724) +(-726) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-725) +(-727) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-726) +(-728) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-727) +(-729) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `ObjectProperty' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) +NIL +NIL +(-730) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-728 S R) +(-731 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338)))) -(-729 R) +((|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-504))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-340)))) +(-732 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4189 . T) (-4190 . T) (-4192 . T)) +((-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-730 -3786 R OS S) +(-733 -3730 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-731 R) +(-734 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| (-918 |#1|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-918 |#1|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (|HasCategory| (-918 |#1|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (-3786 (|HasCategory| (-918 |#1|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))))) -(-732) +((-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -480) (QUOTE (-1082)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-504))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| (-922 |#1|) (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| (-922 |#1|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (-3730 (|HasCategory| (-922 |#1|) (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (-3730 (|HasCategory| (-922 |#1|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))))) +(-735) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-733 R -4057 L) +(-736 R -4048 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-734 R -4057) +(-737 R -4048) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-735) +(-738) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-736 R -4057) +(-739 R -4048) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-737) +(-740) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-738 -4057 UP UPUP R) +(-741 -4048 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-739 -4057 UP L LQ) +(-742 -4048 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-740) +(-743) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-741 -4057 UP L LQ) +(-744 -4048 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-742 -4057 UP) +(-745 -4048 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-743 -4057 L UP A LO) +(-746 -4048 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-744 -4057 UP) +(-747 -4048 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-745 -4057 LO) +(-748 -4048 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-746 -4057 LODO) +(-749 -4048 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-747 -3124 S |f|) +(-750 -2670 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4189 |has| |#2| (-964)) (-4190 |has| |#2| (-964)) (-4192 |has| |#2| (-6 -4192)) ((-4197 "*") |has| |#2| (-156)) (-4195 . T)) -((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3786 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#2| (QUOTE (-964))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasAttribute| |#2| (QUOTE -4192)) (|HasCategory| |#2| (QUOTE (-123))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (|HasCategory| |#2| (QUOTE (-25))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-1006)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-964)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006))))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3786 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-964)))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-748 R) +((-4215 |has| |#2| (-968)) (-4216 |has| |#2| (-968)) (-4218 |has| |#2| (-6 -4218)) ((-4223 "*") |has| |#2| (-157)) (-4221 . T)) +((|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-780))) (-3730 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-780)))) (|HasCategory| |#2| (QUOTE (-157))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-335)))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-968)))) (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-209))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-968)))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| (-519) (QUOTE (-782))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-968)))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082))))) (|HasCategory| |#2| (QUOTE (-661))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-3730 (|HasCategory| |#2| (QUOTE (-968))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-1011)))) (|HasAttribute| |#2| (QUOTE -4218)) (|HasCategory| |#2| (QUOTE (-124))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (|HasCategory| |#2| (QUOTE (-25))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-1011)))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-968)))) (-3730 (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-209)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-335)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-340)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-780)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-968)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-1011))))) (-3730 (-12 (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-3730 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-780))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-1011)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-968)))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-751 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-750 (-1077)) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-750 (-1077)) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-750 (-1077)) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-750 (-1077)) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-750 (-1077)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-749 |Kernels| R |var|) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| (-753 (-1082)) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| (-753 (-1082)) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| (-753 (-1082)) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| (-753 (-1082)) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| (-753 (-1082)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#1| (QUOTE -4219)) (|HasCategory| |#1| (QUOTE (-423))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-752 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4197 "*") |has| |#2| (-333)) (-4188 |has| |#2| (-333)) (-4193 |has| |#2| (-333)) (-4187 |has| |#2| (-333)) (-4192 . T) (-4190 . T) (-4189 . T)) -((|HasCategory| |#2| (QUOTE (-333)))) -(-750 S) +(((-4223 "*") |has| |#2| (-335)) (-4214 |has| |#2| (-335)) (-4219 |has| |#2| (-335)) (-4213 |has| |#2| (-335)) (-4218 . T) (-4216 . T) (-4215 . T)) +((|HasCategory| |#2| (QUOTE (-335)))) +(-753 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-751 S) +(-754 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-752) +(-755) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-753) +(-756) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-754) +(-757) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-755) +(-758) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-756) +(-759) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-757) +(-760) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-758 R) +(-761 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-759 P R) +(-762 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-207)))) -(-760) +((-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-209)))) +(-763) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-761) +(-764) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-762 S) +(-765 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4195 . T) (-4185 . T) (-4196 . T) (-2169 . T)) +((-4221 . T) (-4211 . T) (-4222 . T) (-2063 . T)) NIL -(-763) +(-766) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-764 R S) +(-767 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-765 R) +(-768 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4192 |has| |#1| (-777))) -((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3786 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3786 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777))))) -(-766 R) +((-4218 |has| |#1| (-780))) +((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-504))) (-3730 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-21))) (-3730 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-780))))) +(-769 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134)))) -(-767) +((-4216 |has| |#1| (-157)) (-4215 |has| |#1| (-157)) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135)))) +(-770) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-768) +(-771) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-769) +(-772) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-770) +(-773) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-771 R S) +(-774 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-772 R) +(-775 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4192 |has| |#1| (-777))) -((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3786 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3786 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777))))) -(-773) +((-4218 |has| |#1| (-780))) +((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-504))) (-3730 (|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-21))) (-3730 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-780))))) +(-776) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-774 -3124 S) +(-777 -2670 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-775) +(-778) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-776 S) +(-779 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-777) +(-780) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4192 . T)) +((-4218 . T)) NIL -(-778 S) +(-781 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-779) +(-782) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-780 S R) +(-783 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156)))) -(-781 R) +((|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-157)))) +(-784 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4189 . T) (-4190 . T) (-4192 . T)) +((-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-782 R C) +(-785 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) -(-783 R |sigma| -1844) +((|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) +(-786 R |sigma| -1200) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333)))) -(-784 |x| R |sigma| -1844) +((-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-335)))) +(-787 |x| R |sigma| -1200) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-333)))) -(-785 R) +((-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-335)))) +(-788 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) -(-786) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) +(-789) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-787) +(-790) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f ^= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-788) +(-791) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-789 |VariableList|) +(-792 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-790 R |vl| |wl| |wtlevel|) +(-793 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) -(-791 R PS UP) +((-4216 |has| |#1| (-157)) (-4215 |has| |#1| (-157)) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335)))) +(-794 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-792 R |x| |pt|) +(-795 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-793 |p|) +(-796 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-794 |p|) +(-797 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-795 |p|) +(-798 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-794 |#1|) (QUOTE (-833))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-794 |#1|) (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-134))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-794 |#1|) (QUOTE (-940))) (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-1053))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-207))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -794) (|devaluate| |#1|)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (QUOTE (-278))) (|HasCategory| (-794 |#1|) (QUOTE (-502))) (|HasCategory| (-794 |#1|) (QUOTE (-779))) (-3786 (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-833)))) (|HasCategory| (-794 |#1|) (QUOTE (-132))))) -(-796 |p| PADIC) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-797 |#1|) (QUOTE (-836))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| (-797 |#1|) (QUOTE (-133))) (|HasCategory| (-797 |#1|) (QUOTE (-135))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-797 |#1|) (QUOTE (-944))) (|HasCategory| (-797 |#1|) (QUOTE (-755))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| (-797 |#1|) (QUOTE (-1058))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| (-797 |#1|) (QUOTE (-209))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -480) (QUOTE (-1082)) (LIST (QUOTE -797) (|devaluate| |#1|)))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -282) (LIST (QUOTE -797) (|devaluate| |#1|)))) (|HasCategory| (-797 |#1|) (LIST (QUOTE -260) (LIST (QUOTE -797) (|devaluate| |#1|)) (LIST (QUOTE -797) (|devaluate| |#1|)))) (|HasCategory| (-797 |#1|) (QUOTE (-280))) (|HasCategory| (-797 |#1|) (QUOTE (-504))) (|HasCategory| (-797 |#1|) (QUOTE (-782))) (-3730 (|HasCategory| (-797 |#1|) (QUOTE (-755))) (|HasCategory| (-797 |#1|) (QUOTE (-782)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-797 |#1|) (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-797 |#1|) (QUOTE (-836)))) (|HasCategory| (-797 |#1|) (QUOTE (-133))))) +(-799 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-779))) (-3786 (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-797 S T$) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (QUOTE (-944))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (LIST (QUOTE -480) (QUOTE (-1082)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -260) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-280))) (|HasCategory| |#2| (QUOTE (-504))) (|HasCategory| |#2| (QUOTE (-782))) (-3730 (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-782)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-133))))) +(-800 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))))) -(-798) +((-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1011)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1011)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790))))))) +(-801) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-799) +(-802) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-800 CF1 CF2) +(-803 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-801 |ComponentFunction|) +(-804 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-802 CF1 CF2) +(-805 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-803 |ComponentFunction|) +(-806 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-804) +(-807) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-805 CF1 CF2) +(-808 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-806 |ComponentFunction|) +(-809 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-807) +(-810) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-808 R) +(-811 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-809 R S L) +(-812 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-810 S) +(-813 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-811 |Base| |Subject| |Pat|) +(-814 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077)))) (-12 (-2479 (|HasCategory| |#2| (QUOTE (-964)))) (-2479 (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077)))))) (-12 (|HasCategory| |#2| (QUOTE (-964))) (-2479 (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077))))))) -(-812 R A B) +((|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-1082)))) (-12 (-2445 (|HasCategory| |#2| (QUOTE (-968)))) (-2445 (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-1082)))))) (-12 (|HasCategory| |#2| (QUOTE (-968))) (-2445 (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-1082))))))) +(-815 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-813 R S) +(-816 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-814 R -3348) +(-817 R -2242) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-815 R S) +(-818 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-816 R) +(-819 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-817 |VarSet|) +(-820 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-818 UP R) +(-821 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-819) +(-822) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-820 UP -4057) +(-823 UP -4048) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-821) +(-824) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-822) +(-825) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-823 A S) +(-826 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-824 S) +(-827 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4192 . T)) +((-4218 . T)) NIL -(-825 S) +(-828 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-826 |n| R) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-829 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ^= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-827 S) +(-830 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4192 . T)) +((-4218 . T)) NIL -(-828 S) +(-831 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-829 S) +(-832 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4192 . T)) -((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779))) (-3786 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779))))) -(-830 R E |VarSet| S) +((-4218 . T)) +((|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-782))) (-3730 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-782))))) +(-833 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-831 R S) +(-834 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-832 S) +(-835 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-132)))) -(-833) +((|HasCategory| |#1| (QUOTE (-133)))) +(-836) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-834 |p|) +(-837 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338)))) -(-835 R0 -4057 UP UPUP R) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-340)))) +(-838 R0 -4048 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-836 UP UPUP R) +(-839 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-837 UP UPUP) +(-840 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-838 R) +(-841 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-839 R) +(-842 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-840 E OV R P) +(-843 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-841) +(-844) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-842 -4057) +(-845 -4048) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-843 R) +(-846 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-844) +(-847) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-845) +(-848) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4197 "*") . T)) +(((-4223 "*") . T)) NIL -(-846 -4057 P) +(-849 -4048 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-847 |xx| -4057) +(-850 |xx| -4048) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-848 R |Var| |Expon| GR) +(-851 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-849 S) +(-852 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-850) +(-853) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-851) +(-854) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-852) +(-855) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-853 R -4057) +(-856 R -4048) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-854) +(-857) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-855 S A B) +(-858 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-856 S R -4057) +(-859 S R -4048) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-857 I) +(-860 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-858 S E) +(-861 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-859 S R L) +(-862 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-860 S E V R P) +(-863 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -810) (|devaluate| |#1|)))) -(-861 R -4057 -3348) +((|HasCategory| |#3| (LIST (QUOTE -813) (|devaluate| |#1|)))) +(-864 R -4048 -2242) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-862 -3348) +(-865 -2242) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-863 S R Q) +(-866 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-864 S) +(-867 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-865 S R P) +(-868 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-866) +(-869) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-867 R) +(-870 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-964))) (-12 (|HasCategory| |#1| (QUOTE (-921))) (|HasCategory| |#1| (QUOTE (-964)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-868 |lv| R) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-661))) (|HasCategory| |#1| (QUOTE (-968))) (-12 (|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-968)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-871 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-869 |TheField| |ThePols|) +(-872 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-777)))) -(-870 R S) +((|HasCategory| |#1| (QUOTE (-780)))) +(-873 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-871 |x| R) +(-874 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-872 S R E |VarSet|) +(-875 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-833))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#4| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779)))) -(-873 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-836))) (|HasAttribute| |#2| (QUOTE -4219)) (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#4| (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#4| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#4| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (QUOTE (-782)))) +(-876 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) NIL -(-874 E V R P -4057) +(-877 E V R P -4048) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-875 E |Vars| R P S) +(-878 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-876 R) +(-879 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1077) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-1077) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-1077) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-1077) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-1077) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-877 E V R P -4057) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#1| (QUOTE -4219)) (|HasCategory| |#1| (QUOTE (-423))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-880 E V R P -4048) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-421)))) -(-878) +((|HasCategory| |#3| (QUOTE (-423)))) +(-881) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-879 R L) +(-882 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-880 A B) +(-883 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-881 S) +(-884 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-882) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-885) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-883 -4057) +(-886 -4048) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-884 I) +(-887 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-885) +(-888) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-886 R E) +(-889 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-123)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193))) -(-887 A B) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-6 -4219)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-423))) (-12 (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-124)))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#1| (QUOTE -4219))) +(-890 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4192 -12 (|has| |#2| (-442)) (|has| |#1| (-442)))) -((-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))))) -(-888) +((-4218 -12 (|has| |#2| (-444)) (|has| |#1| (-444)))) +((-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-444)))) (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#2| (QUOTE (-340)))) (-12 (|HasCategory| |#1| (QUOTE (-661))) (|HasCategory| |#2| (QUOTE (-661)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-444)))) (-12 (|HasCategory| |#1| (QUOTE (-661))) (|HasCategory| |#2| (QUOTE (-661))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727))))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727))))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-444)))) (-12 (|HasCategory| |#1| (QUOTE (-661))) (|HasCategory| |#2| (QUOTE (-661)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727))))) (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-782)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-782)))))) +(-891 T$) +((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the varible name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) +NIL +((|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790))))) +(-892) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-889 S) +(-893 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4195 . T) (-4196 . T) (-2169 . T)) +((-4221 . T) (-4222 . T) (-2063 . T)) NIL -(-890 R |polR|) +(-894 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-421)))) -(-891) +((|HasCategory| |#1| (QUOTE (-423)))) +(-895) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-892 S |Coef| |Expon| |Var|) +(-896 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-893 |Coef| |Expon| |Var|) +(-897 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-894) +(-898) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-895 S R E |VarSet| P) +(-899 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-509)))) -(-896 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-511)))) +(-900 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4195 . T) (-2169 . T)) +((-4221 . T) (-2063 . T)) NIL -(-897 R E V P) +(-901 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-421)))) -(-898 K) +((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-280)))) (|HasCategory| |#1| (QUOTE (-423)))) +(-902 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-899 |VarSet| E RC P) +(-903 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-900 R) +(-904 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL -(-901 R1 R2) +(-905 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-902 R) +(-906 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-903 K) +(-907 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-904 R E OV PPR) +(-908 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-905 K R UP -4057) +(-909 K R UP -4048) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-906 |vl| |nv|) +(-910 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-907 R |Var| |Expon| |Dpoly|) +(-911 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-278))))) -(-908 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-280))))) +(-912 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-909) +(-913) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-910 A B R S) +(-914 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-911 A S) +(-915 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-940))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1053)))) -(-912 S) +((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-504))) (|HasCategory| |#2| (QUOTE (-280))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (QUOTE (-944))) (|HasCategory| |#2| (QUOTE (-755))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-1058)))) +(-916 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-2169 . T) (-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-2063 . T) (-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-913 |n| K) +(-917 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-914 S) +(-918 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4195 . T) (-4196 . T) (-2169 . T)) +((-4221 . T) (-4222 . T) (-2063 . T)) NIL -(-915 S R) +(-919 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-262)))) -(-916 R) +((|HasCategory| |#2| (QUOTE (-504))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-264)))) +(-920 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4188 |has| |#1| (-262)) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 |has| |#1| (-264)) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-917 QR R QS S) +(-921 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-918 R) +(-922 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4188 |has| |#1| (-262)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-262))) (-3786 (|HasCategory| |#1| (QUOTE (-262))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-502))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))))) -(-919 S) +((-4214 |has| |#1| (-264)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-264))) (-3730 (|HasCategory| |#1| (QUOTE (-264))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -480) (QUOTE (-1082)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-504))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335))))) +(-923 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-920 S) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-924 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-921) +(-925) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-922 -4057 UP UPUP |radicnd| |n|) +(-926 -4048 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4188 |has| (-377 |#2|) (-333)) (-4193 |has| (-377 |#2|) (-333)) (-4187 |has| (-377 |#2|) (-333)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3786 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3786 (|HasCategory| (-377 |#2|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) -(-923 |bb|) +((-4214 |has| (-379 |#2|) (-335)) (-4219 |has| (-379 |#2|) (-335)) (-4213 |has| (-379 |#2|) (-335)) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-379 |#2|) (QUOTE (-133))) (|HasCategory| (-379 |#2|) (QUOTE (-135))) (|HasCategory| (-379 |#2|) (QUOTE (-321))) (|HasCategory| (-379 |#2|) (QUOTE (-335))) (-3730 (|HasCategory| (-379 |#2|) (QUOTE (-335))) (|HasCategory| (-379 |#2|) (QUOTE (-321)))) (|HasCategory| (-379 |#2|) (QUOTE (-340))) (|HasCategory| (-379 |#2|) (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| (-379 |#2|) (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| (-379 |#2|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-340))) (-3730 (|HasCategory| (-379 |#2|) (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| (-379 |#2|) (QUOTE (-335)))) (-12 (|HasCategory| (-379 |#2|) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-379 |#2|) (QUOTE (-335)))) (-3730 (-12 (|HasCategory| (-379 |#2|) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-379 |#2|) (QUOTE (-335)))) (-12 (|HasCategory| (-379 |#2|) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-379 |#2|) (QUOTE (-321))))) (-12 (|HasCategory| (-379 |#2|) (QUOTE (-209))) (|HasCategory| (-379 |#2|) (QUOTE (-335)))) (-3730 (-12 (|HasCategory| (-379 |#2|) (QUOTE (-209))) (|HasCategory| (-379 |#2|) (QUOTE (-335)))) (|HasCategory| (-379 |#2|) (QUOTE (-321))))) +(-927 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-517) (QUOTE (-833))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-940))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1053))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1077)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3786 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-833)))) (|HasCategory| (-517) (QUOTE (-132))))) -(-924) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-519) (QUOTE (-836))) (|HasCategory| (-519) (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| (-519) (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-135))) (|HasCategory| (-519) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-519) (QUOTE (-944))) (|HasCategory| (-519) (QUOTE (-755))) (|HasCategory| (-519) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| (-519) (QUOTE (-1058))) (|HasCategory| (-519) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| (-519) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| (-519) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| (-519) (QUOTE (-209))) (|HasCategory| (-519) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| (-519) (LIST (QUOTE -480) (QUOTE (-1082)) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -282) (QUOTE (-519)))) (|HasCategory| (-519) (LIST (QUOTE -260) (QUOTE (-519)) (QUOTE (-519)))) (|HasCategory| (-519) (QUOTE (-280))) (|HasCategory| (-519) (QUOTE (-504))) (|HasCategory| (-519) (QUOTE (-782))) (-3730 (|HasCategory| (-519) (QUOTE (-755))) (|HasCategory| (-519) (QUOTE (-782)))) (|HasCategory| (-519) (LIST (QUOTE -581) (QUOTE (-519)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-519) (QUOTE (-836)))) (|HasCategory| (-519) (QUOTE (-133))))) +(-928) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-925) +(-929) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-926 RP) +(-930 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-927 S) +(-931 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-928 A S) +(-932 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4196)) (|HasCategory| |#2| (QUOTE (-1006)))) -(-929 S) +((|HasAttribute| |#1| (QUOTE -4222)) (|HasCategory| |#2| (QUOTE (-1011)))) +(-933 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-2169 . T)) +((-2063 . T)) NIL -(-930 S) +(-934 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-931) +(-935) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4188 . T) (-4193 . T) (-4187 . T) (-4190 . T) (-4189 . T) ((-4197 "*") . T) (-4192 . T)) +((-4214 . T) (-4219 . T) (-4213 . T) (-4216 . T) (-4215 . T) ((-4223 "*") . T) (-4218 . T)) NIL -(-932 R -4057) +(-936 R -4048) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-933 R -4057) +(-937 R -4048) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-934 -4057 UP) +(-938 -4048 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-935 -4057 UP) +(-939 -4048 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-936 S) +(-940 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-937 F1 UP UPUP R F2) +(-941 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-938 |Pol|) +(-942 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-939 |Pol|) +(-943 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-940) +(-944) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-941) +(-945) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-942 |TheField|) +(-946 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4188 . T) (-4193 . T) (-4187 . T) (-4190 . T) (-4189 . T) ((-4197 "*") . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -955) (QUOTE (-517)))) (-3786 (|HasCategory| (-377 (-517)) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))))) -(-943 -4057 L) +((-4214 . T) (-4219 . T) (-4213 . T) (-4216 . T) (-4215 . T) ((-4223 "*") . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| (-379 (-519)) (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| (-379 (-519)) (LIST (QUOTE -959) (QUOTE (-519)))) (-3730 (|HasCategory| (-379 (-519)) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))))) +(-947 -4048 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-944 S) +(-948 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1006)))) -(-945 R E V P) +((|HasCategory| |#1| (QUOTE (-1011)))) +(-949 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1006))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787))))) -(-946 R) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#4| (QUOTE (-1011))) (-12 (|HasCategory| |#4| (QUOTE (-1011))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#4| (LIST (QUOTE -559) (QUOTE (-790))))) +(-950 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4197 "*")))) -(-947 R) +((|HasAttribute| |#1| (QUOTE (-4223 "*")))) +(-951 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-278)))) -(-948 S) +((|HasCategory| |#1| (QUOTE (-335))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-340)))) (|HasCategory| |#1| (QUOTE (-280)))) +(-952 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-949) +(-953) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-950 S) +(-954 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-951 S) +(-955 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-952 -4057 |Expon| |VarSet| |FPol| |LFPol|) +(-956 -4048 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-953) +(-957) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4195 . T) (-4196 . T)) -((|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (QUOTE (-1077))) (LIST (QUOTE |:|) (QUOTE -1846) (QUOTE (-51))))))) (|HasCategory| (-1077) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-51) (QUOTE (-1006)))) (-12 (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))))) -(-954 A S) +((-4221 . T) (-4222 . T)) +((|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (QUOTE (-1011))) (-12 (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (QUOTE (-1082))) (LIST (QUOTE |:|) (QUOTE -3100) (QUOTE (-51))))))) (|HasCategory| (-1082) (QUOTE (-782))) (|HasCategory| (-51) (QUOTE (-1011))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (QUOTE (-1011))) (|HasCategory| (-51) (QUOTE (-1011)))) (-12 (|HasCategory| (-51) (QUOTE (-1011))) (|HasCategory| (-51) (LIST (QUOTE -282) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-51) (QUOTE (-1011))) (|HasCategory| (-51) (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-51) (LIST (QUOTE -559) (QUOTE (-790)))))) +(-958 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-955 S) +(-959 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-956 Q R) +(-960 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-957) +(-961) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-958 UP) +(-962 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-959 R) +(-963 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-960 R) +(-964 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-961 R |ls|) +(-965 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1006))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -712) (|devaluate| |#1|) (LIST (QUOTE -789) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-789 |#2|) (QUOTE (-338))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -557) (QUOTE (-787))))) -(-962) +((-4222 . T) (-4221 . T)) +((|HasCategory| (-714 |#1| (-792 |#2|)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-714 |#1| (-792 |#2|)) (QUOTE (-1011))) (-12 (|HasCategory| (-714 |#1| (-792 |#2|)) (QUOTE (-1011))) (|HasCategory| (-714 |#1| (-792 |#2|)) (LIST (QUOTE -282) (LIST (QUOTE -714) (|devaluate| |#1|) (LIST (QUOTE -792) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| (-792 |#2|) (QUOTE (-340))) (|HasCategory| (-714 |#1| (-792 |#2|)) (LIST (QUOTE -559) (QUOTE (-790))))) +(-966) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-963 S) +(-967 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-964) +(-968) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4192 . T)) +((-4218 . T)) NIL -(-965 |xx| -4057) +(-969 |xx| -4048) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-966 S |m| |n| R |Row| |Col|) +(-970 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-278))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-509))) (|HasCategory| |#4| (QUOTE (-156)))) -(-967 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-280))) (|HasCategory| |#4| (QUOTE (-335))) (|HasCategory| |#4| (QUOTE (-511))) (|HasCategory| |#4| (QUOTE (-157)))) +(-971 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4195 . T) (-2169 . T) (-4190 . T) (-4189 . T)) +((-4221 . T) (-2063 . T) (-4216 . T) (-4215 . T)) NIL -(-968 |m| |n| R) +(-972 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4195 . T) (-4190 . T) (-4189 . T)) -((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (QUOTE (-278))) (|HasCategory| |#3| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-156))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3786 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))))) -(-969 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4221 . T) (-4216 . T) (-4215 . T)) +((|HasCategory| |#3| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (QUOTE (-280))) (|HasCategory| |#3| (QUOTE (-511))) (|HasCategory| |#3| (QUOTE (-157))) (-3730 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-335)))) (|HasCategory| |#3| (LIST (QUOTE -559) (QUOTE (-790)))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-3730 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))))) +(-973 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-970 R) +(-974 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-971) +(-975) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-972 S) +(-976 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-973) +(-977) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-974 |TheField| |ThePolDom|) +(-978 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-975) +(-979) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4183 . T) (-4187 . T) (-4182 . T) (-4193 . T) (-4194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4209 . T) (-4213 . T) (-4208 . T) (-4219 . T) (-4220 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-976) +(-980) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4195 . T) (-4196 . T)) -((|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (QUOTE (-1077))) (LIST (QUOTE |:|) (QUOTE -1846) (QUOTE (-51))))))) (|HasCategory| (-1077) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-51) (QUOTE (-1006)))) (-12 (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-51) (LIST (QUOTE -557) (QUOTE (-787)))))) -(-977 S R E V) +((-4221 . T) (-4222 . T)) +((|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (QUOTE (-1011))) (-12 (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (QUOTE (-1082))) (LIST (QUOTE |:|) (QUOTE -3100) (QUOTE (-51))))))) (|HasCategory| (-1082) (QUOTE (-782))) (|HasCategory| (-51) (QUOTE (-1011))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (QUOTE (-1011))) (|HasCategory| (-51) (QUOTE (-1011)))) (-12 (|HasCategory| (-51) (QUOTE (-1011))) (|HasCategory| (-51) (LIST (QUOTE -282) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-51) (QUOTE (-1011))) (|HasCategory| (-51) (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-51) (LIST (QUOTE -559) (QUOTE (-790)))))) +(-981 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -912) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-1077))))) -(-978 R E V) +((|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-504))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -916) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-1082))))) +(-982 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) NIL -(-979 S |TheField| |ThePols|) +(-983 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-980 |TheField| |ThePols|) +(-984 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-981 R E V P TS) +(-985 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-982 S R E V P) +(-986 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-983 R E V P) +(-987 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL -(-984 R E V P TS) +(-988 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-985 |f|) +(-989 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-986 |Base| R -4057) +(-990 |Base| R -4048) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-987 |Base| R -4057) +(-991 |Base| R -4048) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-988 R |ls|) +(-992 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-989 UP SAE UPA) +(-993 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-990 R UP M) +(-994 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4188 |has| |#1| (-333)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-319))))) -(-991 UP SAE UPA) +((-4214 |has| |#1| (-335)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-321)))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082))))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#1| (QUOTE (-321))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-335)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-321))))) +(-995 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-992) +(-996) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-993 S) +(-997 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-994 R) +(-998) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) +NIL +NIL +(-999 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-995 R) +(-1000 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-996 (-1077)) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-996 (-1077)) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-996 (-1077)) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-996 (-1077)) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-996 (-1077)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-996 S) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| (-1001 (-1082)) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| (-1001 (-1082)) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| (-1001 (-1082)) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| (-1001 (-1082)) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| (-1001 (-1082)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#1| (QUOTE -4219)) (|HasCategory| |#1| (QUOTE (-423))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-1001 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-997 R S) +(-1002 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-777)))) -(-998 R S) +((|HasCategory| |#1| (QUOTE (-780)))) +(-1003 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-999 S) +(-1004 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1006)))) -(-1000 S) +((|HasCategory| |#1| (QUOTE (-1011)))) +(-1005 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-2169 . T)) +((-2063 . T)) NIL -(-1001 S) +(-1006 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1006)))) -(-1002 S L) +((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-1011)))) +(-1007 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-2169 . T)) +((-2063 . T)) NIL -(-1003 A S) +(-1008 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1004 S) +(-1009 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4185 . T) (-2169 . T)) +((-4211 . T) (-2063 . T)) NIL -(-1005 S) +(-1010 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1006) +(-1011) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1007 |m| |n|) +(-1012 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1008 S) +(-1013 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4195 . T) (-4185 . T) (-4196 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))) -(-1009 |Str| |Sym| |Int| |Flt| |Expr|) +((-4221 . T) (-4211 . T) (-4222 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-782))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-340))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790))))) +(-1014 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1010) +(-1015) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1011 |Str| |Sym| |Int| |Flt| |Expr|) +(-1016 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1012 R FS) +(-1017 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1013 R E V P TS) +(-1018 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1014 R E V P TS) +(-1019 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1015 R E V P) +(-1020 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL -(-1016) +(-1021) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1017 S) +(-1022 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1018) +(-1023) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1019 |dimtot| |dim1| S) +(-1024 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4189 |has| |#3| (-964)) (-4190 |has| |#3| (-964)) (-4192 |has| |#3| (-6 -4192)) ((-4197 "*") |has| |#3| (-156)) (-4195 . T)) -((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3786 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964)))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3786 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-964)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-207))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964)))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077))))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-3786 (|HasCategory| |#3| (QUOTE (-964))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1006)))) (|HasAttribute| |#3| (QUOTE -4192)) (|HasCategory| |#3| (QUOTE (-123))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964)))) (|HasCategory| |#3| (QUOTE (-25))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (QUOTE (-1006)))) (-3786 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-964)))) (-3786 (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1006))))) (-3786 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3786 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#3| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1006)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-964)))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-964))) (|HasCategory| |#3| (LIST (QUOTE -824) (QUOTE (-1077))))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (LIST (QUOTE -955) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-1020 R |x|) +((-4215 |has| |#3| (-968)) (-4216 |has| |#3| (-968)) (-4218 |has| |#3| (-6 -4218)) ((-4223 "*") |has| |#3| (-157)) (-4221 . T)) +((|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-780))) (-3730 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-780)))) (|HasCategory| |#3| (QUOTE (-157))) (-3730 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (QUOTE (-968)))) (-3730 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-335)))) (-3730 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-968)))) (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#3| (QUOTE (-209))) (-3730 (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (QUOTE (-968)))) (-3730 (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-968)))) (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| (-519) (QUOTE (-782))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-968)))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082))))) (|HasCategory| |#3| (QUOTE (-661))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-3730 (|HasCategory| |#3| (QUOTE (-968))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-1011)))) (|HasAttribute| |#3| (QUOTE -4218)) (|HasCategory| |#3| (QUOTE (-124))) (-3730 (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (QUOTE (-968)))) (|HasCategory| |#3| (QUOTE (-25))) (-3730 (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (QUOTE (-1011)))) (-3730 (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (QUOTE (-968)))) (-3730 (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-124)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-209)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-335)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-340)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-780)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-968)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-1011))))) (-3730 (-12 (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519)))))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-3730 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-335))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-780))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082)))))) (|HasCategory| |#3| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#3| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#3| (QUOTE (-1011)))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-968)))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#3| (QUOTE (-968))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-1082))))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -282) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1011))) (|HasCategory| |#3| (LIST (QUOTE -959) (QUOTE (-519))))) (|HasCategory| |#3| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-1025 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-421)))) -(-1021 R -4057) +((|HasCategory| |#1| (QUOTE (-423)))) +(-1026 R -4048) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1022 R) +(-1027 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1023) +(-1028) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1024) +(-1029) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4183 . T) (-4187 . T) (-4182 . T) (-4193 . T) (-4194 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4209 . T) (-4213 . T) (-4208 . T) (-4219 . T) (-4220 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-1025 S) +(-1030 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4195 . T) (-4196 . T) (-2169 . T)) +((-4221 . T) (-4222 . T) (-2063 . T)) NIL -(-1026 S |ndim| R |Row| |Col|) +(-1031 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-333))) (|HasAttribute| |#3| (QUOTE (-4197 "*"))) (|HasCategory| |#3| (QUOTE (-156)))) -(-1027 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-335))) (|HasAttribute| |#3| (QUOTE (-4223 "*"))) (|HasCategory| |#3| (QUOTE (-157)))) +(-1032 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-2169 . T) (-4195 . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-2063 . T) (-4221 . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-1028 R |Row| |Col| M) +(-1033 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1029 R |VarSet|) +(-1034 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-1030 |Coef| |Var| SMP) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#1| (QUOTE -4219)) (|HasCategory| |#1| (QUOTE (-423))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-1035 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333)))) -(-1031 R E V P) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-511))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-335)))) +(-1036 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL -(-1032 UP -4057) +(-1037 UP -4048) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1033 R) +(-1038 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1034 R) +(-1039 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1035 R) +(-1040 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1036 S A) +(-1041 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-779)))) -(-1037 R) +((|HasCategory| |#1| (QUOTE (-782)))) +(-1042 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1038 R) +(-1043 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1039) +(-1044) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1040) +(-1045) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1041) +(-1046) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1042 V C) +(-1047 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1043 V C) +(-1048 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| (-1042 |#1| |#2|) (QUOTE (-1006))) (-12 (|HasCategory| (-1042 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1042) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1042 |#1| |#2|) (QUOTE (-1006)))) (|HasCategory| (-1042 |#1| |#2|) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-1042 |#1| |#2|) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-1042 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1042) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1042 |#1| |#2|) (QUOTE (-1006)))))) -(-1044 |ndim| R) +((-4221 . T) (-4222 . T)) +((|HasCategory| (-1047 |#1| |#2|) (QUOTE (-1011))) (-12 (|HasCategory| (-1047 |#1| |#2|) (LIST (QUOTE -282) (LIST (QUOTE -1047) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1047 |#1| |#2|) (QUOTE (-1011)))) (|HasCategory| (-1047 |#1| |#2|) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-1047 |#1| |#2|) (LIST (QUOTE -559) (QUOTE (-790)))) (-12 (|HasCategory| (-1047 |#1| |#2|) (LIST (QUOTE -282) (LIST (QUOTE -1047) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1047 |#1| |#2|) (QUOTE (-1011)))))) +(-1049 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}."))) -((-4192 . T) (-4184 |has| |#2| (-6 (-4197 "*"))) (-4195 . T) (-4189 . T) (-4190 . T)) -((|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4197 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-333))) (-3786 (|HasAttribute| |#2| (QUOTE (-4197 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3786 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-156)))) -(-1045 S) +((-4218 . T) (-4210 |has| |#2| (-6 (-4223 "*"))) (-4221 . T) (-4215 . T) (-4216 . T)) +((|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-209))) (|HasAttribute| |#2| (QUOTE (-4223 "*"))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (QUOTE (-280))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-335))) (-3730 (|HasAttribute| |#2| (QUOTE (-4223 "*"))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#2| (QUOTE (-209)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-3730 (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (QUOTE (-157)))) +(-1050 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1046) +(-1051) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL -(-1047 R E V P TS) +(-1052 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1048 R E V P) +(-1053 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1006))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787))))) -(-1049 S) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#4| (QUOTE (-1011))) (-12 (|HasCategory| |#4| (QUOTE (-1011))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#4| (LIST (QUOTE -559) (QUOTE (-790))))) +(-1054 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-1050 A S) +((-4221 . T) (-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-1055 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1051 S) +(-1056 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-2169 . T)) +((-2063 . T)) NIL -(-1052 |Key| |Ent| |dent|) +(-1057 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4196 . T)) -((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-1053) +((-4222 . T)) +((|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (QUOTE (-1011))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (-12 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3100) (|devaluate| |#2|)))))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1011)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-1058) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1054 |Coef|) +(-1059 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1055 S) +(-1060 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1056 A B) +(-1061 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1057 A B C) +(-1062 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1058 S) +(-1063 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4196 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-1059) +((-4222 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-1064) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL -(-1060) +(-1065) NIL -((-4196 . T) (-4195 . T)) -((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1006))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3786 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1006))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787))))) -(-1061 |Entry|) +((-4222 . T) (-4221 . T)) +((|HasCategory| (-132) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-132) (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| (-132) (QUOTE (-1011))) (-12 (|HasCategory| (-132) (QUOTE (-1011))) (|HasCategory| (-132) (LIST (QUOTE -282) (QUOTE (-132))))) (-3730 (-12 (|HasCategory| (-132) (QUOTE (-782))) (|HasCategory| (-132) (LIST (QUOTE -282) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1011))) (|HasCategory| (-132) (LIST (QUOTE -282) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -559) (QUOTE (-790))))) +(-1066 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4195 . T) (-4196 . T)) -((|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (QUOTE (-1060))) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#1|)))))) (|HasCategory| (-1060) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-1006)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-1062 A) +((-4221 . T) (-4222 . T)) +((|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (QUOTE (-1011))) (-12 (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (QUOTE (-1065))) (LIST (QUOTE |:|) (QUOTE -3100) (|devaluate| |#1|)))))) (|HasCategory| (-1065) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1011)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (|HasCategory| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-1067 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) -(-1063 |Coef|) +((|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) +(-1068 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1064 |Coef|) +(-1069 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1065 R UP) +(-1070 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-278)))) -(-1066 |n| R) +((|HasCategory| |#1| (QUOTE (-280)))) +(-1071 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1067 S1 S2) +(-1072 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1068 |Coef| |var| |cen|) +(-1073 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4197 "*") -3786 (-4024 (|has| |#1| (-333)) (|has| (-1075 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4024 (|has| |#1| (-333)) (|has| (-1075 |#1| |#2| |#3|) (-833)))) (-4188 -3786 (-4024 (|has| |#1| (-333)) (|has| (-1075 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4024 (|has| |#1| (-333)) (|has| (-1075 |#1| |#2| |#3|) (-833)))) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -1075) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))) (-3786 (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1075 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-1069 R -4057) +(((-4223 "*") -3730 (-4012 (|has| |#1| (-335)) (|has| (-1080 |#1| |#2| |#3|) (-755))) (|has| |#1| (-157)) (-4012 (|has| |#1| (-335)) (|has| (-1080 |#1| |#2| |#3|) (-836)))) (-4214 -3730 (-4012 (|has| |#1| (-335)) (|has| (-1080 |#1| |#2| |#3|) (-755))) (|has| |#1| (-511)) (-4012 (|has| |#1| (-335)) (|has| (-1080 |#1| |#2| |#3|) (-836)))) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| (-519) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3730 (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-519)) (|devaluate| |#1|)))))) (-3730 (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-519)) (|devaluate| |#1|))))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-335)))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -260) (LIST (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -282) (LIST (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -480) (QUOTE (-1082)) (LIST (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-519))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1082)))))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-504))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-836))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3730 (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3730 (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-511)))) (-3730 (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-335)))) (-3730 (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-335))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (-3730 (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -260) (LIST (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -282) (LIST (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -480) (QUOTE (-1082)) (LIST (QUOTE -1080) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-1103))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -4142) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1082))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (LIST (QUOTE -585) (QUOTE (-1082))) (|devaluate| |#1|)))))) (-3730 (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1080 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-1074 R -4048) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1070 R) +(-1075 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1071 R S) +(-1076 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1072 E OV R P) +(-1077 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1073 R) +(-1078 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4191 |has| |#1| (-333)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4193)) (|HasCategory| |#1| (QUOTE (-421))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-1074 |Coef| |var| |cen|) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4217 |has| |#1| (-335)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| (-996) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasAttribute| |#1| (QUOTE -4219)) (|HasCategory| |#1| (QUOTE (-423))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-423))) (|HasCategory| |#1| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-1079 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|))))))) -(-1075 |Coef| |var| |cen|) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519))) (|devaluate| |#1|))))) (|HasCategory| (-379 (-519)) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1082)))))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-1103))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -4142) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1082))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (LIST (QUOTE -585) (QUOTE (-1082))) (|devaluate| |#1|))))))) +(-1080 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1018))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|))))))) -(-1076) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-705)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-705)) (|devaluate| |#1|))))) (|HasCategory| (-705) (QUOTE (-1023))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-705))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-705))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1082)))))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-1103))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -4142) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1082))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (LIST (QUOTE -585) (QUOTE (-1082))) (|devaluate| |#1|))))))) +(-1081) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1077) +(-1082) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1078 R) +(-1083 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1079 R) +(-1084 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-6 -4193)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| (-891) (QUOTE (-123))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4193))) -(-1080) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-6 -4219)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-423))) (-12 (|HasCategory| (-895) (QUOTE (-124))) (|HasCategory| |#1| (QUOTE (-511)))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasAttribute| |#1| (QUOTE -4219))) +(-1085) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1081) +(-1086) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1082) +(-1087) ((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} is \\spad{x} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} is \\spad{x} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} is \\spad{x} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} is \\spad{x} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The return value is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cell ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1083 R) +(-1088 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1084 S) +(-1089 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1085 S) +(-1090 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1086 |Key| |Entry|) +(-1091 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4195 . T) (-4196 . T)) -((|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (-12 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2576) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1846) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1006))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787))))) (-3786 (|HasCategory| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (LIST (QUOTE -557) (QUOTE (-787)))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-1087 R) +((-4221 . T) (-4222 . T)) +((|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (-12 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -282) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2583) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3100) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-1011))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1011)))) (-12 (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (QUOTE (-1011))) (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790))))) (-3730 (|HasCategory| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (LIST (QUOTE -559) (QUOTE (-790)))) (|HasCategory| |#2| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-1092 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1088 S |Key| |Entry|) +(-1093 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1089 |Key| |Entry|) +(-1094 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4196 . T) (-2169 . T)) +((-4222 . T) (-2063 . T)) NIL -(-1090 |Key| |Entry|) +(-1095 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1091) +(-1096) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1092 S) +(-1097 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1093) +(-1098) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1094) +(-1099) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1095 R) +(-1100 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1096) +(-1101) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1097 S) +(-1102 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1098) +(-1103) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1099 S) +(-1104 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (QUOTE (-1006))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-1100 S) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (QUOTE (-1011))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-1105 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1101) +(-1106) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1102 R -4057) +(-1107 R -4048) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1103 R |Row| |Col| M) +(-1108 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1104 R -4057) +(-1109 R -4048) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -816) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -810) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -810) (|devaluate| |#1|))))) -(-1105 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -560) (LIST (QUOTE -819) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -813) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -813) (|devaluate| |#1|))))) +(-1110 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-338)))) -(-1106 R E V P) +((|HasCategory| |#4| (QUOTE (-340)))) +(-1111 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL -(-1107 |Coef|) +(-1112 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333)))) -(-1108 |Curve|) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-511))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-335)))) +(-1113 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1109) +(-1114) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1110 S) +(-1115 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))) -(-1111 -4057) +((|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790))))) +(-1116 -4048) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1112) +(-1117) ((|constructor| (NIL "The fundamental Type."))) -((-2169 . T)) +((-2063 . T)) NIL -(-1113 S) +(-1118 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-779)))) -(-1114) +((|HasCategory| |#1| (QUOTE (-782)))) +(-1119) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1115 S) +(-1120 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1116) +(-1121) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-1117 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1122 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1118 |Coef|) +(-1123 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-1119 S |Coef| UTS) +(-1124 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-333)))) -(-1120 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-335)))) +(-1125 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-2169 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-2063 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-1121 |Coef| UTS) +(-1126 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-134))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-940)))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))))) (|HasCategory| |#2| (QUOTE (-833))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132))) (-3786 (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1077)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-940)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132)))))) -(-1122 |Coef| |var| |cen|) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| (-519) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (QUOTE (-135))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-135))))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-519)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-209)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-519)) (|devaluate| |#1|))))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-1082))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-944)))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-755)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -260) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -480) (QUOTE (-1082)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-351))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-519))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1082)))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-782)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-755)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-782))))) (|HasCategory| |#2| (QUOTE (-836))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-504)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-280)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133))) (-3730 (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-133))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -260) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -480) (QUOTE (-1082)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-755)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-782)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-944)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -282) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519))))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-1082)))))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-1103))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -4142) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1082))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (LIST (QUOTE -585) (QUOTE (-1082))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-836)))) (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-133)))))) +(-1127 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4197 "*") -3786 (-4024 (|has| |#1| (-333)) (|has| (-1150 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4024 (|has| |#1| (-333)) (|has| (-1150 |#1| |#2| |#3|) (-833)))) (-4188 -3786 (-4024 (|has| |#1| (-333)) (|has| (-1150 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4024 (|has| |#1| (-333)) (|has| (-1150 |#1| |#2| |#3|) (-833)))) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-940))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1077)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-1077)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|)))))) (-3786 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132))))) -(-1123 ZP) +(((-4223 "*") -3730 (-4012 (|has| |#1| (-335)) (|has| (-1155 |#1| |#2| |#3|) (-755))) (|has| |#1| (-157)) (-4012 (|has| |#1| (-335)) (|has| (-1155 |#1| |#2| |#3|) (-836)))) (-4214 -3730 (-4012 (|has| |#1| (-335)) (|has| (-1155 |#1| |#2| |#3|) (-755))) (|has| |#1| (-511)) (-4012 (|has| |#1| (-335)) (|has| (-1155 |#1| |#2| |#3|) (-836)))) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| (-519) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3730 (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-519)) (|devaluate| |#1|)))))) (-3730 (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-519)) (|devaluate| |#1|))))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-335)))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -260) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -282) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -480) (QUOTE (-1082)) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-519))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1082)))))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-504))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-280))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-836))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3730 (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3730 (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-511)))) (-3730 (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-335)))) (-3730 (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-335))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (-3730 (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-944))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -260) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -282) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -480) (QUOTE (-1082)) (LIST (QUOTE -1155) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -959) (QUOTE (-1082)))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-1103))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -4142) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1082))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (LIST (QUOTE -585) (QUOTE (-1082))) (|devaluate| |#1|)))))) (-3730 (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-335)))) (-12 (|HasCategory| (-1155 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-335)))) (|HasCategory| |#1| (QUOTE (-133))))) +(-1128 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1124 R S) +(-1129 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-777)))) -(-1125 S) +((|HasCategory| |#1| (QUOTE (-780)))) +(-1130 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1006)))) -(-1126 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-780))) (|HasCategory| |#1| (QUOTE (-1011)))) +(-1131 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1127 R Q UP) +(-1132 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1128 R UP) +(-1133 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1129 R UP) +(-1134 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1130 R U) +(-1135 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1131 |x| R) +(-1136 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4197 "*") |has| |#2| (-156)) (-4188 |has| |#2| (-509)) (-4191 |has| |#2| (-333)) (-4193 |has| |#2| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-349))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -810) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -810) (QUOTE (-517))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-349)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -816) (QUOTE (-517)))))) (-12 (|HasCategory| (-992) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (-3786 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE -4193)) (|HasCategory| |#2| (QUOTE (-421))) (-3786 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (-3786 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-833)))) (|HasCategory| |#2| (QUOTE (-132))))) -(-1132 R PR S PS) +(((-4223 "*") |has| |#2| (-157)) (-4214 |has| |#2| (-511)) (-4217 |has| |#2| (-335)) (-4219 |has| |#2| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-157))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-511)))) (-12 (|HasCategory| (-996) (LIST (QUOTE -813) (QUOTE (-351)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-351))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -813) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -813) (QUOTE (-519))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-351)))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -560) (LIST (QUOTE -819) (QUOTE (-519)))))) (-12 (|HasCategory| (-996) (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-495))))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -581) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasCategory| |#2| (QUOTE (-209))) (|HasAttribute| |#2| (QUOTE -4219)) (|HasCategory| |#2| (QUOTE (-423))) (-3730 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (-3730 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-836)))) (|HasCategory| |#2| (QUOTE (-133))))) +(-1137 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1133 S R) +(-1138 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-1053)))) -(-1134 R) +((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-335))) (|HasCategory| |#2| (QUOTE (-423))) (|HasCategory| |#2| (QUOTE (-511))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-1058)))) +(-1139 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4191 |has| |#1| (-333)) (-4193 |has| |#1| (-6 -4193)) (-4190 . T) (-4189 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4217 |has| |#1| (-335)) (-4219 |has| |#1| (-6 -4219)) (-4216 . T) (-4215 . T) (-4218 . T)) NIL -(-1135 S |Coef| |Expon|) +(-1140 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1018))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2262) (LIST (|devaluate| |#2|) (QUOTE (-1077)))))) -(-1136 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2217) (LIST (|devaluate| |#2|) (QUOTE (-1082)))))) +(-1141 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-1137 RC P) +(-1142 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1138 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1143 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1139 |Coef|) +(-1144 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-1140 S |Coef| ULS) +(-1145 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1141 |Coef| ULS) +(-1146 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-1142 |Coef| ULS) +(-1147 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|))))))) -(-1143 |Coef| |var| |cen|) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519))) (|devaluate| |#1|))))) (|HasCategory| (-379 (-519)) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1082)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-1103))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -4142) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1082))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (LIST (QUOTE -585) (QUOTE (-1082))) (|devaluate| |#1|))))))) +(-1148 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4193 |has| |#1| (-333)) (-4187 |has| |#1| (-333)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3786 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|))))))) -(-1144 R FE |var| |cen|) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4219 |has| |#1| (-335)) (-4213 |has| |#1| (-335)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519))) (|devaluate| |#1|))))) (|HasCategory| (-379 (-519)) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (-3730 (|HasCategory| |#1| (QUOTE (-335))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1082)))))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-1103))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -4142) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1082))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (LIST (QUOTE -585) (QUOTE (-1082))) (|devaluate| |#1|))))))) +(-1149 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4197 "*") |has| (-1143 |#2| |#3| |#4|) (-156)) (-4188 |has| (-1143 |#2| |#3| |#4|) (-509)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| (-1143 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-156))) (|HasCategory| (-1143 |#2| |#3| |#4|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1143 |#2| |#3| |#4|) (LIST (QUOTE -955) (QUOTE (-517)))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-333))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-421))) (-3786 (|HasCategory| (-1143 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1143 |#2| |#3| |#4|) (LIST (QUOTE -955) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| (-1143 |#2| |#3| |#4|) (QUOTE (-509)))) -(-1145 A S) +(((-4223 "*") |has| (-1148 |#2| |#3| |#4|) (-157)) (-4214 |has| (-1148 |#2| |#3| |#4|) (-511)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| (-1148 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| (-1148 |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1148 |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1148 |#2| |#3| |#4|) (QUOTE (-157))) (|HasCategory| (-1148 |#2| |#3| |#4|) (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| (-1148 |#2| |#3| |#4|) (LIST (QUOTE -959) (QUOTE (-519)))) (|HasCategory| (-1148 |#2| |#3| |#4|) (QUOTE (-335))) (|HasCategory| (-1148 |#2| |#3| |#4|) (QUOTE (-423))) (-3730 (|HasCategory| (-1148 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| (-1148 |#2| |#3| |#4|) (LIST (QUOTE -959) (LIST (QUOTE -379) (QUOTE (-519)))))) (|HasCategory| (-1148 |#2| |#3| |#4|) (QUOTE (-511)))) +(-1150 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4196))) -(-1146 S) +((|HasAttribute| |#1| (QUOTE -4222))) +(-1151 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-2169 . T)) +((-2063 . T)) NIL -(-1147 |Coef1| |Coef2| UTS1 UTS2) +(-1152 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1148 S |Coef|) +(-1153 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-882))) (|HasCategory| |#2| (QUOTE (-1098))) (|HasSignature| |#2| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3296) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1077))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) -(-1149 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-519)))) (|HasCategory| |#2| (QUOTE (-885))) (|HasCategory| |#2| (QUOTE (-1103))) (|HasSignature| |#2| (LIST (QUOTE -4083) (LIST (LIST (QUOTE -585) (QUOTE (-1082))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4142) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1082))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#2| (QUOTE (-335)))) +(-1154 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-1150 |Coef| |var| |cen|) +(-1155 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4197 "*") |has| |#1| (-156)) (-4188 |has| |#1| (-509)) (-4189 . T) (-4190 . T) (-4192 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3786 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -824) (QUOTE (-1077)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1018))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2262) (LIST (|devaluate| |#1|) (QUOTE (-1077)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3786 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-882))) (|HasCategory| |#1| (QUOTE (-1098))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -3296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1077))))) (|HasSignature| |#1| (LIST (QUOTE -2080) (LIST (LIST (QUOTE -583) (QUOTE (-1077))) (|devaluate| |#1|))))))) -(-1151 |Coef| UTS) +(((-4223 "*") |has| |#1| (-157)) (-4214 |has| |#1| (-511)) (-4215 . T) (-4216 . T) (-4218 . T)) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#1| (QUOTE (-157))) (-3730 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-511)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-705)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-1082)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-705)) (|devaluate| |#1|))))) (|HasCategory| (-705) (QUOTE (-1023))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-705))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-705))))) (|HasSignature| |#1| (LIST (QUOTE -2217) (LIST (|devaluate| |#1|) (QUOTE (-1082)))))) (|HasCategory| |#1| (QUOTE (-335))) (-3730 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-519)))) (|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-1103))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasSignature| |#1| (LIST (QUOTE -4142) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1082))))) (|HasSignature| |#1| (LIST (QUOTE -4083) (LIST (LIST (QUOTE -585) (QUOTE (-1082))) (|devaluate| |#1|))))))) +(-1156 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1152 -4057 UP L UTS) +(-1157 -4048 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-509)))) -(-1153) +((|HasCategory| |#1| (QUOTE (-511)))) +(-1158) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-2169 . T)) +((-2063 . T)) NIL -(-1154 |sym|) +(-1159 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1155 S R) +(-1160 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-921))) (|HasCategory| |#2| (QUOTE (-964))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1156 R) +((|HasCategory| |#2| (QUOTE (-925))) (|HasCategory| |#2| (QUOTE (-968))) (|HasCategory| |#2| (QUOTE (-661))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1161 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4196 . T) (-4195 . T) (-2169 . T)) +((-4222 . T) (-4221 . T) (-2063 . T)) NIL -(-1157 A B) +(-1162 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1158 R) +(-1163 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006))) (-3786 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-964))) (-12 (|HasCategory| |#1| (QUOTE (-921))) (|HasCategory| |#1| (QUOTE (-964)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3786 (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))) -(-1159) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| (-519) (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011))) (-3730 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1011)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-661))) (|HasCategory| |#1| (QUOTE (-968))) (-12 (|HasCategory| |#1| (QUOTE (-925))) (|HasCategory| |#1| (QUOTE (-968)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))) (-3730 (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (LIST (QUOTE -282) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -559) (QUOTE (-790)))))) +(-1164) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1160) +(-1165) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1161) +(-1166) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1162) +(-1167) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1163) +(-1168) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1164 A S) +(-1169 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1165 S) +(-1170 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4190 . T) (-4189 . T)) +((-4216 . T) (-4215 . T)) NIL -(-1166 R) +(-1171 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1167 K R UP -4057) +(-1172 K R UP -4048) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1168 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1173 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4190 |has| |#1| (-156)) (-4189 |has| |#1| (-156)) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) -(-1169 R E V P) +((-4216 |has| |#1| (-157)) (-4215 |has| |#1| (-157)) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335)))) +(-1174 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4196 . T) (-4195 . T)) -((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1006))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -557) (QUOTE (-787))))) -(-1170 R) +((-4222 . T) (-4221 . T)) +((|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-495)))) (|HasCategory| |#4| (QUOTE (-1011))) (-12 (|HasCategory| |#4| (QUOTE (-1011))) (|HasCategory| |#4| (LIST (QUOTE -282) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-511))) (|HasCategory| |#3| (QUOTE (-340))) (|HasCategory| |#4| (LIST (QUOTE -559) (QUOTE (-790))))) +(-1175 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4189 . T) (-4190 . T) (-4192 . T)) +((-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-1171 |vl| R) +(-1176 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4192 . T) (-4188 |has| |#2| (-6 -4188)) (-4190 . T) (-4189 . T)) -((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4188))) -(-1172 R |VarSet| XPOLY) +((-4218 . T) (-4214 |has| |#2| (-6 -4214)) (-4216 . T) (-4215 . T)) +((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4214))) +(-1177 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1173 |vl| R) +(-1178 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4188 |has| |#2| (-6 -4188)) (-4190 . T) (-4189 . T) (-4192 . T)) +((-4214 |has| |#2| (-6 -4214)) (-4216 . T) (-4215 . T) (-4218 . T)) NIL -(-1174 S -4057) +(-1179 S -4048) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134)))) -(-1175 -4057) +((|HasCategory| |#2| (QUOTE (-340))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135)))) +(-1180 -4048) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4187 . T) (-4193 . T) (-4188 . T) ((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +((-4213 . T) (-4219 . T) (-4214 . T) ((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL -(-1176 |VarSet| R) +(-1181 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4188 |has| |#2| (-6 -4188)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -650) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasAttribute| |#2| (QUOTE -4188))) -(-1177 |vl| R) +((-4214 |has| |#2| (-6 -4214)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -652) (LIST (QUOTE -379) (QUOTE (-519))))) (|HasAttribute| |#2| (QUOTE -4214))) +(-1182 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4188 |has| |#2| (-6 -4188)) (-4190 . T) (-4189 . T) (-4192 . T)) +((-4214 |has| |#2| (-6 -4214)) (-4216 . T) (-4215 . T) (-4218 . T)) NIL -(-1178 R) +(-1183 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4188 |has| |#1| (-6 -4188)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasAttribute| |#1| (QUOTE -4188))) -(-1179 R E) +((-4214 |has| |#1| (-6 -4214)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#1| (QUOTE (-157))) (|HasAttribute| |#1| (QUOTE -4214))) +(-1184 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4192 . T) (-4193 |has| |#1| (-6 -4193)) (-4188 |has| |#1| (-6 -4188)) (-4190 . T) (-4189 . T)) -((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasAttribute| |#1| (QUOTE -4192)) (|HasAttribute| |#1| (QUOTE -4193)) (|HasAttribute| |#1| (QUOTE -4188))) -(-1180 |VarSet| R) +((-4218 . T) (-4219 |has| |#1| (-6 -4219)) (-4214 |has| |#1| (-6 -4214)) (-4216 . T) (-4215 . T)) +((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-335))) (|HasAttribute| |#1| (QUOTE -4218)) (|HasAttribute| |#1| (QUOTE -4219)) (|HasAttribute| |#1| (QUOTE -4214))) +(-1185 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4188 |has| |#2| (-6 -4188)) (-4190 . T) (-4189 . T) (-4192 . T)) -((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4188))) -(-1181 A) +((-4214 |has| |#2| (-6 -4214)) (-4216 . T) (-4215 . T) (-4218 . T)) +((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4214))) +(-1186 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1182 R |ls| |ls2|) +(-1187 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1183 R) +(-1188 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1184 |p|) +(-1189 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4197 "*") . T) (-4189 . T) (-4190 . T) (-4192 . T)) +(((-4223 "*") . T) (-4215 . T) (-4216 . T) (-4218 . T)) NIL NIL NIL @@ -4688,4 +4708,4 @@ NIL NIL NIL NIL -((-1189 NIL 2226417 2226422 2226427 2226432) (-3 NIL 2226397 2226402 2226407 2226412) (-2 NIL 2226377 2226382 2226387 2226392) (-1 NIL 2226357 2226362 2226367 2226372) (0 NIL 2226337 2226342 2226347 2226352) (-1184 "ZMOD.spad" 2226146 2226159 2226275 2226332) (-1183 "ZLINDEP.spad" 2225190 2225201 2226136 2226141) (-1182 "ZDSOLVE.spad" 2215039 2215061 2225180 2225185) (-1181 "YSTREAM.spad" 2214532 2214543 2215029 2215034) (-1180 "XRPOLY.spad" 2213752 2213772 2214388 2214457) (-1179 "XPR.spad" 2211481 2211494 2213470 2213569) (-1178 "XPOLY.spad" 2211036 2211047 2211337 2211406) (-1177 "XPOLYC.spad" 2210353 2210369 2210962 2211031) (-1176 "XPBWPOLY.spad" 2208790 2208810 2210133 2210202) (-1175 "XF.spad" 2207251 2207266 2208692 2208785) (-1174 "XF.spad" 2205692 2205709 2207135 2207140) (-1173 "XFALG.spad" 2202716 2202732 2205618 2205687) (-1172 "XEXPPKG.spad" 2201967 2201993 2202706 2202711) (-1171 "XDPOLY.spad" 2201581 2201597 2201823 2201892) (-1170 "XALG.spad" 2201179 2201190 2201537 2201576) (-1169 "WUTSET.spad" 2197018 2197035 2200825 2200852) (-1168 "WP.spad" 2196032 2196076 2196876 2196943) (-1167 "WFFINTBS.spad" 2193595 2193617 2196022 2196027) (-1166 "WEIER.spad" 2191809 2191820 2193585 2193590) (-1165 "VSPACE.spad" 2191482 2191493 2191777 2191804) (-1164 "VSPACE.spad" 2191175 2191188 2191472 2191477) (-1163 "VOID.spad" 2190765 2190774 2191165 2191170) (-1162 "VIEW.spad" 2188387 2188396 2190755 2190760) (-1161 "VIEWDEF.spad" 2183584 2183593 2188377 2188382) (-1160 "VIEW3D.spad" 2167419 2167428 2183574 2183579) (-1159 "VIEW2D.spad" 2155156 2155165 2167409 2167414) (-1158 "VECTOR.spad" 2153833 2153844 2154084 2154111) (-1157 "VECTOR2.spad" 2152460 2152473 2153823 2153828) (-1156 "VECTCAT.spad" 2150348 2150359 2152416 2152455) (-1155 "VECTCAT.spad" 2148057 2148070 2150127 2150132) (-1154 "VARIABLE.spad" 2147837 2147852 2148047 2148052) (-1153 "UTYPE.spad" 2147471 2147480 2147817 2147832) (-1152 "UTSODETL.spad" 2146764 2146788 2147427 2147432) (-1151 "UTSODE.spad" 2144952 2144972 2146754 2146759) (-1150 "UTS.spad" 2139741 2139769 2143419 2143516) (-1149 "UTSCAT.spad" 2137192 2137208 2139639 2139736) (-1148 "UTSCAT.spad" 2134287 2134305 2136736 2136741) (-1147 "UTS2.spad" 2133880 2133915 2134277 2134282) (-1146 "URAGG.spad" 2128502 2128513 2133860 2133875) (-1145 "URAGG.spad" 2123098 2123111 2128458 2128463) (-1144 "UPXSSING.spad" 2120744 2120770 2122182 2122315) (-1143 "UPXS.spad" 2117771 2117799 2118876 2119025) (-1142 "UPXSCONS.spad" 2115528 2115548 2115903 2116052) (-1141 "UPXSCCA.spad" 2113986 2114006 2115374 2115523) (-1140 "UPXSCCA.spad" 2112586 2112608 2113976 2113981) (-1139 "UPXSCAT.spad" 2111167 2111183 2112432 2112581) (-1138 "UPXS2.spad" 2110708 2110761 2111157 2111162) (-1137 "UPSQFREE.spad" 2109120 2109134 2110698 2110703) (-1136 "UPSCAT.spad" 2106713 2106737 2109018 2109115) (-1135 "UPSCAT.spad" 2104012 2104038 2106319 2106324) (-1134 "UPOLYC.spad" 2098990 2099001 2103854 2104007) (-1133 "UPOLYC.spad" 2093860 2093873 2098726 2098731) (-1132 "UPOLYC2.spad" 2093329 2093348 2093850 2093855) (-1131 "UP.spad" 2090379 2090394 2090887 2091040) (-1130 "UPMP.spad" 2089269 2089282 2090369 2090374) (-1129 "UPDIVP.spad" 2088832 2088846 2089259 2089264) (-1128 "UPDECOMP.spad" 2087069 2087083 2088822 2088827) (-1127 "UPCDEN.spad" 2086276 2086292 2087059 2087064) (-1126 "UP2.spad" 2085638 2085659 2086266 2086271) (-1125 "UNISEG.spad" 2084991 2085002 2085557 2085562) (-1124 "UNISEG2.spad" 2084484 2084497 2084947 2084952) (-1123 "UNIFACT.spad" 2083585 2083597 2084474 2084479) (-1122 "ULS.spad" 2074144 2074172 2075237 2075666) (-1121 "ULSCONS.spad" 2068187 2068207 2068559 2068708) (-1120 "ULSCCAT.spad" 2065784 2065804 2068007 2068182) (-1119 "ULSCCAT.spad" 2063515 2063537 2065740 2065745) (-1118 "ULSCAT.spad" 2061731 2061747 2063361 2063510) (-1117 "ULS2.spad" 2061243 2061296 2061721 2061726) (-1116 "UFD.spad" 2060308 2060317 2061169 2061238) (-1115 "UFD.spad" 2059435 2059446 2060298 2060303) (-1114 "UDVO.spad" 2058282 2058291 2059425 2059430) (-1113 "UDPO.spad" 2055709 2055720 2058238 2058243) (-1112 "TYPE.spad" 2055631 2055640 2055689 2055704) (-1111 "TWOFACT.spad" 2054281 2054296 2055621 2055626) (-1110 "TUPLE.spad" 2053667 2053678 2054180 2054185) (-1109 "TUBETOOL.spad" 2050504 2050513 2053657 2053662) (-1108 "TUBE.spad" 2049145 2049162 2050494 2050499) (-1107 "TS.spad" 2047734 2047750 2048710 2048807) (-1106 "TSETCAT.spad" 2034849 2034866 2047690 2047729) (-1105 "TSETCAT.spad" 2021962 2021981 2034805 2034810) (-1104 "TRMANIP.spad" 2016328 2016345 2021668 2021673) (-1103 "TRIMAT.spad" 2015287 2015312 2016318 2016323) (-1102 "TRIGMNIP.spad" 2013804 2013821 2015277 2015282) (-1101 "TRIGCAT.spad" 2013316 2013325 2013794 2013799) (-1100 "TRIGCAT.spad" 2012826 2012837 2013306 2013311) (-1099 "TREE.spad" 2011397 2011408 2012433 2012460) (-1098 "TRANFUN.spad" 2011228 2011237 2011387 2011392) (-1097 "TRANFUN.spad" 2011057 2011068 2011218 2011223) (-1096 "TOPSP.spad" 2010731 2010740 2011047 2011052) (-1095 "TOOLSIGN.spad" 2010394 2010405 2010721 2010726) (-1094 "TEXTFILE.spad" 2008951 2008960 2010384 2010389) (-1093 "TEX.spad" 2005968 2005977 2008941 2008946) (-1092 "TEX1.spad" 2005524 2005535 2005958 2005963) (-1091 "TEMUTL.spad" 2005079 2005088 2005514 2005519) (-1090 "TBCMPPK.spad" 2003172 2003195 2005069 2005074) (-1089 "TBAGG.spad" 2002196 2002219 2003140 2003167) (-1088 "TBAGG.spad" 2001240 2001265 2002186 2002191) (-1087 "TANEXP.spad" 2000616 2000627 2001230 2001235) (-1086 "TABLE.spad" 1999027 1999050 1999297 1999324) (-1085 "TABLEAU.spad" 1998508 1998519 1999017 1999022) (-1084 "TABLBUMP.spad" 1995291 1995302 1998498 1998503) (-1083 "SYSSOLP.spad" 1992764 1992775 1995281 1995286) (-1082 "syntax.spad" 1989049 1989058 1992754 1992759) (-1081 "SYMTAB.spad" 1987105 1987114 1989039 1989044) (-1080 "SYMS.spad" 1983090 1983099 1987095 1987100) (-1079 "SYMPOLY.spad" 1982100 1982111 1982182 1982309) (-1078 "SYMFUNC.spad" 1981575 1981586 1982090 1982095) (-1077 "SYMBOL.spad" 1978911 1978920 1981565 1981570) (-1076 "SWITCH.spad" 1975668 1975677 1978901 1978906) (-1075 "SUTS.spad" 1972567 1972595 1974135 1974232) (-1074 "SUPXS.spad" 1969581 1969609 1970699 1970848) (-1073 "SUP.spad" 1966358 1966369 1967139 1967292) (-1072 "SUPFRACF.spad" 1965463 1965481 1966348 1966353) (-1071 "SUP2.spad" 1964853 1964866 1965453 1965458) (-1070 "SUMRF.spad" 1963819 1963830 1964843 1964848) (-1069 "SUMFS.spad" 1963452 1963469 1963809 1963814) (-1068 "SULS.spad" 1953998 1954026 1955104 1955533) (-1067 "SUCH.spad" 1953678 1953693 1953988 1953993) (-1066 "SUBSPACE.spad" 1945685 1945700 1953668 1953673) (-1065 "SUBRESP.spad" 1944845 1944859 1945641 1945646) (-1064 "STTF.spad" 1940944 1940960 1944835 1944840) (-1063 "STTFNC.spad" 1937412 1937428 1940934 1940939) (-1062 "STTAYLOR.spad" 1929810 1929821 1937293 1937298) (-1061 "STRTBL.spad" 1928315 1928332 1928464 1928491) (-1060 "STRING.spad" 1927724 1927733 1927738 1927765) (-1059 "STRICAT.spad" 1927500 1927509 1927680 1927719) (-1058 "STREAM.spad" 1924268 1924279 1927025 1927040) (-1057 "STREAM3.spad" 1923813 1923828 1924258 1924263) (-1056 "STREAM2.spad" 1922881 1922894 1923803 1923808) (-1055 "STREAM1.spad" 1922585 1922596 1922871 1922876) (-1054 "STINPROD.spad" 1921491 1921507 1922575 1922580) (-1053 "STEP.spad" 1920692 1920701 1921481 1921486) (-1052 "STBL.spad" 1919218 1919246 1919385 1919400) (-1051 "STAGG.spad" 1918283 1918294 1919198 1919213) (-1050 "STAGG.spad" 1917356 1917369 1918273 1918278) (-1049 "STACK.spad" 1916707 1916718 1916963 1916990) (-1048 "SREGSET.spad" 1914411 1914428 1916353 1916380) (-1047 "SRDCMPK.spad" 1912956 1912976 1914401 1914406) (-1046 "SRAGG.spad" 1908041 1908050 1912912 1912951) (-1045 "SRAGG.spad" 1903158 1903169 1908031 1908036) (-1044 "SQMATRIX.spad" 1900784 1900802 1901692 1901779) (-1043 "SPLTREE.spad" 1895336 1895349 1900220 1900247) (-1042 "SPLNODE.spad" 1891924 1891937 1895326 1895331) (-1041 "SPFCAT.spad" 1890701 1890710 1891914 1891919) (-1040 "SPECOUT.spad" 1889251 1889260 1890691 1890696) (-1039 "spad-parser.spad" 1888716 1888725 1889241 1889246) (-1038 "SPACEC.spad" 1872729 1872740 1888706 1888711) (-1037 "SPACE3.spad" 1872505 1872516 1872719 1872724) (-1036 "SORTPAK.spad" 1872050 1872063 1872461 1872466) (-1035 "SOLVETRA.spad" 1869807 1869818 1872040 1872045) (-1034 "SOLVESER.spad" 1868327 1868338 1869797 1869802) (-1033 "SOLVERAD.spad" 1864337 1864348 1868317 1868322) (-1032 "SOLVEFOR.spad" 1862757 1862775 1864327 1864332) (-1031 "SNTSCAT.spad" 1862345 1862362 1862713 1862752) (-1030 "SMTS.spad" 1860605 1860631 1861910 1862007) (-1029 "SMP.spad" 1858047 1858067 1858437 1858564) (-1028 "SMITH.spad" 1856890 1856915 1858037 1858042) (-1027 "SMATCAT.spad" 1854988 1855018 1856822 1856885) (-1026 "SMATCAT.spad" 1853030 1853062 1854866 1854871) (-1025 "SKAGG.spad" 1851979 1851990 1852986 1853025) (-1024 "SINT.spad" 1850287 1850296 1851845 1851974) (-1023 "SIMPAN.spad" 1850015 1850024 1850277 1850282) (-1022 "SIGNRF.spad" 1849123 1849134 1850005 1850010) (-1021 "SIGNEF.spad" 1848392 1848409 1849113 1849118) (-1020 "SHP.spad" 1846310 1846325 1848348 1848353) (-1019 "SHDP.spad" 1837700 1837727 1838209 1838338) (-1018 "SGROUP.spad" 1837166 1837175 1837690 1837695) (-1017 "SGROUP.spad" 1836630 1836641 1837156 1837161) (-1016 "SGCF.spad" 1829511 1829520 1836620 1836625) (-1015 "SFRTCAT.spad" 1828427 1828444 1829467 1829506) (-1014 "SFRGCD.spad" 1827490 1827510 1828417 1828422) (-1013 "SFQCMPK.spad" 1822127 1822147 1827480 1827485) (-1012 "SFORT.spad" 1821562 1821576 1822117 1822122) (-1011 "SEXOF.spad" 1821405 1821445 1821552 1821557) (-1010 "SEX.spad" 1821297 1821306 1821395 1821400) (-1009 "SEXCAT.spad" 1818401 1818441 1821287 1821292) (-1008 "SET.spad" 1816701 1816712 1817822 1817861) (-1007 "SETMN.spad" 1815135 1815152 1816691 1816696) (-1006 "SETCAT.spad" 1814620 1814629 1815125 1815130) (-1005 "SETCAT.spad" 1814103 1814114 1814610 1814615) (-1004 "SETAGG.spad" 1810626 1810637 1814071 1814098) (-1003 "SETAGG.spad" 1807169 1807182 1810616 1810621) (-1002 "SEGXCAT.spad" 1806281 1806294 1807149 1807164) (-1001 "SEG.spad" 1806094 1806105 1806200 1806205) (-1000 "SEGCAT.spad" 1804913 1804924 1806074 1806089) (-999 "SEGBIND.spad" 1803986 1803996 1804868 1804873) (-998 "SEGBIND2.spad" 1803683 1803695 1803976 1803981) (-997 "SEG2.spad" 1803109 1803121 1803639 1803644) (-996 "SDVAR.spad" 1802386 1802396 1803099 1803104) (-995 "SDPOL.spad" 1799785 1799795 1800075 1800202) (-994 "SCPKG.spad" 1797865 1797875 1799775 1799780) (-993 "SCACHE.spad" 1796548 1796558 1797855 1797860) (-992 "SAOS.spad" 1796421 1796429 1796538 1796543) (-991 "SAERFFC.spad" 1796135 1796154 1796411 1796416) (-990 "SAE.spad" 1794314 1794329 1794924 1795059) (-989 "SAEFACT.spad" 1794016 1794035 1794304 1794309) (-988 "RURPK.spad" 1791658 1791673 1794006 1794011) (-987 "RULESET.spad" 1791100 1791123 1791648 1791653) (-986 "RULE.spad" 1789305 1789328 1791090 1791095) (-985 "RULECOLD.spad" 1789158 1789170 1789295 1789300) (-984 "RSETGCD.spad" 1785537 1785556 1789148 1789153) (-983 "RSETCAT.spad" 1775310 1775326 1785493 1785532) (-982 "RSETCAT.spad" 1765115 1765133 1775300 1775305) (-981 "RSDCMPK.spad" 1763568 1763587 1765105 1765110) (-980 "RRCC.spad" 1761953 1761982 1763558 1763563) (-979 "RRCC.spad" 1760336 1760367 1761943 1761948) (-978 "RPOLCAT.spad" 1739697 1739711 1760204 1760331) (-977 "RPOLCAT.spad" 1718773 1718789 1739282 1739287) (-976 "ROUTINE.spad" 1714637 1714645 1717420 1717447) (-975 "ROMAN.spad" 1713870 1713878 1714503 1714632) (-974 "ROIRC.spad" 1712951 1712982 1713860 1713865) (-973 "RNS.spad" 1711855 1711863 1712853 1712946) (-972 "RNS.spad" 1710845 1710855 1711845 1711850) (-971 "RNG.spad" 1710581 1710589 1710835 1710840) (-970 "RMODULE.spad" 1710220 1710230 1710571 1710576) (-969 "RMCAT2.spad" 1709629 1709685 1710210 1710215) (-968 "RMATRIX.spad" 1708309 1708327 1708796 1708835) (-967 "RMATCAT.spad" 1703831 1703861 1708253 1708304) (-966 "RMATCAT.spad" 1699255 1699287 1703679 1703684) (-965 "RINTERP.spad" 1699144 1699163 1699245 1699250) (-964 "RING.spad" 1698502 1698510 1699124 1699139) (-963 "RING.spad" 1697868 1697878 1698492 1698497) (-962 "RIDIST.spad" 1697253 1697261 1697858 1697863) (-961 "RGCHAIN.spad" 1695833 1695848 1696738 1696765) (-960 "RF.spad" 1693448 1693458 1695823 1695828) (-959 "RFFACTOR.spad" 1692911 1692921 1693438 1693443) (-958 "RFFACT.spad" 1692647 1692658 1692901 1692906) (-957 "RFDIST.spad" 1691636 1691644 1692637 1692642) (-956 "RETSOL.spad" 1691054 1691066 1691626 1691631) (-955 "RETRACT.spad" 1690404 1690414 1691044 1691049) (-954 "RETRACT.spad" 1689752 1689764 1690394 1690399) (-953 "RESULT.spad" 1687813 1687821 1688399 1688426) (-952 "RESRING.spad" 1687161 1687207 1687751 1687808) (-951 "RESLATC.spad" 1686486 1686496 1687151 1687156) (-950 "REPSQ.spad" 1686216 1686226 1686476 1686481) (-949 "REP.spad" 1683769 1683777 1686206 1686211) (-948 "REPDB.spad" 1683475 1683485 1683759 1683764) (-947 "REP2.spad" 1673048 1673058 1683317 1683322) (-946 "REP1.spad" 1667039 1667049 1672998 1673003) (-945 "REGSET.spad" 1664837 1664853 1666685 1666712) (-944 "REF.spad" 1664167 1664177 1664792 1664797) (-943 "REDORDER.spad" 1663344 1663360 1664157 1664162) (-942 "RECLOS.spad" 1662134 1662153 1662837 1662930) (-941 "REALSOLV.spad" 1661267 1661275 1662124 1662129) (-940 "REAL.spad" 1661140 1661148 1661257 1661262) (-939 "REAL0Q.spad" 1658423 1658437 1661130 1661135) (-938 "REAL0.spad" 1655252 1655266 1658413 1658418) (-937 "RDIV.spad" 1654904 1654928 1655242 1655247) (-936 "RDIST.spad" 1654468 1654478 1654894 1654899) (-935 "RDETRS.spad" 1653265 1653282 1654458 1654463) (-934 "RDETR.spad" 1651373 1651390 1653255 1653260) (-933 "RDEEFS.spad" 1650447 1650463 1651363 1651368) (-932 "RDEEF.spad" 1649444 1649460 1650437 1650442) (-931 "RCFIELD.spad" 1646628 1646636 1649346 1649439) (-930 "RCFIELD.spad" 1643898 1643908 1646618 1646623) (-929 "RCAGG.spad" 1641801 1641811 1643878 1643893) (-928 "RCAGG.spad" 1639641 1639653 1641720 1641725) (-927 "RATRET.spad" 1639002 1639012 1639631 1639636) (-926 "RATFACT.spad" 1638695 1638706 1638992 1638997) (-925 "RANDSRC.spad" 1638015 1638023 1638685 1638690) (-924 "RADUTIL.spad" 1637770 1637778 1638005 1638010) (-923 "RADIX.spad" 1634563 1634576 1636240 1636333) (-922 "RADFF.spad" 1632980 1633016 1633098 1633254) (-921 "RADCAT.spad" 1632574 1632582 1632970 1632975) (-920 "RADCAT.spad" 1632166 1632176 1632564 1632569) (-919 "QUEUE.spad" 1631509 1631519 1631773 1631800) (-918 "QUAT.spad" 1630095 1630105 1630437 1630502) (-917 "QUATCT2.spad" 1629714 1629732 1630085 1630090) (-916 "QUATCAT.spad" 1627879 1627889 1629644 1629709) (-915 "QUATCAT.spad" 1625796 1625808 1627563 1627568) (-914 "QUAGG.spad" 1624610 1624620 1625752 1625791) (-913 "QFORM.spad" 1624073 1624087 1624600 1624605) (-912 "QFCAT.spad" 1622764 1622774 1623963 1624068) (-911 "QFCAT.spad" 1621061 1621073 1622262 1622267) (-910 "QFCAT2.spad" 1620752 1620768 1621051 1621056) (-909 "QEQUAT.spad" 1620309 1620317 1620742 1620747) (-908 "QCMPACK.spad" 1615056 1615075 1620299 1620304) (-907 "QALGSET.spad" 1611131 1611163 1614970 1614975) (-906 "QALGSET2.spad" 1609127 1609145 1611121 1611126) (-905 "PWFFINTB.spad" 1606437 1606458 1609117 1609122) (-904 "PUSHVAR.spad" 1605766 1605785 1606427 1606432) (-903 "PTRANFN.spad" 1601892 1601902 1605756 1605761) (-902 "PTPACK.spad" 1598980 1598990 1601882 1601887) (-901 "PTFUNC2.spad" 1598801 1598815 1598970 1598975) (-900 "PTCAT.spad" 1597883 1597893 1598757 1598796) (-899 "PSQFR.spad" 1597190 1597214 1597873 1597878) (-898 "PSEUDLIN.spad" 1596048 1596058 1597180 1597185) (-897 "PSETPK.spad" 1581481 1581497 1595926 1595931) (-896 "PSETCAT.spad" 1575389 1575412 1581449 1581476) (-895 "PSETCAT.spad" 1569283 1569308 1575345 1575350) (-894 "PSCURVE.spad" 1568266 1568274 1569273 1569278) (-893 "PSCAT.spad" 1567033 1567062 1568164 1568261) (-892 "PSCAT.spad" 1565890 1565921 1567023 1567028) (-891 "PRTITION.spad" 1564733 1564741 1565880 1565885) (-890 "PRS.spad" 1554295 1554312 1564689 1564694) (-889 "PRQAGG.spad" 1553714 1553724 1554251 1554290) (-888 "PROPLOG.spad" 1553117 1553125 1553704 1553709) (-887 "PRODUCT.spad" 1550797 1550809 1551083 1551138) (-886 "PR.spad" 1549186 1549198 1549891 1550018) (-885 "PRINT.spad" 1548938 1548946 1549176 1549181) (-884 "PRIMES.spad" 1547189 1547199 1548928 1548933) (-883 "PRIMELT.spad" 1545170 1545184 1547179 1547184) (-882 "PRIMCAT.spad" 1544793 1544801 1545160 1545165) (-881 "PRIMARR.spad" 1543798 1543808 1543976 1544003) (-880 "PRIMARR2.spad" 1542521 1542533 1543788 1543793) (-879 "PREASSOC.spad" 1541893 1541905 1542511 1542516) (-878 "PPCURVE.spad" 1541030 1541038 1541883 1541888) (-877 "POLYROOT.spad" 1539802 1539824 1540986 1540991) (-876 "POLY.spad" 1537102 1537112 1537619 1537746) (-875 "POLYLIFT.spad" 1536363 1536386 1537092 1537097) (-874 "POLYCATQ.spad" 1534465 1534487 1536353 1536358) (-873 "POLYCAT.spad" 1527871 1527892 1534333 1534460) (-872 "POLYCAT.spad" 1520579 1520602 1527043 1527048) (-871 "POLY2UP.spad" 1520027 1520041 1520569 1520574) (-870 "POLY2.spad" 1519622 1519634 1520017 1520022) (-869 "POLUTIL.spad" 1518563 1518592 1519578 1519583) (-868 "POLTOPOL.spad" 1517311 1517326 1518553 1518558) (-867 "POINT.spad" 1516152 1516162 1516239 1516266) (-866 "PNTHEORY.spad" 1512818 1512826 1516142 1516147) (-865 "PMTOOLS.spad" 1511575 1511589 1512808 1512813) (-864 "PMSYM.spad" 1511120 1511130 1511565 1511570) (-863 "PMQFCAT.spad" 1510707 1510721 1511110 1511115) (-862 "PMPRED.spad" 1510176 1510190 1510697 1510702) (-861 "PMPREDFS.spad" 1509620 1509642 1510166 1510171) (-860 "PMPLCAT.spad" 1508690 1508708 1509552 1509557) (-859 "PMLSAGG.spad" 1508271 1508285 1508680 1508685) (-858 "PMKERNEL.spad" 1507838 1507850 1508261 1508266) (-857 "PMINS.spad" 1507414 1507424 1507828 1507833) (-856 "PMFS.spad" 1506987 1507005 1507404 1507409) (-855 "PMDOWN.spad" 1506273 1506287 1506977 1506982) (-854 "PMASS.spad" 1505285 1505293 1506263 1506268) (-853 "PMASSFS.spad" 1504254 1504270 1505275 1505280) (-852 "PLOTTOOL.spad" 1504034 1504042 1504244 1504249) (-851 "PLOT.spad" 1498865 1498873 1504024 1504029) (-850 "PLOT3D.spad" 1495285 1495293 1498855 1498860) (-849 "PLOT1.spad" 1494426 1494436 1495275 1495280) (-848 "PLEQN.spad" 1481642 1481669 1494416 1494421) (-847 "PINTERP.spad" 1481258 1481277 1481632 1481637) (-846 "PINTERPA.spad" 1481040 1481056 1481248 1481253) (-845 "PI.spad" 1480647 1480655 1481014 1481035) (-844 "PID.spad" 1479603 1479611 1480573 1480642) (-843 "PICOERCE.spad" 1479260 1479270 1479593 1479598) (-842 "PGROEB.spad" 1477857 1477871 1479250 1479255) (-841 "PGE.spad" 1469110 1469118 1477847 1477852) (-840 "PGCD.spad" 1467992 1468009 1469100 1469105) (-839 "PFRPAC.spad" 1467135 1467145 1467982 1467987) (-838 "PFR.spad" 1463792 1463802 1467037 1467130) (-837 "PFOTOOLS.spad" 1463050 1463066 1463782 1463787) (-836 "PFOQ.spad" 1462420 1462438 1463040 1463045) (-835 "PFO.spad" 1461839 1461866 1462410 1462415) (-834 "PF.spad" 1461413 1461425 1461644 1461737) (-833 "PFECAT.spad" 1459079 1459087 1461339 1461408) (-832 "PFECAT.spad" 1456773 1456783 1459035 1459040) (-831 "PFBRU.spad" 1454643 1454655 1456763 1456768) (-830 "PFBR.spad" 1452181 1452204 1454633 1454638) (-829 "PERM.spad" 1447862 1447872 1452011 1452026) (-828 "PERMGRP.spad" 1442598 1442608 1447852 1447857) (-827 "PERMCAT.spad" 1441150 1441160 1442578 1442593) (-826 "PERMAN.spad" 1439682 1439696 1441140 1441145) (-825 "PENDTREE.spad" 1438955 1438965 1439311 1439316) (-824 "PDRING.spad" 1437446 1437456 1438935 1438950) (-823 "PDRING.spad" 1435945 1435957 1437436 1437441) (-822 "PDEPROB.spad" 1434902 1434910 1435935 1435940) (-821 "PDEPACK.spad" 1428904 1428912 1434892 1434897) (-820 "PDECOMP.spad" 1428366 1428383 1428894 1428899) (-819 "PDECAT.spad" 1426720 1426728 1428356 1428361) (-818 "PCOMP.spad" 1426571 1426584 1426710 1426715) (-817 "PBWLB.spad" 1425153 1425170 1426561 1426566) (-816 "PATTERN.spad" 1419584 1419594 1425143 1425148) (-815 "PATTERN2.spad" 1419320 1419332 1419574 1419579) (-814 "PATTERN1.spad" 1417622 1417638 1419310 1419315) (-813 "PATRES.spad" 1415169 1415181 1417612 1417617) (-812 "PATRES2.spad" 1414831 1414845 1415159 1415164) (-811 "PATMATCH.spad" 1412993 1413024 1414544 1414549) (-810 "PATMAB.spad" 1412418 1412428 1412983 1412988) (-809 "PATLRES.spad" 1411502 1411516 1412408 1412413) (-808 "PATAB.spad" 1411266 1411276 1411492 1411497) (-807 "PARTPERM.spad" 1408628 1408636 1411256 1411261) (-806 "PARSURF.spad" 1408056 1408084 1408618 1408623) (-805 "PARSU2.spad" 1407851 1407867 1408046 1408051) (-804 "script-parser.spad" 1407371 1407379 1407841 1407846) (-803 "PARSCURV.spad" 1406799 1406827 1407361 1407366) (-802 "PARSC2.spad" 1406588 1406604 1406789 1406794) (-801 "PARPCURV.spad" 1406046 1406074 1406578 1406583) (-800 "PARPC2.spad" 1405835 1405851 1406036 1406041) (-799 "PAN2EXPR.spad" 1405247 1405255 1405825 1405830) (-798 "PALETTE.spad" 1404217 1404225 1405237 1405242) (-797 "PAIR.spad" 1403200 1403213 1403805 1403810) (-796 "PADICRC.spad" 1400533 1400551 1401708 1401801) (-795 "PADICRAT.spad" 1398551 1398563 1398772 1398865) (-794 "PADIC.spad" 1398246 1398258 1398477 1398546) (-793 "PADICCT.spad" 1396787 1396799 1398172 1398241) (-792 "PADEPAC.spad" 1395466 1395485 1396777 1396782) (-791 "PADE.spad" 1394206 1394222 1395456 1395461) (-790 "OWP.spad" 1393190 1393220 1394064 1394131) (-789 "OVAR.spad" 1392971 1392994 1393180 1393185) (-788 "OUT.spad" 1392055 1392063 1392961 1392966) (-787 "OUTFORM.spad" 1381469 1381477 1392045 1392050) (-786 "OSI.spad" 1380944 1380952 1381459 1381464) (-785 "ORTHPOL.spad" 1379405 1379415 1380861 1380866) (-784 "OREUP.spad" 1378765 1378793 1379087 1379126) (-783 "ORESUP.spad" 1378066 1378090 1378447 1378486) (-782 "OREPCTO.spad" 1375885 1375897 1377986 1377991) (-781 "OREPCAT.spad" 1369942 1369952 1375841 1375880) (-780 "OREPCAT.spad" 1363889 1363901 1369790 1369795) (-779 "ORDSET.spad" 1363055 1363063 1363879 1363884) (-778 "ORDSET.spad" 1362219 1362229 1363045 1363050) (-777 "ORDRING.spad" 1361609 1361617 1362199 1362214) (-776 "ORDRING.spad" 1361007 1361017 1361599 1361604) (-775 "ORDMON.spad" 1360862 1360870 1360997 1361002) (-774 "ORDFUNS.spad" 1359988 1360004 1360852 1360857) (-773 "ORDFIN.spad" 1359922 1359930 1359978 1359983) (-772 "ORDCOMP.spad" 1358390 1358400 1359472 1359501) (-771 "ORDCOMP2.spad" 1357675 1357687 1358380 1358385) (-770 "OPTPROB.spad" 1356255 1356263 1357665 1357670) (-769 "OPTPACK.spad" 1348640 1348648 1356245 1356250) (-768 "OPTCAT.spad" 1346315 1346323 1348630 1348635) (-767 "OPQUERY.spad" 1345864 1345872 1346305 1346310) (-766 "OP.spad" 1345606 1345616 1345686 1345753) (-765 "ONECOMP.spad" 1344354 1344364 1345156 1345185) (-764 "ONECOMP2.spad" 1343772 1343784 1344344 1344349) (-763 "OMSERVER.spad" 1342774 1342782 1343762 1343767) (-762 "OMSAGG.spad" 1342550 1342560 1342718 1342769) (-761 "OMPKG.spad" 1341162 1341170 1342540 1342545) (-760 "OM.spad" 1340127 1340135 1341152 1341157) (-759 "OMLO.spad" 1339552 1339564 1340013 1340052) (-758 "OMEXPR.spad" 1339386 1339396 1339542 1339547) (-757 "OMERR.spad" 1338929 1338937 1339376 1339381) (-756 "OMERRK.spad" 1337963 1337971 1338919 1338924) (-755 "OMENC.spad" 1337307 1337315 1337953 1337958) (-754 "OMDEV.spad" 1331596 1331604 1337297 1337302) (-753 "OMCONN.spad" 1331005 1331013 1331586 1331591) (-752 "OINTDOM.spad" 1330768 1330776 1330931 1331000) (-751 "OFMONOID.spad" 1326955 1326965 1330758 1330763) (-750 "ODVAR.spad" 1326216 1326226 1326945 1326950) (-749 "ODR.spad" 1325664 1325690 1326028 1326177) (-748 "ODPOL.spad" 1323013 1323023 1323353 1323480) (-747 "ODP.spad" 1314539 1314559 1314912 1315041) (-746 "ODETOOLS.spad" 1313122 1313141 1314529 1314534) (-745 "ODESYS.spad" 1310772 1310789 1313112 1313117) (-744 "ODERTRIC.spad" 1306713 1306730 1310729 1310734) (-743 "ODERED.spad" 1306100 1306124 1306703 1306708) (-742 "ODERAT.spad" 1303651 1303668 1306090 1306095) (-741 "ODEPRRIC.spad" 1300542 1300564 1303641 1303646) (-740 "ODEPROB.spad" 1299741 1299749 1300532 1300537) (-739 "ODEPRIM.spad" 1297015 1297037 1299731 1299736) (-738 "ODEPAL.spad" 1296391 1296415 1297005 1297010) (-737 "ODEPACK.spad" 1282993 1283001 1296381 1296386) (-736 "ODEINT.spad" 1282424 1282440 1282983 1282988) (-735 "ODEIFTBL.spad" 1279819 1279827 1282414 1282419) (-734 "ODEEF.spad" 1275186 1275202 1279809 1279814) (-733 "ODECONST.spad" 1274705 1274723 1275176 1275181) (-732 "ODECAT.spad" 1273301 1273309 1274695 1274700) (-731 "OCT.spad" 1271448 1271458 1272164 1272203) (-730 "OCTCT2.spad" 1271092 1271113 1271438 1271443) (-729 "OC.spad" 1268866 1268876 1271048 1271087) (-728 "OC.spad" 1266366 1266378 1268550 1268555) (-727 "OCAMON.spad" 1266214 1266222 1266356 1266361) (-726 "OASGP.spad" 1266029 1266037 1266204 1266209) (-725 "OAMONS.spad" 1265549 1265557 1266019 1266024) (-724 "OAMON.spad" 1265410 1265418 1265539 1265544) (-723 "OAGROUP.spad" 1265272 1265280 1265400 1265405) (-722 "NUMTUBE.spad" 1264859 1264875 1265262 1265267) (-721 "NUMQUAD.spad" 1252721 1252729 1264849 1264854) (-720 "NUMODE.spad" 1243857 1243865 1252711 1252716) (-719 "NUMINT.spad" 1241415 1241423 1243847 1243852) (-718 "NUMFMT.spad" 1240255 1240263 1241405 1241410) (-717 "NUMERIC.spad" 1232328 1232338 1240061 1240066) (-716 "NTSCAT.spad" 1230818 1230834 1232284 1232323) (-715 "NTPOLFN.spad" 1230363 1230373 1230735 1230740) (-714 "NSUP.spad" 1223381 1223391 1227921 1228074) (-713 "NSUP2.spad" 1222773 1222785 1223371 1223376) (-712 "NSMP.spad" 1218972 1218991 1219280 1219407) (-711 "NREP.spad" 1217344 1217358 1218962 1218967) (-710 "NPCOEF.spad" 1216590 1216610 1217334 1217339) (-709 "NORMRETR.spad" 1216188 1216227 1216580 1216585) (-708 "NORMPK.spad" 1214090 1214109 1216178 1216183) (-707 "NORMMA.spad" 1213778 1213804 1214080 1214085) (-706 "NONE.spad" 1213519 1213527 1213768 1213773) (-705 "NONE1.spad" 1213195 1213205 1213509 1213514) (-704 "NODE1.spad" 1212664 1212680 1213185 1213190) (-703 "NNI.spad" 1211551 1211559 1212638 1212659) (-702 "NLINSOL.spad" 1210173 1210183 1211541 1211546) (-701 "NIPROB.spad" 1208656 1208664 1210163 1210168) (-700 "NFINTBAS.spad" 1206116 1206133 1208646 1208651) (-699 "NCODIV.spad" 1204314 1204330 1206106 1206111) (-698 "NCNTFRAC.spad" 1203956 1203970 1204304 1204309) (-697 "NCEP.spad" 1202116 1202130 1203946 1203951) (-696 "NASRING.spad" 1201712 1201720 1202106 1202111) (-695 "NASRING.spad" 1201306 1201316 1201702 1201707) (-694 "NARNG.spad" 1200650 1200658 1201296 1201301) (-693 "NARNG.spad" 1199992 1200002 1200640 1200645) (-692 "NAGSP.spad" 1199065 1199073 1199982 1199987) (-691 "NAGS.spad" 1188590 1188598 1199055 1199060) (-690 "NAGF07.spad" 1186983 1186991 1188580 1188585) (-689 "NAGF04.spad" 1181215 1181223 1186973 1186978) (-688 "NAGF02.spad" 1175024 1175032 1181205 1181210) (-687 "NAGF01.spad" 1170627 1170635 1175014 1175019) (-686 "NAGE04.spad" 1164087 1164095 1170617 1170622) (-685 "NAGE02.spad" 1154429 1154437 1164077 1164082) (-684 "NAGE01.spad" 1150313 1150321 1154419 1154424) (-683 "NAGD03.spad" 1148233 1148241 1150303 1150308) (-682 "NAGD02.spad" 1140764 1140772 1148223 1148228) (-681 "NAGD01.spad" 1134877 1134885 1140754 1140759) (-680 "NAGC06.spad" 1130664 1130672 1134867 1134872) (-679 "NAGC05.spad" 1129133 1129141 1130654 1130659) (-678 "NAGC02.spad" 1128388 1128396 1129123 1129128) (-677 "NAALG.spad" 1127923 1127933 1128356 1128383) (-676 "NAALG.spad" 1127478 1127490 1127913 1127918) (-675 "MULTSQFR.spad" 1124436 1124453 1127468 1127473) (-674 "MULTFACT.spad" 1123819 1123836 1124426 1124431) (-673 "MTSCAT.spad" 1121853 1121874 1123717 1123814) (-672 "MTHING.spad" 1121510 1121520 1121843 1121848) (-671 "MSYSCMD.spad" 1120944 1120952 1121500 1121505) (-670 "MSET.spad" 1118886 1118896 1120650 1120689) (-669 "MSETAGG.spad" 1118719 1118729 1118842 1118881) (-668 "MRING.spad" 1115690 1115702 1118427 1118494) (-667 "MRF2.spad" 1115258 1115272 1115680 1115685) (-666 "MRATFAC.spad" 1114804 1114821 1115248 1115253) (-665 "MPRFF.spad" 1112834 1112853 1114794 1114799) (-664 "MPOLY.spad" 1110272 1110287 1110631 1110758) (-663 "MPCPF.spad" 1109536 1109555 1110262 1110267) (-662 "MPC3.spad" 1109351 1109391 1109526 1109531) (-661 "MPC2.spad" 1108993 1109026 1109341 1109346) (-660 "MONOTOOL.spad" 1107328 1107345 1108983 1108988) (-659 "MONOID.spad" 1106502 1106510 1107318 1107323) (-658 "MONOID.spad" 1105674 1105684 1106492 1106497) (-657 "MONOGEN.spad" 1104420 1104433 1105534 1105669) (-656 "MONOGEN.spad" 1103188 1103203 1104304 1104309) (-655 "MONADWU.spad" 1101202 1101210 1103178 1103183) (-654 "MONADWU.spad" 1099214 1099224 1101192 1101197) (-653 "MONAD.spad" 1098358 1098366 1099204 1099209) (-652 "MONAD.spad" 1097500 1097510 1098348 1098353) (-651 "MOEBIUS.spad" 1096186 1096200 1097480 1097495) (-650 "MODULE.spad" 1096056 1096066 1096154 1096181) (-649 "MODULE.spad" 1095946 1095958 1096046 1096051) (-648 "MODRING.spad" 1095277 1095316 1095926 1095941) (-647 "MODOP.spad" 1093936 1093948 1095099 1095166) (-646 "MODMONOM.spad" 1093468 1093486 1093926 1093931) (-645 "MODMON.spad" 1090178 1090194 1090954 1091107) (-644 "MODFIELD.spad" 1089536 1089575 1090080 1090173) (-643 "MMAP.spad" 1089276 1089310 1089526 1089531) (-642 "MLO.spad" 1087703 1087713 1089232 1089271) (-641 "MLIFT.spad" 1086275 1086292 1087693 1087698) (-640 "MKUCFUNC.spad" 1085808 1085826 1086265 1086270) (-639 "MKRECORD.spad" 1085410 1085423 1085798 1085803) (-638 "MKFUNC.spad" 1084791 1084801 1085400 1085405) (-637 "MKFLCFN.spad" 1083747 1083757 1084781 1084786) (-636 "MKCHSET.spad" 1083523 1083533 1083737 1083742) (-635 "MKBCFUNC.spad" 1083008 1083026 1083513 1083518) (-634 "MINT.spad" 1082447 1082455 1082910 1083003) (-633 "MHROWRED.spad" 1080948 1080958 1082437 1082442) (-632 "MFLOAT.spad" 1079393 1079401 1080838 1080943) (-631 "MFINFACT.spad" 1078793 1078815 1079383 1079388) (-630 "MESH.spad" 1076525 1076533 1078783 1078788) (-629 "MDDFACT.spad" 1074718 1074728 1076515 1076520) (-628 "MDAGG.spad" 1073993 1074003 1074686 1074713) (-627 "MCMPLX.spad" 1069973 1069981 1070587 1070788) (-626 "MCDEN.spad" 1069181 1069193 1069963 1069968) (-625 "MCALCFN.spad" 1066283 1066309 1069171 1069176) (-624 "MATSTOR.spad" 1063559 1063569 1066273 1066278) (-623 "MATRIX.spad" 1062263 1062273 1062747 1062774) (-622 "MATLIN.spad" 1059589 1059613 1062147 1062152) (-621 "MATCAT.spad" 1051162 1051184 1059545 1059584) (-620 "MATCAT.spad" 1042619 1042643 1051004 1051009) (-619 "MATCAT2.spad" 1041887 1041935 1042609 1042614) (-618 "MAPPKG3.spad" 1040786 1040800 1041877 1041882) (-617 "MAPPKG2.spad" 1040120 1040132 1040776 1040781) (-616 "MAPPKG1.spad" 1038938 1038948 1040110 1040115) (-615 "MAPHACK3.spad" 1038746 1038760 1038928 1038933) (-614 "MAPHACK2.spad" 1038511 1038523 1038736 1038741) (-613 "MAPHACK1.spad" 1038141 1038151 1038501 1038506) (-612 "MAGMA.spad" 1035931 1035948 1038131 1038136) (-611 "M3D.spad" 1033629 1033639 1035311 1035316) (-610 "LZSTAGG.spad" 1030847 1030857 1033609 1033624) (-609 "LZSTAGG.spad" 1028073 1028085 1030837 1030842) (-608 "LWORD.spad" 1024778 1024795 1028063 1028068) (-607 "LSQM.spad" 1023006 1023020 1023404 1023455) (-606 "LSPP.spad" 1022539 1022556 1022996 1023001) (-605 "LSMP.spad" 1021379 1021407 1022529 1022534) (-604 "LSMP1.spad" 1019183 1019197 1021369 1021374) (-603 "LSAGG.spad" 1018840 1018850 1019139 1019178) (-602 "LSAGG.spad" 1018529 1018541 1018830 1018835) (-601 "LPOLY.spad" 1017483 1017502 1018385 1018454) (-600 "LPEFRAC.spad" 1016740 1016750 1017473 1017478) (-599 "LO.spad" 1016141 1016155 1016674 1016701) (-598 "LOGIC.spad" 1015743 1015751 1016131 1016136) (-597 "LOGIC.spad" 1015343 1015353 1015733 1015738) (-596 "LODOOPS.spad" 1014261 1014273 1015333 1015338) (-595 "LODO.spad" 1013647 1013663 1013943 1013982) (-594 "LODOF.spad" 1012691 1012708 1013604 1013609) (-593 "LODOCAT.spad" 1011349 1011359 1012647 1012686) (-592 "LODOCAT.spad" 1010005 1010017 1011305 1011310) (-591 "LODO2.spad" 1009280 1009292 1009687 1009726) (-590 "LODO1.spad" 1008682 1008692 1008962 1009001) (-589 "LODEEF.spad" 1007454 1007472 1008672 1008677) (-588 "LNAGG.spad" 1003246 1003256 1007434 1007449) (-587 "LNAGG.spad" 999012 999024 1003202 1003207) (-586 "LMOPS.spad" 995748 995765 999002 999007) (-585 "LMODULE.spad" 995390 995400 995738 995743) (-584 "LMDICT.spad" 994673 994683 994941 994968) (-583 "LIST.spad" 992391 992401 993820 993847) (-582 "LIST3.spad" 991682 991696 992381 992386) (-581 "LIST2.spad" 990322 990334 991672 991677) (-580 "LIST2MAP.spad" 987199 987211 990312 990317) (-579 "LINEXP.spad" 986631 986641 987179 987194) (-578 "LINDEP.spad" 985408 985420 986543 986548) (-577 "LIMITRF.spad" 983322 983332 985398 985403) (-576 "LIMITPS.spad" 982205 982218 983312 983317) (-575 "LIE.spad" 980219 980231 981495 981640) (-574 "LIECAT.spad" 979695 979705 980145 980214) (-573 "LIECAT.spad" 979199 979211 979651 979656) (-572 "LIB.spad" 977247 977255 977858 977873) (-571 "LGROBP.spad" 974600 974619 977237 977242) (-570 "LF.spad" 973519 973535 974590 974595) (-569 "LFCAT.spad" 972538 972546 973509 973514) (-568 "LEXTRIPK.spad" 968041 968056 972528 972533) (-567 "LEXP.spad" 966044 966071 968021 968036) (-566 "LEADCDET.spad" 964428 964445 966034 966039) (-565 "LAZM3PK.spad" 963132 963154 964418 964423) (-564 "LAUPOL.spad" 961823 961836 962727 962796) (-563 "LAPLACE.spad" 961396 961412 961813 961818) (-562 "LA.spad" 960836 960850 961318 961357) (-561 "LALG.spad" 960612 960622 960816 960831) (-560 "LALG.spad" 960396 960408 960602 960607) (-559 "KOVACIC.spad" 959109 959126 960386 960391) (-558 "KONVERT.spad" 958831 958841 959099 959104) (-557 "KOERCE.spad" 958568 958578 958821 958826) (-556 "KERNEL.spad" 957103 957113 958352 958357) (-555 "KERNEL2.spad" 956806 956818 957093 957098) (-554 "KDAGG.spad" 955897 955919 956774 956801) (-553 "KDAGG.spad" 955008 955032 955887 955892) (-552 "KAFILE.spad" 953971 953987 954206 954233) (-551 "JORDAN.spad" 951798 951810 953261 953406) (-550 "IXAGG.spad" 949911 949935 951778 951793) (-549 "IXAGG.spad" 947889 947915 949758 949763) (-548 "IVECTOR.spad" 946662 946677 946817 946844) (-547 "ITUPLE.spad" 945807 945817 946652 946657) (-546 "ITRIGMNP.spad" 944618 944637 945797 945802) (-545 "ITFUN3.spad" 944112 944126 944608 944613) (-544 "ITFUN2.spad" 943842 943854 944102 944107) (-543 "ITAYLOR.spad" 941634 941649 943678 943803) (-542 "ISUPS.spad" 934045 934060 940608 940705) (-541 "ISUMP.spad" 933542 933558 934035 934040) (-540 "ISTRING.spad" 932545 932558 932711 932738) (-539 "IRURPK.spad" 931258 931277 932535 932540) (-538 "IRSN.spad" 929218 929226 931248 931253) (-537 "IRRF2F.spad" 927693 927703 929174 929179) (-536 "IRREDFFX.spad" 927294 927305 927683 927688) (-535 "IROOT.spad" 925625 925635 927284 927289) (-534 "IR.spad" 923415 923429 925481 925508) (-533 "IR2.spad" 922435 922451 923405 923410) (-532 "IR2F.spad" 921635 921651 922425 922430) (-531 "IPRNTPK.spad" 921395 921403 921625 921630) (-530 "IPF.spad" 920960 920972 921200 921293) (-529 "IPADIC.spad" 920721 920747 920886 920955) (-528 "INVLAPLA.spad" 920366 920382 920711 920716) (-527 "INTTR.spad" 913612 913629 920356 920361) (-526 "INTTOOLS.spad" 911324 911340 913187 913192) (-525 "INTSLPE.spad" 910630 910638 911314 911319) (-524 "INTRVL.spad" 910196 910206 910544 910625) (-523 "INTRF.spad" 908560 908574 910186 910191) (-522 "INTRET.spad" 907992 908002 908550 908555) (-521 "INTRAT.spad" 906667 906684 907982 907987) (-520 "INTPM.spad" 905030 905046 906310 906315) (-519 "INTPAF.spad" 902798 902816 904962 904967) (-518 "INTPACK.spad" 893108 893116 902788 902793) (-517 "INT.spad" 892469 892477 892962 893103) (-516 "INTHERTR.spad" 891735 891752 892459 892464) (-515 "INTHERAL.spad" 891401 891425 891725 891730) (-514 "INTHEORY.spad" 887814 887822 891391 891396) (-513 "INTG0.spad" 881277 881295 887746 887751) (-512 "INTFTBL.spad" 875306 875314 881267 881272) (-511 "INTFACT.spad" 874365 874375 875296 875301) (-510 "INTEF.spad" 872680 872696 874355 874360) (-509 "INTDOM.spad" 871295 871303 872606 872675) (-508 "INTDOM.spad" 869972 869982 871285 871290) (-507 "INTCAT.spad" 868225 868235 869886 869967) (-506 "INTBIT.spad" 867728 867736 868215 868220) (-505 "INTALG.spad" 866910 866937 867718 867723) (-504 "INTAF.spad" 866402 866418 866900 866905) (-503 "INTABL.spad" 864920 864951 865083 865110) (-502 "INS.spad" 862316 862324 864822 864915) (-501 "INS.spad" 859798 859808 862306 862311) (-500 "INPSIGN.spad" 859232 859245 859788 859793) (-499 "INPRODPF.spad" 858298 858317 859222 859227) (-498 "INPRODFF.spad" 857356 857380 858288 858293) (-497 "INNMFACT.spad" 856327 856344 857346 857351) (-496 "INMODGCD.spad" 855811 855841 856317 856322) (-495 "INFSP.spad" 854096 854118 855801 855806) (-494 "INFPROD0.spad" 853146 853165 854086 854091) (-493 "INFORM.spad" 850414 850422 853136 853141) (-492 "INFORM1.spad" 850039 850049 850404 850409) (-491 "INFINITY.spad" 849591 849599 850029 850034) (-490 "INEP.spad" 848123 848145 849581 849586) (-489 "INDE.spad" 848029 848046 848113 848118) (-488 "INCRMAPS.spad" 847450 847460 848019 848024) (-487 "INBFF.spad" 843220 843231 847440 847445) (-486 "IMATRIX.spad" 842165 842191 842677 842704) (-485 "IMATQF.spad" 841259 841303 842121 842126) (-484 "IMATLIN.spad" 839864 839888 841215 841220) (-483 "ILIST.spad" 838520 838535 839047 839074) (-482 "IIARRAY2.spad" 837908 837946 838127 838154) (-481 "IFF.spad" 837318 837334 837589 837682) (-480 "IFARRAY.spad" 834805 834820 836501 836528) (-479 "IFAMON.spad" 834667 834684 834761 834766) (-478 "IEVALAB.spad" 834056 834068 834657 834662) (-477 "IEVALAB.spad" 833443 833457 834046 834051) (-476 "IDPO.spad" 833241 833253 833433 833438) (-475 "IDPOAMS.spad" 832997 833009 833231 833236) (-474 "IDPOAM.spad" 832717 832729 832987 832992) (-473 "IDPC.spad" 831651 831663 832707 832712) (-472 "IDPAM.spad" 831396 831408 831641 831646) (-471 "IDPAG.spad" 831143 831155 831386 831391) (-470 "IDECOMP.spad" 828380 828398 831133 831138) (-469 "IDEAL.spad" 823303 823342 828315 828320) (-468 "ICDEN.spad" 822454 822470 823293 823298) (-467 "ICARD.spad" 821643 821651 822444 822449) (-466 "IBPTOOLS.spad" 820236 820253 821633 821638) (-465 "IBITS.spad" 819435 819448 819872 819899) (-464 "IBATOOL.spad" 816310 816329 819425 819430) (-463 "IBACHIN.spad" 814797 814812 816300 816305) (-462 "IARRAY2.spad" 813785 813811 814404 814431) (-461 "IARRAY1.spad" 812830 812845 812968 812995) (-460 "IAN.spad" 811045 811053 812648 812741) (-459 "IALGFACT.spad" 810646 810679 811035 811040) (-458 "HYPCAT.spad" 810070 810078 810636 810641) (-457 "HYPCAT.spad" 809492 809502 810060 810065) (-456 "HOAGG.spad" 806750 806760 809472 809487) (-455 "HOAGG.spad" 803793 803805 806517 806522) (-454 "HEXADEC.spad" 801665 801673 802263 802356) (-453 "HEUGCD.spad" 800680 800691 801655 801660) (-452 "HELLFDIV.spad" 800270 800294 800670 800675) (-451 "HEAP.spad" 799662 799672 799877 799904) (-450 "HDP.spad" 791184 791200 791561 791690) (-449 "HDMP.spad" 788363 788378 788981 789108) (-448 "HB.spad" 786600 786608 788353 788358) (-447 "HASHTBL.spad" 785070 785101 785281 785308) (-446 "HACKPI.spad" 784553 784561 784972 785065) (-445 "GTSET.spad" 783492 783508 784199 784226) (-444 "GSTBL.spad" 782011 782046 782185 782200) (-443 "GSERIES.spad" 779178 779205 780143 780292) (-442 "GROUP.spad" 778352 778360 779158 779173) (-441 "GROUP.spad" 777534 777544 778342 778347) (-440 "GROEBSOL.spad" 776022 776043 777524 777529) (-439 "GRMOD.spad" 774593 774605 776012 776017) (-438 "GRMOD.spad" 773162 773176 774583 774588) (-437 "GRIMAGE.spad" 765767 765775 773152 773157) (-436 "GRDEF.spad" 764146 764154 765757 765762) (-435 "GRAY.spad" 762605 762613 764136 764141) (-434 "GRALG.spad" 761652 761664 762595 762600) (-433 "GRALG.spad" 760697 760711 761642 761647) (-432 "GPOLSET.spad" 760151 760174 760379 760406) (-431 "GOSPER.spad" 759416 759434 760141 760146) (-430 "GMODPOL.spad" 758554 758581 759384 759411) (-429 "GHENSEL.spad" 757623 757637 758544 758549) (-428 "GENUPS.spad" 753724 753737 757613 757618) (-427 "GENUFACT.spad" 753301 753311 753714 753719) (-426 "GENPGCD.spad" 752885 752902 753291 753296) (-425 "GENMFACT.spad" 752337 752356 752875 752880) (-424 "GENEEZ.spad" 750276 750289 752327 752332) (-423 "GDMP.spad" 747297 747314 748073 748200) (-422 "GCNAALG.spad" 741192 741219 747091 747158) (-421 "GCDDOM.spad" 740364 740372 741118 741187) (-420 "GCDDOM.spad" 739598 739608 740354 740359) (-419 "GB.spad" 737116 737154 739554 739559) (-418 "GBINTERN.spad" 733136 733174 737106 737111) (-417 "GBF.spad" 728893 728931 733126 733131) (-416 "GBEUCLID.spad" 726767 726805 728883 728888) (-415 "GAUSSFAC.spad" 726064 726072 726757 726762) (-414 "GALUTIL.spad" 724386 724396 726020 726025) (-413 "GALPOLYU.spad" 722832 722845 724376 724381) (-412 "GALFACTU.spad" 720997 721016 722822 722827) (-411 "GALFACT.spad" 711130 711141 720987 720992) (-410 "FVFUN.spad" 708143 708151 711110 711125) (-409 "FVC.spad" 707185 707193 708123 708138) (-408 "FUNCTION.spad" 707034 707046 707175 707180) (-407 "FT.spad" 705246 705254 707024 707029) (-406 "FTEM.spad" 704409 704417 705236 705241) (-405 "FSUPFACT.spad" 703310 703329 704346 704351) (-404 "FST.spad" 701396 701404 703300 703305) (-403 "FSRED.spad" 700874 700890 701386 701391) (-402 "FSPRMELT.spad" 699698 699714 700831 700836) (-401 "FSPECF.spad" 697775 697791 699688 699693) (-400 "FS.spad" 691826 691836 697539 697770) (-399 "FS.spad" 685668 685680 691383 691388) (-398 "FSINT.spad" 685326 685342 685658 685663) (-397 "FSERIES.spad" 684513 684525 685146 685245) (-396 "FSCINT.spad" 683826 683842 684503 684508) (-395 "FSAGG.spad" 682931 682941 683770 683821) (-394 "FSAGG.spad" 682010 682022 682851 682856) (-393 "FSAGG2.spad" 680709 680725 682000 682005) (-392 "FS2UPS.spad" 675098 675132 680699 680704) (-391 "FS2.spad" 674743 674759 675088 675093) (-390 "FS2EXPXP.spad" 673866 673889 674733 674738) (-389 "FRUTIL.spad" 672808 672818 673856 673861) (-388 "FR.spad" 666505 666515 671835 671904) (-387 "FRNAALG.spad" 661592 661602 666447 666500) (-386 "FRNAALG.spad" 656691 656703 661548 661553) (-385 "FRNAAF2.spad" 656145 656163 656681 656686) (-384 "FRMOD.spad" 655540 655570 656077 656082) (-383 "FRIDEAL.spad" 654735 654756 655520 655535) (-382 "FRIDEAL2.spad" 654337 654369 654725 654730) (-381 "FRETRCT.spad" 653848 653858 654327 654332) (-380 "FRETRCT.spad" 653227 653239 653708 653713) (-379 "FRAMALG.spad" 651555 651568 653183 653222) (-378 "FRAMALG.spad" 649915 649930 651545 651550) (-377 "FRAC.spad" 647018 647028 647421 647594) (-376 "FRAC2.spad" 646621 646633 647008 647013) (-375 "FR2.spad" 645955 645967 646611 646616) (-374 "FPS.spad" 642764 642772 645845 645950) (-373 "FPS.spad" 639601 639611 642684 642689) (-372 "FPC.spad" 638643 638651 639503 639596) (-371 "FPC.spad" 637771 637781 638633 638638) (-370 "FPATMAB.spad" 637523 637533 637751 637766) (-369 "FPARFRAC.spad" 635996 636013 637513 637518) (-368 "FORTRAN.spad" 634496 634545 635986 635991) (-367 "FORT.spad" 633425 633433 634486 634491) (-366 "FORTFN.spad" 630585 630593 633405 633420) (-365 "FORTCAT.spad" 630259 630267 630565 630580) (-364 "FORMULA.spad" 627597 627605 630249 630254) (-363 "FORMULA1.spad" 627076 627086 627587 627592) (-362 "FORDER.spad" 626767 626791 627066 627071) (-361 "FOP.spad" 625968 625976 626757 626762) (-360 "FNLA.spad" 625392 625414 625936 625963) (-359 "FNCAT.spad" 623720 623728 625382 625387) (-358 "FNAME.spad" 623612 623620 623710 623715) (-357 "FMTC.spad" 623410 623418 623538 623607) (-356 "FMONOID.spad" 620465 620475 623366 623371) (-355 "FM.spad" 620160 620172 620399 620426) (-354 "FMFUN.spad" 617180 617188 620140 620155) (-353 "FMC.spad" 616222 616230 617160 617175) (-352 "FMCAT.spad" 613876 613894 616190 616217) (-351 "FM1.spad" 613233 613245 613810 613837) (-350 "FLOATRP.spad" 610954 610968 613223 613228) (-349 "FLOAT.spad" 604118 604126 610820 610949) (-348 "FLOATCP.spad" 601535 601549 604108 604113) (-347 "FLINEXP.spad" 601247 601257 601515 601530) (-346 "FLINEXP.spad" 600913 600925 601183 601188) (-345 "FLASORT.spad" 600233 600245 600903 600908) (-344 "FLALG.spad" 597879 597898 600159 600228) (-343 "FLAGG.spad" 594885 594895 597847 597874) (-342 "FLAGG.spad" 591804 591816 594768 594773) (-341 "FLAGG2.spad" 590485 590501 591794 591799) (-340 "FINRALG.spad" 588514 588527 590441 590480) (-339 "FINRALG.spad" 586469 586484 588398 588403) (-338 "FINITE.spad" 585621 585629 586459 586464) (-337 "FINAALG.spad" 574602 574612 585563 585616) (-336 "FINAALG.spad" 563595 563607 574558 574563) (-335 "FILE.spad" 563178 563188 563585 563590) (-334 "FILECAT.spad" 561696 561713 563168 563173) (-333 "FIELD.spad" 561102 561110 561598 561691) (-332 "FIELD.spad" 560594 560604 561092 561097) (-331 "FGROUP.spad" 559203 559213 560574 560589) (-330 "FGLMICPK.spad" 557990 558005 559193 559198) (-329 "FFX.spad" 557365 557380 557706 557799) (-328 "FFSLPE.spad" 556854 556875 557355 557360) (-327 "FFPOLY.spad" 548106 548117 556844 556849) (-326 "FFPOLY2.spad" 547166 547183 548096 548101) (-325 "FFP.spad" 546563 546583 546882 546975) (-324 "FF.spad" 546011 546027 546244 546337) (-323 "FFNBX.spad" 544523 544543 545727 545820) (-322 "FFNBP.spad" 543036 543053 544239 544332) (-321 "FFNB.spad" 541501 541522 542717 542810) (-320 "FFINTBAS.spad" 538915 538934 541491 541496) (-319 "FFIELDC.spad" 536490 536498 538817 538910) (-318 "FFIELDC.spad" 534151 534161 536480 536485) (-317 "FFHOM.spad" 532899 532916 534141 534146) (-316 "FFF.spad" 530334 530345 532889 532894) (-315 "FFCGX.spad" 529181 529201 530050 530143) (-314 "FFCGP.spad" 528070 528090 528897 528990) (-313 "FFCG.spad" 526862 526883 527751 527844) (-312 "FFCAT.spad" 519763 519785 526701 526857) (-311 "FFCAT.spad" 512743 512767 519683 519688) (-310 "FFCAT2.spad" 512488 512528 512733 512738) (-309 "FEXPR.spad" 504201 504247 512248 512287) (-308 "FEVALAB.spad" 503907 503917 504191 504196) (-307 "FEVALAB.spad" 503398 503410 503684 503689) (-306 "FDIV.spad" 502840 502864 503388 503393) (-305 "FDIVCAT.spad" 500882 500906 502830 502835) (-304 "FDIVCAT.spad" 498922 498948 500872 500877) (-303 "FDIV2.spad" 498576 498616 498912 498917) (-302 "FCPAK1.spad" 497129 497137 498566 498571) (-301 "FCOMP.spad" 496508 496518 497119 497124) (-300 "FC.spad" 486333 486341 496498 496503) (-299 "FAXF.spad" 479268 479282 486235 486328) (-298 "FAXF.spad" 472255 472271 479224 479229) (-297 "FARRAY.spad" 470401 470411 471438 471465) (-296 "FAMR.spad" 468521 468533 470299 470396) (-295 "FAMR.spad" 466625 466639 468405 468410) (-294 "FAMONOID.spad" 466275 466285 466579 466584) (-293 "FAMONC.spad" 464497 464509 466265 466270) (-292 "FAGROUP.spad" 464103 464113 464393 464420) (-291 "FACUTIL.spad" 462299 462316 464093 464098) (-290 "FACTFUNC.spad" 461475 461485 462289 462294) (-289 "EXPUPXS.spad" 458308 458331 459607 459756) (-288 "EXPRTUBE.spad" 455536 455544 458298 458303) (-287 "EXPRODE.spad" 452408 452424 455526 455531) (-286 "EXPR.spad" 447710 447720 448424 448827) (-285 "EXPR2UPS.spad" 443802 443815 447700 447705) (-284 "EXPR2.spad" 443505 443517 443792 443797) (-283 "EXPEXPAN.spad" 440446 440471 441080 441173) (-282 "EXIT.spad" 440117 440125 440436 440441) (-281 "EVALCYC.spad" 439575 439589 440107 440112) (-280 "EVALAB.spad" 439139 439149 439565 439570) (-279 "EVALAB.spad" 438701 438713 439129 439134) (-278 "EUCDOM.spad" 436243 436251 438627 438696) (-277 "EUCDOM.spad" 433847 433857 436233 436238) (-276 "ESTOOLS.spad" 425687 425695 433837 433842) (-275 "ESTOOLS2.spad" 425288 425302 425677 425682) (-274 "ESTOOLS1.spad" 424973 424984 425278 425283) (-273 "ES.spad" 417520 417528 424963 424968) (-272 "ES.spad" 409975 409985 417420 417425) (-271 "ESCONT.spad" 406748 406756 409965 409970) (-270 "ESCONT1.spad" 406497 406509 406738 406743) (-269 "ES2.spad" 405992 406008 406487 406492) (-268 "ES1.spad" 405558 405574 405982 405987) (-267 "ERROR.spad" 402879 402887 405548 405553) (-266 "EQTBL.spad" 401351 401373 401560 401587) (-265 "EQ.spad" 396235 396245 399034 399143) (-264 "EQ2.spad" 395951 395963 396225 396230) (-263 "EP.spad" 392265 392275 395941 395946) (-262 "ENTIRER.spad" 391933 391941 392209 392260) (-261 "EMR.spad" 391134 391175 391859 391928) (-260 "ELTAGG.spad" 389374 389393 391124 391129) (-259 "ELTAGG.spad" 387578 387599 389330 389335) (-258 "ELTAB.spad" 387025 387043 387568 387573) (-257 "ELFUTS.spad" 386404 386423 387015 387020) (-256 "ELEMFUN.spad" 386093 386101 386394 386399) (-255 "ELEMFUN.spad" 385780 385790 386083 386088) (-254 "ELAGG.spad" 383711 383721 385748 385775) (-253 "ELAGG.spad" 381591 381603 383630 383635) (-252 "EFUPXS.spad" 378367 378397 381547 381552) (-251 "EFULS.spad" 375203 375226 378323 378328) (-250 "EFSTRUC.spad" 373158 373174 375193 375198) (-249 "EF.spad" 367924 367940 373148 373153) (-248 "EAB.spad" 366200 366208 367914 367919) (-247 "E04UCFA.spad" 365736 365744 366190 366195) (-246 "E04NAFA.spad" 365313 365321 365726 365731) (-245 "E04MBFA.spad" 364893 364901 365303 365308) (-244 "E04JAFA.spad" 364429 364437 364883 364888) (-243 "E04GCFA.spad" 363965 363973 364419 364424) (-242 "E04FDFA.spad" 363501 363509 363955 363960) (-241 "E04DGFA.spad" 363037 363045 363491 363496) (-240 "E04AGNT.spad" 358879 358887 363027 363032) (-239 "DVARCAT.spad" 355564 355574 358869 358874) (-238 "DVARCAT.spad" 352247 352259 355554 355559) (-237 "DSMP.spad" 349681 349695 349986 350113) (-236 "DROPT.spad" 343626 343634 349671 349676) (-235 "DROPT1.spad" 343289 343299 343616 343621) (-234 "DROPT0.spad" 338116 338124 343279 343284) (-233 "DRAWPT.spad" 336271 336279 338106 338111) (-232 "DRAW.spad" 328871 328884 336261 336266) (-231 "DRAWHACK.spad" 328179 328189 328861 328866) (-230 "DRAWCX.spad" 325621 325629 328169 328174) (-229 "DRAWCURV.spad" 325158 325173 325611 325616) (-228 "DRAWCFUN.spad" 314330 314338 325148 325153) (-227 "DQAGG.spad" 312486 312496 314286 314325) (-226 "DPOLCAT.spad" 307827 307843 312354 312481) (-225 "DPOLCAT.spad" 303254 303272 307783 307788) (-224 "DPMO.spad" 297241 297257 297379 297675) (-223 "DPMM.spad" 291241 291259 291366 291662) (-222 "domain.spad" 290757 290765 291231 291236) (-221 "DMP.spad" 287982 287997 288554 288681) (-220 "DLP.spad" 287330 287340 287972 287977) (-219 "DLIST.spad" 285742 285752 286513 286540) (-218 "DLAGG.spad" 284143 284153 285722 285737) (-217 "DIVRING.spad" 283590 283598 284087 284138) (-216 "DIVRING.spad" 283081 283091 283580 283585) (-215 "DISPLAY.spad" 281261 281269 283071 283076) (-214 "DIRPROD.spad" 272520 272536 273160 273289) (-213 "DIRPROD2.spad" 271328 271346 272510 272515) (-212 "DIRPCAT.spad" 270260 270276 271182 271323) (-211 "DIRPCAT.spad" 268932 268950 269856 269861) (-210 "DIOSP.spad" 267757 267765 268922 268927) (-209 "DIOPS.spad" 266729 266739 267725 267752) (-208 "DIOPS.spad" 265687 265699 266685 266690) (-207 "DIFRING.spad" 264979 264987 265667 265682) (-206 "DIFRING.spad" 264279 264289 264969 264974) (-205 "DIFEXT.spad" 263438 263448 264259 264274) (-204 "DIFEXT.spad" 262514 262526 263337 263342) (-203 "DIAGG.spad" 262132 262142 262482 262509) (-202 "DIAGG.spad" 261770 261782 262122 262127) (-201 "DHMATRIX.spad" 260074 260084 261227 261254) (-200 "DFSFUN.spad" 253482 253490 260064 260069) (-199 "DFLOAT.spad" 250005 250013 253372 253477) (-198 "DFINTTLS.spad" 248214 248230 249995 250000) (-197 "DERHAM.spad" 246124 246156 248194 248209) (-196 "DEQUEUE.spad" 245442 245452 245731 245758) (-195 "DEGRED.spad" 245057 245071 245432 245437) (-194 "DEFINTRF.spad" 242582 242592 245047 245052) (-193 "DEFINTEF.spad" 241078 241094 242572 242577) (-192 "DECIMAL.spad" 238962 238970 239548 239641) (-191 "DDFACT.spad" 236761 236778 238952 238957) (-190 "DBLRESP.spad" 236359 236383 236751 236756) (-189 "DBASE.spad" 234931 234941 236349 236354) (-188 "D03FAFA.spad" 234759 234767 234921 234926) (-187 "D03EEFA.spad" 234579 234587 234749 234754) (-186 "D03AGNT.spad" 233659 233667 234569 234574) (-185 "D02EJFA.spad" 233121 233129 233649 233654) (-184 "D02CJFA.spad" 232599 232607 233111 233116) (-183 "D02BHFA.spad" 232089 232097 232589 232594) (-182 "D02BBFA.spad" 231579 231587 232079 232084) (-181 "D02AGNT.spad" 226383 226391 231569 231574) (-180 "D01WGTS.spad" 224702 224710 226373 226378) (-179 "D01TRNS.spad" 224679 224687 224692 224697) (-178 "D01GBFA.spad" 224201 224209 224669 224674) (-177 "D01FCFA.spad" 223723 223731 224191 224196) (-176 "D01ASFA.spad" 223191 223199 223713 223718) (-175 "D01AQFA.spad" 222637 222645 223181 223186) (-174 "D01APFA.spad" 222061 222069 222627 222632) (-173 "D01ANFA.spad" 221555 221563 222051 222056) (-172 "D01AMFA.spad" 221065 221073 221545 221550) (-171 "D01ALFA.spad" 220605 220613 221055 221060) (-170 "D01AKFA.spad" 220131 220139 220595 220600) (-169 "D01AJFA.spad" 219654 219662 220121 220126) (-168 "D01AGNT.spad" 215713 215721 219644 219649) (-167 "CYCLOTOM.spad" 215219 215227 215703 215708) (-166 "CYCLES.spad" 212051 212059 215209 215214) (-165 "CVMP.spad" 211468 211478 212041 212046) (-164 "CTRIGMNP.spad" 209958 209974 211458 211463) (-163 "CSTTOOLS.spad" 209201 209214 209948 209953) (-162 "CRFP.spad" 202905 202918 209191 209196) (-161 "CRAPACK.spad" 201948 201958 202895 202900) (-160 "CPMATCH.spad" 201448 201463 201873 201878) (-159 "CPIMA.spad" 201153 201172 201438 201443) (-158 "COORDSYS.spad" 196046 196056 201143 201148) (-157 "CONTFRAC.spad" 191658 191668 195948 196041) (-156 "COMRING.spad" 191332 191340 191596 191653) (-155 "COMPPROP.spad" 190846 190854 191322 191327) (-154 "COMPLPAT.spad" 190613 190628 190836 190841) (-153 "COMPLEX.spad" 184646 184656 184890 185151) (-152 "COMPLEX2.spad" 184359 184371 184636 184641) (-151 "COMPFACT.spad" 183961 183975 184349 184354) (-150 "COMPCAT.spad" 182017 182027 183683 183956) (-149 "COMPCAT.spad" 179780 179792 181448 181453) (-148 "COMMUPC.spad" 179526 179544 179770 179775) (-147 "COMMONOP.spad" 179059 179067 179516 179521) (-146 "COMM.spad" 178868 178876 179049 179054) (-145 "COMBOPC.spad" 177773 177781 178858 178863) (-144 "COMBINAT.spad" 176518 176528 177763 177768) (-143 "COMBF.spad" 173886 173902 176508 176513) (-142 "COLOR.spad" 172723 172731 173876 173881) (-141 "CMPLXRT.spad" 172432 172449 172713 172718) (-140 "CLIP.spad" 168524 168532 172422 172427) (-139 "CLIF.spad" 167163 167179 168480 168519) (-138 "CLAGG.spad" 163638 163648 167143 167158) (-137 "CLAGG.spad" 159994 160006 163501 163506) (-136 "CINTSLPE.spad" 159319 159332 159984 159989) (-135 "CHVAR.spad" 157397 157419 159309 159314) (-134 "CHARZ.spad" 157312 157320 157377 157392) (-133 "CHARPOL.spad" 156820 156830 157302 157307) (-132 "CHARNZ.spad" 156573 156581 156800 156815) (-131 "CHAR.spad" 154463 154471 156563 156568) (-130 "CFCAT.spad" 153779 153787 154453 154458) (-129 "CDEN.spad" 152937 152951 153769 153774) (-128 "CCLASS.spad" 151086 151094 152348 152387) (-127 "CARTEN.spad" 146189 146213 151076 151081) (-126 "CARTEN2.spad" 145575 145602 146179 146184) (-125 "CARD.spad" 142864 142872 145549 145570) (-124 "CACHSET.spad" 142486 142494 142854 142859) (-123 "CABMON.spad" 142039 142047 142476 142481) (-122 "BTREE.spad" 141108 141118 141646 141673) (-121 "BTOURN.spad" 140111 140121 140715 140742) (-120 "BTCAT.spad" 139487 139497 140067 140106) (-119 "BTCAT.spad" 138895 138907 139477 139482) (-118 "BTAGG.spad" 137911 137919 138851 138890) (-117 "BTAGG.spad" 136959 136969 137901 137906) (-116 "BSTREE.spad" 135694 135704 136566 136593) (-115 "BRILL.spad" 133889 133900 135684 135689) (-114 "BRAGG.spad" 132803 132813 133869 133884) (-113 "BRAGG.spad" 131691 131703 132759 132764) (-112 "BPADICRT.spad" 129675 129687 129930 130023) (-111 "BPADIC.spad" 129339 129351 129601 129670) (-110 "BOUNDZRO.spad" 128995 129012 129329 129334) (-109 "BOP.spad" 124459 124467 128985 128990) (-108 "BOP1.spad" 121845 121855 124415 124420) (-107 "BOOLEAN.spad" 121098 121106 121835 121840) (-106 "BMODULE.spad" 120810 120822 121066 121093) (-105 "BITS.spad" 120229 120237 120446 120473) (-104 "BINFILE.spad" 119572 119580 120219 120224) (-103 "BINARY.spad" 117465 117473 118042 118135) (-102 "BGAGG.spad" 116650 116660 117433 117460) (-101 "BGAGG.spad" 115855 115867 116640 116645) (-100 "BFUNCT.spad" 115419 115427 115835 115850) (-99 "BEZOUT.spad" 114554 114580 115369 115374) (-98 "BBTREE.spad" 111374 111383 114161 114188) (-97 "BASTYPE.spad" 111047 111054 111364 111369) (-96 "BASTYPE.spad" 110718 110727 111037 111042) (-95 "BALFACT.spad" 110158 110170 110708 110713) (-94 "AUTOMOR.spad" 109605 109614 110138 110153) (-93 "ATTREG.spad" 106324 106331 109357 109600) (-92 "ATTRBUT.spad" 102347 102354 106304 106319) (-91 "ATRIG.spad" 101817 101824 102337 102342) (-90 "ATRIG.spad" 101285 101294 101807 101812) (-89 "ASTACK.spad" 100618 100627 100892 100919) (-88 "ASSOCEQ.spad" 99418 99429 100574 100579) (-87 "ASP9.spad" 98499 98512 99408 99413) (-86 "ASP8.spad" 97542 97555 98489 98494) (-85 "ASP80.spad" 96864 96877 97532 97537) (-84 "ASP7.spad" 96024 96037 96854 96859) (-83 "ASP78.spad" 95475 95488 96014 96019) (-82 "ASP77.spad" 94844 94857 95465 95470) (-81 "ASP74.spad" 93936 93949 94834 94839) (-80 "ASP73.spad" 93207 93220 93926 93931) (-79 "ASP6.spad" 91839 91852 93197 93202) (-78 "ASP55.spad" 90348 90361 91829 91834) (-77 "ASP50.spad" 88165 88178 90338 90343) (-76 "ASP4.spad" 87460 87473 88155 88160) (-75 "ASP49.spad" 86459 86472 87450 87455) (-74 "ASP42.spad" 84866 84905 86449 86454) (-73 "ASP41.spad" 83445 83484 84856 84861) (-72 "ASP35.spad" 82433 82446 83435 83440) (-71 "ASP34.spad" 81734 81747 82423 82428) (-70 "ASP33.spad" 81294 81307 81724 81729) (-69 "ASP31.spad" 80434 80447 81284 81289) (-68 "ASP30.spad" 79326 79339 80424 80429) (-67 "ASP29.spad" 78792 78805 79316 79321) (-66 "ASP28.spad" 70065 70078 78782 78787) (-65 "ASP27.spad" 68962 68975 70055 70060) (-64 "ASP24.spad" 68049 68062 68952 68957) (-63 "ASP20.spad" 67265 67278 68039 68044) (-62 "ASP1.spad" 66646 66659 67255 67260) (-61 "ASP19.spad" 61332 61345 66636 66641) (-60 "ASP12.spad" 60746 60759 61322 61327) (-59 "ASP10.spad" 60017 60030 60736 60741) (-58 "ARRAY2.spad" 59377 59386 59624 59651) (-57 "ARRAY1.spad" 58212 58221 58560 58587) (-56 "ARRAY12.spad" 56881 56892 58202 58207) (-55 "ARR2CAT.spad" 52531 52552 56837 56876) (-54 "ARR2CAT.spad" 48213 48236 52521 52526) (-53 "APPRULE.spad" 47457 47479 48203 48208) (-52 "APPLYORE.spad" 47072 47085 47447 47452) (-51 "ANY.spad" 45414 45421 47062 47067) (-50 "ANY1.spad" 44485 44494 45404 45409) (-49 "ANTISYM.spad" 42924 42940 44465 44480) (-48 "ANON.spad" 42837 42844 42914 42919) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-1194 NIL 2231119 2231124 2231129 2231134) (-3 NIL 2231099 2231104 2231109 2231114) (-2 NIL 2231079 2231084 2231089 2231094) (-1 NIL 2231059 2231064 2231069 2231074) (0 NIL 2231039 2231044 2231049 2231054) (-1189 "ZMOD.spad" 2230848 2230861 2230977 2231034) (-1188 "ZLINDEP.spad" 2229892 2229903 2230838 2230843) (-1187 "ZDSOLVE.spad" 2219741 2219763 2229882 2229887) (-1186 "YSTREAM.spad" 2219234 2219245 2219731 2219736) (-1185 "XRPOLY.spad" 2218454 2218474 2219090 2219159) (-1184 "XPR.spad" 2216183 2216196 2218172 2218271) (-1183 "XPOLY.spad" 2215738 2215749 2216039 2216108) (-1182 "XPOLYC.spad" 2215055 2215071 2215664 2215733) (-1181 "XPBWPOLY.spad" 2213492 2213512 2214835 2214904) (-1180 "XF.spad" 2211953 2211968 2213394 2213487) (-1179 "XF.spad" 2210394 2210411 2211837 2211842) (-1178 "XFALG.spad" 2207418 2207434 2210320 2210389) (-1177 "XEXPPKG.spad" 2206669 2206695 2207408 2207413) (-1176 "XDPOLY.spad" 2206283 2206299 2206525 2206594) (-1175 "XALG.spad" 2205881 2205892 2206239 2206278) (-1174 "WUTSET.spad" 2201720 2201737 2205527 2205554) (-1173 "WP.spad" 2200734 2200778 2201578 2201645) (-1172 "WFFINTBS.spad" 2198297 2198319 2200724 2200729) (-1171 "WEIER.spad" 2196511 2196522 2198287 2198292) (-1170 "VSPACE.spad" 2196184 2196195 2196479 2196506) (-1169 "VSPACE.spad" 2195877 2195890 2196174 2196179) (-1168 "VOID.spad" 2195467 2195476 2195867 2195872) (-1167 "VIEW.spad" 2193089 2193098 2195457 2195462) (-1166 "VIEWDEF.spad" 2188286 2188295 2193079 2193084) (-1165 "VIEW3D.spad" 2172121 2172130 2188276 2188281) (-1164 "VIEW2D.spad" 2159858 2159867 2172111 2172116) (-1163 "VECTOR.spad" 2158535 2158546 2158786 2158813) (-1162 "VECTOR2.spad" 2157162 2157175 2158525 2158530) (-1161 "VECTCAT.spad" 2155050 2155061 2157118 2157157) (-1160 "VECTCAT.spad" 2152759 2152772 2154829 2154834) (-1159 "VARIABLE.spad" 2152539 2152554 2152749 2152754) (-1158 "UTYPE.spad" 2152173 2152182 2152519 2152534) (-1157 "UTSODETL.spad" 2151466 2151490 2152129 2152134) (-1156 "UTSODE.spad" 2149654 2149674 2151456 2151461) (-1155 "UTS.spad" 2144443 2144471 2148121 2148218) (-1154 "UTSCAT.spad" 2141894 2141910 2144341 2144438) (-1153 "UTSCAT.spad" 2138989 2139007 2141438 2141443) (-1152 "UTS2.spad" 2138582 2138617 2138979 2138984) (-1151 "URAGG.spad" 2133204 2133215 2138562 2138577) (-1150 "URAGG.spad" 2127800 2127813 2133160 2133165) (-1149 "UPXSSING.spad" 2125446 2125472 2126884 2127017) (-1148 "UPXS.spad" 2122473 2122501 2123578 2123727) (-1147 "UPXSCONS.spad" 2120230 2120250 2120605 2120754) (-1146 "UPXSCCA.spad" 2118688 2118708 2120076 2120225) (-1145 "UPXSCCA.spad" 2117288 2117310 2118678 2118683) (-1144 "UPXSCAT.spad" 2115869 2115885 2117134 2117283) (-1143 "UPXS2.spad" 2115410 2115463 2115859 2115864) (-1142 "UPSQFREE.spad" 2113822 2113836 2115400 2115405) (-1141 "UPSCAT.spad" 2111415 2111439 2113720 2113817) (-1140 "UPSCAT.spad" 2108714 2108740 2111021 2111026) (-1139 "UPOLYC.spad" 2103692 2103703 2108556 2108709) (-1138 "UPOLYC.spad" 2098562 2098575 2103428 2103433) (-1137 "UPOLYC2.spad" 2098031 2098050 2098552 2098557) (-1136 "UP.spad" 2095081 2095096 2095589 2095742) (-1135 "UPMP.spad" 2093971 2093984 2095071 2095076) (-1134 "UPDIVP.spad" 2093534 2093548 2093961 2093966) (-1133 "UPDECOMP.spad" 2091771 2091785 2093524 2093529) (-1132 "UPCDEN.spad" 2090978 2090994 2091761 2091766) (-1131 "UP2.spad" 2090340 2090361 2090968 2090973) (-1130 "UNISEG.spad" 2089693 2089704 2090259 2090264) (-1129 "UNISEG2.spad" 2089186 2089199 2089649 2089654) (-1128 "UNIFACT.spad" 2088287 2088299 2089176 2089181) (-1127 "ULS.spad" 2078846 2078874 2079939 2080368) (-1126 "ULSCONS.spad" 2072889 2072909 2073261 2073410) (-1125 "ULSCCAT.spad" 2070486 2070506 2072709 2072884) (-1124 "ULSCCAT.spad" 2068217 2068239 2070442 2070447) (-1123 "ULSCAT.spad" 2066433 2066449 2068063 2068212) (-1122 "ULS2.spad" 2065945 2065998 2066423 2066428) (-1121 "UFD.spad" 2065010 2065019 2065871 2065940) (-1120 "UFD.spad" 2064137 2064148 2065000 2065005) (-1119 "UDVO.spad" 2062984 2062993 2064127 2064132) (-1118 "UDPO.spad" 2060411 2060422 2062940 2062945) (-1117 "TYPE.spad" 2060333 2060342 2060391 2060406) (-1116 "TWOFACT.spad" 2058983 2058998 2060323 2060328) (-1115 "TUPLE.spad" 2058369 2058380 2058882 2058887) (-1114 "TUBETOOL.spad" 2055206 2055215 2058359 2058364) (-1113 "TUBE.spad" 2053847 2053864 2055196 2055201) (-1112 "TS.spad" 2052436 2052452 2053412 2053509) (-1111 "TSETCAT.spad" 2039551 2039568 2052392 2052431) (-1110 "TSETCAT.spad" 2026664 2026683 2039507 2039512) (-1109 "TRMANIP.spad" 2021030 2021047 2026370 2026375) (-1108 "TRIMAT.spad" 2019989 2020014 2021020 2021025) (-1107 "TRIGMNIP.spad" 2018506 2018523 2019979 2019984) (-1106 "TRIGCAT.spad" 2018018 2018027 2018496 2018501) (-1105 "TRIGCAT.spad" 2017528 2017539 2018008 2018013) (-1104 "TREE.spad" 2016099 2016110 2017135 2017162) (-1103 "TRANFUN.spad" 2015930 2015939 2016089 2016094) (-1102 "TRANFUN.spad" 2015759 2015770 2015920 2015925) (-1101 "TOPSP.spad" 2015433 2015442 2015749 2015754) (-1100 "TOOLSIGN.spad" 2015096 2015107 2015423 2015428) (-1099 "TEXTFILE.spad" 2013653 2013662 2015086 2015091) (-1098 "TEX.spad" 2010670 2010679 2013643 2013648) (-1097 "TEX1.spad" 2010226 2010237 2010660 2010665) (-1096 "TEMUTL.spad" 2009781 2009790 2010216 2010221) (-1095 "TBCMPPK.spad" 2007874 2007897 2009771 2009776) (-1094 "TBAGG.spad" 2006898 2006921 2007842 2007869) (-1093 "TBAGG.spad" 2005942 2005967 2006888 2006893) (-1092 "TANEXP.spad" 2005318 2005329 2005932 2005937) (-1091 "TABLE.spad" 2003729 2003752 2003999 2004026) (-1090 "TABLEAU.spad" 2003210 2003221 2003719 2003724) (-1089 "TABLBUMP.spad" 1999993 2000004 2003200 2003205) (-1088 "SYSSOLP.spad" 1997466 1997477 1999983 1999988) (-1087 "syntax.spad" 1993751 1993760 1997456 1997461) (-1086 "SYMTAB.spad" 1991807 1991816 1993741 1993746) (-1085 "SYMS.spad" 1987792 1987801 1991797 1991802) (-1084 "SYMPOLY.spad" 1986802 1986813 1986884 1987011) (-1083 "SYMFUNC.spad" 1986277 1986288 1986792 1986797) (-1082 "SYMBOL.spad" 1983613 1983622 1986267 1986272) (-1081 "SWITCH.spad" 1980370 1980379 1983603 1983608) (-1080 "SUTS.spad" 1977269 1977297 1978837 1978934) (-1079 "SUPXS.spad" 1974283 1974311 1975401 1975550) (-1078 "SUP.spad" 1971060 1971071 1971841 1971994) (-1077 "SUPFRACF.spad" 1970165 1970183 1971050 1971055) (-1076 "SUP2.spad" 1969555 1969568 1970155 1970160) (-1075 "SUMRF.spad" 1968521 1968532 1969545 1969550) (-1074 "SUMFS.spad" 1968154 1968171 1968511 1968516) (-1073 "SULS.spad" 1958700 1958728 1959806 1960235) (-1072 "SUCH.spad" 1958380 1958395 1958690 1958695) (-1071 "SUBSPACE.spad" 1950387 1950402 1958370 1958375) (-1070 "SUBRESP.spad" 1949547 1949561 1950343 1950348) (-1069 "STTF.spad" 1945646 1945662 1949537 1949542) (-1068 "STTFNC.spad" 1942114 1942130 1945636 1945641) (-1067 "STTAYLOR.spad" 1934512 1934523 1941995 1942000) (-1066 "STRTBL.spad" 1933017 1933034 1933166 1933193) (-1065 "STRING.spad" 1932426 1932435 1932440 1932467) (-1064 "STRICAT.spad" 1932202 1932211 1932382 1932421) (-1063 "STREAM.spad" 1928970 1928981 1931727 1931742) (-1062 "STREAM3.spad" 1928515 1928530 1928960 1928965) (-1061 "STREAM2.spad" 1927583 1927596 1928505 1928510) (-1060 "STREAM1.spad" 1927287 1927298 1927573 1927578) (-1059 "STINPROD.spad" 1926193 1926209 1927277 1927282) (-1058 "STEP.spad" 1925394 1925403 1926183 1926188) (-1057 "STBL.spad" 1923920 1923948 1924087 1924102) (-1056 "STAGG.spad" 1922985 1922996 1923900 1923915) (-1055 "STAGG.spad" 1922058 1922071 1922975 1922980) (-1054 "STACK.spad" 1921409 1921420 1921665 1921692) (-1053 "SREGSET.spad" 1919113 1919130 1921055 1921082) (-1052 "SRDCMPK.spad" 1917658 1917678 1919103 1919108) (-1051 "SRAGG.spad" 1912743 1912752 1917614 1917653) (-1050 "SRAGG.spad" 1907860 1907871 1912733 1912738) (-1049 "SQMATRIX.spad" 1905486 1905504 1906394 1906481) (-1048 "SPLTREE.spad" 1900038 1900051 1904922 1904949) (-1047 "SPLNODE.spad" 1896626 1896639 1900028 1900033) (-1046 "SPFCAT.spad" 1895403 1895412 1896616 1896621) (-1045 "SPECOUT.spad" 1893953 1893962 1895393 1895398) (-1044 "spad-parser.spad" 1893418 1893427 1893943 1893948) (-1043 "SPACEC.spad" 1877431 1877442 1893408 1893413) (-1042 "SPACE3.spad" 1877207 1877218 1877421 1877426) (-1041 "SORTPAK.spad" 1876752 1876765 1877163 1877168) (-1040 "SOLVETRA.spad" 1874509 1874520 1876742 1876747) (-1039 "SOLVESER.spad" 1873029 1873040 1874499 1874504) (-1038 "SOLVERAD.spad" 1869039 1869050 1873019 1873024) (-1037 "SOLVEFOR.spad" 1867459 1867477 1869029 1869034) (-1036 "SNTSCAT.spad" 1867047 1867064 1867415 1867454) (-1035 "SMTS.spad" 1865307 1865333 1866612 1866709) (-1034 "SMP.spad" 1862749 1862769 1863139 1863266) (-1033 "SMITH.spad" 1861592 1861617 1862739 1862744) (-1032 "SMATCAT.spad" 1859690 1859720 1861524 1861587) (-1031 "SMATCAT.spad" 1857732 1857764 1859568 1859573) (-1030 "SKAGG.spad" 1856681 1856692 1857688 1857727) (-1029 "SINT.spad" 1854989 1854998 1856547 1856676) (-1028 "SIMPAN.spad" 1854717 1854726 1854979 1854984) (-1027 "SIGNRF.spad" 1853825 1853836 1854707 1854712) (-1026 "SIGNEF.spad" 1853094 1853111 1853815 1853820) (-1025 "SHP.spad" 1851012 1851027 1853050 1853055) (-1024 "SHDP.spad" 1842402 1842429 1842911 1843040) (-1023 "SGROUP.spad" 1841868 1841877 1842392 1842397) (-1022 "SGROUP.spad" 1841332 1841343 1841858 1841863) (-1021 "SGCF.spad" 1834213 1834222 1841322 1841327) (-1020 "SFRTCAT.spad" 1833129 1833146 1834169 1834208) (-1019 "SFRGCD.spad" 1832192 1832212 1833119 1833124) (-1018 "SFQCMPK.spad" 1826829 1826849 1832182 1832187) (-1017 "SFORT.spad" 1826264 1826278 1826819 1826824) (-1016 "SEXOF.spad" 1826107 1826147 1826254 1826259) (-1015 "SEX.spad" 1825999 1826008 1826097 1826102) (-1014 "SEXCAT.spad" 1823103 1823143 1825989 1825994) (-1013 "SET.spad" 1821403 1821414 1822524 1822563) (-1012 "SETMN.spad" 1819837 1819854 1821393 1821398) (-1011 "SETCAT.spad" 1819322 1819331 1819827 1819832) (-1010 "SETCAT.spad" 1818805 1818816 1819312 1819317) (-1009 "SETAGG.spad" 1815328 1815339 1818773 1818800) (-1008 "SETAGG.spad" 1811871 1811884 1815318 1815323) (-1007 "SEGXCAT.spad" 1810983 1810996 1811851 1811866) (-1006 "SEG.spad" 1810796 1810807 1810902 1810907) (-1005 "SEGCAT.spad" 1809615 1809626 1810776 1810791) (-1004 "SEGBIND.spad" 1808687 1808698 1809570 1809575) (-1003 "SEGBIND2.spad" 1808383 1808396 1808677 1808682) (-1002 "SEG2.spad" 1807808 1807821 1808339 1808344) (-1001 "SDVAR.spad" 1807084 1807095 1807798 1807803) (-1000 "SDPOL.spad" 1804477 1804488 1804768 1804895) (-999 "SCPKG.spad" 1802557 1802567 1804467 1804472) (-998 "SCOPE.spad" 1801703 1801711 1802547 1802552) (-997 "SCACHE.spad" 1800386 1800396 1801693 1801698) (-996 "SAOS.spad" 1800259 1800267 1800376 1800381) (-995 "SAERFFC.spad" 1799973 1799992 1800249 1800254) (-994 "SAE.spad" 1798152 1798167 1798762 1798897) (-993 "SAEFACT.spad" 1797854 1797873 1798142 1798147) (-992 "RURPK.spad" 1795496 1795511 1797844 1797849) (-991 "RULESET.spad" 1794938 1794961 1795486 1795491) (-990 "RULE.spad" 1793143 1793166 1794928 1794933) (-989 "RULECOLD.spad" 1792996 1793008 1793133 1793138) (-988 "RSETGCD.spad" 1789375 1789394 1792986 1792991) (-987 "RSETCAT.spad" 1779148 1779164 1789331 1789370) (-986 "RSETCAT.spad" 1768953 1768971 1779138 1779143) (-985 "RSDCMPK.spad" 1767406 1767425 1768943 1768948) (-984 "RRCC.spad" 1765791 1765820 1767396 1767401) (-983 "RRCC.spad" 1764174 1764205 1765781 1765786) (-982 "RPOLCAT.spad" 1743535 1743549 1764042 1764169) (-981 "RPOLCAT.spad" 1722611 1722627 1743120 1743125) (-980 "ROUTINE.spad" 1718475 1718483 1721258 1721285) (-979 "ROMAN.spad" 1717708 1717716 1718341 1718470) (-978 "ROIRC.spad" 1716789 1716820 1717698 1717703) (-977 "RNS.spad" 1715693 1715701 1716691 1716784) (-976 "RNS.spad" 1714683 1714693 1715683 1715688) (-975 "RNG.spad" 1714419 1714427 1714673 1714678) (-974 "RMODULE.spad" 1714058 1714068 1714409 1714414) (-973 "RMCAT2.spad" 1713467 1713523 1714048 1714053) (-972 "RMATRIX.spad" 1712147 1712165 1712634 1712673) (-971 "RMATCAT.spad" 1707669 1707699 1712091 1712142) (-970 "RMATCAT.spad" 1703093 1703125 1707517 1707522) (-969 "RINTERP.spad" 1702982 1703001 1703083 1703088) (-968 "RING.spad" 1702340 1702348 1702962 1702977) (-967 "RING.spad" 1701706 1701716 1702330 1702335) (-966 "RIDIST.spad" 1701091 1701099 1701696 1701701) (-965 "RGCHAIN.spad" 1699671 1699686 1700576 1700603) (-964 "RF.spad" 1697286 1697296 1699661 1699666) (-963 "RFFACTOR.spad" 1696749 1696759 1697276 1697281) (-962 "RFFACT.spad" 1696485 1696496 1696739 1696744) (-961 "RFDIST.spad" 1695474 1695482 1696475 1696480) (-960 "RETSOL.spad" 1694892 1694904 1695464 1695469) (-959 "RETRACT.spad" 1694242 1694252 1694882 1694887) (-958 "RETRACT.spad" 1693590 1693602 1694232 1694237) (-957 "RESULT.spad" 1691651 1691659 1692237 1692264) (-956 "RESRING.spad" 1690999 1691045 1691589 1691646) (-955 "RESLATC.spad" 1690324 1690334 1690989 1690994) (-954 "REPSQ.spad" 1690054 1690064 1690314 1690319) (-953 "REP.spad" 1687607 1687615 1690044 1690049) (-952 "REPDB.spad" 1687313 1687323 1687597 1687602) (-951 "REP2.spad" 1676886 1676896 1687155 1687160) (-950 "REP1.spad" 1670877 1670887 1676836 1676841) (-949 "REGSET.spad" 1668675 1668691 1670523 1670550) (-948 "REF.spad" 1668005 1668015 1668630 1668635) (-947 "REDORDER.spad" 1667182 1667198 1667995 1668000) (-946 "RECLOS.spad" 1665972 1665991 1666675 1666768) (-945 "REALSOLV.spad" 1665105 1665113 1665962 1665967) (-944 "REAL.spad" 1664978 1664986 1665095 1665100) (-943 "REAL0Q.spad" 1662261 1662275 1664968 1664973) (-942 "REAL0.spad" 1659090 1659104 1662251 1662256) (-941 "RDIV.spad" 1658742 1658766 1659080 1659085) (-940 "RDIST.spad" 1658306 1658316 1658732 1658737) (-939 "RDETRS.spad" 1657103 1657120 1658296 1658301) (-938 "RDETR.spad" 1655211 1655228 1657093 1657098) (-937 "RDEEFS.spad" 1654285 1654301 1655201 1655206) (-936 "RDEEF.spad" 1653282 1653298 1654275 1654280) (-935 "RCFIELD.spad" 1650466 1650474 1653184 1653277) (-934 "RCFIELD.spad" 1647736 1647746 1650456 1650461) (-933 "RCAGG.spad" 1645639 1645649 1647716 1647731) (-932 "RCAGG.spad" 1643479 1643491 1645558 1645563) (-931 "RATRET.spad" 1642840 1642850 1643469 1643474) (-930 "RATFACT.spad" 1642533 1642544 1642830 1642835) (-929 "RANDSRC.spad" 1641853 1641861 1642523 1642528) (-928 "RADUTIL.spad" 1641608 1641616 1641843 1641848) (-927 "RADIX.spad" 1638401 1638414 1640078 1640171) (-926 "RADFF.spad" 1636818 1636854 1636936 1637092) (-925 "RADCAT.spad" 1636412 1636420 1636808 1636813) (-924 "RADCAT.spad" 1636004 1636014 1636402 1636407) (-923 "QUEUE.spad" 1635347 1635357 1635611 1635638) (-922 "QUAT.spad" 1633933 1633943 1634275 1634340) (-921 "QUATCT2.spad" 1633552 1633570 1633923 1633928) (-920 "QUATCAT.spad" 1631717 1631727 1633482 1633547) (-919 "QUATCAT.spad" 1629634 1629646 1631401 1631406) (-918 "QUAGG.spad" 1628448 1628458 1629590 1629629) (-917 "QFORM.spad" 1627911 1627925 1628438 1628443) (-916 "QFCAT.spad" 1626602 1626612 1627801 1627906) (-915 "QFCAT.spad" 1624899 1624911 1626100 1626105) (-914 "QFCAT2.spad" 1624590 1624606 1624889 1624894) (-913 "QEQUAT.spad" 1624147 1624155 1624580 1624585) (-912 "QCMPACK.spad" 1618894 1618913 1624137 1624142) (-911 "QALGSET.spad" 1614969 1615001 1618808 1618813) (-910 "QALGSET2.spad" 1612965 1612983 1614959 1614964) (-909 "PWFFINTB.spad" 1610275 1610296 1612955 1612960) (-908 "PUSHVAR.spad" 1609604 1609623 1610265 1610270) (-907 "PTRANFN.spad" 1605730 1605740 1609594 1609599) (-906 "PTPACK.spad" 1602818 1602828 1605720 1605725) (-905 "PTFUNC2.spad" 1602639 1602653 1602808 1602813) (-904 "PTCAT.spad" 1601721 1601731 1602595 1602634) (-903 "PSQFR.spad" 1601028 1601052 1601711 1601716) (-902 "PSEUDLIN.spad" 1599886 1599896 1601018 1601023) (-901 "PSETPK.spad" 1585319 1585335 1599764 1599769) (-900 "PSETCAT.spad" 1579227 1579250 1585287 1585314) (-899 "PSETCAT.spad" 1573121 1573146 1579183 1579188) (-898 "PSCURVE.spad" 1572104 1572112 1573111 1573116) (-897 "PSCAT.spad" 1570871 1570900 1572002 1572099) (-896 "PSCAT.spad" 1569728 1569759 1570861 1570866) (-895 "PRTITION.spad" 1568571 1568579 1569718 1569723) (-894 "PRS.spad" 1558133 1558150 1568527 1568532) (-893 "PRQAGG.spad" 1557552 1557562 1558089 1558128) (-892 "PROPLOG.spad" 1556955 1556963 1557542 1557547) (-891 "PROPFRML.spad" 1554820 1554831 1556891 1556896) (-890 "PRODUCT.spad" 1552500 1552512 1552786 1552841) (-889 "PR.spad" 1550889 1550901 1551594 1551721) (-888 "PRINT.spad" 1550641 1550649 1550879 1550884) (-887 "PRIMES.spad" 1548892 1548902 1550631 1550636) (-886 "PRIMELT.spad" 1546873 1546887 1548882 1548887) (-885 "PRIMCAT.spad" 1546496 1546504 1546863 1546868) (-884 "PRIMARR.spad" 1545501 1545511 1545679 1545706) (-883 "PRIMARR2.spad" 1544224 1544236 1545491 1545496) (-882 "PREASSOC.spad" 1543596 1543608 1544214 1544219) (-881 "PPCURVE.spad" 1542733 1542741 1543586 1543591) (-880 "POLYROOT.spad" 1541505 1541527 1542689 1542694) (-879 "POLY.spad" 1538805 1538815 1539322 1539449) (-878 "POLYLIFT.spad" 1538066 1538089 1538795 1538800) (-877 "POLYCATQ.spad" 1536168 1536190 1538056 1538061) (-876 "POLYCAT.spad" 1529574 1529595 1536036 1536163) (-875 "POLYCAT.spad" 1522282 1522305 1528746 1528751) (-874 "POLY2UP.spad" 1521730 1521744 1522272 1522277) (-873 "POLY2.spad" 1521325 1521337 1521720 1521725) (-872 "POLUTIL.spad" 1520266 1520295 1521281 1521286) (-871 "POLTOPOL.spad" 1519014 1519029 1520256 1520261) (-870 "POINT.spad" 1517855 1517865 1517942 1517969) (-869 "PNTHEORY.spad" 1514521 1514529 1517845 1517850) (-868 "PMTOOLS.spad" 1513278 1513292 1514511 1514516) (-867 "PMSYM.spad" 1512823 1512833 1513268 1513273) (-866 "PMQFCAT.spad" 1512410 1512424 1512813 1512818) (-865 "PMPRED.spad" 1511879 1511893 1512400 1512405) (-864 "PMPREDFS.spad" 1511323 1511345 1511869 1511874) (-863 "PMPLCAT.spad" 1510393 1510411 1511255 1511260) (-862 "PMLSAGG.spad" 1509974 1509988 1510383 1510388) (-861 "PMKERNEL.spad" 1509541 1509553 1509964 1509969) (-860 "PMINS.spad" 1509117 1509127 1509531 1509536) (-859 "PMFS.spad" 1508690 1508708 1509107 1509112) (-858 "PMDOWN.spad" 1507976 1507990 1508680 1508685) (-857 "PMASS.spad" 1506988 1506996 1507966 1507971) (-856 "PMASSFS.spad" 1505957 1505973 1506978 1506983) (-855 "PLOTTOOL.spad" 1505737 1505745 1505947 1505952) (-854 "PLOT.spad" 1500568 1500576 1505727 1505732) (-853 "PLOT3D.spad" 1496988 1496996 1500558 1500563) (-852 "PLOT1.spad" 1496129 1496139 1496978 1496983) (-851 "PLEQN.spad" 1483345 1483372 1496119 1496124) (-850 "PINTERP.spad" 1482961 1482980 1483335 1483340) (-849 "PINTERPA.spad" 1482743 1482759 1482951 1482956) (-848 "PI.spad" 1482350 1482358 1482717 1482738) (-847 "PID.spad" 1481306 1481314 1482276 1482345) (-846 "PICOERCE.spad" 1480963 1480973 1481296 1481301) (-845 "PGROEB.spad" 1479560 1479574 1480953 1480958) (-844 "PGE.spad" 1470813 1470821 1479550 1479555) (-843 "PGCD.spad" 1469695 1469712 1470803 1470808) (-842 "PFRPAC.spad" 1468838 1468848 1469685 1469690) (-841 "PFR.spad" 1465495 1465505 1468740 1468833) (-840 "PFOTOOLS.spad" 1464753 1464769 1465485 1465490) (-839 "PFOQ.spad" 1464123 1464141 1464743 1464748) (-838 "PFO.spad" 1463542 1463569 1464113 1464118) (-837 "PF.spad" 1463116 1463128 1463347 1463440) (-836 "PFECAT.spad" 1460782 1460790 1463042 1463111) (-835 "PFECAT.spad" 1458476 1458486 1460738 1460743) (-834 "PFBRU.spad" 1456346 1456358 1458466 1458471) (-833 "PFBR.spad" 1453884 1453907 1456336 1456341) (-832 "PERM.spad" 1449565 1449575 1453714 1453729) (-831 "PERMGRP.spad" 1444301 1444311 1449555 1449560) (-830 "PERMCAT.spad" 1442853 1442863 1444281 1444296) (-829 "PERMAN.spad" 1441385 1441399 1442843 1442848) (-828 "PENDTREE.spad" 1440658 1440668 1441014 1441019) (-827 "PDRING.spad" 1439149 1439159 1440638 1440653) (-826 "PDRING.spad" 1437648 1437660 1439139 1439144) (-825 "PDEPROB.spad" 1436605 1436613 1437638 1437643) (-824 "PDEPACK.spad" 1430607 1430615 1436595 1436600) (-823 "PDECOMP.spad" 1430069 1430086 1430597 1430602) (-822 "PDECAT.spad" 1428423 1428431 1430059 1430064) (-821 "PCOMP.spad" 1428274 1428287 1428413 1428418) (-820 "PBWLB.spad" 1426856 1426873 1428264 1428269) (-819 "PATTERN.spad" 1421287 1421297 1426846 1426851) (-818 "PATTERN2.spad" 1421023 1421035 1421277 1421282) (-817 "PATTERN1.spad" 1419325 1419341 1421013 1421018) (-816 "PATRES.spad" 1416872 1416884 1419315 1419320) (-815 "PATRES2.spad" 1416534 1416548 1416862 1416867) (-814 "PATMATCH.spad" 1414696 1414727 1416247 1416252) (-813 "PATMAB.spad" 1414121 1414131 1414686 1414691) (-812 "PATLRES.spad" 1413205 1413219 1414111 1414116) (-811 "PATAB.spad" 1412969 1412979 1413195 1413200) (-810 "PARTPERM.spad" 1410331 1410339 1412959 1412964) (-809 "PARSURF.spad" 1409759 1409787 1410321 1410326) (-808 "PARSU2.spad" 1409554 1409570 1409749 1409754) (-807 "script-parser.spad" 1409074 1409082 1409544 1409549) (-806 "PARSCURV.spad" 1408502 1408530 1409064 1409069) (-805 "PARSC2.spad" 1408291 1408307 1408492 1408497) (-804 "PARPCURV.spad" 1407749 1407777 1408281 1408286) (-803 "PARPC2.spad" 1407538 1407554 1407739 1407744) (-802 "PAN2EXPR.spad" 1406950 1406958 1407528 1407533) (-801 "PALETTE.spad" 1405920 1405928 1406940 1406945) (-800 "PAIR.spad" 1404903 1404916 1405508 1405513) (-799 "PADICRC.spad" 1402236 1402254 1403411 1403504) (-798 "PADICRAT.spad" 1400254 1400266 1400475 1400568) (-797 "PADIC.spad" 1399949 1399961 1400180 1400249) (-796 "PADICCT.spad" 1398490 1398502 1399875 1399944) (-795 "PADEPAC.spad" 1397169 1397188 1398480 1398485) (-794 "PADE.spad" 1395909 1395925 1397159 1397164) (-793 "OWP.spad" 1394893 1394923 1395767 1395834) (-792 "OVAR.spad" 1394674 1394697 1394883 1394888) (-791 "OUT.spad" 1393758 1393766 1394664 1394669) (-790 "OUTFORM.spad" 1383172 1383180 1393748 1393753) (-789 "OSI.spad" 1382647 1382655 1383162 1383167) (-788 "ORTHPOL.spad" 1381108 1381118 1382564 1382569) (-787 "OREUP.spad" 1380468 1380496 1380790 1380829) (-786 "ORESUP.spad" 1379769 1379793 1380150 1380189) (-785 "OREPCTO.spad" 1377588 1377600 1379689 1379694) (-784 "OREPCAT.spad" 1371645 1371655 1377544 1377583) (-783 "OREPCAT.spad" 1365592 1365604 1371493 1371498) (-782 "ORDSET.spad" 1364758 1364766 1365582 1365587) (-781 "ORDSET.spad" 1363922 1363932 1364748 1364753) (-780 "ORDRING.spad" 1363312 1363320 1363902 1363917) (-779 "ORDRING.spad" 1362710 1362720 1363302 1363307) (-778 "ORDMON.spad" 1362565 1362573 1362700 1362705) (-777 "ORDFUNS.spad" 1361691 1361707 1362555 1362560) (-776 "ORDFIN.spad" 1361625 1361633 1361681 1361686) (-775 "ORDCOMP.spad" 1360093 1360103 1361175 1361204) (-774 "ORDCOMP2.spad" 1359378 1359390 1360083 1360088) (-773 "OPTPROB.spad" 1357958 1357966 1359368 1359373) (-772 "OPTPACK.spad" 1350343 1350351 1357948 1357953) (-771 "OPTCAT.spad" 1348018 1348026 1350333 1350338) (-770 "OPQUERY.spad" 1347567 1347575 1348008 1348013) (-769 "OP.spad" 1347309 1347319 1347389 1347456) (-768 "ONECOMP.spad" 1346057 1346067 1346859 1346888) (-767 "ONECOMP2.spad" 1345475 1345487 1346047 1346052) (-766 "OMSERVER.spad" 1344477 1344485 1345465 1345470) (-765 "OMSAGG.spad" 1344253 1344263 1344421 1344472) (-764 "OMPKG.spad" 1342865 1342873 1344243 1344248) (-763 "OM.spad" 1341830 1341838 1342855 1342860) (-762 "OMLO.spad" 1341255 1341267 1341716 1341755) (-761 "OMEXPR.spad" 1341089 1341099 1341245 1341250) (-760 "OMERR.spad" 1340632 1340640 1341079 1341084) (-759 "OMERRK.spad" 1339666 1339674 1340622 1340627) (-758 "OMENC.spad" 1339010 1339018 1339656 1339661) (-757 "OMDEV.spad" 1333299 1333307 1339000 1339005) (-756 "OMCONN.spad" 1332708 1332716 1333289 1333294) (-755 "OINTDOM.spad" 1332471 1332479 1332634 1332703) (-754 "OFMONOID.spad" 1328658 1328668 1332461 1332466) (-753 "ODVAR.spad" 1327919 1327929 1328648 1328653) (-752 "ODR.spad" 1327367 1327393 1327731 1327880) (-751 "ODPOL.spad" 1324716 1324726 1325056 1325183) (-750 "ODP.spad" 1316242 1316262 1316615 1316744) (-749 "ODETOOLS.spad" 1314825 1314844 1316232 1316237) (-748 "ODESYS.spad" 1312475 1312492 1314815 1314820) (-747 "ODERTRIC.spad" 1308416 1308433 1312432 1312437) (-746 "ODERED.spad" 1307803 1307827 1308406 1308411) (-745 "ODERAT.spad" 1305354 1305371 1307793 1307798) (-744 "ODEPRRIC.spad" 1302245 1302267 1305344 1305349) (-743 "ODEPROB.spad" 1301444 1301452 1302235 1302240) (-742 "ODEPRIM.spad" 1298718 1298740 1301434 1301439) (-741 "ODEPAL.spad" 1298094 1298118 1298708 1298713) (-740 "ODEPACK.spad" 1284696 1284704 1298084 1298089) (-739 "ODEINT.spad" 1284127 1284143 1284686 1284691) (-738 "ODEIFTBL.spad" 1281522 1281530 1284117 1284122) (-737 "ODEEF.spad" 1276889 1276905 1281512 1281517) (-736 "ODECONST.spad" 1276408 1276426 1276879 1276884) (-735 "ODECAT.spad" 1275004 1275012 1276398 1276403) (-734 "OCT.spad" 1273151 1273161 1273867 1273906) (-733 "OCTCT2.spad" 1272795 1272816 1273141 1273146) (-732 "OC.spad" 1270569 1270579 1272751 1272790) (-731 "OC.spad" 1268069 1268081 1270253 1270258) (-730 "OCAMON.spad" 1267917 1267925 1268059 1268064) (-729 "OBJPROP.spad" 1267405 1267413 1267907 1267912) (-728 "OASGP.spad" 1267220 1267228 1267395 1267400) (-727 "OAMONS.spad" 1266740 1266748 1267210 1267215) (-726 "OAMON.spad" 1266601 1266609 1266730 1266735) (-725 "OAGROUP.spad" 1266463 1266471 1266591 1266596) (-724 "NUMTUBE.spad" 1266050 1266066 1266453 1266458) (-723 "NUMQUAD.spad" 1253912 1253920 1266040 1266045) (-722 "NUMODE.spad" 1245048 1245056 1253902 1253907) (-721 "NUMINT.spad" 1242606 1242614 1245038 1245043) (-720 "NUMFMT.spad" 1241446 1241454 1242596 1242601) (-719 "NUMERIC.spad" 1233519 1233529 1241252 1241257) (-718 "NTSCAT.spad" 1232009 1232025 1233475 1233514) (-717 "NTPOLFN.spad" 1231554 1231564 1231926 1231931) (-716 "NSUP.spad" 1224572 1224582 1229112 1229265) (-715 "NSUP2.spad" 1223964 1223976 1224562 1224567) (-714 "NSMP.spad" 1220163 1220182 1220471 1220598) (-713 "NREP.spad" 1218535 1218549 1220153 1220158) (-712 "NPCOEF.spad" 1217781 1217801 1218525 1218530) (-711 "NORMRETR.spad" 1217379 1217418 1217771 1217776) (-710 "NORMPK.spad" 1215281 1215300 1217369 1217374) (-709 "NORMMA.spad" 1214969 1214995 1215271 1215276) (-708 "NONE.spad" 1214710 1214718 1214959 1214964) (-707 "NONE1.spad" 1214386 1214396 1214700 1214705) (-706 "NODE1.spad" 1213855 1213871 1214376 1214381) (-705 "NNI.spad" 1212742 1212750 1213829 1213850) (-704 "NLINSOL.spad" 1211364 1211374 1212732 1212737) (-703 "NIPROB.spad" 1209847 1209855 1211354 1211359) (-702 "NFINTBAS.spad" 1207307 1207324 1209837 1209842) (-701 "NCODIV.spad" 1205505 1205521 1207297 1207302) (-700 "NCNTFRAC.spad" 1205147 1205161 1205495 1205500) (-699 "NCEP.spad" 1203307 1203321 1205137 1205142) (-698 "NASRING.spad" 1202903 1202911 1203297 1203302) (-697 "NASRING.spad" 1202497 1202507 1202893 1202898) (-696 "NARNG.spad" 1201841 1201849 1202487 1202492) (-695 "NARNG.spad" 1201183 1201193 1201831 1201836) (-694 "NAGSP.spad" 1200256 1200264 1201173 1201178) (-693 "NAGS.spad" 1189781 1189789 1200246 1200251) (-692 "NAGF07.spad" 1188174 1188182 1189771 1189776) (-691 "NAGF04.spad" 1182406 1182414 1188164 1188169) (-690 "NAGF02.spad" 1176215 1176223 1182396 1182401) (-689 "NAGF01.spad" 1171818 1171826 1176205 1176210) (-688 "NAGE04.spad" 1165278 1165286 1171808 1171813) (-687 "NAGE02.spad" 1155620 1155628 1165268 1165273) (-686 "NAGE01.spad" 1151504 1151512 1155610 1155615) (-685 "NAGD03.spad" 1149424 1149432 1151494 1151499) (-684 "NAGD02.spad" 1141955 1141963 1149414 1149419) (-683 "NAGD01.spad" 1136068 1136076 1141945 1141950) (-682 "NAGC06.spad" 1131855 1131863 1136058 1136063) (-681 "NAGC05.spad" 1130324 1130332 1131845 1131850) (-680 "NAGC02.spad" 1129579 1129587 1130314 1130319) (-679 "NAALG.spad" 1129114 1129124 1129547 1129574) (-678 "NAALG.spad" 1128669 1128681 1129104 1129109) (-677 "MULTSQFR.spad" 1125627 1125644 1128659 1128664) (-676 "MULTFACT.spad" 1125010 1125027 1125617 1125622) (-675 "MTSCAT.spad" 1123044 1123065 1124908 1125005) (-674 "MTHING.spad" 1122701 1122711 1123034 1123039) (-673 "MSYSCMD.spad" 1122135 1122143 1122691 1122696) (-672 "MSET.spad" 1120077 1120087 1121841 1121880) (-671 "MSETAGG.spad" 1119910 1119920 1120033 1120072) (-670 "MRING.spad" 1116881 1116893 1119618 1119685) (-669 "MRF2.spad" 1116449 1116463 1116871 1116876) (-668 "MRATFAC.spad" 1115995 1116012 1116439 1116444) (-667 "MPRFF.spad" 1114025 1114044 1115985 1115990) (-666 "MPOLY.spad" 1111463 1111478 1111822 1111949) (-665 "MPCPF.spad" 1110727 1110746 1111453 1111458) (-664 "MPC3.spad" 1110542 1110582 1110717 1110722) (-663 "MPC2.spad" 1110184 1110217 1110532 1110537) (-662 "MONOTOOL.spad" 1108519 1108536 1110174 1110179) (-661 "MONOID.spad" 1107693 1107701 1108509 1108514) (-660 "MONOID.spad" 1106865 1106875 1107683 1107688) (-659 "MONOGEN.spad" 1105611 1105624 1106725 1106860) (-658 "MONOGEN.spad" 1104379 1104394 1105495 1105500) (-657 "MONADWU.spad" 1102393 1102401 1104369 1104374) (-656 "MONADWU.spad" 1100405 1100415 1102383 1102388) (-655 "MONAD.spad" 1099549 1099557 1100395 1100400) (-654 "MONAD.spad" 1098691 1098701 1099539 1099544) (-653 "MOEBIUS.spad" 1097377 1097391 1098671 1098686) (-652 "MODULE.spad" 1097247 1097257 1097345 1097372) (-651 "MODULE.spad" 1097137 1097149 1097237 1097242) (-650 "MODRING.spad" 1096468 1096507 1097117 1097132) (-649 "MODOP.spad" 1095127 1095139 1096290 1096357) (-648 "MODMONOM.spad" 1094659 1094677 1095117 1095122) (-647 "MODMON.spad" 1091369 1091385 1092145 1092298) (-646 "MODFIELD.spad" 1090727 1090766 1091271 1091364) (-645 "MMAP.spad" 1090467 1090501 1090717 1090722) (-644 "MLO.spad" 1088894 1088904 1090423 1090462) (-643 "MLIFT.spad" 1087466 1087483 1088884 1088889) (-642 "MKUCFUNC.spad" 1086999 1087017 1087456 1087461) (-641 "MKRECORD.spad" 1086601 1086614 1086989 1086994) (-640 "MKFUNC.spad" 1085982 1085992 1086591 1086596) (-639 "MKFLCFN.spad" 1084938 1084948 1085972 1085977) (-638 "MKCHSET.spad" 1084714 1084724 1084928 1084933) (-637 "MKBCFUNC.spad" 1084199 1084217 1084704 1084709) (-636 "MINT.spad" 1083638 1083646 1084101 1084194) (-635 "MHROWRED.spad" 1082139 1082149 1083628 1083633) (-634 "MFLOAT.spad" 1080584 1080592 1082029 1082134) (-633 "MFINFACT.spad" 1079984 1080006 1080574 1080579) (-632 "MESH.spad" 1077716 1077724 1079974 1079979) (-631 "MDDFACT.spad" 1075909 1075919 1077706 1077711) (-630 "MDAGG.spad" 1075184 1075194 1075877 1075904) (-629 "MCMPLX.spad" 1071164 1071172 1071778 1071979) (-628 "MCDEN.spad" 1070372 1070384 1071154 1071159) (-627 "MCALCFN.spad" 1067474 1067500 1070362 1070367) (-626 "MATSTOR.spad" 1064750 1064760 1067464 1067469) (-625 "MATRIX.spad" 1063454 1063464 1063938 1063965) (-624 "MATLIN.spad" 1060780 1060804 1063338 1063343) (-623 "MATCAT.spad" 1052353 1052375 1060736 1060775) (-622 "MATCAT.spad" 1043810 1043834 1052195 1052200) (-621 "MATCAT2.spad" 1043078 1043126 1043800 1043805) (-620 "MAPPKG3.spad" 1041977 1041991 1043068 1043073) (-619 "MAPPKG2.spad" 1041311 1041323 1041967 1041972) (-618 "MAPPKG1.spad" 1040129 1040139 1041301 1041306) (-617 "MAPHACK3.spad" 1039937 1039951 1040119 1040124) (-616 "MAPHACK2.spad" 1039702 1039714 1039927 1039932) (-615 "MAPHACK1.spad" 1039332 1039342 1039692 1039697) (-614 "MAGMA.spad" 1037122 1037139 1039322 1039327) (-613 "M3D.spad" 1034820 1034830 1036502 1036507) (-612 "LZSTAGG.spad" 1032038 1032048 1034800 1034815) (-611 "LZSTAGG.spad" 1029264 1029276 1032028 1032033) (-610 "LWORD.spad" 1025969 1025986 1029254 1029259) (-609 "LSQM.spad" 1024197 1024211 1024595 1024646) (-608 "LSPP.spad" 1023730 1023747 1024187 1024192) (-607 "LSMP.spad" 1022570 1022598 1023720 1023725) (-606 "LSMP1.spad" 1020374 1020388 1022560 1022565) (-605 "LSAGG.spad" 1020031 1020041 1020330 1020369) (-604 "LSAGG.spad" 1019720 1019732 1020021 1020026) (-603 "LPOLY.spad" 1018674 1018693 1019576 1019645) (-602 "LPEFRAC.spad" 1017931 1017941 1018664 1018669) (-601 "LO.spad" 1017332 1017346 1017865 1017892) (-600 "LOGIC.spad" 1016934 1016942 1017322 1017327) (-599 "LOGIC.spad" 1016534 1016544 1016924 1016929) (-598 "LODOOPS.spad" 1015452 1015464 1016524 1016529) (-597 "LODO.spad" 1014838 1014854 1015134 1015173) (-596 "LODOF.spad" 1013882 1013899 1014795 1014800) (-595 "LODOCAT.spad" 1012540 1012550 1013838 1013877) (-594 "LODOCAT.spad" 1011196 1011208 1012496 1012501) (-593 "LODO2.spad" 1010471 1010483 1010878 1010917) (-592 "LODO1.spad" 1009873 1009883 1010153 1010192) (-591 "LODEEF.spad" 1008645 1008663 1009863 1009868) (-590 "LNAGG.spad" 1004437 1004447 1008625 1008640) (-589 "LNAGG.spad" 1000203 1000215 1004393 1004398) (-588 "LMOPS.spad" 996939 996956 1000193 1000198) (-587 "LMODULE.spad" 996581 996591 996929 996934) (-586 "LMDICT.spad" 995864 995874 996132 996159) (-585 "LIST.spad" 993582 993592 995011 995038) (-584 "LIST3.spad" 992873 992887 993572 993577) (-583 "LIST2.spad" 991513 991525 992863 992868) (-582 "LIST2MAP.spad" 988390 988402 991503 991508) (-581 "LINEXP.spad" 987822 987832 988370 988385) (-580 "LINDEP.spad" 986599 986611 987734 987739) (-579 "LIMITRF.spad" 984513 984523 986589 986594) (-578 "LIMITPS.spad" 983396 983409 984503 984508) (-577 "LIE.spad" 981410 981422 982686 982831) (-576 "LIECAT.spad" 980886 980896 981336 981405) (-575 "LIECAT.spad" 980390 980402 980842 980847) (-574 "LIB.spad" 978438 978446 979049 979064) (-573 "LGROBP.spad" 975791 975810 978428 978433) (-572 "LF.spad" 974710 974726 975781 975786) (-571 "LFCAT.spad" 973729 973737 974700 974705) (-570 "LEXTRIPK.spad" 969232 969247 973719 973724) (-569 "LEXP.spad" 967235 967262 969212 969227) (-568 "LEADCDET.spad" 965619 965636 967225 967230) (-567 "LAZM3PK.spad" 964323 964345 965609 965614) (-566 "LAUPOL.spad" 963014 963027 963918 963987) (-565 "LAPLACE.spad" 962587 962603 963004 963009) (-564 "LA.spad" 962027 962041 962509 962548) (-563 "LALG.spad" 961803 961813 962007 962022) (-562 "LALG.spad" 961587 961599 961793 961798) (-561 "KOVACIC.spad" 960300 960317 961577 961582) (-560 "KONVERT.spad" 960022 960032 960290 960295) (-559 "KOERCE.spad" 959759 959769 960012 960017) (-558 "KERNEL.spad" 958294 958304 959543 959548) (-557 "KERNEL2.spad" 957997 958009 958284 958289) (-556 "KDAGG.spad" 957088 957110 957965 957992) (-555 "KDAGG.spad" 956199 956223 957078 957083) (-554 "KAFILE.spad" 955162 955178 955397 955424) (-553 "JORDAN.spad" 952989 953001 954452 954597) (-552 "IXAGG.spad" 951102 951126 952969 952984) (-551 "IXAGG.spad" 949080 949106 950949 950954) (-550 "IVECTOR.spad" 947853 947868 948008 948035) (-549 "ITUPLE.spad" 946998 947008 947843 947848) (-548 "ITRIGMNP.spad" 945809 945828 946988 946993) (-547 "ITFUN3.spad" 945303 945317 945799 945804) (-546 "ITFUN2.spad" 945033 945045 945293 945298) (-545 "ITAYLOR.spad" 942825 942840 944869 944994) (-544 "ISUPS.spad" 935236 935251 941799 941896) (-543 "ISUMP.spad" 934733 934749 935226 935231) (-542 "ISTRING.spad" 933736 933749 933902 933929) (-541 "IRURPK.spad" 932449 932468 933726 933731) (-540 "IRSN.spad" 930409 930417 932439 932444) (-539 "IRRF2F.spad" 928884 928894 930365 930370) (-538 "IRREDFFX.spad" 928485 928496 928874 928879) (-537 "IROOT.spad" 926816 926826 928475 928480) (-536 "IR.spad" 924606 924620 926672 926699) (-535 "IR2.spad" 923626 923642 924596 924601) (-534 "IR2F.spad" 922826 922842 923616 923621) (-533 "IPRNTPK.spad" 922586 922594 922816 922821) (-532 "IPF.spad" 922151 922163 922391 922484) (-531 "IPADIC.spad" 921912 921938 922077 922146) (-530 "INVLAPLA.spad" 921557 921573 921902 921907) (-529 "INTTR.spad" 914803 914820 921547 921552) (-528 "INTTOOLS.spad" 912515 912531 914378 914383) (-527 "INTSLPE.spad" 911821 911829 912505 912510) (-526 "INTRVL.spad" 911387 911397 911735 911816) (-525 "INTRF.spad" 909751 909765 911377 911382) (-524 "INTRET.spad" 909183 909193 909741 909746) (-523 "INTRAT.spad" 907858 907875 909173 909178) (-522 "INTPM.spad" 906221 906237 907501 907506) (-521 "INTPAF.spad" 903989 904007 906153 906158) (-520 "INTPACK.spad" 894299 894307 903979 903984) (-519 "INT.spad" 893660 893668 894153 894294) (-518 "INTHERTR.spad" 892926 892943 893650 893655) (-517 "INTHERAL.spad" 892592 892616 892916 892921) (-516 "INTHEORY.spad" 889005 889013 892582 892587) (-515 "INTG0.spad" 882468 882486 888937 888942) (-514 "INTFTBL.spad" 876497 876505 882458 882463) (-513 "INTFACT.spad" 875556 875566 876487 876492) (-512 "INTEF.spad" 873871 873887 875546 875551) (-511 "INTDOM.spad" 872486 872494 873797 873866) (-510 "INTDOM.spad" 871163 871173 872476 872481) (-509 "INTCAT.spad" 869416 869426 871077 871158) (-508 "INTBIT.spad" 868919 868927 869406 869411) (-507 "INTALG.spad" 868101 868128 868909 868914) (-506 "INTAF.spad" 867593 867609 868091 868096) (-505 "INTABL.spad" 866111 866142 866274 866301) (-504 "INS.spad" 863507 863515 866013 866106) (-503 "INS.spad" 860989 860999 863497 863502) (-502 "INPSIGN.spad" 860423 860436 860979 860984) (-501 "INPRODPF.spad" 859489 859508 860413 860418) (-500 "INPRODFF.spad" 858547 858571 859479 859484) (-499 "INNMFACT.spad" 857518 857535 858537 858542) (-498 "INMODGCD.spad" 857002 857032 857508 857513) (-497 "INFSP.spad" 855287 855309 856992 856997) (-496 "INFPROD0.spad" 854337 854356 855277 855282) (-495 "INFORM.spad" 851605 851613 854327 854332) (-494 "INFORM1.spad" 851230 851240 851595 851600) (-493 "INFINITY.spad" 850782 850790 851220 851225) (-492 "INEP.spad" 849314 849336 850772 850777) (-491 "INDE.spad" 849220 849237 849304 849309) (-490 "INCRMAPS.spad" 848641 848651 849210 849215) (-489 "INBFF.spad" 844411 844422 848631 848636) (-488 "IMATRIX.spad" 843356 843382 843868 843895) (-487 "IMATQF.spad" 842450 842494 843312 843317) (-486 "IMATLIN.spad" 841055 841079 842406 842411) (-485 "ILIST.spad" 839711 839726 840238 840265) (-484 "IIARRAY2.spad" 839099 839137 839318 839345) (-483 "IFF.spad" 838509 838525 838780 838873) (-482 "IFARRAY.spad" 835996 836011 837692 837719) (-481 "IFAMON.spad" 835858 835875 835952 835957) (-480 "IEVALAB.spad" 835247 835259 835848 835853) (-479 "IEVALAB.spad" 834634 834648 835237 835242) (-478 "IDPO.spad" 834432 834444 834624 834629) (-477 "IDPOAMS.spad" 834188 834200 834422 834427) (-476 "IDPOAM.spad" 833908 833920 834178 834183) (-475 "IDPC.spad" 832842 832854 833898 833903) (-474 "IDPAM.spad" 832587 832599 832832 832837) (-473 "IDPAG.spad" 832334 832346 832577 832582) (-472 "IDECOMP.spad" 829571 829589 832324 832329) (-471 "IDEAL.spad" 824494 824533 829506 829511) (-470 "ICDEN.spad" 823645 823661 824484 824489) (-469 "ICARD.spad" 822834 822842 823635 823640) (-468 "IBPTOOLS.spad" 821427 821444 822824 822829) (-467 "IBITS.spad" 820626 820639 821063 821090) (-466 "IBATOOL.spad" 817501 817520 820616 820621) (-465 "IBACHIN.spad" 815988 816003 817491 817496) (-464 "IARRAY2.spad" 814976 815002 815595 815622) (-463 "IARRAY1.spad" 814021 814036 814159 814186) (-462 "IAN.spad" 812236 812244 813839 813932) (-461 "IALGFACT.spad" 811837 811870 812226 812231) (-460 "HYPCAT.spad" 811261 811269 811827 811832) (-459 "HYPCAT.spad" 810683 810693 811251 811256) (-458 "HOAGG.spad" 807941 807951 810663 810678) (-457 "HOAGG.spad" 804984 804996 807708 807713) (-456 "HEXADEC.spad" 802856 802864 803454 803547) (-455 "HEUGCD.spad" 801871 801882 802846 802851) (-454 "HELLFDIV.spad" 801461 801485 801861 801866) (-453 "HEAP.spad" 800853 800863 801068 801095) (-452 "HDP.spad" 792375 792391 792752 792881) (-451 "HDMP.spad" 789554 789569 790172 790299) (-450 "HB.spad" 787791 787799 789544 789549) (-449 "HASHTBL.spad" 786261 786292 786472 786499) (-448 "HACKPI.spad" 785744 785752 786163 786256) (-447 "GTSET.spad" 784683 784699 785390 785417) (-446 "GSTBL.spad" 783202 783237 783376 783391) (-445 "GSERIES.spad" 780369 780396 781334 781483) (-444 "GROUP.spad" 779543 779551 780349 780364) (-443 "GROUP.spad" 778725 778735 779533 779538) (-442 "GROEBSOL.spad" 777213 777234 778715 778720) (-441 "GRMOD.spad" 775784 775796 777203 777208) (-440 "GRMOD.spad" 774353 774367 775774 775779) (-439 "GRIMAGE.spad" 766958 766966 774343 774348) (-438 "GRDEF.spad" 765337 765345 766948 766953) (-437 "GRAY.spad" 763796 763804 765327 765332) (-436 "GRALG.spad" 762843 762855 763786 763791) (-435 "GRALG.spad" 761888 761902 762833 762838) (-434 "GPOLSET.spad" 761342 761365 761570 761597) (-433 "GOSPER.spad" 760607 760625 761332 761337) (-432 "GMODPOL.spad" 759745 759772 760575 760602) (-431 "GHENSEL.spad" 758814 758828 759735 759740) (-430 "GENUPS.spad" 754915 754928 758804 758809) (-429 "GENUFACT.spad" 754492 754502 754905 754910) (-428 "GENPGCD.spad" 754076 754093 754482 754487) (-427 "GENMFACT.spad" 753528 753547 754066 754071) (-426 "GENEEZ.spad" 751467 751480 753518 753523) (-425 "GDMP.spad" 748488 748505 749264 749391) (-424 "GCNAALG.spad" 742383 742410 748282 748349) (-423 "GCDDOM.spad" 741555 741563 742309 742378) (-422 "GCDDOM.spad" 740789 740799 741545 741550) (-421 "GB.spad" 738307 738345 740745 740750) (-420 "GBINTERN.spad" 734327 734365 738297 738302) (-419 "GBF.spad" 730084 730122 734317 734322) (-418 "GBEUCLID.spad" 727958 727996 730074 730079) (-417 "GAUSSFAC.spad" 727255 727263 727948 727953) (-416 "GALUTIL.spad" 725577 725587 727211 727216) (-415 "GALPOLYU.spad" 724023 724036 725567 725572) (-414 "GALFACTU.spad" 722188 722207 724013 724018) (-413 "GALFACT.spad" 712321 712332 722178 722183) (-412 "FVFUN.spad" 709334 709342 712301 712316) (-411 "FVC.spad" 708376 708384 709314 709329) (-410 "FUNCTION.spad" 708225 708237 708366 708371) (-409 "FT.spad" 706437 706445 708215 708220) (-408 "FTEM.spad" 705600 705608 706427 706432) (-407 "FSUPFACT.spad" 704501 704520 705537 705542) (-406 "FST.spad" 702587 702595 704491 704496) (-405 "FSRED.spad" 702065 702081 702577 702582) (-404 "FSPRMELT.spad" 700889 700905 702022 702027) (-403 "FSPECF.spad" 698966 698982 700879 700884) (-402 "FS.spad" 693017 693027 698730 698961) (-401 "FS.spad" 686859 686871 692574 692579) (-400 "FSINT.spad" 686517 686533 686849 686854) (-399 "FSERIES.spad" 685704 685716 686337 686436) (-398 "FSCINT.spad" 685017 685033 685694 685699) (-397 "FSAGG.spad" 684122 684132 684961 685012) (-396 "FSAGG.spad" 683201 683213 684042 684047) (-395 "FSAGG2.spad" 681900 681916 683191 683196) (-394 "FS2UPS.spad" 676289 676323 681890 681895) (-393 "FS2.spad" 675934 675950 676279 676284) (-392 "FS2EXPXP.spad" 675057 675080 675924 675929) (-391 "FRUTIL.spad" 673999 674009 675047 675052) (-390 "FR.spad" 667696 667706 673026 673095) (-389 "FRNAALG.spad" 662783 662793 667638 667691) (-388 "FRNAALG.spad" 657882 657894 662739 662744) (-387 "FRNAAF2.spad" 657336 657354 657872 657877) (-386 "FRMOD.spad" 656731 656761 657268 657273) (-385 "FRIDEAL.spad" 655926 655947 656711 656726) (-384 "FRIDEAL2.spad" 655528 655560 655916 655921) (-383 "FRETRCT.spad" 655039 655049 655518 655523) (-382 "FRETRCT.spad" 654418 654430 654899 654904) (-381 "FRAMALG.spad" 652746 652759 654374 654413) (-380 "FRAMALG.spad" 651106 651121 652736 652741) (-379 "FRAC.spad" 648209 648219 648612 648785) (-378 "FRAC2.spad" 647812 647824 648199 648204) (-377 "FR2.spad" 647146 647158 647802 647807) (-376 "FPS.spad" 643955 643963 647036 647141) (-375 "FPS.spad" 640792 640802 643875 643880) (-374 "FPC.spad" 639834 639842 640694 640787) (-373 "FPC.spad" 638962 638972 639824 639829) (-372 "FPATMAB.spad" 638714 638724 638942 638957) (-371 "FPARFRAC.spad" 637187 637204 638704 638709) (-370 "FORTRAN.spad" 635687 635736 637177 637182) (-369 "FORT.spad" 634616 634624 635677 635682) (-368 "FORTFN.spad" 631776 631784 634596 634611) (-367 "FORTCAT.spad" 631450 631458 631756 631771) (-366 "FORMULA.spad" 628788 628796 631440 631445) (-365 "FORMULA1.spad" 628267 628277 628778 628783) (-364 "FORDER.spad" 627958 627982 628257 628262) (-363 "FOP.spad" 627159 627167 627948 627953) (-362 "FNLA.spad" 626583 626605 627127 627154) (-361 "FNCAT.spad" 624911 624919 626573 626578) (-360 "FNAME.spad" 624803 624811 624901 624906) (-359 "FMTC.spad" 624601 624609 624729 624798) (-358 "FMONOID.spad" 621656 621666 624557 624562) (-357 "FM.spad" 621351 621363 621590 621617) (-356 "FMFUN.spad" 618371 618379 621331 621346) (-355 "FMC.spad" 617413 617421 618351 618366) (-354 "FMCAT.spad" 615067 615085 617381 617408) (-353 "FM1.spad" 614424 614436 615001 615028) (-352 "FLOATRP.spad" 612145 612159 614414 614419) (-351 "FLOAT.spad" 605309 605317 612011 612140) (-350 "FLOATCP.spad" 602726 602740 605299 605304) (-349 "FLINEXP.spad" 602438 602448 602706 602721) (-348 "FLINEXP.spad" 602104 602116 602374 602379) (-347 "FLASORT.spad" 601424 601436 602094 602099) (-346 "FLALG.spad" 599070 599089 601350 601419) (-345 "FLAGG.spad" 596076 596086 599038 599065) (-344 "FLAGG.spad" 592995 593007 595959 595964) (-343 "FLAGG2.spad" 591676 591692 592985 592990) (-342 "FINRALG.spad" 589705 589718 591632 591671) (-341 "FINRALG.spad" 587660 587675 589589 589594) (-340 "FINITE.spad" 586812 586820 587650 587655) (-339 "FINAALG.spad" 575793 575803 586754 586807) (-338 "FINAALG.spad" 564786 564798 575749 575754) (-337 "FILE.spad" 564369 564379 564776 564781) (-336 "FILECAT.spad" 562887 562904 564359 564364) (-335 "FIELD.spad" 562293 562301 562789 562882) (-334 "FIELD.spad" 561785 561795 562283 562288) (-333 "FGROUP.spad" 560394 560404 561765 561780) (-332 "FGLMICPK.spad" 559181 559196 560384 560389) (-331 "FFX.spad" 558556 558571 558897 558990) (-330 "FFSLPE.spad" 558045 558066 558546 558551) (-329 "FFPOLY.spad" 549297 549308 558035 558040) (-328 "FFPOLY2.spad" 548357 548374 549287 549292) (-327 "FFP.spad" 547754 547774 548073 548166) (-326 "FF.spad" 547202 547218 547435 547528) (-325 "FFNBX.spad" 545714 545734 546918 547011) (-324 "FFNBP.spad" 544227 544244 545430 545523) (-323 "FFNB.spad" 542692 542713 543908 544001) (-322 "FFINTBAS.spad" 540106 540125 542682 542687) (-321 "FFIELDC.spad" 537681 537689 540008 540101) (-320 "FFIELDC.spad" 535342 535352 537671 537676) (-319 "FFHOM.spad" 534090 534107 535332 535337) (-318 "FFF.spad" 531525 531536 534080 534085) (-317 "FFCGX.spad" 530372 530392 531241 531334) (-316 "FFCGP.spad" 529261 529281 530088 530181) (-315 "FFCG.spad" 528053 528074 528942 529035) (-314 "FFCAT.spad" 520954 520976 527892 528048) (-313 "FFCAT.spad" 513934 513958 520874 520879) (-312 "FFCAT2.spad" 513679 513719 513924 513929) (-311 "FEXPR.spad" 505392 505438 513439 513478) (-310 "FEVALAB.spad" 505098 505108 505382 505387) (-309 "FEVALAB.spad" 504589 504601 504875 504880) (-308 "FDIV.spad" 504031 504055 504579 504584) (-307 "FDIVCAT.spad" 502073 502097 504021 504026) (-306 "FDIVCAT.spad" 500113 500139 502063 502068) (-305 "FDIV2.spad" 499767 499807 500103 500108) (-304 "FCPAK1.spad" 498320 498328 499757 499762) (-303 "FCOMP.spad" 497699 497709 498310 498315) (-302 "FC.spad" 487524 487532 497689 497694) (-301 "FAXF.spad" 480459 480473 487426 487519) (-300 "FAXF.spad" 473446 473462 480415 480420) (-299 "FARRAY.spad" 471592 471602 472629 472656) (-298 "FAMR.spad" 469712 469724 471490 471587) (-297 "FAMR.spad" 467816 467830 469596 469601) (-296 "FAMONOID.spad" 467466 467476 467770 467775) (-295 "FAMONC.spad" 465688 465700 467456 467461) (-294 "FAGROUP.spad" 465294 465304 465584 465611) (-293 "FACUTIL.spad" 463490 463507 465284 465289) (-292 "FACTFUNC.spad" 462666 462676 463480 463485) (-291 "EXPUPXS.spad" 459499 459522 460798 460947) (-290 "EXPRTUBE.spad" 456727 456735 459489 459494) (-289 "EXPRODE.spad" 453599 453615 456717 456722) (-288 "EXPR.spad" 448901 448911 449615 450018) (-287 "EXPR2UPS.spad" 444993 445006 448891 448896) (-286 "EXPR2.spad" 444696 444708 444983 444988) (-285 "EXPEXPAN.spad" 441637 441662 442271 442364) (-284 "EXIT.spad" 441308 441316 441627 441632) (-283 "EVALCYC.spad" 440766 440780 441298 441303) (-282 "EVALAB.spad" 440330 440340 440756 440761) (-281 "EVALAB.spad" 439892 439904 440320 440325) (-280 "EUCDOM.spad" 437434 437442 439818 439887) (-279 "EUCDOM.spad" 435038 435048 437424 437429) (-278 "ESTOOLS.spad" 426878 426886 435028 435033) (-277 "ESTOOLS2.spad" 426479 426493 426868 426873) (-276 "ESTOOLS1.spad" 426164 426175 426469 426474) (-275 "ES.spad" 418711 418719 426154 426159) (-274 "ES.spad" 411166 411176 418611 418616) (-273 "ESCONT.spad" 407939 407947 411156 411161) (-272 "ESCONT1.spad" 407688 407700 407929 407934) (-271 "ES2.spad" 407183 407199 407678 407683) (-270 "ES1.spad" 406749 406765 407173 407178) (-269 "ERROR.spad" 404070 404078 406739 406744) (-268 "EQTBL.spad" 402542 402564 402751 402778) (-267 "EQ.spad" 397426 397436 400225 400334) (-266 "EQ2.spad" 397142 397154 397416 397421) (-265 "EP.spad" 393456 393466 397132 397137) (-264 "ENTIRER.spad" 393124 393132 393400 393451) (-263 "EMR.spad" 392325 392366 393050 393119) (-262 "ELTAGG.spad" 390565 390584 392315 392320) (-261 "ELTAGG.spad" 388769 388790 390521 390526) (-260 "ELTAB.spad" 388216 388234 388759 388764) (-259 "ELFUTS.spad" 387595 387614 388206 388211) (-258 "ELEMFUN.spad" 387284 387292 387585 387590) (-257 "ELEMFUN.spad" 386971 386981 387274 387279) (-256 "ELAGG.spad" 384902 384912 386939 386966) (-255 "ELAGG.spad" 382782 382794 384821 384826) (-254 "EFUPXS.spad" 379558 379588 382738 382743) (-253 "EFULS.spad" 376394 376417 379514 379519) (-252 "EFSTRUC.spad" 374349 374365 376384 376389) (-251 "EF.spad" 369115 369131 374339 374344) (-250 "EAB.spad" 367391 367399 369105 369110) (-249 "E04UCFA.spad" 366927 366935 367381 367386) (-248 "E04NAFA.spad" 366504 366512 366917 366922) (-247 "E04MBFA.spad" 366084 366092 366494 366499) (-246 "E04JAFA.spad" 365620 365628 366074 366079) (-245 "E04GCFA.spad" 365156 365164 365610 365615) (-244 "E04FDFA.spad" 364692 364700 365146 365151) (-243 "E04DGFA.spad" 364228 364236 364682 364687) (-242 "E04AGNT.spad" 360070 360078 364218 364223) (-241 "DVARCAT.spad" 356755 356765 360060 360065) (-240 "DVARCAT.spad" 353438 353450 356745 356750) (-239 "DSMP.spad" 350872 350886 351177 351304) (-238 "DROPT.spad" 344817 344825 350862 350867) (-237 "DROPT1.spad" 344480 344490 344807 344812) (-236 "DROPT0.spad" 339307 339315 344470 344475) (-235 "DRAWPT.spad" 337462 337470 339297 339302) (-234 "DRAW.spad" 330062 330075 337452 337457) (-233 "DRAWHACK.spad" 329370 329380 330052 330057) (-232 "DRAWCX.spad" 326812 326820 329360 329365) (-231 "DRAWCURV.spad" 326349 326364 326802 326807) (-230 "DRAWCFUN.spad" 315521 315529 326339 326344) (-229 "DQAGG.spad" 313677 313687 315477 315516) (-228 "DPOLCAT.spad" 309018 309034 313545 313672) (-227 "DPOLCAT.spad" 304445 304463 308974 308979) (-226 "DPMO.spad" 298432 298448 298570 298866) (-225 "DPMM.spad" 292432 292450 292557 292853) (-224 "domain.spad" 291948 291956 292422 292427) (-223 "DMP.spad" 289173 289188 289745 289872) (-222 "DLP.spad" 288521 288531 289163 289168) (-221 "DLIST.spad" 286933 286943 287704 287731) (-220 "DLAGG.spad" 285334 285344 286913 286928) (-219 "DIVRING.spad" 284781 284789 285278 285329) (-218 "DIVRING.spad" 284272 284282 284771 284776) (-217 "DISPLAY.spad" 282452 282460 284262 284267) (-216 "DIRPROD.spad" 273711 273727 274351 274480) (-215 "DIRPROD2.spad" 272519 272537 273701 273706) (-214 "DIRPCAT.spad" 271451 271467 272373 272514) (-213 "DIRPCAT.spad" 270123 270141 271047 271052) (-212 "DIOSP.spad" 268948 268956 270113 270118) (-211 "DIOPS.spad" 267920 267930 268916 268943) (-210 "DIOPS.spad" 266878 266890 267876 267881) (-209 "DIFRING.spad" 266170 266178 266858 266873) (-208 "DIFRING.spad" 265470 265480 266160 266165) (-207 "DIFEXT.spad" 264629 264639 265450 265465) (-206 "DIFEXT.spad" 263705 263717 264528 264533) (-205 "DIAGG.spad" 263323 263333 263673 263700) (-204 "DIAGG.spad" 262961 262973 263313 263318) (-203 "DHMATRIX.spad" 261265 261275 262418 262445) (-202 "DFSFUN.spad" 254673 254681 261255 261260) (-201 "DFLOAT.spad" 251196 251204 254563 254668) (-200 "DFINTTLS.spad" 249405 249421 251186 251191) (-199 "DERHAM.spad" 247315 247347 249385 249400) (-198 "DEQUEUE.spad" 246633 246643 246922 246949) (-197 "DEGRED.spad" 246248 246262 246623 246628) (-196 "DEFINTRF.spad" 243773 243783 246238 246243) (-195 "DEFINTEF.spad" 242269 242285 243763 243768) (-194 "DECIMAL.spad" 240153 240161 240739 240832) (-193 "DDFACT.spad" 237952 237969 240143 240148) (-192 "DBLRESP.spad" 237550 237574 237942 237947) (-191 "DBASE.spad" 236122 236132 237540 237545) (-190 "D03FAFA.spad" 235950 235958 236112 236117) (-189 "D03EEFA.spad" 235770 235778 235940 235945) (-188 "D03AGNT.spad" 234850 234858 235760 235765) (-187 "D02EJFA.spad" 234312 234320 234840 234845) (-186 "D02CJFA.spad" 233790 233798 234302 234307) (-185 "D02BHFA.spad" 233280 233288 233780 233785) (-184 "D02BBFA.spad" 232770 232778 233270 233275) (-183 "D02AGNT.spad" 227574 227582 232760 232765) (-182 "D01WGTS.spad" 225893 225901 227564 227569) (-181 "D01TRNS.spad" 225870 225878 225883 225888) (-180 "D01GBFA.spad" 225392 225400 225860 225865) (-179 "D01FCFA.spad" 224914 224922 225382 225387) (-178 "D01ASFA.spad" 224382 224390 224904 224909) (-177 "D01AQFA.spad" 223828 223836 224372 224377) (-176 "D01APFA.spad" 223252 223260 223818 223823) (-175 "D01ANFA.spad" 222746 222754 223242 223247) (-174 "D01AMFA.spad" 222256 222264 222736 222741) (-173 "D01ALFA.spad" 221796 221804 222246 222251) (-172 "D01AKFA.spad" 221322 221330 221786 221791) (-171 "D01AJFA.spad" 220845 220853 221312 221317) (-170 "D01AGNT.spad" 216904 216912 220835 220840) (-169 "CYCLOTOM.spad" 216410 216418 216894 216899) (-168 "CYCLES.spad" 213242 213250 216400 216405) (-167 "CVMP.spad" 212659 212669 213232 213237) (-166 "CTRIGMNP.spad" 211149 211165 212649 212654) (-165 "CSTTOOLS.spad" 210392 210405 211139 211144) (-164 "CRFP.spad" 204096 204109 210382 210387) (-163 "CRAPACK.spad" 203139 203149 204086 204091) (-162 "CPMATCH.spad" 202639 202654 203064 203069) (-161 "CPIMA.spad" 202344 202363 202629 202634) (-160 "COORDSYS.spad" 197237 197247 202334 202339) (-159 "CONTOUR.spad" 196639 196647 197227 197232) (-158 "CONTFRAC.spad" 192251 192261 196541 196634) (-157 "COMRING.spad" 191925 191933 192189 192246) (-156 "COMPPROP.spad" 191439 191447 191915 191920) (-155 "COMPLPAT.spad" 191206 191221 191429 191434) (-154 "COMPLEX.spad" 185239 185249 185483 185744) (-153 "COMPLEX2.spad" 184952 184964 185229 185234) (-152 "COMPFACT.spad" 184554 184568 184942 184947) (-151 "COMPCAT.spad" 182610 182620 184276 184549) (-150 "COMPCAT.spad" 180373 180385 182041 182046) (-149 "COMMUPC.spad" 180119 180137 180363 180368) (-148 "COMMONOP.spad" 179652 179660 180109 180114) (-147 "COMM.spad" 179461 179469 179642 179647) (-146 "COMBOPC.spad" 178366 178374 179451 179456) (-145 "COMBINAT.spad" 177111 177121 178356 178361) (-144 "COMBF.spad" 174479 174495 177101 177106) (-143 "COLOR.spad" 173316 173324 174469 174474) (-142 "CMPLXRT.spad" 173025 173042 173306 173311) (-141 "CLIP.spad" 169117 169125 173015 173020) (-140 "CLIF.spad" 167756 167772 169073 169112) (-139 "CLAGG.spad" 164231 164241 167736 167751) (-138 "CLAGG.spad" 160587 160599 164094 164099) (-137 "CINTSLPE.spad" 159912 159925 160577 160582) (-136 "CHVAR.spad" 157990 158012 159902 159907) (-135 "CHARZ.spad" 157905 157913 157970 157985) (-134 "CHARPOL.spad" 157413 157423 157895 157900) (-133 "CHARNZ.spad" 157166 157174 157393 157408) (-132 "CHAR.spad" 155056 155064 157156 157161) (-131 "CFCAT.spad" 154372 154380 155046 155051) (-130 "CDEN.spad" 153530 153544 154362 154367) (-129 "CCLASS.spad" 151679 151687 152941 152980) (-128 "CARTEN.spad" 146782 146806 151669 151674) (-127 "CARTEN2.spad" 146168 146195 146772 146777) (-126 "CARD.spad" 143457 143465 146142 146163) (-125 "CACHSET.spad" 143079 143087 143447 143452) (-124 "CABMON.spad" 142632 142640 143069 143074) (-123 "BTREE.spad" 141701 141711 142239 142266) (-122 "BTOURN.spad" 140704 140714 141308 141335) (-121 "BTCAT.spad" 140080 140090 140660 140699) (-120 "BTCAT.spad" 139488 139500 140070 140075) (-119 "BTAGG.spad" 138504 138512 139444 139483) (-118 "BTAGG.spad" 137552 137562 138494 138499) (-117 "BSTREE.spad" 136287 136297 137159 137186) (-116 "BRILL.spad" 134482 134493 136277 136282) (-115 "BRAGG.spad" 133396 133406 134462 134477) (-114 "BRAGG.spad" 132284 132296 133352 133357) (-113 "BPADICRT.spad" 130268 130280 130523 130616) (-112 "BPADIC.spad" 129932 129944 130194 130263) (-111 "BOUNDZRO.spad" 129588 129605 129922 129927) (-110 "BOP.spad" 125052 125060 129578 129583) (-109 "BOP1.spad" 122438 122448 125008 125013) (-108 "BOOLEAN.spad" 121691 121699 122428 122433) (-107 "BMODULE.spad" 121403 121415 121659 121686) (-106 "BITS.spad" 120822 120830 121039 121066) (-105 "BINFILE.spad" 120165 120173 120812 120817) (-104 "BINDING.spad" 119572 119580 120155 120160) (-103 "BINARY.spad" 117465 117473 118042 118135) (-102 "BGAGG.spad" 116650 116660 117433 117460) (-101 "BGAGG.spad" 115855 115867 116640 116645) (-100 "BFUNCT.spad" 115419 115427 115835 115850) (-99 "BEZOUT.spad" 114554 114580 115369 115374) (-98 "BBTREE.spad" 111374 111383 114161 114188) (-97 "BASTYPE.spad" 111047 111054 111364 111369) (-96 "BASTYPE.spad" 110718 110727 111037 111042) (-95 "BALFACT.spad" 110158 110170 110708 110713) (-94 "AUTOMOR.spad" 109605 109614 110138 110153) (-93 "ATTREG.spad" 106324 106331 109357 109600) (-92 "ATTRBUT.spad" 102347 102354 106304 106319) (-91 "ATRIG.spad" 101817 101824 102337 102342) (-90 "ATRIG.spad" 101285 101294 101807 101812) (-89 "ASTACK.spad" 100618 100627 100892 100919) (-88 "ASSOCEQ.spad" 99418 99429 100574 100579) (-87 "ASP9.spad" 98499 98512 99408 99413) (-86 "ASP8.spad" 97542 97555 98489 98494) (-85 "ASP80.spad" 96864 96877 97532 97537) (-84 "ASP7.spad" 96024 96037 96854 96859) (-83 "ASP78.spad" 95475 95488 96014 96019) (-82 "ASP77.spad" 94844 94857 95465 95470) (-81 "ASP74.spad" 93936 93949 94834 94839) (-80 "ASP73.spad" 93207 93220 93926 93931) (-79 "ASP6.spad" 91839 91852 93197 93202) (-78 "ASP55.spad" 90348 90361 91829 91834) (-77 "ASP50.spad" 88165 88178 90338 90343) (-76 "ASP4.spad" 87460 87473 88155 88160) (-75 "ASP49.spad" 86459 86472 87450 87455) (-74 "ASP42.spad" 84866 84905 86449 86454) (-73 "ASP41.spad" 83445 83484 84856 84861) (-72 "ASP35.spad" 82433 82446 83435 83440) (-71 "ASP34.spad" 81734 81747 82423 82428) (-70 "ASP33.spad" 81294 81307 81724 81729) (-69 "ASP31.spad" 80434 80447 81284 81289) (-68 "ASP30.spad" 79326 79339 80424 80429) (-67 "ASP29.spad" 78792 78805 79316 79321) (-66 "ASP28.spad" 70065 70078 78782 78787) (-65 "ASP27.spad" 68962 68975 70055 70060) (-64 "ASP24.spad" 68049 68062 68952 68957) (-63 "ASP20.spad" 67265 67278 68039 68044) (-62 "ASP1.spad" 66646 66659 67255 67260) (-61 "ASP19.spad" 61332 61345 66636 66641) (-60 "ASP12.spad" 60746 60759 61322 61327) (-59 "ASP10.spad" 60017 60030 60736 60741) (-58 "ARRAY2.spad" 59377 59386 59624 59651) (-57 "ARRAY1.spad" 58212 58221 58560 58587) (-56 "ARRAY12.spad" 56881 56892 58202 58207) (-55 "ARR2CAT.spad" 52531 52552 56837 56876) (-54 "ARR2CAT.spad" 48213 48236 52521 52526) (-53 "APPRULE.spad" 47457 47479 48203 48208) (-52 "APPLYORE.spad" 47072 47085 47447 47452) (-51 "ANY.spad" 45414 45421 47062 47067) (-50 "ANY1.spad" 44485 44494 45404 45409) (-49 "ANTISYM.spad" 42924 42940 44465 44480) (-48 "ANON.spad" 42837 42844 42914 42919) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 9a35ec0f..9761ad7d 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,3201 +1,3206 @@ -(142311 . 3409486837) -(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) +(142431 . 3409732476) +(((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((#0=(-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) #0#) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) (((|#2| |#2|) . T)) -((((-517)) . T)) -((($ $) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) ((|#2| |#2|) . T) ((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517))))) +((((-519)) . T)) +((($ $) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) ((|#2| |#2|) . T) ((#0=(-379 (-519)) #0#) |has| |#2| (-37 (-379 (-519))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($) . T) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) (((|#2|) . T)) -((($) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517))))) -(|has| |#1| (-833)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((($) . T) (((-377 (-517))) . T)) +((($) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) ((|#2|) . T) (((-379 (-519))) |has| |#2| (-37 (-379 (-519))))) +(|has| |#1| (-836)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((($) . T) (((-379 (-519))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) -((((-131)) . T)) -((((-493)) . T) (((-1060)) . T) (((-199)) . T) (((-349)) . T) (((-816 (-349))) . T)) -(((|#1|) . T)) -((((-199)) . T) (((-787)) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1|) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-777))) -((($ $) . T) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T)) -(-3786 (|has| |#1| (-752)) (|has| |#1| (-779))) -((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T)) -((((-787)) . T)) -((((-787)) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(|has| |#1| (-777)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +((((-132)) . T)) +((((-495)) . T) (((-1065)) . T) (((-201)) . T) (((-351)) . T) (((-819 (-351))) . T)) +(((|#1|) . T)) +((((-201)) . T) (((-790)) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1|) . T)) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-780))) +((($ $) . T) ((#0=(-379 (-519)) #0#) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) ((|#1| |#1|) . T)) +(-3730 (|has| |#1| (-755)) (|has| |#1| (-782))) +((((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) (((-519)) |has| |#1| (-959 (-519))) ((|#1|) . T)) +((((-790)) . T)) +((((-790)) . T)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(|has| |#1| (-780)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (((|#1| |#2| |#3|) . T)) (((|#4|) . T)) -((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) -((((-787)) . T)) -((((-787)) |has| |#1| (-1006))) +((($) . T) (((-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) ((|#1|) . T)) +((((-790)) . T)) +((((-790)) |has| |#1| (-1011))) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517))))) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(((|#2| (-450 (-3573 |#1|) (-703))) . T)) -(((|#1| (-489 (-1077))) . T)) -(((#0=(-794 |#1|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(|has| |#4| (-338)) -(|has| |#3| (-338)) -(((|#1|) . T)) -((((-794 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) +(((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519))))) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(((|#2| (-452 (-3532 |#1|) (-705))) . T)) +(((|#1| (-491 (-1082))) . T)) +(((#0=(-797 |#1|) #0#) . T) ((#1=(-379 (-519)) #1#) . T) (($ $) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(|has| |#4| (-340)) +(|has| |#3| (-340)) +(((|#1|) . T)) +((((-797 |#1|)) . T) (((-379 (-519))) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -(|has| |#1| (-509)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -((($) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006)))) -((((-493)) |has| |#1| (-558 (-493)))) -((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-787)) . T)) -((((-787)) . T)) -((((-377 (-517))) . T) (($) . T)) -((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T)) -(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +(|has| |#1| (-511)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +((($) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-782)) (|has| |#1| (-1011)))) +((((-495)) |has| |#1| (-560 (-495)))) +((($) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-790)) . T)) +((((-790)) . T)) +((((-379 (-519))) . T) (($) . T)) +((((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (((-1155 |#1| |#2| |#3|)) |has| |#1| (-335)) (($) . T) ((|#1|) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) . T)) +(((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) (($) . T)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) (((|#1| |#2|) . T)) -((((-787)) . T)) +((((-790)) . T)) (((|#1|) . T)) -(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) +(((#0=(-379 (-519)) #0#) |has| |#2| (-37 (-379 (-519)))) ((|#2| |#2|) . T) (($ $) -3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) (((|#1|) . T)) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) -((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) |has| |#2| (-157)) (($) -3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) +((($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +(((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519)))) ((|#1| |#1|) . T) (($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836)))) ((($ $) . T)) (((|#2|) . T)) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) . T) (($) -3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) . T) (($) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836)))) ((($) . T)) -(|has| |#1| (-338)) +(|has| |#1| (-340)) (((|#1|) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-787)) . T)) -((((-787)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-790)) . T)) +((((-790)) . T)) (((|#1| |#2|) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964))) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964))) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))) (|has| |#1| (-968))) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))) (|has| |#1| (-968))) (((|#1| |#1|) . T)) -(|has| |#1| (-509)) -(((|#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) (((-1077) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1077) |#2|)))) -((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-777))) -((($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(|has| |#1| (-1006)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(|has| |#1| (-1006)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(|has| |#1| (-777)) -((($) . T) (((-377 (-517))) . T)) -(((|#1|) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-319))) -(-3786 (|has| |#4| (-725)) (|has| |#4| (-777))) -(-3786 (|has| |#4| (-725)) (|has| |#4| (-777))) -(-3786 (|has| |#3| (-725)) (|has| |#3| (-777))) -(-3786 (|has| |#3| (-725)) (|has| |#3| (-777))) +(|has| |#1| (-511)) +(((|#2| |#2|) -12 (|has| |#1| (-335)) (|has| |#2| (-282 |#2|))) (((-1082) |#2|) -12 (|has| |#1| (-335)) (|has| |#2| (-480 (-1082) |#2|)))) +((((-379 |#2|)) . T) (((-379 (-519))) . T) (($) . T)) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-780))) +((($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(|has| |#1| (-1011)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(|has| |#1| (-1011)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(|has| |#1| (-780)) +((($) . T) (((-379 (-519))) . T)) +(((|#1|) . T)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-321))) +(-3730 (|has| |#4| (-727)) (|has| |#4| (-780))) +(-3730 (|has| |#4| (-727)) (|has| |#4| (-780))) +(-3730 (|has| |#3| (-727)) (|has| |#3| (-780))) +(-3730 (|has| |#3| (-727)) (|has| |#3| (-780))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1006)) -(|has| |#1| (-1006)) -(((|#1| (-1077) (-996 (-1077)) (-489 (-996 (-1077)))) . T)) -((((-517) |#1|) . T)) -((((-517)) . T)) -((((-517)) . T)) -((((-834 |#1|)) . T)) -(((|#1| (-489 |#2|)) . T)) -((((-517)) . T)) -((((-517)) . T)) -(((|#1|) . T)) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(((|#1| (-703)) . T)) -(|has| |#2| (-725)) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) -(|has| |#2| (-777)) +(|has| |#1| (-1011)) +(|has| |#1| (-1011)) +(((|#1| (-1082) (-1001 (-1082)) (-491 (-1001 (-1082)))) . T)) +((((-519) |#1|) . T)) +((((-519)) . T)) +((((-519)) . T)) +((((-837 |#1|)) . T)) +(((|#1| (-491 |#2|)) . T)) +((((-519)) . T)) +((((-519)) . T)) +(((|#1|) . T)) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(((|#1| (-705)) . T)) +(|has| |#2| (-727)) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) +(|has| |#2| (-780)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1060) |#1|) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -(((|#1|) . T)) -(((|#3| (-703)) . T)) -(|has| |#1| (-134)) -(|has| |#1| (-132)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) -(|has| |#1| (-1006)) -((((-377 (-517))) . T) (((-517)) . T)) -((((-1077) |#2|) |has| |#2| (-478 (-1077) |#2|)) ((|#2| |#2|) |has| |#2| (-280 |#2|))) -((((-377 (-517))) . T) (((-517)) . T)) +((((-1065) |#1|) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +(((|#1|) . T)) +(((|#3| (-705)) . T)) +(|has| |#1| (-135)) +(|has| |#1| (-133)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) +(|has| |#1| (-1011)) +((((-379 (-519))) . T) (((-519)) . T)) +((((-1082) |#2|) |has| |#2| (-480 (-1082) |#2|)) ((|#2| |#2|) |has| |#2| (-282 |#2|))) +((((-379 (-519))) . T) (((-519)) . T)) (((|#1|) . T) (($) . T)) -((((-517)) . T)) -((((-517)) . T)) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156))) -((((-517)) . T)) -((((-517)) . T)) -(((#0=(-632) (-1073 #0#)) . T)) -((((-377 (-517))) . T) (($) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -((((-517) |#1|) . T)) -((($) . T) (((-517)) . T) (((-377 (-517))) . T)) -(((|#1|) . T)) -(|has| |#2| (-333)) +((((-519)) . T)) +((((-519)) . T)) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) ((|#1|) |has| |#1| (-157))) +((((-519)) . T)) +((((-519)) . T)) +(((#0=(-634) (-1078 #0#)) . T)) +((((-379 (-519))) . T) (($) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +((((-519) |#1|) . T)) +((($) . T) (((-519)) . T) (((-379 (-519))) . T)) +(((|#1|) . T)) +(|has| |#2| (-335)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-787)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-1060) |#1|) . T)) +((((-790)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-1065) |#1|) . T)) (((|#3| |#3|) . T)) -((((-787)) . T)) -((((-787)) . T)) +((((-790)) . T)) +((((-790)) . T)) (((|#1| |#1|) . T)) -(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517))))) -(((|#1|) . T)) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((($) -3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) ((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964)))) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-517) |#1|) . T)) -((((-787)) . T)) -((((-153 (-199))) |has| |#1| (-940)) (((-153 (-349))) |has| |#1| (-940)) (((-493)) |has| |#1| (-558 (-493))) (((-1073 |#1|)) . T) (((-816 (-517))) |has| |#1| (-558 (-816 (-517)))) (((-816 (-349))) |has| |#1| (-558 (-816 (-349))))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1|) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-777))) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-777))) -((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509)))) -(|has| |#1| (-333)) -(-12 (|has| |#4| (-207)) (|has| |#4| (-964))) -(-12 (|has| |#3| (-207)) (|has| |#3| (-964))) -(-3786 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-964))) -(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) -((((-787)) . T)) -(((|#1|) . T)) -((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T)) -(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) -(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T)) -(|has| |#1| (-509)) -(|has| |#1| (-509)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(((|#1|) . T)) -(|has| |#1| (-509)) -(|has| |#1| (-509)) -(|has| |#1| (-509)) -((((-632)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-921)) (|has| |#1| (-1098))) -(((|#2|) . T) (($) . T) (((-377 (-517))) . T)) -(-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) -((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T)) -((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T)) -(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T)) -(((|#4| |#4|) -3786 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-964))) (($ $) |has| |#4| (-156))) -(((|#3| |#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964))) (($ $) |has| |#3| (-156))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-493)) |has| |#2| (-558 (-493))) (((-816 (-349))) |has| |#2| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#2| (-558 (-816 (-517))))) -((((-787)) . T)) +(((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519)))) ((|#1| |#1|) . T) (($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836)))) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519))))) +(((|#1|) . T)) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) . T) (($) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836)))) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((($) -3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) ((|#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-968)))) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-519) |#1|) . T)) +((((-790)) . T)) +((((-154 (-201))) |has| |#1| (-944)) (((-154 (-351))) |has| |#1| (-944)) (((-495)) |has| |#1| (-560 (-495))) (((-1078 |#1|)) . T) (((-819 (-519))) |has| |#1| (-560 (-819 (-519)))) (((-819 (-351))) |has| |#1| (-560 (-819 (-351))))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1|) . T)) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-780))) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-780))) +((((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511))) ((|#2|) |has| |#1| (-335)) ((|#1|) |has| |#1| (-157))) +(((|#1|) |has| |#1| (-157)) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511)))) +(|has| |#1| (-335)) +(-12 (|has| |#4| (-209)) (|has| |#4| (-968))) +(-12 (|has| |#3| (-209)) (|has| |#3| (-968))) +(-3730 (|has| |#4| (-157)) (|has| |#4| (-780)) (|has| |#4| (-968))) +(-3730 (|has| |#3| (-157)) (|has| |#3| (-780)) (|has| |#3| (-968))) +((((-790)) . T)) +(((|#1|) . T)) +((((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) (((-519)) |has| |#1| (-959 (-519))) ((|#1|) . T)) +(((|#1|) . T) (((-519)) |has| |#1| (-581 (-519)))) +(((|#2|) . T) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) . T)) +(|has| |#1| (-511)) +(|has| |#1| (-511)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(((|#1|) . T)) +(|has| |#1| (-511)) +(|has| |#1| (-511)) +(|has| |#1| (-511)) +((((-634)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-925)) (|has| |#1| (-1103))) +(((|#2|) . T) (($) . T) (((-379 (-519))) . T)) +(-12 (|has| |#1| (-1011)) (|has| |#2| (-1011))) +((($) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) . T)) +((((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (((-1080 |#1| |#2| |#3|)) |has| |#1| (-335)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) . T)) +(((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) (($) . T)) +(((|#4| |#4|) -3730 (|has| |#4| (-157)) (|has| |#4| (-335)) (|has| |#4| (-968))) (($ $) |has| |#4| (-157))) +(((|#3| |#3|) -3730 (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-968))) (($ $) |has| |#3| (-157))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-495)) |has| |#2| (-560 (-495))) (((-819 (-351))) |has| |#2| (-560 (-819 (-351)))) (((-819 (-519))) |has| |#2| (-560 (-819 (-519))))) +((((-790)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-787)) . T)) -((((-493)) |has| |#1| (-558 (-493))) (((-816 (-349))) |has| |#1| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#1| (-558 (-816 (-517))))) -((((-787)) . T)) -(((|#4|) -3786 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-964))) (($) |has| |#4| (-156))) -(((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964))) (($) |has| |#3| (-156))) -((((-787)) . T)) -((((-493)) . T) (((-517)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T)) -(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517))))) -((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T)) -((((-377 $) (-377 $)) |has| |#2| (-509)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-833)) -((((-1060) (-51)) . T)) -((((-517)) |has| #0=(-377 |#2|) (-579 (-517))) ((#0#) . T)) -((((-493)) . T) (((-199)) . T) (((-349)) . T) (((-816 (-349))) . T)) -((((-787)) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964))) -(((|#1|) |has| |#1| (-156))) -(((|#1| $) |has| |#1| (-258 |#1| |#1|))) -((((-787)) . T)) -((((-787)) . T)) -((((-377 (-517))) . T) (($) . T)) -((((-377 (-517))) . T) (($) . T)) -((((-787)) . T)) -(|has| |#1| (-779)) -(|has| |#1| (-1006)) -(((|#1|) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006)))) -((((-493)) |has| |#1| (-558 (-493)))) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) -((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(|has| |#1| (-207)) -((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(((|#1| (-489 (-750 (-1077)))) . T)) -(((|#1| (-891)) . T)) -(((#0=(-794 |#1|) $) |has| #0# (-258 #0# #0#))) -((((-517) |#4|) . T)) -((((-517) |#3|) . T)) +((((-790)) . T)) +((((-495)) |has| |#1| (-560 (-495))) (((-819 (-351))) |has| |#1| (-560 (-819 (-351)))) (((-819 (-519))) |has| |#1| (-560 (-819 (-519))))) +((((-790)) . T)) +(((|#4|) -3730 (|has| |#4| (-157)) (|has| |#4| (-335)) (|has| |#4| (-968))) (($) |has| |#4| (-157))) +(((|#3|) -3730 (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-968))) (($) |has| |#3| (-157))) +((((-790)) . T)) +((((-495)) . T) (((-519)) . T) (((-819 (-519))) . T) (((-351)) . T) (((-201)) . T)) +(((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519))))) +((($) . T) (((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) . T)) +((((-379 $) (-379 $)) |has| |#2| (-511)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-836)) +((((-1065) (-51)) . T)) +((((-519)) |has| #0=(-379 |#2|) (-581 (-519))) ((#0#) . T)) +((((-495)) . T) (((-201)) . T) (((-351)) . T) (((-819 (-351))) . T)) +((((-790)) . T)) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))) (|has| |#1| (-968))) +(((|#1|) |has| |#1| (-157))) +(((|#1| $) |has| |#1| (-260 |#1| |#1|))) +((((-790)) . T)) +((((-790)) . T)) +((((-379 (-519))) . T) (($) . T)) +((((-379 (-519))) . T) (($) . T)) +((((-790)) . T)) +(|has| |#1| (-782)) +(|has| |#1| (-1011)) +(((|#1|) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-782)) (|has| |#1| (-1011)))) +((((-495)) |has| |#1| (-560 (-495)))) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) |has| |#2| (-157)) (($) -3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) +((($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(|has| |#1| (-209)) +((($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(((|#1| (-491 (-753 (-1082)))) . T)) +(((|#1| (-895)) . T)) +(((#0=(-797 |#1|) $) |has| #0# (-260 #0# #0#))) +((((-519) |#4|) . T)) +((((-519) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1053)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T)) -(|has| (-1144 |#1| |#2| |#3| |#4|) (-132)) -(|has| (-1144 |#1| |#2| |#3| |#4|) (-134)) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -(((|#1|) |has| |#1| (-156))) -((((-1077)) -12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) -(((|#2|) . T)) -(|has| |#1| (-1006)) -((((-1060) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) -(|has| |#2| (-338)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +(|has| |#1| (-1058)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) . T)) +(|has| (-1149 |#1| |#2| |#3| |#4|) (-133)) +(|has| (-1149 |#1| |#2| |#3| |#4|) (-135)) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +(((|#1|) |has| |#1| (-157))) +((((-1082)) -12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) +(((|#2|) . T)) +(|has| |#1| (-1011)) +((((-1065) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-519)) |has| |#2| (-581 (-519)))) +(|has| |#2| (-340)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-964))) -((((-787)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) +(((|#2|) |has| |#2| (-968))) +((((-790)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((#0=(-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) #0#) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((#0=(-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) #0#) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))))) -((((-517) |#1|) . T)) -((((-787)) . T)) -((((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))) (((-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349))))) (((-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) -((((-787)) . T)) -((((-787)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((#0=(-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) #0#) |has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))))) +((((-519) |#1|) . T)) +((((-790)) . T)) +((((-495)) -12 (|has| |#1| (-560 (-495))) (|has| |#2| (-560 (-495)))) (((-819 (-351))) -12 (|has| |#1| (-560 (-819 (-351)))) (|has| |#2| (-560 (-819 (-351))))) (((-819 (-519))) -12 (|has| |#1| (-560 (-819 (-519)))) (|has| |#2| (-560 (-819 (-519)))))) +((((-790)) . T)) +((((-790)) . T)) ((($) . T)) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517))))) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519))))) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-787)) . T)) -((((-787)) . T)) -(|has| (-1143 |#2| |#3| |#4|) (-134)) -(|has| (-1143 |#2| |#3| |#4|) (-132)) -(((|#2|) |has| |#2| (-1006)) (((-517)) -12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (((-377 (-517))) -12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-790)) . T)) +((((-790)) . T)) +(|has| (-1148 |#2| |#3| |#4|) (-135)) +(|has| (-1148 |#2| |#3| |#4|) (-133)) +(((|#2|) |has| |#2| (-1011)) (((-519)) -12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011))) (((-379 (-519))) -12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) (((|#1|) . T)) -(|has| |#1| (-1006)) +(|has| |#1| (-1011)) (((|#1|) . T)) (((|#1|) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964))) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))) (|has| |#1| (-968))) (((|#1|) . T)) -((((-517) |#1|) . T)) -(((|#2|) |has| |#2| (-156))) -(((|#1|) |has| |#1| (-156))) +((((-519) |#1|) . T)) +(((|#2|) |has| |#2| (-157))) +(((|#1|) |has| |#1| (-157))) (((|#1|) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-777))) -((((-787)) |has| |#1| (-1006))) -(-3786 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)) (|has| |#1| (-1018))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-319))) -((((-834 |#1|)) . T)) -((((-377 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-517) |#1|))) -((((-377 (-517))) . T) (($) . T)) -(|has| |#1| (-779)) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-780))) +((((-790)) |has| |#1| (-1011))) +(-3730 (|has| |#1| (-444)) (|has| |#1| (-661)) (|has| |#1| (-827 (-1082))) (|has| |#1| (-968)) (|has| |#1| (-1023))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-321))) +((((-837 |#1|)) . T)) +((((-379 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-519) |#1|))) +((((-379 (-519))) . T) (($) . T)) +(|has| |#1| (-782)) (((|#1|) . T) (($) . T)) -((((-377 (-517))) . T) (($) . T)) -(((|#1|) . T)) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) -(|has| |#1| (-333)) -(-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) -(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) -(|has| |#1| (-333)) -(|has| |#1| (-15 * (|#1| (-703) |#1|))) -((((-517)) . T)) -((((-1044 |#2| (-377 (-876 |#1|)))) . T) (((-377 (-876 |#1|))) . T)) -((($) . T)) -(((|#1|) |has| |#1| (-156)) (($) . T)) -(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T)) -(((|#1|) . T)) -((((-517) |#1|) . T)) -(((|#2|) . T)) -(-3786 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) -(((|#1|) . T)) -((((-1077)) -12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) -(-3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) -(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509)))) -((($ $) |has| |#1| (-509))) -(((#0=(-632) (-1073 #0#)) . T)) -((((-787)) . T)) -((((-787)) . T) (((-1158 |#4|)) . T)) -((((-787)) . T) (((-1158 |#3|)) . T)) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509)))) -((($) |has| |#1| (-509))) -((((-787)) . T)) -((($) . T)) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((#1=(-1150 |#1| |#2| |#3|) #1#) |has| |#1| (-333)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517))))) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T)) -(((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) -(((|#3|) |has| |#3| (-964))) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(|has| |#1| (-1006)) -(((|#2| (-751 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-333)) -((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T)) -(((#0=(-992) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-834 |#1|)) . T)) -((((-131)) . T)) -((((-131)) . T)) -(((|#3|) |has| |#3| (-1006)) (((-517)) -12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006))) (((-377 (-517))) -12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006)))) -((((-787)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(((|#1|) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006)))) -((((-493)) |has| |#1| (-558 (-493)))) -((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T)) -(|has| |#1| (-333)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-777))) -((((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|))) -(|has| |#2| (-752)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-777)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -((((-787)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-493)) |has| |#1| (-558 (-493)))) +((((-379 (-519))) . T) (($) . T)) +((((-790)) . T)) +(((|#1|) . T)) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-511))) +(|has| |#1| (-335)) +(-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|)))) +(|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) +(|has| |#1| (-335)) +((((-519)) . T)) +(|has| |#1| (-15 * (|#1| (-705) |#1|))) +((((-1049 |#2| (-379 (-879 |#1|)))) . T) (((-379 (-879 |#1|))) . T)) +((($) . T)) +(((|#1|) |has| |#1| (-157)) (($) . T)) +(((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) (($) . T)) +(((|#1|) . T)) +((((-519) |#1|) . T)) +(((|#2|) . T)) +(-3730 (|has| |#2| (-335)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) +(((|#1|) . T)) +((((-1082)) -12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(-12 (|has| |#1| (-335)) (|has| |#2| (-755))) +(-3730 (|has| |#1| (-280)) (|has| |#1| (-335)) (|has| |#1| (-321)) (|has| |#1| (-511))) +(((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519)))) ((|#1| |#1|) . T) (($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-511)))) +((($ $) |has| |#1| (-511))) +(((#0=(-634) (-1078 #0#)) . T)) +((((-790)) . T)) +((((-790)) . T) (((-1163 |#4|)) . T)) +((((-790)) . T) (((-1163 |#3|)) . T)) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) . T) (($) -3730 (|has| |#1| (-157)) (|has| |#1| (-511)))) +((($) |has| |#1| (-511))) +((((-790)) . T)) +((($) . T)) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) ((#0=(-379 (-519)) #0#) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) ((#1=(-1155 |#1| |#2| |#3|) #1#) |has| |#1| (-335)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) ((#0=(-379 (-519)) #0#) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335)))) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-511))) ((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519))))) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (((-1155 |#1| |#2| |#3|)) |has| |#1| (-335)) ((|#1|) . T)) +(((|#1|) . T) (($) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335)))) +(((|#3|) |has| |#3| (-968))) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-511))) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(|has| |#1| (-1011)) +(((|#2| (-754 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-335)) +((((-379 $) (-379 $)) |has| |#1| (-511)) (($ $) . T) ((|#1| |#1|) . T)) +(((#0=(-996) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-837 |#1|)) . T)) +((((-132)) . T)) +((((-132)) . T)) +(((|#3|) |has| |#3| (-1011)) (((-519)) -12 (|has| |#3| (-959 (-519))) (|has| |#3| (-1011))) (((-379 (-519))) -12 (|has| |#3| (-959 (-379 (-519)))) (|has| |#3| (-1011)))) +((((-790)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(((|#1|) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-782)) (|has| |#1| (-1011)))) +((((-495)) |has| |#1| (-560 (-495)))) +((((-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) . T)) +(|has| |#1| (-335)) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-780))) +((((-1082) |#1|) |has| |#1| (-480 (-1082) |#1|)) ((|#1| |#1|) |has| |#1| (-282 |#1|))) +(|has| |#2| (-755)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-780)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +((((-790)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-495)) |has| |#1| (-560 (-495)))) (((|#1| |#2|) . T)) -((((-1077)) -12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) -((((-1060) |#1|) . T)) -(((|#1| |#2| |#3| (-489 |#3|)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -((((-787)) . T)) -(((|#1|) . T)) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -(|has| |#1| (-338)) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -((((-517)) . T)) -((((-517)) . T)) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -((((-787)) . T)) -((((-787)) . T)) -(-12 (|has| |#2| (-207)) (|has| |#2| (-964))) -((((-1077) #0=(-794 |#1|)) |has| #0# (-478 (-1077) #0#)) ((#0# #0#) |has| #0# (-280 #0#))) -(((|#1|) . T)) -((((-517) |#4|) . T)) -((((-517) |#3|) . T)) -(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) -((((-1144 |#1| |#2| |#3| |#4|)) . T)) -((((-377 (-517))) . T) (((-517)) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) +((((-1082)) -12 (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))))) +((((-1065) |#1|) . T)) +(((|#1| |#2| |#3| (-491 |#3|)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +((((-790)) . T)) +(((|#1|) . T)) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +(|has| |#1| (-340)) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +((((-519)) . T)) +((((-519)) . T)) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +((((-790)) . T)) +((((-790)) . T)) +(-12 (|has| |#2| (-209)) (|has| |#2| (-968))) +((((-1082) #0=(-797 |#1|)) |has| #0# (-480 (-1082) #0#)) ((#0# #0#) |has| #0# (-282 #0#))) +(((|#1|) . T)) +((((-519) |#4|) . T)) +((((-519) |#3|) . T)) +(((|#1|) . T) (((-519)) |has| |#1| (-581 (-519)))) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) +((((-1149 |#1| |#2| |#3| |#4|)) . T)) +((((-379 (-519))) . T) (((-519)) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-517)) . T) (((-377 (-517))) . T)) -((((-517)) . T)) -((((-517)) . T)) -((($) . T) (((-517)) . T) (((-377 (-517))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517))))) -(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) -(((|#1|) |has| |#1| (-509))) -((((-517) |#4|) . T)) -((((-517) |#3|) . T)) -((((-787)) . T)) -((((-517)) . T) (((-377 (-517))) . T) (($) . T)) -((((-787)) . T)) -((((-517) |#1|) . T)) -(((|#1|) . T)) -((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T)) -((($) . T)) -((($ $) . T) ((#0=(-1077) $) . T) ((#0# |#1|) . T)) -(((|#2|) |has| |#2| (-156))) -((($) -3786 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517))))) -(((|#2| |#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($ $) |has| |#2| (-156))) -((((-131)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-338)) (|has| |#2| (-338))) -((((-787)) . T)) -(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($) |has| |#2| (-156))) -(((|#1|) . T)) -((((-787)) . T)) -(|has| |#1| (-1006)) -(|has| $ (-134)) -((((-517) |#1|) . T)) -((($) -3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) -((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) -(|has| |#1| (-333)) -(-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) -(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) -(|has| |#1| (-333)) -(|has| |#1| (-15 * (|#1| (-703) |#1|))) -(((|#1|) . T)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -((((-787)) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -(((|#2| (-489 (-789 |#1|))) . T)) -((((-787)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1|) . T)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -((((-530 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-519)) . T) (((-379 (-519))) . T)) +((((-519)) . T)) +((((-519)) . T)) +((($) . T) (((-519)) . T) (((-379 (-519))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((#0=(-519) #0#) . T) ((#1=(-379 (-519)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519))))) +(((|#1|) . T) (($) . T) (((-379 (-519))) . T)) +(((|#1|) |has| |#1| (-511))) +((((-519) |#4|) . T)) +((((-519) |#3|) . T)) +((((-790)) . T)) +((((-519)) . T) (((-379 (-519))) . T) (($) . T)) +((((-790)) . T)) +((((-519) |#1|) . T)) +(((|#1|) . T)) +((($ $) . T) ((#0=(-792 |#1|) $) . T) ((#0# |#2|) . T)) +((($) . T)) +((($ $) . T) ((#0=(-1082) $) . T) ((#0# |#1|) . T)) +(((|#2|) |has| |#2| (-157))) +((($) -3730 (|has| |#2| (-335)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) ((|#2|) |has| |#2| (-157)) (((-379 (-519))) |has| |#2| (-37 (-379 (-519))))) +(((|#2| |#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-968))) (($ $) |has| |#2| (-157))) +((((-132)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-340)) (|has| |#2| (-340))) +((((-790)) . T)) +(((|#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-968))) (($) |has| |#2| (-157))) +(((|#1|) . T)) +((((-790)) . T)) +(|has| |#1| (-1011)) +(|has| $ (-135)) +((((-519) |#1|) . T)) +((($) -3730 (|has| |#1| (-280)) (|has| |#1| (-335)) (|has| |#1| (-321)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) ((|#1|) . T)) +((((-1082)) -12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) +(|has| |#1| (-335)) +(-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|)))) +(|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) +(|has| |#1| (-335)) +(|has| |#1| (-15 * (|#1| (-705) |#1|))) +(((|#1|) . T)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +((((-790)) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +(((|#2| (-491 (-792 |#1|))) . T)) +((((-790)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1|) . T)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +((((-532 |#1|)) . T)) ((($) . T)) (((|#1|) . T) (($) . T)) -((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) +((((-519)) |has| |#1| (-581 (-519))) ((|#1|) . T)) (((|#4|) . T)) (((|#3|) . T)) -((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) -((((-1077)) -12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) -(((|#1|) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-517) |#2|) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) +((((-797 |#1|)) . T) (($) . T) (((-379 (-519))) . T)) +((((-1082)) -12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) +(((|#1|) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-519) |#2|) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509)))) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((#1=(-1075 |#1| |#2| |#3|) #1#) |has| |#1| (-333)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517))))) -(((|#2|) |has| |#2| (-964))) -(|has| |#1| (-1006)) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509)))) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T)) -(((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(((|#1|) |has| |#1| (-156)) (($) . T)) -(((|#1|) . T)) -(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) -((((-787)) . T)) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) +(((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519)))) ((|#1| |#1|) . T) (($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-511)))) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) ((#0=(-379 (-519)) #0#) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) ((#1=(-1080 |#1| |#2| |#3|) #1#) |has| |#1| (-335)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) ((#0=(-379 (-519)) #0#) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335)))) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-511))) ((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519))))) +(((|#2|) |has| |#2| (-968))) +(|has| |#1| (-1011)) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) . T) (($) -3730 (|has| |#1| (-157)) (|has| |#1| (-511)))) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (((-1080 |#1| |#2| |#3|)) |has| |#1| (-335)) ((|#1|) . T)) +(((|#1|) . T) (($) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335)))) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-511))) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(((|#1|) |has| |#1| (-157)) (($) . T)) +(((|#1|) . T)) +(((#0=(-379 (-519)) #0#) |has| |#2| (-37 (-379 (-519)))) ((|#2| |#2|) . T) (($ $) -3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) +((((-790)) . T)) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) |has| |#2| (-157)) (($) -3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))) -(((#0=(-992) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) -((($) . T)) -(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(((|#2|) |has| |#1| (-333))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1006)) (((-517)) -12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (((-377 (-517))) -12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) -((((-517) |#1|) . T)) -(((|#1| (-377 (-517))) . T)) -((((-377 |#2|) |#3|) . T)) -((((-377 (-517))) . T) (($) . T)) -((((-377 (-517))) . T) (($) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) -((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-377 (-517))) . T) (($) . T)) -((((-377 (-517))) . T) (($) . T)) -((((-377 (-517))) . T) (($) . T)) -(((|#2| |#3| (-789 |#1|)) . T)) -((((-1077)) |has| |#2| (-824 (-1077)))) -(((|#1|) . T)) -(((|#1| (-489 |#2|) |#2|) . T)) -(((|#1| (-703) (-992)) . T)) -((((-377 (-517))) |has| |#2| (-333)) (($) . T)) -(((|#1| (-489 (-996 (-1077))) (-996 (-1077))) . T)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(((|#1|) . T)) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(|has| |#2| (-725)) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#2| (-777)) -((((-817 |#1|)) . T) (((-751 |#1|)) . T)) -((((-751 (-1077))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-583 (-517))) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-493)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T)) -(|has| |#1| (-207)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) |has| |#1| (-157)) (($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836)))) +(((#0=(-996) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) . T) (($) -3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) +((($) . T)) +(((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) (($) . T)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(((|#2|) |has| |#1| (-335))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1011)) (((-519)) -12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011))) (((-379 (-519))) -12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) +((((-519) |#1|) . T)) +(((|#1| (-379 (-519))) . T)) +((((-379 |#2|) |#3|) . T)) +((((-379 (-519))) . T) (($) . T)) +((((-379 (-519))) . T) (($) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) |has| |#2| (-157)) (($) -3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) +((($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-379 (-519))) . T) (($) . T)) +((((-379 (-519))) . T) (($) . T)) +((((-379 (-519))) . T) (($) . T)) +(((|#2| |#3| (-792 |#1|)) . T)) +((((-1082)) |has| |#2| (-827 (-1082)))) +(((|#1|) . T)) +(((|#1| (-491 |#2|) |#2|) . T)) +(((|#1| (-705) (-996)) . T)) +((((-379 (-519))) |has| |#2| (-335)) (($) . T)) +(((|#1| (-491 (-1001 (-1082))) (-1001 (-1082))) . T)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(((|#1|) . T)) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(|has| |#2| (-727)) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +(|has| |#2| (-780)) +((((-820 |#1|)) . T) (((-754 |#1|)) . T)) +((((-754 (-1082))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-585 (-519))) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-495)) . T) (((-819 (-519))) . T) (((-351)) . T) (((-201)) . T)) +(|has| |#1| (-209)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-1150 |#1| |#2| |#3|) $) -12 (|has| (-1150 |#1| |#2| |#3|) (-258 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-1155 |#1| |#2| |#3|) $) -12 (|has| (-1155 |#1| |#2| |#3|) (-260 (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|))) (|has| |#1| (-335))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1042 |#1| |#2|)) |has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) -(((|#2|) . T) (((-517)) |has| |#2| (-955 (-517))) (((-377 (-517))) |has| |#2| (-955 (-377 (-517))))) -(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) -(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) +((((-1047 |#1| |#2|)) |has| (-1047 |#1| |#2|) (-282 (-1047 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) +(((|#2|) . T) (((-519)) |has| |#2| (-959 (-519))) (((-379 (-519))) |has| |#2| (-959 (-379 (-519))))) +(((|#3| |#3|) -12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) +(((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) -(((|#2|) . T)) -((((-787)) -3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) (((-1158 |#2|)) . T)) -(((|#1|) |has| |#1| (-156))) -((((-517)) . T)) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-517) (-131)) . T)) -((($) -3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) ((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964)))) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964))) -(((|#1|) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964))) -(((|#2|) |has| |#1| (-333))) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) +(((|#2|) . T)) +((((-790)) -3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-559 (-790))) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-340)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968)) (|has| |#2| (-1011))) (((-1163 |#2|)) . T)) +(((|#1|) |has| |#1| (-157))) +((((-519)) . T)) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) |has| |#1| (-157)) (($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836)))) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-519) (-132)) . T)) +((($) -3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) ((|#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-968)))) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-511)) (|has| |#1| (-968))) +(((|#1|) . T)) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-511)) (|has| |#1| (-968))) +(((|#2|) |has| |#1| (-335))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1| (-489 #0=(-1077)) #0#) . T)) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) ((|#1|) |has| |#1| (-157))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1| (-491 #0=(-1082)) #0#) . T)) (((|#1|) . T) (($) . T)) -(|has| |#4| (-156)) -(|has| |#3| (-156)) -(((#0=(-377 (-876 |#1|)) #0#) . T)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(|has| |#1| (-1006)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(|has| |#1| (-1006)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006)))) -((((-493)) |has| |#1| (-558 (-493)))) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(((|#1| |#1|) |has| |#1| (-156))) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517))))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1|) . T)) -((((-377 (-876 |#1|))) . T)) -(((|#1|) |has| |#1| (-156))) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -((((-787)) . T)) -((((-1144 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-964)) (((-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))) +(|has| |#4| (-157)) +(|has| |#3| (-157)) +(((#0=(-379 (-879 |#1|)) #0#) . T)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(|has| |#1| (-1011)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(|has| |#1| (-1011)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-782)) (|has| |#1| (-1011)))) +((((-495)) |has| |#1| (-560 (-495)))) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(((|#1| |#1|) |has| |#1| (-157))) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-511))) ((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519))))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1|) . T)) +((((-379 (-879 |#1|))) . T)) +(((|#1|) |has| |#1| (-157))) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-511))) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +((((-790)) . T)) +((((-1149 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-968)) (((-519)) -12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968)))) (((|#1| |#2|) . T)) -(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) -(|has| |#3| (-725)) -(-3786 (|has| |#3| (-725)) (|has| |#3| (-777))) -(|has| |#3| (-777)) -((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509)))) -(((|#2|) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -(((|#1| (-1058 |#1|)) |has| |#1| (-777))) -((((-517) |#2|) . T)) -(|has| |#1| (-1006)) -(((|#1|) . T)) -(-12 (|has| |#1| (-333)) (|has| |#2| (-1053))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(|has| |#1| (-1006)) -(((|#2|) . T)) -((((-493)) |has| |#2| (-558 (-493))) (((-816 (-349))) |has| |#2| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#2| (-558 (-816 (-517))))) -(((|#4|) -3786 (|has| |#4| (-156)) (|has| |#4| (-333)))) -(((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)))) -((((-787)) . T)) -(((|#1|) . T)) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-833))) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-833))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-833))) -((($ $) . T) ((#0=(-1077) $) |has| |#1| (-207)) ((#0# |#1|) |has| |#1| (-207)) ((#1=(-750 (-1077)) |#1|) . T) ((#1# $) . T)) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-833))) -((((-517) |#2|) . T)) -((((-787)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((($) -3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) ((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964)))) -((((-517) |#1|) . T)) -(|has| (-377 |#2|) (-134)) -(|has| (-377 |#2|) (-132)) -(((|#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|)))) -(|has| |#1| (-37 (-377 (-517)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-377 (-517))) . T)) -((((-787)) . T)) -(|has| |#1| (-509)) -(|has| |#1| (-509)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-787)) . T)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T)) -(|has| |#1| (-37 (-377 (-517)))) -((((-358) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#2| (-1053)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(((|#1|) . T)) -((((-358) (-1060)) . T)) -(|has| |#1| (-509)) -((((-111 |#1|)) . T)) -((((-517) |#1|) . T)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(((|#2|) . T)) -((((-787)) . T)) -((((-751 |#1|)) . T)) -(((|#2|) |has| |#2| (-156))) -((((-1077) (-51)) . T)) -(((|#1|) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-509)) -(((|#1|) |has| |#1| (-156))) -((((-787)) . T)) -((((-493)) |has| |#1| (-558 (-493)))) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(((|#2|) |has| |#2| (-280 |#2|))) -(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1073 |#1|)) . T)) -(|has| $ (-134)) -(((|#2|) . T)) -(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T)) -((($) . T) (((-517)) . T) (((-377 (-517))) . T)) -(|has| |#2| (-338)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -((((-517)) . T) (((-377 (-517))) . T) (($) . T)) +(-3730 (|has| |#3| (-157)) (|has| |#3| (-780)) (|has| |#3| (-968))) +(|has| |#3| (-727)) +(-3730 (|has| |#3| (-727)) (|has| |#3| (-780))) +(|has| |#3| (-780)) +((((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511))) ((|#2|) |has| |#1| (-335)) ((|#1|) |has| |#1| (-157))) +(((|#1|) |has| |#1| (-157)) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511)))) +(((|#2|) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +(((|#1| (-1063 |#1|)) |has| |#1| (-780))) +((((-519) |#2|) . T)) +(|has| |#1| (-1011)) +(((|#1|) . T)) +(-12 (|has| |#1| (-335)) (|has| |#2| (-1058))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(|has| |#1| (-1011)) +(((|#2|) . T)) +((((-495)) |has| |#2| (-560 (-495))) (((-819 (-351))) |has| |#2| (-560 (-819 (-351)))) (((-819 (-519))) |has| |#2| (-560 (-819 (-519))))) +(((|#4|) -3730 (|has| |#4| (-157)) (|has| |#4| (-335)))) +(((|#3|) -3730 (|has| |#3| (-157)) (|has| |#3| (-335)))) +((((-790)) . T)) +(((|#1|) . T)) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-836))) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-836))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-836))) +((($ $) . T) ((#0=(-1082) $) |has| |#1| (-209)) ((#0# |#1|) |has| |#1| (-209)) ((#1=(-753 (-1082)) |#1|) . T) ((#1# $) . T)) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-836))) +((((-519) |#2|) . T)) +((((-790)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((($) -3730 (|has| |#3| (-157)) (|has| |#3| (-780)) (|has| |#3| (-968))) ((|#3|) -3730 (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-968)))) +((((-519) |#1|) . T)) +(|has| (-379 |#2|) (-135)) +(|has| (-379 |#2|) (-133)) +(((|#2|) -12 (|has| |#1| (-335)) (|has| |#2| (-282 |#2|)))) +(|has| |#1| (-37 (-379 (-519)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-379 (-519))) . T)) +((((-790)) . T)) +(|has| |#1| (-511)) +(|has| |#1| (-511)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-790)) . T)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) . T)) +(|has| |#1| (-37 (-379 (-519)))) +((((-360) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#2| (-1058)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(((|#1|) . T)) +((((-360) (-1065)) . T)) +(|has| |#1| (-511)) +((((-112 |#1|)) . T)) +((((-519) |#1|) . T)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(((|#2|) . T)) +((((-790)) . T)) +((((-754 |#1|)) . T)) +(((|#2|) |has| |#2| (-157))) +((((-1082) (-51)) . T)) +(((|#1|) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-511)) +(((|#1|) |has| |#1| (-157))) +((((-790)) . T)) +((((-495)) |has| |#1| (-560 (-495)))) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(((|#2|) |has| |#2| (-282 |#2|))) +(((#0=(-519) #0#) . T) ((#1=(-379 (-519)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1078 |#1|)) . T)) +(|has| $ (-135)) +(((|#2|) . T)) +(((#0=(-519) #0#) . T) ((#1=(-379 (-519)) #1#) . T) (($ $) . T)) +((($) . T) (((-519)) . T) (((-379 (-519))) . T)) +(|has| |#2| (-340)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +((((-519)) . T) (((-379 (-519))) . T) (($) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-517)) . T) (((-377 (-517))) . T) (($) . T)) -((((-1075 |#1| |#2| |#3|) $) -12 (|has| (-1075 |#1| |#2| |#3|) (-258 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T)) -((((-787)) . T)) -((((-787)) . T)) -((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) -((((-493)) |has| |#1| (-558 (-493)))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) +((((-519)) . T) (((-379 (-519))) . T) (($) . T)) +((((-1080 |#1| |#2| |#3|) $) -12 (|has| (-1080 |#1| |#2| |#3|) (-260 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|))) (|has| |#1| (-335))) (($ $) . T)) +((((-790)) . T)) +((((-790)) . T)) +((($) . T) (((-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) ((|#1|) . T)) +((((-495)) |has| |#1| (-560 (-495)))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) ((($ $) . T)) ((($ $) . T)) -((((-787)) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((#0=(-1150 |#1| |#2| |#3|) #0#) -12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1077) #0#) -12 (|has| (-1150 |#1| |#2| |#3|) (-478 (-1077) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) -(-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-377 (-517))) . T) (((-517)) . T)) -((((-517) (-131)) . T)) -((((-131)) . T)) -(((|#1|) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964))) -((((-107)) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-107)) . T)) -(((|#1|) . T)) -((((-493)) |has| |#1| (-558 (-493))) (((-199)) . #0=(|has| |#1| (-940))) (((-349)) . #0#)) -((((-787)) . T)) -(|has| |#1| (-752)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(|has| |#1| (-779)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-509))) -(|has| |#1| (-509)) -(|has| |#1| (-833)) -(((|#1|) . T)) -(|has| |#1| (-1006)) -((((-787)) . T)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-509))) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -(((|#1| (-1158 |#1|) (-1158 |#1|)) . T)) -((((-517) (-131)) . T)) -((($) . T)) -(-3786 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-964))) -(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) -((((-787)) . T)) -(|has| |#1| (-1006)) -(((|#1| (-891)) . T)) +((((-790)) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((#0=(-1155 |#1| |#2| |#3|) #0#) -12 (|has| (-1155 |#1| |#2| |#3|) (-282 (-1155 |#1| |#2| |#3|))) (|has| |#1| (-335))) (((-1082) #0#) -12 (|has| (-1155 |#1| |#2| |#3|) (-480 (-1082) (-1155 |#1| |#2| |#3|))) (|has| |#1| (-335)))) +(-12 (|has| |#1| (-1011)) (|has| |#2| (-1011))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-379 (-519))) . T) (((-519)) . T)) +((((-519) (-132)) . T)) +((((-132)) . T)) +(((|#1|) . T)) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-511)) (|has| |#1| (-968))) +((((-108)) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-108)) . T)) +(((|#1|) . T)) +((((-495)) |has| |#1| (-560 (-495))) (((-201)) . #0=(|has| |#1| (-944))) (((-351)) . #0#)) +((((-790)) . T)) +(|has| |#1| (-755)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(|has| |#1| (-782)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-511))) +(|has| |#1| (-511)) +(|has| |#1| (-836)) +(((|#1|) . T)) +(|has| |#1| (-1011)) +((((-790)) . T)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-511))) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +(((|#1| (-1163 |#1|) (-1163 |#1|)) . T)) +((((-519) (-132)) . T)) +((($) . T)) +(-3730 (|has| |#4| (-157)) (|has| |#4| (-780)) (|has| |#4| (-968))) +(-3730 (|has| |#3| (-157)) (|has| |#3| (-780)) (|has| |#3| (-968))) +((((-790)) . T)) +(|has| |#1| (-1011)) +(((|#1| (-895)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) -(-12 (|has| |#1| (-442)) (|has| |#2| (-442))) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) +(-12 (|has| |#1| (-444)) (|has| |#2| (-444))) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(-3730 (-12 (|has| |#1| (-444)) (|has| |#2| (-444))) (-12 (|has| |#1| (-661)) (|has| |#2| (-661)))) (((|#1|) . T)) -(|has| |#2| (-725)) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) +(|has| |#2| (-727)) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(|has| |#2| (-777)) -(-12 (|has| |#1| (-725)) (|has| |#2| (-725))) -(-12 (|has| |#1| (-725)) (|has| |#2| (-725))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(|has| |#2| (-780)) +(-12 (|has| |#1| (-727)) (|has| |#2| (-727))) +(-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-156))) -(((|#1|) |has| |#1| (-156))) -((((-787)) . T)) -(|has| |#1| (-319)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-377 (-517))) . T) (($) . T)) -((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T)) -(|has| |#1| (-760)) -((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T)) -(|has| |#1| (-1006)) -(((|#1| $) |has| |#1| (-258 |#1| |#1|))) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) -((($) |has| |#1| (-509))) -(((|#4|) |has| |#4| (-1006))) -(((|#3|) |has| |#3| (-1006))) -(|has| |#3| (-338)) -(((|#1|) . T) (((-787)) . T)) -((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509)))) -((((-787)) . T)) -((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(((|#2|) . T)) -(((|#1| |#1|) |has| |#1| (-156))) +(((|#2|) |has| |#2| (-157))) +(((|#1|) |has| |#1| (-157))) +((((-790)) . T)) +(|has| |#1| (-321)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-379 (-519))) . T) (($) . T)) +((($) . T) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) ((|#1|) . T)) +(|has| |#1| (-763)) +((((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) (((-519)) |has| |#1| (-959 (-519))) ((|#1|) . T)) +(|has| |#1| (-1011)) +(((|#1| $) |has| |#1| (-260 |#1| |#1|))) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-511))) +((($) |has| |#1| (-511))) +(((|#4|) |has| |#4| (-1011))) +(((|#3|) |has| |#3| (-1011))) +(|has| |#3| (-340)) +(((|#1|) . T) (((-790)) . T)) +((((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511))) (((-1155 |#1| |#2| |#3|)) |has| |#1| (-335)) ((|#1|) |has| |#1| (-157))) +(((|#1|) |has| |#1| (-157)) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511)))) +((((-790)) . T)) +((($) |has| |#1| (-511)) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(((|#2|) . T)) +(((|#1| |#1|) |has| |#1| (-157))) (((|#1| |#2|) . T)) -(|has| |#2| (-333)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-156))) -((((-377 (-517))) . T) (((-517)) . T)) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517))))) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) -((((-131)) . T)) -(((|#1|) . T)) -((((-131)) . T)) -((($) -3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) ((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964)))) -((((-131)) . T)) +(|has| |#2| (-335)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-157))) +((((-379 (-519))) . T) (((-519)) . T)) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-511))) ((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519))))) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-511))) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) +((((-132)) . T)) +(((|#1|) . T)) +((((-132)) . T)) +((($) -3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) ((|#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-968)))) +((((-132)) . T)) (((|#1| |#2| |#3|) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964))) -(|has| $ (-134)) -(|has| $ (-134)) -(|has| |#1| (-1006)) -((((-787)) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-964)) (|has| |#1| (-1018))) -((($ $) |has| |#1| (-258 $ $)) ((|#1| $) |has| |#1| (-258 |#1| |#1|))) -(((|#1| (-377 (-517))) . T)) -(((|#1|) . T)) -((((-1077)) . T)) -(|has| |#1| (-509)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(|has| |#1| (-509)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -((((-787)) . T)) -(|has| |#2| (-132)) -(|has| |#2| (-134)) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-511)) (|has| |#1| (-968))) +(|has| $ (-135)) +(|has| $ (-135)) +(|has| |#1| (-1011)) +((((-790)) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-444)) (|has| |#1| (-511)) (|has| |#1| (-968)) (|has| |#1| (-1023))) +((($ $) |has| |#1| (-260 $ $)) ((|#1| $) |has| |#1| (-260 |#1| |#1|))) +(((|#1| (-379 (-519))) . T)) +(((|#1|) . T)) +((((-1082)) . T)) +(|has| |#1| (-511)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(|has| |#1| (-511)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +((((-790)) . T)) +(|has| |#2| (-133)) +(|has| |#2| (-135)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-134)) -(|has| |#1| (-132)) -(|has| |#4| (-777)) -(((|#2| (-214 (-3573 |#1|) (-703)) (-789 |#1|)) . T)) -(|has| |#3| (-777)) -(((|#1| (-489 |#3|) |#3|) . T)) -(|has| |#1| (-134)) -(|has| |#1| (-132)) -(((#0=(-377 (-517)) #0#) |has| |#2| (-333)) (($ $) . T)) -((((-794 |#1|)) . T)) -(|has| |#1| (-134)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-132)) -((((-377 (-517))) |has| |#2| (-333)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -(-3786 (|has| |#1| (-319)) (|has| |#1| (-338))) -((((-1044 |#2| |#1|)) . T) ((|#1|) . T)) -(|has| |#2| (-156)) +(|has| |#1| (-135)) +(|has| |#1| (-133)) +(|has| |#4| (-780)) +(((|#2| (-216 (-3532 |#1|) (-705)) (-792 |#1|)) . T)) +(|has| |#3| (-780)) +(((|#1| (-491 |#3|) |#3|) . T)) +(|has| |#1| (-135)) +(|has| |#1| (-133)) +(((#0=(-379 (-519)) #0#) |has| |#2| (-335)) (($ $) . T)) +((((-797 |#1|)) . T)) +(|has| |#1| (-135)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +(|has| |#1| (-133)) +((((-379 (-519))) |has| |#2| (-335)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +(-3730 (|has| |#1| (-321)) (|has| |#1| (-340))) +((((-1049 |#2| |#1|)) . T) ((|#1|) . T)) +(|has| |#2| (-157)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-207)) (|has| |#2| (-964))) -(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(-3786 (|has| |#3| (-725)) (|has| |#3| (-777))) -(-3786 (|has| |#3| (-725)) (|has| |#3| (-777))) -((((-787)) . T)) +(-12 (|has| |#2| (-209)) (|has| |#2| (-968))) +(((|#2|) . T) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(-3730 (|has| |#3| (-727)) (|has| |#3| (-780))) +(-3730 (|has| |#3| (-727)) (|has| |#3| (-780))) +((((-790)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-632)) . T)) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(|has| |#1| (-509)) +((((-634)) . T)) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(|has| |#1| (-511)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1077) (-51)) . T)) -((((-787)) . T)) -((((-493)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T)) +((((-1082) (-51)) . T)) +((((-790)) . T)) +((((-495)) . T) (((-819 (-519))) . T) (((-351)) . T) (((-201)) . T)) (((|#1|) . T)) -((((-787)) . T)) -((((-493)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T)) -(((|#1| (-517)) . T)) -((((-787)) . T)) -((((-787)) . T)) +((((-790)) . T)) +((((-495)) . T) (((-819 (-519))) . T) (((-351)) . T) (((-201)) . T)) +(((|#1| (-519)) . T)) +((((-790)) . T)) +((((-790)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-377 (-517))) . T)) -(((|#3|) . T) (((-556 $)) . T)) +(((|#1| (-379 (-519))) . T)) +(((|#3|) . T) (((-558 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) ((($ $) . T) ((|#2| $) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -(((#0=(-1075 |#1| |#2| |#3|) #0#) -12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1077) #0#) -12 (|has| (-1075 |#1| |#2| |#3|) (-478 (-1077) (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) -((((-517)) . T) (($) . T) (((-377 (-517))) . T)) -((((-787)) . T)) -((((-787)) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +(((#0=(-1080 |#1| |#2| |#3|) #0#) -12 (|has| (-1080 |#1| |#2| |#3|) (-282 (-1080 |#1| |#2| |#3|))) (|has| |#1| (-335))) (((-1082) #0#) -12 (|has| (-1080 |#1| |#2| |#3|) (-480 (-1082) (-1080 |#1| |#2| |#3|))) (|has| |#1| (-335)))) +((((-519)) . T) (($) . T) (((-379 (-519))) . T)) +((((-790)) . T)) +((((-790)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))))) -((((-787)) . T)) +(((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) |has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))))) +((((-790)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1077) (-51)) . T)) +((((-1082) (-51)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-760)) -(|has| |#1| (-1006)) -(((|#2| |#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($ $) |has| |#2| (-156))) -(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)))) -((((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($) |has| |#2| (-156))) -((((-703)) . T)) -((((-517)) . T)) -(|has| |#1| (-509)) -((((-787)) . T)) -(((|#1| (-377 (-517)) (-992)) . T)) -(|has| |#1| (-132)) -(((|#1|) . T)) -(|has| |#1| (-509)) -((((-517)) . T)) -((((-111 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-134)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-509))) -((((-816 (-517))) . T) (((-816 (-349))) . T) (((-493)) . T) (((-1077)) . T)) -((((-787)) . T)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -((($) . T)) -((((-787)) . T)) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -(((|#2|) |has| |#2| (-156))) -((($) -3786 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517))))) -((((-794 |#1|)) . T)) -(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) -(-12 (|has| |#3| (-207)) (|has| |#3| (-964))) -(|has| |#2| (-1053)) -(((#0=(-51)) . T) (((-2 (|:| -2576 (-1077)) (|:| -1846 #0#))) . T)) +((($ $) . T) ((#0=(-792 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-763)) +(|has| |#1| (-1011)) +(((|#2| |#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-968))) (($ $) |has| |#2| (-157))) +(((|#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)))) +((((-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-968))) (($) |has| |#2| (-157))) +((((-705)) . T)) +((((-519)) . T)) +(|has| |#1| (-511)) +((((-790)) . T)) +(((|#1| (-379 (-519)) (-996)) . T)) +(|has| |#1| (-133)) +(((|#1|) . T)) +(|has| |#1| (-511)) +((((-519)) . T)) +((((-112 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-135)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-511))) +((((-819 (-519))) . T) (((-819 (-351))) . T) (((-495)) . T) (((-1082)) . T)) +((((-790)) . T)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +((($) . T)) +((((-790)) . T)) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +(((|#2|) |has| |#2| (-157))) +((($) -3730 (|has| |#2| (-335)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) ((|#2|) |has| |#2| (-157)) (((-379 (-519))) |has| |#2| (-37 (-379 (-519))))) +((((-797 |#1|)) . T)) +(-3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-340)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968)) (|has| |#2| (-1011))) +(-12 (|has| |#3| (-209)) (|has| |#3| (-968))) +(|has| |#2| (-1058)) +(((#0=(-51)) . T) (((-2 (|:| -2583 (-1082)) (|:| -3100 #0#))) . T)) (((|#1| |#2|) . T)) -(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) -(((|#1| (-517) (-992)) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1| (-377 (-517)) (-992)) . T)) -((($) -3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) -((((-517) |#2|) . T)) +(-3730 (|has| |#3| (-157)) (|has| |#3| (-780)) (|has| |#3| (-968))) +(((|#1| (-519) (-996)) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1| (-379 (-519)) (-996)) . T)) +((($) -3730 (|has| |#1| (-280)) (|has| |#1| (-335)) (|has| |#1| (-321)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) ((|#1|) . T)) +((((-519) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-338)) -(-12 (|has| |#1| (-338)) (|has| |#2| (-338))) -((((-787)) . T)) -((((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|))) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -(((|#1|) . T)) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) -((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509)))) -((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-787)) . T)) -(|has| |#1| (-319)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) -(|has| |#1| (-509)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-787)) . T)) +(|has| |#2| (-340)) +(-12 (|has| |#1| (-340)) (|has| |#2| (-340))) +((((-790)) . T)) +((((-1082) |#1|) |has| |#1| (-480 (-1082) |#1|)) ((|#1| |#1|) |has| |#1| (-282 |#1|))) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +(((|#1|) . T)) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-511))) +((((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511))) (((-1080 |#1| |#2| |#3|)) |has| |#1| (-335)) ((|#1|) |has| |#1| (-157))) +(((|#1|) |has| |#1| (-157)) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511)))) +((($) |has| |#1| (-511)) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-790)) . T)) +(|has| |#1| (-321)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((#0=(-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) #0#) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) +(|has| |#1| (-511)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-790)) . T)) (((|#1| |#2|) . T)) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-833))) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-833))) -((((-377 (-517))) . T) (((-517)) . T)) -((((-517)) . T)) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) -((($) . T)) -((((-787)) . T)) -(((|#1|) . T)) -((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) -((((-787)) . T)) -(((|#3| |#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964))) (($ $) |has| |#3| (-156))) -(|has| |#1| (-940)) -((((-787)) . T)) -(((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964))) (($) |has| |#3| (-156))) -((((-517) (-107)) . T)) -(((|#1|) |has| |#1| (-280 |#1|))) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -((((-1077) $) |has| |#1| (-478 (-1077) $)) (($ $) |has| |#1| (-280 $)) ((|#1| |#1|) |has| |#1| (-280 |#1|)) (((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|))) -((((-1077)) |has| |#1| (-824 (-1077)))) -(-3786 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319))) -((((-358) (-1024)) . T)) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-836))) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-836))) +((((-379 (-519))) . T) (((-519)) . T)) +((((-519)) . T)) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) |has| |#2| (-157)) (($) -3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) +((($) . T)) +((((-790)) . T)) +(((|#1|) . T)) +((((-797 |#1|)) . T) (($) . T) (((-379 (-519))) . T)) +((((-790)) . T)) +(((|#3| |#3|) -3730 (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-968))) (($ $) |has| |#3| (-157))) +(|has| |#1| (-944)) +((((-790)) . T)) +(((|#3|) -3730 (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-968))) (($) |has| |#3| (-157))) +((((-519) (-108)) . T)) +(((|#1|) |has| |#1| (-282 |#1|))) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +((((-1082) $) |has| |#1| (-480 (-1082) $)) (($ $) |has| |#1| (-282 $)) ((|#1| |#1|) |has| |#1| (-282 |#1|)) (((-1082) |#1|) |has| |#1| (-480 (-1082) |#1|))) +((((-1082)) |has| |#1| (-827 (-1082)))) +(-3730 (-12 (|has| |#1| (-209)) (|has| |#1| (-335))) (|has| |#1| (-321))) +((((-360) (-1029)) . T)) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) -((((-358) |#1|) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-319))) -(|has| |#1| (-1006)) -((((-787)) . T)) -((((-787)) . T)) -((((-834 |#1|)) . T)) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))) +((((-360) |#1|) . T)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-321))) +(|has| |#1| (-1011)) +((((-790)) . T)) +((((-790)) . T)) +((((-837 |#1|)) . T)) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) |has| |#2| (-157)) (($) -3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) |has| |#1| (-157)) (($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836)))) (((|#1| |#2|) . T)) ((($) . T)) (((|#1| |#1|) . T)) -(((#0=(-794 |#1|)) |has| #0# (-280 #0#))) +(((#0=(-797 |#1|)) |has| #0# (-282 #0#))) (((|#1| |#2|) . T)) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) -(-12 (|has| |#1| (-725)) (|has| |#2| (-725))) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) +(-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (((|#1|) . T)) -(-12 (|has| |#1| (-725)) (|has| |#2| (-725))) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) +(-12 (|has| |#1| (-727)) (|has| |#2| (-727))) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(|has| |#1| (-1098)) -(((#0=(-517) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T)) -((((-377 (-517))) . T) (($) . T)) -(((|#4|) |has| |#4| (-964))) -(((|#3|) |has| |#3| (-964))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -(|has| |#1| (-333)) -((((-517)) . T) (((-377 (-517))) . T) (($) . T)) -((($ $) . T) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) -((((-787)) . T)) -((((-787)) . T)) -(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) -(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-517) |#3|) . T)) -((((-787)) . T)) -((((-493)) |has| |#3| (-558 (-493)))) -((((-623 |#3|)) . T) (((-787)) . T)) +(((|#2|) . T) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(|has| |#1| (-1103)) +(((#0=(-519) #0#) . T) ((#1=(-379 (-519)) #1#) . T) (($ $) . T)) +((((-379 (-519))) . T) (($) . T)) +(((|#4|) |has| |#4| (-968))) +(((|#3|) |has| |#3| (-968))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +(|has| |#1| (-335)) +((((-519)) . T) (((-379 (-519))) . T) (($) . T)) +((($ $) . T) ((#0=(-379 (-519)) #0#) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) ((|#1| |#1|) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +(((|#1|) . T) (($) . T) (((-379 (-519))) . T)) +((((-790)) . T)) +((((-790)) . T)) +(((|#1|) . T) (($) . T) (((-379 (-519))) . T)) +(((|#1|) . T) (($) . T) (((-379 (-519))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-519) |#3|) . T)) +((((-790)) . T)) +((((-495)) |has| |#3| (-560 (-495)))) +((((-625 |#3|)) . T) (((-790)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-777)) -(|has| |#1| (-777)) -((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-509))) -(((#0=(-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) #0#) |has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))))) -((($) . T)) -(|has| |#2| (-779)) -((($) . T)) -(((|#2|) |has| |#2| (-1006))) -((((-787)) -3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) (((-1158 |#2|)) . T)) -(|has| |#1| (-779)) -(|has| |#1| (-779)) -((((-1060) (-51)) . T)) -(|has| |#1| (-779)) -((((-787)) . T)) -((((-517)) |has| #0=(-377 |#2|) (-579 (-517))) ((#0#) . T)) -((((-517) (-131)) . T)) -((((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((|#1| |#2|) . T)) -((((-377 (-517))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-787)) . T)) -((((-834 |#1|)) . T)) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) -(|has| |#1| (-777)) -(|has| |#1| (-333)) -(|has| |#1| (-777)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +((($) . T) (((-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) ((|#1|) . T)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-511))) +(((#0=(-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) #0#) |has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))))) +((($) . T)) +(|has| |#2| (-782)) +((($) . T)) +(((|#2|) |has| |#2| (-1011))) +((((-790)) -3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-559 (-790))) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-340)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968)) (|has| |#2| (-1011))) (((-1163 |#2|)) . T)) +(|has| |#1| (-782)) +(|has| |#1| (-782)) +((((-1065) (-51)) . T)) +(|has| |#1| (-782)) +((((-790)) . T)) +((((-519)) |has| #0=(-379 |#2|) (-581 (-519))) ((#0#) . T)) +((((-519) (-132)) . T)) +((((-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T) ((|#1| |#2|) . T)) +((((-379 (-519))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-790)) . T)) +((((-837 |#1|)) . T)) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +(|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) +(|has| |#1| (-780)) +(|has| |#1| (-335)) +(|has| |#1| (-780)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-777)) -((((-1077)) |has| |#1| (-824 (-1077)))) -(((|#1| (-1077)) . T)) -(((|#1| (-1158 |#1|) (-1158 |#1|)) . T)) +(|has| |#1| (-780)) +((((-1082)) |has| |#1| (-827 (-1082)))) +(((|#1| (-1082)) . T)) +(((|#1| (-1163 |#1|) (-1163 |#1|)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -(|has| |#1| (-1006)) -(((|#1| (-1077) (-750 (-1077)) (-489 (-750 (-1077)))) . T)) -((((-377 (-876 |#1|))) . T)) -((((-493)) . T)) -((((-787)) . T)) +(|has| |#1| (-1011)) +(((|#1| (-1082) (-753 (-1082)) (-491 (-753 (-1082)))) . T)) +((((-379 (-879 |#1|))) . T)) +((((-495)) . T)) +((((-790)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -(((|#1|) |has| |#1| (-156))) -((((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-157))) +((((-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +((($) |has| |#1| (-511)) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (((|#3|) . T)) -(((|#1|) |has| |#1| (-156))) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833)))) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-493)) |has| |#1| (-558 (-493))) (((-816 (-349))) |has| |#1| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#1| (-558 (-816 (-517))))) -((((-787)) . T)) -(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(|has| |#2| (-777)) -(-12 (|has| |#2| (-207)) (|has| |#2| (-964))) -(|has| |#1| (-509)) -(|has| |#1| (-1053)) -((((-1060) |#1|) . T)) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T)) -((((-377 (-517))) |has| |#1| (-955 (-517))) (((-517)) |has| |#1| (-955 (-517))) (((-1077)) |has| |#1| (-955 (-1077))) ((|#1|) . T)) -((((-517) |#2|) . T)) -((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T)) -((((-517)) |has| |#1| (-810 (-517))) (((-349)) |has| |#1| (-810 (-349)))) -((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T)) -(((|#1|) . T)) -((((-583 |#4|)) . T) (((-787)) . T)) -((((-493)) |has| |#4| (-558 (-493)))) -((((-493)) |has| |#4| (-558 (-493)))) -((((-787)) . T) (((-583 |#4|)) . T)) -((($) |has| |#1| (-777))) -(((|#1|) . T)) -((((-583 |#4|)) . T) (((-787)) . T)) -((((-493)) |has| |#4| (-558 (-493)))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1077)) |has| (-377 |#2|) (-824 (-1077)))) -(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-787)) -3786 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-557 (-787))) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964)) (|has| |#3| (-1006))) (((-1158 |#3|)) . T)) -((((-517) |#2|) . T)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(((|#2| |#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($ $) |has| |#2| (-156))) -((((-787)) . T)) -((((-787)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((|#2|) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-1060) (-1077) (-517) (-199) (-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -((((-787)) . T)) -((((-517) (-107)) . T)) -(((|#1|) . T)) -((((-787)) . T)) -((((-107)) . T)) -((((-107)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-107)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -((((-787)) . T)) -((((-493)) |has| |#1| (-558 (-493)))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-964))) (($) |has| |#2| (-156))) -(|has| $ (-134)) -((((-377 |#2|)) . T)) -((((-377 (-517))) |has| #0=(-377 |#2|) (-955 (-377 (-517)))) (((-517)) |has| #0# (-955 (-517))) ((#0#) . T)) +(((|#1|) |has| |#1| (-157))) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) |has| |#1| (-157)) (($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836)))) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-495)) |has| |#1| (-560 (-495))) (((-819 (-351))) |has| |#1| (-560 (-819 (-351)))) (((-819 (-519))) |has| |#1| (-560 (-819 (-519))))) +((((-790)) . T)) +(((|#2|) . T) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(|has| |#2| (-780)) +(-12 (|has| |#2| (-209)) (|has| |#2| (-968))) +(|has| |#1| (-511)) +(|has| |#1| (-1058)) +((((-1065) |#1|) . T)) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(((#0=(-379 (-519)) #0#) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) ((|#1| |#1|) . T)) +((((-379 (-519))) |has| |#1| (-959 (-519))) (((-519)) |has| |#1| (-959 (-519))) (((-1082)) |has| |#1| (-959 (-1082))) ((|#1|) . T)) +((((-519) |#2|) . T)) +((((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) (((-519)) |has| |#1| (-959 (-519))) ((|#1|) . T)) +((((-519)) |has| |#1| (-813 (-519))) (((-351)) |has| |#1| (-813 (-351)))) +((((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) ((|#1|) . T)) +(((|#1|) . T)) +((((-585 |#4|)) . T) (((-790)) . T)) +((((-495)) |has| |#4| (-560 (-495)))) +((((-495)) |has| |#4| (-560 (-495)))) +((((-790)) . T) (((-585 |#4|)) . T)) +((($) |has| |#1| (-780))) +(((|#1|) . T)) +((((-585 |#4|)) . T) (((-790)) . T)) +((((-495)) |has| |#4| (-560 (-495)))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1082)) |has| (-379 |#2|) (-827 (-1082)))) +(((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((#0=(-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) #0#) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-790)) -3730 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-559 (-790))) (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-340)) (|has| |#3| (-727)) (|has| |#3| (-780)) (|has| |#3| (-968)) (|has| |#3| (-1011))) (((-1163 |#3|)) . T)) +((((-519) |#2|) . T)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(((|#2| |#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-968))) (($ $) |has| |#2| (-157))) +((((-790)) . T)) +((((-790)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T) ((|#2|) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-1065) (-1082) (-519) (-201) (-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +((((-790)) . T)) +((((-519) (-108)) . T)) +(((|#1|) . T)) +((((-790)) . T)) +((((-108)) . T)) +((((-108)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-108)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +((((-790)) . T)) +((((-495)) |has| |#1| (-560 (-495)))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +(((|#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-968))) (($) |has| |#2| (-157))) +(|has| $ (-135)) +((((-379 |#2|)) . T)) +((((-379 (-519))) |has| #0=(-379 |#2|) (-959 (-379 (-519)))) (((-519)) |has| #0# (-959 (-519))) ((#0#) . T)) (((|#2| |#2|) . T)) -(((|#4|) |has| |#4| (-156))) -(|has| |#2| (-132)) -(|has| |#2| (-134)) -(((|#3|) |has| |#3| (-156))) -(|has| |#1| (-134)) -(|has| |#1| (-132)) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -(|has| |#1| (-134)) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -(|has| |#1| (-134)) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -(|has| |#1| (-134)) -(((|#1|) . T)) -(((|#2|) . T)) -(|has| |#2| (-207)) -((((-1077) (-51)) . T)) -((((-787)) . T)) +(((|#4|) |has| |#4| (-157))) +(|has| |#2| (-133)) +(|has| |#2| (-135)) +(((|#3|) |has| |#3| (-157))) +(|has| |#1| (-135)) +(|has| |#1| (-133)) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +(|has| |#1| (-135)) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +(|has| |#1| (-135)) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +(|has| |#1| (-135)) +(((|#1|) . T)) +(((|#2|) . T)) +(|has| |#2| (-209)) +((((-1082) (-51)) . T)) +((((-790)) . T)) (((|#1| |#1|) . T)) -((((-1077)) |has| |#2| (-824 (-1077)))) -((((-517) (-107)) . T)) -(|has| |#1| (-509)) +((((-1082)) |has| |#2| (-827 (-1082)))) +((((-519) (-108)) . T)) +(|has| |#1| (-511)) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) (((|#3|) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(((|#1|) . T)) -((((-787)) . T)) -((((-493)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-918 |#1|)) . T) ((|#1|) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1073 |#1|)) . T)) -((((-517)) . T) (($) . T) (((-377 (-517))) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(((|#1|) . T)) +((((-790)) . T)) +((((-495)) . T) (((-819 (-519))) . T) (((-351)) . T) (((-201)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-922 |#1|)) . T) ((|#1|) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-379 (-519))) . T) (((-379 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1078 |#1|)) . T)) +((((-519)) . T) (($) . T) (((-379 (-519))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-779)) +(|has| |#1| (-782)) (((|#2|) . T)) -((((-517)) . T) (($) . T) (((-377 (-517))) . T)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T)) -((((-517) |#2|) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) +((((-519)) . T) (($) . T) (((-379 (-519))) . T)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) . T)) +((((-519) |#2|) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) (((|#2|) . T)) -((((-517) |#3|) . T)) +((((-519) |#3|) . T)) (((|#2|) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -((((-787)) . T)) -(|has| |#1| (-1006)) -(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) -(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +((((-1155 |#1| |#2| |#3|)) |has| |#1| (-335))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +((((-790)) . T)) +(|has| |#1| (-1011)) +(((|#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) +(((|#3|) -12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (((|#2|) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((#0=(-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) #0#) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#2| (-333)) -(((|#2|) . T) (((-517)) |has| |#2| (-955 (-517))) (((-377 (-517))) |has| |#2| (-955 (-377 (-517))))) +(|has| |#2| (-335)) +(((|#2|) . T) (((-519)) |has| |#2| (-959 (-519))) (((-379 (-519))) |has| |#2| (-959 (-379 (-519))))) (((|#2|) . T)) -((((-1060) (-51)) . T)) -(((|#2|) |has| |#2| (-156))) -((((-517) |#3|) . T)) -((((-517) (-131)) . T)) -((((-131)) . T)) -((((-787)) . T)) -((((-107)) . T)) -(|has| |#1| (-134)) +((((-1065) (-51)) . T)) +(((|#2|) |has| |#2| (-157))) +((((-519) |#3|) . T)) +((((-519) (-132)) . T)) +((((-132)) . T)) +((((-790)) . T)) +((((-108)) . T)) +(|has| |#1| (-135)) (((|#1|) . T)) -(|has| |#1| (-132)) +(|has| |#1| (-133)) ((($) . T)) -(|has| |#1| (-509)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +(|has| |#1| (-511)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) -((((-787)) . T)) -((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) -((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) -((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) -((((-1060) (-51)) . T)) +(((|#2|) . T) (((-519)) |has| |#2| (-581 (-519)))) +((((-790)) . T)) +((((-519)) |has| |#1| (-581 (-519))) ((|#1|) . T)) +((((-519)) |has| |#1| (-581 (-519))) ((|#1|) . T)) +((((-519)) |has| |#1| (-581 (-519))) ((|#1|) . T)) +((((-1065) (-51)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (((|#1| |#2|) . T)) -((((-517) (-131)) . T)) -(((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) -((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(|has| |#1| (-779)) -(((|#2| (-703) (-992)) . T)) +((((-519) (-132)) . T)) +(((#0=(-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) #0#) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) +((($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(|has| |#1| (-782)) +(((|#2| (-705) (-996)) . T)) (((|#1| |#2|) . T)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-509))) -(|has| |#1| (-723)) -(((|#1|) |has| |#1| (-156))) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-511))) +(|has| |#1| (-725)) +(((|#1|) |has| |#1| (-157))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-3786 (|has| |#1| (-134)) (-12 (|has| |#1| (-333)) (|has| |#2| (-134)))) -(-3786 (|has| |#1| (-132)) (-12 (|has| |#1| (-333)) (|has| |#2| (-132)))) +(-3730 (|has| |#1| (-135)) (-12 (|has| |#1| (-335)) (|has| |#2| (-135)))) +(-3730 (|has| |#1| (-133)) (-12 (|has| |#1| (-335)) (|has| |#2| (-133)))) (((|#4|) . T)) -(|has| |#1| (-132)) -((((-1060) |#1|) . T)) -(|has| |#1| (-134)) +(|has| |#1| (-133)) +((((-1065) |#1|) . T)) +(|has| |#1| (-135)) (((|#1|) . T)) -((((-517)) . T)) -((((-787)) . T)) +((((-519)) . T)) +((((-790)) . T)) (((|#1| |#2|) . T)) -((((-787)) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +((((-790)) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (((|#3|) . T)) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333))) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(((|#1|) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006))) (((-881 |#1|)) . T)) -(|has| |#1| (-777)) -(|has| |#1| (-777)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(|has| |#2| (-333)) -(((|#1|) |has| |#1| (-156))) -(((|#2|) |has| |#2| (-964))) -((((-1060) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) -(((|#2| (-817 |#1|)) . T)) -((($) . T)) -((((-358) (-1060)) . T)) -((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-787)) -3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) (((-1158 |#2|)) . T)) -(((#0=(-51)) . T) (((-2 (|:| -2576 (-1060)) (|:| -1846 #0#))) . T)) -(((|#1|) . T)) -((((-787)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) -((((-131)) . T)) -(|has| |#2| (-132)) -(|has| |#2| (-134)) -(|has| |#1| (-442)) -(-3786 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964))) -(|has| |#1| (-333)) -((((-787)) . T)) -(|has| |#1| (-37 (-377 (-517)))) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) -((($) |has| |#1| (-509))) -(|has| |#1| (-777)) -(|has| |#1| (-777)) -((((-787)) . T)) -((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509)))) -((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((((-1155 |#1| |#2| |#3|)) |has| |#1| (-335))) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(((|#1|) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011))) (((-884 |#1|)) . T)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(|has| |#2| (-335)) +(((|#1|) |has| |#1| (-157))) +(((|#2|) |has| |#2| (-968))) +((((-1065) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) +(((|#2| (-820 |#1|)) . T)) +((($) . T)) +((((-360) (-1065)) . T)) +((($) |has| |#1| (-511)) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-790)) -3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-559 (-790))) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-340)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968)) (|has| |#2| (-1011))) (((-1163 |#2|)) . T)) +(((#0=(-51)) . T) (((-2 (|:| -2583 (-1065)) (|:| -3100 #0#))) . T)) +(((|#1|) . T)) +((((-790)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) +((((-132)) . T)) +(|has| |#2| (-133)) +(|has| |#2| (-135)) +(|has| |#1| (-444)) +(-3730 (|has| |#1| (-444)) (|has| |#1| (-661)) (|has| |#1| (-827 (-1082))) (|has| |#1| (-968))) +(|has| |#1| (-335)) +((((-790)) . T)) +(|has| |#1| (-37 (-379 (-519)))) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-511))) +((($) |has| |#1| (-511))) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +((((-790)) . T)) +((((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511))) (((-1155 |#1| |#2| |#3|)) |has| |#1| (-335)) ((|#1|) |has| |#1| (-157))) +(((|#1|) |has| |#1| (-157)) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511)))) +((($) |has| |#1| (-511)) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) (((|#1| |#2|) . T)) -((((-1077)) |has| |#1| (-824 (-1077)))) -((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) -((((-787)) . T)) -((((-787)) . T)) -(|has| |#1| (-1006)) -(((|#2| (-450 (-3573 |#1|) (-703)) (-789 |#1|)) . T)) -((((-377 (-517))) . #0=(|has| |#2| (-333))) (($) . #0#)) -(((|#1| (-489 (-1077)) (-1077)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-787)) . T)) -((((-787)) . T)) +((((-1082)) |has| |#1| (-827 (-1082)))) +((((-837 |#1|)) . T) (((-379 (-519))) . T) (($) . T)) +((((-790)) . T)) +((((-790)) . T)) +(|has| |#1| (-1011)) +(((|#2| (-452 (-3532 |#1|) (-705)) (-792 |#1|)) . T)) +((((-379 (-519))) . #0=(|has| |#2| (-335))) (($) . #0#)) +(((|#1| (-491 (-1082)) (-1082)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-790)) . T)) +((((-790)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-156)) +(|has| |#2| (-157)) (((|#2| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(|has| |#1| (-132)) -(|has| |#1| (-134)) +(|has| |#1| (-133)) +(|has| |#1| (-135)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T)) -((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333))) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-1077) (-51)) . T)) +(((|#1|) . T) (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) . T)) +((((-1080 |#1| |#2| |#3|)) |has| |#1| (-335))) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-1082) (-51)) . T)) ((($ $) . T)) -(((|#1| (-517)) . T)) -((((-834 |#1|)) . T)) -(((|#1|) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-964))) (($) -3786 (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)))) -(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517))))) -(|has| |#1| (-779)) -(|has| |#1| (-779)) -((((-517) |#2|) . T)) -((((-517)) . T)) -((((-1150 |#1| |#2| |#3|)) -12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) -(|has| |#1| (-779)) -((((-623 |#2|)) . T) (((-787)) . T)) +(((|#1| (-519)) . T)) +((((-837 |#1|)) . T)) +(((|#1|) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-968))) (($) -3730 (|has| |#1| (-827 (-1082))) (|has| |#1| (-968)))) +(((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519))))) +(|has| |#1| (-782)) +(|has| |#1| (-782)) +((((-519) |#2|) . T)) +((((-519)) . T)) +((((-1155 |#1| |#2| |#3|)) -12 (|has| (-1155 |#1| |#2| |#3|) (-282 (-1155 |#1| |#2| |#3|))) (|has| |#1| (-335)))) +(|has| |#1| (-782)) +((((-625 |#2|)) . T) (((-790)) . T)) (((|#1| |#2|) . T)) -((((-377 (-876 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) -(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) -(((|#1|) |has| |#1| (-156))) -(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) -(((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)))) -(|has| |#2| (-779)) -(|has| |#1| (-779)) -(-3786 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-833))) -((($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -((((-517) |#2|) . T)) -(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)))) -(|has| |#1| (-319)) -(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) -((($) . T) (((-377 (-517))) . T)) -((((-517) (-107)) . T)) -(|has| |#1| (-752)) -(|has| |#1| (-752)) -(((|#1|) . T)) -(-3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319))) -(|has| |#1| (-777)) -(|has| |#1| (-777)) -(|has| |#1| (-777)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -(|has| |#1| (-37 (-377 (-517)))) -((((-517)) . T) (($) . T) (((-377 (-517))) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-319))) -(|has| |#1| (-37 (-377 (-517)))) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-1077)) |has| |#1| (-824 (-1077))) (((-992)) . T)) -(((|#1|) . T)) -(|has| |#1| (-777)) -(((#0=(-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) #0#) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(|has| |#1| (-1006)) +((((-379 (-879 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) +(((|#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) +(((|#1|) |has| |#1| (-157))) +(((|#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) +(((|#3|) -3730 (|has| |#3| (-157)) (|has| |#3| (-335)))) +(|has| |#2| (-782)) +(|has| |#1| (-782)) +(-3730 (|has| |#2| (-335)) (|has| |#2| (-423)) (|has| |#2| (-836))) +((($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +((((-519) |#2|) . T)) +(((|#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)))) +(|has| |#1| (-321)) +(((|#3| |#3|) -12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) +((($) . T) (((-379 (-519))) . T)) +((((-519) (-108)) . T)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(((|#1|) . T)) +(-3730 (|has| |#1| (-280)) (|has| |#1| (-335)) (|has| |#1| (-321))) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +(|has| |#1| (-37 (-379 (-519)))) +((((-519)) . T) (($) . T) (((-379 (-519))) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-321))) +(|has| |#1| (-37 (-379 (-519)))) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-1082)) |has| |#1| (-827 (-1082))) (((-996)) . T)) +(((|#1|) . T)) +(|has| |#1| (-780)) +(((#0=(-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) #0#) |has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(|has| |#1| (-1011)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) . T)) +(((|#1| |#2| |#3| (-216 |#2| |#3|) (-216 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-489 |#2|) |#2|) . T)) -((((-787)) . T)) -(((|#1| (-703) (-992)) . T)) +(((|#1| (-491 |#2|) |#2|) . T)) +((((-790)) . T)) +(((|#1| (-705) (-996)) . T)) (((|#3|) . T)) (((|#1|) . T)) -((((-131)) . T)) -(((|#2|) |has| |#2| (-156))) -(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) +((((-132)) . T)) +(((|#2|) |has| |#2| (-157))) +(-3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-340)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968)) (|has| |#2| (-1011))) (((|#1|) . T)) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -(|has| |#3| (-156)) -(((|#4|) |has| |#4| (-333))) -(((|#3|) |has| |#3| (-333))) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +(|has| |#3| (-157)) +(((|#4|) |has| |#4| (-335))) +(((|#3|) |has| |#3| (-335))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-333))) +(((|#2|) |has| |#1| (-335))) (((|#2|) . T)) -(((|#1| (-1073 |#1|)) . T)) -((((-992)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517))))) -((($) . T) ((|#1|) . T) (((-377 (-517))) . T)) +(((|#1| (-1078 |#1|)) . T)) +((((-996)) . T) ((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519))))) +((($) . T) ((|#1|) . T) (((-379 (-519))) . T)) (((|#2|) . T)) -((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333))) -((($) |has| |#1| (-777))) -(|has| |#1| (-833)) -((((-787)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +((((-1080 |#1| |#2| |#3|)) |has| |#1| (-335))) +((($) |has| |#1| (-780))) +(|has| |#1| (-836)) +((((-790)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((#0=(-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) #0#) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))))) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-833))) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-833))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((#0=(-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) #0#) |has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))))) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-836))) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-836))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) +(((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (((|#1| |#2|) . T)) +((((-790)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)))) -(|has| |#1| (-779)) -(|has| |#1| (-509)) -((((-530 |#1|)) . T)) +(((|#3|) -3730 (|has| |#3| (-157)) (|has| |#3| (-335)))) +(|has| |#1| (-782)) +(|has| |#1| (-511)) +((((-532 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-752))) (-12 (|has| |#1| (-333)) (|has| |#2| (-779)))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -((((-834 |#1|)) . T)) -(((|#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) . T)) +(-3730 (-12 (|has| |#1| (-335)) (|has| |#2| (-755))) (-12 (|has| |#1| (-335)) (|has| |#2| (-782)))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +((((-837 |#1|)) . T)) +(((|#1| (-463 |#1| |#3|) (-463 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-703)) . T)) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) -((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1075 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509)))) -((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T)) -((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) -((((-608 |#1|)) . T)) +(((|#1| (-705)) . T)) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-511))) +((((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511))) (((-1080 |#1| |#2| |#3|)) |has| |#1| (-335)) ((|#1|) |has| |#1| (-157))) +(((|#1|) |has| |#1| (-157)) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511)))) +((($) |has| |#1| (-511)) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) . T)) +((((-379 |#2|)) . T) (((-379 (-519))) . T) (($) . T)) +((((-610 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-493)) . T)) -((((-787)) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-787)) . T)) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -(((|#2|) . T)) -(-3786 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964)) (|has| |#3| (-1006))) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) -((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T)) -(|has| |#1| (-1098)) -(|has| |#1| (-1098)) -(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) -(|has| |#1| (-1098)) -(|has| |#1| (-1098)) +((((-495)) . T)) +((((-790)) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-790)) . T)) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) |has| |#2| (-157)) (($) -3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +(((|#2|) . T)) +(-3730 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-340)) (|has| |#3| (-727)) (|has| |#3| (-780)) (|has| |#3| (-968)) (|has| |#3| (-1011))) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) +((((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) (((-519)) |has| |#1| (-959 (-519))) ((|#1|) . T)) +(|has| |#1| (-1103)) +(|has| |#1| (-1103)) +(-3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-340)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968)) (|has| |#2| (-1011))) +(|has| |#1| (-1103)) +(|has| |#1| (-1103)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -((($ $) . T) ((#0=(-377 (-517)) #0#) . T) ((#1=(-377 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((((-517)) . T) (($) . T) (((-377 (-517))) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +((($ $) . T) ((#0=(-379 (-519)) #0#) . T) ((#1=(-379 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((((-519)) . T) (($) . T) (((-379 (-519))) . T)) (((|#3|) . T)) -((($) . T) (((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -((((-1060) (-51)) . T)) -(|has| |#1| (-1006)) -(-3786 (|has| |#2| (-752)) (|has| |#2| (-779))) -(((|#1|) . T)) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) -(((|#1|) |has| |#1| (-156)) (($) . T)) -((($) . T)) -((((-1075 |#1| |#2| |#3|)) -12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) -((((-787)) . T)) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -((($) . T)) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-787)) . T)) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-833))) -(|has| |#2| (-833)) -(|has| |#1| (-333)) -(((|#2|) |has| |#2| (-1006))) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) +((($) . T) (((-379 (-519))) . T) (((-379 |#1|)) . T) ((|#1|) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +((((-1065) (-51)) . T)) +(|has| |#1| (-1011)) +(-3730 (|has| |#2| (-755)) (|has| |#2| (-782))) +(((|#1|) . T)) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) (((-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) ((|#1|) . T)) +(((|#1|) |has| |#1| (-157)) (($) . T)) +((($) . T)) +((((-1080 |#1| |#2| |#3|)) -12 (|has| (-1080 |#1| |#2| |#3|) (-282 (-1080 |#1| |#2| |#3|))) (|has| |#1| (-335)))) +((((-790)) . T)) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +((($) . T)) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-790)) . T)) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-836))) +(|has| |#2| (-836)) +(|has| |#1| (-335)) +(((|#2|) |has| |#2| (-1011))) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((($) . T) ((|#2|) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-833))) -(|has| |#1| (-833)) -(|has| |#1| (-833)) -((((-493)) . T) (((-377 (-1073 (-517)))) . T) (((-199)) . T) (((-349)) . T)) -((((-349)) . T) (((-199)) . T) (((-787)) . T)) -(|has| |#1| (-833)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-836))) +(|has| |#1| (-836)) +(|has| |#1| (-836)) +((((-495)) . T) (((-379 (-1078 (-519)))) . T) (((-201)) . T) (((-351)) . T)) +((((-351)) . T) (((-201)) . T) (((-790)) . T)) +(|has| |#1| (-836)) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) ((($ $) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) ((($ $) . T)) -((((-517) (-107)) . T)) +((((-519) (-108)) . T)) ((($) . T)) (((|#1|) . T)) -((((-517)) . T)) -((((-107)) . T)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) -(|has| |#1| (-37 (-377 (-517)))) -(((|#1| (-517)) . T)) +((((-519)) . T)) +((((-108)) . T)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) +(|has| |#1| (-37 (-379 (-519)))) +(((|#1| (-519)) . T)) ((($) . T)) -(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) -((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) +(((|#2|) . T) (((-519)) |has| |#2| (-581 (-519)))) +((((-519)) |has| |#1| (-581 (-519))) ((|#1|) . T)) (((|#1|) . T)) -((((-517)) . T)) +((((-519)) . T)) (((|#1| |#2|) . T)) -((((-1077)) |has| |#1| (-964))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(((|#1|) . T)) -((((-787)) . T)) -(((|#1| (-517)) . T)) -(((|#1| (-1150 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1| (-377 (-517))) . T)) -(((|#1| (-1122 |#1| |#2| |#3|)) . T)) -(((|#1| (-703)) . T)) -(((|#1|) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-787)) . T)) -(|has| |#1| (-1006)) -((((-1060) |#1|) . T)) -((($) . T)) -(|has| |#2| (-134)) -(|has| |#2| (-132)) -(((|#1| (-489 (-750 (-1077))) (-750 (-1077))) . T)) -((((-1144 |#1| |#2| |#3| |#4|)) . T)) -((((-1144 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-964))) -((((-517) (-107)) . T)) -((((-787)) |has| |#1| (-1006))) -(|has| |#2| (-156)) -((((-517)) . T)) -(|has| |#2| (-777)) -(((|#1|) . T)) -((((-517)) . T)) -((((-787)) . T)) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-319))) -((((-787)) . T)) -(|has| |#1| (-134)) +((((-1082)) |has| |#1| (-968))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(((|#1|) . T)) +((((-790)) . T)) +(((|#1| (-519)) . T)) +(((|#1| (-1155 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1| (-379 (-519))) . T)) +(((|#1| (-1127 |#1| |#2| |#3|)) . T)) +(((|#1| (-705)) . T)) +(((|#1|) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-790)) . T)) +(|has| |#1| (-1011)) +((((-1065) |#1|) . T)) +((($) . T)) +(|has| |#2| (-135)) +(|has| |#2| (-133)) +(((|#1| (-491 (-753 (-1082))) (-753 (-1082))) . T)) +((((-790)) . T)) +((((-1149 |#1| |#2| |#3| |#4|)) . T)) +((((-1149 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-968))) +((((-519) (-108)) . T)) +((((-790)) |has| |#1| (-1011))) +(|has| |#2| (-157)) +((((-519)) . T)) +(|has| |#2| (-780)) +(((|#1|) . T)) +((((-519)) . T)) +((((-790)) . T)) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-321))) +((((-790)) . T)) +(|has| |#1| (-135)) (((|#3|) . T)) -(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) -((((-787)) . T)) -((((-1143 |#2| |#3| |#4|)) . T) (((-1144 |#1| |#2| |#3| |#4|)) . T)) -((((-787)) . T)) -((((-47)) -12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517)))) (((-556 $)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) -3786 (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517)))) (|has| |#1| (-955 (-377 (-517))))) (((-377 (-876 |#1|))) |has| |#1| (-509)) (((-876 |#1|)) |has| |#1| (-964)) (((-1077)) . T)) +(-3730 (|has| |#3| (-157)) (|has| |#3| (-780)) (|has| |#3| (-968))) +((((-790)) . T)) +((((-1148 |#2| |#3| |#4|)) . T) (((-1149 |#1| |#2| |#3| |#4|)) . T)) +((((-790)) . T)) +((((-47)) -12 (|has| |#1| (-511)) (|has| |#1| (-959 (-519)))) (((-558 $)) . T) ((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) -3730 (-12 (|has| |#1| (-511)) (|has| |#1| (-959 (-519)))) (|has| |#1| (-959 (-379 (-519))))) (((-379 (-879 |#1|))) |has| |#1| (-511)) (((-879 |#1|)) |has| |#1| (-968)) (((-1082)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-703)) . T)) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-280 |#1|))) -((((-1144 |#1| |#2| |#3| |#4|)) . T)) -((((-517)) |has| |#1| (-810 (-517))) (((-349)) |has| |#1| (-810 (-349)))) -(((|#1|) . T)) -(|has| |#1| (-509)) -(((|#1|) . T)) -((((-787)) . T)) -(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) -(((|#1|) |has| |#1| (-156))) -((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) -(((|#1|) . T)) -(((|#3|) |has| |#3| (-1006))) -(((|#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-333)))) -((((-1143 |#2| |#3| |#4|)) . T)) -((((-107)) . T)) -(|has| |#1| (-752)) -(|has| |#1| (-752)) -(((|#1| (-517) (-992)) . T)) -((($) |has| |#1| (-280 $)) ((|#1|) |has| |#1| (-280 |#1|))) -(|has| |#1| (-777)) -(|has| |#1| (-777)) -(((|#1| (-517) (-992)) . T)) -(-3786 (|has| |#1| (-824 (-1077))) (|has| |#1| (-964))) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(((|#1| (-377 (-517)) (-992)) . T)) -(((|#1| (-703) (-992)) . T)) -(|has| |#1| (-779)) -(((#0=(-834 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T)) -(|has| |#2| (-132)) -(|has| |#2| (-134)) -(((|#2|) . T)) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -(|has| |#1| (-1006)) -((((-834 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) -(|has| |#1| (-1006)) -(((|#1|) . T)) -(|has| |#1| (-1006)) -((((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((|#2|) |has| |#1| (-333))) -(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) -(((|#2|) |has| |#2| (-156))) -(((|#1|) |has| |#1| (-156))) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T)) -((((-787)) . T)) -(|has| |#3| (-777)) -((((-787)) . T)) -((((-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T)) -((((-787)) . T)) -(((|#1| |#1|) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-964)))) -(((|#1|) . T)) -((((-517)) . T)) -((((-517)) . T)) -(((|#1|) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-964)))) -(((|#2|) |has| |#2| (-333))) -((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-333))) -(|has| |#1| (-779)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) |has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))))) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-833))) -(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) -((((-787)) . T)) -((((-787)) . T)) -((((-493)) . T) (((-517)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T)) -((((-787)) . T)) -(|has| |#1| (-37 (-377 (-517)))) -((((-517)) . T) (($) . T) (((-377 (-517))) . T)) -((((-517)) . T) (($) . T) (((-377 (-517))) . T)) -(|has| |#1| (-207)) -(((|#1|) . T)) -(((|#1| (-517)) . T)) -(|has| |#1| (-777)) -(((|#1| (-1075 |#1| |#2| |#3|)) . T)) +(((|#1| (-705)) . T)) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) ((|#1|) |has| |#1| (-157))) +(((|#1|) |has| |#1| (-282 |#1|))) +((((-1149 |#1| |#2| |#3| |#4|)) . T)) +((((-519)) |has| |#1| (-813 (-519))) (((-351)) |has| |#1| (-813 (-351)))) +(((|#1|) . T)) +(|has| |#1| (-511)) +(((|#1|) . T)) +((((-790)) . T)) +(((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) +(((|#1|) |has| |#1| (-157))) +((($) |has| |#1| (-511)) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) +(((|#1|) . T)) +(((|#3|) |has| |#3| (-1011))) +(((|#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-335)))) +((((-1148 |#2| |#3| |#4|)) . T)) +((((-108)) . T)) +(|has| |#1| (-755)) +(|has| |#1| (-755)) +(((|#1| (-519) (-996)) . T)) +((($) |has| |#1| (-282 $)) ((|#1|) |has| |#1| (-282 |#1|))) +(|has| |#1| (-780)) +(|has| |#1| (-780)) +(((|#1| (-519) (-996)) . T)) +(-3730 (|has| |#1| (-827 (-1082))) (|has| |#1| (-968))) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(((|#1| (-379 (-519)) (-996)) . T)) +(((|#1| (-705) (-996)) . T)) +(|has| |#1| (-782)) +(((#0=(-837 |#1|) #0#) . T) (($ $) . T) ((#1=(-379 (-519)) #1#) . T)) +(|has| |#2| (-133)) +(|has| |#2| (-135)) +(((|#2|) . T)) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +(|has| |#1| (-1011)) +((((-837 |#1|)) . T) (($) . T) (((-379 (-519))) . T)) +(|has| |#1| (-1011)) +(((|#1|) . T)) +(|has| |#1| (-1011)) +((((-519)) -12 (|has| |#1| (-335)) (|has| |#2| (-581 (-519)))) ((|#2|) |has| |#1| (-335))) +(-3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-340)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968)) (|has| |#2| (-1011))) +(((|#2|) |has| |#2| (-157))) +(((|#1|) |has| |#1| (-157))) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) . T)) +((((-790)) . T)) +(|has| |#3| (-780)) +((((-790)) . T)) +((((-1148 |#2| |#3| |#4|) (-291 |#2| |#3| |#4|)) . T)) +((((-790)) . T)) +(((|#1| |#1|) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-968)))) +(((|#1|) . T)) +((((-519)) . T)) +((((-519)) . T)) +(((|#1|) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-968)))) +(((|#2|) |has| |#2| (-335))) +((($) . T) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-335))) +(|has| |#1| (-782)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) |has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))))) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-836))) +(((|#2|) . T) (((-519)) |has| |#2| (-581 (-519)))) +((((-790)) . T)) +((((-790)) . T)) +((((-495)) . T) (((-519)) . T) (((-819 (-519))) . T) (((-351)) . T) (((-201)) . T)) +((((-790)) . T)) +(|has| |#1| (-37 (-379 (-519)))) +((((-519)) . T) (($) . T) (((-379 (-519))) . T)) +((((-519)) . T) (($) . T) (((-379 (-519))) . T)) +(|has| |#1| (-209)) +(((|#1|) . T)) +(((|#1| (-519)) . T)) +(|has| |#1| (-780)) +(((|#1| (-1080 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-377 (-517))) . T)) -(((|#1| (-1068 |#1| |#2| |#3|)) . T)) -(((|#1| (-703)) . T)) +(((|#1| (-379 (-519))) . T)) +(((|#1| (-1073 |#1| |#2| |#3|)) . T)) +(((|#1| (-705)) . T)) (((|#1|) . T)) -(((|#1| |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T)) +(((|#1| |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -(|has| |#1| (-134)) -(|has| |#1| (-132)) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +(|has| |#1| (-135)) +(|has| |#1| (-133)) (((|#1| |#2|) . T)) -((((-131)) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(((|#1|) . T)) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) . T) (($ $) . T)) -((((-787)) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -(|has| (-377 |#2|) (-207)) -(|has| |#1| (-833)) -(((|#2|) |has| |#2| (-964))) -(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) -(|has| |#1| (-333)) -(((|#1|) |has| |#1| (-156))) +((((-132)) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(((|#1|) . T)) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) . T) (($ $) . T)) +((((-790)) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +(|has| (-379 |#2|) (-209)) +(|has| |#1| (-836)) +(((|#2|) |has| |#2| (-968))) +(((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) +(|has| |#1| (-335)) +(((|#1|) |has| |#1| (-157))) (((|#1| |#1|) . T)) -((((-794 |#1|)) . T)) -((((-787)) . T)) +((((-797 |#1|)) . T)) +((((-790)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1006))) -(|has| |#2| (-779)) +(((|#2|) |has| |#2| (-1011))) +(|has| |#2| (-782)) (((|#1|) . T)) -((((-377 (-517))) . T) (((-517)) . T) (((-556 $)) . T)) +((((-379 (-519))) . T) (((-519)) . T) (((-558 $)) . T)) (((|#1|) . T)) -((((-787)) . T)) +((((-790)) . T)) ((($) . T)) -(|has| |#1| (-779)) -((((-787)) . T)) -(((|#1| (-489 |#2|) |#2|) . T)) -(((|#1| (-517) (-992)) . T)) -((((-834 |#1|)) . T)) -((((-787)) . T)) +(|has| |#1| (-782)) +((((-790)) . T)) +(((|#1| (-491 |#2|) |#2|) . T)) +(((|#1| (-519) (-996)) . T)) +((((-837 |#1|)) . T)) +((((-790)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-377 (-517)) (-992)) . T)) -(((|#1| (-703) (-992)) . T)) -(((#0=(-377 |#2|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-517)) -3786 (|has| (-377 (-517)) (-955 (-517))) (|has| |#1| (-955 (-517)))) (((-377 (-517))) . T)) -(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T)) -(((|#1|) |has| |#1| (-156))) +(((|#1| (-379 (-519)) (-996)) . T)) +(((|#1| (-705) (-996)) . T)) +(((#0=(-379 |#2|) #0#) . T) ((#1=(-379 (-519)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-519)) -3730 (|has| (-379 (-519)) (-959 (-519))) (|has| |#1| (-959 (-519)))) (((-379 (-519))) . T)) +(((|#1| (-550 |#1| |#3|) (-550 |#1| |#2|)) . T)) +(((|#1|) |has| |#1| (-157))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) -(|has| |#2| (-207)) -(((|#2| (-489 (-789 |#1|)) (-789 |#1|)) . T)) -((((-787)) . T)) -((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-787)) . T)) +((((-379 |#2|)) . T) (((-379 (-519))) . T) (($) . T)) +(|has| |#2| (-209)) +(((|#2| (-491 (-792 |#1|)) (-792 |#1|)) . T)) +((((-790)) . T)) +((($) |has| |#1| (-511)) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-790)) . T)) (((|#1| |#3|) . T)) -((((-787)) . T)) -(((|#1|) |has| |#1| (-156))) -((((-632)) . T)) -((((-632)) . T)) -(((|#2|) |has| |#2| (-156))) -(|has| |#2| (-777)) -((((-107)) |has| |#1| (-1006)) (((-787)) -3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)) (|has| |#1| (-1018)) (|has| |#1| (-1006)))) +((((-790)) . T)) +(((|#1|) |has| |#1| (-157))) +((((-634)) . T)) +((((-634)) . T)) +(((|#2|) |has| |#2| (-157))) +(|has| |#2| (-780)) +((((-108)) |has| |#1| (-1011)) (((-790)) -3730 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-444)) (|has| |#1| (-661)) (|has| |#1| (-827 (-1082))) (|has| |#1| (-968)) (|has| |#1| (-1023)) (|has| |#1| (-1011)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) . T)) -((((-787)) . T)) -((((-517) |#1|) . T)) -((((-632)) . T) (((-377 (-517))) . T) (((-517)) . T)) -(((|#1| |#1|) |has| |#1| (-156))) -(((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) -((((-349)) . T)) -((((-632)) . T)) -((((-377 (-517))) . #0=(|has| |#2| (-333))) (($) . #0#)) -(((|#1|) |has| |#1| (-156))) -((((-377 (-876 |#1|))) . T)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) . T)) +((((-790)) . T)) +((((-519) |#1|) . T)) +((((-634)) . T) (((-379 (-519))) . T) (((-519)) . T)) +(((|#1| |#1|) |has| |#1| (-157))) +(((|#2|) . T)) +(((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) +((((-351)) . T)) +((((-634)) . T)) +((((-379 (-519))) . #0=(|has| |#2| (-335))) (($) . #0#)) +(((|#1|) |has| |#1| (-157))) +((((-379 (-879 |#1|))) . T)) (((|#2| |#2|) . T)) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(((|#2|) . T)) -(|has| |#2| (-779)) -(((|#3|) |has| |#3| (-964))) -(|has| |#2| (-833)) -(|has| |#1| (-833)) -(|has| |#1| (-333)) -(|has| |#1| (-779)) -((((-1077)) |has| |#2| (-824 (-1077)))) -((((-787)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-377 (-517))) . T) (($) . T)) -(|has| |#1| (-442)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-333)) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-964)) (|has| |#1| (-1018))) -(|has| |#1| (-37 (-377 (-517)))) -((((-111 |#1|)) . T)) -((((-111 |#1|)) . T)) -(|has| |#1| (-319)) -((((-131)) . T)) -(|has| |#1| (-37 (-377 (-517)))) -((($) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(((|#2|) . T) (((-787)) . T)) -(((|#2|) . T) (((-787)) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-779)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T)) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(((|#2|) . T)) +(|has| |#2| (-782)) +(((|#3|) |has| |#3| (-968))) +(|has| |#2| (-836)) +(|has| |#1| (-836)) +(|has| |#1| (-335)) +(|has| |#1| (-782)) +((((-1082)) |has| |#2| (-827 (-1082)))) +((((-790)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-379 (-519))) . T) (($) . T)) +(|has| |#1| (-444)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +(|has| |#1| (-335)) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-444)) (|has| |#1| (-511)) (|has| |#1| (-968)) (|has| |#1| (-1023))) +(|has| |#1| (-37 (-379 (-519)))) +((((-112 |#1|)) . T)) +((((-112 |#1|)) . T)) +(|has| |#1| (-321)) +((((-132)) . T)) +(|has| |#1| (-37 (-379 (-519)))) +((($) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(((|#2|) . T) (((-790)) . T)) +(((|#2|) . T) (((-790)) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-782)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-134)) -(|has| |#1| (-132)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) ((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) +(|has| |#1| (-135)) +(|has| |#1| (-133)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) ((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (((|#2|) . T)) (((|#3|) . T)) -((((-111 |#1|)) . T)) -(|has| |#1| (-338)) -(|has| |#1| (-779)) -(((|#2|) . T) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T)) -((((-111 |#1|)) . T)) -(((|#2|) |has| |#2| (-156))) -(((|#1|) . T)) -((((-517)) . T)) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -((((-787)) . T)) -((((-787)) . T)) -((((-493)) |has| |#1| (-558 (-493))) (((-816 (-517))) |has| |#1| (-558 (-816 (-517)))) (((-816 (-349))) |has| |#1| (-558 (-816 (-349)))) (((-349)) . #0=(|has| |#1| (-940))) (((-199)) . #0#)) -(((|#1|) |has| |#1| (-333))) -((((-787)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((($ $) . T) (((-556 $) $) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -((($) . T) (((-1144 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T)) -((($) -3786 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509))) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -((((-349)) . T) (((-517)) . T) (((-377 (-517))) . T)) -((((-583 (-712 |#1| (-789 |#2|)))) . T) (((-787)) . T)) -((((-493)) |has| (-712 |#1| (-789 |#2|)) (-558 (-493)))) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-349)) . T)) -(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) -((((-787)) . T)) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-833))) -(((|#1|) . T)) -(|has| |#1| (-779)) -(|has| |#1| (-779)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -((((-493)) |has| |#1| (-558 (-493)))) -(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) -(|has| |#1| (-1006)) -((((-787)) . T)) -((((-377 (-517))) . T) (((-517)) . T) (((-556 $)) . T)) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -((((-517)) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(((#0=(-1143 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| #0# (-37 (-377 (-517)))) (($) . T)) -((((-517)) . T)) -(|has| |#1| (-333)) -(-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134))) -(-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))) -(|has| |#1| (-333)) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -(|has| |#1| (-134)) -(|has| |#1| (-132)) -(|has| |#1| (-207)) -(|has| |#1| (-333)) +((((-112 |#1|)) . T)) +(|has| |#1| (-340)) +(|has| |#1| (-782)) +(((|#2|) . T) (((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) (((-519)) |has| |#1| (-959 (-519))) ((|#1|) . T)) +((((-112 |#1|)) . T)) +(((|#2|) |has| |#2| (-157))) +(((|#1|) . T)) +((((-519)) . T)) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +((((-790)) . T)) +((((-790)) . T)) +((((-495)) |has| |#1| (-560 (-495))) (((-819 (-519))) |has| |#1| (-560 (-819 (-519)))) (((-819 (-351))) |has| |#1| (-560 (-819 (-351)))) (((-351)) . #0=(|has| |#1| (-944))) (((-201)) . #0#)) +(((|#1|) |has| |#1| (-335))) +((((-790)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((($ $) . T) (((-558 $) $) . T)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +((($) . T) (((-1149 |#1| |#2| |#3| |#4|)) . T) (((-379 (-519))) . T)) +((($) -3730 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-511)) (|has| |#1| (-968))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-511))) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +((((-351)) . T) (((-519)) . T) (((-379 (-519))) . T)) +((((-585 (-714 |#1| (-792 |#2|)))) . T) (((-790)) . T)) +((((-495)) |has| (-714 |#1| (-792 |#2|)) (-560 (-495)))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-351)) . T)) +(((|#3|) -12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) +((((-790)) . T)) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-836))) +(((|#1|) . T)) +(|has| |#1| (-782)) +(|has| |#1| (-782)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +((((-495)) |has| |#1| (-560 (-495)))) +(((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) +(|has| |#1| (-1011)) +((((-790)) . T)) +((((-379 (-519))) . T) (((-519)) . T) (((-558 $)) . T)) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +((((-519)) . T)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(((#0=(-1148 |#2| |#3| |#4|)) . T) (((-379 (-519))) |has| #0# (-37 (-379 (-519)))) (($) . T)) +((((-519)) . T)) +(|has| |#1| (-335)) +(-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-135)) (|has| |#1| (-335))) (|has| |#1| (-135))) +(-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-133)) (|has| |#1| (-335))) (|has| |#1| (-133))) +(|has| |#1| (-335)) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +(|has| |#1| (-135)) +(|has| |#1| (-133)) +(|has| |#1| (-209)) +(|has| |#1| (-335)) (((|#3|) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-517)) |has| |#2| (-579 (-517))) ((|#2|) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-519)) |has| |#2| (-581 (-519))) ((|#2|) . T)) (((|#2|) . T)) -(|has| |#1| (-1006)) +(|has| |#1| (-1011)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) -(((|#3|) |has| |#3| (-156))) -(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) -((((-517)) . T)) -(((|#1| $) |has| |#1| (-258 |#1| |#1|))) -((((-377 (-517))) . T) (($) . T) (((-377 |#1|)) . T) ((|#1|) . T)) -((((-787)) . T)) +(((|#1|) . T) (((-519)) |has| |#1| (-581 (-519)))) +(((|#3|) |has| |#3| (-157))) +(-3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-340)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968)) (|has| |#2| (-1011))) +((((-519)) . T)) +(((|#1| $) |has| |#1| (-260 |#1| |#1|))) +((((-379 (-519))) . T) (($) . T) (((-379 |#1|)) . T) ((|#1|) . T)) +((((-790)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-262)) (|has| |#1| (-333))) ((#0=(-377 (-517)) #0#) |has| |#1| (-333))) -((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T)) -((($) . T)) -((((-517) |#1|) . T)) -((((-1077)) |has| (-377 |#2|) (-824 (-1077)))) -(((|#1|) . T) (($) -3786 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517))) |has| |#1| (-333))) -((((-493)) |has| |#2| (-558 (-493)))) -((((-623 |#2|)) . T) (((-787)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) -(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) -((((-794 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(-3786 (|has| |#4| (-725)) (|has| |#4| (-777))) -(-3786 (|has| |#3| (-725)) (|has| |#3| (-777))) -((((-787)) . T)) -((((-787)) . T)) -(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) -(((|#2|) |has| |#2| (-964))) -(((|#1|) . T)) -((((-377 |#2|)) . T)) -(((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) -((((-517) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-517)) . T) (($) . T) (((-377 (-517))) . T)) -((((-377 (-517))) . T) (($) . T)) -((((-377 (-517))) . T) (($) . T)) -((((-377 (-517))) . T) (($) . T)) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-1116))) -((($) . T)) -((((-377 (-517))) |has| #0=(-377 |#2|) (-955 (-377 (-517)))) (((-517)) |has| #0# (-955 (-517))) ((#0#) . T)) -(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) -(((|#1| (-703)) . T)) -(|has| |#1| (-779)) -(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) -((((-517)) . T)) -(|has| |#1| (-37 (-377 (-517)))) -((((-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))))) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(|has| |#1| (-777)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-319)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) +(((|#1| |#1|) . T) (($ $) -3730 (|has| |#1| (-264)) (|has| |#1| (-335))) ((#0=(-379 (-519)) #0#) |has| |#1| (-335))) +((((-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) . T)) +((($) . T)) +((((-519) |#1|) . T)) +((((-1082)) |has| (-379 |#2|) (-827 (-1082)))) +(((|#1|) . T) (($) -3730 (|has| |#1| (-264)) (|has| |#1| (-335))) (((-379 (-519))) |has| |#1| (-335))) +((((-495)) |has| |#2| (-560 (-495)))) +((((-625 |#2|)) . T) (((-790)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) +(((|#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) +((((-797 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(-3730 (|has| |#4| (-727)) (|has| |#4| (-780))) +(-3730 (|has| |#3| (-727)) (|has| |#3| (-780))) +((((-790)) . T)) +((((-790)) . T)) +(((|#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) +(((|#2|) |has| |#2| (-968))) +(((|#1|) . T)) +((((-379 |#2|)) . T)) +(((|#1|) . T)) +(((|#3|) -12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) +((((-519) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-519)) . T) (($) . T) (((-379 (-519))) . T)) +((((-379 (-519))) . T) (($) . T)) +((((-379 (-519))) . T) (($) . T)) +((((-379 (-519))) . T) (($) . T)) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-1121))) +((($) . T)) +((((-379 (-519))) |has| #0=(-379 |#2|) (-959 (-379 (-519)))) (((-519)) |has| #0# (-959 (-519))) ((#0#) . T)) +(((|#2|) . T) (((-519)) |has| |#2| (-581 (-519)))) +(((|#1| (-705)) . T)) +(|has| |#1| (-782)) +(((|#1|) . T) (((-519)) |has| |#1| (-581 (-519)))) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) (((-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) ((|#1|) . T)) +((((-519)) . T)) +(|has| |#1| (-37 (-379 (-519)))) +((((-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) |has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(|has| |#1| (-780)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-321)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) (((|#1| |#2|) . T)) -((((-131)) . T)) -((((-712 |#1| (-789 |#2|))) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -(|has| |#1| (-1098)) -(((|#1|) . T)) -(-3786 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964)) (|has| |#3| (-1006))) -((((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|))) -(((|#2|) . T)) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517))))) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-834 |#1|)) . T)) -((($) . T)) -((((-377 (-876 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-493)) |has| |#4| (-558 (-493)))) -((((-787)) . T) (((-583 |#4|)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-777)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) |has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))))) -(|has| |#1| (-1006)) -(|has| |#1| (-333)) -(|has| |#1| (-779)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-377 (-517))) . T)) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156))) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -(-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134))) -(-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -(|has| |#1| (-134)) -(|has| |#1| (-132)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333))) -(|has| |#1| (-777)) +((((-132)) . T)) +((((-714 |#1| (-792 |#2|))) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +(|has| |#1| (-1103)) +(((|#1|) . T)) +(-3730 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-340)) (|has| |#3| (-727)) (|has| |#3| (-780)) (|has| |#3| (-968)) (|has| |#3| (-1011))) +((((-1082) |#1|) |has| |#1| (-480 (-1082) |#1|))) +(((|#2|) . T)) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519))))) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-837 |#1|)) . T)) +((($) . T)) +((((-379 (-879 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-495)) |has| |#4| (-560 (-495)))) +((((-790)) . T) (((-585 |#4|)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-780)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) |has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))))) +(|has| |#1| (-1011)) +(|has| |#1| (-335)) +(|has| |#1| (-782)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-379 (-519))) . T)) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) ((|#1|) |has| |#1| (-157))) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +(-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-135)) (|has| |#1| (-335))) (|has| |#1| (-135))) +(-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-133)) (|has| |#1| (-335))) (|has| |#1| (-133))) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +(|has| |#1| (-135)) +(|has| |#1| (-133)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +((((-1155 |#1| |#2| |#3|)) |has| |#1| (-335))) +(|has| |#1| (-780)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) -((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) -((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) -(|has| |#1| (-1006)) -(((|#1|) . T) (($) . T) (((-377 (-517))) . T) (((-517)) . T)) -(|has| |#2| (-132)) -(|has| |#2| (-134)) -((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) -(|has| |#1| (-1006)) -(((|#2|) |has| |#2| (-156))) +(((|#1|) . T) (((-519)) |has| |#1| (-581 (-519)))) +((((-519)) |has| |#1| (-581 (-519))) ((|#1|) . T)) +((((-837 |#1|)) . T) (((-379 (-519))) . T) (($) . T)) +(|has| |#1| (-1011)) +(((|#1|) . T) (($) . T) (((-379 (-519))) . T) (((-519)) . T)) +(|has| |#2| (-133)) +(|has| |#2| (-135)) +((((-837 |#1|)) . T) (((-379 (-519))) . T) (($) . T)) +(|has| |#1| (-1011)) +(((|#2|) |has| |#2| (-157))) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-333))) -((((-377 |#2|)) . T)) -((((-787)) . T)) -(((|#1|) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-493)) |has| |#1| (-558 (-493)))) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|))) -(((|#1|) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)))) -((((-286 |#1|)) . T)) -(((|#2|) |has| |#2| (-333))) -(((|#2|) . T)) -((((-377 (-517))) . T) (((-632)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((#0=(-712 |#1| (-789 |#2|)) #0#) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|))))) -((((-789 |#1|)) . T)) -(((|#2|) |has| |#2| (-156))) -(((|#1|) |has| |#1| (-156))) -(((|#2|) . T)) -((((-1077)) |has| |#1| (-824 (-1077))) (((-992)) . T)) -((((-1077)) |has| |#1| (-824 (-1077))) (((-996 (-1077))) . T)) -(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(|has| |#1| (-37 (-377 (-517)))) -(((|#4|) |has| |#4| (-964)) (((-517)) -12 (|has| |#4| (-579 (-517))) (|has| |#4| (-964)))) -(((|#3|) |has| |#3| (-964)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964)))) -(|has| |#1| (-132)) -(|has| |#1| (-134)) +(((|#3|) |has| |#3| (-335))) +((((-379 |#2|)) . T)) +((((-790)) . T)) +(((|#1|) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-495)) |has| |#1| (-560 (-495)))) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-1082) |#1|) |has| |#1| (-480 (-1082) |#1|)) ((|#1| |#1|) |has| |#1| (-282 |#1|))) +(((|#1|) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)))) +((((-288 |#1|)) . T)) +(((|#2|) |has| |#2| (-335))) +(((|#2|) . T)) +((((-379 (-519))) . T) (((-634)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((#0=(-714 |#1| (-792 |#2|)) #0#) |has| (-714 |#1| (-792 |#2|)) (-282 (-714 |#1| (-792 |#2|))))) +((((-792 |#1|)) . T)) +(((|#2|) |has| |#2| (-157))) +(((|#1|) |has| |#1| (-157))) +(((|#2|) . T)) +((((-1082)) |has| |#1| (-827 (-1082))) (((-996)) . T)) +((((-1082)) |has| |#1| (-827 (-1082))) (((-1001 (-1082))) . T)) +(((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(|has| |#1| (-37 (-379 (-519)))) +(((|#4|) |has| |#4| (-968)) (((-519)) -12 (|has| |#4| (-581 (-519))) (|has| |#4| (-968)))) +(((|#3|) |has| |#3| (-968)) (((-519)) -12 (|has| |#3| (-581 (-519))) (|has| |#3| (-968)))) +(|has| |#1| (-133)) +(|has| |#1| (-135)) ((($ $) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)) (|has| |#1| (-1018)) (|has| |#1| (-1006))) -(|has| |#1| (-509)) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-444)) (|has| |#1| (-661)) (|has| |#1| (-827 (-1082))) (|has| |#1| (-968)) (|has| |#1| (-1023)) (|has| |#1| (-1011))) +(|has| |#1| (-511)) (((|#2|) . T)) -((((-517)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) +((((-519)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964))) -((((-530 |#1|)) . T)) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-511)) (|has| |#1| (-968))) +((((-532 |#1|)) . T)) ((($) . T)) (((|#1| (-57 |#1|) (-57 |#1|)) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-787)) . T)) -(((|#2|) |has| |#2| (-6 (-4197 "*")))) +((((-790)) . T)) +(((|#2|) |has| |#2| (-6 (-4223 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-377 (-517))) |has| |#2| (-955 (-377 (-517)))) (((-517)) |has| |#2| (-955 (-517))) ((|#2|) . T) (((-789 |#1|)) . T)) -((($) . T) (((-111 |#1|)) . T) (((-377 (-517))) . T)) -((((-1029 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517))))) -((((-1073 |#1|)) . T) (((-992)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517))))) -((((-1029 |#1| (-1077))) . T) (((-996 (-1077))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-1077)) . T)) -(|has| |#1| (-1006)) +((((-379 (-519))) |has| |#2| (-959 (-379 (-519)))) (((-519)) |has| |#2| (-959 (-519))) ((|#2|) . T) (((-792 |#1|)) . T)) +((($) . T) (((-112 |#1|)) . T) (((-379 (-519))) . T)) +((((-1034 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519))))) +((((-1078 |#1|)) . T) (((-996)) . T) ((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519))))) +((((-1034 |#1| (-1082))) . T) (((-1001 (-1082))) . T) ((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) (((-1082)) . T)) +(|has| |#1| (-1011)) ((($) . T)) -(|has| |#1| (-1006)) -((((-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#2| (-810 (-517)))) (((-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#2| (-810 (-349))))) +(|has| |#1| (-1011)) +((((-519)) -12 (|has| |#1| (-813 (-519))) (|has| |#2| (-813 (-519)))) (((-351)) -12 (|has| |#1| (-813 (-351))) (|has| |#2| (-813 (-351))))) (((|#1| |#2|) . T)) -((((-1077) |#1|) . T)) +((((-1082) |#1|) . T)) (((|#4|) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-319))) -((((-1077) (-51)) . T)) -((((-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T)) -((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T)) -((((-787)) . T)) -(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964)) (|has| |#2| (-1006))) -(((#0=(-1144 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-156)) ((#0=(-377 (-517)) #0#) |has| |#1| (-509)) (($ $) |has| |#1| (-509))) -(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) -(((|#1| $) |has| |#1| (-258 |#1| |#1|))) -((((-1144 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T) (($) . T)) -(((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)) (($) |has| |#1| (-509))) -(|has| |#1| (-333)) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -(|has| |#1| (-134)) -(|has| |#1| (-132)) -((((-377 (-517))) . T) (($) . T)) -(((|#3|) |has| |#3| (-333))) -(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) -((((-1077)) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-321))) +((((-1082) (-51)) . T)) +((((-1148 |#2| |#3| |#4|) (-291 |#2| |#3| |#4|)) . T)) +((((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) (((-519)) |has| |#1| (-959 (-519))) ((|#1|) . T)) +((((-790)) . T)) +(-3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-340)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968)) (|has| |#2| (-1011))) +(((#0=(-1149 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-379 (-519)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-157)) ((#0=(-379 (-519)) #0#) |has| |#1| (-511)) (($ $) |has| |#1| (-511))) +(((|#1|) . T) (($) . T) (((-379 (-519))) . T)) +(((|#1| $) |has| |#1| (-260 |#1| |#1|))) +((((-1149 |#1| |#2| |#3| |#4|)) . T) (((-379 (-519))) . T) (($) . T)) +(((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-511)) (($) |has| |#1| (-511))) +(|has| |#1| (-335)) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +(|has| |#1| (-135)) +(|has| |#1| (-133)) +((((-379 (-519))) . T) (($) . T)) +(((|#3|) |has| |#3| (-335))) +(((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) +((((-1082)) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (((|#2| |#3|) . T)) -(-3786 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -(((|#1| (-489 |#2|)) . T)) -(((|#1| (-703)) . T)) -(((|#1| (-489 (-996 (-1077)))) . T)) -(((|#1|) |has| |#1| (-156))) -(((|#1|) . T)) -(|has| |#2| (-833)) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) -((((-787)) . T)) -((($ $) . T) ((#0=(-1143 |#2| |#3| |#4|) #0#) . T) ((#1=(-377 (-517)) #1#) |has| #0# (-37 (-377 (-517))))) -((((-834 |#1|)) . T)) -(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) -((($) . T) (((-377 (-517))) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-333)) -(-3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) -(|has| |#1| (-333)) -((($) . T) ((#0=(-1143 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| #0# (-37 (-377 (-517))))) +(-3730 (|has| |#2| (-335)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +(((|#1| (-491 |#2|)) . T)) +(((|#1| (-705)) . T)) +(((|#1| (-491 (-1001 (-1082)))) . T)) +(((|#1|) |has| |#1| (-157))) +(((|#1|) . T)) +(|has| |#2| (-836)) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) +((((-790)) . T)) +((($ $) . T) ((#0=(-1148 |#2| |#3| |#4|) #0#) . T) ((#1=(-379 (-519)) #1#) |has| #0# (-37 (-379 (-519))))) +((((-837 |#1|)) . T)) +(-12 (|has| |#1| (-335)) (|has| |#2| (-755))) +((($) . T) (((-379 (-519))) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-335)) +(-3730 (|has| |#1| (-280)) (|has| |#1| (-335)) (|has| |#1| (-321)) (|has| |#1| (-511))) +(|has| |#1| (-335)) +((($) . T) ((#0=(-1148 |#2| |#3| |#4|)) . T) (((-379 (-519))) |has| #0# (-37 (-379 (-519))))) (((|#1| |#2|) . T)) -((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333))) -(-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333)) (|has| |#1| (-319))) -(-3786 (|has| |#1| (-824 (-1077))) (|has| |#1| (-964))) -((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T)) +((((-1080 |#1| |#2| |#3|)) |has| |#1| (-335))) +(-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-335)) (|has| |#1| (-321))) +(-3730 (|has| |#1| (-827 (-1082))) (|has| |#1| (-968))) +((((-519)) |has| |#1| (-581 (-519))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-107)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-108)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) +((((-379 |#2|)) . T) (((-379 (-519))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T)) -(|has| |#2| (-333)) -(|has| |#1| (-779)) +(((|#1| (-491 (-792 |#2|)) (-792 |#2|) (-714 |#1| (-792 |#2|))) . T)) +(|has| |#2| (-335)) +(|has| |#1| (-782)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-787)) . T)) -(|has| |#1| (-1006)) +((((-790)) . T)) +(|has| |#1| (-1011)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-752)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-379 $) (-379 $)) |has| |#1| (-511)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-755)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-787)) . T)) -(((|#1| (-489 (-1077))) . T)) -(((|#1|) |has| |#1| (-156))) -((((-787)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) -(((|#2|) -3786 (|has| |#2| (-6 (-4197 "*"))) (|has| |#2| (-156)))) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(|has| |#2| (-779)) -(|has| |#2| (-833)) -(|has| |#1| (-833)) -(((|#2|) |has| |#2| (-156))) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333))) -((((-787)) . T)) -((((-787)) . T)) -((((-493)) . T) (((-517)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T)) +((((-790)) . T)) +(((|#1| (-491 (-1082))) . T)) +(((|#1|) |has| |#1| (-157))) +((((-790)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) +(((|#2|) -3730 (|has| |#2| (-6 (-4223 "*"))) (|has| |#2| (-157)))) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(|has| |#2| (-782)) +(|has| |#2| (-836)) +(|has| |#1| (-836)) +(((|#2|) |has| |#2| (-157))) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-1155 |#1| |#2| |#3|)) |has| |#1| (-335))) +((((-790)) . T)) +((((-790)) . T)) +((((-495)) . T) (((-519)) . T) (((-819 (-519))) . T) (((-351)) . T) (((-201)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) . T)) (((|#1|) . T)) -((((-787)) . T)) +((((-790)) . T)) (((|#1| |#2|) . T)) -(((|#1| (-377 (-517))) . T)) +(((|#1| (-379 (-519))) . T)) (((|#1|) . T)) -(-3786 (|has| |#1| (-262)) (|has| |#1| (-333))) -((((-131)) . T)) -((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) -(|has| |#1| (-777)) -((((-787)) . T)) -((((-787)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1| |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T)) +(-3730 (|has| |#1| (-264)) (|has| |#1| (-335))) +((((-132)) . T)) +((((-379 |#2|)) . T) (((-379 (-519))) . T) (($) . T)) +(|has| |#1| (-780)) +((((-790)) . T)) +((((-790)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1| |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-377 (-517))) . T) (($) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) +((((-379 (-519))) . T) (($) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-493)) |has| |#1| (-558 (-493))) (((-816 (-517))) |has| |#1| (-558 (-816 (-517)))) (((-816 (-349))) |has| |#1| (-558 (-816 (-349))))) -((((-1077) (-51)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-583 (-131))) . T) (((-1060)) . T)) -((((-787)) . T)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T)) -((((-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|))) -(|has| |#1| (-779)) -((((-787)) . T)) -((((-493)) |has| |#1| (-558 (-493)))) -((((-787)) . T)) -(((|#2|) |has| |#2| (-333))) -((((-787)) . T)) -((((-493)) |has| |#4| (-558 (-493)))) -((((-787)) . T) (((-583 |#4|)) . T)) -(((|#2|) . T)) -((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) -(-3786 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-964))) -(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) -((((-1077) (-51)) . T)) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(|has| |#1| (-833)) -(|has| |#1| (-833)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-787)) . T)) -((((-517)) . T)) -(((#0=(-377 (-517)) #0#) . T) (($ $) . T)) -((((-377 (-517))) . T) (($) . T)) -(((|#1| (-377 (-517)) (-992)) . T)) -(|has| |#1| (-1006)) -(|has| |#1| (-509)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(|has| |#1| (-752)) -(((#0=(-834 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T)) -((((-377 |#2|)) . T)) -(|has| |#1| (-777)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -(((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) . T) ((#1=(-517) #1#) . T) (($ $) . T)) -((((-834 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) -(((|#2|) |has| |#2| (-964)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) -(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-495)) |has| |#1| (-560 (-495))) (((-819 (-519))) |has| |#1| (-560 (-819 (-519)))) (((-819 (-351))) |has| |#1| (-560 (-819 (-351))))) +((((-1082) (-51)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-585 (-132))) . T) (((-1065)) . T)) +((((-790)) . T)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) . T)) +((((-1082) |#1|) |has| |#1| (-480 (-1082) |#1|)) ((|#1| |#1|) |has| |#1| (-282 |#1|))) +(|has| |#1| (-782)) +((((-790)) . T)) +((((-495)) |has| |#1| (-560 (-495)))) +((((-790)) . T)) +(((|#2|) |has| |#2| (-335))) +((((-790)) . T)) +((((-495)) |has| |#4| (-560 (-495)))) +((((-790)) . T) (((-585 |#4|)) . T)) +(((|#2|) . T)) +((((-837 |#1|)) . T) (((-379 (-519))) . T) (($) . T)) +(-3730 (|has| |#4| (-157)) (|has| |#4| (-780)) (|has| |#4| (-968))) +(-3730 (|has| |#3| (-157)) (|has| |#3| (-780)) (|has| |#3| (-968))) +((((-1082) (-51)) . T)) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(|has| |#1| (-836)) +(|has| |#1| (-836)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-790)) . T)) +((((-519)) . T)) +(((#0=(-379 (-519)) #0#) . T) (($ $) . T)) +((((-379 (-519))) . T) (($) . T)) +(((|#1| (-379 (-519)) (-996)) . T)) +(|has| |#1| (-1011)) +(|has| |#1| (-511)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(|has| |#1| (-755)) +(((#0=(-837 |#1|) #0#) . T) (($ $) . T) ((#1=(-379 (-519)) #1#) . T)) +((((-379 |#2|)) . T)) +(|has| |#1| (-780)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +(((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) . T) ((#1=(-519) #1#) . T) (($ $) . T)) +((((-837 |#1|)) . T) (($) . T) (((-379 (-519))) . T)) +(((|#2|) |has| |#2| (-968)) (((-519)) -12 (|has| |#2| (-581 (-519))) (|has| |#2| (-968)))) +(((|#1|) . T) (((-379 (-519))) . T) (((-519)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-134)) -(|has| |#1| (-132)) -(((|#2|) . T)) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T)) -(((#0=(-51)) . T) (((-2 (|:| -2576 (-1077)) (|:| -1846 #0#))) . T)) -(|has| |#1| (-319)) -((((-517)) . T)) -((((-787)) . T)) -(((#0=(-1144 |#1| |#2| |#3| |#4|) $) |has| #0# (-258 #0# #0#))) -(|has| |#1| (-333)) -(((#0=(-992) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-319))) -(((#0=(-377 (-517)) #0#) . T) ((#1=(-632) #1#) . T) (($ $) . T)) -((((-286 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-377 (-517))) |has| |#1| (-333))) -(|has| |#1| (-1006)) -(((|#1|) . T)) -(((|#1|) -3786 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|)))) -(((|#1|) -3786 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|)))) -(((|#2|) . T)) -((((-377 (-517))) . T) (((-632)) . T) (($) . T)) +(|has| |#1| (-135)) +(|has| |#1| (-133)) +(((|#2|) . T)) +((((-790)) . T)) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +((((-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) . T)) +(((#0=(-51)) . T) (((-2 (|:| -2583 (-1082)) (|:| -3100 #0#))) . T)) +(|has| |#1| (-321)) +((((-519)) . T)) +((((-790)) . T)) +(((#0=(-1149 |#1| |#2| |#3| |#4|) $) |has| #0# (-260 #0# #0#))) +(|has| |#1| (-335)) +(((#0=(-996) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-321))) +(((#0=(-379 (-519)) #0#) . T) ((#1=(-634) #1#) . T) (($ $) . T)) +((((-288 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-379 (-519))) |has| |#1| (-335))) +(|has| |#1| (-1011)) +(((|#1|) . T)) +(((|#1|) -3730 (|has| |#2| (-339 |#1|)) (|has| |#2| (-389 |#1|)))) +(((|#1|) -3730 (|has| |#2| (-339 |#1|)) (|has| |#2| (-389 |#1|)))) +(((|#2|) . T)) +((((-379 (-519))) . T) (((-634)) . T) (($) . T)) (((|#3| |#3|) . T)) -(|has| |#2| (-207)) -((((-789 |#1|)) . T)) -((((-1077)) |has| |#1| (-824 (-1077))) ((|#3|) . T)) -(-12 (|has| |#1| (-333)) (|has| |#2| (-940))) -((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333))) -((((-787)) . T)) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -((((-377 (-517))) . T) (($) . T) (((-377 |#1|)) . T) ((|#1|) . T)) -((((-517)) . T)) -(|has| |#1| (-1006)) +(|has| |#2| (-209)) +((((-792 |#1|)) . T)) +((((-1082)) |has| |#1| (-827 (-1082))) ((|#3|) . T)) +(-12 (|has| |#1| (-335)) (|has| |#2| (-944))) +((((-1080 |#1| |#2| |#3|)) |has| |#1| (-335))) +((((-790)) . T)) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +((((-379 (-519))) . T) (($) . T) (((-379 |#1|)) . T) ((|#1|) . T)) +((((-519)) . T)) +(|has| |#1| (-1011)) (((|#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -((((-517)) . T)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) +((((-519)) . T)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(((|#2|) . T) (((-519)) |has| |#2| (-581 (-519)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-530 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) -((($) . T) (((-377 (-517))) . T)) +((((-532 |#1|)) . T) (((-379 (-519))) . T) (($) . T)) +((($) . T) (((-379 (-519))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1158 |#1|) (-1158 |#1|)) . T)) +(((|#1| (-1163 |#1|) (-1163 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-787)) . T)) -((((-787)) . T)) -(((#0=(-111 |#1|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T)) -((((-377 (-517))) |has| |#2| (-955 (-377 (-517)))) (((-517)) |has| |#2| (-955 (-517))) ((|#2|) . T) (((-789 |#1|)) . T)) -((((-1029 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((|#2|) . T)) +((((-790)) . T)) +((((-790)) . T)) +(((#0=(-112 |#1|) #0#) . T) ((#1=(-379 (-519)) #1#) . T) (($ $) . T)) +((((-379 (-519))) |has| |#2| (-959 (-379 (-519)))) (((-519)) |has| |#2| (-959 (-519))) ((|#2|) . T) (((-792 |#1|)) . T)) +((((-1034 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) -((((-608 |#1|)) . T)) -((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T)) -((((-111 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) -((((-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#3| (-810 (-517)))) (((-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#3| (-810 (-349))))) +((((-610 |#1|)) . T)) +((($) . T) (((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) . T)) +((((-112 |#1|)) . T) (((-379 (-519))) . T) (($) . T)) +((((-519)) -12 (|has| |#1| (-813 (-519))) (|has| |#3| (-813 (-519)))) (((-351)) -12 (|has| |#1| (-813 (-351))) (|has| |#3| (-813 (-351))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T)) -((((-131)) . T)) +(((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) (($) . T)) +((((-132)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($) . T) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((($) . T) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) (((|#1|) . T)) -(|has| |#2| (-833)) -(|has| |#1| (-833)) -(|has| |#1| (-833)) +(|has| |#2| (-836)) +(|has| |#1| (-836)) +(|has| |#1| (-836)) (((|#4|) . T)) -(|has| |#2| (-940)) +(|has| |#2| (-944)) ((($) . T)) -(|has| |#1| (-833)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) +(|has| |#1| (-836)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-333)) -((((-834 |#1|)) . T)) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -(-3786 (|has| |#1| (-338)) (|has| |#1| (-779))) -(((|#1|) . T)) -((((-787)) . T)) -((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) -((((-377 |#2|) |#3|) . T)) -((($) . T) (((-377 (-517))) . T)) -((((-703) |#1|) . T)) -(((|#2| (-214 (-3573 |#1|) (-703))) . T)) -(((|#1| (-489 |#3|)) . T)) -((((-377 (-517))) . T)) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -((((-787)) . T)) -(((#0=(-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) #0#) |has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))))) -(|has| |#1| (-833)) -(|has| |#2| (-333)) -(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964))) -((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T)) -((((-787)) . T)) -(((|#1|) . T)) -((((-349)) . T) (((-517)) . T)) -(((#0=(-377 (-517)) #0#) . T) (($ $) . T)) +(|has| |#1| (-335)) +((((-837 |#1|)) . T)) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +(-3730 (|has| |#1| (-340)) (|has| |#1| (-782))) +(((|#1|) . T)) +((((-790)) . T)) +((((-1082)) -12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) +((((-379 |#2|) |#3|) . T)) +((($) . T) (((-379 (-519))) . T)) +((((-705) |#1|) . T)) +(((|#2| (-216 (-3532 |#1|) (-705))) . T)) +(((|#1| (-491 |#3|)) . T)) +((((-379 (-519))) . T)) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +((((-790)) . T)) +(((#0=(-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) #0#) |has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))))) +(|has| |#1| (-836)) +(|has| |#2| (-335)) +(-3730 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968))) +((((-154 (-351))) . T) (((-201)) . T) (((-351)) . T)) +((((-790)) . T)) +(((|#1|) . T)) +((((-351)) . T) (((-519)) . T)) +(((#0=(-379 (-519)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-787)) . T)) -(|has| |#1| (-509)) -((((-377 (-517))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(-3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319))) -(|has| |#1| (-37 (-377 (-517)))) -(-12 (|has| |#1| (-502)) (|has| |#1| (-760))) -((((-787)) . T)) -((((-1077)) -3786 (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))) (-12 (|has| |#1| (-333)) (|has| |#2| (-824 (-1077)))))) -(|has| |#1| (-333)) -((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) -(|has| |#1| (-333)) -((((-377 (-517))) . T) (($) . T)) -((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T)) -((((-517) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-333))) -(((|#2|) |has| |#1| (-333))) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-156))) -(((|#1|) . T)) -(((|#2|) . T) (((-1077)) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-1077)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-517)))) (((-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-517))))) -(((|#2|) . T)) -((((-1077) #0=(-1144 |#1| |#2| |#3| |#4|)) |has| #0# (-478 (-1077) #0#)) ((#0# #0#) |has| #0# (-280 #0#))) -((((-556 $) $) . T) (($ $) . T)) -((((-153 (-199))) . T) (((-153 (-349))) . T) (((-1073 (-632))) . T) (((-816 (-349))) . T)) -((((-787)) . T)) -(|has| |#1| (-509)) -(|has| |#1| (-509)) -(|has| (-377 |#2|) (-207)) -(((|#1| (-377 (-517))) . T)) +((((-790)) . T)) +(|has| |#1| (-511)) +((((-379 (-519))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(-3730 (|has| |#1| (-280)) (|has| |#1| (-335)) (|has| |#1| (-321))) +(|has| |#1| (-37 (-379 (-519)))) +(-12 (|has| |#1| (-504)) (|has| |#1| (-763))) +((((-790)) . T)) +((((-1082)) -3730 (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))) (-12 (|has| |#1| (-335)) (|has| |#2| (-827 (-1082)))))) +(|has| |#1| (-335)) +((((-1082)) -12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) +(|has| |#1| (-335)) +((((-379 (-519))) . T) (($) . T)) +((($) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) . T)) +((((-519) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-335))) +(((|#2|) |has| |#1| (-335))) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-157))) +(((|#1|) . T)) +(((|#2|) . T) (((-1082)) -12 (|has| |#1| (-335)) (|has| |#2| (-959 (-1082)))) (((-519)) -12 (|has| |#1| (-335)) (|has| |#2| (-959 (-519)))) (((-379 (-519))) -12 (|has| |#1| (-335)) (|has| |#2| (-959 (-519))))) +(((|#2|) . T)) +((((-1082) #0=(-1149 |#1| |#2| |#3| |#4|)) |has| #0# (-480 (-1082) #0#)) ((#0# #0#) |has| #0# (-282 #0#))) +((((-558 $) $) . T) (($ $) . T)) +((((-154 (-201))) . T) (((-154 (-351))) . T) (((-1078 (-634))) . T) (((-819 (-351))) . T)) +((((-790)) . T)) +(|has| |#1| (-511)) +(|has| |#1| (-511)) +(|has| (-379 |#2|) (-209)) +(((|#1| (-379 (-519))) . T)) ((($ $) . T)) -((((-1077)) |has| |#2| (-824 (-1077)))) -((($) . T)) -((((-787)) . T)) -((((-377 (-517))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#2|) |has| |#1| (-333))) -((((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-810 (-349)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-810 (-517))))) -(|has| |#1| (-333)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(|has| |#1| (-333)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(|has| |#1| (-333)) -(|has| |#1| (-509)) -(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) +((((-1082)) |has| |#2| (-827 (-1082)))) +((($) . T)) +((((-790)) . T)) +((((-379 (-519))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#2|) |has| |#1| (-335))) +((((-351)) -12 (|has| |#1| (-335)) (|has| |#2| (-813 (-351)))) (((-519)) -12 (|has| |#1| (-335)) (|has| |#2| (-813 (-519))))) +(|has| |#1| (-335)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(|has| |#1| (-335)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(|has| |#1| (-335)) +(|has| |#1| (-511)) +(((|#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (((|#3|) . T)) (((|#1|) . T)) -(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964))) +(-3730 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968))) (((|#2|) . T)) (((|#2|) . T)) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(|has| |#1| (-37 (-377 (-517)))) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(|has| |#1| (-37 (-379 (-519)))) (((|#1| |#2|) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -(|has| |#1| (-134)) -((((-1060) |#1|) . T)) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -(|has| |#1| (-134)) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-338))) -(|has| |#1| (-134)) -((((-530 |#1|)) . T)) -((($) . T)) -((((-377 |#2|)) . T)) -(|has| |#1| (-509)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-319))) -(|has| |#1| (-134)) -((((-787)) . T)) -((($) . T)) -((((-377 (-517))) |has| |#2| (-955 (-517))) (((-517)) |has| |#2| (-955 (-517))) (((-1077)) |has| |#2| (-955 (-1077))) ((|#2|) . T)) -(((#0=(-377 |#2|) #0#) . T) ((#1=(-377 (-517)) #1#) . T) (($ $) . T)) -((((-1042 |#1| |#2|)) . T)) -(((|#1| (-517)) . T)) -(((|#1| (-377 (-517))) . T)) -((((-517)) |has| |#2| (-810 (-517))) (((-349)) |has| |#2| (-810 (-349)))) -(((|#2|) . T)) -((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) -((((-107)) . T)) -(((|#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T)) -(((|#2|) . T)) -((((-787)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-1077) (-51)) . T)) -((((-377 |#2|)) . T)) -((((-787)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1006)) -(|has| |#1| (-723)) -(|has| |#1| (-723)) -((((-493)) |has| |#1| (-558 (-493)))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006)))) -((((-109)) . T) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-199)) . T) (((-349)) . T) (((-816 (-349))) . T)) -((((-787)) . T)) -((((-1144 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T)) -(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509))) -((((-787)) . T)) -(((|#2|) . T)) -((((-787)) . T)) -(((#0=(-834 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-834 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) -(|has| |#1| (-333)) -(((|#2|) . T)) -((((-517)) . T)) -((((-517)) . T)) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) -((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-1060)) . T) (((-493)) . T) (((-517)) . T) (((-816 (-517))) . T) (((-349)) . T) (((-199)) . T)) -((((-787)) . T)) -(|has| |#1| (-134)) -(|has| |#1| (-132)) -((($) . T) ((#0=(-1143 |#2| |#3| |#4|)) |has| #0# (-156)) (((-377 (-517))) |has| #0# (-37 (-377 (-517))))) -(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-824 (-1077))) (|has| |#1| (-964)) (|has| |#1| (-1018)) (|has| |#1| (-1006))) -(|has| |#1| (-1053)) -((((-517) |#1|) . T)) -(((|#1|) . T)) -(((#0=(-111 |#1|) $) |has| #0# (-258 #0# #0#))) -(((|#1|) |has| |#1| (-156))) -(((|#1|) . T)) -((((-109)) . T) ((|#1|) . T)) -((((-787)) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +(|has| |#1| (-135)) +((((-1065) |#1|) . T)) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +(|has| |#1| (-135)) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-340))) +(|has| |#1| (-135)) +((((-532 |#1|)) . T)) +((($) . T)) +((((-379 |#2|)) . T)) +(|has| |#1| (-511)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-321))) +(|has| |#1| (-135)) +((((-790)) . T)) +((($) . T)) +((((-379 (-519))) |has| |#2| (-959 (-519))) (((-519)) |has| |#2| (-959 (-519))) (((-1082)) |has| |#2| (-959 (-1082))) ((|#2|) . T)) +(((#0=(-379 |#2|) #0#) . T) ((#1=(-379 (-519)) #1#) . T) (($ $) . T)) +((((-1047 |#1| |#2|)) . T)) +(((|#1| (-519)) . T)) +(((|#1| (-379 (-519))) . T)) +((((-519)) |has| |#2| (-813 (-519))) (((-351)) |has| |#2| (-813 (-351)))) +(((|#2|) . T)) +((((-379 |#2|)) . T) (((-379 (-519))) . T) (($) . T)) +((((-108)) . T)) +(((|#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-790)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-1082) (-51)) . T)) +((((-379 |#2|)) . T)) +((((-790)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1011)) +(|has| |#1| (-725)) +(|has| |#1| (-725)) +((((-495)) |has| |#1| (-560 (-495)))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-782)) (|has| |#1| (-1011)))) +((((-110)) . T) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-201)) . T) (((-351)) . T) (((-819 (-351))) . T)) +((((-790)) . T)) +((((-1149 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-379 (-519))) . T)) +(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-511)) (((-379 (-519))) |has| |#1| (-511))) +((((-790)) . T)) +(((|#2|) . T)) +((((-790)) . T)) +(((#0=(-837 |#1|) #0#) . T) (($ $) . T) ((#1=(-379 (-519)) #1#) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-837 |#1|)) . T) (($) . T) (((-379 (-519))) . T)) +(|has| |#1| (-335)) +(((|#2|) . T)) +((((-519)) . T)) +((((-519)) . T)) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) +((((-154 (-351))) . T) (((-201)) . T) (((-351)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-1065)) . T) (((-495)) . T) (((-519)) . T) (((-819 (-519))) . T) (((-351)) . T) (((-201)) . T)) +((((-790)) . T)) +(|has| |#1| (-135)) +(|has| |#1| (-133)) +((($) . T) ((#0=(-1148 |#2| |#3| |#4|)) |has| #0# (-157)) (((-379 (-519))) |has| #0# (-37 (-379 (-519))))) +(((|#1|) . T) (($) . T) (((-379 (-519))) . T)) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-444)) (|has| |#1| (-661)) (|has| |#1| (-827 (-1082))) (|has| |#1| (-968)) (|has| |#1| (-1023)) (|has| |#1| (-1011))) +(|has| |#1| (-1058)) +((((-519) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-112 |#1|) $) |has| #0# (-260 #0# #0#))) +(((|#1|) |has| |#1| (-157))) +(((|#1|) . T)) +((((-110)) . T) ((|#1|) . T)) +((((-790)) . T)) (((|#1| |#2|) . T)) -((((-1077) |#1|) . T)) -(((|#1|) |has| |#1| (-280 |#1|))) -((((-517) |#1|) . T)) +((((-1082) |#1|) . T)) +(((|#1|) |has| |#1| (-282 |#1|))) +((((-519) |#1|) . T)) (((|#1|) . T)) -((((-517)) . T) (((-377 (-517))) . T)) +((((-519)) . T) (((-379 (-519))) . T)) (((|#1|) . T)) -(|has| |#1| (-509)) -((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -((((-349)) . T)) +(|has| |#1| (-511)) +((((-379 |#2|)) . T) (((-379 (-519))) . T) (($) . T)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +((((-351)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -(|has| |#1| (-509)) -(|has| |#1| (-1006)) -((((-712 |#1| (-789 |#2|))) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|))))) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +(|has| |#1| (-511)) +(|has| |#1| (-1011)) +((((-714 |#1| (-792 |#2|))) |has| (-714 |#1| (-792 |#2|)) (-282 (-714 |#1| (-792 |#2|))))) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) (((|#1|) . T)) (((|#2| |#3|) . T)) -(|has| |#2| (-833)) +(|has| |#2| (-836)) (((|#1|) . T)) -(((|#1| (-489 |#2|)) . T)) -(((|#1| (-703)) . T)) -(|has| |#1| (-207)) -(((|#1| (-489 (-996 (-1077)))) . T)) -(|has| |#2| (-333)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) . T)) +(((|#1| (-491 |#2|)) . T)) +(((|#1| (-705)) . T)) +(|has| |#1| (-209)) +(((|#1| (-491 (-1001 (-1082)))) . T)) +(|has| |#2| (-335)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-787)) . T)) -((((-787)) . T)) -(-3786 (|has| |#3| (-725)) (|has| |#3| (-777))) -((((-787)) . T)) -((((-787)) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-790)) . T)) +((((-790)) . T)) +(-3730 (|has| |#3| (-727)) (|has| |#3| (-780))) +((((-790)) . T)) +((((-790)) . T)) (((|#1|) . T)) -((($ $) . T) (((-556 $) $) . T)) +((($ $) . T) (((-558 $) $) . T)) (((|#1|) . T)) -((((-517)) . T)) +((((-519)) . T)) (((|#3|) . T)) -((((-787)) . T)) -(-3786 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319))) -(-3786 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-964))) -(((#0=(-530 |#1|) #0#) . T) (($ $) . T) ((#1=(-377 (-517)) #1#) . T)) -((($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -(((|#1|) |has| |#1| (-156))) -(((|#1| (-1158 |#1|) (-1158 |#1|)) . T)) -((((-530 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) -((($) . T) (((-377 (-517))) . T)) -((($) . T) (((-377 (-517))) . T)) -(((|#2|) |has| |#2| (-6 (-4197 "*")))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-265 |#3|)) . T)) -(((|#1|) . T)) -(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) +((((-790)) . T)) +(-3730 (|has| |#1| (-280)) (|has| |#1| (-335)) (|has| |#1| (-321))) +(-3730 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-511)) (|has| |#1| (-968))) +(((#0=(-532 |#1|) #0#) . T) (($ $) . T) ((#1=(-379 (-519)) #1#) . T)) +((($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +(((|#1|) |has| |#1| (-157))) +(((|#1| (-1163 |#1|) (-1163 |#1|)) . T)) +((((-532 |#1|)) . T) (($) . T) (((-379 (-519))) . T)) +((($) . T) (((-379 (-519))) . T)) +((($) . T) (((-379 (-519))) . T)) +(((|#2|) |has| |#2| (-6 (-4223 "*")))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-790)) |has| |#1| (-559 (-790)))) +((((-267 |#3|)) . T)) +(((#0=(-379 (-519)) #0#) |has| |#2| (-37 (-379 (-519)))) ((|#2| |#2|) . T) (($ $) -3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) -((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (($) . T)) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517))))) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517))))) -(((|#2|) . T)) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) +(((|#1|) . T)) +((($) . T) (((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (($) . T)) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519))))) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519))))) +(((|#2|) . T)) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) . T) (($) -3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517))))) -((((-787)) . T)) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(|has| |#2| (-833)) -(|has| |#1| (-833)) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519))))) +((((-790)) . T)) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(|has| |#2| (-836)) +(|has| |#1| (-836)) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) (((|#1|) . T)) -((((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) . T)) +((((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1006)) -(((|#1|) . T)) -((((-1077)) . T) ((|#1|) . T)) -((((-787)) . T)) -((((-787)) . T)) -(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) -(((#0=(-377 (-517)) #0#) . T)) -((((-377 (-517))) . T)) -(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(((|#1|) . T)) -(((|#1|) . T)) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-964))) -((((-493)) . T)) -((((-787)) . T)) -((((-1077)) |has| |#2| (-824 (-1077))) (((-992)) . T)) -((((-1143 |#2| |#3| |#4|)) . T)) -((((-834 |#1|)) . T)) -((($) . T) (((-377 (-517))) . T)) -(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) -(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) -(|has| |#1| (-1116)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -((((-1077)) |has| |#1| (-824 (-1077)))) -((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) -((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T)) -(((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-509)))) -((($) . T) (((-377 (-517))) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T)) -(((|#2|) |has| |#2| (-964)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-509)))) -(|has| |#1| (-509)) -(((|#1|) |has| |#1| (-333))) -((((-517)) . T)) -(|has| |#1| (-723)) -(|has| |#1| (-723)) -((((-1077) #0=(-111 |#1|)) |has| #0# (-478 (-1077) #0#)) ((#0# #0#) |has| #0# (-280 #0#))) -(((|#2|) . T) (((-517)) |has| |#2| (-955 (-517))) (((-377 (-517))) |has| |#2| (-955 (-377 (-517))))) -((((-992)) . T) ((|#2|) . T) (((-517)) |has| |#2| (-955 (-517))) (((-377 (-517))) |has| |#2| (-955 (-377 (-517))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-517) (-703)) . T) ((|#3| (-703)) . T)) +(|has| |#1| (-1011)) +(((|#1|) . T)) +((((-1082)) . T) ((|#1|) . T)) +((((-790)) . T)) +((((-790)) . T)) +(((|#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) +(((#0=(-379 (-519)) #0#) . T)) +((((-379 (-519))) . T)) +(-3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(((|#1|) . T)) +(((|#1|) . T)) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-780)) (|has| |#2| (-968))) +((((-495)) . T)) +((((-790)) . T)) +((((-1082)) |has| |#2| (-827 (-1082))) (((-996)) . T)) +((((-1148 |#2| |#3| |#4|)) . T)) +((((-837 |#1|)) . T)) +((($) . T) (((-379 (-519))) . T)) +(-12 (|has| |#1| (-335)) (|has| |#2| (-755))) +(-12 (|has| |#1| (-335)) (|has| |#2| (-755))) +(|has| |#1| (-1121)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +((((-1082)) |has| |#1| (-827 (-1082)))) +((((-837 |#1|)) . T) (((-379 (-519))) . T) (($) . T)) +((($) . T) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) ((|#1|) . T)) +(((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519)))) ((|#1| |#1|) . T) (($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-511)))) +((($) . T) (((-379 (-519))) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (((-519)) . T) (($) . T)) +(((|#2|) |has| |#2| (-968)) (((-519)) -12 (|has| |#2| (-581 (-519))) (|has| |#2| (-968)))) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) . T) (($) -3730 (|has| |#1| (-157)) (|has| |#1| (-511)))) +(|has| |#1| (-511)) +(((|#1|) |has| |#1| (-335))) +((((-519)) . T)) +(|has| |#1| (-725)) +(|has| |#1| (-725)) +((((-1082) #0=(-112 |#1|)) |has| #0# (-480 (-1082) #0#)) ((#0# #0#) |has| #0# (-282 #0#))) +(((|#2|) . T) (((-519)) |has| |#2| (-959 (-519))) (((-379 (-519))) |has| |#2| (-959 (-379 (-519))))) +((((-996)) . T) ((|#2|) . T) (((-519)) |has| |#2| (-959 (-519))) (((-379 (-519))) |has| |#2| (-959 (-379 (-519))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-519) (-705)) . T) ((|#3| (-705)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-787)) . T)) -(|has| |#2| (-752)) -(|has| |#2| (-752)) -((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517))))) -((((-517)) |has| |#1| (-810 (-517))) (((-349)) |has| |#1| (-810 (-349)))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-790)) . T)) +(|has| |#2| (-755)) +(|has| |#2| (-755)) +((((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) ((|#2|) |has| |#1| (-335)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519))))) +((((-519)) |has| |#1| (-813 (-519))) (((-351)) |has| |#1| (-813 (-351)))) (((|#1|) . T)) -((((-794 |#1|)) . T)) -((((-794 |#1|)) . T)) -(-12 (|has| |#1| (-333)) (|has| |#2| (-833))) -((((-377 (-517))) . T) (((-632)) . T) (($) . T)) -(|has| |#1| (-333)) -(|has| |#1| (-333)) +((((-797 |#1|)) . T)) +((((-797 |#1|)) . T)) +(-12 (|has| |#1| (-335)) (|has| |#2| (-836))) +((((-379 (-519))) . T) (((-634)) . T) (($) . T)) +(|has| |#1| (-335)) +(|has| |#1| (-335)) (((|#1|) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) -(|has| |#1| (-333)) +(((|#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) +(|has| |#1| (-335)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-789 |#1|)) . T)) +((((-792 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-703)) . T)) -((((-1077)) . T)) -((((-794 |#1|)) . T)) -(-3786 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964))) -(-3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-777)) (|has| |#3| (-964))) -((((-787)) . T)) +(((|#2| (-705)) . T)) +((((-1082)) . T)) +((((-797 |#1|)) . T)) +(-3730 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-727)) (|has| |#3| (-780)) (|has| |#3| (-968))) +(-3730 (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-780)) (|has| |#3| (-968))) +((((-790)) . T)) (((|#1|) . T)) -(-3786 (|has| |#2| (-725)) (|has| |#2| (-777))) -(-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))) -((((-794 |#1|)) . T)) +(-3730 (|has| |#2| (-727)) (|has| |#2| (-780))) +(-3730 (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-782)) (|has| |#2| (-782)))) +((((-797 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) -((($ $) . T) (((-556 $) $) . T)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) +((($ $) . T) (((-558 $) $) . T)) ((($) . T)) -((((-787)) . T)) -((((-517)) . T)) +((((-790)) . T)) +((((-519)) . T)) (((|#2|) . T)) -((((-787)) . T)) -(((|#1|) . T) (((-377 (-517))) |has| |#1| (-333))) -((((-787)) . T)) +((((-790)) . T)) +(((|#1|) . T) (((-379 (-519))) |has| |#1| (-335))) +((((-790)) . T)) (((|#1|) . T)) -((((-787)) . T)) -((($) . T) ((|#2|) . T) (((-377 (-517))) . T)) -(|has| |#1| (-1006)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +((((-790)) . T)) +((($) . T) ((|#2|) . T) (((-379 (-519))) . T)) +(|has| |#1| (-1011)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-787)) . T)) -(|has| |#2| (-833)) -((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T)) -((((-493)) |has| |#2| (-558 (-493))) (((-816 (-349))) |has| |#2| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#2| (-558 (-816 (-517))))) -((((-787)) . T)) -((((-787)) . T)) -(((|#3|) |has| |#3| (-964)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964)))) -((((-1029 |#1| |#2|)) . T) (((-876 |#1|)) |has| |#2| (-558 (-1077))) (((-787)) . T)) -((((-876 |#1|)) |has| |#2| (-558 (-1077))) (((-1060)) -12 (|has| |#1| (-955 (-517))) (|has| |#2| (-558 (-1077)))) (((-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517))))) (((-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493))))) -((((-1073 |#1|)) . T) (((-787)) . T)) -((((-787)) . T)) -((((-377 (-517))) |has| |#2| (-955 (-377 (-517)))) (((-517)) |has| |#2| (-955 (-517))) ((|#2|) . T) (((-789 |#1|)) . T)) -((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) -((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T) (((-1077)) . T)) -((((-787)) . T)) -((((-517)) . T)) +((((-790)) . T)) +(|has| |#2| (-836)) +((((-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) . T)) +((((-495)) |has| |#2| (-560 (-495))) (((-819 (-351))) |has| |#2| (-560 (-819 (-351)))) (((-819 (-519))) |has| |#2| (-560 (-819 (-519))))) +((((-790)) . T)) +((((-790)) . T)) +(((|#3|) |has| |#3| (-968)) (((-519)) -12 (|has| |#3| (-581 (-519))) (|has| |#3| (-968)))) +((((-1034 |#1| |#2|)) . T) (((-879 |#1|)) |has| |#2| (-560 (-1082))) (((-790)) . T)) +((((-879 |#1|)) |has| |#2| (-560 (-1082))) (((-1065)) -12 (|has| |#1| (-959 (-519))) (|has| |#2| (-560 (-1082)))) (((-819 (-519))) -12 (|has| |#1| (-560 (-819 (-519)))) (|has| |#2| (-560 (-819 (-519))))) (((-819 (-351))) -12 (|has| |#1| (-560 (-819 (-351)))) (|has| |#2| (-560 (-819 (-351))))) (((-495)) -12 (|has| |#1| (-560 (-495))) (|has| |#2| (-560 (-495))))) +((((-1078 |#1|)) . T) (((-790)) . T)) +((((-790)) . T)) +((((-379 (-519))) |has| |#2| (-959 (-379 (-519)))) (((-519)) |has| |#2| (-959 (-519))) ((|#2|) . T) (((-792 |#1|)) . T)) +((((-112 |#1|)) . T) (($) . T) (((-379 (-519))) . T)) +((((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) (((-519)) |has| |#1| (-959 (-519))) ((|#1|) . T) (((-1082)) . T)) +((((-790)) . T)) +((((-519)) . T)) ((($) . T)) -((((-349)) |has| |#1| (-810 (-349))) (((-517)) |has| |#1| (-810 (-517)))) -((((-517)) . T)) +((((-351)) |has| |#1| (-813 (-351))) (((-519)) |has| |#1| (-813 (-519)))) +((((-519)) . T)) (((|#1|) . T)) -((((-787)) . T)) +((((-790)) . T)) (((|#1|) . T)) -((((-787)) . T)) -(((|#1|) |has| |#1| (-156)) (($) . T)) -((((-517)) . T) (((-377 (-517))) . T)) -(((|#1|) |has| |#1| (-280 |#1|))) -((((-787)) . T)) -((((-349)) . T)) +((((-790)) . T)) +(((|#1|) |has| |#1| (-157)) (($) . T)) +((((-519)) . T) (((-379 (-519))) . T)) +(((|#1|) |has| |#1| (-282 |#1|))) +((((-790)) . T)) +((((-351)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-787)) . T)) -((((-377 (-517))) . T) (($) . T)) -((((-377 |#2|) |#3|) . T)) +((((-790)) . T)) +((((-379 (-519))) . T) (($) . T)) +((((-379 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1006)) -(((|#2| (-450 (-3573 |#1|) (-703))) . T)) -((((-517) |#1|) . T)) +(|has| |#1| (-1011)) +(((|#2| (-452 (-3532 |#1|) (-705))) . T)) +((((-519) |#1|) . T)) (((|#2| |#2|) . T)) -(((|#1| (-489 (-1077))) . T)) -(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964))) -((((-517)) . T)) +(((|#1| (-491 (-1082))) . T)) +(-3730 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968))) +((((-519)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1077)) |has| |#1| (-824 (-1077))) (((-992)) . T)) -(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517)))) -(|has| |#1| (-509)) -((($) . T) (((-377 (-517))) . T)) +((((-1082)) |has| |#1| (-827 (-1082))) (((-996)) . T)) +(((|#1|) . T) (((-519)) |has| |#1| (-581 (-519)))) +(|has| |#1| (-511)) +((($) . T) (((-379 (-519))) . T)) ((($) . T)) ((($) . T)) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) (((|#1|) . T)) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-787)) . T)) -((((-131)) . T)) -(((|#1|) . T) (((-377 (-517))) . T)) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-790)) . T)) +((((-132)) . T)) +(((|#1|) . T) (((-379 (-519))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-787)) . T)) +((((-790)) . T)) (((|#1|) . T)) -(|has| |#1| (-1053)) -(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T)) +(|has| |#1| (-1058)) +(((|#1| (-491 (-792 |#2|)) (-792 |#2|) (-714 |#1| (-792 |#2|))) . T)) (((|#1|) . T)) -((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517))))) -((((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-517)) |has| |#1| (-955 (-517))) ((|#1|) . T) ((|#2|) . T)) -((((-992)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517))))) -((((-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#2| (-810 (-349)))) (((-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#2| (-810 (-517))))) -((((-1144 |#1| |#2| |#3| |#4|)) . T)) -((((-517) |#1|) . T)) +((((-379 $) (-379 $)) |has| |#1| (-511)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519))))) +((((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) (((-519)) |has| |#1| (-959 (-519))) ((|#1|) . T) ((|#2|) . T)) +((((-996)) . T) ((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519))))) +((((-351)) -12 (|has| |#1| (-813 (-351))) (|has| |#2| (-813 (-351)))) (((-519)) -12 (|has| |#1| (-813 (-519))) (|has| |#2| (-813 (-519))))) +((((-1149 |#1| |#2| |#3| |#4|)) . T)) +((((-519) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-156)) (($) . T)) -((($) . T)) -((((-632)) . T)) -((((-712 |#1| (-789 |#2|))) . T)) -((($) . T)) -((((-377 (-517))) . T) (($) . T)) -(|has| |#1| (-1006)) -(|has| |#1| (-1006)) -(|has| |#2| (-333)) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -(|has| |#1| (-37 (-377 (-517)))) -((((-517)) . T)) -((((-1077)) -12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) -((((-1077)) -12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) -(((|#1|) . T)) -(|has| |#1| (-207)) -(((|#1| (-489 |#3|)) . T)) -(|has| |#1| (-338)) -(((|#2| (-214 (-3573 |#1|) (-703))) . T)) -(|has| |#1| (-338)) -(|has| |#1| (-338)) +(((|#1|) |has| |#1| (-157)) (($) . T)) +((($) . T)) +((((-634)) . T)) +((((-714 |#1| (-792 |#2|))) . T)) +((($) . T)) +((((-379 (-519))) . T) (($) . T)) +(|has| |#1| (-1011)) +(|has| |#1| (-1011)) +(|has| |#2| (-335)) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +(|has| |#1| (-37 (-379 (-519)))) +((((-519)) . T)) +((((-1082)) -12 (|has| |#4| (-827 (-1082))) (|has| |#4| (-968)))) +((((-1082)) -12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) +(((|#1|) . T)) +(|has| |#1| (-209)) +(((|#1| (-491 |#3|)) . T)) +(|has| |#1| (-340)) +(((|#2| (-216 (-3532 |#1|) (-705))) . T)) +(|has| |#1| (-340)) +(|has| |#1| (-340)) (((|#1|) . T) (($) . T)) -(((|#1| (-489 |#2|)) . T)) -(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(((|#1| (-703)) . T)) -(|has| |#1| (-509)) -(-3786 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-964))) +(((|#1| (-491 |#2|)) . T)) +(-3730 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(((|#1| (-705)) . T)) +(|has| |#1| (-511)) +(-3730 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-780)) (|has| |#2| (-968))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-787)) . T)) -(-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) -(-3786 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964))) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(((|#1|) |has| |#1| (-156))) -(((|#4|) |has| |#4| (-964))) -(((|#3|) |has| |#3| (-964))) -(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) -(-12 (|has| |#1| (-333)) (|has| |#2| (-752))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006)))) -((((-493)) |has| |#1| (-558 (-493)))) -((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T)) -((($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -((((-787)) . T)) -((($) . T) (((-377 (-517))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1006)) (((-517)) -12 (|has| |#4| (-955 (-517))) (|has| |#4| (-1006))) (((-377 (-517))) -12 (|has| |#4| (-955 (-377 (-517)))) (|has| |#4| (-1006)))) -(((|#3|) |has| |#3| (-1006)) (((-517)) -12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006))) (((-377 (-517))) -12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006)))) -(|has| |#2| (-333)) -(((|#2|) |has| |#2| (-964)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) -(((|#1|) . T)) -(|has| |#2| (-333)) -(((#0=(-377 (-517)) #0#) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1| |#1|) . T) ((#0=(-377 (-517)) #0#) |has| |#1| (-37 (-377 (-517))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-377 (-517)) #0#) . T)) +((((-790)) . T)) +(-3730 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) +(-3730 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-727)) (|has| |#3| (-780)) (|has| |#3| (-968))) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(((|#1|) |has| |#1| (-157))) +(((|#4|) |has| |#4| (-968))) +(((|#3|) |has| |#3| (-968))) +(-12 (|has| |#1| (-335)) (|has| |#2| (-755))) +(-12 (|has| |#1| (-335)) (|has| |#2| (-755))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-782)) (|has| |#1| (-1011)))) +((((-495)) |has| |#1| (-560 (-495)))) +((((-379 |#2|)) . T) (((-379 (-519))) . T) (($) . T)) +((($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +((((-790)) . T)) +((($) . T) (((-379 (-519))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1011)) (((-519)) -12 (|has| |#4| (-959 (-519))) (|has| |#4| (-1011))) (((-379 (-519))) -12 (|has| |#4| (-959 (-379 (-519)))) (|has| |#4| (-1011)))) +(((|#3|) |has| |#3| (-1011)) (((-519)) -12 (|has| |#3| (-959 (-519))) (|has| |#3| (-1011))) (((-379 (-519))) -12 (|has| |#3| (-959 (-379 (-519)))) (|has| |#3| (-1011)))) +(|has| |#2| (-335)) +(((|#2|) |has| |#2| (-968)) (((-519)) -12 (|has| |#2| (-581 (-519))) (|has| |#2| (-968)))) +(((|#1|) . T)) +(|has| |#2| (-335)) +(((#0=(-379 (-519)) #0#) |has| |#2| (-37 (-379 (-519)))) ((|#2| |#2|) . T) (($ $) -3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1| |#1|) . T) ((#0=(-379 (-519)) #0#) |has| |#1| (-37 (-379 (-519))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-379 (-519)) #0#) . T)) (((|#2| |#2|) . T)) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) -(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) -(((|#1|) . T) (($) . T) (((-377 (-517))) . T)) -(((|#2|) . T)) -((($) . T)) -((((-787)) |has| |#1| (-1006))) -((((-1144 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-752)) -(|has| |#2| (-752)) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) -(|has| |#1| (-333)) -(((|#1|) |has| |#2| (-387 |#1|))) -(((|#1|) |has| |#2| (-387 |#1|))) -((((-834 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006)))) -((((-493)) |has| |#1| (-558 (-493)))) -((((-787)) . T)) -((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) |has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))))) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -((((-517) |#1|) . T)) -((((-517) |#1|) . T)) -((((-517) |#1|) . T)) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -((((-517) |#1|) . T)) -(((|#1|) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -((((-1077)) |has| |#1| (-824 (-1077))) (((-750 (-1077))) . T)) -(-3786 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-964))) -((((-751 |#1|)) . T)) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) . T) (($) -3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(((|#1|) . T) (($) . T) (((-379 (-519))) . T)) +(((|#1|) . T) (($) . T) (((-379 (-519))) . T)) +(((|#1|) . T) (($) . T) (((-379 (-519))) . T)) +(((|#2|) . T)) +((($) . T)) +((((-790)) |has| |#1| (-1011))) +((((-1149 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-755)) +(|has| |#2| (-755)) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +(|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) +(|has| |#1| (-335)) +(((|#1|) |has| |#2| (-389 |#1|))) +(((|#1|) |has| |#2| (-389 |#1|))) +((((-837 |#1|)) . T) (((-379 (-519))) . T) (($) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-782)) (|has| |#1| (-1011)))) +((((-495)) |has| |#1| (-560 (-495)))) +((((-790)) . T)) +((((-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) |has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))))) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +((((-519) |#1|) . T)) +((((-519) |#1|) . T)) +((((-519) |#1|) . T)) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +((((-519) |#1|) . T)) +(((|#1|) . T)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +((((-1082)) |has| |#1| (-827 (-1082))) (((-753 (-1082))) . T)) +(-3730 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-727)) (|has| |#3| (-780)) (|has| |#3| (-968))) +((((-754 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-787)) . T)) -(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) +((((-790)) . T)) +(-3730 (|has| |#3| (-157)) (|has| |#3| (-780)) (|has| |#3| (-968))) (((|#1| |#2|) . T)) -(|has| |#1| (-37 (-377 (-517)))) -((((-787)) . T)) -((((-1144 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T)) -(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509))) -(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517)))) -(|has| |#1| (-333)) -(-3786 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (-12 (|has| |#1| (-333)) (|has| |#2| (-207)))) -(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) -(|has| |#1| (-333)) -(((|#1|) . T)) -(((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T)) -((((-517) |#1|) . T)) -((((-286 |#1|)) . T)) -(((#0=(-632) (-1073 #0#)) . T)) -((((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T)) +(|has| |#1| (-37 (-379 (-519)))) +((((-790)) . T)) +((((-1149 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-379 (-519))) . T)) +(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-511)) (((-379 (-519))) |has| |#1| (-511))) +(((|#2|) . T) (((-519)) |has| |#2| (-581 (-519)))) +(|has| |#1| (-335)) +(-3730 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (-12 (|has| |#1| (-335)) (|has| |#2| (-209)))) +(|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) +(|has| |#1| (-335)) +(((|#1|) . T)) +(((#0=(-379 (-519)) #0#) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) ((|#1| |#1|) . T)) +((((-519) |#1|) . T)) +((((-288 |#1|)) . T)) +(((#0=(-634) (-1078 #0#)) . T)) +((((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) (($) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-777)) -((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1029 |#1| (-1077))) . T) (((-750 (-1077))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-955 (-517))) (((-377 (-517))) |has| |#1| (-955 (-377 (-517)))) (((-1077)) . T)) +(|has| |#1| (-780)) +((($ $) . T) ((#0=(-792 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1034 |#1| (-1082))) . T) (((-753 (-1082))) . T) ((|#1|) . T) (((-519)) |has| |#1| (-959 (-519))) (((-379 (-519))) |has| |#1| (-959 (-379 (-519)))) (((-1082)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-992) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1077) $) |has| |#1| (-207)) ((#0# |#1|) |has| |#1| (-207)) ((#1=(-996 (-1077)) |#1|) . T) ((#1# $) . T)) +(((#0=(-996) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1082) $) |has| |#1| (-209)) ((#0# |#1|) |has| |#1| (-209)) ((#1=(-1001 (-1082)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517))))) -(|has| |#2| (-833)) -((($) . T) ((#0=(-1143 |#2| |#3| |#4|)) |has| #0# (-156)) (((-377 (-517))) |has| #0# (-37 (-377 (-517))))) -((((-517) |#1|) . T)) -(((#0=(-1144 |#1| |#2| |#3| |#4|)) |has| #0# (-280 #0#))) -((($) . T)) -(((|#1|) . T)) -((($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2| |#2|) |has| |#1| (-333)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((#0=(-377 (-517)) #0#) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) -(|has| |#2| (-207)) -(|has| $ (-134)) -((((-787)) . T)) -((($) . T) (((-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T)) -((((-787)) . T)) -(|has| |#1| (-777)) -((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) -((((-377 |#2|) |#3|) . T)) -(((|#1|) . T)) -((((-787)) . T)) -(((|#2| (-608 |#1|)) . T)) -(-12 (|has| |#1| (-278)) (|has| |#1| (-833))) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +((($) . T) ((|#2|) . T) (((-379 (-519))) |has| |#2| (-37 (-379 (-519))))) +(|has| |#2| (-836)) +((($) . T) ((#0=(-1148 |#2| |#3| |#4|)) |has| #0# (-157)) (((-379 (-519))) |has| #0# (-37 (-379 (-519))))) +((((-519) |#1|) . T)) +(((#0=(-1149 |#1| |#2| |#3| |#4|)) |has| #0# (-282 #0#))) +((($) . T)) +(((|#1|) . T)) +((($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) ((#0=(-379 (-519)) #0#) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) ((|#2| |#2|) |has| |#1| (-335)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) ((#0=(-379 (-519)) #0#) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335)))) +(|has| |#2| (-209)) +(|has| $ (-135)) +((((-790)) . T)) +((($) . T) (((-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-321))) ((|#1|) . T)) +((((-790)) . T)) +(|has| |#1| (-780)) +((((-1082)) -12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))) +((((-379 |#2|) |#3|) . T)) +(((|#1|) . T)) +((((-790)) . T)) +(((|#2| (-610 |#1|)) . T)) +(-12 (|has| |#1| (-280)) (|has| |#1| (-836))) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (((|#4|) . T)) -(|has| |#1| (-509)) -((($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) ((|#1|) . T)) -((((-1077)) -3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) -(((|#1|) . T) (($) -3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333)))) -((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) -((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) -(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) -((((-517) |#1|) . T)) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -(((|#1|) . T)) -(((|#1| (-489 (-750 (-1077)))) . T)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(((|#1|) . T)) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -(((|#1|) . T)) -(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333))) -((($) . T) (((-794 |#1|)) . T) (((-377 (-517))) . T)) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333))) -(|has| |#1| (-509)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-377 |#2|)) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-319))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006)))) -((((-493)) |has| |#1| (-558 (-493)))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006)))) -((((-493)) |has| |#1| (-558 (-493)))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006)))) -((((-493)) |has| |#1| (-558 (-493)))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-377 (-517)) #0#) . T) (($ $) . T)) -((((-517)) . T)) -((((-787)) . T)) -(((|#2|) . T) (((-377 (-517))) . T) (($) . T)) -((((-530 |#1|)) . T) (((-377 (-517))) . T) (($) . T)) -((((-787)) . T)) -((((-377 (-517))) . T) (($) . T)) -((((-517) |#1|) . T)) -((((-787)) . T)) -((($ $) . T) (((-1077) $) . T)) -((((-1150 |#1| |#2| |#3|)) . T)) -((((-1150 |#1| |#2| |#3|)) . T) (((-1122 |#1| |#2| |#3|)) . T)) -(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T)) -((((-493)) |has| |#2| (-558 (-493))) (((-816 (-349))) |has| |#2| (-558 (-816 (-349)))) (((-816 (-517))) |has| |#2| (-558 (-816 (-517))))) -((((-787)) . T)) -((((-787)) . T)) -((((-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#3| (-558 (-816 (-517))))) (((-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#3| (-558 (-816 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493))))) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -(((|#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T)) -((((-787)) . T)) -((((-1150 |#1| |#2| |#3|)) |has| |#1| (-333))) -((((-1077)) . T) (((-787)) . T)) -(|has| |#1| (-333)) -((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833)))) +(|has| |#1| (-511)) +((($) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335))) ((|#2|) |has| |#1| (-335)) ((|#1|) . T)) +((((-1082)) -3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) +(((|#1|) . T) (($) -3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-511))) (((-379 (-519))) -3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-335)))) +((((-1082)) -12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) +((((-1082)) -12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) +(((|#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) +((((-519) |#1|) . T)) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +(((|#1|) . T)) +(((|#1| (-491 (-753 (-1082)))) . T)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(((|#1|) . T)) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +(((|#1|) . T)) +(-3730 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(-3730 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) +((((-1155 |#1| |#2| |#3|)) |has| |#1| (-335))) +((($) . T) (((-797 |#1|)) . T) (((-379 (-519))) . T)) +((((-1155 |#1| |#2| |#3|)) |has| |#1| (-335))) +(|has| |#1| (-511)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-379 |#2|)) . T)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-321))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-782)) (|has| |#1| (-1011)))) +((((-495)) |has| |#1| (-560 (-495)))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-782)) (|has| |#1| (-1011)))) +((((-495)) |has| |#1| (-560 (-495)))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-782)) (|has| |#1| (-1011)))) +((((-495)) |has| |#1| (-560 (-495)))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-379 (-519)) #0#) . T) (($ $) . T)) +((((-519)) . T)) +((((-790)) . T)) +(((|#2|) . T) (((-379 (-519))) . T) (($) . T)) +((((-532 |#1|)) . T) (((-379 (-519))) . T) (($) . T)) +((((-790)) . T)) +((((-379 (-519))) . T) (($) . T)) +((((-519) |#1|) . T)) +((((-790)) . T)) +((($ $) . T) (((-1082) $) . T)) +((((-1155 |#1| |#2| |#3|)) . T)) +((((-1155 |#1| |#2| |#3|)) . T) (((-1127 |#1| |#2| |#3|)) . T)) +(((|#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1| (-491 (-792 |#2|)) (-792 |#2|) (-714 |#1| (-792 |#2|))) . T)) +((((-495)) |has| |#2| (-560 (-495))) (((-819 (-351))) |has| |#2| (-560 (-819 (-351)))) (((-819 (-519))) |has| |#2| (-560 (-819 (-519))))) +((((-790)) . T)) +((((-790)) . T)) +((((-819 (-519))) -12 (|has| |#1| (-560 (-819 (-519)))) (|has| |#3| (-560 (-819 (-519))))) (((-819 (-351))) -12 (|has| |#1| (-560 (-819 (-351)))) (|has| |#3| (-560 (-819 (-351))))) (((-495)) -12 (|has| |#1| (-560 (-495))) (|has| |#3| (-560 (-495))))) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +(((|#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) . T)) +((((-790)) . T)) +((((-1155 |#1| |#2| |#3|)) |has| |#1| (-335))) +((((-1082)) . T) (((-790)) . T)) +(|has| |#1| (-335)) +((((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) |has| |#2| (-157)) (($) -3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T)) -((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((($) -3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -((((-1010)) . T)) -((((-787)) . T)) -((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T)) -((($) . T)) -((($) -3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(|has| |#2| (-833)) -(|has| |#1| (-833)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-156))) -((((-632)) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -(((|#1|) |has| |#1| (-156))) -(((|#1|) |has| |#1| (-156))) -((((-377 (-517))) . T) (($) . T)) -(((|#1| (-517)) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-319))) -(|has| |#1| (-333)) -(|has| |#1| (-333)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-319))) -(-3786 (|has| |#1| (-156)) (|has| |#1| (-509))) -(((|#1| (-517)) . T)) -(((|#1| (-377 (-517))) . T)) -(((|#1| (-703)) . T)) -((((-377 (-517))) . T)) -(((|#1| (-489 |#2|) |#2|) . T)) -((((-517) |#1|) . T)) -((((-517) |#1|) . T)) -(|has| |#1| (-1006)) -((((-517) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-816 (-349))) . T) (((-816 (-517))) . T) (((-1077)) . T) (((-493)) . T)) -(((|#1|) . T)) -((((-787)) . T)) -(-3786 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-964))) -(-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) -((((-517)) . T)) -((((-517)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) +((($) . T) (((-379 (-519))) |has| |#2| (-37 (-379 (-519)))) ((|#2|) . T)) +((($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((($) -3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +((((-1015)) . T)) +((((-790)) . T)) +((($) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) . T)) +((($) . T)) +((($) -3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) ((|#1|) |has| |#1| (-157)) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(|has| |#2| (-836)) +(|has| |#1| (-836)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) |has| |#1| (-157))) +((((-634)) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +(((|#1|) |has| |#1| (-157))) +(((|#1|) |has| |#1| (-157))) +((((-379 (-519))) . T) (($) . T)) +(((|#1| (-519)) . T)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-321))) +(|has| |#1| (-335)) +(|has| |#1| (-335)) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-321))) +(-3730 (|has| |#1| (-157)) (|has| |#1| (-511))) +(((|#1| (-519)) . T)) +(((|#1| (-379 (-519))) . T)) +(((|#1| (-705)) . T)) +((((-379 (-519))) . T)) +(((|#1| (-491 |#2|) |#2|) . T)) +((((-519) |#1|) . T)) +((((-519) |#1|) . T)) +(|has| |#1| (-1011)) +((((-519) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-819 (-351))) . T) (((-819 (-519))) . T) (((-1082)) . T) (((-495)) . T)) +(((|#1|) . T)) +((((-790)) . T)) +(-3730 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-335)) (|has| |#2| (-727)) (|has| |#2| (-780)) (|has| |#2| (-968))) +(-3730 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) +((((-519)) . T)) +((((-519)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-3786 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-964))) -((((-1077)) -12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) -(-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) -(|has| |#1| (-132)) -(|has| |#1| (-134)) -(|has| |#1| (-333)) +(-3730 (|has| |#2| (-157)) (|has| |#2| (-780)) (|has| |#2| (-968))) +((((-1082)) -12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) +(-3730 (-12 (|has| |#1| (-444)) (|has| |#2| (-444))) (-12 (|has| |#1| (-661)) (|has| |#2| (-661)))) +(|has| |#1| (-133)) +(|has| |#1| (-135)) +(|has| |#1| (-335)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-207)) -((((-787)) . T)) -(((|#1| (-703) (-992)) . T)) -((((-517) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-517) |#1|) . T)) -((((-517) |#1|) . T)) -((((-111 |#1|)) . T)) -((((-377 (-517))) . T) (((-517)) . T)) -(((|#2|) |has| |#2| (-964))) -((((-377 (-517))) . T) (($) . T)) -(((|#2|) . T)) -((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509))) -((((-517)) . T)) -((((-517)) . T)) -((((-1060) (-1077) (-517) (-199) (-787)) . T)) +(|has| |#1| (-209)) +((((-790)) . T)) +(((|#1| (-705) (-996)) . T)) +((((-519) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-519) |#1|) . T)) +((((-519) |#1|) . T)) +((((-112 |#1|)) . T)) +((((-379 (-519))) . T) (((-519)) . T)) +(((|#2|) |has| |#2| (-968))) +((((-379 (-519))) . T) (($) . T)) +(((|#2|) . T)) +((((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-511))) +((((-519)) . T)) +((((-519)) . T)) +((((-1065) (-1082) (-519) (-201) (-790)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-3786 (|has| |#1| (-319)) (|has| |#1| (-338))) +(-3730 (|has| |#1| (-321)) (|has| |#1| (-340))) (((|#1| |#2|) . T)) ((($) . T) ((|#1|) . T)) -((((-787)) . T)) -((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517))))) -(((|#2|) |has| |#2| (-1006)) (((-517)) -12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (((-377 (-517))) -12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) -((((-493)) |has| |#1| (-558 (-493)))) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1006)))) -((($) . T) (((-377 (-517))) . T)) -(|has| |#1| (-833)) -(|has| |#1| (-833)) -((((-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-940))) (((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-940))) (((-816 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-816 (-349))))) (((-816 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-816 (-517))))) (((-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493))))) -((((-787)) . T)) -((((-787)) . T)) +((((-790)) . T)) +((($) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-379 (-519))) |has| |#1| (-37 (-379 (-519))))) +(((|#2|) |has| |#2| (-1011)) (((-519)) -12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011))) (((-379 (-519))) -12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) +((((-495)) |has| |#1| (-560 (-495)))) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-782)) (|has| |#1| (-1011)))) +((($) . T) (((-379 (-519))) . T)) +(|has| |#1| (-836)) +(|has| |#1| (-836)) +((((-201)) -12 (|has| |#1| (-335)) (|has| |#2| (-944))) (((-351)) -12 (|has| |#1| (-335)) (|has| |#2| (-944))) (((-819 (-351))) -12 (|has| |#1| (-335)) (|has| |#2| (-560 (-819 (-351))))) (((-819 (-519))) -12 (|has| |#1| (-335)) (|has| |#2| (-560 (-819 (-519))))) (((-495)) -12 (|has| |#1| (-335)) (|has| |#2| (-560 (-495))))) +((((-790)) . T)) +((((-790)) . T)) (((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-156))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-509))) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-777))) -(((|#2|) . T)) -(-3786 (|has| |#1| (-21)) (|has| |#1| (-777))) -(((|#1|) |has| |#1| (-156))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-787)) -3786 (-12 (|has| |#1| (-557 (-787))) (|has| |#2| (-557 (-787)))) (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))))) -((((-377 |#2|) |#3|) . T)) -((((-377 (-517))) . T) (($) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-333)) -((($ $) . T) ((#0=(-377 (-517)) #0#) . T)) -(|has| (-377 |#2|) (-134)) -(|has| (-377 |#2|) (-132)) -((((-632)) . T)) -(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T)) -(((#0=(-517) #0#) . T)) -((($) . T) (((-377 (-517))) . T)) -(-3786 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-964))) -(-3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) -(|has| |#4| (-725)) -(-3786 (|has| |#4| (-725)) (|has| |#4| (-777))) -(|has| |#4| (-777)) -(|has| |#3| (-725)) -(-3786 (|has| |#3| (-725)) (|has| |#3| (-777))) -(|has| |#3| (-777)) -((((-517)) . T)) -(((|#2|) . T)) -((((-1077)) -3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) -((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) -((((-1077)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) +(((|#1| |#1|) |has| |#1| (-157))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-511))) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-780))) +(((|#2|) . T)) +(-3730 (|has| |#1| (-21)) (|has| |#1| (-780))) +(((|#1|) |has| |#1| (-157))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-790)) -3730 (-12 (|has| |#1| (-559 (-790))) (|has| |#2| (-559 (-790)))) (-12 (|has| |#1| (-1011)) (|has| |#2| (-1011))))) +((((-379 |#2|) |#3|) . T)) +((((-379 (-519))) . T) (($) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-335)) +((($ $) . T) ((#0=(-379 (-519)) #0#) . T)) +(|has| (-379 |#2|) (-135)) +(|has| (-379 |#2|) (-133)) +((((-634)) . T)) +(((|#1|) . T) (((-379 (-519))) . T) (((-519)) . T) (($) . T)) +(((#0=(-519) #0#) . T)) +((($) . T) (((-379 (-519))) . T)) +(-3730 (|has| |#4| (-157)) (|has| |#4| (-780)) (|has| |#4| (-968))) +(-3730 (|has| |#3| (-157)) (|has| |#3| (-780)) (|has| |#3| (-968))) +(|has| |#4| (-727)) +(-3730 (|has| |#4| (-727)) (|has| |#4| (-780))) +(|has| |#4| (-780)) +(|has| |#3| (-727)) +(-3730 (|has| |#3| (-727)) (|has| |#3| (-780))) +(|has| |#3| (-780)) +((((-519)) . T)) +(((|#2|) . T)) +((((-1082)) -3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) +((((-1082)) -12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) +((((-1082)) -12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-789 |#1|)) . T)) -((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333))) -((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333))) -((((-1042 |#1| |#2|)) . T)) -(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T)) -((($) . T)) -(|has| |#1| (-940)) -(((|#2|) . T) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -((((-787)) . T)) -((((-493)) |has| |#2| (-558 (-493))) (((-816 (-517))) |has| |#2| (-558 (-816 (-517)))) (((-816 (-349))) |has| |#2| (-558 (-816 (-349)))) (((-349)) . #0=(|has| |#2| (-940))) (((-199)) . #0#)) -((((-1077) (-51)) . T)) -(|has| |#1| (-37 (-377 (-517)))) -(|has| |#1| (-37 (-377 (-517)))) +((((-792 |#1|)) . T)) +((((-1080 |#1| |#2| |#3|)) |has| |#1| (-335))) +((((-1080 |#1| |#2| |#3|)) |has| |#1| (-335))) +((((-1047 |#1| |#2|)) . T)) +(((|#2|) . T) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) . T)) +((($) . T)) +(|has| |#1| (-944)) +(((|#2|) . T) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +((((-790)) . T)) +((((-495)) |has| |#2| (-560 (-495))) (((-819 (-519))) |has| |#2| (-560 (-819 (-519)))) (((-819 (-351))) |has| |#2| (-560 (-819 (-351)))) (((-351)) . #0=(|has| |#2| (-944))) (((-201)) . #0#)) +((((-1082) (-51)) . T)) +(|has| |#1| (-37 (-379 (-519)))) +(|has| |#1| (-37 (-379 (-519)))) (((|#2|) . T)) ((($ $) . T)) -((((-377 (-517))) . T) (((-632)) . T) (($) . T)) -((((-1075 |#1| |#2| |#3|)) . T)) -((((-1075 |#1| |#2| |#3|)) . T) (((-1068 |#1| |#2| |#3|)) . T)) -((((-787)) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -((((-517) |#1|) . T)) -((((-1075 |#1| |#2| |#3|)) |has| |#1| (-333))) +((((-379 (-519))) . T) (((-634)) . T) (($) . T)) +((((-1080 |#1| |#2| |#3|)) . T)) +((((-1080 |#1| |#2| |#3|)) . T) (((-1073 |#1| |#2| |#3|)) . T)) +((((-790)) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +((((-519) |#1|) . T)) +((((-1080 |#1| |#2| |#3|)) |has| |#1| (-335))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-333)) -(((|#3|) . T) ((|#2|) . T) (($) -3786 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-964))) ((|#4|) -3786 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-964)))) -(((|#2|) . T) (($) -3786 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-964))) ((|#3|) -3786 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-964)))) +(|has| |#2| (-335)) +(((|#3|) . T) ((|#2|) . T) (($) -3730 (|has| |#4| (-157)) (|has| |#4| (-780)) (|has| |#4| (-968))) ((|#4|) -3730 (|has| |#4| (-157)) (|has| |#4| (-335)) (|has| |#4| (-968)))) +(((|#2|) . T) (($) -3730 (|has| |#3| (-157)) (|has| |#3| (-780)) (|has| |#3| (-968))) ((|#3|) -3730 (|has| |#3| (-157)) (|has| |#3| (-335)) (|has| |#3| (-968)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-333)) -((((-111 |#1|)) . T)) +(|has| |#1| (-335)) +((((-112 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-377 (-517))) |has| |#2| (-955 (-377 (-517)))) (((-517)) |has| |#2| (-955 (-517))) ((|#2|) . T) (((-789 |#1|)) . T)) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) +((((-379 (-519))) |has| |#2| (-959 (-379 (-519)))) (((-519)) |has| |#2| (-959 (-519))) ((|#2|) . T) (((-792 |#1|)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) (((|#1|) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) -((((-517) |#1|) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) +((((-519) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) (($ $) . T)) +(((|#2| $) -12 (|has| |#1| (-335)) (|has| |#2| (-260 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-833))) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) -((((-787)) . T)) -((((-787)) . T)) -((((-787)) . T)) -(((|#1| (-489 |#2|)) . T)) -((((-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) . T)) -(((|#1| (-517)) . T)) -(((|#1| (-377 (-517))) . T)) -(((|#1| (-703)) . T)) -((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T)) -(-3786 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-833))) -(-3786 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-833))) -((($) . T)) -(((|#2| (-489 (-789 |#1|))) . T)) -((((-517) |#1|) . T)) -(((|#2|) . T)) -(((|#2| (-703)) . T)) -((((-787)) -3786 (|has| |#1| (-557 (-787))) (|has| |#1| (-1006)))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-423)) (|has| |#1| (-836))) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) +((((-790)) . T)) +((((-790)) . T)) +((((-790)) . T)) +(((|#1| (-491 |#2|)) . T)) +((((-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) . T)) +(((|#1| (-519)) . T)) +(((|#1| (-379 (-519))) . T)) +(((|#1| (-705)) . T)) +((((-112 |#1|)) . T) (($) . T) (((-379 (-519))) . T)) +(-3730 (|has| |#2| (-423)) (|has| |#2| (-511)) (|has| |#2| (-836))) +(-3730 (|has| |#1| (-423)) (|has| |#1| (-511)) (|has| |#1| (-836))) +((($) . T)) +(((|#2| (-491 (-792 |#1|))) . T)) +((((-519) |#1|) . T)) +(((|#2|) . T)) +(((|#2| (-705)) . T)) +((((-790)) -3730 (|has| |#1| (-559 (-790))) (|has| |#1| (-1011)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1060) |#1|) . T)) -((((-377 |#2|)) . T)) -((((-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T)) -(|has| |#1| (-509)) -(|has| |#1| (-509)) +((((-1065) |#1|) . T)) +((((-379 |#2|)) . T)) +((((-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T)) +(|has| |#1| (-511)) +(|has| |#1| (-511)) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#2| $) |has| |#2| (-258 |#2| |#2|))) -(((|#1| (-583 |#1|)) |has| |#1| (-777))) -(-3786 (|has| |#1| (-207)) (|has| |#1| (-319))) -(-3786 (|has| |#1| (-333)) (|has| |#1| (-319))) -(|has| |#1| (-1006)) -(((|#1|) . T)) -((((-377 (-517))) . T) (($) . T)) -((((-918 |#1|)) . T) ((|#1|) . T) (((-517)) -3786 (|has| (-918 |#1|) (-955 (-517))) (|has| |#1| (-955 (-517)))) (((-377 (-517))) -3786 (|has| (-918 |#1|) (-955 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -((((-1077)) |has| |#1| (-824 (-1077)))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) -(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T)) +(((|#2| $) |has| |#2| (-260 |#2| |#2|))) +(((|#1| (-585 |#1|)) |has| |#1| (-780))) +(-3730 (|has| |#1| (-209)) (|has| |#1| (-321))) +(-3730 (|has| |#1| (-335)) (|has| |#1| (-321))) +(|has| |#1| (-1011)) +(((|#1|) . T)) +((((-379 (-519))) . T) (($) . T)) +((((-922 |#1|)) . T) ((|#1|) . T) (((-519)) -3730 (|has| (-922 |#1|) (-959 (-519))) (|has| |#1| (-959 (-519)))) (((-379 (-519))) -3730 (|has| (-922 |#1|) (-959 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519)))))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +((((-1082)) |has| |#1| (-827 (-1082)))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) +(((|#1| (-550 |#1| |#3|) (-550 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1042 |#1| |#2|) #0#) |has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((#0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) #0#) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) -(((#0=(-111 |#1|)) |has| #0# (-280 #0#))) -(-3786 (|has| |#1| (-779)) (|has| |#1| (-1006))) +(((#0=(-1047 |#1| |#2|) #0#) |has| (-1047 |#1| |#2|) (-282 (-1047 |#1| |#2|)))) +(((|#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((#0=(-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) #0#) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) +(((#0=(-112 |#1|)) |has| #0# (-282 #0#))) +(-3730 (|has| |#1| (-782)) (|has| |#1| (-1011))) ((($ $) . T)) -((($ $) . T) ((#0=(-789 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-207)) ((|#2| |#1|) |has| |#1| (-207)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-599 . -1006) T) ((-237 . -478) 142202) ((-221 . -478) 142145) ((-524 . -106) 142130) ((-489 . -23) T) ((-219 . -1006) 142080) ((-112 . -280) 142037) ((-447 . -478) 141829) ((-627 . -97) T) ((-1043 . -478) 141748) ((-360 . -123) T) ((-1169 . -896) 141717) ((-548 . -456) 141701) ((-562 . -123) T) ((-751 . -775) T) ((-486 . -55) 141651) ((-57 . -478) 141584) ((-482 . -478) 141517) ((-388 . -824) 141476) ((-153 . -964) T) ((-480 . -478) 141409) ((-462 . -478) 141342) ((-461 . -478) 141275) ((-731 . -955) 141062) ((-632 . -37) 141027) ((-313 . -319) T) ((-1001 . -1000) 141011) ((-1001 . -1006) 140989) ((-153 . -217) 140940) ((-153 . -207) 140891) ((-1001 . -1002) 140849) ((-796 . -258) 140807) ((-199 . -727) T) ((-199 . -724) T) ((-627 . -256) NIL) ((-1052 . -1089) 140786) ((-377 . -912) 140770) ((-634 . -21) T) ((-634 . -25) T) ((-1171 . -585) 140744) ((-286 . -145) 140723) ((-286 . -130) 140702) ((-1052 . -102) 140652) ((-125 . -25) T) ((-39 . -205) 140629) ((-111 . -21) T) ((-111 . -25) T) ((-552 . -260) 140605) ((-444 . -260) 140584) ((-1131 . -964) T) ((-784 . -964) T) ((-731 . -308) 140568) ((-112 . -1053) NIL) ((-89 . -557) 140500) ((-446 . -123) T) ((-540 . -1112) T) ((-1131 . -296) 140477) ((-524 . -964) T) ((-1131 . -207) T) ((-599 . -650) 140461) ((-881 . -260) 140438) ((-58 . -33) T) ((-975 . -727) T) ((-975 . -724) T) ((-748 . -659) T) ((-664 . -46) 140403) ((-564 . -37) 140390) ((-325 . -262) T) ((-322 . -262) T) ((-314 . -262) T) ((-237 . -262) 140321) ((-221 . -262) 140252) ((-942 . -97) T) ((-383 . -659) T) ((-112 . -37) 140197) ((-383 . -442) T) ((-324 . -97) T) ((-1107 . -971) T) ((-644 . -971) T) ((-1075 . -46) 140174) ((-1074 . -46) 140144) ((-1068 . -46) 140121) ((-953 . -138) 140067) ((-834 . -262) T) ((-1030 . -46) 140039) ((-627 . -280) NIL) ((-479 . -557) 140021) ((-474 . -557) 140003) ((-472 . -557) 139985) ((-297 . -1006) 139935) ((-645 . -421) 139866) ((-47 . -97) T) ((-1142 . -258) 139851) ((-1121 . -258) 139771) ((-583 . -603) 139755) ((-583 . -588) 139739) ((-309 . -21) T) ((-309 . -25) T) ((-39 . -319) NIL) ((-157 . -21) T) ((-157 . -25) T) ((-583 . -343) 139723) ((-548 . -258) 139700) ((-358 . -97) T) ((-1024 . -130) T) ((-121 . -557) 139632) ((-798 . -1006) T) ((-595 . -381) 139616) ((-647 . -557) 139598) ((-146 . -557) 139580) ((-142 . -557) 139562) ((-1171 . -659) T) ((-1008 . -33) T) ((-795 . -727) NIL) ((-795 . -724) NIL) ((-786 . -779) T) ((-664 . -810) NIL) ((-1180 . -123) T) ((-351 . -123) T) ((-828 . -97) T) ((-664 . -955) 139440) ((-489 . -123) T) ((-995 . -381) 139424) ((-919 . -456) 139408) ((-112 . -370) 139385) ((-1068 . -1112) 139364) ((-714 . -381) 139348) ((-712 . -381) 139332) ((-867 . -33) T) ((-627 . -1053) NIL) ((-224 . -585) 139169) ((-223 . -585) 138993) ((-749 . -844) 138972) ((-423 . -381) 138956) ((-548 . -19) 138940) ((-1048 . -1106) 138909) ((-1068 . -810) NIL) ((-1068 . -808) 138861) ((-548 . -550) 138838) ((-1099 . -557) 138770) ((-1076 . -557) 138752) ((-60 . -365) T) ((-1074 . -955) 138687) ((-1068 . -955) 138653) ((-627 . -37) 138603) ((-443 . -258) 138588) ((-664 . -347) 138572) ((-595 . -971) T) ((-1142 . -921) 138538) ((-1121 . -921) 138504) ((-976 . -1089) 138479) ((-796 . -558) 138287) ((-796 . -557) 138269) ((-1086 . -456) 138206) ((-388 . -940) 138185) ((-47 . -280) 138172) ((-976 . -102) 138118) ((-447 . -456) 138055) ((-483 . -1112) T) ((-1043 . -456) 138026) ((-1068 . -308) 137978) ((-1068 . -347) 137930) ((-407 . -97) T) ((-995 . -971) T) ((-224 . -33) T) ((-223 . -33) T) ((-714 . -971) T) ((-712 . -971) T) ((-664 . -824) 137907) ((-423 . -971) T) ((-57 . -456) 137891) ((-952 . -970) 137865) ((-482 . -456) 137849) ((-480 . -456) 137833) ((-462 . -456) 137817) ((-461 . -456) 137801) ((-219 . -478) 137734) ((-952 . -106) 137701) ((-1075 . -824) 137614) ((-607 . -1018) T) ((-1074 . -824) 137520) ((-1068 . -824) 137353) ((-1030 . -824) 137337) ((-324 . -1053) T) ((-292 . -970) 137319) ((-224 . -723) 137298) ((-224 . -726) 137249) ((-224 . -725) 137228) ((-223 . -723) 137207) ((-223 . -726) 137158) ((-223 . -725) 137137) ((-49 . -971) T) ((-224 . -659) 137068) ((-223 . -659) 136999) ((-1107 . -1006) T) ((-607 . -23) T) ((-530 . -971) T) ((-481 . -971) T) ((-349 . -970) 136964) ((-292 . -106) 136939) ((-71 . -353) T) ((-71 . -365) T) ((-942 . -37) 136876) ((-627 . -370) 136858) ((-94 . -97) T) ((-644 . -1006) T) ((-922 . -132) 136830) ((-922 . -134) 136802) ((-349 . -106) 136758) ((-289 . -1116) 136737) ((-443 . -921) 136703) ((-324 . -37) 136668) ((-39 . -340) 136640) ((-797 . -557) 136512) ((-122 . -120) 136496) ((-116 . -120) 136480) ((-766 . -970) 136450) ((-765 . -21) 136402) ((-759 . -970) 136386) ((-765 . -25) 136338) ((-289 . -509) 136289) ((-517 . -760) T) ((-214 . -1112) T) ((-766 . -106) 136254) ((-759 . -106) 136233) ((-1142 . -557) 136215) ((-1121 . -557) 136197) ((-1121 . -558) 135870) ((-1073 . -833) 135849) ((-1029 . -833) 135828) ((-47 . -37) 135793) ((-1178 . -1018) T) ((-548 . -557) 135705) ((-548 . -558) 135666) ((-1176 . -1018) T) ((-214 . -955) 135495) ((-1073 . -585) 135420) ((-1029 . -585) 135345) ((-651 . -557) 135327) ((-783 . -585) 135301) ((-1178 . -23) T) ((-1176 . -23) T) ((-952 . -964) T) ((-1086 . -258) 135280) ((-153 . -338) 135231) ((-923 . -1112) T) ((-43 . -23) T) ((-447 . -258) 135210) ((-534 . -1006) T) ((-1048 . -1015) 135179) ((-1010 . -1009) 135131) ((-360 . -21) T) ((-360 . -25) T) ((-139 . -1018) T) ((-1184 . -97) T) ((-923 . -808) 135113) ((-923 . -810) 135095) ((-1107 . -650) 134992) ((-564 . -205) 134976) ((-562 . -21) T) ((-261 . -509) T) ((-562 . -25) T) ((-1093 . -1006) T) ((-644 . -650) 134941) ((-214 . -347) 134911) ((-923 . -955) 134871) ((-349 . -964) T) ((-197 . -971) T) ((-112 . -205) 134848) ((-57 . -258) 134825) ((-139 . -23) T) ((-480 . -258) 134802) ((-297 . -478) 134735) ((-461 . -258) 134712) ((-349 . -217) T) ((-349 . -207) T) ((-766 . -964) T) ((-759 . -964) T) ((-645 . -873) 134682) ((-634 . -779) T) ((-443 . -557) 134664) ((-759 . -207) 134643) ((-125 . -779) T) ((-595 . -1006) T) ((-1086 . -550) 134622) ((-503 . -1089) 134601) ((-306 . -1006) T) ((-289 . -333) 134580) ((-377 . -134) 134559) ((-377 . -132) 134538) ((-887 . -1018) 134437) ((-214 . -824) 134370) ((-747 . -1018) 134301) ((-591 . -781) 134285) ((-447 . -550) 134264) ((-503 . -102) 134214) ((-923 . -347) 134196) ((-923 . -308) 134178) ((-92 . -1006) T) ((-887 . -23) 133989) ((-446 . -21) T) ((-446 . -25) T) ((-747 . -23) 133860) ((-1077 . -557) 133842) ((-57 . -19) 133826) ((-1077 . -558) 133748) ((-1073 . -659) T) ((-1029 . -659) T) ((-480 . -19) 133732) ((-461 . -19) 133716) ((-57 . -550) 133693) ((-995 . -1006) T) ((-825 . -97) 133671) ((-783 . -659) T) ((-714 . -1006) T) ((-480 . -550) 133648) ((-461 . -550) 133625) ((-712 . -1006) T) ((-712 . -978) 133592) ((-430 . -1006) T) ((-423 . -1006) T) ((-534 . -650) 133567) ((-586 . -1006) T) ((-923 . -824) NIL) ((-1150 . -46) 133544) ((-567 . -1018) T) ((-607 . -123) T) ((-1144 . -97) T) ((-1143 . -46) 133514) ((-1122 . -46) 133491) ((-1107 . -156) 133442) ((-990 . -1116) 133393) ((-248 . -1006) T) ((-83 . -410) T) ((-83 . -365) T) ((-1074 . -278) 133372) ((-1068 . -278) 133351) ((-49 . -1006) T) ((-990 . -509) 133302) ((-644 . -156) T) ((-542 . -46) 133279) ((-199 . -585) 133244) ((-530 . -1006) T) ((-481 . -1006) T) ((-329 . -1116) T) ((-323 . -1116) T) ((-315 . -1116) T) ((-454 . -752) T) ((-454 . -844) T) ((-289 . -1018) T) ((-103 . -1116) T) ((-309 . -779) T) ((-192 . -844) T) ((-192 . -752) T) ((-647 . -970) 133214) ((-329 . -509) T) ((-323 . -509) T) ((-315 . -509) T) ((-103 . -509) T) ((-595 . -650) 133184) ((-1068 . -940) NIL) ((-289 . -23) T) ((-65 . -1112) T) ((-919 . -557) 133116) ((-627 . -205) 133098) ((-647 . -106) 133063) ((-583 . -33) T) ((-219 . -456) 133047) ((-1008 . -1004) 133031) ((-155 . -1006) T) ((-876 . -833) 133010) ((-449 . -833) 132989) ((-1180 . -21) T) ((-1180 . -25) T) ((-1178 . -123) T) ((-1176 . -123) T) ((-995 . -650) 132838) ((-975 . -585) 132825) ((-876 . -585) 132750) ((-493 . -557) 132732) ((-493 . -558) 132713) ((-714 . -650) 132542) ((-712 . -650) 132391) ((-1169 . -97) T) ((-987 . -97) T) ((-351 . -25) T) ((-351 . -21) T) ((-449 . -585) 132316) ((-430 . -650) 132287) ((-423 . -650) 132136) ((-907 . -97) T) ((-670 . -97) T) ((-489 . -25) T) ((-1122 . -1112) 132115) ((-1154 . -557) 132081) ((-1122 . -810) NIL) ((-1122 . -808) 132033) ((-128 . -97) T) ((-43 . -123) T) ((-1086 . -558) NIL) ((-1086 . -557) 132015) ((-1044 . -1027) 131960) ((-313 . -971) T) ((-601 . -557) 131942) ((-261 . -1018) T) ((-325 . -557) 131924) ((-322 . -557) 131906) ((-314 . -557) 131888) ((-237 . -558) 131636) ((-237 . -557) 131618) ((-221 . -557) 131600) ((-221 . -558) 131461) ((-961 . -1106) 131390) ((-825 . -280) 131328) ((-1184 . -1053) T) ((-1143 . -955) 131263) ((-1122 . -955) 131229) ((-1107 . -478) 131196) ((-1043 . -557) 131178) ((-751 . -659) T) ((-548 . -260) 131155) ((-530 . -650) 131120) ((-447 . -558) NIL) ((-447 . -557) 131102) ((-481 . -650) 131047) ((-286 . -97) T) ((-283 . -97) T) ((-261 . -23) T) ((-139 . -123) T) ((-356 . -659) T) ((-796 . -970) 130999) ((-834 . -557) 130981) ((-834 . -558) 130963) ((-796 . -106) 130901) ((-127 . -97) T) ((-109 . -97) T) ((-645 . -1134) 130885) ((-647 . -964) T) ((-627 . -319) NIL) ((-482 . -557) 130817) ((-349 . -727) T) ((-197 . -1006) T) ((-349 . -724) T) ((-199 . -726) T) ((-199 . -723) T) ((-57 . -558) 130778) ((-57 . -557) 130690) ((-199 . -659) T) ((-480 . -558) 130651) ((-480 . -557) 130563) ((-462 . -557) 130495) ((-461 . -558) 130456) ((-461 . -557) 130368) ((-990 . -333) 130319) ((-39 . -381) 130296) ((-75 . -1112) T) ((-795 . -833) NIL) ((-329 . -299) 130280) ((-329 . -333) T) ((-323 . -299) 130264) ((-323 . -333) T) ((-315 . -299) 130248) ((-315 . -333) T) ((-286 . -256) 130227) ((-103 . -333) T) ((-68 . -1112) T) ((-1122 . -308) 130179) ((-795 . -585) 130124) ((-1122 . -347) 130076) ((-887 . -123) 129931) ((-747 . -123) 129802) ((-881 . -588) 129786) ((-995 . -156) 129697) ((-881 . -343) 129681) ((-975 . -726) T) ((-975 . -723) T) ((-714 . -156) 129572) ((-712 . -156) 129483) ((-748 . -46) 129445) ((-975 . -659) T) ((-297 . -456) 129429) ((-876 . -659) T) ((-423 . -156) 129340) ((-219 . -258) 129317) ((-449 . -659) T) ((-1169 . -280) 129255) ((-1150 . -824) 129168) ((-1143 . -824) 129074) ((-1142 . -970) 128909) ((-1122 . -824) 128742) ((-1121 . -970) 128550) ((-1107 . -262) 128529) ((-1048 . -138) 128513) ((-985 . -97) T) ((-851 . -878) T) ((-73 . -1112) T) ((-670 . -280) 128451) ((-153 . -833) 128404) ((-601 . -352) 128376) ((-30 . -878) T) ((-1 . -557) 128358) ((-1024 . -97) T) ((-990 . -23) T) ((-49 . -561) 128342) ((-990 . -1018) T) ((-922 . -379) 128314) ((-542 . -824) 128227) ((-408 . -97) T) ((-128 . -280) NIL) ((-796 . -964) T) ((-765 . -779) 128206) ((-79 . -1112) T) ((-644 . -262) T) ((-39 . -971) T) ((-530 . -156) T) ((-481 . -156) T) ((-475 . -557) 128188) ((-153 . -585) 128098) ((-471 . -557) 128080) ((-321 . -134) 128062) ((-321 . -132) T) ((-329 . -1018) T) ((-323 . -1018) T) ((-315 . -1018) T) ((-923 . -278) T) ((-838 . -278) T) ((-796 . -217) T) ((-103 . -1018) T) ((-796 . -207) 128041) ((-1142 . -106) 127862) ((-1121 . -106) 127651) ((-219 . -1146) 127635) ((-517 . -777) T) ((-329 . -23) T) ((-324 . -319) T) ((-286 . -280) 127622) ((-283 . -280) 127563) ((-323 . -23) T) ((-289 . -123) T) ((-315 . -23) T) ((-923 . -940) T) ((-103 . -23) T) ((-219 . -550) 127540) ((-1144 . -37) 127432) ((-1131 . -833) 127411) ((-107 . -1006) T) ((-953 . -97) T) ((-1131 . -585) 127336) ((-795 . -726) NIL) ((-784 . -585) 127310) ((-795 . -723) NIL) ((-748 . -810) NIL) ((-795 . -659) T) ((-995 . -478) 127184) ((-714 . -478) 127132) ((-712 . -478) 127084) ((-524 . -585) 127071) ((-748 . -955) 126901) ((-423 . -478) 126844) ((-358 . -359) T) ((-58 . -1112) T) ((-562 . -779) 126823) ((-465 . -598) T) ((-1048 . -896) 126792) ((-922 . -421) T) ((-632 . -777) T) ((-474 . -724) T) ((-443 . -970) 126627) ((-313 . -1006) T) ((-283 . -1053) NIL) ((-261 . -123) T) ((-364 . -1006) T) ((-627 . -340) 126594) ((-794 . -971) T) ((-197 . -561) 126571) ((-297 . -258) 126548) ((-443 . -106) 126369) ((-1142 . -964) T) ((-1121 . -964) T) ((-748 . -347) 126353) ((-153 . -659) T) ((-591 . -97) T) ((-1142 . -217) 126332) ((-1142 . -207) 126284) ((-1121 . -207) 126189) ((-1121 . -217) 126168) ((-922 . -372) NIL) ((-607 . -579) 126116) ((-286 . -37) 126026) ((-283 . -37) 125955) ((-67 . -557) 125937) ((-289 . -458) 125903) ((-1086 . -260) 125882) ((-1019 . -1018) 125813) ((-81 . -1112) T) ((-59 . -557) 125795) ((-447 . -260) 125774) ((-1171 . -955) 125751) ((-1066 . -1006) T) ((-1019 . -23) 125622) ((-748 . -824) 125558) ((-1131 . -659) T) ((-1008 . -1112) T) ((-995 . -262) 125489) ((-817 . -97) T) ((-714 . -262) 125400) ((-297 . -19) 125384) ((-57 . -260) 125361) ((-712 . -262) 125292) ((-784 . -659) T) ((-112 . -777) NIL) ((-480 . -260) 125269) ((-297 . -550) 125246) ((-461 . -260) 125223) ((-423 . -262) 125154) ((-953 . -280) 125005) ((-524 . -659) T) ((-599 . -557) 124987) ((-219 . -558) 124948) ((-219 . -557) 124860) ((-1049 . -33) T) ((-867 . -1112) T) ((-313 . -650) 124805) ((-607 . -25) T) ((-607 . -21) T) ((-443 . -964) T) ((-575 . -387) 124770) ((-551 . -387) 124735) ((-1024 . -1053) T) ((-530 . -262) T) ((-481 . -262) T) ((-1143 . -278) 124714) ((-443 . -207) 124666) ((-443 . -217) 124645) ((-1122 . -278) 124624) ((-990 . -123) T) ((-796 . -727) 124603) ((-131 . -97) T) ((-39 . -1006) T) ((-796 . -724) 124582) ((-583 . -929) 124566) ((-529 . -971) T) ((-517 . -971) T) ((-460 . -971) T) ((-377 . -421) T) ((-329 . -123) T) ((-286 . -370) 124550) ((-283 . -370) 124511) ((-323 . -123) T) ((-315 . -123) T) ((-1122 . -940) NIL) ((-1001 . -557) 124478) ((-103 . -123) T) ((-1024 . -37) 124465) ((-845 . -1006) T) ((-703 . -1006) T) ((-608 . -1006) T) ((-634 . -134) T) ((-111 . -134) T) ((-1178 . -21) T) ((-1178 . -25) T) ((-1176 . -21) T) ((-1176 . -25) T) ((-601 . -970) 124449) ((-489 . -779) T) ((-465 . -779) T) ((-325 . -970) 124401) ((-322 . -970) 124353) ((-314 . -970) 124305) ((-224 . -1112) T) ((-223 . -1112) T) ((-237 . -970) 124148) ((-221 . -970) 123991) ((-601 . -106) 123970) ((-325 . -106) 123908) ((-322 . -106) 123846) ((-314 . -106) 123784) ((-237 . -106) 123613) ((-221 . -106) 123442) ((-749 . -1116) 123421) ((-564 . -381) 123405) ((-43 . -21) T) ((-43 . -25) T) ((-747 . -579) 123313) ((-749 . -509) 123292) ((-224 . -955) 123121) ((-223 . -955) 122950) ((-121 . -114) 122934) ((-834 . -970) 122899) ((-632 . -971) T) ((-645 . -97) T) ((-313 . -156) T) ((-139 . -21) T) ((-139 . -25) T) ((-86 . -557) 122881) ((-834 . -106) 122837) ((-39 . -650) 122782) ((-794 . -1006) T) ((-297 . -558) 122743) ((-297 . -557) 122655) ((-1121 . -724) 122608) ((-1121 . -727) 122561) ((-224 . -347) 122531) ((-223 . -347) 122501) ((-591 . -37) 122471) ((-552 . -33) T) ((-450 . -1018) 122402) ((-444 . -33) T) ((-1019 . -123) 122273) ((-887 . -25) 122084) ((-798 . -557) 122066) ((-887 . -21) 122021) ((-747 . -21) 121932) ((-747 . -25) 121784) ((-564 . -971) T) ((-1079 . -509) 121763) ((-1073 . -46) 121740) ((-325 . -964) T) ((-322 . -964) T) ((-450 . -23) 121611) ((-314 . -964) T) ((-237 . -964) T) ((-221 . -964) T) ((-1029 . -46) 121583) ((-112 . -971) T) ((-952 . -585) 121557) ((-881 . -33) T) ((-325 . -207) 121536) ((-325 . -217) T) ((-322 . -207) 121515) ((-221 . -296) 121472) ((-322 . -217) T) ((-314 . -207) 121451) ((-314 . -217) T) ((-237 . -296) 121423) ((-237 . -207) 121402) ((-1058 . -138) 121386) ((-224 . -824) 121319) ((-223 . -824) 121252) ((-992 . -779) T) ((-1125 . -1112) T) ((-384 . -1018) T) ((-968 . -23) T) ((-834 . -964) T) ((-292 . -585) 121234) ((-942 . -777) T) ((-1107 . -921) 121200) ((-1074 . -844) 121179) ((-1068 . -844) 121158) ((-834 . -217) T) ((-749 . -333) 121137) ((-355 . -23) T) ((-122 . -1006) 121115) ((-116 . -1006) 121093) ((-834 . -207) T) ((-1068 . -752) NIL) ((-349 . -585) 121058) ((-794 . -650) 121045) ((-961 . -138) 121010) ((-39 . -156) T) ((-627 . -381) 120992) ((-645 . -280) 120979) ((-766 . -585) 120939) ((-759 . -585) 120913) ((-289 . -25) T) ((-289 . -21) T) ((-595 . -258) 120892) ((-529 . -1006) T) ((-517 . -1006) T) ((-460 . -1006) T) ((-219 . -260) 120869) ((-283 . -205) 120830) ((-1073 . -810) NIL) ((-1029 . -810) 120689) ((-1073 . -955) 120572) ((-1029 . -955) 120457) ((-783 . -955) 120355) ((-714 . -258) 120282) ((-749 . -1018) T) ((-952 . -659) T) ((-548 . -588) 120266) ((-961 . -896) 120195) ((-918 . -97) T) ((-749 . -23) T) ((-645 . -1053) 120173) ((-627 . -971) T) ((-548 . -343) 120157) ((-321 . -421) T) ((-313 . -262) T) ((-1159 . -1006) T) ((-369 . -97) T) ((-261 . -21) T) ((-261 . -25) T) ((-331 . -659) T) ((-632 . -1006) T) ((-331 . -442) T) ((-1107 . -557) 120139) ((-1073 . -347) 120123) ((-1029 . -347) 120107) ((-942 . -381) 120069) ((-128 . -203) 120051) ((-349 . -726) T) ((-349 . -723) T) ((-794 . -156) T) ((-349 . -659) T) ((-644 . -557) 120033) ((-645 . -37) 119862) ((-1158 . -1156) 119846) ((-321 . -372) T) ((-1158 . -1006) 119796) ((-529 . -650) 119783) ((-517 . -650) 119770) ((-460 . -650) 119735) ((-286 . -569) 119714) ((-766 . -659) T) ((-759 . -659) T) ((-583 . -1112) T) ((-990 . -579) 119662) ((-1073 . -824) 119606) ((-1029 . -824) 119590) ((-599 . -970) 119574) ((-103 . -579) 119556) ((-450 . -123) 119427) ((-1079 . -1018) T) ((-876 . -46) 119396) ((-564 . -1006) T) ((-599 . -106) 119375) ((-297 . -260) 119352) ((-449 . -46) 119309) ((-1079 . -23) T) ((-112 . -1006) T) ((-98 . -97) 119287) ((-1168 . -1018) T) ((-968 . -123) T) ((-942 . -971) T) ((-751 . -955) 119271) ((-922 . -657) 119243) ((-1168 . -23) T) ((-632 . -650) 119208) ((-534 . -557) 119190) ((-356 . -955) 119174) ((-324 . -971) T) ((-355 . -123) T) ((-294 . -955) 119158) ((-199 . -810) 119140) ((-923 . -844) T) ((-89 . -33) T) ((-923 . -752) T) ((-838 . -844) T) ((-454 . -1116) T) ((-1093 . -557) 119122) ((-1011 . -1006) T) ((-192 . -1116) T) ((-918 . -280) 119087) ((-199 . -955) 119047) ((-39 . -262) T) ((-990 . -21) T) ((-990 . -25) T) ((-1024 . -760) T) ((-454 . -509) T) ((-329 . -25) T) ((-192 . -509) T) ((-329 . -21) T) ((-323 . -25) T) ((-323 . -21) T) ((-647 . -585) 119007) ((-315 . -25) T) ((-315 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -971) T) ((-529 . -156) T) ((-517 . -156) T) ((-460 . -156) T) ((-595 . -557) 118989) ((-670 . -669) 118973) ((-306 . -557) 118955) ((-66 . -353) T) ((-66 . -365) T) ((-1008 . -102) 118939) ((-975 . -810) 118921) ((-876 . -810) 118846) ((-590 . -1018) T) ((-564 . -650) 118833) ((-449 . -810) NIL) ((-1048 . -97) T) ((-975 . -955) 118815) ((-92 . -557) 118797) ((-446 . -134) T) ((-876 . -955) 118679) ((-112 . -650) 118624) ((-590 . -23) T) ((-449 . -955) 118502) ((-995 . -558) NIL) ((-995 . -557) 118484) ((-714 . -558) NIL) ((-714 . -557) 118445) ((-712 . -558) 118080) ((-712 . -557) 117994) ((-1019 . -579) 117902) ((-430 . -557) 117884) ((-423 . -557) 117866) ((-423 . -558) 117727) ((-953 . -203) 117673) ((-121 . -33) T) ((-749 . -123) T) ((-796 . -833) 117652) ((-586 . -557) 117634) ((-325 . -1175) 117618) ((-322 . -1175) 117602) ((-314 . -1175) 117586) ((-122 . -478) 117519) ((-116 . -478) 117452) ((-475 . -724) T) ((-475 . -727) T) ((-474 . -726) T) ((-98 . -280) 117390) ((-196 . -97) 117368) ((-627 . -1006) T) ((-632 . -156) T) ((-796 . -585) 117320) ((-63 . -354) T) ((-248 . -557) 117302) ((-63 . -365) T) ((-876 . -347) 117286) ((-794 . -262) T) ((-49 . -557) 117268) ((-918 . -37) 117216) ((-530 . -557) 117198) ((-449 . -347) 117182) ((-530 . -558) 117164) ((-481 . -557) 117146) ((-834 . -1175) 117133) ((-795 . -1112) T) ((-634 . -421) T) ((-460 . -478) 117099) ((-454 . -333) T) ((-325 . -338) 117078) ((-322 . -338) 117057) ((-314 . -338) 117036) ((-192 . -333) T) ((-647 . -659) T) ((-111 . -421) T) ((-1179 . -1170) 117020) ((-795 . -808) 116997) ((-795 . -810) NIL) ((-887 . -779) 116896) ((-747 . -779) 116847) ((-591 . -593) 116831) ((-1099 . -33) T) ((-155 . -557) 116813) ((-1019 . -21) 116724) ((-1019 . -25) 116576) ((-795 . -955) 116553) ((-876 . -824) 116534) ((-1131 . -46) 116511) ((-834 . -338) T) ((-57 . -588) 116495) ((-480 . -588) 116479) ((-449 . -824) 116456) ((-69 . -410) T) ((-69 . -365) T) ((-461 . -588) 116440) ((-57 . -343) 116424) ((-564 . -156) T) ((-480 . -343) 116408) ((-461 . -343) 116392) ((-759 . -642) 116376) ((-1073 . -278) 116355) ((-1079 . -123) T) ((-112 . -156) T) ((-1048 . -280) 116293) ((-153 . -1112) T) ((-575 . -677) 116277) ((-551 . -677) 116261) ((-1168 . -123) T) ((-1143 . -844) 116240) ((-1122 . -844) 116219) ((-1122 . -752) NIL) ((-627 . -650) 116169) ((-1121 . -833) 116122) ((-942 . -1006) T) ((-795 . -347) 116099) ((-795 . -308) 116076) ((-829 . -1018) T) ((-153 . -808) 116060) ((-153 . -810) 115985) ((-454 . -1018) T) ((-324 . -1006) T) ((-192 . -1018) T) ((-74 . -410) T) ((-74 . -365) T) ((-153 . -955) 115883) ((-289 . -779) T) ((-1158 . -478) 115816) ((-1142 . -585) 115713) ((-1121 . -585) 115583) ((-796 . -726) 115562) ((-796 . -723) 115541) ((-796 . -659) T) ((-454 . -23) T) ((-197 . -557) 115523) ((-157 . -421) T) ((-196 . -280) 115461) ((-84 . -410) T) ((-84 . -365) T) ((-192 . -23) T) ((-1180 . -1173) 115440) ((-529 . -262) T) ((-517 . -262) T) ((-612 . -955) 115424) ((-460 . -262) T) ((-127 . -439) 115379) ((-47 . -1006) T) ((-645 . -205) 115363) ((-795 . -824) NIL) ((-1131 . -810) NIL) ((-813 . -97) T) ((-809 . -97) T) ((-358 . -1006) T) ((-153 . -347) 115347) ((-153 . -308) 115331) ((-1131 . -955) 115214) ((-784 . -955) 115112) ((-1044 . -97) T) ((-590 . -123) T) ((-112 . -478) 115020) ((-599 . -724) 114999) ((-599 . -727) 114978) ((-524 . -955) 114960) ((-265 . -1165) 114930) ((-790 . -97) T) ((-886 . -509) 114909) ((-1107 . -970) 114792) ((-450 . -579) 114700) ((-828 . -1006) T) ((-942 . -650) 114637) ((-644 . -970) 114602) ((-548 . -33) T) ((-1049 . -1112) T) ((-1107 . -106) 114471) ((-443 . -585) 114368) ((-324 . -650) 114313) ((-153 . -824) 114272) ((-632 . -262) T) ((-627 . -156) T) ((-644 . -106) 114228) ((-1184 . -971) T) ((-1131 . -347) 114212) ((-388 . -1116) 114190) ((-283 . -777) NIL) ((-388 . -509) T) ((-199 . -278) T) ((-1121 . -723) 114143) ((-1121 . -726) 114096) ((-1142 . -659) T) ((-1121 . -659) T) ((-47 . -650) 114061) ((-199 . -940) T) ((-321 . -1165) 114038) ((-1144 . -381) 114004) ((-651 . -659) T) ((-1131 . -824) 113948) ((-107 . -557) 113930) ((-107 . -558) 113912) ((-651 . -442) T) ((-450 . -21) 113823) ((-122 . -456) 113807) ((-116 . -456) 113791) ((-450 . -25) 113643) ((-564 . -262) T) ((-534 . -970) 113618) ((-407 . -1006) T) ((-975 . -278) T) ((-112 . -262) T) ((-1010 . -97) T) ((-922 . -97) T) ((-534 . -106) 113586) ((-1044 . -280) 113524) ((-1107 . -964) T) ((-975 . -940) T) ((-64 . -1112) T) ((-968 . -25) T) ((-968 . -21) T) ((-644 . -964) T) ((-355 . -21) T) ((-355 . -25) T) ((-627 . -478) NIL) ((-942 . -156) T) ((-644 . -217) T) ((-975 . -502) T) ((-467 . -97) T) ((-324 . -156) T) ((-313 . -557) 113506) ((-364 . -557) 113488) ((-443 . -659) T) ((-1024 . -777) T) ((-816 . -955) 113456) ((-103 . -779) T) ((-595 . -970) 113440) ((-454 . -123) T) ((-1144 . -971) T) ((-192 . -123) T) ((-1058 . -97) 113418) ((-94 . -1006) T) ((-219 . -603) 113402) ((-219 . -588) 113386) ((-595 . -106) 113365) ((-286 . -381) 113349) ((-219 . -343) 113333) ((-1061 . -209) 113280) ((-918 . -205) 113264) ((-72 . -1112) T) ((-47 . -156) T) ((-634 . -357) T) ((-634 . -130) T) ((-1179 . -97) T) ((-995 . -970) 113107) ((-237 . -833) 113086) ((-221 . -833) 113065) ((-714 . -970) 112888) ((-712 . -970) 112731) ((-552 . -1112) T) ((-1066 . -557) 112713) ((-995 . -106) 112542) ((-961 . -97) T) ((-444 . -1112) T) ((-430 . -970) 112513) ((-423 . -970) 112356) ((-601 . -585) 112340) ((-795 . -278) T) ((-714 . -106) 112149) ((-712 . -106) 111978) ((-325 . -585) 111930) ((-322 . -585) 111882) ((-314 . -585) 111834) ((-237 . -585) 111759) ((-221 . -585) 111684) ((-1060 . -779) T) ((-430 . -106) 111645) ((-423 . -106) 111474) ((-996 . -955) 111458) ((-986 . -955) 111435) ((-919 . -33) T) ((-881 . -1112) T) ((-121 . -929) 111419) ((-886 . -1018) T) ((-795 . -940) NIL) ((-668 . -1018) T) ((-648 . -1018) T) ((-1158 . -456) 111403) ((-1044 . -37) 111363) ((-886 . -23) T) ((-772 . -97) T) ((-749 . -21) T) ((-749 . -25) T) ((-668 . -23) T) ((-648 . -23) T) ((-105 . -598) T) ((-834 . -585) 111328) ((-530 . -970) 111293) ((-481 . -970) 111238) ((-201 . -55) 111196) ((-422 . -23) T) ((-377 . -97) T) ((-236 . -97) T) ((-627 . -262) T) ((-790 . -37) 111166) ((-530 . -106) 111122) ((-481 . -106) 111051) ((-388 . -1018) T) ((-286 . -971) 110942) ((-283 . -971) T) ((-595 . -964) T) ((-1184 . -1006) T) ((-153 . -278) 110873) ((-388 . -23) T) ((-39 . -557) 110855) ((-39 . -558) 110839) ((-103 . -912) 110821) ((-111 . -793) 110805) ((-47 . -478) 110771) ((-1099 . -929) 110755) ((-1082 . -557) 110737) ((-1086 . -33) T) ((-845 . -557) 110719) ((-1019 . -779) 110670) ((-703 . -557) 110652) ((-608 . -557) 110634) ((-1058 . -280) 110572) ((-447 . -33) T) ((-999 . -1112) T) ((-446 . -421) T) ((-995 . -964) T) ((-1043 . -33) T) ((-714 . -964) T) ((-712 . -964) T) ((-584 . -209) 110556) ((-572 . -209) 110502) ((-1131 . -278) 110481) ((-995 . -296) 110443) ((-423 . -964) T) ((-1079 . -21) T) ((-995 . -207) 110422) ((-714 . -296) 110399) ((-714 . -207) T) ((-712 . -296) 110371) ((-297 . -588) 110355) ((-664 . -1116) 110334) ((-1079 . -25) T) ((-57 . -33) T) ((-482 . -33) T) ((-480 . -33) T) ((-423 . -296) 110313) ((-297 . -343) 110297) ((-462 . -33) T) ((-461 . -33) T) ((-922 . -1053) NIL) ((-575 . -97) T) ((-551 . -97) T) ((-664 . -509) 110228) ((-325 . -659) T) ((-322 . -659) T) ((-314 . -659) T) ((-237 . -659) T) ((-221 . -659) T) ((-961 . -280) 110136) ((-825 . -1006) 110114) ((-49 . -964) T) ((-1168 . -21) T) ((-1168 . -25) T) ((-1075 . -509) 110093) ((-1074 . -1116) 110072) ((-530 . -964) T) ((-481 . -964) T) ((-1068 . -1116) 110051) ((-331 . -955) 110035) ((-292 . -955) 110019) ((-942 . -262) T) ((-349 . -810) 110001) ((-1074 . -509) 109952) ((-1068 . -509) 109903) ((-922 . -37) 109848) ((-731 . -1018) T) ((-834 . -659) T) ((-530 . -217) T) ((-530 . -207) T) ((-481 . -207) T) ((-481 . -217) T) ((-1030 . -509) 109827) ((-324 . -262) T) ((-584 . -628) 109811) ((-349 . -955) 109771) ((-1024 . -971) T) ((-98 . -120) 109755) ((-731 . -23) T) ((-1158 . -258) 109732) ((-377 . -280) 109697) ((-1178 . -1173) 109673) ((-1176 . -1173) 109652) ((-1144 . -1006) T) ((-794 . -557) 109634) ((-766 . -955) 109603) ((-179 . -719) T) ((-178 . -719) T) ((-177 . -719) T) ((-176 . -719) T) ((-175 . -719) T) ((-174 . -719) T) ((-173 . -719) T) ((-172 . -719) T) ((-171 . -719) T) ((-170 . -719) T) ((-460 . -921) T) ((-247 . -768) T) ((-246 . -768) T) ((-245 . -768) T) ((-244 . -768) T) ((-47 . -262) T) ((-243 . -768) T) ((-242 . -768) T) ((-241 . -768) T) ((-169 . -719) T) ((-556 . -779) T) ((-591 . -381) 109587) ((-105 . -779) T) ((-590 . -21) T) ((-590 . -25) T) ((-1179 . -37) 109557) ((-112 . -258) 109508) ((-1158 . -19) 109492) ((-1158 . -550) 109469) ((-1169 . -1006) T) ((-987 . -1006) T) ((-907 . -1006) T) ((-886 . -123) T) ((-670 . -1006) T) ((-668 . -123) T) ((-648 . -123) T) ((-475 . -725) T) ((-377 . -1053) 109447) ((-422 . -123) T) ((-475 . -726) T) ((-197 . -964) T) ((-265 . -97) 109230) ((-128 . -1006) T) ((-632 . -921) T) ((-89 . -1112) T) ((-122 . -557) 109162) ((-116 . -557) 109094) ((-1184 . -156) T) ((-1074 . -333) 109073) ((-1068 . -333) 109052) ((-286 . -1006) T) ((-388 . -123) T) ((-283 . -1006) T) ((-377 . -37) 109004) ((-1037 . -97) T) ((-1144 . -650) 108896) ((-591 . -971) T) ((-289 . -132) 108875) ((-289 . -134) 108854) ((-127 . -1006) T) ((-109 . -1006) T) ((-786 . -97) T) ((-529 . -557) 108836) ((-517 . -558) 108735) ((-517 . -557) 108717) ((-460 . -557) 108699) ((-460 . -558) 108644) ((-452 . -23) T) ((-450 . -779) 108595) ((-454 . -579) 108577) ((-192 . -579) 108559) ((-199 . -374) T) ((-599 . -585) 108543) ((-1073 . -844) 108522) ((-664 . -1018) T) ((-321 . -97) T) ((-750 . -779) T) ((-664 . -23) T) ((-313 . -970) 108467) ((-1060 . -1059) T) ((-1049 . -102) 108451) ((-1075 . -1018) T) ((-1074 . -1018) T) ((-479 . -955) 108435) ((-1068 . -1018) T) ((-1030 . -1018) T) ((-313 . -106) 108364) ((-923 . -1116) T) ((-121 . -1112) T) ((-838 . -1116) T) ((-627 . -258) NIL) ((-1159 . -557) 108346) ((-1075 . -23) T) ((-1074 . -23) T) ((-923 . -509) T) ((-1068 . -23) T) ((-838 . -509) T) ((-1044 . -205) 108330) ((-222 . -557) 108312) ((-1030 . -23) T) ((-985 . -1006) T) ((-731 . -123) T) ((-286 . -650) 108222) ((-283 . -650) 108151) ((-632 . -557) 108133) ((-632 . -558) 108078) ((-377 . -370) 108062) ((-408 . -1006) T) ((-454 . -25) T) ((-454 . -21) T) ((-1024 . -1006) T) ((-192 . -25) T) ((-192 . -21) T) ((-645 . -381) 108046) ((-647 . -955) 108015) ((-1158 . -557) 107927) ((-1158 . -558) 107888) ((-1144 . -156) T) ((-219 . -33) T) ((-850 . -894) T) ((-1099 . -1112) T) ((-599 . -723) 107867) ((-599 . -726) 107846) ((-368 . -365) T) ((-486 . -97) 107824) ((-953 . -1006) T) ((-196 . -914) 107808) ((-469 . -97) T) ((-564 . -557) 107790) ((-44 . -779) NIL) ((-564 . -558) 107767) ((-953 . -554) 107742) ((-825 . -478) 107675) ((-313 . -964) T) ((-112 . -558) NIL) ((-112 . -557) 107657) ((-796 . -1112) T) ((-607 . -387) 107641) ((-607 . -1027) 107586) ((-465 . -138) 107568) ((-313 . -207) T) ((-313 . -217) T) ((-39 . -970) 107513) ((-796 . -808) 107497) ((-796 . -810) 107422) ((-645 . -971) T) ((-627 . -921) NIL) ((-1142 . -46) 107392) ((-1121 . -46) 107369) ((-1043 . -929) 107340) ((-199 . -844) T) ((-39 . -106) 107269) ((-796 . -955) 107136) ((-1024 . -650) 107123) ((-1011 . -557) 107105) ((-990 . -134) 107084) ((-990 . -132) 107035) ((-923 . -333) T) ((-289 . -1101) 107001) ((-349 . -278) T) ((-289 . -1098) 106967) ((-286 . -156) 106946) ((-283 . -156) T) ((-922 . -205) 106923) ((-838 . -333) T) ((-530 . -1175) 106910) ((-481 . -1175) 106887) ((-329 . -134) 106866) ((-329 . -132) 106817) ((-323 . -134) 106796) ((-323 . -132) 106747) ((-552 . -1089) 106723) ((-315 . -134) 106702) ((-315 . -132) 106653) ((-289 . -34) 106619) ((-444 . -1089) 106598) ((0 . |EnumerationCategory|) T) ((-289 . -91) 106564) ((-349 . -940) T) ((-103 . -134) T) ((-103 . -132) NIL) ((-44 . -209) 106514) ((-591 . -1006) T) ((-552 . -102) 106461) ((-452 . -123) T) ((-444 . -102) 106411) ((-214 . -1018) 106342) ((-796 . -347) 106326) ((-796 . -308) 106310) ((-214 . -23) 106181) ((-975 . -844) T) ((-975 . -752) T) ((-530 . -338) T) ((-481 . -338) T) ((-321 . -1053) T) ((-297 . -33) T) ((-43 . -387) 106165) ((-797 . -1112) T) ((-360 . -677) 106149) ((-1169 . -478) 106082) ((-664 . -123) T) ((-1150 . -509) 106061) ((-1143 . -1116) 106040) ((-1143 . -509) 105991) ((-670 . -478) 105924) ((-1122 . -1116) 105903) ((-1122 . -509) 105854) ((-817 . -1006) T) ((-131 . -773) T) ((-1121 . -1112) 105833) ((-1121 . -810) 105706) ((-1121 . -808) 105676) ((-486 . -280) 105614) ((-1075 . -123) T) ((-128 . -478) NIL) ((-1074 . -123) T) ((-1068 . -123) T) ((-1030 . -123) T) ((-942 . -921) T) ((-321 . -37) 105579) ((-923 . -1018) T) ((-838 . -1018) T) ((-80 . -557) 105561) ((-39 . -964) T) ((-794 . -970) 105548) ((-923 . -23) T) ((-796 . -824) 105507) ((-634 . -97) T) ((-922 . -319) NIL) ((-548 . -1112) T) ((-891 . -23) T) ((-838 . -23) T) ((-794 . -106) 105492) ((-397 . -1018) T) ((-443 . -46) 105462) ((-125 . -97) T) ((-39 . -207) 105434) ((-39 . -217) T) ((-111 . -97) T) ((-543 . -509) 105413) ((-542 . -509) 105392) ((-627 . -557) 105374) ((-627 . -558) 105282) ((-286 . -478) 105248) ((-283 . -478) 105140) ((-1142 . -955) 105124) ((-1121 . -955) 104913) ((-918 . -381) 104897) ((-397 . -23) T) ((-1024 . -156) T) ((-1144 . -262) T) ((-591 . -650) 104867) ((-131 . -1006) T) ((-47 . -921) T) ((-377 . -205) 104851) ((-266 . -209) 104801) ((-795 . -844) T) ((-795 . -752) NIL) ((-789 . -779) T) ((-1121 . -308) 104771) ((-1121 . -347) 104741) ((-196 . -1025) 104725) ((-1158 . -260) 104702) ((-1107 . -585) 104627) ((-886 . -21) T) ((-886 . -25) T) ((-668 . -21) T) ((-668 . -25) T) ((-648 . -21) T) ((-648 . -25) T) ((-644 . -585) 104592) ((-422 . -21) T) ((-422 . -25) T) ((-309 . -97) T) ((-157 . -97) T) ((-918 . -971) T) ((-794 . -964) T) ((-706 . -97) T) ((-1143 . -333) 104571) ((-1142 . -824) 104477) ((-1122 . -333) 104456) ((-1121 . -824) 104307) ((-942 . -557) 104289) ((-377 . -760) 104242) ((-1075 . -458) 104208) ((-153 . -844) 104139) ((-1074 . -458) 104105) ((-1068 . -458) 104071) ((-645 . -1006) T) ((-1030 . -458) 104037) ((-529 . -970) 104024) ((-517 . -970) 104011) ((-460 . -970) 103976) ((-286 . -262) 103955) ((-283 . -262) T) ((-324 . -557) 103937) ((-388 . -25) T) ((-388 . -21) T) ((-94 . -258) 103916) ((-529 . -106) 103901) ((-517 . -106) 103886) ((-460 . -106) 103842) ((-1077 . -810) 103809) ((-825 . -456) 103793) ((-47 . -557) 103775) ((-47 . -558) 103720) ((-214 . -123) 103591) ((-1131 . -844) 103570) ((-748 . -1116) 103549) ((-953 . -478) 103393) ((-358 . -557) 103375) ((-748 . -509) 103306) ((-534 . -585) 103281) ((-237 . -46) 103253) ((-221 . -46) 103210) ((-489 . -473) 103187) ((-919 . -1112) T) ((-632 . -970) 103152) ((-1150 . -1018) T) ((-1143 . -1018) T) ((-1122 . -1018) T) ((-922 . -340) 103124) ((-107 . -338) T) ((-443 . -824) 103030) ((-1150 . -23) T) ((-1143 . -23) T) ((-828 . -557) 103012) ((-89 . -102) 102996) ((-1107 . -659) T) ((-829 . -779) 102947) ((-634 . -1053) T) ((-632 . -106) 102903) ((-1122 . -23) T) ((-543 . -1018) T) ((-542 . -1018) T) ((-645 . -650) 102732) ((-644 . -659) T) ((-1024 . -262) T) ((-923 . -123) T) ((-454 . -779) T) ((-891 . -123) T) ((-838 . -123) T) ((-529 . -964) T) ((-192 . -779) T) ((-517 . -964) T) ((-731 . -25) T) ((-731 . -21) T) ((-460 . -964) T) ((-543 . -23) T) ((-313 . -1175) 102709) ((-289 . -421) 102688) ((-309 . -280) 102675) ((-542 . -23) T) ((-397 . -123) T) ((-595 . -585) 102649) ((-219 . -929) 102633) ((-796 . -278) T) ((-1180 . -1170) 102617) ((-634 . -37) 102604) ((-517 . -207) T) ((-460 . -217) T) ((-460 . -207) T) ((-703 . -724) T) ((-703 . -727) T) ((-1052 . -209) 102554) ((-995 . -833) 102533) ((-111 . -37) 102520) ((-185 . -732) T) ((-184 . -732) T) ((-183 . -732) T) ((-182 . -732) T) ((-796 . -940) 102499) ((-1169 . -456) 102483) ((-714 . -833) 102462) ((-712 . -833) 102441) ((-1086 . -1112) T) ((-423 . -833) 102420) ((-670 . -456) 102404) ((-995 . -585) 102329) ((-714 . -585) 102254) ((-564 . -970) 102241) ((-447 . -1112) T) ((-313 . -338) T) ((-128 . -456) 102223) ((-712 . -585) 102148) ((-1043 . -1112) T) ((-430 . -585) 102119) ((-237 . -810) 101978) ((-221 . -810) NIL) ((-112 . -970) 101923) ((-423 . -585) 101848) ((-601 . -955) 101825) ((-564 . -106) 101810) ((-325 . -955) 101794) ((-322 . -955) 101778) ((-314 . -955) 101762) ((-237 . -955) 101608) ((-221 . -955) 101486) ((-112 . -106) 101415) ((-57 . -1112) T) ((-482 . -1112) T) ((-480 . -1112) T) ((-462 . -1112) T) ((-461 . -1112) T) ((-407 . -557) 101397) ((-404 . -557) 101379) ((-3 . -97) T) ((-945 . -1106) 101348) ((-765 . -97) T) ((-623 . -55) 101306) ((-632 . -964) T) ((-49 . -585) 101280) ((-261 . -421) T) ((-445 . -1106) 101249) ((0 . -97) T) ((-530 . -585) 101214) ((-481 . -585) 101159) ((-48 . -97) T) ((-834 . -955) 101146) ((-632 . -217) T) ((-990 . -379) 101125) ((-664 . -579) 101073) ((-918 . -1006) T) ((-645 . -156) 100964) ((-454 . -912) 100946) ((-237 . -347) 100930) ((-221 . -347) 100914) ((-369 . -1006) T) ((-309 . -37) 100898) ((-944 . -97) 100876) ((-192 . -912) 100858) ((-157 . -37) 100790) ((-1142 . -278) 100769) ((-1121 . -278) 100748) ((-595 . -659) T) ((-94 . -557) 100730) ((-1068 . -579) 100682) ((-452 . -25) T) ((-452 . -21) T) ((-1121 . -940) 100635) ((-564 . -964) T) ((-349 . -374) T) ((-360 . -97) T) ((-237 . -824) 100581) ((-221 . -824) 100558) ((-112 . -964) T) ((-748 . -1018) T) ((-995 . -659) T) ((-564 . -207) 100537) ((-562 . -97) T) ((-714 . -659) T) ((-712 . -659) T) ((-383 . -1018) T) ((-112 . -217) T) ((-39 . -338) NIL) ((-112 . -207) NIL) ((-423 . -659) T) ((-748 . -23) T) ((-664 . -25) T) ((-664 . -21) T) ((-636 . -779) T) ((-987 . -258) 100516) ((-76 . -366) T) ((-76 . -365) T) ((-627 . -970) 100466) ((-1150 . -123) T) ((-1143 . -123) T) ((-1122 . -123) T) ((-1044 . -381) 100450) ((-575 . -337) 100382) ((-551 . -337) 100314) ((-1058 . -1051) 100298) ((-98 . -1006) 100276) ((-1075 . -25) T) ((-1075 . -21) T) ((-1074 . -21) T) ((-918 . -650) 100224) ((-197 . -585) 100191) ((-627 . -106) 100125) ((-49 . -659) T) ((-1074 . -25) T) ((-321 . -319) T) ((-1068 . -21) T) ((-990 . -421) 100076) ((-1068 . -25) T) ((-645 . -478) 100024) ((-530 . -659) T) ((-481 . -659) T) ((-1030 . -21) T) ((-1030 . -25) T) ((-543 . -123) T) ((-542 . -123) T) ((-329 . -421) T) ((-323 . -421) T) ((-315 . -421) T) ((-443 . -278) 100003) ((-283 . -258) 99938) ((-103 . -421) T) ((-77 . -410) T) ((-77 . -365) T) ((-446 . -97) T) ((-1184 . -557) 99920) ((-1184 . -558) 99902) ((-990 . -372) 99881) ((-953 . -456) 99812) ((-517 . -727) T) ((-517 . -724) T) ((-976 . -209) 99758) ((-329 . -372) 99709) ((-323 . -372) 99660) ((-315 . -372) 99611) ((-1171 . -1018) T) ((-1171 . -23) T) ((-1160 . -97) T) ((-1044 . -971) T) ((-607 . -677) 99595) ((-1079 . -132) 99574) ((-1079 . -134) 99553) ((-1048 . -1006) T) ((-1048 . -983) 99522) ((-67 . -1112) T) ((-942 . -970) 99459) ((-790 . -971) T) ((-214 . -579) 99367) ((-627 . -964) T) ((-324 . -970) 99312) ((-59 . -1112) T) ((-942 . -106) 99228) ((-825 . -557) 99160) ((-627 . -217) T) ((-627 . -207) NIL) ((-772 . -777) 99139) ((-632 . -727) T) ((-632 . -724) T) ((-922 . -381) 99116) ((-324 . -106) 99045) ((-349 . -844) T) ((-377 . -777) 99024) ((-645 . -262) 98935) ((-197 . -659) T) ((-1150 . -458) 98901) ((-1143 . -458) 98867) ((-1122 . -458) 98833) ((-286 . -921) 98812) ((-196 . -1006) 98790) ((-289 . -893) 98753) ((-100 . -97) T) ((-47 . -970) 98718) ((-1180 . -97) T) ((-351 . -97) T) ((-47 . -106) 98674) ((-923 . -579) 98656) ((-1144 . -557) 98638) ((-489 . -97) T) ((-465 . -97) T) ((-1037 . -1038) 98622) ((-139 . -1165) 98606) ((-219 . -1112) T) ((-1073 . -1116) 98585) ((-1029 . -1116) 98564) ((-214 . -21) 98475) ((-214 . -25) 98327) ((-122 . -114) 98311) ((-116 . -114) 98295) ((-43 . -677) 98279) ((-1073 . -509) 98190) ((-1029 . -509) 98121) ((-953 . -258) 98096) ((-748 . -123) T) ((-112 . -727) NIL) ((-112 . -724) NIL) ((-325 . -278) T) ((-322 . -278) T) ((-314 . -278) T) ((-1001 . -1112) T) ((-224 . -1018) 98027) ((-223 . -1018) 97958) ((-942 . -964) T) ((-922 . -971) T) ((-313 . -585) 97903) ((-562 . -37) 97887) ((-1169 . -557) 97849) ((-1169 . -558) 97810) ((-987 . -557) 97792) ((-942 . -217) T) ((-324 . -964) T) ((-747 . -1165) 97762) ((-224 . -23) T) ((-223 . -23) T) ((-907 . -557) 97744) ((-670 . -558) 97705) ((-670 . -557) 97687) ((-731 . -779) 97666) ((-918 . -478) 97578) ((-324 . -207) T) ((-324 . -217) T) ((-1061 . -138) 97525) ((-923 . -25) T) ((-128 . -557) 97507) ((-128 . -558) 97466) ((-834 . -278) T) ((-923 . -21) T) ((-891 . -25) T) ((-838 . -21) T) ((-838 . -25) T) ((-397 . -21) T) ((-397 . -25) T) ((-772 . -381) 97450) ((-47 . -964) T) ((-1178 . -1170) 97434) ((-1176 . -1170) 97418) ((-953 . -550) 97393) ((-286 . -558) 97254) ((-286 . -557) 97236) ((-283 . -558) NIL) ((-283 . -557) 97218) ((-47 . -217) T) ((-47 . -207) T) ((-591 . -258) 97179) ((-503 . -209) 97129) ((-127 . -557) 97111) ((-109 . -557) 97093) ((-446 . -37) 97058) ((-1180 . -1177) 97037) ((-1171 . -123) T) ((-1179 . -971) T) ((-992 . -97) T) ((-86 . -1112) T) ((-465 . -280) NIL) ((-919 . -102) 97021) ((-813 . -1006) T) ((-809 . -1006) T) ((-1158 . -588) 97005) ((-1158 . -343) 96989) ((-297 . -1112) T) ((-540 . -779) T) ((-1044 . -1006) T) ((-1044 . -967) 96929) ((-98 . -478) 96862) ((-851 . -557) 96844) ((-313 . -659) T) ((-30 . -557) 96826) ((-790 . -1006) T) ((-772 . -971) 96805) ((-39 . -585) 96750) ((-199 . -1116) T) ((-377 . -971) T) ((-1060 . -138) 96732) ((-918 . -262) 96683) ((-199 . -509) T) ((-289 . -1139) 96667) ((-289 . -1136) 96637) ((-1086 . -1089) 96616) ((-985 . -557) 96598) ((-584 . -138) 96582) ((-572 . -138) 96528) ((-1086 . -102) 96478) ((-447 . -1089) 96457) ((-454 . -134) T) ((-454 . -132) NIL) ((-1024 . -558) 96372) ((-408 . -557) 96354) ((-192 . -134) T) ((-192 . -132) NIL) ((-1024 . -557) 96336) ((-51 . -97) T) ((-1122 . -579) 96288) ((-447 . -102) 96238) ((-913 . -23) T) ((-1180 . -37) 96208) ((-1073 . -1018) T) ((-1029 . -1018) T) ((-975 . -1116) T) ((-783 . -1018) T) ((-876 . -1116) 96187) ((-449 . -1116) 96166) ((-664 . -779) 96145) ((-975 . -509) T) ((-876 . -509) 96076) ((-1073 . -23) T) ((-1029 . -23) T) ((-783 . -23) T) ((-449 . -509) 96007) ((-1044 . -650) 95939) ((-1048 . -478) 95872) ((-953 . -558) NIL) ((-953 . -557) 95854) ((-790 . -650) 95824) ((-1107 . -46) 95793) ((-224 . -123) T) ((-223 . -123) T) ((-1010 . -1006) T) ((-922 . -1006) T) ((-60 . -557) 95775) ((-1068 . -779) NIL) ((-942 . -724) T) ((-942 . -727) T) ((-1184 . -970) 95762) ((-1184 . -106) 95747) ((-794 . -585) 95734) ((-1150 . -25) T) ((-1150 . -21) T) ((-1143 . -21) T) ((-1143 . -25) T) ((-1122 . -21) T) ((-1122 . -25) T) ((-945 . -138) 95718) ((-796 . -752) 95697) ((-796 . -844) T) ((-645 . -258) 95624) ((-543 . -21) T) ((-543 . -25) T) ((-542 . -21) T) ((-39 . -659) T) ((-196 . -478) 95557) ((-542 . -25) T) ((-445 . -138) 95541) ((-432 . -138) 95525) ((-845 . -659) T) ((-703 . -725) T) ((-703 . -726) T) ((-467 . -1006) T) ((-703 . -659) T) ((-199 . -333) T) ((-1058 . -1006) 95503) ((-795 . -1116) T) ((-591 . -557) 95485) ((-795 . -509) T) ((-627 . -338) NIL) ((-329 . -1165) 95469) ((-607 . -97) T) ((-323 . -1165) 95453) ((-315 . -1165) 95437) ((-1179 . -1006) T) ((-483 . -779) 95416) ((-749 . -421) 95395) ((-961 . -1006) T) ((-961 . -983) 95324) ((-945 . -896) 95293) ((-751 . -1018) T) ((-922 . -650) 95238) ((-356 . -1018) T) ((-445 . -896) 95207) ((-432 . -896) 95176) ((-105 . -138) 95158) ((-71 . -557) 95140) ((-817 . -557) 95122) ((-990 . -657) 95101) ((-1184 . -964) T) ((-748 . -579) 95049) ((-265 . -971) 94992) ((-153 . -1116) 94897) ((-199 . -1018) T) ((-294 . -23) T) ((-1068 . -912) 94849) ((-772 . -1006) T) ((-1030 . -673) 94828) ((-1144 . -970) 94733) ((-1142 . -844) 94712) ((-794 . -659) T) ((-153 . -509) 94623) ((-1121 . -844) 94602) ((-529 . -585) 94589) ((-377 . -1006) T) ((-517 . -585) 94576) ((-236 . -1006) T) ((-460 . -585) 94541) ((-199 . -23) T) ((-1121 . -752) 94494) ((-1178 . -97) T) ((-324 . -1175) 94471) ((-1176 . -97) T) ((-1144 . -106) 94363) ((-131 . -557) 94345) ((-913 . -123) T) ((-43 . -97) T) ((-214 . -779) 94296) ((-1131 . -1116) 94275) ((-98 . -456) 94259) ((-1179 . -650) 94229) ((-995 . -46) 94191) ((-975 . -1018) T) ((-876 . -1018) T) ((-122 . -33) T) ((-116 . -33) T) ((-714 . -46) 94168) ((-712 . -46) 94140) ((-1131 . -509) 94051) ((-324 . -338) T) ((-449 . -1018) T) ((-1073 . -123) T) ((-1029 . -123) T) ((-423 . -46) 94030) ((-795 . -333) T) ((-783 . -123) T) ((-139 . -97) T) ((-975 . -23) T) ((-876 . -23) T) ((-524 . -509) T) ((-748 . -25) T) ((-748 . -21) T) ((-1044 . -478) 93963) ((-534 . -955) 93947) ((-449 . -23) T) ((-321 . -971) T) ((-1107 . -824) 93928) ((-607 . -280) 93866) ((-1019 . -1165) 93836) ((-632 . -585) 93801) ((-922 . -156) T) ((-886 . -132) 93780) ((-575 . -1006) T) ((-551 . -1006) T) ((-886 . -134) 93759) ((-923 . -779) T) ((-668 . -134) 93738) ((-668 . -132) 93717) ((-891 . -779) T) ((-443 . -844) 93696) ((-286 . -970) 93606) ((-283 . -970) 93535) ((-918 . -258) 93493) ((-377 . -650) 93445) ((-634 . -777) T) ((-1144 . -964) T) ((-286 . -106) 93341) ((-283 . -106) 93254) ((-887 . -97) T) ((-747 . -97) 93065) ((-645 . -558) NIL) ((-645 . -557) 93047) ((-595 . -955) 92945) ((-1144 . -296) 92889) ((-953 . -260) 92864) ((-529 . -659) T) ((-517 . -726) T) ((-153 . -333) 92815) ((-517 . -723) T) ((-517 . -659) T) ((-460 . -659) T) ((-1048 . -456) 92799) ((-995 . -810) NIL) ((-795 . -1018) T) ((-112 . -833) NIL) ((-1178 . -1177) 92775) ((-1176 . -1177) 92754) ((-714 . -810) NIL) ((-712 . -810) 92613) ((-1171 . -25) T) ((-1171 . -21) T) ((-1110 . -97) 92591) ((-1012 . -365) T) ((-564 . -585) 92578) ((-423 . -810) NIL) ((-611 . -97) 92556) ((-995 . -955) 92386) ((-795 . -23) T) ((-714 . -955) 92248) ((-712 . -955) 92107) ((-112 . -585) 92052) ((-423 . -955) 91930) ((-586 . -955) 91914) ((-567 . -97) T) ((-196 . -456) 91898) ((-1158 . -33) T) ((-575 . -650) 91882) ((-551 . -650) 91866) ((-607 . -37) 91826) ((-289 . -97) T) ((-83 . -557) 91808) ((-49 . -955) 91792) ((-1024 . -970) 91779) ((-995 . -347) 91763) ((-58 . -55) 91725) ((-632 . -726) T) ((-632 . -723) T) ((-530 . -955) 91712) ((-481 . -955) 91689) ((-632 . -659) T) ((-286 . -964) 91580) ((-294 . -123) T) ((-283 . -964) T) ((-153 . -1018) T) ((-714 . -347) 91564) ((-712 . -347) 91548) ((-44 . -138) 91498) ((-923 . -912) 91480) ((-423 . -347) 91464) ((-377 . -156) T) ((-286 . -217) 91443) ((-283 . -217) T) ((-283 . -207) NIL) ((-265 . -1006) 91226) ((-199 . -123) T) ((-1024 . -106) 91211) ((-153 . -23) T) ((-731 . -134) 91190) ((-731 . -132) 91169) ((-224 . -579) 91077) ((-223 . -579) 90985) ((-289 . -256) 90951) ((-1058 . -478) 90884) ((-1037 . -1006) T) ((-199 . -973) T) ((-747 . -280) 90822) ((-995 . -824) 90758) ((-714 . -824) 90702) ((-712 . -824) 90686) ((-1178 . -37) 90656) ((-1176 . -37) 90626) ((-1131 . -1018) T) ((-784 . -1018) T) ((-423 . -824) 90603) ((-786 . -1006) T) ((-1131 . -23) T) ((-524 . -1018) T) ((-784 . -23) T) ((-564 . -659) T) ((-325 . -844) T) ((-322 . -844) T) ((-261 . -97) T) ((-314 . -844) T) ((-975 . -123) T) ((-876 . -123) T) ((-112 . -726) NIL) ((-112 . -723) NIL) ((-112 . -659) T) ((-627 . -833) NIL) ((-961 . -478) 90504) ((-449 . -123) T) ((-524 . -23) T) ((-611 . -280) 90442) ((-575 . -694) T) ((-551 . -694) T) ((-1122 . -779) NIL) ((-922 . -262) T) ((-224 . -21) T) ((-627 . -585) 90392) ((-321 . -1006) T) ((-224 . -25) T) ((-223 . -21) T) ((-223 . -25) T) ((-139 . -37) 90376) ((-2 . -97) T) ((-834 . -844) T) ((-450 . -1165) 90346) ((-197 . -955) 90323) ((-1024 . -964) T) ((-644 . -278) T) ((-265 . -650) 90265) ((-634 . -971) T) ((-454 . -421) T) ((-377 . -478) 90177) ((-192 . -421) T) ((-1024 . -207) T) ((-266 . -138) 90127) ((-918 . -558) 90088) ((-918 . -557) 90070) ((-909 . -557) 90052) ((-111 . -971) T) ((-591 . -970) 90036) ((-199 . -458) T) ((-369 . -557) 90018) ((-369 . -558) 89995) ((-968 . -1165) 89965) ((-591 . -106) 89944) ((-1044 . -456) 89928) ((-747 . -37) 89898) ((-61 . -410) T) ((-61 . -365) T) ((-1061 . -97) T) ((-795 . -123) T) ((-451 . -97) 89876) ((-1184 . -338) T) ((-990 . -97) T) ((-974 . -97) T) ((-321 . -650) 89821) ((-664 . -134) 89800) ((-664 . -132) 89779) ((-942 . -585) 89716) ((-486 . -1006) 89694) ((-329 . -97) T) ((-323 . -97) T) ((-315 . -97) T) ((-103 . -97) T) ((-469 . -1006) T) ((-324 . -585) 89639) ((-1073 . -579) 89587) ((-1029 . -579) 89535) ((-355 . -473) 89514) ((-765 . -777) 89493) ((-349 . -1116) T) ((-627 . -659) T) ((-309 . -971) T) ((-1122 . -912) 89445) ((-157 . -971) T) ((-98 . -557) 89377) ((-1075 . -132) 89356) ((-1075 . -134) 89335) ((-349 . -509) T) ((-1074 . -134) 89314) ((-1074 . -132) 89293) ((-1068 . -132) 89200) ((-377 . -262) T) ((-1068 . -134) 89107) ((-1030 . -134) 89086) ((-1030 . -132) 89065) ((-289 . -37) 88906) ((-153 . -123) T) ((-283 . -727) NIL) ((-283 . -724) NIL) ((-591 . -964) T) ((-47 . -585) 88871) ((-913 . -21) T) ((-122 . -929) 88855) ((-116 . -929) 88839) ((-913 . -25) T) ((-825 . -114) 88823) ((-1060 . -97) T) ((-748 . -779) 88802) ((-1131 . -123) T) ((-1073 . -25) T) ((-1073 . -21) T) ((-784 . -123) T) ((-1029 . -25) T) ((-1029 . -21) T) ((-783 . -25) T) ((-783 . -21) T) ((-714 . -278) 88781) ((-584 . -97) 88759) ((-572 . -97) T) ((-1061 . -280) 88554) ((-524 . -123) T) ((-562 . -777) 88533) ((-1058 . -456) 88517) ((-1052 . -138) 88467) ((-1048 . -557) 88429) ((-1048 . -558) 88390) ((-942 . -723) T) ((-942 . -726) T) ((-942 . -659) T) ((-451 . -280) 88328) ((-422 . -387) 88298) ((-321 . -156) T) ((-261 . -37) 88285) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-242 . -97) T) ((-241 . -97) T) ((-313 . -955) 88262) ((-188 . -97) T) ((-187 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-645 . -970) 88085) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-170 . -97) T) ((-169 . -97) T) ((-324 . -659) T) ((-645 . -106) 87894) ((-607 . -205) 87878) ((-530 . -278) T) ((-481 . -278) T) ((-265 . -478) 87827) ((-103 . -280) NIL) ((-70 . -365) T) ((-1019 . -97) 87638) ((-765 . -381) 87622) ((-1024 . -727) T) ((-1024 . -724) T) ((-634 . -1006) T) ((-349 . -333) T) ((-153 . -458) 87600) ((-196 . -557) 87532) ((-125 . -1006) T) ((-111 . -1006) T) ((-47 . -659) T) ((-961 . -456) 87497) ((-128 . -395) 87479) ((-128 . -338) T) ((-945 . -97) T) ((-476 . -473) 87458) ((-445 . -97) T) ((-432 . -97) T) ((-952 . -1018) T) ((-1075 . -34) 87424) ((-1075 . -91) 87390) ((-1075 . -1101) 87356) ((-1075 . -1098) 87322) ((-1060 . -280) NIL) ((-87 . -366) T) ((-87 . -365) T) ((-990 . -1053) 87301) ((-1074 . -1098) 87267) ((-1074 . -1101) 87233) ((-952 . -23) T) ((-1074 . -91) 87199) ((-524 . -458) T) ((-1074 . -34) 87165) ((-1068 . -1098) 87131) ((-1068 . -1101) 87097) ((-1068 . -91) 87063) ((-331 . -1018) T) ((-329 . -1053) 87042) ((-323 . -1053) 87021) ((-315 . -1053) 87000) ((-1068 . -34) 86966) ((-1030 . -34) 86932) ((-1030 . -91) 86898) ((-103 . -1053) T) ((-1030 . -1101) 86864) ((-765 . -971) 86843) ((-584 . -280) 86781) ((-572 . -280) 86632) ((-1030 . -1098) 86598) ((-645 . -964) T) ((-975 . -579) 86580) ((-990 . -37) 86448) ((-876 . -579) 86396) ((-923 . -134) T) ((-923 . -132) NIL) ((-349 . -1018) T) ((-294 . -25) T) ((-292 . -23) T) ((-867 . -779) 86375) ((-645 . -296) 86352) ((-449 . -579) 86300) ((-39 . -955) 86190) ((-634 . -650) 86177) ((-645 . -207) T) ((-309 . -1006) T) ((-157 . -1006) T) ((-301 . -779) T) ((-388 . -421) 86127) ((-349 . -23) T) ((-329 . -37) 86092) ((-323 . -37) 86057) ((-315 . -37) 86022) ((-78 . -410) T) ((-78 . -365) T) ((-199 . -25) T) ((-199 . -21) T) ((-766 . -1018) T) ((-103 . -37) 85972) ((-759 . -1018) T) ((-706 . -1006) T) ((-111 . -650) 85959) ((-608 . -955) 85943) ((-556 . -97) T) ((-766 . -23) T) ((-759 . -23) T) ((-1058 . -258) 85920) ((-1019 . -280) 85858) ((-1008 . -209) 85842) ((-62 . -366) T) ((-62 . -365) T) ((-105 . -97) T) ((-39 . -347) 85819) ((-590 . -781) 85803) ((-975 . -21) T) ((-975 . -25) T) ((-747 . -205) 85773) ((-876 . -25) T) ((-876 . -21) T) ((-562 . -971) T) ((-449 . -25) T) ((-449 . -21) T) ((-945 . -280) 85711) ((-813 . -557) 85693) ((-809 . -557) 85675) ((-224 . -779) 85626) ((-223 . -779) 85577) ((-486 . -478) 85510) ((-795 . -579) 85487) ((-445 . -280) 85425) ((-432 . -280) 85363) ((-321 . -262) T) ((-1058 . -1146) 85347) ((-1044 . -557) 85309) ((-1044 . -558) 85270) ((-1042 . -97) T) ((-918 . -970) 85166) ((-39 . -824) 85118) ((-1058 . -550) 85095) ((-1184 . -585) 85082) ((-976 . -138) 85028) ((-796 . -1116) T) ((-918 . -106) 84910) ((-309 . -650) 84894) ((-790 . -557) 84876) ((-157 . -650) 84808) ((-377 . -258) 84766) ((-796 . -509) T) ((-103 . -370) 84748) ((-82 . -354) T) ((-82 . -365) T) ((-634 . -156) T) ((-94 . -659) T) ((-450 . -97) 84559) ((-94 . -442) T) ((-111 . -156) T) ((-1019 . -37) 84529) ((-153 . -579) 84477) ((-968 . -97) T) ((-795 . -25) T) ((-747 . -212) 84456) ((-795 . -21) T) ((-750 . -97) T) ((-384 . -97) T) ((-355 . -97) T) ((-105 . -280) NIL) ((-201 . -97) 84434) ((-122 . -1112) T) ((-116 . -1112) T) ((-952 . -123) T) ((-607 . -337) 84418) ((-918 . -964) T) ((-1131 . -579) 84366) ((-1010 . -557) 84348) ((-922 . -557) 84330) ((-479 . -23) T) ((-474 . -23) T) ((-313 . -278) T) ((-472 . -23) T) ((-292 . -123) T) ((-3 . -1006) T) ((-922 . -558) 84314) ((-918 . -217) 84293) ((-918 . -207) 84272) ((-1184 . -659) T) ((-1150 . -132) 84251) ((-765 . -1006) T) ((-1150 . -134) 84230) ((-1143 . -134) 84209) ((-1143 . -132) 84188) ((-1142 . -1116) 84167) ((-1122 . -132) 84074) ((-1122 . -134) 83981) ((-1121 . -1116) 83960) ((-349 . -123) T) ((-517 . -810) 83942) ((0 . -1006) T) ((-157 . -156) T) ((-153 . -21) T) ((-153 . -25) T) ((-48 . -1006) T) ((-1144 . -585) 83847) ((-1142 . -509) 83798) ((-647 . -1018) T) ((-1121 . -509) 83749) ((-517 . -955) 83731) ((-542 . -134) 83710) ((-542 . -132) 83689) ((-460 . -955) 83632) ((-85 . -354) T) ((-85 . -365) T) ((-796 . -333) T) ((-766 . -123) T) ((-759 . -123) T) ((-647 . -23) T) ((-467 . -557) 83614) ((-1180 . -971) T) ((-349 . -973) T) ((-944 . -1006) 83592) ((-825 . -33) T) ((-450 . -280) 83530) ((-1058 . -558) 83491) ((-1058 . -557) 83423) ((-1073 . -779) 83402) ((-44 . -97) T) ((-1029 . -779) 83381) ((-749 . -97) T) ((-1131 . -25) T) ((-1131 . -21) T) ((-784 . -25) T) ((-43 . -337) 83365) ((-784 . -21) T) ((-664 . -421) 83316) ((-1179 . -557) 83298) ((-524 . -25) T) ((-524 . -21) T) ((-360 . -1006) T) ((-968 . -280) 83236) ((-562 . -1006) T) ((-632 . -810) 83218) ((-1158 . -1112) T) ((-201 . -280) 83156) ((-131 . -338) T) ((-961 . -558) 83098) ((-961 . -557) 83041) ((-283 . -833) NIL) ((-632 . -955) 82986) ((-644 . -844) T) ((-443 . -1116) 82965) ((-1074 . -421) 82944) ((-1068 . -421) 82923) ((-300 . -97) T) ((-796 . -1018) T) ((-286 . -585) 82745) ((-283 . -585) 82674) ((-443 . -509) 82625) ((-309 . -478) 82591) ((-503 . -138) 82541) ((-39 . -278) T) ((-772 . -557) 82523) ((-634 . -262) T) ((-796 . -23) T) ((-349 . -458) T) ((-990 . -205) 82493) ((-476 . -97) T) ((-377 . -558) 82301) ((-377 . -557) 82283) ((-236 . -557) 82265) ((-111 . -262) T) ((-1144 . -659) T) ((-1142 . -333) 82244) ((-1121 . -333) 82223) ((-1169 . -33) T) ((-112 . -1112) T) ((-103 . -205) 82205) ((-1079 . -97) T) ((-446 . -1006) T) ((-486 . -456) 82189) ((-670 . -33) T) ((-450 . -37) 82159) ((-128 . -33) T) ((-112 . -808) 82136) ((-112 . -810) NIL) ((-564 . -955) 82021) ((-583 . -779) 82000) ((-1168 . -97) T) ((-266 . -97) T) ((-645 . -338) 81979) ((-112 . -955) 81956) ((-360 . -650) 81940) ((-562 . -650) 81924) ((-44 . -280) 81728) ((-748 . -132) 81707) ((-748 . -134) 81686) ((-1179 . -352) 81665) ((-751 . -779) T) ((-1160 . -1006) T) ((-1061 . -203) 81612) ((-356 . -779) 81591) ((-1150 . -1101) 81557) ((-1150 . -1098) 81523) ((-1143 . -1098) 81489) ((-479 . -123) T) ((-1143 . -1101) 81455) ((-1122 . -1098) 81421) ((-1122 . -1101) 81387) ((-1150 . -34) 81353) ((-1150 . -91) 81319) ((-575 . -557) 81288) ((-551 . -557) 81257) ((-199 . -779) T) ((-1143 . -91) 81223) ((-1143 . -34) 81189) ((-1142 . -1018) T) ((-1024 . -585) 81176) ((-1122 . -91) 81142) ((-1121 . -1018) T) ((-540 . -138) 81124) ((-990 . -319) 81103) ((-112 . -347) 81080) ((-112 . -308) 81057) ((-157 . -262) T) ((-1122 . -34) 81023) ((-794 . -278) T) ((-283 . -726) NIL) ((-283 . -723) NIL) ((-286 . -659) 80873) ((-283 . -659) T) ((-443 . -333) 80852) ((-329 . -319) 80831) ((-323 . -319) 80810) ((-315 . -319) 80789) ((-286 . -442) 80768) ((-1142 . -23) T) ((-1121 . -23) T) ((-651 . -1018) T) ((-647 . -123) T) ((-590 . -97) T) ((-446 . -650) 80733) ((-44 . -254) 80683) ((-100 . -1006) T) ((-66 . -557) 80665) ((-789 . -97) T) ((-564 . -824) 80624) ((-1180 . -1006) T) ((-351 . -1006) T) ((-80 . -1112) T) ((-975 . -779) T) ((-876 . -779) 80603) ((-112 . -824) NIL) ((-714 . -844) 80582) ((-646 . -779) T) ((-489 . -1006) T) ((-465 . -1006) T) ((-325 . -1116) T) ((-322 . -1116) T) ((-314 . -1116) T) ((-237 . -1116) 80561) ((-221 . -1116) 80540) ((-1019 . -205) 80510) ((-449 . -779) 80489) ((-1044 . -970) 80473) ((-360 . -694) T) ((-1060 . -760) T) ((-627 . -1112) T) ((-325 . -509) T) ((-322 . -509) T) ((-314 . -509) T) ((-237 . -509) 80404) ((-221 . -509) 80335) ((-1044 . -106) 80314) ((-422 . -677) 80284) ((-790 . -970) 80254) ((-749 . -37) 80196) ((-627 . -808) 80178) ((-627 . -810) 80160) ((-266 . -280) 79964) ((-834 . -1116) T) ((-607 . -381) 79948) ((-790 . -106) 79913) ((-627 . -955) 79858) ((-923 . -421) T) ((-834 . -509) T) ((-530 . -844) T) ((-443 . -1018) T) ((-481 . -844) T) ((-1058 . -260) 79835) ((-838 . -421) T) ((-63 . -557) 79817) ((-572 . -203) 79763) ((-443 . -23) T) ((-1024 . -726) T) ((-796 . -123) T) ((-1024 . -723) T) ((-1171 . -1173) 79742) ((-1024 . -659) T) ((-591 . -585) 79716) ((-265 . -557) 79458) ((-953 . -33) T) ((-747 . -777) 79437) ((-529 . -278) T) ((-517 . -278) T) ((-460 . -278) T) ((-1180 . -650) 79407) ((-627 . -347) 79389) ((-627 . -308) 79371) ((-446 . -156) T) ((-351 . -650) 79341) ((-795 . -779) NIL) ((-517 . -940) T) ((-460 . -940) T) ((-1037 . -557) 79323) ((-1019 . -212) 79302) ((-189 . -97) T) ((-1052 . -97) T) ((-69 . -557) 79284) ((-1044 . -964) T) ((-1079 . -37) 79181) ((-786 . -557) 79163) ((-517 . -502) T) ((-607 . -971) T) ((-664 . -873) 79116) ((-1044 . -207) 79095) ((-992 . -1006) T) ((-952 . -25) T) ((-952 . -21) T) ((-922 . -970) 79040) ((-829 . -97) T) ((-790 . -964) T) ((-627 . -824) NIL) ((-325 . -299) 79024) ((-325 . -333) T) ((-322 . -299) 79008) ((-322 . -333) T) ((-314 . -299) 78992) ((-314 . -333) T) ((-454 . -97) T) ((-1168 . -37) 78962) ((-486 . -621) 78912) ((-192 . -97) T) ((-942 . -955) 78794) ((-922 . -106) 78723) ((-1075 . -893) 78693) ((-1074 . -893) 78656) ((-483 . -138) 78640) ((-990 . -340) 78619) ((-321 . -557) 78601) ((-292 . -21) T) ((-324 . -955) 78578) ((-292 . -25) T) ((-1068 . -893) 78548) ((-1030 . -893) 78515) ((-74 . -557) 78497) ((-632 . -278) T) ((-153 . -779) 78476) ((-834 . -333) T) ((-349 . -25) T) ((-349 . -21) T) ((-834 . -299) 78463) ((-84 . -557) 78445) ((-632 . -940) T) ((-612 . -779) T) ((-1142 . -123) T) ((-1121 . -123) T) ((-825 . -929) 78429) ((-766 . -21) T) ((-47 . -955) 78372) ((-766 . -25) T) ((-759 . -25) T) ((-759 . -21) T) ((-1178 . -971) T) ((-1176 . -971) T) ((-591 . -659) T) ((-1179 . -970) 78356) ((-1131 . -779) 78335) ((-747 . -381) 78304) ((-98 . -114) 78288) ((-51 . -1006) T) ((-850 . -557) 78270) ((-795 . -912) 78247) ((-755 . -97) T) ((-1179 . -106) 78226) ((-590 . -37) 78196) ((-524 . -779) T) ((-325 . -1018) T) ((-322 . -1018) T) ((-314 . -1018) T) ((-237 . -1018) T) ((-221 . -1018) T) ((-564 . -278) 78175) ((-1052 . -280) 77979) ((-601 . -23) T) ((-450 . -205) 77949) ((-139 . -971) T) ((-325 . -23) T) ((-322 . -23) T) ((-314 . -23) T) ((-112 . -278) T) ((-237 . -23) T) ((-221 . -23) T) ((-922 . -964) T) ((-645 . -833) 77928) ((-922 . -207) 77900) ((-922 . -217) T) ((-112 . -940) NIL) ((-834 . -1018) T) ((-1143 . -421) 77879) ((-1122 . -421) 77858) ((-486 . -557) 77790) ((-645 . -585) 77715) ((-377 . -970) 77667) ((-469 . -557) 77649) ((-834 . -23) T) ((-454 . -280) NIL) ((-443 . -123) T) ((-192 . -280) NIL) ((-377 . -106) 77587) ((-747 . -971) 77518) ((-670 . -1004) 77502) ((-1142 . -458) 77468) ((-1121 . -458) 77434) ((-128 . -1004) 77416) ((-446 . -262) T) ((-1179 . -964) T) ((-976 . -97) T) ((-465 . -478) NIL) ((-636 . -97) T) ((-450 . -212) 77395) ((-1073 . -132) 77374) ((-1073 . -134) 77353) ((-1029 . -134) 77332) ((-1029 . -132) 77311) ((-575 . -970) 77295) ((-551 . -970) 77279) ((-607 . -1006) T) ((-607 . -967) 77219) ((-1075 . -1149) 77203) ((-1075 . -1136) 77180) ((-454 . -1053) T) ((-1074 . -1141) 77141) ((-1074 . -1136) 77111) ((-1074 . -1139) 77095) ((-192 . -1053) T) ((-313 . -844) T) ((-750 . -239) 77079) ((-575 . -106) 77058) ((-551 . -106) 77037) ((-1068 . -1120) 76998) ((-772 . -964) 76977) ((-1068 . -1136) 76954) ((-479 . -25) T) ((-460 . -273) T) ((-475 . -23) T) ((-474 . -25) T) ((-472 . -25) T) ((-471 . -23) T) ((-1068 . -1118) 76938) ((-377 . -964) T) ((-289 . -971) T) ((-627 . -278) T) ((-103 . -777) T) ((-377 . -217) T) ((-377 . -207) 76917) ((-645 . -659) T) ((-454 . -37) 76867) ((-192 . -37) 76817) ((-443 . -458) 76783) ((-1060 . -1046) T) ((-1007 . -97) T) ((-634 . -557) 76765) ((-634 . -558) 76680) ((-647 . -21) T) ((-647 . -25) T) ((-125 . -557) 76662) ((-111 . -557) 76644) ((-142 . -25) T) ((-1178 . -1006) T) ((-796 . -579) 76592) ((-1176 . -1006) T) ((-886 . -97) T) ((-668 . -97) T) ((-648 . -97) T) ((-422 . -97) T) ((-748 . -421) 76543) ((-43 . -1006) T) ((-996 . -779) T) ((-601 . -123) T) ((-976 . -280) 76394) ((-607 . -650) 76378) ((-261 . -971) T) ((-325 . -123) T) ((-322 . -123) T) ((-314 . -123) T) ((-237 . -123) T) ((-221 . -123) T) ((-388 . -97) T) ((-139 . -1006) T) ((-44 . -203) 76328) ((-881 . -779) 76307) ((-918 . -585) 76245) ((-214 . -1165) 76215) ((-942 . -278) T) ((-265 . -970) 76137) ((-834 . -123) T) ((-39 . -844) T) ((-454 . -370) 76119) ((-324 . -278) T) ((-192 . -370) 76101) ((-990 . -381) 76085) ((-265 . -106) 76002) ((-796 . -25) T) ((-796 . -21) T) ((-309 . -557) 75984) ((-1144 . -46) 75928) ((-199 . -134) T) ((-157 . -557) 75910) ((-1019 . -777) 75889) ((-706 . -557) 75871) ((-552 . -209) 75818) ((-444 . -209) 75768) ((-1178 . -650) 75738) ((-47 . -278) T) ((-1176 . -650) 75708) ((-887 . -1006) T) ((-747 . -1006) 75519) ((-282 . -97) T) ((-825 . -1112) T) ((-47 . -940) T) ((-1121 . -579) 75427) ((-623 . -97) 75405) ((-43 . -650) 75389) ((-503 . -97) T) ((-65 . -353) T) ((-65 . -365) T) ((-599 . -23) T) ((-607 . -694) T) ((-1110 . -1006) 75367) ((-321 . -970) 75312) ((-611 . -1006) 75290) ((-975 . -134) T) ((-876 . -134) 75269) ((-876 . -132) 75248) ((-731 . -97) T) ((-139 . -650) 75232) ((-449 . -134) 75211) ((-449 . -132) 75190) ((-321 . -106) 75119) ((-990 . -971) T) ((-292 . -779) 75098) ((-1150 . -893) 75068) ((-567 . -1006) T) ((-1143 . -893) 75031) ((-475 . -123) T) ((-471 . -123) T) ((-266 . -203) 74981) ((-329 . -971) T) ((-323 . -971) T) ((-315 . -971) T) ((-265 . -964) 74924) ((-1122 . -893) 74894) ((-349 . -779) T) ((-103 . -971) T) ((-918 . -659) T) ((-794 . -844) T) ((-772 . -727) 74873) ((-772 . -724) 74852) ((-388 . -280) 74791) ((-437 . -97) T) ((-542 . -893) 74761) ((-289 . -1006) T) ((-377 . -727) 74740) ((-377 . -724) 74719) ((-465 . -456) 74701) ((-1144 . -955) 74667) ((-1142 . -21) T) ((-1142 . -25) T) ((-1121 . -21) T) ((-1121 . -25) T) ((-747 . -650) 74609) ((-632 . -374) T) ((-1169 . -1112) T) ((-1019 . -381) 74578) ((-922 . -338) NIL) ((-98 . -33) T) ((-670 . -1112) T) ((-43 . -694) T) ((-540 . -97) T) ((-75 . -366) T) ((-75 . -365) T) ((-590 . -593) 74562) ((-128 . -1112) T) ((-795 . -134) T) ((-795 . -132) NIL) ((-321 . -964) T) ((-68 . -353) T) ((-68 . -365) T) ((-1067 . -97) T) ((-607 . -478) 74495) ((-623 . -280) 74433) ((-886 . -37) 74330) ((-668 . -37) 74300) ((-503 . -280) 74104) ((-286 . -1112) T) ((-321 . -207) T) ((-321 . -217) T) ((-283 . -1112) T) ((-261 . -1006) T) ((-1081 . -557) 74086) ((-644 . -1116) T) ((-1058 . -588) 74070) ((-1107 . -509) 74049) ((-644 . -509) T) ((-286 . -808) 74033) ((-286 . -810) 73958) ((-283 . -808) 73919) ((-283 . -810) NIL) ((-731 . -280) 73884) ((-289 . -650) 73725) ((-294 . -293) 73702) ((-452 . -97) T) ((-443 . -25) T) ((-443 . -21) T) ((-388 . -37) 73676) ((-286 . -955) 73344) ((-199 . -1098) T) ((-199 . -1101) T) ((-3 . -557) 73326) ((-283 . -955) 73256) ((-2 . -1006) T) ((-2 . |RecordCategory|) T) ((-765 . -557) 73238) ((-1019 . -971) 73169) ((-529 . -844) T) ((-517 . -752) T) ((-517 . -844) T) ((-460 . -844) T) ((-127 . -955) 73153) ((-199 . -91) T) ((-153 . -134) 73132) ((-73 . -410) T) ((0 . -557) 73114) ((-73 . -365) T) ((-153 . -132) 73065) ((-199 . -34) T) ((-48 . -557) 73047) ((-446 . -971) T) ((-454 . -205) 73029) ((-451 . -889) 73013) ((-450 . -777) 72992) ((-192 . -205) 72974) ((-79 . -410) T) ((-79 . -365) T) ((-1048 . -33) T) ((-747 . -156) 72953) ((-664 . -97) T) ((-944 . -557) 72920) ((-465 . -258) 72895) ((-286 . -347) 72865) ((-283 . -347) 72826) ((-283 . -308) 72787) ((-748 . -873) 72734) ((-599 . -123) T) ((-1131 . -132) 72713) ((-1131 . -134) 72692) ((-1075 . -97) T) ((-1074 . -97) T) ((-1068 . -97) T) ((-1061 . -1006) T) ((-1030 . -97) T) ((-196 . -33) T) ((-261 . -650) 72679) ((-1061 . -554) 72655) ((-540 . -280) NIL) ((-451 . -1006) 72633) ((-360 . -557) 72615) ((-474 . -779) T) ((-1052 . -203) 72565) ((-1150 . -1149) 72549) ((-1150 . -1136) 72526) ((-1143 . -1141) 72487) ((-1143 . -1136) 72457) ((-1143 . -1139) 72441) ((-1122 . -1120) 72402) ((-1122 . -1136) 72379) ((-562 . -557) 72361) ((-1122 . -1118) 72345) ((-632 . -844) T) ((-1075 . -256) 72311) ((-1074 . -256) 72277) ((-1068 . -256) 72243) ((-990 . -1006) T) ((-974 . -1006) T) ((-47 . -273) T) ((-286 . -824) 72210) ((-283 . -824) NIL) ((-974 . -980) 72189) ((-1024 . -810) 72171) ((-731 . -37) 72155) ((-237 . -579) 72103) ((-221 . -579) 72051) ((-634 . -970) 72038) ((-542 . -1136) 72015) ((-1030 . -256) 71981) ((-289 . -156) 71912) ((-329 . -1006) T) ((-323 . -1006) T) ((-315 . -1006) T) ((-465 . -19) 71894) ((-1024 . -955) 71876) ((-1008 . -138) 71860) ((-103 . -1006) T) ((-111 . -970) 71847) ((-644 . -333) T) ((-465 . -550) 71822) ((-634 . -106) 71807) ((-406 . -97) T) ((-44 . -1051) 71757) ((-111 . -106) 71742) ((-575 . -653) T) ((-551 . -653) T) ((-747 . -478) 71675) ((-953 . -1112) T) ((-867 . -138) 71659) ((-483 . -97) 71609) ((-995 . -1116) 71588) ((-446 . -557) 71540) ((-446 . -558) 71462) ((-60 . -1112) T) ((-714 . -1116) 71441) ((-712 . -1116) 71420) ((-1073 . -421) 71351) ((-1060 . -1006) T) ((-1044 . -585) 71325) ((-995 . -509) 71256) ((-450 . -381) 71225) ((-564 . -844) 71204) ((-423 . -1116) 71183) ((-1029 . -421) 71134) ((-368 . -557) 71116) ((-611 . -478) 71049) ((-714 . -509) 70960) ((-712 . -509) 70891) ((-664 . -280) 70878) ((-601 . -25) T) ((-601 . -21) T) ((-423 . -509) 70809) ((-112 . -844) T) ((-112 . -752) NIL) ((-325 . -25) T) ((-325 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-314 . -25) T) ((-314 . -21) T) ((-237 . -25) T) ((-237 . -21) T) ((-81 . -354) T) ((-81 . -365) T) ((-221 . -25) T) ((-221 . -21) T) ((-1160 . -557) 70791) ((-1107 . -1018) T) ((-1107 . -23) T) ((-1068 . -280) 70676) ((-1030 . -280) 70663) ((-790 . -585) 70623) ((-990 . -650) 70491) ((-867 . -900) 70475) ((-261 . -156) T) ((-834 . -21) T) ((-834 . -25) T) ((-796 . -779) 70426) ((-644 . -1018) T) ((-644 . -23) T) ((-584 . -1006) 70404) ((-572 . -554) 70379) ((-572 . -1006) T) ((-530 . -1116) T) ((-481 . -1116) T) ((-530 . -509) T) ((-481 . -509) T) ((-329 . -650) 70331) ((-323 . -650) 70283) ((-157 . -970) 70215) ((-309 . -970) 70199) ((-103 . -650) 70149) ((-157 . -106) 70060) ((-315 . -650) 70012) ((-309 . -106) 69991) ((-247 . -1006) T) ((-246 . -1006) T) ((-245 . -1006) T) ((-244 . -1006) T) ((-634 . -964) T) ((-243 . -1006) T) ((-242 . -1006) T) ((-241 . -1006) T) ((-188 . -1006) T) ((-187 . -1006) T) ((-185 . -1006) T) ((-153 . -1101) 69969) ((-153 . -1098) 69947) ((-184 . -1006) T) ((-183 . -1006) T) ((-111 . -964) T) ((-182 . -1006) T) ((-179 . -1006) T) ((-634 . -207) T) ((-178 . -1006) T) ((-177 . -1006) T) ((-176 . -1006) T) ((-175 . -1006) T) ((-174 . -1006) T) ((-173 . -1006) T) ((-172 . -1006) T) ((-171 . -1006) T) ((-170 . -1006) T) ((-169 . -1006) T) ((-214 . -97) 69758) ((-153 . -34) 69736) ((-153 . -91) 69714) ((-591 . -955) 69612) ((-450 . -971) 69543) ((-1019 . -1006) 69354) ((-1044 . -33) T) ((-607 . -456) 69338) ((-71 . -1112) T) ((-100 . -557) 69320) ((-1180 . -557) 69302) ((-351 . -557) 69284) ((-524 . -1101) T) ((-524 . -1098) T) ((-664 . -37) 69133) ((-489 . -557) 69115) ((-483 . -280) 69053) ((-465 . -557) 69035) ((-465 . -558) 69017) ((-1068 . -1053) NIL) ((-945 . -983) 68986) ((-945 . -1006) T) ((-923 . -97) T) ((-891 . -97) T) ((-838 . -97) T) ((-817 . -955) 68963) ((-1044 . -659) T) ((-922 . -585) 68908) ((-445 . -1006) T) ((-432 . -1006) T) ((-534 . -23) T) ((-524 . -34) T) ((-524 . -91) T) ((-397 . -97) T) ((-976 . -203) 68854) ((-1075 . -37) 68751) ((-790 . -659) T) ((-627 . -844) T) ((-475 . -25) T) ((-471 . -21) T) ((-471 . -25) T) ((-1074 . -37) 68592) ((-309 . -964) T) ((-1068 . -37) 68388) ((-990 . -156) T) ((-157 . -964) T) ((-1030 . -37) 68285) ((-645 . -46) 68262) ((-329 . -156) T) ((-323 . -156) T) ((-482 . -55) 68236) ((-462 . -55) 68186) ((-321 . -1175) 68163) ((-199 . -421) T) ((-289 . -262) 68114) ((-315 . -156) T) ((-157 . -217) T) ((-1121 . -779) 68013) ((-103 . -156) T) ((-796 . -912) 67997) ((-595 . -1018) T) ((-530 . -333) T) ((-530 . -299) 67984) ((-481 . -299) 67961) ((-481 . -333) T) ((-286 . -278) 67940) ((-283 . -278) T) ((-548 . -779) 67919) ((-1019 . -650) 67861) ((-483 . -254) 67845) ((-595 . -23) T) ((-388 . -205) 67829) ((-283 . -940) NIL) ((-306 . -23) T) ((-98 . -929) 67813) ((-44 . -35) 67792) ((-556 . -1006) T) ((-321 . -338) T) ((-460 . -27) T) ((-214 . -280) 67730) ((-995 . -1018) T) ((-1179 . -585) 67704) ((-714 . -1018) T) ((-712 . -1018) T) ((-423 . -1018) T) ((-975 . -421) T) ((-876 . -421) 67655) ((-105 . -1006) T) ((-995 . -23) T) ((-749 . -971) T) ((-714 . -23) T) ((-712 . -23) T) ((-449 . -421) 67606) ((-1061 . -478) 67389) ((-351 . -352) 67368) ((-1079 . -381) 67352) ((-430 . -23) T) ((-423 . -23) T) ((-451 . -478) 67285) ((-261 . -262) T) ((-992 . -557) 67267) ((-377 . -833) 67246) ((-49 . -1018) T) ((-942 . -844) T) ((-922 . -659) T) ((-645 . -810) NIL) ((-530 . -1018) T) ((-481 . -1018) T) ((-772 . -585) 67219) ((-1107 . -123) T) ((-1068 . -370) 67171) ((-923 . -280) NIL) ((-747 . -456) 67155) ((-324 . -844) T) ((-1058 . -33) T) ((-377 . -585) 67107) ((-49 . -23) T) ((-644 . -123) T) ((-645 . -955) 66990) ((-530 . -23) T) ((-103 . -478) NIL) ((-481 . -23) T) ((-153 . -379) 66961) ((-1042 . -1006) T) ((-1171 . -1170) 66945) ((-634 . -727) T) ((-634 . -724) T) ((-349 . -134) T) ((-1024 . -278) T) ((-1121 . -912) 66915) ((-47 . -844) T) ((-611 . -456) 66899) ((-224 . -1165) 66869) ((-223 . -1165) 66839) ((-1077 . -779) T) ((-1019 . -156) 66818) ((-1024 . -940) T) ((-961 . -33) T) ((-766 . -134) 66797) ((-766 . -132) 66776) ((-670 . -102) 66760) ((-556 . -124) T) ((-450 . -1006) 66571) ((-1079 . -971) T) ((-795 . -421) T) ((-83 . -1112) T) ((-214 . -37) 66541) ((-128 . -102) 66523) ((-645 . -347) 66507) ((-1024 . -502) T) ((-360 . -970) 66491) ((-1179 . -659) T) ((-1073 . -873) 66461) ((-51 . -557) 66443) ((-1029 . -873) 66410) ((-590 . -381) 66394) ((-1168 . -971) T) ((-562 . -970) 66378) ((-599 . -25) T) ((-599 . -21) T) ((-1060 . -478) NIL) ((-1150 . -97) T) ((-1143 . -97) T) ((-360 . -106) 66357) ((-196 . -227) 66341) ((-1122 . -97) T) ((-968 . -1006) T) ((-923 . -1053) T) ((-968 . -967) 66281) ((-750 . -1006) T) ((-313 . -1116) T) ((-575 . -585) 66265) ((-562 . -106) 66244) ((-551 . -585) 66228) ((-543 . -97) T) ((-534 . -123) T) ((-542 . -97) T) ((-384 . -1006) T) ((-355 . -1006) T) ((-201 . -1006) 66206) ((-584 . -478) 66139) ((-572 . -478) 65983) ((-765 . -964) 65962) ((-583 . -138) 65946) ((-313 . -509) T) ((-645 . -824) 65890) ((-503 . -203) 65840) ((-1150 . -256) 65806) ((-990 . -262) 65757) ((-454 . -777) T) ((-197 . -1018) T) ((-1143 . -256) 65723) ((-1122 . -256) 65689) ((-923 . -37) 65639) ((-192 . -777) T) ((-1107 . -458) 65605) ((-838 . -37) 65557) ((-772 . -726) 65536) ((-772 . -723) 65515) ((-772 . -659) 65494) ((-329 . -262) T) ((-323 . -262) T) ((-315 . -262) T) ((-153 . -421) 65425) ((-397 . -37) 65409) ((-103 . -262) T) ((-197 . -23) T) ((-377 . -726) 65388) ((-377 . -723) 65367) ((-377 . -659) T) ((-465 . -260) 65342) ((-446 . -970) 65307) ((-595 . -123) T) ((-1019 . -478) 65240) ((-306 . -123) T) ((-153 . -372) 65219) ((-450 . -650) 65161) ((-747 . -258) 65138) ((-446 . -106) 65094) ((-590 . -971) T) ((-1131 . -421) 65025) ((-995 . -123) T) ((-237 . -779) 65004) ((-221 . -779) 64983) ((-714 . -123) T) ((-712 . -123) T) ((-524 . -421) T) ((-968 . -650) 64925) ((-562 . -964) T) ((-945 . -478) 64858) ((-430 . -123) T) ((-423 . -123) T) ((-44 . -1006) T) ((-355 . -650) 64828) ((-749 . -1006) T) ((-445 . -478) 64761) ((-432 . -478) 64694) ((-422 . -337) 64664) ((-44 . -554) 64643) ((-286 . -273) T) ((-607 . -557) 64605) ((-57 . -779) 64584) ((-1122 . -280) 64469) ((-923 . -370) 64451) ((-747 . -550) 64428) ((-480 . -779) 64407) ((-461 . -779) 64386) ((-39 . -1116) T) ((-918 . -955) 64284) ((-49 . -123) T) ((-530 . -123) T) ((-481 . -123) T) ((-265 . -585) 64146) ((-313 . -299) 64123) ((-313 . -333) T) ((-292 . -293) 64100) ((-289 . -258) 64085) ((-39 . -509) T) ((-349 . -1098) T) ((-349 . -1101) T) ((-953 . -1089) 64060) ((-1086 . -209) 64010) ((-1068 . -205) 63962) ((-300 . -1006) T) ((-349 . -91) T) ((-349 . -34) T) ((-953 . -102) 63908) ((-446 . -964) T) ((-447 . -209) 63858) ((-1061 . -456) 63792) ((-1180 . -970) 63776) ((-351 . -970) 63760) ((-446 . -217) T) ((-748 . -97) T) ((-647 . -134) 63739) ((-647 . -132) 63718) ((-451 . -456) 63702) ((-452 . -305) 63671) ((-1180 . -106) 63650) ((-476 . -1006) T) ((-450 . -156) 63629) ((-918 . -347) 63613) ((-383 . -97) T) ((-351 . -106) 63592) ((-918 . -308) 63576) ((-252 . -903) 63560) ((-251 . -903) 63544) ((-1178 . -557) 63526) ((-1176 . -557) 63508) ((-105 . -478) NIL) ((-1073 . -1134) 63492) ((-783 . -781) 63476) ((-1079 . -1006) T) ((-98 . -1112) T) ((-876 . -873) 63437) ((-749 . -650) 63379) ((-1122 . -1053) NIL) ((-449 . -873) 63324) ((-975 . -130) T) ((-58 . -97) 63302) ((-43 . -557) 63284) ((-76 . -557) 63266) ((-321 . -585) 63211) ((-1168 . -1006) T) ((-475 . -779) T) ((-313 . -1018) T) ((-266 . -1006) T) ((-918 . -824) 63170) ((-266 . -554) 63149) ((-1150 . -37) 63046) ((-1143 . -37) 62887) ((-454 . -971) T) ((-1122 . -37) 62683) ((-192 . -971) T) ((-313 . -23) T) ((-139 . -557) 62665) ((-765 . -727) 62644) ((-765 . -724) 62623) ((-543 . -37) 62596) ((-542 . -37) 62493) ((-794 . -509) T) ((-197 . -123) T) ((-289 . -921) 62459) ((-77 . -557) 62441) ((-645 . -278) 62420) ((-265 . -659) 62323) ((-756 . -97) T) ((-789 . -773) T) ((-265 . -442) 62302) ((-1171 . -97) T) ((-39 . -333) T) ((-796 . -134) 62281) ((-796 . -132) 62260) ((-1060 . -456) 62242) ((-1180 . -964) T) ((-450 . -478) 62175) ((-1048 . -1112) T) ((-887 . -557) 62157) ((-584 . -456) 62141) ((-572 . -456) 62072) ((-747 . -557) 61824) ((-47 . -27) T) ((-1079 . -650) 61721) ((-590 . -1006) T) ((-406 . -334) 61695) ((-1008 . -97) T) ((-748 . -280) 61682) ((-789 . -1006) T) ((-1176 . -352) 61654) ((-968 . -478) 61587) ((-1061 . -258) 61563) ((-214 . -205) 61533) ((-1168 . -650) 61503) ((-749 . -156) 61482) ((-201 . -478) 61415) ((-562 . -727) 61394) ((-562 . -724) 61373) ((-1110 . -557) 61285) ((-196 . -1112) T) ((-611 . -557) 61217) ((-1058 . -929) 61201) ((-321 . -659) T) ((-867 . -97) 61151) ((-1122 . -370) 61103) ((-1019 . -456) 61087) ((-58 . -280) 61025) ((-301 . -97) T) ((-1107 . -21) T) ((-1107 . -25) T) ((-39 . -1018) T) ((-644 . -21) T) ((-567 . -557) 61007) ((-479 . -293) 60986) ((-644 . -25) T) ((-103 . -258) NIL) ((-845 . -1018) T) ((-39 . -23) T) ((-703 . -1018) T) ((-517 . -1116) T) ((-460 . -1116) T) ((-289 . -557) 60968) ((-923 . -205) 60950) ((-153 . -150) 60934) ((-529 . -509) T) ((-517 . -509) T) ((-460 . -509) T) ((-703 . -23) T) ((-1142 . -134) 60913) ((-1061 . -550) 60889) ((-1142 . -132) 60868) ((-945 . -456) 60852) ((-1121 . -132) 60777) ((-1121 . -134) 60702) ((-1171 . -1177) 60681) ((-445 . -456) 60665) ((-432 . -456) 60649) ((-486 . -33) T) ((-590 . -650) 60619) ((-107 . -888) T) ((-599 . -779) 60598) ((-1079 . -156) 60549) ((-335 . -97) T) ((-214 . -212) 60528) ((-224 . -97) T) ((-223 . -97) T) ((-1131 . -873) 60498) ((-104 . -97) T) ((-219 . -779) 60477) ((-748 . -37) 60326) ((-44 . -478) 60118) ((-1060 . -258) 60093) ((-189 . -1006) T) ((-1052 . -1006) T) ((-1052 . -554) 60072) ((-534 . -25) T) ((-534 . -21) T) ((-1008 . -280) 60010) ((-886 . -381) 59994) ((-632 . -1116) T) ((-572 . -258) 59969) ((-995 . -579) 59917) ((-714 . -579) 59865) ((-712 . -579) 59813) ((-313 . -123) T) ((-261 . -557) 59795) ((-632 . -509) T) ((-829 . -1006) T) ((-794 . -1018) T) ((-423 . -579) 59743) ((-829 . -827) 59727) ((-349 . -421) T) ((-454 . -1006) T) ((-634 . -585) 59714) ((-867 . -280) 59652) ((-192 . -1006) T) ((-286 . -844) 59631) ((-283 . -844) T) ((-283 . -752) NIL) ((-360 . -653) T) ((-794 . -23) T) ((-111 . -585) 59618) ((-443 . -132) 59597) ((-388 . -381) 59581) ((-443 . -134) 59560) ((-105 . -456) 59542) ((-2 . -557) 59524) ((-1060 . -19) 59506) ((-1060 . -550) 59481) ((-595 . -21) T) ((-595 . -25) T) ((-540 . -1046) T) ((-1019 . -258) 59458) ((-306 . -25) T) ((-306 . -21) T) ((-460 . -333) T) ((-1171 . -37) 59428) ((-1044 . -1112) T) ((-572 . -550) 59403) ((-995 . -25) T) ((-995 . -21) T) ((-489 . -724) T) ((-489 . -727) T) ((-112 . -1116) T) ((-886 . -971) T) ((-564 . -509) T) ((-668 . -971) T) ((-648 . -971) T) ((-714 . -25) T) ((-714 . -21) T) ((-712 . -21) T) ((-712 . -25) T) ((-607 . -970) 59387) ((-430 . -25) T) ((-112 . -509) T) ((-430 . -21) T) ((-423 . -25) T) ((-423 . -21) T) ((-1044 . -955) 59285) ((-749 . -262) 59264) ((-755 . -1006) T) ((-607 . -106) 59243) ((-266 . -478) 59035) ((-1178 . -970) 59019) ((-1176 . -970) 59003) ((-224 . -280) 58941) ((-223 . -280) 58879) ((-1125 . -97) 58857) ((-1061 . -558) NIL) ((-1061 . -557) 58839) ((-1142 . -1098) 58805) ((-1142 . -1101) 58771) ((-1122 . -205) 58723) ((-1121 . -1098) 58689) ((-1121 . -1101) 58655) ((-1044 . -347) 58639) ((-1024 . -752) T) ((-1024 . -844) T) ((-1019 . -550) 58616) ((-990 . -558) 58600) ((-451 . -557) 58532) ((-747 . -260) 58509) ((-552 . -138) 58456) ((-388 . -971) T) ((-454 . -650) 58406) ((-450 . -456) 58390) ((-297 . -779) 58369) ((-309 . -585) 58343) ((-49 . -21) T) ((-49 . -25) T) ((-192 . -650) 58293) ((-153 . -657) 58264) ((-157 . -585) 58196) ((-530 . -21) T) ((-530 . -25) T) ((-481 . -25) T) ((-481 . -21) T) ((-444 . -138) 58146) ((-990 . -557) 58128) ((-974 . -557) 58110) ((-913 . -97) T) ((-787 . -97) T) ((-731 . -381) 58074) ((-39 . -123) T) ((-632 . -333) T) ((-188 . -819) T) ((-634 . -726) T) ((-634 . -723) T) ((-529 . -1018) T) ((-517 . -1018) T) ((-460 . -1018) T) ((-634 . -659) T) ((-329 . -557) 58056) ((-323 . -557) 58038) ((-315 . -557) 58020) ((-64 . -366) T) ((-64 . -365) T) ((-103 . -558) 57950) ((-103 . -557) 57932) ((-187 . -819) T) ((-881 . -138) 57916) ((-1142 . -91) 57882) ((-703 . -123) T) ((-125 . -659) T) ((-111 . -659) T) ((-1142 . -34) 57848) ((-968 . -456) 57832) ((-529 . -23) T) ((-517 . -23) T) ((-460 . -23) T) ((-1121 . -91) 57798) ((-1121 . -34) 57764) ((-1073 . -97) T) ((-1029 . -97) T) ((-783 . -97) T) ((-201 . -456) 57748) ((-1178 . -106) 57727) ((-1176 . -106) 57706) ((-43 . -970) 57690) ((-1131 . -1134) 57674) ((-784 . -781) 57658) ((-1079 . -262) 57637) ((-105 . -258) 57612) ((-1044 . -824) 57571) ((-43 . -106) 57550) ((-607 . -964) T) ((-1082 . -1153) T) ((-1060 . -558) NIL) ((-1060 . -557) 57532) ((-976 . -554) 57507) ((-976 . -1006) T) ((-72 . -410) T) ((-72 . -365) T) ((-607 . -207) 57486) ((-139 . -970) 57470) ((-524 . -507) 57454) ((-325 . -134) 57433) ((-325 . -132) 57384) ((-322 . -134) 57363) ((-636 . -1006) T) ((-322 . -132) 57314) ((-314 . -134) 57293) ((-314 . -132) 57244) ((-237 . -132) 57223) ((-237 . -134) 57202) ((-224 . -37) 57172) ((-221 . -134) 57151) ((-112 . -333) T) ((-221 . -132) 57130) ((-223 . -37) 57100) ((-139 . -106) 57079) ((-922 . -955) 56969) ((-1068 . -777) NIL) ((-627 . -1116) T) ((-731 . -971) T) ((-632 . -1018) T) ((-1178 . -964) T) ((-1176 . -964) T) ((-1058 . -1112) T) ((-922 . -347) 56946) ((-834 . -132) T) ((-834 . -134) 56928) ((-794 . -123) T) ((-747 . -970) 56826) ((-627 . -509) T) ((-632 . -23) T) ((-584 . -557) 56758) ((-584 . -558) 56719) ((-572 . -558) NIL) ((-572 . -557) 56701) ((-454 . -156) T) ((-197 . -21) T) ((-192 . -156) T) ((-197 . -25) T) ((-443 . -1101) 56667) ((-443 . -1098) 56633) ((-247 . -557) 56615) ((-246 . -557) 56597) ((-245 . -557) 56579) ((-244 . -557) 56561) ((-243 . -557) 56543) ((-465 . -588) 56525) ((-242 . -557) 56507) ((-309 . -659) T) ((-241 . -557) 56489) ((-105 . -19) 56471) ((-157 . -659) T) ((-465 . -343) 56453) ((-188 . -557) 56435) ((-483 . -1051) 56419) ((-465 . -118) T) ((-105 . -550) 56394) ((-187 . -557) 56376) ((-443 . -34) 56342) ((-443 . -91) 56308) ((-185 . -557) 56290) ((-184 . -557) 56272) ((-183 . -557) 56254) ((-182 . -557) 56236) ((-179 . -557) 56218) ((-178 . -557) 56200) ((-177 . -557) 56182) ((-176 . -557) 56164) ((-175 . -557) 56146) ((-174 . -557) 56128) ((-173 . -557) 56110) ((-493 . -1009) 56062) ((-172 . -557) 56044) ((-171 . -557) 56026) ((-44 . -456) 55963) ((-170 . -557) 55945) ((-169 . -557) 55927) ((-747 . -106) 55818) ((-583 . -97) 55768) ((-450 . -258) 55745) ((-1019 . -557) 55497) ((-1007 . -1006) T) ((-961 . -1112) T) ((-564 . -1018) T) ((-1179 . -955) 55481) ((-1073 . -280) 55468) ((-1029 . -280) 55455) ((-112 . -1018) T) ((-751 . -97) T) ((-564 . -23) T) ((-1052 . -478) 55247) ((-356 . -97) T) ((-294 . -97) T) ((-922 . -824) 55199) ((-886 . -1006) T) ((-139 . -964) T) ((-112 . -23) T) ((-664 . -381) 55183) ((-668 . -1006) T) ((-648 . -1006) T) ((-636 . -124) T) ((-422 . -1006) T) ((-286 . -400) 55167) ((-377 . -1112) T) ((-945 . -558) 55128) ((-942 . -1116) T) ((-199 . -97) T) ((-945 . -557) 55090) ((-748 . -205) 55074) ((-942 . -509) T) ((-765 . -585) 55047) ((-324 . -1116) T) ((-445 . -557) 55009) ((-445 . -558) 54970) ((-432 . -558) 54931) ((-432 . -557) 54893) ((-377 . -808) 54877) ((-289 . -970) 54712) ((-377 . -810) 54637) ((-772 . -955) 54535) ((-454 . -478) NIL) ((-450 . -550) 54512) ((-324 . -509) T) ((-192 . -478) NIL) ((-796 . -421) T) ((-388 . -1006) T) ((-377 . -955) 54379) ((-289 . -106) 54200) ((-627 . -333) T) ((-199 . -256) T) ((-47 . -1116) T) ((-747 . -964) 54131) ((-529 . -123) T) ((-517 . -123) T) ((-460 . -123) T) ((-47 . -509) T) ((-1061 . -260) 54107) ((-1073 . -1053) 54085) ((-286 . -27) 54064) ((-975 . -97) T) ((-747 . -207) 54017) ((-214 . -777) 53996) ((-876 . -97) T) ((-646 . -97) T) ((-266 . -456) 53933) ((-449 . -97) T) ((-664 . -971) T) ((-556 . -557) 53915) ((-556 . -558) 53776) ((-377 . -347) 53760) ((-377 . -308) 53744) ((-1073 . -37) 53573) ((-1029 . -37) 53422) ((-783 . -37) 53392) ((-360 . -585) 53376) ((-583 . -280) 53314) ((-886 . -650) 53211) ((-196 . -102) 53195) ((-44 . -258) 53120) ((-668 . -650) 53090) ((-562 . -585) 53064) ((-282 . -1006) T) ((-261 . -970) 53051) ((-105 . -557) 53033) ((-105 . -558) 53015) ((-422 . -650) 52985) ((-748 . -226) 52924) ((-623 . -1006) 52902) ((-503 . -1006) T) ((-1075 . -971) T) ((-1074 . -971) T) ((-261 . -106) 52887) ((-1068 . -971) T) ((-1030 . -971) T) ((-503 . -554) 52866) ((-923 . -777) T) ((-201 . -621) 52824) ((-627 . -1018) T) ((-1107 . -673) 52800) ((-289 . -964) T) ((-313 . -25) T) ((-313 . -21) T) ((-377 . -824) 52759) ((-66 . -1112) T) ((-765 . -726) 52738) ((-388 . -650) 52712) ((-731 . -1006) T) ((-765 . -723) 52691) ((-632 . -123) T) ((-645 . -844) 52670) ((-627 . -23) T) ((-454 . -262) T) ((-765 . -659) 52649) ((-289 . -207) 52601) ((-289 . -217) 52580) ((-192 . -262) T) ((-942 . -333) T) ((-1142 . -421) 52559) ((-1121 . -421) 52538) ((-324 . -299) 52515) ((-324 . -333) T) ((-1042 . -557) 52497) ((-44 . -1146) 52447) ((-795 . -97) T) ((-583 . -254) 52431) ((-632 . -973) T) ((-446 . -585) 52396) ((-437 . -1006) T) ((-44 . -550) 52321) ((-1060 . -260) 52296) ((-39 . -579) 52235) ((-47 . -333) T) ((-1012 . -557) 52217) ((-995 . -779) 52196) ((-572 . -260) 52171) ((-714 . -779) 52150) ((-712 . -779) 52129) ((-450 . -557) 51881) ((-214 . -381) 51850) ((-876 . -280) 51837) ((-423 . -779) 51816) ((-63 . -1112) T) ((-564 . -123) T) ((-449 . -280) 51803) ((-976 . -478) 51647) ((-261 . -964) T) ((-112 . -123) T) ((-422 . -694) T) ((-886 . -156) 51598) ((-990 . -970) 51508) ((-562 . -726) 51487) ((-540 . -1006) T) ((-562 . -723) 51466) ((-562 . -659) T) ((-266 . -258) 51445) ((-265 . -1112) T) ((-968 . -557) 51407) ((-968 . -558) 51368) ((-942 . -1018) T) ((-153 . -97) T) ((-248 . -779) T) ((-1067 . -1006) T) ((-750 . -557) 51350) ((-1019 . -260) 51327) ((-1008 . -203) 51311) ((-922 . -278) T) ((-731 . -650) 51295) ((-329 . -970) 51247) ((-324 . -1018) T) ((-323 . -970) 51199) ((-384 . -557) 51181) ((-355 . -557) 51163) ((-315 . -970) 51115) ((-201 . -557) 51047) ((-990 . -106) 50943) ((-942 . -23) T) ((-103 . -970) 50893) ((-822 . -97) T) ((-770 . -97) T) ((-740 . -97) T) ((-701 . -97) T) ((-612 . -97) T) ((-443 . -421) 50872) ((-388 . -156) T) ((-329 . -106) 50810) ((-323 . -106) 50748) ((-315 . -106) 50686) ((-224 . -205) 50656) ((-223 . -205) 50626) ((-324 . -23) T) ((-69 . -1112) T) ((-199 . -37) 50591) ((-103 . -106) 50525) ((-39 . -25) T) ((-39 . -21) T) ((-607 . -653) T) ((-153 . -256) 50503) ((-47 . -1018) T) ((-845 . -25) T) ((-703 . -25) T) ((-1052 . -456) 50440) ((-452 . -1006) T) ((-1180 . -585) 50414) ((-1131 . -97) T) ((-784 . -97) T) ((-214 . -971) 50345) ((-975 . -1053) T) ((-887 . -724) 50298) ((-351 . -585) 50282) ((-47 . -23) T) ((-887 . -727) 50235) ((-747 . -727) 50186) ((-747 . -724) 50137) ((-266 . -550) 50116) ((-446 . -659) T) ((-524 . -97) T) ((-795 . -280) 50073) ((-590 . -258) 50052) ((-107 . -598) T) ((-74 . -1112) T) ((-975 . -37) 50039) ((-601 . -344) 50018) ((-876 . -37) 49867) ((-664 . -1006) T) ((-449 . -37) 49716) ((-84 . -1112) T) ((-524 . -256) T) ((-1122 . -777) NIL) ((-1075 . -1006) T) ((-1074 . -1006) T) ((-1068 . -1006) T) ((-321 . -955) 49693) ((-990 . -964) T) ((-923 . -971) T) ((-44 . -557) 49675) ((-44 . -558) NIL) ((-838 . -971) T) ((-749 . -557) 49657) ((-1049 . -97) 49635) ((-990 . -217) 49586) ((-397 . -971) T) ((-329 . -964) T) ((-323 . -964) T) ((-335 . -334) 49563) ((-315 . -964) T) ((-224 . -212) 49542) ((-223 . -212) 49521) ((-104 . -334) 49495) ((-990 . -207) 49420) ((-1030 . -1006) T) ((-265 . -824) 49379) ((-103 . -964) T) ((-627 . -123) T) ((-388 . -478) 49221) ((-329 . -207) 49200) ((-329 . -217) T) ((-43 . -653) T) ((-323 . -207) 49179) ((-323 . -217) T) ((-315 . -207) 49158) ((-315 . -217) T) ((-153 . -280) 49123) ((-103 . -217) T) ((-103 . -207) T) ((-289 . -724) T) ((-794 . -21) T) ((-794 . -25) T) ((-377 . -278) T) ((-465 . -33) T) ((-105 . -260) 49098) ((-1019 . -970) 48996) ((-795 . -1053) NIL) ((-300 . -557) 48978) ((-377 . -940) 48957) ((-1019 . -106) 48848) ((-406 . -1006) T) ((-1180 . -659) T) ((-61 . -557) 48830) ((-795 . -37) 48775) ((-486 . -1112) T) ((-548 . -138) 48759) ((-476 . -557) 48741) ((-1131 . -280) 48728) ((-664 . -650) 48577) ((-489 . -725) T) ((-489 . -726) T) ((-517 . -579) 48559) ((-460 . -579) 48519) ((-325 . -421) T) ((-322 . -421) T) ((-314 . -421) T) ((-237 . -421) 48470) ((-483 . -1006) 48420) ((-221 . -421) 48371) ((-1052 . -258) 48350) ((-1079 . -557) 48332) ((-623 . -478) 48265) ((-886 . -262) 48244) ((-503 . -478) 48036) ((-1073 . -205) 48020) ((-153 . -1053) 47999) ((-1168 . -557) 47981) ((-1075 . -650) 47878) ((-1074 . -650) 47719) ((-816 . -97) T) ((-1068 . -650) 47515) ((-1030 . -650) 47412) ((-1058 . -610) 47396) ((-325 . -372) 47347) ((-322 . -372) 47298) ((-314 . -372) 47249) ((-942 . -123) T) ((-731 . -478) 47161) ((-266 . -558) NIL) ((-266 . -557) 47143) ((-834 . -421) T) ((-887 . -338) 47096) ((-747 . -338) 47075) ((-474 . -473) 47054) ((-472 . -473) 47033) ((-454 . -258) NIL) ((-450 . -260) 47010) ((-388 . -262) T) ((-324 . -123) T) ((-192 . -258) NIL) ((-627 . -458) NIL) ((-94 . -1018) T) ((-153 . -37) 46838) ((-1142 . -893) 46801) ((-1049 . -280) 46739) ((-1121 . -893) 46709) ((-834 . -372) T) ((-1019 . -964) 46640) ((-1144 . -509) T) ((-1052 . -550) 46619) ((-107 . -779) T) ((-976 . -456) 46550) ((-529 . -21) T) ((-529 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-460 . -25) T) ((-460 . -21) T) ((-1131 . -1053) 46528) ((-1019 . -207) 46481) ((-47 . -123) T) ((-1094 . -97) T) ((-214 . -1006) 46292) ((-795 . -370) 46269) ((-996 . -97) T) ((-986 . -97) T) ((-552 . -97) T) ((-444 . -97) T) ((-1131 . -37) 46098) ((-784 . -37) 46068) ((-664 . -156) 45979) ((-590 . -557) 45961) ((-524 . -37) 45948) ((-881 . -97) 45898) ((-789 . -557) 45880) ((-789 . -558) 45802) ((-540 . -478) NIL) ((-1150 . -971) T) ((-1143 . -971) T) ((-1122 . -971) T) ((-543 . -971) T) ((-542 . -971) T) ((-1184 . -1018) T) ((-1075 . -156) 45753) ((-1074 . -156) 45684) ((-1068 . -156) 45615) ((-1030 . -156) 45566) ((-923 . -1006) T) ((-891 . -1006) T) ((-838 . -1006) T) ((-1107 . -134) 45545) ((-731 . -729) 45529) ((-632 . -25) T) ((-632 . -21) T) ((-112 . -579) 45506) ((-634 . -810) 45488) ((-397 . -1006) T) ((-286 . -1116) 45467) ((-283 . -1116) T) ((-153 . -370) 45451) ((-1107 . -132) 45430) ((-443 . -893) 45393) ((-70 . -557) 45375) ((-103 . -727) T) ((-103 . -724) T) ((-286 . -509) 45354) ((-634 . -955) 45336) ((-283 . -509) T) ((-1184 . -23) T) ((-125 . -955) 45318) ((-450 . -970) 45216) ((-44 . -260) 45141) ((-214 . -650) 45083) ((-450 . -106) 44974) ((-999 . -97) 44952) ((-952 . -97) T) ((-583 . -760) 44931) ((-664 . -478) 44874) ((-968 . -970) 44858) ((-564 . -21) T) ((-564 . -25) T) ((-976 . -258) 44833) ((-331 . -97) T) ((-292 . -97) T) ((-607 . -585) 44807) ((-355 . -970) 44791) ((-968 . -106) 44770) ((-748 . -381) 44754) ((-112 . -25) T) ((-87 . -557) 44736) ((-112 . -21) T) ((-552 . -280) 44531) ((-444 . -280) 44335) ((-1052 . -558) NIL) ((-355 . -106) 44314) ((-349 . -97) T) ((-189 . -557) 44296) ((-1052 . -557) 44278) ((-923 . -650) 44228) ((-1068 . -478) 43997) ((-838 . -650) 43949) ((-1030 . -478) 43919) ((-321 . -278) T) ((-1086 . -138) 43869) ((-881 . -280) 43807) ((-766 . -97) T) ((-397 . -650) 43791) ((-199 . -760) T) ((-759 . -97) T) ((-757 . -97) T) ((-447 . -138) 43741) ((-1142 . -1141) 43720) ((-1024 . -1116) T) ((-309 . -955) 43687) ((-1142 . -1136) 43657) ((-1142 . -1139) 43641) ((-1121 . -1120) 43620) ((-78 . -557) 43602) ((-829 . -557) 43584) ((-1121 . -1136) 43561) ((-1024 . -509) T) ((-845 . -779) T) ((-454 . -558) 43491) ((-454 . -557) 43473) ((-703 . -779) T) ((-349 . -256) T) ((-608 . -779) T) ((-1121 . -1118) 43457) ((-1144 . -1018) T) ((-192 . -558) 43387) ((-192 . -557) 43369) ((-976 . -550) 43344) ((-57 . -138) 43328) ((-480 . -138) 43312) ((-461 . -138) 43296) ((-329 . -1175) 43280) ((-323 . -1175) 43264) ((-315 . -1175) 43248) ((-286 . -333) 43227) ((-283 . -333) T) ((-450 . -964) 43158) ((-627 . -579) 43140) ((-1178 . -585) 43114) ((-1176 . -585) 43088) ((-1144 . -23) T) ((-623 . -456) 43072) ((-62 . -557) 43054) ((-1019 . -727) 43005) ((-1019 . -724) 42956) ((-503 . -456) 42893) ((-607 . -33) T) ((-450 . -207) 42846) ((-266 . -260) 42825) ((-214 . -156) 42804) ((-748 . -971) T) ((-43 . -585) 42762) ((-990 . -338) 42713) ((-664 . -262) 42644) ((-483 . -478) 42577) ((-749 . -970) 42528) ((-995 . -132) 42507) ((-329 . -338) 42486) ((-323 . -338) 42465) ((-315 . -338) 42444) ((-995 . -134) 42423) ((-795 . -205) 42400) ((-749 . -106) 42342) ((-714 . -132) 42321) ((-714 . -134) 42300) ((-237 . -873) 42267) ((-224 . -777) 42246) ((-221 . -873) 42191) ((-223 . -777) 42170) ((-712 . -132) 42149) ((-712 . -134) 42128) ((-139 . -585) 42102) ((-423 . -134) 42081) ((-423 . -132) 42060) ((-607 . -659) T) ((-755 . -557) 42042) ((-1150 . -1006) T) ((-1143 . -1006) T) ((-1122 . -1006) T) ((-1107 . -1101) 42008) ((-1107 . -1098) 41974) ((-1075 . -262) 41953) ((-1074 . -262) 41904) ((-1068 . -262) 41855) ((-1030 . -262) 41834) ((-309 . -824) 41815) ((-923 . -156) T) ((-838 . -156) T) ((-543 . -1006) T) ((-542 . -1006) T) ((-627 . -21) T) ((-627 . -25) T) ((-443 . -1139) 41799) ((-443 . -1136) 41769) ((-388 . -258) 41697) ((-286 . -1018) 41547) ((-283 . -1018) T) ((-1107 . -34) 41513) ((-1107 . -91) 41479) ((-82 . -557) 41461) ((-89 . -97) 41439) ((-1184 . -123) T) ((-530 . -132) T) ((-530 . -134) 41421) ((-481 . -134) 41403) ((-481 . -132) T) ((-286 . -23) 41256) ((-39 . -312) 41230) ((-283 . -23) T) ((-1060 . -588) 41212) ((-747 . -585) 41062) ((-1171 . -971) T) ((-1060 . -343) 41044) ((-153 . -205) 41028) ((-540 . -456) 41010) ((-214 . -478) 40943) ((-1178 . -659) T) ((-1176 . -659) T) ((-1079 . -970) 40826) ((-1079 . -106) 40695) ((-749 . -964) T) ((-479 . -97) T) ((-47 . -579) 40655) ((-474 . -97) T) ((-472 . -97) T) ((-1168 . -970) 40625) ((-952 . -37) 40609) ((-749 . -207) T) ((-749 . -217) 40588) ((-503 . -258) 40567) ((-1168 . -106) 40532) ((-1131 . -205) 40516) ((-1150 . -650) 40413) ((-976 . -558) NIL) ((-976 . -557) 40395) ((-1143 . -650) 40236) ((-1122 . -650) 40032) ((-922 . -844) T) ((-636 . -557) 40001) ((-139 . -659) T) ((-1019 . -338) 39980) ((-923 . -478) NIL) ((-224 . -381) 39949) ((-223 . -381) 39918) ((-942 . -25) T) ((-942 . -21) T) ((-543 . -650) 39891) ((-542 . -650) 39788) ((-731 . -258) 39746) ((-121 . -97) 39724) ((-765 . -955) 39622) ((-153 . -760) 39601) ((-289 . -585) 39498) ((-747 . -33) T) ((-647 . -97) T) ((-1024 . -1018) T) ((-944 . -1112) T) ((-349 . -37) 39463) ((-324 . -25) T) ((-324 . -21) T) ((-146 . -97) T) ((-142 . -97) T) ((-325 . -1165) 39447) ((-322 . -1165) 39431) ((-314 . -1165) 39415) ((-153 . -319) 39394) ((-517 . -779) T) ((-460 . -779) T) ((-1024 . -23) T) ((-85 . -557) 39376) ((-634 . -278) T) ((-766 . -37) 39346) ((-759 . -37) 39316) ((-1144 . -123) T) ((-1052 . -260) 39295) ((-887 . -725) 39248) ((-887 . -726) 39201) ((-747 . -723) 39180) ((-111 . -278) T) ((-89 . -280) 39118) ((-611 . -33) T) ((-503 . -550) 39097) ((-47 . -25) T) ((-47 . -21) T) ((-747 . -726) 39048) ((-747 . -725) 39027) ((-634 . -940) T) ((-590 . -970) 39011) ((-887 . -659) 38910) ((-747 . -659) 38841) ((-887 . -442) 38794) ((-450 . -727) 38745) ((-450 . -724) 38696) ((-834 . -1165) 38683) ((-1079 . -964) T) ((-590 . -106) 38662) ((-1079 . -296) 38639) ((-1099 . -97) 38617) ((-1007 . -557) 38599) ((-634 . -502) T) ((-748 . -1006) T) ((-1168 . -964) T) ((-383 . -1006) T) ((-224 . -971) 38530) ((-223 . -971) 38461) ((-261 . -585) 38448) ((-540 . -258) 38423) ((-623 . -621) 38381) ((-886 . -557) 38363) ((-796 . -97) T) ((-668 . -557) 38345) ((-648 . -557) 38327) ((-1150 . -156) 38278) ((-1143 . -156) 38209) ((-1122 . -156) 38140) ((-632 . -779) T) ((-923 . -262) T) ((-422 . -557) 38122) ((-567 . -659) T) ((-58 . -1006) 38100) ((-219 . -138) 38084) ((-838 . -262) T) ((-942 . -931) T) ((-567 . -442) T) ((-645 . -1116) 38063) ((-543 . -156) 38042) ((-542 . -156) 37993) ((-1158 . -779) 37972) ((-645 . -509) 37883) ((-377 . -844) T) ((-377 . -752) 37862) ((-289 . -726) T) ((-289 . -659) T) ((-388 . -557) 37844) ((-388 . -558) 37752) ((-583 . -1051) 37736) ((-105 . -588) 37718) ((-121 . -280) 37656) ((-105 . -343) 37638) ((-157 . -278) T) ((-368 . -1112) T) ((-286 . -123) 37510) ((-283 . -123) T) ((-67 . -365) T) ((-105 . -118) T) ((-483 . -456) 37494) ((-591 . -1018) T) ((-540 . -19) 37476) ((-59 . -410) T) ((-59 . -365) T) ((-756 . -1006) T) ((-540 . -550) 37451) ((-446 . -955) 37411) ((-590 . -964) T) ((-591 . -23) T) ((-1171 . -1006) T) ((-748 . -650) 37260) ((-112 . -779) NIL) ((-1073 . -381) 37244) ((-1029 . -381) 37228) ((-783 . -381) 37212) ((-797 . -97) 37163) ((-1142 . -97) T) ((-1122 . -478) 36932) ((-1099 . -280) 36870) ((-282 . -557) 36852) ((-1121 . -97) T) ((-1008 . -1006) T) ((-1075 . -258) 36837) ((-1074 . -258) 36822) ((-261 . -659) T) ((-103 . -833) NIL) ((-623 . -557) 36754) ((-623 . -558) 36715) ((-990 . -585) 36625) ((-547 . -557) 36607) ((-503 . -558) NIL) ((-503 . -557) 36589) ((-1068 . -258) 36437) ((-454 . -970) 36387) ((-644 . -421) T) ((-475 . -473) 36366) ((-471 . -473) 36345) ((-192 . -970) 36295) ((-329 . -585) 36247) ((-323 . -585) 36199) ((-199 . -777) T) ((-315 . -585) 36151) ((-548 . -97) 36101) ((-450 . -338) 36080) ((-103 . -585) 36030) ((-454 . -106) 35964) ((-214 . -456) 35948) ((-313 . -134) 35930) ((-313 . -132) T) ((-153 . -340) 35901) ((-867 . -1156) 35885) ((-192 . -106) 35819) ((-796 . -280) 35784) ((-867 . -1006) 35734) ((-731 . -558) 35695) ((-731 . -557) 35677) ((-651 . -97) T) ((-301 . -1006) T) ((-1024 . -123) T) ((-647 . -37) 35647) ((-286 . -458) 35626) ((-465 . -1112) T) ((-1142 . -256) 35592) ((-1121 . -256) 35558) ((-297 . -138) 35542) ((-976 . -260) 35517) ((-1171 . -650) 35487) ((-1061 . -33) T) ((-1180 . -955) 35464) ((-437 . -557) 35446) ((-451 . -33) T) ((-351 . -955) 35430) ((-1073 . -971) T) ((-1029 . -971) T) ((-783 . -971) T) ((-975 . -777) T) ((-748 . -156) 35341) ((-483 . -258) 35318) ((-112 . -912) 35295) ((-1150 . -262) 35274) ((-1094 . -334) 35248) ((-996 . -239) 35232) ((-443 . -97) T) ((-335 . -1006) T) ((-224 . -1006) T) ((-223 . -1006) T) ((-1143 . -262) 35183) ((-104 . -1006) T) ((-1122 . -262) 35134) ((-796 . -1053) 35112) ((-1075 . -921) 35078) ((-552 . -334) 35018) ((-1074 . -921) 34984) ((-552 . -203) 34931) ((-540 . -557) 34913) ((-540 . -558) NIL) ((-627 . -779) T) ((-444 . -203) 34863) ((-454 . -964) T) ((-1068 . -921) 34829) ((-86 . -409) T) ((-86 . -365) T) ((-192 . -964) T) ((-1030 . -921) 34795) ((-990 . -659) T) ((-645 . -1018) T) ((-543 . -262) 34774) ((-542 . -262) 34753) ((-454 . -217) T) ((-454 . -207) T) ((-192 . -217) T) ((-192 . -207) T) ((-1067 . -557) 34735) ((-796 . -37) 34687) ((-329 . -659) T) ((-323 . -659) T) ((-315 . -659) T) ((-103 . -726) T) ((-103 . -723) T) ((-483 . -1146) 34671) ((-103 . -659) T) ((-645 . -23) T) ((-1184 . -25) T) ((-443 . -256) 34637) ((-1184 . -21) T) ((-1121 . -280) 34576) ((-1077 . -97) T) ((-39 . -132) 34548) ((-39 . -134) 34520) ((-483 . -550) 34497) ((-1019 . -585) 34347) ((-548 . -280) 34285) ((-44 . -588) 34235) ((-44 . -603) 34185) ((-44 . -343) 34135) ((-1060 . -33) T) ((-795 . -777) NIL) ((-591 . -123) T) ((-452 . -557) 34117) ((-214 . -258) 34094) ((-584 . -33) T) ((-572 . -33) T) ((-995 . -421) 34045) ((-748 . -478) 33919) ((-714 . -421) 33850) ((-712 . -421) 33801) ((-423 . -421) 33752) ((-876 . -381) 33736) ((-664 . -557) 33718) ((-224 . -650) 33660) ((-223 . -650) 33602) ((-664 . -558) 33463) ((-449 . -381) 33447) ((-309 . -273) T) ((-321 . -844) T) ((-919 . -97) 33425) ((-942 . -779) T) ((-58 . -478) 33358) ((-1121 . -1053) 33310) ((-923 . -258) NIL) ((-199 . -971) T) ((-349 . -760) T) ((-1019 . -33) T) ((-530 . -421) T) ((-481 . -421) T) ((-1125 . -1000) 33294) ((-1125 . -1006) 33272) ((-214 . -550) 33249) ((-1125 . -1002) 33206) ((-1075 . -557) 33188) ((-1074 . -557) 33170) ((-1068 . -557) 33152) ((-1068 . -558) NIL) ((-1030 . -557) 33134) ((-796 . -370) 33118) ((-493 . -97) T) ((-1142 . -37) 32959) ((-1121 . -37) 32773) ((-794 . -134) T) ((-530 . -372) T) ((-47 . -779) T) ((-481 . -372) T) ((-1144 . -21) T) ((-1144 . -25) T) ((-1019 . -723) 32752) ((-1019 . -726) 32703) ((-1019 . -725) 32682) ((-913 . -1006) T) ((-945 . -33) T) ((-787 . -1006) T) ((-1154 . -97) T) ((-1019 . -659) 32613) ((-601 . -97) T) ((-503 . -260) 32592) ((-1086 . -97) T) ((-445 . -33) T) ((-432 . -33) T) ((-325 . -97) T) ((-322 . -97) T) ((-314 . -97) T) ((-237 . -97) T) ((-221 . -97) T) ((-446 . -278) T) ((-975 . -971) T) ((-876 . -971) T) ((-286 . -579) 32500) ((-283 . -579) 32461) ((-449 . -971) T) ((-447 . -97) T) ((-406 . -557) 32443) ((-1073 . -1006) T) ((-1029 . -1006) T) ((-783 . -1006) T) ((-1043 . -97) T) ((-748 . -262) 32374) ((-886 . -970) 32257) ((-446 . -940) T) ((-668 . -970) 32227) ((-422 . -970) 32197) ((-1049 . -1025) 32181) ((-1008 . -478) 32114) ((-886 . -106) 31983) ((-834 . -97) T) ((-668 . -106) 31948) ((-57 . -97) 31898) ((-483 . -558) 31859) ((-483 . -557) 31771) ((-482 . -97) 31749) ((-480 . -97) 31699) ((-462 . -97) 31677) ((-461 . -97) 31627) ((-422 . -106) 31590) ((-224 . -156) 31569) ((-223 . -156) 31548) ((-388 . -970) 31522) ((-1107 . -893) 31484) ((-918 . -1018) T) ((-867 . -478) 31417) ((-454 . -727) T) ((-443 . -37) 31258) ((-388 . -106) 31225) ((-454 . -724) T) ((-919 . -280) 31163) ((-192 . -727) T) ((-192 . -724) T) ((-918 . -23) T) ((-645 . -123) T) ((-1121 . -370) 31133) ((-286 . -25) 30986) ((-153 . -381) 30970) ((-286 . -21) 30842) ((-283 . -25) T) ((-283 . -21) T) ((-789 . -338) T) ((-105 . -33) T) ((-450 . -585) 30692) ((-795 . -971) T) ((-540 . -260) 30667) ((-529 . -134) T) ((-517 . -134) T) ((-460 . -134) T) ((-1073 . -650) 30496) ((-1029 . -650) 30345) ((-1024 . -579) 30327) ((-783 . -650) 30297) ((-607 . -1112) T) ((-1 . -97) T) ((-214 . -557) 30049) ((-1131 . -381) 30033) ((-1086 . -280) 29837) ((-886 . -964) T) ((-668 . -964) T) ((-648 . -964) T) ((-583 . -1006) 29787) ((-968 . -585) 29771) ((-784 . -381) 29755) ((-475 . -97) T) ((-471 . -97) T) ((-221 . -280) 29742) ((-237 . -280) 29729) ((-886 . -296) 29708) ((-355 . -585) 29692) ((-447 . -280) 29496) ((-224 . -478) 29429) ((-607 . -955) 29327) ((-223 . -478) 29260) ((-1043 . -280) 29186) ((-751 . -1006) T) ((-731 . -970) 29170) ((-1150 . -258) 29155) ((-1143 . -258) 29140) ((-1122 . -258) 28988) ((-356 . -1006) T) ((-294 . -1006) T) ((-388 . -964) T) ((-153 . -971) T) ((-57 . -280) 28926) ((-731 . -106) 28905) ((-542 . -258) 28890) ((-482 . -280) 28828) ((-480 . -280) 28766) ((-462 . -280) 28704) ((-461 . -280) 28642) ((-388 . -207) 28621) ((-450 . -33) T) ((-923 . -558) 28551) ((-199 . -1006) T) ((-923 . -557) 28533) ((-891 . -557) 28515) ((-891 . -558) 28490) ((-838 . -557) 28472) ((-632 . -134) T) ((-634 . -844) T) ((-634 . -752) T) ((-397 . -557) 28454) ((-1024 . -21) T) ((-1024 . -25) T) ((-607 . -347) 28438) ((-111 . -844) T) ((-796 . -205) 28422) ((-76 . -1112) T) ((-121 . -120) 28406) ((-968 . -33) T) ((-1178 . -955) 28380) ((-1176 . -955) 28337) ((-1131 . -971) T) ((-784 . -971) T) ((-450 . -723) 28316) ((-325 . -1053) 28295) ((-322 . -1053) 28274) ((-314 . -1053) 28253) ((-450 . -726) 28204) ((-450 . -725) 28183) ((-201 . -33) T) ((-450 . -659) 28114) ((-58 . -456) 28098) ((-524 . -971) T) ((-1073 . -156) 27989) ((-1029 . -156) 27900) ((-975 . -1006) T) ((-995 . -873) 27847) ((-876 . -1006) T) ((-749 . -585) 27798) ((-714 . -873) 27768) ((-646 . -1006) T) ((-712 . -873) 27735) ((-480 . -254) 27719) ((-607 . -824) 27678) ((-449 . -1006) T) ((-423 . -873) 27645) ((-77 . -1112) T) ((-325 . -37) 27610) ((-322 . -37) 27575) ((-314 . -37) 27540) ((-237 . -37) 27389) ((-221 . -37) 27238) ((-834 . -1053) T) ((-564 . -134) 27217) ((-564 . -132) 27196) ((-112 . -134) T) ((-112 . -132) NIL) ((-384 . -659) T) ((-731 . -964) T) ((-313 . -421) T) ((-1150 . -921) 27162) ((-1143 . -921) 27128) ((-1122 . -921) 27094) ((-834 . -37) 27059) ((-199 . -650) 27024) ((-39 . -379) 26996) ((-289 . -46) 26966) ((-918 . -123) T) ((-747 . -1112) T) ((-157 . -844) T) ((-313 . -372) T) ((-483 . -260) 26943) ((-44 . -33) T) ((-747 . -955) 26772) ((-599 . -97) T) ((-591 . -21) T) ((-591 . -25) T) ((-1008 . -456) 26756) ((-1121 . -205) 26726) ((-611 . -1112) T) ((-219 . -97) 26676) ((-795 . -1006) T) ((-1079 . -585) 26601) ((-975 . -650) 26588) ((-664 . -970) 26431) ((-1073 . -478) 26379) ((-876 . -650) 26228) ((-1029 . -478) 26180) ((-449 . -650) 26029) ((-65 . -557) 26011) ((-664 . -106) 25840) ((-867 . -456) 25824) ((-1168 . -585) 25784) ((-749 . -659) T) ((-1075 . -970) 25667) ((-1074 . -970) 25502) ((-1068 . -970) 25292) ((-1030 . -970) 25175) ((-922 . -1116) T) ((-1001 . -97) 25153) ((-747 . -347) 25123) ((-922 . -509) T) ((-1075 . -106) 24992) ((-1074 . -106) 24813) ((-1068 . -106) 24582) ((-1030 . -106) 24451) ((-1011 . -1009) 24415) ((-349 . -777) T) ((-1150 . -557) 24397) ((-1143 . -557) 24379) ((-1122 . -557) 24361) ((-1122 . -558) NIL) ((-214 . -260) 24338) ((-39 . -421) T) ((-199 . -156) T) ((-153 . -1006) T) ((-627 . -134) T) ((-627 . -132) NIL) ((-543 . -557) 24320) ((-542 . -557) 24302) ((-822 . -1006) T) ((-770 . -1006) T) ((-740 . -1006) T) ((-701 . -1006) T) ((-595 . -781) 24286) ((-612 . -1006) T) ((-747 . -824) 24219) ((-39 . -372) NIL) ((-1024 . -598) T) ((-795 . -650) 24164) ((-224 . -456) 24148) ((-223 . -456) 24132) ((-645 . -579) 24080) ((-590 . -585) 24054) ((-266 . -33) T) ((-664 . -964) T) ((-530 . -1165) 24041) ((-481 . -1165) 24018) ((-1131 . -1006) T) ((-1073 . -262) 23929) ((-1029 . -262) 23860) ((-975 . -156) T) ((-784 . -1006) T) ((-876 . -156) 23771) ((-714 . -1134) 23755) ((-583 . -478) 23688) ((-75 . -557) 23670) ((-664 . -296) 23635) ((-1079 . -659) T) ((-524 . -1006) T) ((-449 . -156) 23546) ((-219 . -280) 23484) ((-1044 . -1018) T) ((-68 . -557) 23466) ((-1168 . -659) T) ((-1075 . -964) T) ((-1074 . -964) T) ((-297 . -97) 23416) ((-1068 . -964) T) ((-1044 . -23) T) ((-1030 . -964) T) ((-89 . -1025) 23400) ((-790 . -1018) T) ((-1075 . -207) 23359) ((-1074 . -217) 23338) ((-1074 . -207) 23290) ((-1068 . -207) 23177) ((-1068 . -217) 23156) ((-289 . -824) 23062) ((-790 . -23) T) ((-153 . -650) 22890) ((-377 . -1116) T) ((-1007 . -338) T) ((-942 . -134) T) ((-922 . -333) T) ((-794 . -421) T) ((-867 . -258) 22867) ((-286 . -779) T) ((-283 . -779) NIL) ((-798 . -97) T) ((-645 . -25) T) ((-377 . -509) T) ((-645 . -21) T) ((-324 . -134) 22849) ((-324 . -132) T) ((-1049 . -1006) 22827) ((-422 . -653) T) ((-73 . -557) 22809) ((-109 . -779) T) ((-219 . -254) 22793) ((-214 . -970) 22691) ((-79 . -557) 22673) ((-668 . -338) 22626) ((-1077 . -760) T) ((-670 . -209) 22610) ((-1061 . -1112) T) ((-128 . -209) 22592) ((-214 . -106) 22483) ((-1131 . -650) 22312) ((-47 . -134) T) ((-795 . -156) T) ((-784 . -650) 22282) ((-451 . -1112) T) ((-876 . -478) 22229) ((-590 . -659) T) ((-524 . -650) 22216) ((-952 . -971) T) ((-449 . -478) 22159) ((-867 . -19) 22143) ((-867 . -550) 22120) ((-748 . -558) NIL) ((-748 . -557) 22102) ((-923 . -970) 22052) ((-383 . -557) 22034) ((-224 . -258) 22011) ((-223 . -258) 21988) ((-454 . -833) NIL) ((-286 . -29) 21958) ((-103 . -1112) T) ((-922 . -1018) T) ((-192 . -833) NIL) ((-838 . -970) 21910) ((-990 . -955) 21808) ((-923 . -106) 21742) ((-237 . -205) 21726) ((-670 . -628) 21710) ((-397 . -970) 21694) ((-349 . -971) T) ((-922 . -23) T) ((-838 . -106) 21632) ((-627 . -1101) NIL) ((-454 . -585) 21582) ((-103 . -808) 21564) ((-103 . -810) 21546) ((-627 . -1098) NIL) ((-192 . -585) 21496) ((-329 . -955) 21480) ((-323 . -955) 21464) ((-297 . -280) 21402) ((-315 . -955) 21386) ((-199 . -262) T) ((-397 . -106) 21365) ((-58 . -557) 21297) ((-153 . -156) T) ((-1024 . -779) T) ((-103 . -955) 21257) ((-816 . -1006) T) ((-766 . -971) T) ((-759 . -971) T) ((-627 . -34) NIL) ((-627 . -91) NIL) ((-283 . -912) 21218) ((-529 . -421) T) ((-517 . -421) T) ((-460 . -421) T) ((-377 . -333) T) ((-214 . -964) 21149) ((-1052 . -33) T) ((-446 . -844) T) ((-918 . -579) 21097) ((-224 . -550) 21074) ((-223 . -550) 21051) ((-990 . -347) 21035) ((-795 . -478) 20943) ((-214 . -207) 20896) ((-1060 . -1112) T) ((-756 . -557) 20878) ((-1179 . -1018) T) ((-1171 . -557) 20860) ((-1131 . -156) 20751) ((-103 . -347) 20733) ((-103 . -308) 20715) ((-975 . -262) T) ((-876 . -262) 20646) ((-731 . -338) 20625) ((-584 . -1112) T) ((-572 . -1112) T) ((-449 . -262) 20556) ((-524 . -156) T) ((-297 . -254) 20540) ((-1179 . -23) T) ((-1107 . -97) T) ((-1094 . -1006) T) ((-996 . -1006) T) ((-986 . -1006) T) ((-81 . -557) 20522) ((-644 . -97) T) ((-325 . -319) 20501) ((-552 . -1006) T) ((-322 . -319) 20480) ((-314 . -319) 20459) ((-444 . -1006) T) ((-1086 . -203) 20409) ((-237 . -226) 20371) ((-1044 . -123) T) ((-552 . -554) 20347) ((-990 . -824) 20280) ((-923 . -964) T) ((-838 . -964) T) ((-444 . -554) 20259) ((-1068 . -724) NIL) ((-1068 . -727) NIL) ((-1008 . -558) 20220) ((-447 . -203) 20170) ((-1008 . -557) 20152) ((-923 . -217) T) ((-923 . -207) T) ((-397 . -964) T) ((-881 . -1006) 20102) ((-838 . -217) T) ((-790 . -123) T) ((-632 . -421) T) ((-772 . -1018) 20081) ((-103 . -824) NIL) ((-1107 . -256) 20047) ((-796 . -777) 20026) ((-1019 . -1112) T) ((-829 . -659) T) ((-153 . -478) 19938) ((-918 . -25) T) ((-829 . -442) T) ((-377 . -1018) T) ((-454 . -726) T) ((-454 . -723) T) ((-834 . -319) T) ((-454 . -659) T) ((-192 . -726) T) ((-192 . -723) T) ((-918 . -21) T) ((-192 . -659) T) ((-772 . -23) 19890) ((-289 . -278) 19869) ((-953 . -209) 19815) ((-377 . -23) T) ((-867 . -558) 19776) ((-867 . -557) 19688) ((-583 . -456) 19672) ((-44 . -929) 19622) ((-301 . -557) 19604) ((-1019 . -955) 19433) ((-540 . -588) 19415) ((-540 . -343) 19397) ((-313 . -1165) 19374) ((-945 . -1112) T) ((-795 . -262) T) ((-1131 . -478) 19322) ((-445 . -1112) T) ((-432 . -1112) T) ((-534 . -97) T) ((-1073 . -258) 19249) ((-564 . -421) 19228) ((-919 . -914) 19212) ((-1171 . -352) 19184) ((-112 . -421) T) ((-1093 . -97) T) ((-999 . -1006) 19162) ((-952 . -1006) T) ((-817 . -779) T) ((-321 . -1116) T) ((-1150 . -970) 19045) ((-1019 . -347) 19015) ((-1143 . -970) 18850) ((-1122 . -970) 18640) ((-1150 . -106) 18509) ((-1143 . -106) 18330) ((-1122 . -106) 18099) ((-1107 . -280) 18086) ((-321 . -509) T) ((-335 . -557) 18068) ((-261 . -278) T) ((-543 . -970) 18041) ((-542 . -970) 17924) ((-331 . -1006) T) ((-292 . -1006) T) ((-224 . -557) 17885) ((-223 . -557) 17846) ((-922 . -123) T) ((-104 . -557) 17828) ((-575 . -23) T) ((-627 . -379) 17795) ((-551 . -23) T) ((-595 . -97) T) ((-543 . -106) 17766) ((-542 . -106) 17635) ((-349 . -1006) T) ((-306 . -97) T) ((-153 . -262) 17546) ((-1121 . -777) 17499) ((-647 . -971) T) ((-1049 . -478) 17432) ((-1019 . -824) 17365) ((-766 . -1006) T) ((-759 . -1006) T) ((-757 . -1006) T) ((-92 . -97) T) ((-131 . -779) T) ((-556 . -808) 17349) ((-105 . -1112) T) ((-995 . -97) T) ((-976 . -33) T) ((-714 . -97) T) ((-712 . -97) T) ((-430 . -97) T) ((-423 . -97) T) ((-214 . -727) 17300) ((-214 . -724) 17251) ((-586 . -97) T) ((-1131 . -262) 17162) ((-601 . -574) 17146) ((-583 . -258) 17123) ((-952 . -650) 17107) ((-524 . -262) T) ((-886 . -585) 17032) ((-1179 . -123) T) ((-668 . -585) 16992) ((-648 . -585) 16979) ((-248 . -97) T) ((-422 . -585) 16909) ((-49 . -97) T) ((-530 . -97) T) ((-481 . -97) T) ((-1150 . -964) T) ((-1143 . -964) T) ((-1122 . -964) T) ((-292 . -650) 16891) ((-1150 . -207) 16850) ((-1143 . -217) 16829) ((-1143 . -207) 16781) ((-1122 . -207) 16668) ((-1122 . -217) 16647) ((-1107 . -37) 16544) ((-543 . -964) T) ((-542 . -964) T) ((-923 . -727) T) ((-923 . -724) T) ((-891 . -727) T) ((-891 . -724) T) ((-796 . -971) T) ((-794 . -793) 16528) ((-627 . -421) T) ((-349 . -650) 16493) ((-388 . -585) 16467) ((-645 . -779) 16446) ((-644 . -37) 16411) ((-542 . -207) 16370) ((-39 . -657) 16342) ((-321 . -299) 16319) ((-321 . -333) T) ((-990 . -278) 16270) ((-265 . -1018) 16152) ((-1012 . -1112) T) ((-155 . -97) T) ((-1125 . -557) 16119) ((-772 . -123) 16071) ((-583 . -1146) 16055) ((-766 . -650) 16025) ((-759 . -650) 15995) ((-450 . -1112) T) ((-329 . -278) T) ((-323 . -278) T) ((-315 . -278) T) ((-583 . -550) 15972) ((-377 . -123) T) ((-483 . -603) 15956) ((-103 . -278) T) ((-265 . -23) 15840) ((-483 . -588) 15824) ((-627 . -372) NIL) ((-483 . -343) 15808) ((-89 . -1006) 15786) ((-103 . -940) T) ((-517 . -130) T) ((-1158 . -138) 15770) ((-450 . -955) 15599) ((-1144 . -132) 15560) ((-1144 . -134) 15521) ((-968 . -1112) T) ((-913 . -557) 15503) ((-787 . -557) 15485) ((-748 . -970) 15328) ((-995 . -280) 15315) ((-201 . -1112) T) ((-714 . -280) 15302) ((-712 . -280) 15289) ((-748 . -106) 15118) ((-423 . -280) 15105) ((-1073 . -558) NIL) ((-1073 . -557) 15087) ((-1029 . -557) 15069) ((-1029 . -558) 14817) ((-952 . -156) T) ((-783 . -557) 14799) ((-867 . -260) 14776) ((-552 . -478) 14559) ((-750 . -955) 14543) ((-444 . -478) 14335) ((-886 . -659) T) ((-668 . -659) T) ((-648 . -659) T) ((-321 . -1018) T) ((-1080 . -557) 14317) ((-197 . -97) T) ((-450 . -347) 14287) ((-479 . -1006) T) ((-474 . -1006) T) ((-472 . -1006) T) ((-731 . -585) 14261) ((-942 . -421) T) ((-881 . -478) 14194) ((-321 . -23) T) ((-575 . -123) T) ((-551 . -123) T) ((-324 . -421) T) ((-214 . -338) 14173) ((-349 . -156) T) ((-1142 . -971) T) ((-1121 . -971) T) ((-199 . -921) T) ((-632 . -357) T) ((-388 . -659) T) ((-634 . -1116) T) ((-1044 . -579) 14121) ((-529 . -793) 14105) ((-1061 . -1089) 14081) ((-634 . -509) T) ((-121 . -1006) 14059) ((-1171 . -970) 14043) ((-647 . -1006) T) ((-450 . -824) 13976) ((-595 . -37) 13946) ((-324 . -372) T) ((-286 . -134) 13925) ((-286 . -132) 13904) ((-111 . -509) T) ((-283 . -134) 13860) ((-283 . -132) 13816) ((-47 . -421) T) ((-146 . -1006) T) ((-142 . -1006) T) ((-1061 . -102) 13763) ((-714 . -1053) 13741) ((-623 . -33) T) ((-1171 . -106) 13720) ((-503 . -33) T) ((-451 . -102) 13704) ((-224 . -260) 13681) ((-223 . -260) 13658) ((-795 . -258) 13609) ((-44 . -1112) T) ((-748 . -964) T) ((-1079 . -46) 13586) ((-748 . -296) 13548) ((-995 . -37) 13397) ((-748 . -207) 13376) ((-714 . -37) 13205) ((-712 . -37) 13054) ((-423 . -37) 12903) ((-583 . -558) 12864) ((-583 . -557) 12776) ((-530 . -1053) T) ((-481 . -1053) T) ((-1049 . -456) 12760) ((-1099 . -1006) 12738) ((-1044 . -25) T) ((-1044 . -21) T) ((-443 . -971) T) ((-1122 . -724) NIL) ((-1122 . -727) NIL) ((-918 . -779) 12717) ((-751 . -557) 12699) ((-790 . -21) T) ((-790 . -25) T) ((-731 . -659) T) ((-157 . -1116) T) ((-530 . -37) 12664) ((-481 . -37) 12629) ((-356 . -557) 12611) ((-294 . -557) 12593) ((-153 . -258) 12551) ((-61 . -1112) T) ((-107 . -97) T) ((-796 . -1006) T) ((-157 . -509) T) ((-647 . -650) 12521) ((-265 . -123) 12405) ((-199 . -557) 12387) ((-199 . -558) 12317) ((-922 . -579) 12256) ((-1171 . -964) T) ((-1024 . -134) T) ((-572 . -1089) 12231) ((-664 . -833) 12210) ((-540 . -33) T) ((-584 . -102) 12194) ((-572 . -102) 12140) ((-1131 . -258) 12067) ((-664 . -585) 11992) ((-266 . -1112) T) ((-1079 . -955) 11890) ((-1068 . -833) NIL) ((-975 . -558) 11805) ((-975 . -557) 11787) ((-313 . -97) T) ((-224 . -970) 11685) ((-223 . -970) 11583) ((-364 . -97) T) ((-876 . -557) 11565) ((-876 . -558) 11426) ((-646 . -557) 11408) ((-1169 . -1106) 11377) ((-449 . -557) 11359) ((-449 . -558) 11220) ((-221 . -381) 11204) ((-237 . -381) 11188) ((-224 . -106) 11079) ((-223 . -106) 10970) ((-1075 . -585) 10895) ((-1074 . -585) 10792) ((-1068 . -585) 10644) ((-1030 . -585) 10569) ((-321 . -123) T) ((-80 . -410) T) ((-80 . -365) T) ((-922 . -25) T) ((-922 . -21) T) ((-797 . -1006) 10520) ((-796 . -650) 10472) ((-349 . -262) T) ((-153 . -921) 10424) ((-627 . -357) T) ((-918 . -916) 10408) ((-634 . -1018) T) ((-627 . -150) 10390) ((-1142 . -1006) T) ((-1121 . -1006) T) ((-286 . -1098) 10369) ((-286 . -1101) 10348) ((-1066 . -97) T) ((-286 . -882) 10327) ((-125 . -1018) T) ((-111 . -1018) T) ((-548 . -1156) 10311) ((-634 . -23) T) ((-548 . -1006) 10261) ((-89 . -478) 10194) ((-157 . -333) T) ((-286 . -91) 10173) ((-286 . -34) 10152) ((-552 . -456) 10086) ((-125 . -23) T) ((-111 . -23) T) ((-651 . -1006) T) ((-444 . -456) 10023) ((-377 . -579) 9971) ((-590 . -955) 9869) ((-881 . -456) 9853) ((-325 . -971) T) ((-322 . -971) T) ((-314 . -971) T) ((-237 . -971) T) ((-221 . -971) T) ((-795 . -558) NIL) ((-795 . -557) 9835) ((-1179 . -21) T) ((-524 . -921) T) ((-664 . -659) T) ((-1179 . -25) T) ((-224 . -964) 9766) ((-223 . -964) 9697) ((-70 . -1112) T) ((-224 . -207) 9650) ((-223 . -207) 9603) ((-39 . -97) T) ((-834 . -971) T) ((-1075 . -659) T) ((-1074 . -659) T) ((-1068 . -659) T) ((-1068 . -723) NIL) ((-1068 . -726) NIL) ((-845 . -97) T) ((-1030 . -659) T) ((-703 . -97) T) ((-608 . -97) T) ((-443 . -1006) T) ((-309 . -1018) T) ((-157 . -1018) T) ((-289 . -844) 9582) ((-1142 . -650) 9423) ((-796 . -156) T) ((-1121 . -650) 9237) ((-772 . -21) 9189) ((-772 . -25) 9141) ((-219 . -1051) 9125) ((-121 . -478) 9058) ((-377 . -25) T) ((-377 . -21) T) ((-309 . -23) T) ((-153 . -558) 8826) ((-153 . -557) 8808) ((-157 . -23) T) ((-583 . -260) 8785) ((-483 . -33) T) ((-822 . -557) 8767) ((-87 . -1112) T) ((-770 . -557) 8749) ((-740 . -557) 8731) ((-701 . -557) 8713) ((-612 . -557) 8695) ((-214 . -585) 8545) ((-1077 . -1006) T) ((-1073 . -970) 8368) ((-1052 . -1112) T) ((-1029 . -970) 8211) ((-783 . -970) 8195) ((-1073 . -106) 8004) ((-1029 . -106) 7833) ((-783 . -106) 7812) ((-1131 . -558) NIL) ((-1131 . -557) 7794) ((-313 . -1053) T) ((-784 . -557) 7776) ((-986 . -258) 7755) ((-78 . -1112) T) ((-923 . -833) NIL) ((-552 . -258) 7731) ((-1099 . -478) 7664) ((-454 . -1112) T) ((-524 . -557) 7646) ((-444 . -258) 7625) ((-192 . -1112) T) ((-995 . -205) 7609) ((-261 . -844) T) ((-749 . -278) 7588) ((-794 . -97) T) ((-714 . -205) 7572) ((-923 . -585) 7522) ((-881 . -258) 7499) ((-838 . -585) 7451) ((-575 . -21) T) ((-575 . -25) T) ((-551 . -21) T) ((-313 . -37) 7416) ((-627 . -657) 7383) ((-454 . -808) 7365) ((-454 . -810) 7347) ((-443 . -650) 7188) ((-192 . -808) 7170) ((-62 . -1112) T) ((-192 . -810) 7152) ((-551 . -25) T) ((-397 . -585) 7126) ((-454 . -955) 7086) ((-796 . -478) 6998) ((-192 . -955) 6958) ((-214 . -33) T) ((-919 . -1006) 6936) ((-1142 . -156) 6867) ((-1121 . -156) 6798) ((-645 . -132) 6777) ((-645 . -134) 6756) ((-634 . -123) T) ((-127 . -434) 6733) ((-595 . -593) 6717) ((-1049 . -557) 6649) ((-111 . -123) T) ((-446 . -1116) T) ((-552 . -550) 6625) ((-444 . -550) 6604) ((-306 . -305) 6573) ((-493 . -1006) T) ((-446 . -509) T) ((-1073 . -964) T) ((-1029 . -964) T) ((-783 . -964) T) ((-214 . -723) 6552) ((-214 . -726) 6503) ((-214 . -725) 6482) ((-1073 . -296) 6459) ((-214 . -659) 6390) ((-881 . -19) 6374) ((-454 . -347) 6356) ((-454 . -308) 6338) ((-1029 . -296) 6310) ((-324 . -1165) 6287) ((-192 . -347) 6269) ((-192 . -308) 6251) ((-881 . -550) 6228) ((-1073 . -207) T) ((-601 . -1006) T) ((-1154 . -1006) T) ((-1086 . -1006) T) ((-995 . -226) 6167) ((-325 . -1006) T) ((-322 . -1006) T) ((-314 . -1006) T) ((-237 . -1006) T) ((-221 . -1006) T) ((-82 . -1112) T) ((-122 . -97) 6145) ((-116 . -97) 6123) ((-1086 . -554) 6102) ((-447 . -1006) T) ((-1043 . -1006) T) ((-447 . -554) 6081) ((-224 . -727) 6032) ((-224 . -724) 5983) ((-223 . -727) 5934) ((-39 . -1053) NIL) ((-223 . -724) 5885) ((-990 . -844) 5836) ((-923 . -726) T) ((-923 . -723) T) ((-923 . -659) T) ((-891 . -726) T) ((-838 . -659) T) ((-89 . -456) 5820) ((-454 . -824) NIL) ((-834 . -1006) T) ((-199 . -970) 5785) ((-796 . -262) T) ((-192 . -824) NIL) ((-765 . -1018) 5764) ((-57 . -1006) 5714) ((-482 . -1006) 5692) ((-480 . -1006) 5642) ((-462 . -1006) 5620) ((-461 . -1006) 5570) ((-529 . -97) T) ((-517 . -97) T) ((-460 . -97) T) ((-443 . -156) 5501) ((-329 . -844) T) ((-323 . -844) T) ((-315 . -844) T) ((-199 . -106) 5457) ((-765 . -23) 5409) ((-397 . -659) T) ((-103 . -844) T) ((-39 . -37) 5354) ((-103 . -752) T) ((-530 . -319) T) ((-481 . -319) T) ((-1121 . -478) 5214) ((-286 . -421) 5193) ((-283 . -421) T) ((-766 . -258) 5172) ((-309 . -123) T) ((-157 . -123) T) ((-265 . -25) 5037) ((-265 . -21) 4921) ((-44 . -1089) 4900) ((-64 . -557) 4882) ((-816 . -557) 4864) ((-548 . -478) 4797) ((-44 . -102) 4747) ((-1008 . -395) 4731) ((-1008 . -338) 4710) ((-976 . -1112) T) ((-975 . -970) 4697) ((-876 . -970) 4540) ((-449 . -970) 4383) ((-601 . -650) 4367) ((-975 . -106) 4352) ((-876 . -106) 4181) ((-446 . -333) T) ((-325 . -650) 4133) ((-322 . -650) 4085) ((-314 . -650) 4037) ((-237 . -650) 3886) ((-221 . -650) 3735) ((-867 . -588) 3719) ((-449 . -106) 3548) ((-1159 . -97) T) ((-867 . -343) 3532) ((-1122 . -833) NIL) ((-72 . -557) 3514) ((-886 . -46) 3493) ((-562 . -1018) T) ((-1 . -1006) T) ((-632 . -97) T) ((-1158 . -97) 3443) ((-1150 . -585) 3368) ((-1143 . -585) 3265) ((-121 . -456) 3249) ((-1094 . -557) 3231) ((-996 . -557) 3213) ((-360 . -23) T) ((-986 . -557) 3195) ((-85 . -1112) T) ((-1122 . -585) 3047) ((-834 . -650) 3012) ((-562 . -23) T) ((-552 . -557) 2994) ((-552 . -558) NIL) ((-444 . -558) NIL) ((-444 . -557) 2976) ((-475 . -1006) T) ((-471 . -1006) T) ((-321 . -25) T) ((-321 . -21) T) ((-122 . -280) 2914) ((-116 . -280) 2852) ((-543 . -585) 2839) ((-199 . -964) T) ((-542 . -585) 2764) ((-349 . -921) T) ((-199 . -217) T) ((-199 . -207) T) ((-881 . -558) 2725) ((-881 . -557) 2637) ((-794 . -37) 2624) ((-1142 . -262) 2575) ((-1121 . -262) 2526) ((-1024 . -421) T) ((-467 . -779) T) ((-286 . -1041) 2505) ((-918 . -134) 2484) ((-918 . -132) 2463) ((-460 . -280) 2450) ((-266 . -1089) 2429) ((-446 . -1018) T) ((-795 . -970) 2374) ((-564 . -97) T) ((-1099 . -456) 2358) ((-224 . -338) 2337) ((-223 . -338) 2316) ((-266 . -102) 2266) ((-975 . -964) T) ((-112 . -97) T) ((-876 . -964) T) ((-795 . -106) 2195) ((-446 . -23) T) ((-449 . -964) T) ((-975 . -207) T) ((-876 . -296) 2164) ((-449 . -296) 2121) ((-325 . -156) T) ((-322 . -156) T) ((-314 . -156) T) ((-237 . -156) 2032) ((-221 . -156) 1943) ((-886 . -955) 1841) ((-668 . -955) 1812) ((-1011 . -97) T) ((-999 . -557) 1779) ((-952 . -557) 1761) ((-1150 . -659) T) ((-1143 . -659) T) ((-1122 . -723) NIL) ((-153 . -970) 1671) ((-1122 . -726) NIL) ((-834 . -156) T) ((-1122 . -659) T) ((-1169 . -138) 1655) ((-922 . -312) 1629) ((-919 . -478) 1562) ((-772 . -779) 1541) ((-517 . -1053) T) ((-443 . -262) 1492) ((-543 . -659) T) ((-331 . -557) 1474) ((-292 . -557) 1456) ((-388 . -955) 1354) ((-542 . -659) T) ((-377 . -779) 1305) ((-153 . -106) 1201) ((-765 . -123) 1153) ((-670 . -138) 1137) ((-1158 . -280) 1075) ((-454 . -278) T) ((-349 . -557) 1042) ((-483 . -929) 1026) ((-349 . -558) 940) ((-192 . -278) T) ((-128 . -138) 922) ((-647 . -258) 901) ((-454 . -940) T) ((-529 . -37) 888) ((-517 . -37) 875) ((-460 . -37) 840) ((-192 . -940) T) ((-795 . -964) T) ((-766 . -557) 822) ((-759 . -557) 804) ((-757 . -557) 786) ((-748 . -833) 765) ((-1180 . -1018) T) ((-1131 . -970) 588) ((-784 . -970) 572) ((-795 . -217) T) ((-795 . -207) NIL) ((-623 . -1112) T) ((-1180 . -23) T) ((-748 . -585) 497) ((-503 . -1112) T) ((-388 . -308) 481) ((-524 . -970) 468) ((-1131 . -106) 277) ((-634 . -579) 259) ((-784 . -106) 238) ((-351 . -23) T) ((-1086 . -478) 30))
\ No newline at end of file +((($ $) . T) ((#0=(-792 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-209)) ((|#2| |#1|) |has| |#1| (-209)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-601 . -1011) T) ((-239 . -480) 142322) ((-223 . -480) 142265) ((-526 . -107) 142250) ((-491 . -23) T) ((-221 . -1011) 142200) ((-113 . -282) 142157) ((-449 . -480) 141949) ((-629 . -97) T) ((-1048 . -480) 141868) ((-362 . -124) T) ((-1174 . -900) 141837) ((-550 . -458) 141821) ((-564 . -124) T) ((-754 . -778) T) ((-488 . -55) 141771) ((-57 . -480) 141704) ((-484 . -480) 141637) ((-390 . -827) 141596) ((-154 . -968) T) ((-482 . -480) 141529) ((-464 . -480) 141462) ((-463 . -480) 141395) ((-734 . -959) 141182) ((-634 . -37) 141147) ((-315 . -321) T) ((-1006 . -1005) 141131) ((-1006 . -1011) 141109) ((-154 . -219) 141060) ((-154 . -209) 141011) ((-1006 . -1007) 140969) ((-799 . -260) 140927) ((-201 . -730) T) ((-201 . -726) T) ((-629 . -258) NIL) ((-1057 . -1094) 140906) ((-379 . -916) 140890) ((-636 . -21) T) ((-636 . -25) T) ((-1176 . -587) 140864) ((-288 . -146) 140843) ((-288 . -131) 140822) ((-1057 . -102) 140772) ((-126 . -25) T) ((-39 . -207) 140749) ((-112 . -21) T) ((-112 . -25) T) ((-554 . -262) 140725) ((-446 . -262) 140704) ((-1136 . -968) T) ((-787 . -968) T) ((-734 . -310) 140688) ((-113 . -1058) NIL) ((-89 . -559) 140620) ((-448 . -124) T) ((-542 . -1117) T) ((-1136 . -298) 140597) ((-526 . -968) T) ((-1136 . -209) T) ((-601 . -652) 140581) ((-884 . -262) 140558) ((-58 . -33) T) ((-979 . -730) T) ((-979 . -726) T) ((-751 . -661) T) ((-666 . -46) 140523) ((-566 . -37) 140510) ((-327 . -264) T) ((-324 . -264) T) ((-316 . -264) T) ((-239 . -264) 140441) ((-223 . -264) 140372) ((-946 . -97) T) ((-385 . -661) T) ((-113 . -37) 140317) ((-385 . -444) T) ((-326 . -97) T) ((-1112 . -975) T) ((-646 . -975) T) ((-1080 . -46) 140294) ((-1079 . -46) 140264) ((-1073 . -46) 140241) ((-957 . -139) 140187) ((-837 . -264) T) ((-1035 . -46) 140159) ((-629 . -282) NIL) ((-481 . -559) 140141) ((-476 . -559) 140123) ((-474 . -559) 140105) ((-299 . -1011) 140055) ((-647 . -423) 139986) ((-47 . -97) T) ((-1147 . -260) 139971) ((-1126 . -260) 139891) ((-585 . -605) 139875) ((-585 . -590) 139859) ((-311 . -21) T) ((-311 . -25) T) ((-39 . -321) NIL) ((-158 . -21) T) ((-158 . -25) T) ((-585 . -345) 139843) ((-550 . -260) 139820) ((-360 . -97) T) ((-1029 . -131) T) ((-122 . -559) 139752) ((-801 . -1011) T) ((-597 . -383) 139736) ((-649 . -559) 139718) ((-147 . -559) 139700) ((-143 . -559) 139682) ((-1176 . -661) T) ((-1013 . -33) T) ((-798 . -730) NIL) ((-798 . -726) NIL) ((-789 . -782) T) ((-666 . -813) NIL) ((-1185 . -124) T) ((-353 . -124) T) ((-831 . -97) T) ((-666 . -959) 139560) ((-491 . -124) T) ((-1000 . -383) 139544) ((-923 . -458) 139528) ((-113 . -372) 139505) ((-1073 . -1117) 139484) ((-716 . -383) 139468) ((-714 . -383) 139452) ((-870 . -33) T) ((-629 . -1058) NIL) ((-226 . -587) 139289) ((-225 . -587) 139113) ((-752 . -847) 139092) ((-425 . -383) 139076) ((-550 . -19) 139060) ((-1053 . -1111) 139029) ((-1073 . -813) NIL) ((-1073 . -811) 138981) ((-550 . -552) 138958) ((-1104 . -559) 138890) ((-1081 . -559) 138872) ((-60 . -367) T) ((-1079 . -959) 138807) ((-1073 . -959) 138773) ((-629 . -37) 138723) ((-445 . -260) 138708) ((-666 . -349) 138692) ((-597 . -975) T) ((-1147 . -925) 138658) ((-1126 . -925) 138624) ((-980 . -1094) 138599) ((-799 . -560) 138407) ((-799 . -559) 138389) ((-1091 . -458) 138326) ((-390 . -944) 138305) ((-47 . -282) 138292) ((-980 . -102) 138238) ((-449 . -458) 138175) ((-485 . -1117) T) ((-1048 . -458) 138146) ((-1073 . -310) 138098) ((-1073 . -349) 138050) ((-409 . -97) T) ((-1000 . -975) T) ((-226 . -33) T) ((-225 . -33) T) ((-716 . -975) T) ((-714 . -975) T) ((-666 . -827) 138027) ((-425 . -975) T) ((-57 . -458) 138011) ((-956 . -974) 137985) ((-484 . -458) 137969) ((-482 . -458) 137953) ((-464 . -458) 137937) ((-463 . -458) 137921) ((-221 . -480) 137854) ((-956 . -107) 137821) ((-1080 . -827) 137734) ((-609 . -1023) T) ((-1079 . -827) 137640) ((-1073 . -827) 137473) ((-1035 . -827) 137457) ((-326 . -1058) T) ((-294 . -974) 137439) ((-226 . -725) 137418) ((-226 . -728) 137369) ((-226 . -727) 137348) ((-225 . -725) 137327) ((-225 . -728) 137278) ((-225 . -727) 137257) ((-49 . -975) T) ((-226 . -661) 137188) ((-225 . -661) 137119) ((-1112 . -1011) T) ((-609 . -23) T) ((-532 . -975) T) ((-483 . -975) T) ((-351 . -974) 137084) ((-294 . -107) 137059) ((-71 . -355) T) ((-71 . -367) T) ((-946 . -37) 136996) ((-629 . -372) 136978) ((-94 . -97) T) ((-646 . -1011) T) ((-926 . -133) 136950) ((-926 . -135) 136922) ((-351 . -107) 136878) ((-291 . -1121) 136857) ((-445 . -925) 136823) ((-326 . -37) 136788) ((-39 . -342) 136760) ((-800 . -559) 136632) ((-123 . -121) 136616) ((-117 . -121) 136600) ((-769 . -974) 136570) ((-768 . -21) 136522) ((-762 . -974) 136506) ((-768 . -25) 136458) ((-291 . -511) 136409) ((-519 . -763) T) ((-216 . -1117) T) ((-769 . -107) 136374) ((-762 . -107) 136353) ((-1147 . -559) 136335) ((-1126 . -559) 136317) ((-1126 . -560) 135990) ((-1078 . -836) 135969) ((-1034 . -836) 135948) ((-47 . -37) 135913) ((-1183 . -1023) T) ((-550 . -559) 135825) ((-550 . -560) 135786) ((-1181 . -1023) T) ((-216 . -959) 135615) ((-1078 . -587) 135540) ((-1034 . -587) 135465) ((-653 . -559) 135447) ((-786 . -587) 135421) ((-1183 . -23) T) ((-1181 . -23) T) ((-956 . -968) T) ((-1091 . -260) 135400) ((-154 . -340) 135351) ((-927 . -1117) T) ((-43 . -23) T) ((-449 . -260) 135330) ((-536 . -1011) T) ((-1053 . -1020) 135299) ((-1015 . -1014) 135251) ((-362 . -21) T) ((-362 . -25) T) ((-140 . -1023) T) ((-1189 . -97) T) ((-927 . -811) 135233) ((-927 . -813) 135215) ((-1112 . -652) 135112) ((-566 . -207) 135096) ((-564 . -21) T) ((-263 . -511) T) ((-564 . -25) T) ((-1098 . -1011) T) ((-646 . -652) 135061) ((-216 . -349) 135031) ((-927 . -959) 134991) ((-351 . -968) T) ((-199 . -975) T) ((-113 . -207) 134968) ((-57 . -260) 134945) ((-140 . -23) T) ((-482 . -260) 134922) ((-299 . -480) 134855) ((-463 . -260) 134832) ((-351 . -219) T) ((-351 . -209) T) ((-769 . -968) T) ((-762 . -968) T) ((-647 . -876) 134802) ((-636 . -782) T) ((-445 . -559) 134784) ((-762 . -209) 134763) ((-126 . -782) T) ((-597 . -1011) T) ((-1091 . -552) 134742) ((-505 . -1094) 134721) ((-308 . -1011) T) ((-291 . -335) 134700) ((-379 . -135) 134679) ((-379 . -133) 134658) ((-890 . -1023) 134557) ((-216 . -827) 134490) ((-750 . -1023) 134421) ((-593 . -784) 134405) ((-449 . -552) 134384) ((-505 . -102) 134334) ((-927 . -349) 134316) ((-927 . -310) 134298) ((-92 . -1011) T) ((-890 . -23) 134109) ((-448 . -21) T) ((-448 . -25) T) ((-750 . -23) 133980) ((-1082 . -559) 133962) ((-57 . -19) 133946) ((-1082 . -560) 133868) ((-1078 . -661) T) ((-1034 . -661) T) ((-482 . -19) 133852) ((-463 . -19) 133836) ((-57 . -552) 133813) ((-1000 . -1011) T) ((-828 . -97) 133791) ((-786 . -661) T) ((-716 . -1011) T) ((-482 . -552) 133768) ((-463 . -552) 133745) ((-714 . -1011) T) ((-714 . -982) 133712) ((-432 . -1011) T) ((-425 . -1011) T) ((-536 . -652) 133687) ((-588 . -1011) T) ((-927 . -827) NIL) ((-1155 . -46) 133664) ((-569 . -1023) T) ((-609 . -124) T) ((-1149 . -97) T) ((-1148 . -46) 133634) ((-1127 . -46) 133611) ((-1112 . -157) 133562) ((-994 . -1121) 133513) ((-250 . -1011) T) ((-83 . -412) T) ((-83 . -367) T) ((-1079 . -280) 133492) ((-1073 . -280) 133471) ((-49 . -1011) T) ((-994 . -511) 133422) ((-646 . -157) T) ((-544 . -46) 133399) ((-201 . -587) 133364) ((-532 . -1011) T) ((-483 . -1011) T) ((-331 . -1121) T) ((-325 . -1121) T) ((-317 . -1121) T) ((-456 . -755) T) ((-456 . -847) T) ((-291 . -1023) T) ((-103 . -1121) T) ((-311 . -782) T) ((-194 . -847) T) ((-194 . -755) T) ((-649 . -974) 133334) ((-331 . -511) T) ((-325 . -511) T) ((-317 . -511) T) ((-103 . -511) T) ((-597 . -652) 133304) ((-1073 . -944) NIL) ((-291 . -23) T) ((-65 . -1117) T) ((-923 . -559) 133236) ((-629 . -207) 133218) ((-649 . -107) 133183) ((-585 . -33) T) ((-221 . -458) 133167) ((-1013 . -1009) 133151) ((-156 . -1011) T) ((-879 . -836) 133130) ((-451 . -836) 133109) ((-1185 . -21) T) ((-1185 . -25) T) ((-1183 . -124) T) ((-1181 . -124) T) ((-1000 . -652) 132958) ((-979 . -587) 132945) ((-879 . -587) 132870) ((-495 . -559) 132852) ((-495 . -560) 132833) ((-716 . -652) 132662) ((-714 . -652) 132511) ((-1174 . -97) T) ((-991 . -97) T) ((-353 . -25) T) ((-353 . -21) T) ((-451 . -587) 132436) ((-432 . -652) 132407) ((-425 . -652) 132256) ((-911 . -97) T) ((-672 . -97) T) ((-491 . -25) T) ((-1127 . -1117) 132235) ((-1159 . -559) 132201) ((-1127 . -813) NIL) ((-1127 . -811) 132153) ((-129 . -97) T) ((-43 . -124) T) ((-1091 . -560) NIL) ((-1091 . -559) 132135) ((-1049 . -1032) 132080) ((-315 . -975) T) ((-603 . -559) 132062) ((-263 . -1023) T) ((-327 . -559) 132044) ((-324 . -559) 132026) ((-316 . -559) 132008) ((-239 . -560) 131756) ((-239 . -559) 131738) ((-223 . -559) 131720) ((-223 . -560) 131581) ((-965 . -1111) 131510) ((-828 . -282) 131448) ((-1189 . -1058) T) ((-1148 . -959) 131383) ((-1127 . -959) 131349) ((-1112 . -480) 131316) ((-1048 . -559) 131298) ((-754 . -661) T) ((-550 . -262) 131275) ((-532 . -652) 131240) ((-449 . -560) NIL) ((-449 . -559) 131222) ((-483 . -652) 131167) ((-288 . -97) T) ((-285 . -97) T) ((-263 . -23) T) ((-140 . -124) T) ((-358 . -661) T) ((-799 . -974) 131119) ((-837 . -559) 131101) ((-837 . -560) 131083) ((-799 . -107) 131021) ((-128 . -97) T) ((-110 . -97) T) ((-647 . -1139) 131005) ((-649 . -968) T) ((-629 . -321) NIL) ((-484 . -559) 130937) ((-351 . -730) T) ((-199 . -1011) T) ((-351 . -726) T) ((-201 . -728) T) ((-201 . -725) T) ((-57 . -560) 130898) ((-57 . -559) 130810) ((-201 . -661) T) ((-482 . -560) 130771) ((-482 . -559) 130683) ((-464 . -559) 130615) ((-463 . -560) 130576) ((-463 . -559) 130488) ((-994 . -335) 130439) ((-39 . -383) 130416) ((-75 . -1117) T) ((-798 . -836) NIL) ((-331 . -301) 130400) ((-331 . -335) T) ((-325 . -301) 130384) ((-325 . -335) T) ((-317 . -301) 130368) ((-317 . -335) T) ((-288 . -258) 130347) ((-103 . -335) T) ((-68 . -1117) T) ((-1127 . -310) 130299) ((-798 . -587) 130244) ((-1127 . -349) 130196) ((-890 . -124) 130051) ((-750 . -124) 129922) ((-884 . -590) 129906) ((-1000 . -157) 129817) ((-884 . -345) 129801) ((-979 . -728) T) ((-979 . -725) T) ((-716 . -157) 129692) ((-714 . -157) 129603) ((-751 . -46) 129565) ((-979 . -661) T) ((-299 . -458) 129549) ((-879 . -661) T) ((-425 . -157) 129460) ((-221 . -260) 129437) ((-451 . -661) T) ((-1174 . -282) 129375) ((-1155 . -827) 129288) ((-1148 . -827) 129194) ((-1147 . -974) 129029) ((-1127 . -827) 128862) ((-1126 . -974) 128670) ((-1112 . -264) 128649) ((-1053 . -139) 128633) ((-989 . -97) T) ((-854 . -881) T) ((-73 . -1117) T) ((-672 . -282) 128571) ((-154 . -836) 128524) ((-603 . -354) 128496) ((-30 . -881) T) ((-1 . -559) 128478) ((-1029 . -97) T) ((-994 . -23) T) ((-49 . -563) 128462) ((-994 . -1023) T) ((-926 . -381) 128434) ((-544 . -827) 128347) ((-410 . -97) T) ((-129 . -282) NIL) ((-799 . -968) T) ((-768 . -782) 128326) ((-79 . -1117) T) ((-646 . -264) T) ((-39 . -975) T) ((-532 . -157) T) ((-483 . -157) T) ((-477 . -559) 128308) ((-154 . -587) 128218) ((-473 . -559) 128200) ((-323 . -135) 128182) ((-323 . -133) T) ((-331 . -1023) T) ((-325 . -1023) T) ((-317 . -1023) T) ((-927 . -280) T) ((-841 . -280) T) ((-799 . -219) T) ((-103 . -1023) T) ((-799 . -209) 128161) ((-1147 . -107) 127982) ((-1126 . -107) 127771) ((-221 . -1151) 127755) ((-519 . -780) T) ((-331 . -23) T) ((-326 . -321) T) ((-288 . -282) 127742) ((-285 . -282) 127683) ((-325 . -23) T) ((-291 . -124) T) ((-317 . -23) T) ((-927 . -944) T) ((-103 . -23) T) ((-221 . -552) 127660) ((-1149 . -37) 127552) ((-1136 . -836) 127531) ((-108 . -1011) T) ((-957 . -97) T) ((-1136 . -587) 127456) ((-798 . -728) NIL) ((-787 . -587) 127430) ((-798 . -725) NIL) ((-751 . -813) NIL) ((-798 . -661) T) ((-1000 . -480) 127303) ((-716 . -480) 127251) ((-714 . -480) 127203) ((-526 . -587) 127190) ((-751 . -959) 127020) ((-425 . -480) 126963) ((-360 . -361) T) ((-58 . -1117) T) ((-564 . -782) 126942) ((-467 . -600) T) ((-1053 . -900) 126911) ((-926 . -423) T) ((-634 . -780) T) ((-476 . -726) T) ((-445 . -974) 126746) ((-315 . -1011) T) ((-285 . -1058) NIL) ((-263 . -124) T) ((-366 . -1011) T) ((-629 . -342) 126713) ((-797 . -975) T) ((-199 . -563) 126690) ((-299 . -260) 126667) ((-445 . -107) 126488) ((-1147 . -968) T) ((-1126 . -968) T) ((-751 . -349) 126472) ((-154 . -661) T) ((-593 . -97) T) ((-1147 . -219) 126451) ((-1147 . -209) 126403) ((-1126 . -209) 126308) ((-1126 . -219) 126287) ((-926 . -374) NIL) ((-609 . -581) 126235) ((-288 . -37) 126145) ((-285 . -37) 126074) ((-67 . -559) 126056) ((-291 . -460) 126022) ((-1091 . -262) 126001) ((-1024 . -1023) 125932) ((-81 . -1117) T) ((-59 . -559) 125914) ((-449 . -262) 125893) ((-1176 . -959) 125870) ((-1071 . -1011) T) ((-1024 . -23) 125741) ((-751 . -827) 125677) ((-1136 . -661) T) ((-1013 . -1117) T) ((-1000 . -264) 125608) ((-820 . -97) T) ((-716 . -264) 125519) ((-299 . -19) 125503) ((-57 . -262) 125480) ((-714 . -264) 125411) ((-787 . -661) T) ((-113 . -780) NIL) ((-482 . -262) 125388) ((-299 . -552) 125365) ((-463 . -262) 125342) ((-425 . -264) 125273) ((-957 . -282) 125124) ((-526 . -661) T) ((-601 . -559) 125106) ((-221 . -560) 125067) ((-221 . -559) 124979) ((-1054 . -33) T) ((-870 . -1117) T) ((-315 . -652) 124924) ((-609 . -25) T) ((-609 . -21) T) ((-445 . -968) T) ((-577 . -389) 124889) ((-553 . -389) 124854) ((-1029 . -1058) T) ((-532 . -264) T) ((-483 . -264) T) ((-1148 . -280) 124833) ((-445 . -209) 124785) ((-445 . -219) 124764) ((-1127 . -280) 124743) ((-994 . -124) T) ((-799 . -730) 124722) ((-132 . -97) T) ((-39 . -1011) T) ((-799 . -726) 124701) ((-585 . -933) 124685) ((-531 . -975) T) ((-519 . -975) T) ((-462 . -975) T) ((-379 . -423) T) ((-331 . -124) T) ((-288 . -372) 124669) ((-285 . -372) 124630) ((-325 . -124) T) ((-317 . -124) T) ((-1127 . -944) NIL) ((-1006 . -559) 124597) ((-103 . -124) T) ((-1029 . -37) 124584) ((-848 . -1011) T) ((-705 . -1011) T) ((-610 . -1011) T) ((-636 . -135) T) ((-112 . -135) T) ((-1183 . -21) T) ((-1183 . -25) T) ((-1181 . -21) T) ((-1181 . -25) T) ((-603 . -974) 124568) ((-491 . -782) T) ((-467 . -782) T) ((-327 . -974) 124520) ((-324 . -974) 124472) ((-316 . -974) 124424) ((-226 . -1117) T) ((-225 . -1117) T) ((-239 . -974) 124267) ((-223 . -974) 124110) ((-603 . -107) 124089) ((-327 . -107) 124027) ((-324 . -107) 123965) ((-316 . -107) 123903) ((-239 . -107) 123732) ((-223 . -107) 123561) ((-752 . -1121) 123540) ((-566 . -383) 123524) ((-43 . -21) T) ((-43 . -25) T) ((-750 . -581) 123432) ((-752 . -511) 123411) ((-226 . -959) 123240) ((-225 . -959) 123069) ((-122 . -115) 123053) ((-837 . -974) 123018) ((-634 . -975) T) ((-647 . -97) T) ((-315 . -157) T) ((-140 . -21) T) ((-140 . -25) T) ((-86 . -559) 123000) ((-837 . -107) 122956) ((-39 . -652) 122901) ((-797 . -1011) T) ((-299 . -560) 122862) ((-299 . -559) 122774) ((-1126 . -726) 122727) ((-1126 . -730) 122680) ((-226 . -349) 122650) ((-225 . -349) 122620) ((-593 . -37) 122590) ((-554 . -33) T) ((-452 . -1023) 122521) ((-446 . -33) T) ((-1024 . -124) 122392) ((-890 . -25) 122203) ((-801 . -559) 122185) ((-890 . -21) 122140) ((-750 . -21) 122051) ((-750 . -25) 121903) ((-566 . -975) T) ((-1084 . -511) 121882) ((-1078 . -46) 121859) ((-327 . -968) T) ((-324 . -968) T) ((-452 . -23) 121730) ((-316 . -968) T) ((-239 . -968) T) ((-223 . -968) T) ((-1034 . -46) 121702) ((-113 . -975) T) ((-956 . -587) 121676) ((-884 . -33) T) ((-327 . -209) 121655) ((-327 . -219) T) ((-324 . -209) 121634) ((-223 . -298) 121591) ((-324 . -219) T) ((-316 . -209) 121570) ((-316 . -219) T) ((-239 . -298) 121542) ((-239 . -209) 121521) ((-1063 . -139) 121505) ((-226 . -827) 121438) ((-225 . -827) 121371) ((-996 . -782) T) ((-1130 . -1117) T) ((-386 . -1023) T) ((-972 . -23) T) ((-837 . -968) T) ((-294 . -587) 121353) ((-946 . -780) T) ((-1112 . -925) 121319) ((-1079 . -847) 121298) ((-1073 . -847) 121277) ((-837 . -219) T) ((-752 . -335) 121256) ((-357 . -23) T) ((-123 . -1011) 121234) ((-117 . -1011) 121212) ((-837 . -209) T) ((-1073 . -755) NIL) ((-351 . -587) 121177) ((-797 . -652) 121164) ((-965 . -139) 121129) ((-39 . -157) T) ((-629 . -383) 121111) ((-647 . -282) 121098) ((-769 . -587) 121058) ((-762 . -587) 121032) ((-291 . -25) T) ((-291 . -21) T) ((-597 . -260) 121011) ((-531 . -1011) T) ((-519 . -1011) T) ((-462 . -1011) T) ((-221 . -262) 120988) ((-285 . -207) 120949) ((-1078 . -813) NIL) ((-1034 . -813) 120808) ((-1078 . -959) 120691) ((-1034 . -959) 120576) ((-786 . -959) 120474) ((-716 . -260) 120401) ((-752 . -1023) T) ((-956 . -661) T) ((-550 . -590) 120385) ((-965 . -900) 120314) ((-922 . -97) T) ((-752 . -23) T) ((-647 . -1058) 120292) ((-629 . -975) T) ((-550 . -345) 120276) ((-323 . -423) T) ((-315 . -264) T) ((-1164 . -1011) T) ((-371 . -97) T) ((-263 . -21) T) ((-263 . -25) T) ((-333 . -661) T) ((-634 . -1011) T) ((-333 . -444) T) ((-1112 . -559) 120258) ((-1078 . -349) 120242) ((-1034 . -349) 120226) ((-946 . -383) 120188) ((-129 . -205) 120170) ((-351 . -728) T) ((-351 . -725) T) ((-797 . -157) T) ((-351 . -661) T) ((-646 . -559) 120152) ((-647 . -37) 119981) ((-1163 . -1161) 119965) ((-323 . -374) T) ((-1163 . -1011) 119915) ((-531 . -652) 119902) ((-519 . -652) 119889) ((-462 . -652) 119854) ((-288 . -571) 119833) ((-769 . -661) T) ((-762 . -661) T) ((-585 . -1117) T) ((-994 . -581) 119781) ((-1078 . -827) 119725) ((-1034 . -827) 119709) ((-601 . -974) 119693) ((-103 . -581) 119675) ((-452 . -124) 119546) ((-1084 . -1023) T) ((-879 . -46) 119515) ((-566 . -1011) T) ((-601 . -107) 119494) ((-299 . -262) 119471) ((-451 . -46) 119428) ((-1084 . -23) T) ((-113 . -1011) T) ((-98 . -97) 119406) ((-1173 . -1023) T) ((-972 . -124) T) ((-946 . -975) T) ((-754 . -959) 119390) ((-926 . -659) 119362) ((-1173 . -23) T) ((-634 . -652) 119327) ((-536 . -559) 119309) ((-358 . -959) 119293) ((-326 . -975) T) ((-357 . -124) T) ((-296 . -959) 119277) ((-201 . -813) 119259) ((-927 . -847) T) ((-89 . -33) T) ((-927 . -755) T) ((-841 . -847) T) ((-456 . -1121) T) ((-1098 . -559) 119241) ((-1016 . -1011) T) ((-194 . -1121) T) ((-922 . -282) 119206) ((-201 . -959) 119166) ((-39 . -264) T) ((-994 . -21) T) ((-994 . -25) T) ((-1029 . -763) T) ((-456 . -511) T) ((-331 . -25) T) ((-194 . -511) T) ((-331 . -21) T) ((-325 . -25) T) ((-325 . -21) T) ((-649 . -587) 119126) ((-317 . -25) T) ((-317 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -975) T) ((-531 . -157) T) ((-519 . -157) T) ((-462 . -157) T) ((-597 . -559) 119108) ((-672 . -671) 119092) ((-308 . -559) 119074) ((-66 . -355) T) ((-66 . -367) T) ((-1013 . -102) 119058) ((-979 . -813) 119040) ((-879 . -813) 118965) ((-592 . -1023) T) ((-566 . -652) 118952) ((-451 . -813) NIL) ((-1053 . -97) T) ((-979 . -959) 118934) ((-92 . -559) 118916) ((-448 . -135) T) ((-879 . -959) 118798) ((-113 . -652) 118743) ((-592 . -23) T) ((-451 . -959) 118621) ((-1000 . -560) NIL) ((-1000 . -559) 118603) ((-716 . -560) NIL) ((-716 . -559) 118564) ((-714 . -560) 118199) ((-714 . -559) 118113) ((-1024 . -581) 118021) ((-432 . -559) 118003) ((-425 . -559) 117985) ((-425 . -560) 117846) ((-957 . -205) 117792) ((-122 . -33) T) ((-752 . -124) T) ((-799 . -836) 117771) ((-588 . -559) 117753) ((-327 . -1180) 117737) ((-324 . -1180) 117721) ((-316 . -1180) 117705) ((-123 . -480) 117638) ((-117 . -480) 117571) ((-477 . -726) T) ((-477 . -730) T) ((-476 . -728) T) ((-98 . -282) 117509) ((-198 . -97) 117487) ((-629 . -1011) T) ((-634 . -157) T) ((-799 . -587) 117439) ((-63 . -356) T) ((-250 . -559) 117421) ((-63 . -367) T) ((-879 . -349) 117405) ((-797 . -264) T) ((-49 . -559) 117387) ((-922 . -37) 117335) ((-532 . -559) 117317) ((-451 . -349) 117301) ((-532 . -560) 117283) ((-483 . -559) 117265) ((-837 . -1180) 117252) ((-798 . -1117) T) ((-636 . -423) T) ((-462 . -480) 117218) ((-456 . -335) T) ((-327 . -340) 117197) ((-324 . -340) 117176) ((-316 . -340) 117155) ((-194 . -335) T) ((-649 . -661) T) ((-112 . -423) T) ((-1184 . -1175) 117139) ((-798 . -811) 117116) ((-798 . -813) NIL) ((-890 . -782) 117015) ((-750 . -782) 116966) ((-593 . -595) 116950) ((-1104 . -33) T) ((-156 . -559) 116932) ((-1024 . -21) 116843) ((-1024 . -25) 116695) ((-798 . -959) 116672) ((-879 . -827) 116653) ((-1136 . -46) 116630) ((-837 . -340) T) ((-57 . -590) 116614) ((-482 . -590) 116598) ((-451 . -827) 116575) ((-69 . -412) T) ((-69 . -367) T) ((-463 . -590) 116559) ((-57 . -345) 116543) ((-566 . -157) T) ((-482 . -345) 116527) ((-463 . -345) 116511) ((-762 . -644) 116495) ((-1078 . -280) 116474) ((-1084 . -124) T) ((-113 . -157) T) ((-1053 . -282) 116412) ((-154 . -1117) T) ((-577 . -679) 116396) ((-553 . -679) 116380) ((-1173 . -124) T) ((-1148 . -847) 116359) ((-1127 . -847) 116338) ((-1127 . -755) NIL) ((-629 . -652) 116288) ((-1126 . -836) 116241) ((-946 . -1011) T) ((-798 . -349) 116218) ((-798 . -310) 116195) ((-832 . -1023) T) ((-154 . -811) 116179) ((-154 . -813) 116104) ((-456 . -1023) T) ((-326 . -1011) T) ((-194 . -1023) T) ((-74 . -412) T) ((-74 . -367) T) ((-154 . -959) 116002) ((-291 . -782) T) ((-1163 . -480) 115935) ((-1147 . -587) 115832) ((-1126 . -587) 115702) ((-799 . -728) 115681) ((-799 . -725) 115660) ((-799 . -661) T) ((-456 . -23) T) ((-199 . -559) 115642) ((-158 . -423) T) ((-198 . -282) 115580) ((-84 . -412) T) ((-84 . -367) T) ((-194 . -23) T) ((-1185 . -1178) 115559) ((-531 . -264) T) ((-519 . -264) T) ((-614 . -959) 115543) ((-462 . -264) T) ((-128 . -441) 115498) ((-47 . -1011) T) ((-647 . -207) 115482) ((-798 . -827) NIL) ((-1136 . -813) NIL) ((-816 . -97) T) ((-812 . -97) T) ((-360 . -1011) T) ((-154 . -349) 115466) ((-154 . -310) 115450) ((-1136 . -959) 115333) ((-787 . -959) 115231) ((-1049 . -97) T) ((-592 . -124) T) ((-113 . -480) 115139) ((-601 . -726) 115118) ((-601 . -730) 115097) ((-526 . -959) 115079) ((-267 . -1170) 115049) ((-793 . -97) T) ((-889 . -511) 115028) ((-1112 . -974) 114911) ((-452 . -581) 114819) ((-831 . -1011) T) ((-946 . -652) 114756) ((-646 . -974) 114721) ((-550 . -33) T) ((-1054 . -1117) T) ((-1112 . -107) 114590) ((-445 . -587) 114487) ((-326 . -652) 114432) ((-154 . -827) 114391) ((-634 . -264) T) ((-629 . -157) T) ((-646 . -107) 114347) ((-1189 . -975) T) ((-1136 . -349) 114331) ((-390 . -1121) 114309) ((-285 . -780) NIL) ((-390 . -511) T) ((-201 . -280) T) ((-1126 . -725) 114262) ((-1126 . -728) 114215) ((-1147 . -661) T) ((-1126 . -661) T) ((-47 . -652) 114180) ((-201 . -944) T) ((-323 . -1170) 114157) ((-1149 . -383) 114123) ((-653 . -661) T) ((-1136 . -827) 114067) ((-108 . -559) 114049) ((-108 . -560) 114031) ((-653 . -444) T) ((-452 . -21) 113942) ((-123 . -458) 113926) ((-117 . -458) 113910) ((-452 . -25) 113762) ((-566 . -264) T) ((-536 . -974) 113737) ((-409 . -1011) T) ((-979 . -280) T) ((-113 . -264) T) ((-1015 . -97) T) ((-926 . -97) T) ((-536 . -107) 113705) ((-1049 . -282) 113643) ((-1112 . -968) T) ((-979 . -944) T) ((-64 . -1117) T) ((-972 . -25) T) ((-972 . -21) T) ((-646 . -968) T) ((-357 . -21) T) ((-357 . -25) T) ((-629 . -480) NIL) ((-946 . -157) T) ((-646 . -219) T) ((-979 . -504) T) ((-469 . -97) T) ((-326 . -157) T) ((-315 . -559) 113625) ((-366 . -559) 113607) ((-445 . -661) T) ((-1029 . -780) T) ((-819 . -959) 113575) ((-103 . -782) T) ((-597 . -974) 113559) ((-456 . -124) T) ((-1149 . -975) T) ((-194 . -124) T) ((-1063 . -97) 113537) ((-94 . -1011) T) ((-221 . -605) 113521) ((-221 . -590) 113505) ((-597 . -107) 113484) ((-288 . -383) 113468) ((-221 . -345) 113452) ((-1066 . -211) 113399) ((-922 . -207) 113383) ((-72 . -1117) T) ((-47 . -157) T) ((-636 . -359) T) ((-636 . -131) T) ((-1184 . -97) T) ((-1000 . -974) 113226) ((-239 . -836) 113205) ((-223 . -836) 113184) ((-716 . -974) 113007) ((-714 . -974) 112850) ((-554 . -1117) T) ((-1071 . -559) 112832) ((-1000 . -107) 112661) ((-965 . -97) T) ((-446 . -1117) T) ((-432 . -974) 112632) ((-425 . -974) 112475) ((-603 . -587) 112459) ((-798 . -280) T) ((-716 . -107) 112268) ((-714 . -107) 112097) ((-327 . -587) 112049) ((-324 . -587) 112001) ((-316 . -587) 111953) ((-239 . -587) 111878) ((-223 . -587) 111803) ((-1065 . -782) T) ((-1001 . -959) 111787) ((-432 . -107) 111748) ((-425 . -107) 111577) ((-990 . -959) 111554) ((-923 . -33) T) ((-891 . -559) 111515) ((-884 . -1117) T) ((-122 . -933) 111499) ((-889 . -1023) T) ((-798 . -944) NIL) ((-670 . -1023) T) ((-650 . -1023) T) ((-1163 . -458) 111483) ((-1049 . -37) 111443) ((-889 . -23) T) ((-775 . -97) T) ((-752 . -21) T) ((-752 . -25) T) ((-670 . -23) T) ((-650 . -23) T) ((-106 . -600) T) ((-837 . -587) 111408) ((-532 . -974) 111373) ((-483 . -974) 111318) ((-203 . -55) 111276) ((-424 . -23) T) ((-379 . -97) T) ((-238 . -97) T) ((-629 . -264) T) ((-793 . -37) 111246) ((-532 . -107) 111202) ((-483 . -107) 111131) ((-390 . -1023) T) ((-288 . -975) 111022) ((-285 . -975) T) ((-597 . -968) T) ((-1189 . -1011) T) ((-154 . -280) 110953) ((-390 . -23) T) ((-39 . -559) 110935) ((-39 . -560) 110919) ((-103 . -916) 110901) ((-112 . -796) 110885) ((-47 . -480) 110851) ((-1104 . -933) 110835) ((-1087 . -559) 110817) ((-1091 . -33) T) ((-848 . -559) 110799) ((-1024 . -782) 110750) ((-705 . -559) 110732) ((-610 . -559) 110714) ((-1063 . -282) 110652) ((-449 . -33) T) ((-1004 . -1117) T) ((-448 . -423) T) ((-1000 . -968) T) ((-1048 . -33) T) ((-716 . -968) T) ((-714 . -968) T) ((-586 . -211) 110636) ((-574 . -211) 110582) ((-1136 . -280) 110561) ((-1000 . -298) 110522) ((-425 . -968) T) ((-1084 . -21) T) ((-1000 . -209) 110501) ((-716 . -298) 110478) ((-716 . -209) T) ((-714 . -298) 110450) ((-299 . -590) 110434) ((-666 . -1121) 110413) ((-1084 . -25) T) ((-57 . -33) T) ((-484 . -33) T) ((-482 . -33) T) ((-425 . -298) 110392) ((-299 . -345) 110376) ((-464 . -33) T) ((-463 . -33) T) ((-926 . -1058) NIL) ((-577 . -97) T) ((-553 . -97) T) ((-666 . -511) 110307) ((-327 . -661) T) ((-324 . -661) T) ((-316 . -661) T) ((-239 . -661) T) ((-223 . -661) T) ((-965 . -282) 110215) ((-828 . -1011) 110193) ((-49 . -968) T) ((-1173 . -21) T) ((-1173 . -25) T) ((-1080 . -511) 110172) ((-1079 . -1121) 110151) ((-532 . -968) T) ((-483 . -968) T) ((-1073 . -1121) 110130) ((-333 . -959) 110114) ((-294 . -959) 110098) ((-946 . -264) T) ((-351 . -813) 110080) ((-1079 . -511) 110031) ((-1073 . -511) 109982) ((-926 . -37) 109927) ((-734 . -1023) T) ((-837 . -661) T) ((-532 . -219) T) ((-532 . -209) T) ((-483 . -209) T) ((-483 . -219) T) ((-1035 . -511) 109906) ((-326 . -264) T) ((-586 . -630) 109890) ((-351 . -959) 109850) ((-1029 . -975) T) ((-98 . -121) 109834) ((-734 . -23) T) ((-1163 . -260) 109811) ((-379 . -282) 109776) ((-1183 . -1178) 109752) ((-1181 . -1178) 109731) ((-1149 . -1011) T) ((-797 . -559) 109713) ((-769 . -959) 109682) ((-181 . -721) T) ((-180 . -721) T) ((-179 . -721) T) ((-178 . -721) T) ((-177 . -721) T) ((-176 . -721) T) ((-175 . -721) T) ((-174 . -721) T) ((-173 . -721) T) ((-172 . -721) T) ((-462 . -925) T) ((-249 . -771) T) ((-248 . -771) T) ((-247 . -771) T) ((-246 . -771) T) ((-47 . -264) T) ((-245 . -771) T) ((-244 . -771) T) ((-243 . -771) T) ((-171 . -721) T) ((-558 . -782) T) ((-593 . -383) 109666) ((-106 . -782) T) ((-592 . -21) T) ((-592 . -25) T) ((-1184 . -37) 109636) ((-113 . -260) 109587) ((-1163 . -19) 109571) ((-1163 . -552) 109548) ((-1174 . -1011) T) ((-991 . -1011) T) ((-911 . -1011) T) ((-889 . -124) T) ((-672 . -1011) T) ((-670 . -124) T) ((-650 . -124) T) ((-477 . -727) T) ((-379 . -1058) 109526) ((-424 . -124) T) ((-477 . -728) T) ((-199 . -968) T) ((-267 . -97) 109309) ((-129 . -1011) T) ((-634 . -925) T) ((-89 . -1117) T) ((-123 . -559) 109241) ((-117 . -559) 109173) ((-1189 . -157) T) ((-1079 . -335) 109152) ((-1073 . -335) 109131) ((-288 . -1011) T) ((-390 . -124) T) ((-285 . -1011) T) ((-379 . -37) 109083) ((-1042 . -97) T) ((-1149 . -652) 108975) ((-593 . -975) T) ((-291 . -133) 108954) ((-291 . -135) 108933) ((-128 . -1011) T) ((-110 . -1011) T) ((-789 . -97) T) ((-531 . -559) 108915) ((-519 . -560) 108814) ((-519 . -559) 108796) ((-462 . -559) 108778) ((-462 . -560) 108723) ((-454 . -23) T) ((-452 . -782) 108674) ((-456 . -581) 108656) ((-194 . -581) 108638) ((-201 . -376) T) ((-601 . -587) 108622) ((-1078 . -847) 108601) ((-666 . -1023) T) ((-323 . -97) T) ((-753 . -782) T) ((-666 . -23) T) ((-315 . -974) 108546) ((-1065 . -1064) T) ((-1054 . -102) 108530) ((-1080 . -1023) T) ((-1079 . -1023) T) ((-481 . -959) 108514) ((-1073 . -1023) T) ((-1035 . -1023) T) ((-315 . -107) 108443) ((-927 . -1121) T) ((-122 . -1117) T) ((-841 . -1121) T) ((-629 . -260) NIL) ((-1164 . -559) 108425) ((-1080 . -23) T) ((-1079 . -23) T) ((-927 . -511) T) ((-1073 . -23) T) ((-841 . -511) T) ((-1049 . -207) 108409) ((-224 . -559) 108391) ((-1035 . -23) T) ((-989 . -1011) T) ((-734 . -124) T) ((-288 . -652) 108301) ((-285 . -652) 108230) ((-634 . -559) 108212) ((-634 . -560) 108157) ((-379 . -372) 108141) ((-410 . -1011) T) ((-456 . -25) T) ((-456 . -21) T) ((-1029 . -1011) T) ((-194 . -25) T) ((-194 . -21) T) ((-647 . -383) 108125) ((-649 . -959) 108094) ((-1163 . -559) 108006) ((-1163 . -560) 107967) ((-1149 . -157) T) ((-221 . -33) T) ((-853 . -898) T) ((-1104 . -1117) T) ((-601 . -725) 107946) ((-601 . -728) 107925) ((-370 . -367) T) ((-488 . -97) 107903) ((-957 . -1011) T) ((-198 . -918) 107887) ((-471 . -97) T) ((-566 . -559) 107869) ((-44 . -782) NIL) ((-566 . -560) 107846) ((-957 . -556) 107821) ((-828 . -480) 107754) ((-315 . -968) T) ((-113 . -560) NIL) ((-113 . -559) 107736) ((-799 . -1117) T) ((-609 . -389) 107720) ((-609 . -1032) 107665) ((-467 . -139) 107647) ((-315 . -209) T) ((-315 . -219) T) ((-39 . -974) 107592) ((-799 . -811) 107576) ((-799 . -813) 107501) ((-647 . -975) T) ((-629 . -925) NIL) ((-1147 . -46) 107471) ((-1126 . -46) 107448) ((-1048 . -933) 107419) ((-201 . -847) T) ((-39 . -107) 107348) ((-799 . -959) 107215) ((-1029 . -652) 107202) ((-1016 . -559) 107184) ((-994 . -135) 107163) ((-994 . -133) 107114) ((-927 . -335) T) ((-291 . -1106) 107080) ((-351 . -280) T) ((-291 . -1103) 107046) ((-288 . -157) 107025) ((-285 . -157) T) ((-926 . -207) 107002) ((-841 . -335) T) ((-532 . -1180) 106989) ((-483 . -1180) 106966) ((-331 . -135) 106945) ((-331 . -133) 106896) ((-325 . -135) 106875) ((-325 . -133) 106826) ((-554 . -1094) 106802) ((-317 . -135) 106781) ((-317 . -133) 106732) ((-291 . -34) 106698) ((-446 . -1094) 106677) ((0 . |EnumerationCategory|) T) ((-291 . -91) 106643) ((-351 . -944) T) ((-103 . -135) T) ((-103 . -133) NIL) ((-44 . -211) 106593) ((-593 . -1011) T) ((-554 . -102) 106540) ((-454 . -124) T) ((-446 . -102) 106490) ((-216 . -1023) 106421) ((-799 . -349) 106405) ((-799 . -310) 106389) ((-216 . -23) 106260) ((-979 . -847) T) ((-979 . -755) T) ((-532 . -340) T) ((-483 . -340) T) ((-323 . -1058) T) ((-299 . -33) T) ((-43 . -389) 106244) ((-800 . -1117) T) ((-362 . -679) 106228) ((-1174 . -480) 106161) ((-666 . -124) T) ((-1155 . -511) 106140) ((-1148 . -1121) 106119) ((-1148 . -511) 106070) ((-672 . -480) 106003) ((-1127 . -1121) 105982) ((-1127 . -511) 105933) ((-820 . -1011) T) ((-132 . -776) T) ((-1126 . -1117) 105912) ((-1126 . -813) 105785) ((-1126 . -811) 105755) ((-488 . -282) 105693) ((-1080 . -124) T) ((-129 . -480) NIL) ((-1079 . -124) T) ((-1073 . -124) T) ((-1035 . -124) T) ((-946 . -925) T) ((-323 . -37) 105658) ((-927 . -1023) T) ((-841 . -1023) T) ((-80 . -559) 105640) ((-39 . -968) T) ((-797 . -974) 105627) ((-927 . -23) T) ((-799 . -827) 105586) ((-636 . -97) T) ((-926 . -321) NIL) ((-550 . -1117) T) ((-895 . -23) T) ((-841 . -23) T) ((-797 . -107) 105571) ((-399 . -1023) T) ((-445 . -46) 105541) ((-126 . -97) T) ((-39 . -209) 105513) ((-39 . -219) T) ((-112 . -97) T) ((-545 . -511) 105492) ((-544 . -511) 105471) ((-629 . -559) 105453) ((-629 . -560) 105361) ((-288 . -480) 105327) ((-285 . -480) 105219) ((-1147 . -959) 105203) ((-1126 . -959) 104992) ((-922 . -383) 104976) ((-399 . -23) T) ((-1029 . -157) T) ((-1149 . -264) T) ((-593 . -652) 104946) ((-132 . -1011) T) ((-47 . -925) T) ((-379 . -207) 104930) ((-268 . -211) 104880) ((-798 . -847) T) ((-798 . -755) NIL) ((-792 . -782) T) ((-1126 . -310) 104850) ((-1126 . -349) 104820) ((-198 . -1030) 104804) ((-1163 . -262) 104781) ((-1112 . -587) 104706) ((-889 . -21) T) ((-889 . -25) T) ((-670 . -21) T) ((-670 . -25) T) ((-650 . -21) T) ((-650 . -25) T) ((-646 . -587) 104671) ((-424 . -21) T) ((-424 . -25) T) ((-311 . -97) T) ((-158 . -97) T) ((-922 . -975) T) ((-797 . -968) T) ((-708 . -97) T) ((-1148 . -335) 104650) ((-1147 . -827) 104556) ((-1127 . -335) 104535) ((-1126 . -827) 104386) ((-946 . -559) 104368) ((-379 . -763) 104321) ((-1080 . -460) 104287) ((-154 . -847) 104218) ((-1079 . -460) 104184) ((-1073 . -460) 104150) ((-647 . -1011) T) ((-1035 . -460) 104116) ((-531 . -974) 104103) ((-519 . -974) 104090) ((-462 . -974) 104055) ((-288 . -264) 104034) ((-285 . -264) T) ((-326 . -559) 104016) ((-390 . -25) T) ((-390 . -21) T) ((-94 . -260) 103995) ((-531 . -107) 103980) ((-519 . -107) 103965) ((-462 . -107) 103921) ((-1082 . -813) 103888) ((-828 . -458) 103872) ((-47 . -559) 103854) ((-47 . -560) 103799) ((-216 . -124) 103670) ((-1136 . -847) 103649) ((-751 . -1121) 103628) ((-957 . -480) 103472) ((-360 . -559) 103454) ((-751 . -511) 103385) ((-536 . -587) 103360) ((-239 . -46) 103332) ((-223 . -46) 103289) ((-491 . -475) 103266) ((-923 . -1117) T) ((-634 . -974) 103231) ((-1155 . -1023) T) ((-1148 . -1023) T) ((-1127 . -1023) T) ((-926 . -342) 103203) ((-108 . -340) T) ((-445 . -827) 103109) ((-1155 . -23) T) ((-1148 . -23) T) ((-831 . -559) 103091) ((-89 . -102) 103075) ((-1112 . -661) T) ((-832 . -782) 103026) ((-636 . -1058) T) ((-634 . -107) 102982) ((-1127 . -23) T) ((-545 . -1023) T) ((-544 . -1023) T) ((-647 . -652) 102811) ((-646 . -661) T) ((-1029 . -264) T) ((-927 . -124) T) ((-456 . -782) T) ((-895 . -124) T) ((-841 . -124) T) ((-531 . -968) T) ((-194 . -782) T) ((-519 . -968) T) ((-734 . -25) T) ((-734 . -21) T) ((-462 . -968) T) ((-545 . -23) T) ((-315 . -1180) 102788) ((-291 . -423) 102767) ((-311 . -282) 102754) ((-544 . -23) T) ((-399 . -124) T) ((-597 . -587) 102728) ((-221 . -933) 102712) ((-799 . -280) T) ((-1185 . -1175) 102696) ((-636 . -37) 102683) ((-519 . -209) T) ((-462 . -219) T) ((-462 . -209) T) ((-705 . -726) T) ((-705 . -730) T) ((-1057 . -211) 102633) ((-1000 . -836) 102612) ((-112 . -37) 102599) ((-187 . -735) T) ((-186 . -735) T) ((-185 . -735) T) ((-184 . -735) T) ((-799 . -944) 102578) ((-1174 . -458) 102562) ((-716 . -836) 102541) ((-714 . -836) 102520) ((-1091 . -1117) T) ((-425 . -836) 102499) ((-672 . -458) 102483) ((-1000 . -587) 102408) ((-716 . -587) 102333) ((-566 . -974) 102320) ((-449 . -1117) T) ((-315 . -340) T) ((-129 . -458) 102302) ((-714 . -587) 102227) ((-1048 . -1117) T) ((-432 . -587) 102198) ((-239 . -813) 102057) ((-223 . -813) NIL) ((-113 . -974) 102002) ((-425 . -587) 101927) ((-603 . -959) 101904) ((-566 . -107) 101889) ((-327 . -959) 101873) ((-324 . -959) 101857) ((-316 . -959) 101841) ((-239 . -959) 101687) ((-223 . -959) 101565) ((-113 . -107) 101494) ((-57 . -1117) T) ((-484 . -1117) T) ((-482 . -1117) T) ((-464 . -1117) T) ((-463 . -1117) T) ((-409 . -559) 101476) ((-406 . -559) 101458) ((-3 . -97) T) ((-949 . -1111) 101427) ((-768 . -97) T) ((-625 . -55) 101385) ((-634 . -968) T) ((-49 . -587) 101359) ((-263 . -423) T) ((-447 . -1111) 101328) ((0 . -97) T) ((-532 . -587) 101293) ((-483 . -587) 101238) ((-48 . -97) T) ((-837 . -959) 101225) ((-634 . -219) T) ((-994 . -381) 101204) ((-666 . -581) 101152) ((-922 . -1011) T) ((-647 . -157) 101043) ((-456 . -916) 101025) ((-239 . -349) 101009) ((-223 . -349) 100993) ((-371 . -1011) T) ((-311 . -37) 100977) ((-948 . -97) 100955) ((-194 . -916) 100937) ((-158 . -37) 100869) ((-1147 . -280) 100848) ((-1126 . -280) 100827) ((-597 . -661) T) ((-94 . -559) 100809) ((-1073 . -581) 100761) ((-454 . -25) T) ((-454 . -21) T) ((-1126 . -944) 100714) ((-566 . -968) T) ((-351 . -376) T) ((-362 . -97) T) ((-239 . -827) 100660) ((-223 . -827) 100637) ((-113 . -968) T) ((-751 . -1023) T) ((-1000 . -661) T) ((-566 . -209) 100616) ((-564 . -97) T) ((-716 . -661) T) ((-714 . -661) T) ((-385 . -1023) T) ((-113 . -219) T) ((-39 . -340) NIL) ((-113 . -209) NIL) ((-425 . -661) T) ((-751 . -23) T) ((-666 . -25) T) ((-666 . -21) T) ((-638 . -782) T) ((-991 . -260) 100595) ((-76 . -368) T) ((-76 . -367) T) ((-629 . -974) 100545) ((-1155 . -124) T) ((-1148 . -124) T) ((-1127 . -124) T) ((-1049 . -383) 100529) ((-577 . -339) 100461) ((-553 . -339) 100393) ((-1063 . -1056) 100377) ((-98 . -1011) 100355) ((-1080 . -25) T) ((-1080 . -21) T) ((-1079 . -21) T) ((-922 . -652) 100303) ((-199 . -587) 100270) ((-629 . -107) 100204) ((-49 . -661) T) ((-1079 . -25) T) ((-323 . -321) T) ((-1073 . -21) T) ((-994 . -423) 100155) ((-1073 . -25) T) ((-647 . -480) 100103) ((-532 . -661) T) ((-483 . -661) T) ((-1035 . -21) T) ((-1035 . -25) T) ((-545 . -124) T) ((-544 . -124) T) ((-331 . -423) T) ((-325 . -423) T) ((-317 . -423) T) ((-445 . -280) 100082) ((-285 . -260) 100017) ((-103 . -423) T) ((-77 . -412) T) ((-77 . -367) T) ((-448 . -97) T) ((-1189 . -559) 99999) ((-1189 . -560) 99981) ((-994 . -374) 99960) ((-957 . -458) 99891) ((-519 . -730) T) ((-519 . -726) T) ((-980 . -211) 99837) ((-331 . -374) 99788) ((-325 . -374) 99739) ((-317 . -374) 99690) ((-1176 . -1023) T) ((-1176 . -23) T) ((-1165 . -97) T) ((-159 . -559) 99672) ((-1049 . -975) T) ((-609 . -679) 99656) ((-1084 . -133) 99635) ((-1084 . -135) 99614) ((-1053 . -1011) T) ((-1053 . -987) 99583) ((-67 . -1117) T) ((-946 . -974) 99520) ((-793 . -975) T) ((-216 . -581) 99428) ((-629 . -968) T) ((-326 . -974) 99373) ((-59 . -1117) T) ((-946 . -107) 99289) ((-828 . -559) 99221) ((-629 . -219) T) ((-629 . -209) NIL) ((-775 . -780) 99200) ((-634 . -730) T) ((-634 . -726) T) ((-926 . -383) 99177) ((-326 . -107) 99106) ((-351 . -847) T) ((-379 . -780) 99085) ((-647 . -264) 98996) ((-199 . -661) T) ((-1155 . -460) 98962) ((-1148 . -460) 98928) ((-1127 . -460) 98894) ((-288 . -925) 98873) ((-198 . -1011) 98851) ((-291 . -897) 98814) ((-100 . -97) T) ((-47 . -974) 98779) ((-1185 . -97) T) ((-353 . -97) T) ((-47 . -107) 98735) ((-927 . -581) 98717) ((-1149 . -559) 98699) ((-491 . -97) T) ((-467 . -97) T) ((-1042 . -1043) 98683) ((-140 . -1170) 98667) ((-221 . -1117) T) ((-1078 . -1121) 98646) ((-1034 . -1121) 98625) ((-216 . -21) 98536) ((-216 . -25) 98388) ((-123 . -115) 98372) ((-117 . -115) 98356) ((-43 . -679) 98340) ((-1078 . -511) 98251) ((-1034 . -511) 98182) ((-957 . -260) 98157) ((-751 . -124) T) ((-113 . -730) NIL) ((-113 . -726) NIL) ((-327 . -280) T) ((-324 . -280) T) ((-316 . -280) T) ((-1006 . -1117) T) ((-226 . -1023) 98088) ((-225 . -1023) 98019) ((-946 . -968) T) ((-926 . -975) T) ((-315 . -587) 97964) ((-564 . -37) 97948) ((-1174 . -559) 97910) ((-1174 . -560) 97871) ((-991 . -559) 97853) ((-946 . -219) T) ((-326 . -968) T) ((-750 . -1170) 97823) ((-226 . -23) T) ((-225 . -23) T) ((-911 . -559) 97805) ((-672 . -560) 97766) ((-672 . -559) 97748) ((-734 . -782) 97727) ((-922 . -480) 97639) ((-326 . -209) T) ((-326 . -219) T) ((-1066 . -139) 97586) ((-927 . -25) T) ((-129 . -559) 97568) ((-129 . -560) 97527) ((-837 . -280) T) ((-927 . -21) T) ((-895 . -25) T) ((-841 . -21) T) ((-841 . -25) T) ((-399 . -21) T) ((-399 . -25) T) ((-775 . -383) 97511) ((-47 . -968) T) ((-1183 . -1175) 97495) ((-1181 . -1175) 97479) ((-957 . -552) 97454) ((-288 . -560) 97315) ((-288 . -559) 97297) ((-285 . -560) NIL) ((-285 . -559) 97279) ((-47 . -219) T) ((-47 . -209) T) ((-593 . -260) 97240) ((-505 . -211) 97190) ((-128 . -559) 97172) ((-110 . -559) 97154) ((-448 . -37) 97119) ((-1185 . -1182) 97098) ((-1176 . -124) T) ((-1184 . -975) T) ((-996 . -97) T) ((-86 . -1117) T) ((-467 . -282) NIL) ((-923 . -102) 97082) ((-816 . -1011) T) ((-812 . -1011) T) ((-1163 . -590) 97066) ((-1163 . -345) 97050) ((-299 . -1117) T) ((-542 . -782) T) ((-1049 . -1011) T) ((-1049 . -971) 96990) ((-98 . -480) 96923) ((-854 . -559) 96905) ((-315 . -661) T) ((-30 . -559) 96887) ((-793 . -1011) T) ((-775 . -975) 96866) ((-39 . -587) 96811) ((-201 . -1121) T) ((-379 . -975) T) ((-1065 . -139) 96793) ((-922 . -264) 96744) ((-201 . -511) T) ((-291 . -1144) 96728) ((-291 . -1141) 96698) ((-1091 . -1094) 96677) ((-989 . -559) 96659) ((-586 . -139) 96643) ((-574 . -139) 96589) ((-1091 . -102) 96539) ((-449 . -1094) 96518) ((-456 . -135) T) ((-456 . -133) NIL) ((-1029 . -560) 96433) ((-410 . -559) 96415) ((-194 . -135) T) ((-194 . -133) NIL) ((-1029 . -559) 96397) ((-51 . -97) T) ((-1127 . -581) 96349) ((-449 . -102) 96299) ((-917 . -23) T) ((-1185 . -37) 96269) ((-1078 . -1023) T) ((-1034 . -1023) T) ((-979 . -1121) T) ((-786 . -1023) T) ((-879 . -1121) 96248) ((-451 . -1121) 96227) ((-666 . -782) 96206) ((-979 . -511) T) ((-879 . -511) 96137) ((-1078 . -23) T) ((-1034 . -23) T) ((-786 . -23) T) ((-451 . -511) 96068) ((-1049 . -652) 96000) ((-1053 . -480) 95933) ((-957 . -560) NIL) ((-957 . -559) 95915) ((-793 . -652) 95885) ((-1112 . -46) 95854) ((-226 . -124) T) ((-225 . -124) T) ((-1015 . -1011) T) ((-926 . -1011) T) ((-60 . -559) 95836) ((-1073 . -782) NIL) ((-946 . -726) T) ((-946 . -730) T) ((-1189 . -974) 95823) ((-1189 . -107) 95808) ((-797 . -587) 95795) ((-1155 . -25) T) ((-1155 . -21) T) ((-1148 . -21) T) ((-1148 . -25) T) ((-1127 . -21) T) ((-1127 . -25) T) ((-949 . -139) 95779) ((-799 . -755) 95758) ((-799 . -847) T) ((-647 . -260) 95685) ((-545 . -21) T) ((-545 . -25) T) ((-544 . -21) T) ((-39 . -661) T) ((-198 . -480) 95618) ((-544 . -25) T) ((-447 . -139) 95602) ((-434 . -139) 95586) ((-848 . -661) T) ((-705 . -727) T) ((-705 . -728) T) ((-469 . -1011) T) ((-705 . -661) T) ((-201 . -335) T) ((-1063 . -1011) 95564) ((-798 . -1121) T) ((-593 . -559) 95546) ((-798 . -511) T) ((-629 . -340) NIL) ((-331 . -1170) 95530) ((-609 . -97) T) ((-325 . -1170) 95514) ((-317 . -1170) 95498) ((-1184 . -1011) T) ((-485 . -782) 95477) ((-752 . -423) 95456) ((-965 . -1011) T) ((-965 . -987) 95385) ((-949 . -900) 95354) ((-754 . -1023) T) ((-926 . -652) 95299) ((-358 . -1023) T) ((-447 . -900) 95268) ((-434 . -900) 95237) ((-106 . -139) 95219) ((-71 . -559) 95201) ((-820 . -559) 95183) ((-994 . -659) 95162) ((-1189 . -968) T) ((-751 . -581) 95110) ((-267 . -975) 95053) ((-154 . -1121) 94958) ((-201 . -1023) T) ((-296 . -23) T) ((-1073 . -916) 94910) ((-775 . -1011) T) ((-1035 . -675) 94889) ((-1149 . -974) 94794) ((-1147 . -847) 94773) ((-797 . -661) T) ((-154 . -511) 94684) ((-1126 . -847) 94663) ((-531 . -587) 94650) ((-379 . -1011) T) ((-519 . -587) 94637) ((-238 . -1011) T) ((-462 . -587) 94602) ((-201 . -23) T) ((-1126 . -755) 94555) ((-1183 . -97) T) ((-326 . -1180) 94532) ((-1181 . -97) T) ((-1149 . -107) 94424) ((-132 . -559) 94406) ((-917 . -124) T) ((-43 . -97) T) ((-216 . -782) 94357) ((-1136 . -1121) 94336) ((-98 . -458) 94320) ((-1184 . -652) 94290) ((-1000 . -46) 94251) ((-979 . -1023) T) ((-879 . -1023) T) ((-123 . -33) T) ((-117 . -33) T) ((-716 . -46) 94228) ((-714 . -46) 94200) ((-1136 . -511) 94111) ((-326 . -340) T) ((-451 . -1023) T) ((-1078 . -124) T) ((-1034 . -124) T) ((-425 . -46) 94090) ((-798 . -335) T) ((-786 . -124) T) ((-140 . -97) T) ((-979 . -23) T) ((-879 . -23) T) ((-526 . -511) T) ((-751 . -25) T) ((-751 . -21) T) ((-1049 . -480) 94023) ((-536 . -959) 94007) ((-451 . -23) T) ((-323 . -975) T) ((-1112 . -827) 93988) ((-609 . -282) 93926) ((-1024 . -1170) 93896) ((-634 . -587) 93861) ((-926 . -157) T) ((-889 . -133) 93840) ((-577 . -1011) T) ((-553 . -1011) T) ((-889 . -135) 93819) ((-927 . -782) T) ((-670 . -135) 93798) ((-670 . -133) 93777) ((-895 . -782) T) ((-445 . -847) 93756) ((-288 . -974) 93666) ((-285 . -974) 93595) ((-922 . -260) 93553) ((-379 . -652) 93505) ((-636 . -780) T) ((-1149 . -968) T) ((-288 . -107) 93401) ((-285 . -107) 93314) ((-890 . -97) T) ((-750 . -97) 93125) ((-647 . -560) NIL) ((-647 . -559) 93107) ((-597 . -959) 93005) ((-1149 . -298) 92949) ((-957 . -262) 92924) ((-531 . -661) T) ((-519 . -728) T) ((-154 . -335) 92875) ((-519 . -725) T) ((-519 . -661) T) ((-462 . -661) T) ((-1053 . -458) 92859) ((-1000 . -813) NIL) ((-798 . -1023) T) ((-113 . -836) NIL) ((-1183 . -1182) 92835) ((-1181 . -1182) 92814) ((-716 . -813) NIL) ((-714 . -813) 92673) ((-1176 . -25) T) ((-1176 . -21) T) ((-1115 . -97) 92651) ((-1017 . -367) T) ((-566 . -587) 92638) ((-425 . -813) NIL) ((-613 . -97) 92616) ((-1000 . -959) 92445) ((-798 . -23) T) ((-716 . -959) 92307) ((-714 . -959) 92166) ((-113 . -587) 92111) ((-425 . -959) 91989) ((-588 . -959) 91973) ((-569 . -97) T) ((-198 . -458) 91957) ((-1163 . -33) T) ((-577 . -652) 91941) ((-553 . -652) 91925) ((-609 . -37) 91885) ((-291 . -97) T) ((-83 . -559) 91867) ((-49 . -959) 91851) ((-1029 . -974) 91838) ((-1000 . -349) 91822) ((-58 . -55) 91784) ((-634 . -728) T) ((-634 . -725) T) ((-532 . -959) 91771) ((-483 . -959) 91748) ((-634 . -661) T) ((-288 . -968) 91639) ((-296 . -124) T) ((-285 . -968) T) ((-154 . -1023) T) ((-716 . -349) 91623) ((-714 . -349) 91607) ((-44 . -139) 91557) ((-927 . -916) 91539) ((-425 . -349) 91523) ((-379 . -157) T) ((-288 . -219) 91502) ((-285 . -219) T) ((-285 . -209) NIL) ((-267 . -1011) 91285) ((-201 . -124) T) ((-1029 . -107) 91270) ((-154 . -23) T) ((-734 . -135) 91249) ((-734 . -133) 91228) ((-226 . -581) 91136) ((-225 . -581) 91044) ((-291 . -258) 91010) ((-1063 . -480) 90943) ((-1042 . -1011) T) ((-201 . -977) T) ((-750 . -282) 90881) ((-1000 . -827) 90816) ((-716 . -827) 90760) ((-714 . -827) 90744) ((-1183 . -37) 90714) ((-1181 . -37) 90684) ((-1136 . -1023) T) ((-787 . -1023) T) ((-425 . -827) 90661) ((-789 . -1011) T) ((-1136 . -23) T) ((-526 . -1023) T) ((-787 . -23) T) ((-566 . -661) T) ((-327 . -847) T) ((-324 . -847) T) ((-263 . -97) T) ((-316 . -847) T) ((-979 . -124) T) ((-879 . -124) T) ((-113 . -728) NIL) ((-113 . -725) NIL) ((-113 . -661) T) ((-629 . -836) NIL) ((-965 . -480) 90562) ((-451 . -124) T) ((-526 . -23) T) ((-613 . -282) 90500) ((-577 . -696) T) ((-553 . -696) T) ((-1127 . -782) NIL) ((-926 . -264) T) ((-226 . -21) T) ((-629 . -587) 90450) ((-323 . -1011) T) ((-226 . -25) T) ((-225 . -21) T) ((-225 . -25) T) ((-140 . -37) 90434) ((-2 . -97) T) ((-837 . -847) T) ((-452 . -1170) 90404) ((-199 . -959) 90381) ((-1029 . -968) T) ((-646 . -280) T) ((-267 . -652) 90323) ((-636 . -975) T) ((-456 . -423) T) ((-379 . -480) 90235) ((-194 . -423) T) ((-1029 . -209) T) ((-268 . -139) 90185) ((-922 . -560) 90146) ((-922 . -559) 90128) ((-913 . -559) 90110) ((-112 . -975) T) ((-593 . -974) 90094) ((-201 . -460) T) ((-371 . -559) 90076) ((-371 . -560) 90053) ((-972 . -1170) 90023) ((-593 . -107) 90002) ((-1049 . -458) 89986) ((-750 . -37) 89956) ((-61 . -412) T) ((-61 . -367) T) ((-1066 . -97) T) ((-798 . -124) T) ((-453 . -97) 89934) ((-1189 . -340) T) ((-994 . -97) T) ((-978 . -97) T) ((-323 . -652) 89879) ((-666 . -135) 89858) ((-666 . -133) 89837) ((-946 . -587) 89774) ((-488 . -1011) 89752) ((-331 . -97) T) ((-325 . -97) T) ((-317 . -97) T) ((-103 . -97) T) ((-471 . -1011) T) ((-326 . -587) 89697) ((-1078 . -581) 89645) ((-1034 . -581) 89593) ((-357 . -475) 89572) ((-768 . -780) 89551) ((-351 . -1121) T) ((-629 . -661) T) ((-311 . -975) T) ((-1127 . -916) 89503) ((-158 . -975) T) ((-98 . -559) 89435) ((-1080 . -133) 89414) ((-1080 . -135) 89393) ((-351 . -511) T) ((-1079 . -135) 89372) ((-1079 . -133) 89351) ((-1073 . -133) 89258) ((-379 . -264) T) ((-1073 . -135) 89165) ((-1035 . -135) 89144) ((-1035 . -133) 89123) ((-291 . -37) 88964) ((-154 . -124) T) ((-285 . -730) NIL) ((-285 . -726) NIL) ((-593 . -968) T) ((-47 . -587) 88929) ((-917 . -21) T) ((-123 . -933) 88913) ((-117 . -933) 88897) ((-917 . -25) T) ((-828 . -115) 88881) ((-1065 . -97) T) ((-751 . -782) 88860) ((-1136 . -124) T) ((-1078 . -25) T) ((-1078 . -21) T) ((-787 . -124) T) ((-1034 . -25) T) ((-1034 . -21) T) ((-786 . -25) T) ((-786 . -21) T) ((-716 . -280) 88839) ((-586 . -97) 88817) ((-574 . -97) T) ((-1066 . -282) 88612) ((-526 . -124) T) ((-564 . -780) 88591) ((-1063 . -458) 88575) ((-1057 . -139) 88525) ((-1053 . -559) 88487) ((-1053 . -560) 88448) ((-946 . -725) T) ((-946 . -728) T) ((-946 . -661) T) ((-453 . -282) 88386) ((-424 . -389) 88356) ((-323 . -157) T) ((-263 . -37) 88343) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-315 . -959) 88320) ((-190 . -97) T) ((-189 . -97) T) ((-187 . -97) T) ((-186 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-181 . -97) T) ((-180 . -97) T) ((-647 . -974) 88143) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-326 . -661) T) ((-647 . -107) 87952) ((-609 . -207) 87936) ((-532 . -280) T) ((-483 . -280) T) ((-267 . -480) 87885) ((-103 . -282) NIL) ((-70 . -367) T) ((-1024 . -97) 87696) ((-768 . -383) 87680) ((-1029 . -730) T) ((-1029 . -726) T) ((-636 . -1011) T) ((-351 . -335) T) ((-154 . -460) 87658) ((-198 . -559) 87590) ((-126 . -1011) T) ((-112 . -1011) T) ((-47 . -661) T) ((-965 . -458) 87555) ((-129 . -397) 87537) ((-129 . -340) T) ((-949 . -97) T) ((-478 . -475) 87516) ((-447 . -97) T) ((-434 . -97) T) ((-956 . -1023) T) ((-1080 . -34) 87482) ((-1080 . -91) 87448) ((-1080 . -1106) 87414) ((-1080 . -1103) 87380) ((-1065 . -282) NIL) ((-87 . -368) T) ((-87 . -367) T) ((-994 . -1058) 87359) ((-1079 . -1103) 87325) ((-1079 . -1106) 87291) ((-956 . -23) T) ((-1079 . -91) 87257) ((-526 . -460) T) ((-1079 . -34) 87223) ((-1073 . -1103) 87189) ((-1073 . -1106) 87155) ((-1073 . -91) 87121) ((-333 . -1023) T) ((-331 . -1058) 87100) ((-325 . -1058) 87079) ((-317 . -1058) 87058) ((-1073 . -34) 87024) ((-1035 . -34) 86990) ((-1035 . -91) 86956) ((-103 . -1058) T) ((-1035 . -1106) 86922) ((-768 . -975) 86901) ((-586 . -282) 86839) ((-574 . -282) 86690) ((-1035 . -1103) 86656) ((-647 . -968) T) ((-979 . -581) 86638) ((-994 . -37) 86506) ((-879 . -581) 86454) ((-927 . -135) T) ((-927 . -133) NIL) ((-351 . -1023) T) ((-296 . -25) T) ((-294 . -23) T) ((-870 . -782) 86433) ((-647 . -298) 86410) ((-451 . -581) 86358) ((-39 . -959) 86248) ((-636 . -652) 86235) ((-647 . -209) T) ((-311 . -1011) T) ((-158 . -1011) T) ((-303 . -782) T) ((-390 . -423) 86185) ((-351 . -23) T) ((-331 . -37) 86150) ((-325 . -37) 86115) ((-317 . -37) 86080) ((-78 . -412) T) ((-78 . -367) T) ((-201 . -25) T) ((-201 . -21) T) ((-769 . -1023) T) ((-103 . -37) 86030) ((-762 . -1023) T) ((-708 . -1011) T) ((-112 . -652) 86017) ((-610 . -959) 86001) ((-558 . -97) T) ((-769 . -23) T) ((-762 . -23) T) ((-1063 . -260) 85978) ((-1024 . -282) 85916) ((-1013 . -211) 85900) ((-62 . -368) T) ((-62 . -367) T) ((-106 . -97) T) ((-39 . -349) 85877) ((-592 . -784) 85861) ((-979 . -21) T) ((-979 . -25) T) ((-750 . -207) 85831) ((-879 . -25) T) ((-879 . -21) T) ((-564 . -975) T) ((-451 . -25) T) ((-451 . -21) T) ((-949 . -282) 85769) ((-816 . -559) 85751) ((-812 . -559) 85733) ((-226 . -782) 85684) ((-225 . -782) 85635) ((-488 . -480) 85568) ((-798 . -581) 85545) ((-447 . -282) 85483) ((-434 . -282) 85421) ((-323 . -264) T) ((-1063 . -1151) 85405) ((-1049 . -559) 85367) ((-1049 . -560) 85328) ((-1047 . -97) T) ((-922 . -974) 85224) ((-39 . -827) 85176) ((-1063 . -552) 85153) ((-1189 . -587) 85140) ((-980 . -139) 85086) ((-799 . -1121) T) ((-922 . -107) 84968) ((-311 . -652) 84952) ((-793 . -559) 84934) ((-158 . -652) 84866) ((-379 . -260) 84824) ((-799 . -511) T) ((-103 . -372) 84806) ((-82 . -356) T) ((-82 . -367) T) ((-636 . -157) T) ((-94 . -661) T) ((-452 . -97) 84617) ((-94 . -444) T) ((-112 . -157) T) ((-1024 . -37) 84587) ((-154 . -581) 84535) ((-972 . -97) T) ((-798 . -25) T) ((-750 . -214) 84514) ((-798 . -21) T) ((-753 . -97) T) ((-386 . -97) T) ((-357 . -97) T) ((-106 . -282) NIL) ((-203 . -97) 84492) ((-123 . -1117) T) ((-117 . -1117) T) ((-956 . -124) T) ((-609 . -339) 84476) ((-922 . -968) T) ((-1136 . -581) 84424) ((-1015 . -559) 84406) ((-926 . -559) 84388) ((-481 . -23) T) ((-476 . -23) T) ((-315 . -280) T) ((-474 . -23) T) ((-294 . -124) T) ((-3 . -1011) T) ((-926 . -560) 84372) ((-922 . -219) 84351) ((-922 . -209) 84330) ((-1189 . -661) T) ((-1155 . -133) 84309) ((-768 . -1011) T) ((-1155 . -135) 84288) ((-1148 . -135) 84267) ((-1148 . -133) 84246) ((-1147 . -1121) 84225) ((-1127 . -133) 84132) ((-1127 . -135) 84039) ((-1126 . -1121) 84018) ((-351 . -124) T) ((-519 . -813) 84000) ((0 . -1011) T) ((-158 . -157) T) ((-154 . -21) T) ((-154 . -25) T) ((-48 . -1011) T) ((-1149 . -587) 83905) ((-1147 . -511) 83856) ((-649 . -1023) T) ((-1126 . -511) 83807) ((-519 . -959) 83789) ((-544 . -135) 83768) ((-544 . -133) 83747) ((-462 . -959) 83690) ((-85 . -356) T) ((-85 . -367) T) ((-799 . -335) T) ((-769 . -124) T) ((-762 . -124) T) ((-649 . -23) T) ((-469 . -559) 83672) ((-1185 . -975) T) ((-351 . -977) T) ((-948 . -1011) 83650) ((-828 . -33) T) ((-452 . -282) 83588) ((-1063 . -560) 83549) ((-1063 . -559) 83481) ((-1078 . -782) 83460) ((-44 . -97) T) ((-1034 . -782) 83439) ((-752 . -97) T) ((-1136 . -25) T) ((-1136 . -21) T) ((-787 . -25) T) ((-43 . -339) 83423) ((-787 . -21) T) ((-666 . -423) 83374) ((-1184 . -559) 83356) ((-526 . -25) T) ((-526 . -21) T) ((-362 . -1011) T) ((-972 . -282) 83294) ((-564 . -1011) T) ((-634 . -813) 83276) ((-1163 . -1117) T) ((-203 . -282) 83214) ((-132 . -340) T) ((-965 . -560) 83156) ((-965 . -559) 83099) ((-285 . -836) NIL) ((-634 . -959) 83044) ((-646 . -847) T) ((-445 . -1121) 83023) ((-1079 . -423) 83002) ((-1073 . -423) 82981) ((-302 . -97) T) ((-799 . -1023) T) ((-288 . -587) 82803) ((-285 . -587) 82732) ((-445 . -511) 82683) ((-311 . -480) 82649) ((-505 . -139) 82599) ((-39 . -280) T) ((-775 . -559) 82581) ((-636 . -264) T) ((-799 . -23) T) ((-351 . -460) T) ((-994 . -207) 82551) ((-478 . -97) T) ((-379 . -560) 82359) ((-379 . -559) 82341) ((-238 . -559) 82323) ((-112 . -264) T) ((-1149 . -661) T) ((-1147 . -335) 82302) ((-1126 . -335) 82281) ((-1174 . -33) T) ((-113 . -1117) T) ((-103 . -207) 82263) ((-1084 . -97) T) ((-448 . -1011) T) ((-488 . -458) 82247) ((-672 . -33) T) ((-452 . -37) 82217) ((-129 . -33) T) ((-113 . -811) 82194) ((-113 . -813) NIL) ((-566 . -959) 82079) ((-585 . -782) 82058) ((-1173 . -97) T) ((-268 . -97) T) ((-647 . -340) 82037) ((-113 . -959) 82014) ((-362 . -652) 81998) ((-564 . -652) 81982) ((-44 . -282) 81786) ((-751 . -133) 81765) ((-751 . -135) 81744) ((-1184 . -354) 81723) ((-754 . -782) T) ((-1165 . -1011) T) ((-1066 . -205) 81670) ((-358 . -782) 81649) ((-1155 . -1106) 81615) ((-1155 . -1103) 81581) ((-1148 . -1103) 81547) ((-481 . -124) T) ((-1148 . -1106) 81513) ((-1127 . -1103) 81479) ((-1127 . -1106) 81445) ((-1155 . -34) 81411) ((-1155 . -91) 81377) ((-577 . -559) 81346) ((-553 . -559) 81315) ((-201 . -782) T) ((-1148 . -91) 81281) ((-1148 . -34) 81247) ((-1147 . -1023) T) ((-1029 . -587) 81234) ((-1127 . -91) 81200) ((-1126 . -1023) T) ((-542 . -139) 81182) ((-994 . -321) 81161) ((-113 . -349) 81138) ((-113 . -310) 81115) ((-158 . -264) T) ((-1127 . -34) 81081) ((-797 . -280) T) ((-285 . -728) NIL) ((-285 . -725) NIL) ((-288 . -661) 80931) ((-285 . -661) T) ((-445 . -335) 80910) ((-331 . -321) 80889) ((-325 . -321) 80868) ((-317 . -321) 80847) ((-288 . -444) 80826) ((-1147 . -23) T) ((-1126 . -23) T) ((-653 . -1023) T) ((-649 . -124) T) ((-592 . -97) T) ((-448 . -652) 80791) ((-44 . -256) 80741) ((-100 . -1011) T) ((-66 . -559) 80723) ((-792 . -97) T) ((-566 . -827) 80682) ((-1185 . -1011) T) ((-353 . -1011) T) ((-80 . -1117) T) ((-979 . -782) T) ((-879 . -782) 80661) ((-113 . -827) NIL) ((-716 . -847) 80640) ((-648 . -782) T) ((-491 . -1011) T) ((-467 . -1011) T) ((-327 . -1121) T) ((-324 . -1121) T) ((-316 . -1121) T) ((-239 . -1121) 80619) ((-223 . -1121) 80598) ((-1024 . -207) 80568) ((-451 . -782) 80547) ((-1049 . -974) 80531) ((-362 . -696) T) ((-1065 . -763) T) ((-629 . -1117) T) ((-327 . -511) T) ((-324 . -511) T) ((-316 . -511) T) ((-239 . -511) 80462) ((-223 . -511) 80393) ((-1049 . -107) 80372) ((-424 . -679) 80342) ((-793 . -974) 80312) ((-752 . -37) 80254) ((-629 . -811) 80236) ((-629 . -813) 80218) ((-268 . -282) 80022) ((-837 . -1121) T) ((-609 . -383) 80006) ((-793 . -107) 79971) ((-629 . -959) 79916) ((-927 . -423) T) ((-837 . -511) T) ((-532 . -847) T) ((-445 . -1023) T) ((-483 . -847) T) ((-1063 . -262) 79893) ((-841 . -423) T) ((-63 . -559) 79875) ((-574 . -205) 79821) ((-445 . -23) T) ((-1029 . -728) T) ((-799 . -124) T) ((-1029 . -725) T) ((-1176 . -1178) 79800) ((-1029 . -661) T) ((-593 . -587) 79774) ((-267 . -559) 79516) ((-957 . -33) T) ((-750 . -780) 79495) ((-531 . -280) T) ((-519 . -280) T) ((-462 . -280) T) ((-1185 . -652) 79465) ((-629 . -349) 79447) ((-629 . -310) 79429) ((-448 . -157) T) ((-353 . -652) 79399) ((-798 . -782) NIL) ((-519 . -944) T) ((-462 . -944) T) ((-1042 . -559) 79381) ((-1024 . -214) 79360) ((-191 . -97) T) ((-1057 . -97) T) ((-69 . -559) 79342) ((-1049 . -968) T) ((-1084 . -37) 79239) ((-789 . -559) 79221) ((-519 . -504) T) ((-609 . -975) T) ((-666 . -876) 79174) ((-1049 . -209) 79153) ((-996 . -1011) T) ((-956 . -25) T) ((-956 . -21) T) ((-926 . -974) 79098) ((-832 . -97) T) ((-793 . -968) T) ((-629 . -827) NIL) ((-327 . -301) 79082) ((-327 . -335) T) ((-324 . -301) 79066) ((-324 . -335) T) ((-316 . -301) 79050) ((-316 . -335) T) ((-456 . -97) T) ((-1173 . -37) 79020) ((-488 . -623) 78970) ((-194 . -97) T) ((-946 . -959) 78852) ((-926 . -107) 78781) ((-1080 . -897) 78751) ((-1079 . -897) 78714) ((-485 . -139) 78698) ((-994 . -342) 78677) ((-323 . -559) 78659) ((-294 . -21) T) ((-326 . -959) 78636) ((-294 . -25) T) ((-1073 . -897) 78606) ((-1035 . -897) 78573) ((-74 . -559) 78555) ((-634 . -280) T) ((-154 . -782) 78534) ((-837 . -335) T) ((-351 . -25) T) ((-351 . -21) T) ((-837 . -301) 78521) ((-84 . -559) 78503) ((-634 . -944) T) ((-614 . -782) T) ((-1147 . -124) T) ((-1126 . -124) T) ((-828 . -933) 78487) ((-769 . -21) T) ((-47 . -959) 78430) ((-769 . -25) T) ((-762 . -25) T) ((-762 . -21) T) ((-1183 . -975) T) ((-1181 . -975) T) ((-593 . -661) T) ((-1184 . -974) 78414) ((-1136 . -782) 78393) ((-750 . -383) 78362) ((-98 . -115) 78346) ((-51 . -1011) T) ((-853 . -559) 78328) ((-798 . -916) 78305) ((-758 . -97) T) ((-1184 . -107) 78284) ((-592 . -37) 78254) ((-526 . -782) T) ((-327 . -1023) T) ((-324 . -1023) T) ((-316 . -1023) T) ((-239 . -1023) T) ((-223 . -1023) T) ((-566 . -280) 78233) ((-1057 . -282) 78037) ((-603 . -23) T) ((-452 . -207) 78007) ((-140 . -975) T) ((-327 . -23) T) ((-324 . -23) T) ((-316 . -23) T) ((-113 . -280) T) ((-239 . -23) T) ((-223 . -23) T) ((-926 . -968) T) ((-647 . -836) 77986) ((-926 . -209) 77958) ((-926 . -219) T) ((-113 . -944) NIL) ((-837 . -1023) T) ((-1148 . -423) 77937) ((-1127 . -423) 77916) ((-488 . -559) 77848) ((-647 . -587) 77773) ((-379 . -974) 77725) ((-471 . -559) 77707) ((-837 . -23) T) ((-456 . -282) NIL) ((-445 . -124) T) ((-194 . -282) NIL) ((-379 . -107) 77645) ((-750 . -975) 77576) ((-672 . -1009) 77560) ((-1147 . -460) 77526) ((-1126 . -460) 77492) ((-129 . -1009) 77474) ((-448 . -264) T) ((-1184 . -968) T) ((-980 . -97) T) ((-467 . -480) NIL) ((-638 . -97) T) ((-452 . -214) 77453) ((-1078 . -133) 77432) ((-1078 . -135) 77411) ((-1034 . -135) 77390) ((-1034 . -133) 77369) ((-577 . -974) 77353) ((-553 . -974) 77337) ((-609 . -1011) T) ((-609 . -971) 77277) ((-1080 . -1154) 77261) ((-1080 . -1141) 77238) ((-456 . -1058) T) ((-1079 . -1146) 77199) ((-1079 . -1141) 77169) ((-1079 . -1144) 77153) ((-194 . -1058) T) ((-315 . -847) T) ((-753 . -241) 77137) ((-577 . -107) 77116) ((-553 . -107) 77095) ((-1073 . -1125) 77056) ((-775 . -968) 77035) ((-1073 . -1141) 77012) ((-481 . -25) T) ((-462 . -275) T) ((-477 . -23) T) ((-476 . -25) T) ((-474 . -25) T) ((-473 . -23) T) ((-1073 . -1123) 76996) ((-379 . -968) T) ((-291 . -975) T) ((-629 . -280) T) ((-103 . -780) T) ((-379 . -219) T) ((-379 . -209) 76975) ((-647 . -661) T) ((-456 . -37) 76925) ((-194 . -37) 76875) ((-445 . -460) 76841) ((-1065 . -1051) T) ((-1012 . -97) T) ((-636 . -559) 76823) ((-636 . -560) 76738) ((-649 . -21) T) ((-649 . -25) T) ((-126 . -559) 76720) ((-112 . -559) 76702) ((-143 . -25) T) ((-1183 . -1011) T) ((-799 . -581) 76650) ((-1181 . -1011) T) ((-889 . -97) T) ((-670 . -97) T) ((-650 . -97) T) ((-424 . -97) T) ((-751 . -423) 76601) ((-43 . -1011) T) ((-1001 . -782) T) ((-603 . -124) T) ((-980 . -282) 76452) ((-609 . -652) 76436) ((-263 . -975) T) ((-327 . -124) T) ((-324 . -124) T) ((-316 . -124) T) ((-239 . -124) T) ((-223 . -124) T) ((-390 . -97) T) ((-140 . -1011) T) ((-44 . -205) 76386) ((-884 . -782) 76365) ((-922 . -587) 76303) ((-216 . -1170) 76273) ((-946 . -280) T) ((-267 . -974) 76195) ((-837 . -124) T) ((-39 . -847) T) ((-456 . -372) 76177) ((-326 . -280) T) ((-194 . -372) 76159) ((-994 . -383) 76143) ((-267 . -107) 76060) ((-799 . -25) T) ((-799 . -21) T) ((-311 . -559) 76042) ((-1149 . -46) 75986) ((-201 . -135) T) ((-158 . -559) 75968) ((-1024 . -780) 75947) ((-708 . -559) 75929) ((-554 . -211) 75876) ((-446 . -211) 75826) ((-1183 . -652) 75796) ((-47 . -280) T) ((-1181 . -652) 75766) ((-890 . -1011) T) ((-750 . -1011) 75577) ((-284 . -97) T) ((-828 . -1117) T) ((-47 . -944) T) ((-1126 . -581) 75485) ((-625 . -97) 75463) ((-43 . -652) 75447) ((-505 . -97) T) ((-65 . -355) T) ((-65 . -367) T) ((-601 . -23) T) ((-609 . -696) T) ((-1115 . -1011) 75425) ((-323 . -974) 75370) ((-613 . -1011) 75348) ((-979 . -135) T) ((-879 . -135) 75327) ((-879 . -133) 75306) ((-734 . -97) T) ((-140 . -652) 75290) ((-451 . -135) 75269) ((-451 . -133) 75248) ((-323 . -107) 75177) ((-994 . -975) T) ((-294 . -782) 75156) ((-1155 . -897) 75126) ((-569 . -1011) T) ((-1148 . -897) 75089) ((-477 . -124) T) ((-473 . -124) T) ((-268 . -205) 75039) ((-331 . -975) T) ((-325 . -975) T) ((-317 . -975) T) ((-267 . -968) 74982) ((-1127 . -897) 74952) ((-351 . -782) T) ((-103 . -975) T) ((-922 . -661) T) ((-797 . -847) T) ((-775 . -730) 74931) ((-775 . -726) 74910) ((-390 . -282) 74849) ((-439 . -97) T) ((-544 . -897) 74819) ((-291 . -1011) T) ((-379 . -730) 74798) ((-379 . -726) 74777) ((-467 . -458) 74759) ((-1149 . -959) 74725) ((-1147 . -21) T) ((-1147 . -25) T) ((-1126 . -21) T) ((-1126 . -25) T) ((-750 . -652) 74667) ((-634 . -376) T) ((-1174 . -1117) T) ((-1024 . -383) 74636) ((-926 . -340) NIL) ((-98 . -33) T) ((-672 . -1117) T) ((-43 . -696) T) ((-542 . -97) T) ((-75 . -368) T) ((-75 . -367) T) ((-592 . -595) 74620) ((-129 . -1117) T) ((-798 . -135) T) ((-798 . -133) NIL) ((-323 . -968) T) ((-68 . -355) T) ((-68 . -367) T) ((-1072 . -97) T) ((-609 . -480) 74553) ((-625 . -282) 74491) ((-889 . -37) 74388) ((-670 . -37) 74358) ((-505 . -282) 74162) ((-288 . -1117) T) ((-323 . -209) T) ((-323 . -219) T) ((-285 . -1117) T) ((-263 . -1011) T) ((-1086 . -559) 74144) ((-646 . -1121) T) ((-1063 . -590) 74128) ((-1112 . -511) 74107) ((-646 . -511) T) ((-288 . -811) 74091) ((-288 . -813) 74016) ((-285 . -811) 73977) ((-285 . -813) NIL) ((-734 . -282) 73942) ((-291 . -652) 73783) ((-296 . -295) 73760) ((-454 . -97) T) ((-445 . -25) T) ((-445 . -21) T) ((-390 . -37) 73734) ((-288 . -959) 73402) ((-201 . -1103) T) ((-201 . -1106) T) ((-3 . -559) 73384) ((-285 . -959) 73314) ((-2 . -1011) T) ((-2 . |RecordCategory|) T) ((-768 . -559) 73296) ((-1024 . -975) 73227) ((-531 . -847) T) ((-519 . -755) T) ((-519 . -847) T) ((-462 . -847) T) ((-128 . -959) 73211) ((-201 . -91) T) ((-154 . -135) 73190) ((-73 . -412) T) ((0 . -559) 73172) ((-73 . -367) T) ((-154 . -133) 73123) ((-201 . -34) T) ((-48 . -559) 73105) ((-448 . -975) T) ((-456 . -207) 73087) ((-453 . -893) 73071) ((-452 . -780) 73050) ((-194 . -207) 73032) ((-79 . -412) T) ((-79 . -367) T) ((-1053 . -33) T) ((-750 . -157) 73011) ((-666 . -97) T) ((-948 . -559) 72978) ((-467 . -260) 72953) ((-288 . -349) 72923) ((-285 . -349) 72884) ((-285 . -310) 72845) ((-998 . -559) 72827) ((-751 . -876) 72774) ((-601 . -124) T) ((-1136 . -133) 72753) ((-1136 . -135) 72732) ((-1080 . -97) T) ((-1079 . -97) T) ((-1073 . -97) T) ((-1066 . -1011) T) ((-1035 . -97) T) ((-198 . -33) T) ((-263 . -652) 72719) ((-1066 . -556) 72695) ((-542 . -282) NIL) ((-453 . -1011) 72673) ((-362 . -559) 72655) ((-476 . -782) T) ((-1057 . -205) 72605) ((-1155 . -1154) 72589) ((-1155 . -1141) 72566) ((-1148 . -1146) 72527) ((-1148 . -1141) 72497) ((-1148 . -1144) 72481) ((-1127 . -1125) 72442) ((-1127 . -1141) 72419) ((-564 . -559) 72401) ((-1127 . -1123) 72385) ((-634 . -847) T) ((-1080 . -258) 72351) ((-1079 . -258) 72317) ((-1073 . -258) 72283) ((-994 . -1011) T) ((-978 . -1011) T) ((-47 . -275) T) ((-288 . -827) 72250) ((-285 . -827) NIL) ((-978 . -984) 72229) ((-1029 . -813) 72211) ((-734 . -37) 72195) ((-239 . -581) 72143) ((-223 . -581) 72091) ((-636 . -974) 72078) ((-544 . -1141) 72055) ((-1035 . -258) 72021) ((-291 . -157) 71952) ((-331 . -1011) T) ((-325 . -1011) T) ((-317 . -1011) T) ((-467 . -19) 71934) ((-1029 . -959) 71916) ((-1013 . -139) 71900) ((-103 . -1011) T) ((-112 . -974) 71887) ((-646 . -335) T) ((-467 . -552) 71862) ((-636 . -107) 71847) ((-408 . -97) T) ((-44 . -1056) 71797) ((-112 . -107) 71782) ((-577 . -655) T) ((-553 . -655) T) ((-750 . -480) 71715) ((-957 . -1117) T) ((-870 . -139) 71699) ((-485 . -97) 71649) ((-1000 . -1121) 71628) ((-448 . -559) 71580) ((-448 . -560) 71502) ((-60 . -1117) T) ((-716 . -1121) 71481) ((-714 . -1121) 71460) ((-1078 . -423) 71391) ((-1065 . -1011) T) ((-1049 . -587) 71365) ((-1000 . -511) 71296) ((-452 . -383) 71265) ((-566 . -847) 71244) ((-425 . -1121) 71223) ((-1034 . -423) 71174) ((-370 . -559) 71156) ((-613 . -480) 71089) ((-716 . -511) 71000) ((-714 . -511) 70931) ((-666 . -282) 70918) ((-603 . -25) T) ((-603 . -21) T) ((-425 . -511) 70849) ((-113 . -847) T) ((-113 . -755) NIL) ((-327 . -25) T) ((-327 . -21) T) ((-324 . -25) T) ((-324 . -21) T) ((-316 . -25) T) ((-316 . -21) T) ((-239 . -25) T) ((-239 . -21) T) ((-81 . -356) T) ((-81 . -367) T) ((-223 . -25) T) ((-223 . -21) T) ((-1165 . -559) 70831) ((-1112 . -1023) T) ((-1112 . -23) T) ((-1073 . -282) 70716) ((-1035 . -282) 70703) ((-793 . -587) 70663) ((-994 . -652) 70531) ((-870 . -904) 70515) ((-263 . -157) T) ((-837 . -21) T) ((-837 . -25) T) ((-799 . -782) 70466) ((-646 . -1023) T) ((-646 . -23) T) ((-586 . -1011) 70444) ((-574 . -556) 70419) ((-574 . -1011) T) ((-532 . -1121) T) ((-483 . -1121) T) ((-532 . -511) T) ((-483 . -511) T) ((-331 . -652) 70371) ((-325 . -652) 70323) ((-158 . -974) 70255) ((-311 . -974) 70239) ((-103 . -652) 70189) ((-158 . -107) 70100) ((-317 . -652) 70052) ((-311 . -107) 70031) ((-249 . -1011) T) ((-248 . -1011) T) ((-247 . -1011) T) ((-246 . -1011) T) ((-636 . -968) T) ((-245 . -1011) T) ((-244 . -1011) T) ((-243 . -1011) T) ((-190 . -1011) T) ((-189 . -1011) T) ((-187 . -1011) T) ((-154 . -1106) 70009) ((-154 . -1103) 69987) ((-186 . -1011) T) ((-185 . -1011) T) ((-112 . -968) T) ((-184 . -1011) T) ((-181 . -1011) T) ((-636 . -209) T) ((-180 . -1011) T) ((-179 . -1011) T) ((-178 . -1011) T) ((-177 . -1011) T) ((-176 . -1011) T) ((-175 . -1011) T) ((-174 . -1011) T) ((-173 . -1011) T) ((-172 . -1011) T) ((-171 . -1011) T) ((-216 . -97) 69798) ((-154 . -34) 69776) ((-154 . -91) 69754) ((-593 . -959) 69652) ((-452 . -975) 69583) ((-1024 . -1011) 69394) ((-1049 . -33) T) ((-609 . -458) 69378) ((-71 . -1117) T) ((-100 . -559) 69360) ((-1185 . -559) 69342) ((-353 . -559) 69324) ((-526 . -1106) T) ((-526 . -1103) T) ((-666 . -37) 69173) ((-491 . -559) 69155) ((-485 . -282) 69093) ((-467 . -559) 69075) ((-467 . -560) 69057) ((-1073 . -1058) NIL) ((-949 . -987) 69026) ((-949 . -1011) T) ((-927 . -97) T) ((-895 . -97) T) ((-841 . -97) T) ((-820 . -959) 69003) ((-1049 . -661) T) ((-926 . -587) 68948) ((-447 . -1011) T) ((-434 . -1011) T) ((-536 . -23) T) ((-526 . -34) T) ((-526 . -91) T) ((-399 . -97) T) ((-980 . -205) 68894) ((-1080 . -37) 68791) ((-793 . -661) T) ((-629 . -847) T) ((-477 . -25) T) ((-473 . -21) T) ((-473 . -25) T) ((-1079 . -37) 68632) ((-311 . -968) T) ((-1073 . -37) 68428) ((-994 . -157) T) ((-158 . -968) T) ((-1035 . -37) 68325) ((-647 . -46) 68302) ((-331 . -157) T) ((-325 . -157) T) ((-484 . -55) 68276) ((-464 . -55) 68226) ((-323 . -1180) 68203) ((-201 . -423) T) ((-291 . -264) 68154) ((-317 . -157) T) ((-158 . -219) T) ((-1126 . -782) 68053) ((-103 . -157) T) ((-799 . -916) 68037) ((-597 . -1023) T) ((-532 . -335) T) ((-532 . -301) 68024) ((-483 . -301) 68001) ((-483 . -335) T) ((-288 . -280) 67980) ((-285 . -280) T) ((-550 . -782) 67959) ((-1024 . -652) 67901) ((-485 . -256) 67885) ((-597 . -23) T) ((-390 . -207) 67869) ((-285 . -944) NIL) ((-308 . -23) T) ((-98 . -933) 67853) ((-729 . -559) 67835) ((-44 . -35) 67814) ((-558 . -1011) T) ((-323 . -340) T) ((-462 . -27) T) ((-216 . -282) 67752) ((-1000 . -1023) T) ((-1184 . -587) 67726) ((-716 . -1023) T) ((-714 . -1023) T) ((-425 . -1023) T) ((-979 . -423) T) ((-879 . -423) 67677) ((-106 . -1011) T) ((-1000 . -23) T) ((-752 . -975) T) ((-716 . -23) T) ((-714 . -23) T) ((-451 . -423) 67628) ((-1066 . -480) 67411) ((-353 . -354) 67390) ((-1084 . -383) 67374) ((-432 . -23) T) ((-425 . -23) T) ((-453 . -480) 67307) ((-263 . -264) T) ((-996 . -559) 67289) ((-379 . -836) 67268) ((-49 . -1023) T) ((-946 . -847) T) ((-926 . -661) T) ((-647 . -813) NIL) ((-532 . -1023) T) ((-483 . -1023) T) ((-775 . -587) 67241) ((-1112 . -124) T) ((-1073 . -372) 67193) ((-927 . -282) NIL) ((-750 . -458) 67177) ((-326 . -847) T) ((-1063 . -33) T) ((-379 . -587) 67129) ((-49 . -23) T) ((-646 . -124) T) ((-647 . -959) 67012) ((-532 . -23) T) ((-103 . -480) NIL) ((-483 . -23) T) ((-154 . -381) 66983) ((-1047 . -1011) T) ((-1176 . -1175) 66967) ((-636 . -730) T) ((-636 . -726) T) ((-351 . -135) T) ((-1029 . -280) T) ((-1126 . -916) 66937) ((-47 . -847) T) ((-613 . -458) 66921) ((-226 . -1170) 66891) ((-225 . -1170) 66861) ((-1082 . -782) T) ((-1024 . -157) 66840) ((-1029 . -944) T) ((-965 . -33) T) ((-769 . -135) 66819) ((-769 . -133) 66798) ((-672 . -102) 66782) ((-558 . -125) T) ((-452 . -1011) 66593) ((-1084 . -975) T) ((-798 . -423) T) ((-83 . -1117) T) ((-216 . -37) 66563) ((-129 . -102) 66545) ((-647 . -349) 66529) ((-1029 . -504) T) ((-362 . -974) 66513) ((-1184 . -661) T) ((-1078 . -876) 66483) ((-51 . -559) 66465) ((-1034 . -876) 66432) ((-592 . -383) 66416) ((-1173 . -975) T) ((-564 . -974) 66400) ((-601 . -25) T) ((-601 . -21) T) ((-1065 . -480) NIL) ((-1155 . -97) T) ((-1148 . -97) T) ((-362 . -107) 66379) ((-198 . -229) 66363) ((-1127 . -97) T) ((-972 . -1011) T) ((-927 . -1058) T) ((-972 . -971) 66303) ((-753 . -1011) T) ((-315 . -1121) T) ((-577 . -587) 66287) ((-564 . -107) 66266) ((-553 . -587) 66250) ((-545 . -97) T) ((-536 . -124) T) ((-544 . -97) T) ((-386 . -1011) T) ((-357 . -1011) T) ((-203 . -1011) 66228) ((-586 . -480) 66161) ((-574 . -480) 66005) ((-768 . -968) 65984) ((-585 . -139) 65968) ((-315 . -511) T) ((-647 . -827) 65912) ((-505 . -205) 65862) ((-1155 . -258) 65828) ((-994 . -264) 65779) ((-456 . -780) T) ((-199 . -1023) T) ((-1148 . -258) 65745) ((-1127 . -258) 65711) ((-927 . -37) 65661) ((-194 . -780) T) ((-1112 . -460) 65627) ((-841 . -37) 65579) ((-775 . -728) 65558) ((-775 . -725) 65537) ((-775 . -661) 65516) ((-331 . -264) T) ((-325 . -264) T) ((-317 . -264) T) ((-154 . -423) 65447) ((-399 . -37) 65431) ((-103 . -264) T) ((-199 . -23) T) ((-379 . -728) 65410) ((-379 . -725) 65389) ((-379 . -661) T) ((-467 . -262) 65364) ((-448 . -974) 65329) ((-597 . -124) T) ((-1024 . -480) 65262) ((-308 . -124) T) ((-154 . -374) 65241) ((-452 . -652) 65183) ((-750 . -260) 65160) ((-448 . -107) 65116) ((-592 . -975) T) ((-1136 . -423) 65047) ((-1000 . -124) T) ((-239 . -782) 65026) ((-223 . -782) 65005) ((-716 . -124) T) ((-714 . -124) T) ((-526 . -423) T) ((-972 . -652) 64947) ((-564 . -968) T) ((-949 . -480) 64880) ((-432 . -124) T) ((-425 . -124) T) ((-44 . -1011) T) ((-357 . -652) 64850) ((-752 . -1011) T) ((-447 . -480) 64783) ((-434 . -480) 64716) ((-424 . -339) 64686) ((-44 . -556) 64665) ((-288 . -275) T) ((-609 . -559) 64627) ((-57 . -782) 64606) ((-1127 . -282) 64491) ((-927 . -372) 64473) ((-750 . -552) 64450) ((-482 . -782) 64429) ((-463 . -782) 64408) ((-39 . -1121) T) ((-922 . -959) 64306) ((-49 . -124) T) ((-532 . -124) T) ((-483 . -124) T) ((-267 . -587) 64168) ((-315 . -301) 64145) ((-315 . -335) T) ((-294 . -295) 64122) ((-291 . -260) 64107) ((-39 . -511) T) ((-351 . -1103) T) ((-351 . -1106) T) ((-957 . -1094) 64082) ((-1091 . -211) 64032) ((-1073 . -207) 63984) ((-302 . -1011) T) ((-351 . -91) T) ((-351 . -34) T) ((-957 . -102) 63930) ((-448 . -968) T) ((-449 . -211) 63880) ((-1066 . -458) 63814) ((-1185 . -974) 63798) ((-353 . -974) 63782) ((-448 . -219) T) ((-751 . -97) T) ((-649 . -135) 63761) ((-649 . -133) 63740) ((-453 . -458) 63724) ((-454 . -307) 63693) ((-1185 . -107) 63672) ((-478 . -1011) T) ((-452 . -157) 63651) ((-922 . -349) 63635) ((-385 . -97) T) ((-353 . -107) 63614) ((-922 . -310) 63598) ((-254 . -907) 63582) ((-253 . -907) 63566) ((-1183 . -559) 63548) ((-1181 . -559) 63530) ((-106 . -480) NIL) ((-1078 . -1139) 63514) ((-786 . -784) 63498) ((-1084 . -1011) T) ((-98 . -1117) T) ((-879 . -876) 63459) ((-752 . -652) 63401) ((-1127 . -1058) NIL) ((-451 . -876) 63346) ((-979 . -131) T) ((-58 . -97) 63324) ((-43 . -559) 63306) ((-76 . -559) 63288) ((-323 . -587) 63233) ((-1173 . -1011) T) ((-477 . -782) T) ((-315 . -1023) T) ((-268 . -1011) T) ((-922 . -827) 63192) ((-268 . -556) 63171) ((-1155 . -37) 63068) ((-1148 . -37) 62909) ((-456 . -975) T) ((-1127 . -37) 62705) ((-194 . -975) T) ((-315 . -23) T) ((-140 . -559) 62687) ((-768 . -730) 62666) ((-768 . -726) 62645) ((-545 . -37) 62618) ((-544 . -37) 62515) ((-797 . -511) T) ((-199 . -124) T) ((-291 . -925) 62481) ((-77 . -559) 62463) ((-647 . -280) 62442) ((-267 . -661) 62345) ((-759 . -97) T) ((-792 . -776) T) ((-267 . -444) 62324) ((-1176 . -97) T) ((-39 . -335) T) ((-799 . -135) 62303) ((-799 . -133) 62282) ((-1065 . -458) 62264) ((-1185 . -968) T) ((-452 . -480) 62197) ((-1053 . -1117) T) ((-890 . -559) 62179) ((-586 . -458) 62163) ((-574 . -458) 62094) ((-750 . -559) 61846) ((-47 . -27) T) ((-1084 . -652) 61743) ((-592 . -1011) T) ((-408 . -336) 61717) ((-1013 . -97) T) ((-751 . -282) 61704) ((-792 . -1011) T) ((-1181 . -354) 61676) ((-972 . -480) 61609) ((-1066 . -260) 61585) ((-216 . -207) 61555) ((-1173 . -652) 61525) ((-752 . -157) 61504) ((-203 . -480) 61437) ((-564 . -730) 61416) ((-564 . -726) 61395) ((-1115 . -559) 61307) ((-198 . -1117) T) ((-613 . -559) 61239) ((-1063 . -933) 61223) ((-323 . -661) T) ((-870 . -97) 61173) ((-1127 . -372) 61125) ((-1024 . -458) 61109) ((-58 . -282) 61047) ((-303 . -97) T) ((-1112 . -21) T) ((-1112 . -25) T) ((-39 . -1023) T) ((-646 . -21) T) ((-569 . -559) 61029) ((-481 . -295) 61008) ((-646 . -25) T) ((-103 . -260) NIL) ((-848 . -1023) T) ((-39 . -23) T) ((-705 . -1023) T) ((-519 . -1121) T) ((-462 . -1121) T) ((-291 . -559) 60990) ((-927 . -207) 60972) ((-154 . -151) 60956) ((-531 . -511) T) ((-519 . -511) T) ((-462 . -511) T) ((-705 . -23) T) ((-1147 . -135) 60935) ((-1066 . -552) 60911) ((-1147 . -133) 60890) ((-949 . -458) 60874) ((-1126 . -133) 60799) ((-1126 . -135) 60724) ((-1176 . -1182) 60703) ((-447 . -458) 60687) ((-434 . -458) 60671) ((-488 . -33) T) ((-592 . -652) 60641) ((-108 . -892) T) ((-601 . -782) 60620) ((-1084 . -157) 60571) ((-337 . -97) T) ((-216 . -214) 60550) ((-226 . -97) T) ((-225 . -97) T) ((-1136 . -876) 60520) ((-105 . -97) T) ((-221 . -782) 60499) ((-751 . -37) 60348) ((-44 . -480) 60140) ((-1065 . -260) 60115) ((-191 . -1011) T) ((-1057 . -1011) T) ((-1057 . -556) 60094) ((-536 . -25) T) ((-536 . -21) T) ((-1013 . -282) 60032) ((-889 . -383) 60016) ((-634 . -1121) T) ((-574 . -260) 59991) ((-1000 . -581) 59939) ((-716 . -581) 59887) ((-714 . -581) 59835) ((-315 . -124) T) ((-263 . -559) 59817) ((-634 . -511) T) ((-832 . -1011) T) ((-797 . -1023) T) ((-425 . -581) 59765) ((-832 . -830) 59749) ((-351 . -423) T) ((-456 . -1011) T) ((-636 . -587) 59736) ((-870 . -282) 59674) ((-194 . -1011) T) ((-288 . -847) 59653) ((-285 . -847) T) ((-285 . -755) NIL) ((-362 . -655) T) ((-797 . -23) T) ((-112 . -587) 59640) ((-445 . -133) 59619) ((-390 . -383) 59603) ((-445 . -135) 59582) ((-106 . -458) 59564) ((-2 . -559) 59546) ((-1065 . -19) 59528) ((-1065 . -552) 59503) ((-597 . -21) T) ((-597 . -25) T) ((-542 . -1051) T) ((-1024 . -260) 59480) ((-308 . -25) T) ((-308 . -21) T) ((-462 . -335) T) ((-1176 . -37) 59450) ((-1049 . -1117) T) ((-574 . -552) 59425) ((-1000 . -25) T) ((-1000 . -21) T) ((-491 . -726) T) ((-491 . -730) T) ((-113 . -1121) T) ((-889 . -975) T) ((-566 . -511) T) ((-670 . -975) T) ((-650 . -975) T) ((-716 . -25) T) ((-716 . -21) T) ((-714 . -21) T) ((-714 . -25) T) ((-609 . -974) 59409) ((-432 . -25) T) ((-113 . -511) T) ((-432 . -21) T) ((-425 . -25) T) ((-425 . -21) T) ((-1049 . -959) 59307) ((-752 . -264) 59286) ((-758 . -1011) T) ((-891 . -892) T) ((-609 . -107) 59265) ((-268 . -480) 59057) ((-1183 . -974) 59041) ((-1181 . -974) 59025) ((-226 . -282) 58963) ((-225 . -282) 58901) ((-1130 . -97) 58879) ((-1066 . -560) NIL) ((-1066 . -559) 58861) ((-1147 . -1103) 58827) ((-1147 . -1106) 58793) ((-1127 . -207) 58745) ((-1126 . -1103) 58711) ((-1126 . -1106) 58677) ((-1049 . -349) 58661) ((-1029 . -755) T) ((-1029 . -847) T) ((-1024 . -552) 58638) ((-994 . -560) 58622) ((-453 . -559) 58554) ((-750 . -262) 58531) ((-554 . -139) 58478) ((-390 . -975) T) ((-456 . -652) 58428) ((-452 . -458) 58412) ((-299 . -782) 58391) ((-311 . -587) 58365) ((-49 . -21) T) ((-49 . -25) T) ((-194 . -652) 58315) ((-154 . -659) 58286) ((-158 . -587) 58218) ((-532 . -21) T) ((-532 . -25) T) ((-483 . -25) T) ((-483 . -21) T) ((-446 . -139) 58168) ((-994 . -559) 58150) ((-978 . -559) 58132) ((-917 . -97) T) ((-790 . -97) T) ((-734 . -383) 58096) ((-39 . -124) T) ((-634 . -335) T) ((-190 . -822) T) ((-636 . -728) T) ((-636 . -725) T) ((-531 . -1023) T) ((-519 . -1023) T) ((-462 . -1023) T) ((-636 . -661) T) ((-331 . -559) 58078) ((-325 . -559) 58060) ((-317 . -559) 58042) ((-64 . -368) T) ((-64 . -367) T) ((-103 . -560) 57972) ((-103 . -559) 57954) ((-189 . -822) T) ((-884 . -139) 57938) ((-1147 . -91) 57904) ((-705 . -124) T) ((-126 . -661) T) ((-112 . -661) T) ((-1147 . -34) 57870) ((-972 . -458) 57854) ((-531 . -23) T) ((-519 . -23) T) ((-462 . -23) T) ((-1126 . -91) 57820) ((-1126 . -34) 57786) ((-1078 . -97) T) ((-1034 . -97) T) ((-786 . -97) T) ((-203 . -458) 57770) ((-1183 . -107) 57749) ((-1181 . -107) 57728) ((-43 . -974) 57712) ((-1136 . -1139) 57696) ((-787 . -784) 57680) ((-1084 . -264) 57659) ((-106 . -260) 57634) ((-1049 . -827) 57593) ((-43 . -107) 57572) ((-609 . -968) T) ((-1087 . -1158) T) ((-1065 . -560) NIL) ((-1065 . -559) 57554) ((-980 . -556) 57529) ((-980 . -1011) T) ((-72 . -412) T) ((-72 . -367) T) ((-609 . -209) 57508) ((-140 . -974) 57492) ((-526 . -509) 57476) ((-327 . -135) 57455) ((-327 . -133) 57406) ((-324 . -135) 57385) ((-638 . -1011) T) ((-324 . -133) 57336) ((-316 . -135) 57315) ((-316 . -133) 57266) ((-239 . -133) 57245) ((-239 . -135) 57224) ((-226 . -37) 57194) ((-223 . -135) 57173) ((-113 . -335) T) ((-223 . -133) 57152) ((-225 . -37) 57122) ((-140 . -107) 57101) ((-926 . -959) 56991) ((-1073 . -780) NIL) ((-629 . -1121) T) ((-734 . -975) T) ((-634 . -1023) T) ((-1183 . -968) T) ((-1181 . -968) T) ((-1063 . -1117) T) ((-926 . -349) 56968) ((-837 . -133) T) ((-837 . -135) 56950) ((-797 . -124) T) ((-750 . -974) 56848) ((-629 . -511) T) ((-634 . -23) T) ((-586 . -559) 56780) ((-586 . -560) 56741) ((-574 . -560) NIL) ((-574 . -559) 56723) ((-456 . -157) T) ((-199 . -21) T) ((-194 . -157) T) ((-199 . -25) T) ((-445 . -1106) 56689) ((-445 . -1103) 56655) ((-249 . -559) 56637) ((-248 . -559) 56619) ((-247 . -559) 56601) ((-246 . -559) 56583) ((-245 . -559) 56565) ((-467 . -590) 56547) ((-244 . -559) 56529) ((-311 . -661) T) ((-243 . -559) 56511) ((-106 . -19) 56493) ((-158 . -661) T) ((-467 . -345) 56475) ((-190 . -559) 56457) ((-485 . -1056) 56441) ((-467 . -119) T) ((-106 . -552) 56416) ((-189 . -559) 56398) ((-445 . -34) 56364) ((-445 . -91) 56330) ((-187 . -559) 56312) ((-186 . -559) 56294) ((-185 . -559) 56276) ((-184 . -559) 56258) ((-181 . -559) 56240) ((-180 . -559) 56222) ((-179 . -559) 56204) ((-178 . -559) 56186) ((-177 . -559) 56168) ((-176 . -559) 56150) ((-175 . -559) 56132) ((-495 . -1014) 56084) ((-174 . -559) 56066) ((-173 . -559) 56048) ((-44 . -458) 55985) ((-172 . -559) 55967) ((-171 . -559) 55949) ((-750 . -107) 55840) ((-585 . -97) 55790) ((-452 . -260) 55767) ((-1024 . -559) 55519) ((-1012 . -1011) T) ((-965 . -1117) T) ((-566 . -1023) T) ((-1184 . -959) 55503) ((-1078 . -282) 55490) ((-1034 . -282) 55477) ((-113 . -1023) T) ((-754 . -97) T) ((-566 . -23) T) ((-1057 . -480) 55269) ((-358 . -97) T) ((-296 . -97) T) ((-926 . -827) 55221) ((-889 . -1011) T) ((-140 . -968) T) ((-113 . -23) T) ((-666 . -383) 55205) ((-670 . -1011) T) ((-650 . -1011) T) ((-638 . -125) T) ((-424 . -1011) T) ((-288 . -402) 55189) ((-379 . -1117) T) ((-949 . -560) 55150) ((-946 . -1121) T) ((-201 . -97) T) ((-949 . -559) 55112) ((-751 . -207) 55096) ((-946 . -511) T) ((-768 . -587) 55069) ((-326 . -1121) T) ((-447 . -559) 55031) ((-447 . -560) 54992) ((-434 . -560) 54953) ((-434 . -559) 54915) ((-379 . -811) 54899) ((-291 . -974) 54734) ((-379 . -813) 54659) ((-775 . -959) 54557) ((-456 . -480) NIL) ((-452 . -552) 54534) ((-326 . -511) T) ((-194 . -480) NIL) ((-799 . -423) T) ((-390 . -1011) T) ((-379 . -959) 54401) ((-291 . -107) 54222) ((-629 . -335) T) ((-201 . -258) T) ((-47 . -1121) T) ((-750 . -968) 54153) ((-531 . -124) T) ((-519 . -124) T) ((-462 . -124) T) ((-47 . -511) T) ((-1066 . -262) 54129) ((-1078 . -1058) 54107) ((-288 . -27) 54086) ((-979 . -97) T) ((-750 . -209) 54039) ((-216 . -780) 54018) ((-879 . -97) T) ((-648 . -97) T) ((-268 . -458) 53955) ((-451 . -97) T) ((-666 . -975) T) ((-558 . -559) 53937) ((-558 . -560) 53798) ((-379 . -349) 53782) ((-379 . -310) 53766) ((-1078 . -37) 53595) ((-1034 . -37) 53444) ((-786 . -37) 53414) ((-362 . -587) 53398) ((-585 . -282) 53336) ((-889 . -652) 53233) ((-198 . -102) 53217) ((-44 . -260) 53142) ((-670 . -652) 53112) ((-564 . -587) 53086) ((-284 . -1011) T) ((-263 . -974) 53073) ((-106 . -559) 53055) ((-106 . -560) 53037) ((-424 . -652) 53007) ((-751 . -228) 52946) ((-625 . -1011) 52924) ((-505 . -1011) T) ((-1080 . -975) T) ((-1079 . -975) T) ((-263 . -107) 52909) ((-1073 . -975) T) ((-1035 . -975) T) ((-505 . -556) 52888) ((-927 . -780) T) ((-203 . -623) 52846) ((-629 . -1023) T) ((-1112 . -675) 52822) ((-291 . -968) T) ((-315 . -25) T) ((-315 . -21) T) ((-379 . -827) 52781) ((-66 . -1117) T) ((-768 . -728) 52760) ((-390 . -652) 52734) ((-734 . -1011) T) ((-768 . -725) 52713) ((-634 . -124) T) ((-647 . -847) 52692) ((-629 . -23) T) ((-456 . -264) T) ((-768 . -661) 52671) ((-291 . -209) 52623) ((-291 . -219) 52602) ((-194 . -264) T) ((-946 . -335) T) ((-1147 . -423) 52581) ((-1126 . -423) 52560) ((-326 . -301) 52537) ((-326 . -335) T) ((-1047 . -559) 52519) ((-44 . -1151) 52469) ((-798 . -97) T) ((-585 . -256) 52453) ((-634 . -977) T) ((-448 . -587) 52418) ((-439 . -1011) T) ((-44 . -552) 52343) ((-1065 . -262) 52318) ((-39 . -581) 52257) ((-47 . -335) T) ((-1017 . -559) 52239) ((-1000 . -782) 52218) ((-574 . -262) 52193) ((-716 . -782) 52172) ((-714 . -782) 52151) ((-452 . -559) 51903) ((-216 . -383) 51872) ((-879 . -282) 51859) ((-425 . -782) 51838) ((-63 . -1117) T) ((-566 . -124) T) ((-451 . -282) 51825) ((-980 . -480) 51669) ((-263 . -968) T) ((-113 . -124) T) ((-424 . -696) T) ((-889 . -157) 51620) ((-994 . -974) 51530) ((-564 . -728) 51509) ((-542 . -1011) T) ((-564 . -725) 51488) ((-564 . -661) T) ((-268 . -260) 51467) ((-267 . -1117) T) ((-972 . -559) 51429) ((-972 . -560) 51390) ((-946 . -1023) T) ((-154 . -97) T) ((-250 . -782) T) ((-1072 . -1011) T) ((-753 . -559) 51372) ((-1024 . -262) 51349) ((-1013 . -205) 51333) ((-926 . -280) T) ((-734 . -652) 51317) ((-331 . -974) 51269) ((-326 . -1023) T) ((-325 . -974) 51221) ((-386 . -559) 51203) ((-357 . -559) 51185) ((-317 . -974) 51137) ((-203 . -559) 51069) ((-994 . -107) 50965) ((-946 . -23) T) ((-103 . -974) 50915) ((-825 . -97) T) ((-773 . -97) T) ((-743 . -97) T) ((-703 . -97) T) ((-614 . -97) T) ((-445 . -423) 50894) ((-390 . -157) T) ((-331 . -107) 50832) ((-325 . -107) 50770) ((-317 . -107) 50708) ((-226 . -207) 50678) ((-225 . -207) 50648) ((-326 . -23) T) ((-69 . -1117) T) ((-201 . -37) 50613) ((-103 . -107) 50547) ((-39 . -25) T) ((-39 . -21) T) ((-609 . -655) T) ((-154 . -258) 50525) ((-47 . -1023) T) ((-848 . -25) T) ((-705 . -25) T) ((-1057 . -458) 50462) ((-454 . -1011) T) ((-1185 . -587) 50436) ((-1136 . -97) T) ((-787 . -97) T) ((-216 . -975) 50367) ((-979 . -1058) T) ((-890 . -726) 50320) ((-353 . -587) 50304) ((-47 . -23) T) ((-890 . -730) 50257) ((-750 . -730) 50208) ((-750 . -726) 50159) ((-268 . -552) 50138) ((-448 . -661) T) ((-526 . -97) T) ((-798 . -282) 50095) ((-592 . -260) 50074) ((-108 . -600) T) ((-74 . -1117) T) ((-979 . -37) 50061) ((-603 . -346) 50040) ((-879 . -37) 49889) ((-666 . -1011) T) ((-451 . -37) 49738) ((-84 . -1117) T) ((-526 . -258) T) ((-1127 . -780) NIL) ((-1080 . -1011) T) ((-1079 . -1011) T) ((-1073 . -1011) T) ((-323 . -959) 49715) ((-994 . -968) T) ((-927 . -975) T) ((-44 . -559) 49697) ((-44 . -560) NIL) ((-841 . -975) T) ((-752 . -559) 49679) ((-1054 . -97) 49657) ((-994 . -219) 49608) ((-399 . -975) T) ((-331 . -968) T) ((-325 . -968) T) ((-337 . -336) 49585) ((-317 . -968) T) ((-226 . -214) 49564) ((-225 . -214) 49543) ((-105 . -336) 49517) ((-994 . -209) 49442) ((-1035 . -1011) T) ((-267 . -827) 49401) ((-103 . -968) T) ((-629 . -124) T) ((-390 . -480) 49243) ((-331 . -209) 49222) ((-331 . -219) T) ((-43 . -655) T) ((-325 . -209) 49201) ((-325 . -219) T) ((-317 . -209) 49180) ((-317 . -219) T) ((-154 . -282) 49145) ((-103 . -219) T) ((-103 . -209) T) ((-291 . -726) T) ((-797 . -21) T) ((-797 . -25) T) ((-379 . -280) T) ((-467 . -33) T) ((-106 . -262) 49120) ((-1024 . -974) 49018) ((-798 . -1058) NIL) ((-302 . -559) 49000) ((-379 . -944) 48979) ((-1024 . -107) 48870) ((-408 . -1011) T) ((-1185 . -661) T) ((-61 . -559) 48852) ((-798 . -37) 48797) ((-488 . -1117) T) ((-550 . -139) 48781) ((-478 . -559) 48763) ((-1136 . -282) 48750) ((-666 . -652) 48599) ((-491 . -727) T) ((-491 . -728) T) ((-519 . -581) 48581) ((-462 . -581) 48541) ((-327 . -423) T) ((-324 . -423) T) ((-316 . -423) T) ((-239 . -423) 48492) ((-485 . -1011) 48442) ((-223 . -423) 48393) ((-1057 . -260) 48372) ((-1084 . -559) 48354) ((-625 . -480) 48287) ((-889 . -264) 48266) ((-505 . -480) 48058) ((-1078 . -207) 48042) ((-154 . -1058) 48021) ((-1173 . -559) 48003) ((-1080 . -652) 47900) ((-1079 . -652) 47741) ((-819 . -97) T) ((-1073 . -652) 47537) ((-1035 . -652) 47434) ((-1063 . -612) 47418) ((-327 . -374) 47369) ((-324 . -374) 47320) ((-316 . -374) 47271) ((-946 . -124) T) ((-734 . -480) 47183) ((-268 . -560) NIL) ((-268 . -559) 47165) ((-837 . -423) T) ((-890 . -340) 47118) ((-750 . -340) 47097) ((-476 . -475) 47076) ((-474 . -475) 47055) ((-456 . -260) NIL) ((-452 . -262) 47032) ((-390 . -264) T) ((-326 . -124) T) ((-194 . -260) NIL) ((-629 . -460) NIL) ((-94 . -1023) T) ((-154 . -37) 46860) ((-1147 . -897) 46823) ((-1054 . -282) 46761) ((-1126 . -897) 46731) ((-837 . -374) T) ((-1024 . -968) 46662) ((-1149 . -511) T) ((-1057 . -552) 46641) ((-108 . -782) T) ((-980 . -458) 46572) ((-531 . -21) T) ((-531 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-462 . -25) T) ((-462 . -21) T) ((-1136 . -1058) 46550) ((-1024 . -209) 46503) ((-47 . -124) T) ((-1099 . -97) T) ((-216 . -1011) 46314) ((-798 . -372) 46291) ((-1001 . -97) T) ((-990 . -97) T) ((-554 . -97) T) ((-446 . -97) T) ((-1136 . -37) 46120) ((-787 . -37) 46090) ((-666 . -157) 46001) ((-592 . -559) 45983) ((-526 . -37) 45970) ((-884 . -97) 45920) ((-792 . -559) 45902) ((-792 . -560) 45824) ((-542 . -480) NIL) ((-1155 . -975) T) ((-1148 . -975) T) ((-1127 . -975) T) ((-545 . -975) T) ((-544 . -975) T) ((-1189 . -1023) T) ((-1080 . -157) 45775) ((-1079 . -157) 45706) ((-1073 . -157) 45637) ((-1035 . -157) 45588) ((-927 . -1011) T) ((-895 . -1011) T) ((-841 . -1011) T) ((-1112 . -135) 45567) ((-734 . -732) 45551) ((-634 . -25) T) ((-634 . -21) T) ((-113 . -581) 45528) ((-636 . -813) 45510) ((-399 . -1011) T) ((-288 . -1121) 45489) ((-285 . -1121) T) ((-154 . -372) 45473) ((-1112 . -133) 45452) ((-445 . -897) 45415) ((-70 . -559) 45397) ((-103 . -730) T) ((-103 . -726) T) ((-288 . -511) 45376) ((-636 . -959) 45358) ((-285 . -511) T) ((-1189 . -23) T) ((-126 . -959) 45340) ((-452 . -974) 45238) ((-44 . -262) 45163) ((-216 . -652) 45105) ((-452 . -107) 44996) ((-1004 . -97) 44974) ((-956 . -97) T) ((-585 . -763) 44953) ((-666 . -480) 44896) ((-972 . -974) 44880) ((-566 . -21) T) ((-566 . -25) T) ((-980 . -260) 44855) ((-333 . -97) T) ((-294 . -97) T) ((-609 . -587) 44829) ((-357 . -974) 44813) ((-972 . -107) 44792) ((-751 . -383) 44776) ((-113 . -25) T) ((-87 . -559) 44758) ((-113 . -21) T) ((-554 . -282) 44553) ((-446 . -282) 44357) ((-1057 . -560) NIL) ((-357 . -107) 44336) ((-351 . -97) T) ((-191 . -559) 44318) ((-1057 . -559) 44300) ((-927 . -652) 44250) ((-1073 . -480) 44019) ((-841 . -652) 43971) ((-1035 . -480) 43941) ((-323 . -280) T) ((-1091 . -139) 43891) ((-884 . -282) 43829) ((-769 . -97) T) ((-399 . -652) 43813) ((-201 . -763) T) ((-762 . -97) T) ((-760 . -97) T) ((-449 . -139) 43763) ((-1147 . -1146) 43742) ((-1029 . -1121) T) ((-311 . -959) 43709) ((-1147 . -1141) 43679) ((-1147 . -1144) 43663) ((-1126 . -1125) 43642) ((-78 . -559) 43624) ((-832 . -559) 43606) ((-1126 . -1141) 43583) ((-1029 . -511) T) ((-848 . -782) T) ((-456 . -560) 43513) ((-456 . -559) 43495) ((-705 . -782) T) ((-351 . -258) T) ((-610 . -782) T) ((-1126 . -1123) 43479) ((-1149 . -1023) T) ((-194 . -560) 43409) ((-194 . -559) 43391) ((-980 . -552) 43366) ((-57 . -139) 43350) ((-482 . -139) 43334) ((-463 . -139) 43318) ((-331 . -1180) 43302) ((-325 . -1180) 43286) ((-317 . -1180) 43270) ((-288 . -335) 43249) ((-285 . -335) T) ((-452 . -968) 43180) ((-629 . -581) 43162) ((-1183 . -587) 43136) ((-1181 . -587) 43110) ((-1149 . -23) T) ((-625 . -458) 43094) ((-62 . -559) 43076) ((-1024 . -730) 43027) ((-1024 . -726) 42978) ((-505 . -458) 42915) ((-609 . -33) T) ((-452 . -209) 42868) ((-268 . -262) 42847) ((-216 . -157) 42826) ((-751 . -975) T) ((-43 . -587) 42784) ((-994 . -340) 42735) ((-666 . -264) 42666) ((-485 . -480) 42599) ((-752 . -974) 42550) ((-1000 . -133) 42529) ((-331 . -340) 42508) ((-325 . -340) 42487) ((-317 . -340) 42466) ((-1000 . -135) 42445) ((-798 . -207) 42422) ((-752 . -107) 42364) ((-716 . -133) 42343) ((-716 . -135) 42322) ((-239 . -876) 42289) ((-226 . -780) 42268) ((-223 . -876) 42213) ((-225 . -780) 42192) ((-714 . -133) 42171) ((-714 . -135) 42150) ((-140 . -587) 42124) ((-425 . -135) 42103) ((-425 . -133) 42082) ((-609 . -661) T) ((-758 . -559) 42064) ((-1155 . -1011) T) ((-1148 . -1011) T) ((-1127 . -1011) T) ((-1112 . -1106) 42030) ((-1112 . -1103) 41996) ((-1080 . -264) 41975) ((-1079 . -264) 41926) ((-1073 . -264) 41877) ((-1035 . -264) 41856) ((-311 . -827) 41837) ((-927 . -157) T) ((-841 . -157) T) ((-545 . -1011) T) ((-544 . -1011) T) ((-629 . -21) T) ((-629 . -25) T) ((-445 . -1144) 41821) ((-445 . -1141) 41791) ((-390 . -260) 41719) ((-288 . -1023) 41569) ((-285 . -1023) T) ((-1112 . -34) 41535) ((-1112 . -91) 41501) ((-82 . -559) 41483) ((-89 . -97) 41461) ((-1189 . -124) T) ((-532 . -133) T) ((-532 . -135) 41443) ((-483 . -135) 41425) ((-483 . -133) T) ((-288 . -23) 41278) ((-39 . -314) 41252) ((-285 . -23) T) ((-1065 . -590) 41234) ((-750 . -587) 41084) ((-1176 . -975) T) ((-1065 . -345) 41066) ((-154 . -207) 41050) ((-542 . -458) 41032) ((-216 . -480) 40965) ((-1183 . -661) T) ((-1181 . -661) T) ((-1084 . -974) 40848) ((-1084 . -107) 40717) ((-752 . -968) T) ((-481 . -97) T) ((-47 . -581) 40677) ((-476 . -97) T) ((-474 . -97) T) ((-1173 . -974) 40647) ((-956 . -37) 40631) ((-752 . -209) T) ((-752 . -219) 40610) ((-505 . -260) 40589) ((-1173 . -107) 40554) ((-1136 . -207) 40538) ((-1155 . -652) 40435) ((-980 . -560) NIL) ((-980 . -559) 40417) ((-1148 . -652) 40258) ((-1127 . -652) 40054) ((-926 . -847) T) ((-638 . -559) 40023) ((-140 . -661) T) ((-1024 . -340) 40002) ((-927 . -480) NIL) ((-226 . -383) 39971) ((-225 . -383) 39940) ((-946 . -25) T) ((-946 . -21) T) ((-545 . -652) 39913) ((-544 . -652) 39810) ((-734 . -260) 39768) ((-122 . -97) 39746) ((-768 . -959) 39644) ((-154 . -763) 39623) ((-291 . -587) 39520) ((-750 . -33) T) ((-649 . -97) T) ((-1029 . -1023) T) ((-948 . -1117) T) ((-351 . -37) 39485) ((-326 . -25) T) ((-326 . -21) T) ((-147 . -97) T) ((-143 . -97) T) ((-327 . -1170) 39469) ((-324 . -1170) 39453) ((-316 . -1170) 39437) ((-154 . -321) 39416) ((-519 . -782) T) ((-462 . -782) T) ((-1029 . -23) T) ((-85 . -559) 39398) ((-636 . -280) T) ((-769 . -37) 39368) ((-762 . -37) 39338) ((-1149 . -124) T) ((-1057 . -262) 39317) ((-890 . -727) 39270) ((-890 . -728) 39223) ((-750 . -725) 39202) ((-112 . -280) T) ((-89 . -282) 39140) ((-613 . -33) T) ((-505 . -552) 39119) ((-47 . -25) T) ((-47 . -21) T) ((-750 . -728) 39070) ((-750 . -727) 39049) ((-636 . -944) T) ((-592 . -974) 39033) ((-890 . -661) 38932) ((-750 . -661) 38863) ((-890 . -444) 38816) ((-452 . -730) 38767) ((-452 . -726) 38718) ((-837 . -1170) 38705) ((-1084 . -968) T) ((-592 . -107) 38684) ((-1084 . -298) 38661) ((-1104 . -97) 38639) ((-1012 . -559) 38621) ((-636 . -504) T) ((-751 . -1011) T) ((-1173 . -968) T) ((-385 . -1011) T) ((-226 . -975) 38552) ((-225 . -975) 38483) ((-263 . -587) 38470) ((-542 . -260) 38445) ((-625 . -623) 38403) ((-889 . -559) 38385) ((-799 . -97) T) ((-670 . -559) 38367) ((-650 . -559) 38349) ((-1155 . -157) 38300) ((-1148 . -157) 38231) ((-1127 . -157) 38162) ((-634 . -782) T) ((-927 . -264) T) ((-424 . -559) 38144) ((-569 . -661) T) ((-58 . -1011) 38122) ((-221 . -139) 38106) ((-841 . -264) T) ((-946 . -935) T) ((-569 . -444) T) ((-647 . -1121) 38085) ((-545 . -157) 38064) ((-544 . -157) 38015) ((-1163 . -782) 37994) ((-647 . -511) 37905) ((-379 . -847) T) ((-379 . -755) 37884) ((-291 . -728) T) ((-291 . -661) T) ((-390 . -559) 37866) ((-390 . -560) 37774) ((-585 . -1056) 37758) ((-106 . -590) 37740) ((-122 . -282) 37678) ((-106 . -345) 37660) ((-158 . -280) T) ((-370 . -1117) T) ((-288 . -124) 37532) ((-285 . -124) T) ((-67 . -367) T) ((-106 . -119) T) ((-485 . -458) 37516) ((-593 . -1023) T) ((-542 . -19) 37498) ((-59 . -412) T) ((-59 . -367) T) ((-759 . -1011) T) ((-542 . -552) 37473) ((-448 . -959) 37433) ((-592 . -968) T) ((-593 . -23) T) ((-1176 . -1011) T) ((-751 . -652) 37282) ((-113 . -782) NIL) ((-1078 . -383) 37266) ((-1034 . -383) 37250) ((-786 . -383) 37234) ((-800 . -97) 37185) ((-1147 . -97) T) ((-1127 . -480) 36954) ((-1104 . -282) 36892) ((-284 . -559) 36874) ((-1126 . -97) T) ((-1013 . -1011) T) ((-1080 . -260) 36859) ((-1079 . -260) 36844) ((-263 . -661) T) ((-103 . -836) NIL) ((-625 . -559) 36776) ((-625 . -560) 36737) ((-994 . -587) 36647) ((-549 . -559) 36629) ((-505 . -560) NIL) ((-505 . -559) 36611) ((-1073 . -260) 36459) ((-456 . -974) 36409) ((-646 . -423) T) ((-477 . -475) 36388) ((-473 . -475) 36367) ((-194 . -974) 36317) ((-331 . -587) 36269) ((-325 . -587) 36221) ((-201 . -780) T) ((-317 . -587) 36173) ((-550 . -97) 36123) ((-452 . -340) 36102) ((-103 . -587) 36052) ((-456 . -107) 35986) ((-216 . -458) 35970) ((-315 . -135) 35952) ((-315 . -133) T) ((-154 . -342) 35923) ((-870 . -1161) 35907) ((-194 . -107) 35841) ((-799 . -282) 35806) ((-870 . -1011) 35756) ((-734 . -560) 35717) ((-734 . -559) 35699) ((-653 . -97) T) ((-303 . -1011) T) ((-1029 . -124) T) ((-649 . -37) 35669) ((-288 . -460) 35648) ((-467 . -1117) T) ((-1147 . -258) 35614) ((-1126 . -258) 35580) ((-299 . -139) 35564) ((-980 . -262) 35539) ((-1176 . -652) 35509) ((-1066 . -33) T) ((-1185 . -959) 35486) ((-439 . -559) 35468) ((-453 . -33) T) ((-353 . -959) 35452) ((-1078 . -975) T) ((-1034 . -975) T) ((-786 . -975) T) ((-979 . -780) T) ((-751 . -157) 35363) ((-485 . -260) 35340) ((-113 . -916) 35317) ((-1155 . -264) 35296) ((-1099 . -336) 35270) ((-1001 . -241) 35254) ((-445 . -97) T) ((-337 . -1011) T) ((-226 . -1011) T) ((-225 . -1011) T) ((-1148 . -264) 35205) ((-105 . -1011) T) ((-1127 . -264) 35156) ((-799 . -1058) 35134) ((-1080 . -925) 35100) ((-554 . -336) 35040) ((-1079 . -925) 35006) ((-554 . -205) 34953) ((-542 . -559) 34935) ((-542 . -560) NIL) ((-629 . -782) T) ((-446 . -205) 34885) ((-456 . -968) T) ((-1073 . -925) 34851) ((-86 . -411) T) ((-86 . -367) T) ((-194 . -968) T) ((-1035 . -925) 34817) ((-994 . -661) T) ((-647 . -1023) T) ((-545 . -264) 34796) ((-544 . -264) 34775) ((-456 . -219) T) ((-456 . -209) T) ((-194 . -219) T) ((-194 . -209) T) ((-1072 . -559) 34757) ((-799 . -37) 34709) ((-331 . -661) T) ((-325 . -661) T) ((-317 . -661) T) ((-103 . -728) T) ((-103 . -725) T) ((-485 . -1151) 34693) ((-103 . -661) T) ((-647 . -23) T) ((-1189 . -25) T) ((-445 . -258) 34659) ((-1189 . -21) T) ((-1126 . -282) 34598) ((-1082 . -97) T) ((-39 . -133) 34570) ((-39 . -135) 34542) ((-485 . -552) 34519) ((-1024 . -587) 34369) ((-550 . -282) 34307) ((-44 . -590) 34257) ((-44 . -605) 34207) ((-44 . -345) 34157) ((-1065 . -33) T) ((-798 . -780) NIL) ((-593 . -124) T) ((-454 . -559) 34139) ((-216 . -260) 34116) ((-586 . -33) T) ((-574 . -33) T) ((-1000 . -423) 34067) ((-751 . -480) 33941) ((-716 . -423) 33872) ((-714 . -423) 33823) ((-425 . -423) 33774) ((-879 . -383) 33758) ((-666 . -559) 33740) ((-226 . -652) 33682) ((-225 . -652) 33624) ((-666 . -560) 33485) ((-451 . -383) 33469) ((-311 . -275) T) ((-323 . -847) T) ((-923 . -97) 33447) ((-946 . -782) T) ((-58 . -480) 33380) ((-1126 . -1058) 33332) ((-927 . -260) NIL) ((-201 . -975) T) ((-351 . -763) T) ((-1024 . -33) T) ((-532 . -423) T) ((-483 . -423) T) ((-1130 . -1005) 33316) ((-1130 . -1011) 33294) ((-216 . -552) 33271) ((-1130 . -1007) 33228) ((-1080 . -559) 33210) ((-1079 . -559) 33192) ((-1073 . -559) 33174) ((-1073 . -560) NIL) ((-1035 . -559) 33156) ((-799 . -372) 33140) ((-495 . -97) T) ((-1147 . -37) 32981) ((-1126 . -37) 32795) ((-797 . -135) T) ((-532 . -374) T) ((-47 . -782) T) ((-483 . -374) T) ((-1149 . -21) T) ((-1149 . -25) T) ((-1024 . -725) 32774) ((-1024 . -728) 32725) ((-1024 . -727) 32704) ((-917 . -1011) T) ((-949 . -33) T) ((-790 . -1011) T) ((-1159 . -97) T) ((-1024 . -661) 32635) ((-603 . -97) T) ((-505 . -262) 32614) ((-1091 . -97) T) ((-447 . -33) T) ((-434 . -33) T) ((-327 . -97) T) ((-324 . -97) T) ((-316 . -97) T) ((-239 . -97) T) ((-223 . -97) T) ((-448 . -280) T) ((-979 . -975) T) ((-879 . -975) T) ((-288 . -581) 32522) ((-285 . -581) 32483) ((-451 . -975) T) ((-449 . -97) T) ((-408 . -559) 32465) ((-1078 . -1011) T) ((-1034 . -1011) T) ((-786 . -1011) T) ((-1048 . -97) T) ((-751 . -264) 32396) ((-889 . -974) 32279) ((-448 . -944) T) ((-670 . -974) 32249) ((-424 . -974) 32219) ((-1054 . -1030) 32203) ((-1013 . -480) 32136) ((-889 . -107) 32005) ((-837 . -97) T) ((-670 . -107) 31970) ((-57 . -97) 31920) ((-485 . -560) 31881) ((-485 . -559) 31793) ((-484 . -97) 31771) ((-482 . -97) 31721) ((-464 . -97) 31699) ((-463 . -97) 31649) ((-424 . -107) 31612) ((-226 . -157) 31591) ((-225 . -157) 31570) ((-390 . -974) 31544) ((-1112 . -897) 31506) ((-922 . -1023) T) ((-870 . -480) 31439) ((-456 . -730) T) ((-445 . -37) 31280) ((-390 . -107) 31247) ((-456 . -726) T) ((-923 . -282) 31185) ((-194 . -730) T) ((-194 . -726) T) ((-922 . -23) T) ((-647 . -124) T) ((-1126 . -372) 31155) ((-288 . -25) 31008) ((-154 . -383) 30992) ((-288 . -21) 30864) ((-285 . -25) T) ((-285 . -21) T) ((-792 . -340) T) ((-106 . -33) T) ((-452 . -587) 30714) ((-798 . -975) T) ((-542 . -262) 30689) ((-531 . -135) T) ((-519 . -135) T) ((-462 . -135) T) ((-1078 . -652) 30518) ((-1034 . -652) 30367) ((-1029 . -581) 30349) ((-786 . -652) 30319) ((-609 . -1117) T) ((-1 . -97) T) ((-216 . -559) 30071) ((-1136 . -383) 30055) ((-1091 . -282) 29859) ((-889 . -968) T) ((-670 . -968) T) ((-650 . -968) T) ((-585 . -1011) 29809) ((-972 . -587) 29793) ((-787 . -383) 29777) ((-477 . -97) T) ((-473 . -97) T) ((-223 . -282) 29764) ((-239 . -282) 29751) ((-889 . -298) 29730) ((-357 . -587) 29714) ((-449 . -282) 29518) ((-226 . -480) 29451) ((-609 . -959) 29349) ((-225 . -480) 29282) ((-1048 . -282) 29208) ((-754 . -1011) T) ((-734 . -974) 29192) ((-1155 . -260) 29177) ((-1148 . -260) 29162) ((-1127 . -260) 29010) ((-358 . -1011) T) ((-296 . -1011) T) ((-390 . -968) T) ((-154 . -975) T) ((-57 . -282) 28948) ((-734 . -107) 28927) ((-544 . -260) 28912) ((-484 . -282) 28850) ((-482 . -282) 28788) ((-464 . -282) 28726) ((-463 . -282) 28664) ((-390 . -209) 28643) ((-452 . -33) T) ((-927 . -560) 28573) ((-201 . -1011) T) ((-927 . -559) 28555) ((-895 . -559) 28537) ((-895 . -560) 28512) ((-841 . -559) 28494) ((-634 . -135) T) ((-636 . -847) T) ((-636 . -755) T) ((-399 . -559) 28476) ((-1029 . -21) T) ((-1029 . -25) T) ((-609 . -349) 28460) ((-112 . -847) T) ((-799 . -207) 28444) ((-76 . -1117) T) ((-122 . -121) 28428) ((-972 . -33) T) ((-1183 . -959) 28402) ((-1181 . -959) 28359) ((-1136 . -975) T) ((-787 . -975) T) ((-452 . -725) 28338) ((-327 . -1058) 28317) ((-324 . -1058) 28296) ((-316 . -1058) 28275) ((-452 . -728) 28226) ((-452 . -727) 28205) ((-203 . -33) T) ((-452 . -661) 28136) ((-58 . -458) 28120) ((-526 . -975) T) ((-1078 . -157) 28011) ((-1034 . -157) 27922) ((-979 . -1011) T) ((-1000 . -876) 27867) ((-879 . -1011) T) ((-752 . -587) 27818) ((-716 . -876) 27788) ((-648 . -1011) T) ((-714 . -876) 27755) ((-482 . -256) 27739) ((-609 . -827) 27698) ((-451 . -1011) T) ((-425 . -876) 27665) ((-77 . -1117) T) ((-327 . -37) 27630) ((-324 . -37) 27595) ((-316 . -37) 27560) ((-239 . -37) 27409) ((-223 . -37) 27258) ((-837 . -1058) T) ((-566 . -135) 27237) ((-566 . -133) 27216) ((-113 . -135) T) ((-113 . -133) NIL) ((-386 . -661) T) ((-734 . -968) T) ((-315 . -423) T) ((-1155 . -925) 27182) ((-1148 . -925) 27148) ((-1127 . -925) 27114) ((-837 . -37) 27079) ((-201 . -652) 27044) ((-39 . -381) 27016) ((-291 . -46) 26986) ((-922 . -124) T) ((-750 . -1117) T) ((-158 . -847) T) ((-315 . -374) T) ((-485 . -262) 26963) ((-44 . -33) T) ((-750 . -959) 26792) ((-601 . -97) T) ((-593 . -21) T) ((-593 . -25) T) ((-1013 . -458) 26776) ((-1126 . -207) 26746) ((-613 . -1117) T) ((-221 . -97) 26696) ((-798 . -1011) T) ((-1084 . -587) 26621) ((-979 . -652) 26608) ((-666 . -974) 26451) ((-1078 . -480) 26399) ((-879 . -652) 26248) ((-1034 . -480) 26200) ((-451 . -652) 26049) ((-65 . -559) 26031) ((-666 . -107) 25860) ((-870 . -458) 25844) ((-1173 . -587) 25804) ((-752 . -661) T) ((-1080 . -974) 25687) ((-1079 . -974) 25522) ((-1073 . -974) 25312) ((-1035 . -974) 25195) ((-926 . -1121) T) ((-1006 . -97) 25173) ((-750 . -349) 25143) ((-926 . -511) T) ((-1080 . -107) 25012) ((-1079 . -107) 24833) ((-1073 . -107) 24602) ((-1035 . -107) 24471) ((-1016 . -1014) 24435) ((-351 . -780) T) ((-1155 . -559) 24417) ((-1148 . -559) 24399) ((-1127 . -559) 24381) ((-1127 . -560) NIL) ((-216 . -262) 24358) ((-39 . -423) T) ((-201 . -157) T) ((-154 . -1011) T) ((-629 . -135) T) ((-629 . -133) NIL) ((-545 . -559) 24340) ((-544 . -559) 24322) ((-825 . -1011) T) ((-773 . -1011) T) ((-743 . -1011) T) ((-703 . -1011) T) ((-597 . -784) 24306) ((-614 . -1011) T) ((-750 . -827) 24239) ((-39 . -374) NIL) ((-1029 . -600) T) ((-798 . -652) 24184) ((-226 . -458) 24168) ((-225 . -458) 24152) ((-647 . -581) 24100) ((-592 . -587) 24074) ((-268 . -33) T) ((-666 . -968) T) ((-532 . -1170) 24061) ((-483 . -1170) 24038) ((-1136 . -1011) T) ((-1078 . -264) 23949) ((-1034 . -264) 23880) ((-979 . -157) T) ((-787 . -1011) T) ((-879 . -157) 23791) ((-716 . -1139) 23775) ((-585 . -480) 23708) ((-75 . -559) 23690) ((-666 . -298) 23655) ((-1084 . -661) T) ((-526 . -1011) T) ((-451 . -157) 23566) ((-221 . -282) 23504) ((-1049 . -1023) T) ((-68 . -559) 23486) ((-1173 . -661) T) ((-1080 . -968) T) ((-1079 . -968) T) ((-299 . -97) 23436) ((-1073 . -968) T) ((-1049 . -23) T) ((-1035 . -968) T) ((-89 . -1030) 23420) ((-793 . -1023) T) ((-1080 . -209) 23379) ((-1079 . -219) 23358) ((-1079 . -209) 23310) ((-1073 . -209) 23197) ((-1073 . -219) 23176) ((-291 . -827) 23082) ((-793 . -23) T) ((-154 . -652) 22910) ((-379 . -1121) T) ((-1012 . -340) T) ((-946 . -135) T) ((-926 . -335) T) ((-797 . -423) T) ((-870 . -260) 22887) ((-288 . -782) T) ((-285 . -782) NIL) ((-801 . -97) T) ((-647 . -25) T) ((-379 . -511) T) ((-647 . -21) T) ((-326 . -135) 22869) ((-326 . -133) T) ((-1054 . -1011) 22847) ((-424 . -655) T) ((-73 . -559) 22829) ((-110 . -782) T) ((-221 . -256) 22813) ((-216 . -974) 22711) ((-79 . -559) 22693) ((-670 . -340) 22646) ((-1082 . -763) T) ((-672 . -211) 22630) ((-1066 . -1117) T) ((-129 . -211) 22612) ((-216 . -107) 22503) ((-1136 . -652) 22332) ((-47 . -135) T) ((-798 . -157) T) ((-787 . -652) 22302) ((-453 . -1117) T) ((-879 . -480) 22249) ((-592 . -661) T) ((-526 . -652) 22236) ((-956 . -975) T) ((-451 . -480) 22179) ((-870 . -19) 22163) ((-870 . -552) 22140) ((-751 . -560) NIL) ((-751 . -559) 22122) ((-927 . -974) 22072) ((-385 . -559) 22054) ((-226 . -260) 22031) ((-225 . -260) 22008) ((-456 . -836) NIL) ((-288 . -29) 21978) ((-103 . -1117) T) ((-926 . -1023) T) ((-194 . -836) NIL) ((-841 . -974) 21930) ((-994 . -959) 21828) ((-927 . -107) 21762) ((-239 . -207) 21746) ((-672 . -630) 21730) ((-399 . -974) 21714) ((-351 . -975) T) ((-926 . -23) T) ((-841 . -107) 21652) ((-629 . -1106) NIL) ((-456 . -587) 21602) ((-103 . -811) 21584) ((-103 . -813) 21566) ((-629 . -1103) NIL) ((-194 . -587) 21516) ((-331 . -959) 21500) ((-325 . -959) 21484) ((-299 . -282) 21422) ((-317 . -959) 21406) ((-201 . -264) T) ((-399 . -107) 21385) ((-58 . -559) 21317) ((-154 . -157) T) ((-1029 . -782) T) ((-103 . -959) 21277) ((-819 . -1011) T) ((-769 . -975) T) ((-762 . -975) T) ((-629 . -34) NIL) ((-629 . -91) NIL) ((-285 . -916) 21238) ((-531 . -423) T) ((-519 . -423) T) ((-462 . -423) T) ((-379 . -335) T) ((-216 . -968) 21169) ((-1057 . -33) T) ((-448 . -847) T) ((-922 . -581) 21117) ((-226 . -552) 21094) ((-225 . -552) 21071) ((-994 . -349) 21055) ((-798 . -480) 20963) ((-216 . -209) 20916) ((-1065 . -1117) T) ((-759 . -559) 20898) ((-1184 . -1023) T) ((-1176 . -559) 20880) ((-1136 . -157) 20771) ((-103 . -349) 20753) ((-103 . -310) 20735) ((-979 . -264) T) ((-879 . -264) 20666) ((-734 . -340) 20645) ((-586 . -1117) T) ((-574 . -1117) T) ((-451 . -264) 20576) ((-526 . -157) T) ((-299 . -256) 20560) ((-1184 . -23) T) ((-1112 . -97) T) ((-1099 . -1011) T) ((-1001 . -1011) T) ((-990 . -1011) T) ((-81 . -559) 20542) ((-646 . -97) T) ((-327 . -321) 20521) ((-554 . -1011) T) ((-324 . -321) 20500) ((-316 . -321) 20479) ((-446 . -1011) T) ((-1091 . -205) 20429) ((-239 . -228) 20391) ((-1049 . -124) T) ((-554 . -556) 20367) ((-994 . -827) 20300) ((-927 . -968) T) ((-841 . -968) T) ((-446 . -556) 20279) ((-1073 . -726) NIL) ((-1073 . -730) NIL) ((-1013 . -560) 20240) ((-449 . -205) 20190) ((-1013 . -559) 20172) ((-927 . -219) T) ((-927 . -209) T) ((-399 . -968) T) ((-884 . -1011) 20122) ((-841 . -219) T) ((-793 . -124) T) ((-634 . -423) T) ((-775 . -1023) 20101) ((-103 . -827) NIL) ((-1112 . -258) 20067) ((-799 . -780) 20046) ((-1024 . -1117) T) ((-832 . -661) T) ((-154 . -480) 19958) ((-922 . -25) T) ((-832 . -444) T) ((-379 . -1023) T) ((-456 . -728) T) ((-456 . -725) T) ((-837 . -321) T) ((-456 . -661) T) ((-194 . -728) T) ((-194 . -725) T) ((-922 . -21) T) ((-194 . -661) T) ((-775 . -23) 19910) ((-291 . -280) 19889) ((-957 . -211) 19835) ((-379 . -23) T) ((-870 . -560) 19796) ((-870 . -559) 19708) ((-585 . -458) 19692) ((-44 . -933) 19642) ((-303 . -559) 19624) ((-1024 . -959) 19453) ((-542 . -590) 19435) ((-542 . -345) 19417) ((-315 . -1170) 19394) ((-949 . -1117) T) ((-798 . -264) T) ((-1136 . -480) 19342) ((-447 . -1117) T) ((-434 . -1117) T) ((-536 . -97) T) ((-1078 . -260) 19269) ((-566 . -423) 19248) ((-923 . -918) 19232) ((-1176 . -354) 19204) ((-113 . -423) T) ((-1098 . -97) T) ((-1004 . -1011) 19182) ((-956 . -1011) T) ((-820 . -782) T) ((-323 . -1121) T) ((-1155 . -974) 19065) ((-1024 . -349) 19035) ((-1148 . -974) 18870) ((-1127 . -974) 18660) ((-1155 . -107) 18529) ((-1148 . -107) 18350) ((-1127 . -107) 18119) ((-1112 . -282) 18106) ((-323 . -511) T) ((-337 . -559) 18088) ((-263 . -280) T) ((-545 . -974) 18061) ((-544 . -974) 17944) ((-333 . -1011) T) ((-294 . -1011) T) ((-226 . -559) 17905) ((-225 . -559) 17866) ((-926 . -124) T) ((-105 . -559) 17848) ((-577 . -23) T) ((-629 . -381) 17815) ((-553 . -23) T) ((-597 . -97) T) ((-545 . -107) 17786) ((-544 . -107) 17655) ((-351 . -1011) T) ((-308 . -97) T) ((-154 . -264) 17566) ((-1126 . -780) 17519) ((-649 . -975) T) ((-1054 . -480) 17452) ((-1024 . -827) 17385) ((-769 . -1011) T) ((-762 . -1011) T) ((-760 . -1011) T) ((-92 . -97) T) ((-132 . -782) T) ((-558 . -811) 17369) ((-106 . -1117) T) ((-1000 . -97) T) ((-980 . -33) T) ((-716 . -97) T) ((-714 . -97) T) ((-432 . -97) T) ((-425 . -97) T) ((-216 . -730) 17320) ((-216 . -726) 17271) ((-588 . -97) T) ((-1136 . -264) 17182) ((-603 . -576) 17166) ((-585 . -260) 17143) ((-956 . -652) 17127) ((-526 . -264) T) ((-889 . -587) 17052) ((-1184 . -124) T) ((-670 . -587) 17012) ((-650 . -587) 16999) ((-250 . -97) T) ((-424 . -587) 16929) ((-49 . -97) T) ((-532 . -97) T) ((-483 . -97) T) ((-1155 . -968) T) ((-1148 . -968) T) ((-1127 . -968) T) ((-1155 . -209) 16888) ((-294 . -652) 16870) ((-1148 . -219) 16849) ((-1148 . -209) 16801) ((-1127 . -209) 16688) ((-1127 . -219) 16667) ((-1112 . -37) 16564) ((-927 . -730) T) ((-545 . -968) T) ((-544 . -968) T) ((-927 . -726) T) ((-895 . -730) T) ((-895 . -726) T) ((-799 . -975) T) ((-797 . -796) 16548) ((-104 . -559) 16530) ((-629 . -423) T) ((-351 . -652) 16495) ((-390 . -587) 16469) ((-647 . -782) 16448) ((-646 . -37) 16413) ((-544 . -209) 16372) ((-39 . -659) 16344) ((-323 . -301) 16321) ((-323 . -335) T) ((-994 . -280) 16272) ((-267 . -1023) 16154) ((-1017 . -1117) T) ((-156 . -97) T) ((-1130 . -559) 16121) ((-775 . -124) 16073) ((-585 . -1151) 16057) ((-769 . -652) 16027) ((-762 . -652) 15997) ((-452 . -1117) T) ((-331 . -280) T) ((-325 . -280) T) ((-317 . -280) T) ((-585 . -552) 15974) ((-379 . -124) T) ((-485 . -605) 15958) ((-103 . -280) T) ((-267 . -23) 15842) ((-485 . -590) 15826) ((-629 . -374) NIL) ((-485 . -345) 15810) ((-89 . -1011) 15788) ((-103 . -944) T) ((-519 . -131) T) ((-1163 . -139) 15772) ((-452 . -959) 15601) ((-1149 . -133) 15562) ((-1149 . -135) 15523) ((-972 . -1117) T) ((-917 . -559) 15505) ((-790 . -559) 15487) ((-751 . -974) 15330) ((-1000 . -282) 15317) ((-203 . -1117) T) ((-716 . -282) 15304) ((-714 . -282) 15291) ((-751 . -107) 15120) ((-425 . -282) 15107) ((-1078 . -560) NIL) ((-1078 . -559) 15089) ((-1034 . -559) 15071) ((-1034 . -560) 14819) ((-956 . -157) T) ((-786 . -559) 14801) ((-870 . -262) 14778) ((-554 . -480) 14561) ((-753 . -959) 14545) ((-446 . -480) 14337) ((-889 . -661) T) ((-670 . -661) T) ((-650 . -661) T) ((-323 . -1023) T) ((-1085 . -559) 14319) ((-199 . -97) T) ((-452 . -349) 14289) ((-481 . -1011) T) ((-476 . -1011) T) ((-474 . -1011) T) ((-734 . -587) 14263) ((-946 . -423) T) ((-884 . -480) 14196) ((-323 . -23) T) ((-577 . -124) T) ((-553 . -124) T) ((-326 . -423) T) ((-216 . -340) 14175) ((-351 . -157) T) ((-1147 . -975) T) ((-1126 . -975) T) ((-201 . -925) T) ((-634 . -359) T) ((-390 . -661) T) ((-636 . -1121) T) ((-1049 . -581) 14123) ((-531 . -796) 14107) ((-1066 . -1094) 14083) ((-636 . -511) T) ((-122 . -1011) 14061) ((-1176 . -974) 14045) ((-649 . -1011) T) ((-452 . -827) 13978) ((-597 . -37) 13948) ((-326 . -374) T) ((-288 . -135) 13927) ((-288 . -133) 13906) ((-112 . -511) T) ((-285 . -135) 13862) ((-285 . -133) 13818) ((-47 . -423) T) ((-147 . -1011) T) ((-143 . -1011) T) ((-1066 . -102) 13765) ((-716 . -1058) 13743) ((-625 . -33) T) ((-1176 . -107) 13722) ((-505 . -33) T) ((-453 . -102) 13706) ((-226 . -262) 13683) ((-225 . -262) 13660) ((-798 . -260) 13611) ((-44 . -1117) T) ((-751 . -968) T) ((-1084 . -46) 13588) ((-751 . -298) 13550) ((-1000 . -37) 13399) ((-751 . -209) 13378) ((-716 . -37) 13207) ((-714 . -37) 13056) ((-425 . -37) 12905) ((-585 . -560) 12866) ((-585 . -559) 12778) ((-532 . -1058) T) ((-483 . -1058) T) ((-1054 . -458) 12762) ((-1104 . -1011) 12740) ((-1049 . -25) T) ((-1049 . -21) T) ((-445 . -975) T) ((-1127 . -726) NIL) ((-1127 . -730) NIL) ((-922 . -782) 12719) ((-754 . -559) 12701) ((-793 . -21) T) ((-793 . -25) T) ((-734 . -661) T) ((-158 . -1121) T) ((-532 . -37) 12666) ((-483 . -37) 12631) ((-358 . -559) 12613) ((-296 . -559) 12595) ((-154 . -260) 12553) ((-61 . -1117) T) ((-108 . -97) T) ((-799 . -1011) T) ((-158 . -511) T) ((-649 . -652) 12523) ((-267 . -124) 12407) ((-201 . -559) 12389) ((-201 . -560) 12319) ((-926 . -581) 12258) ((-1176 . -968) T) ((-1029 . -135) T) ((-574 . -1094) 12233) ((-666 . -836) 12212) ((-542 . -33) T) ((-586 . -102) 12196) ((-574 . -102) 12142) ((-1136 . -260) 12069) ((-666 . -587) 11994) ((-268 . -1117) T) ((-1084 . -959) 11892) ((-1073 . -836) NIL) ((-979 . -560) 11807) ((-979 . -559) 11789) ((-315 . -97) T) ((-226 . -974) 11687) ((-225 . -974) 11585) ((-366 . -97) T) ((-879 . -559) 11567) ((-879 . -560) 11428) ((-648 . -559) 11410) ((-1174 . -1111) 11379) ((-451 . -559) 11361) ((-451 . -560) 11222) ((-223 . -383) 11206) ((-239 . -383) 11190) ((-226 . -107) 11081) ((-225 . -107) 10972) ((-1080 . -587) 10897) ((-1079 . -587) 10794) ((-1073 . -587) 10646) ((-1035 . -587) 10571) ((-323 . -124) T) ((-80 . -412) T) ((-80 . -367) T) ((-926 . -25) T) ((-926 . -21) T) ((-800 . -1011) 10522) ((-799 . -652) 10474) ((-351 . -264) T) ((-154 . -925) 10426) ((-629 . -359) T) ((-922 . -920) 10410) ((-636 . -1023) T) ((-629 . -151) 10392) ((-1147 . -1011) T) ((-1126 . -1011) T) ((-288 . -1103) 10371) ((-288 . -1106) 10350) ((-1071 . -97) T) ((-288 . -885) 10329) ((-126 . -1023) T) ((-112 . -1023) T) ((-550 . -1161) 10313) ((-636 . -23) T) ((-550 . -1011) 10263) ((-89 . -480) 10196) ((-158 . -335) T) ((-288 . -91) 10175) ((-288 . -34) 10154) ((-554 . -458) 10088) ((-126 . -23) T) ((-112 . -23) T) ((-653 . -1011) T) ((-446 . -458) 10025) ((-379 . -581) 9973) ((-592 . -959) 9871) ((-884 . -458) 9855) ((-327 . -975) T) ((-324 . -975) T) ((-316 . -975) T) ((-239 . -975) T) ((-223 . -975) T) ((-798 . -560) NIL) ((-798 . -559) 9837) ((-1184 . -21) T) ((-526 . -925) T) ((-666 . -661) T) ((-1184 . -25) T) ((-226 . -968) 9768) ((-225 . -968) 9699) ((-70 . -1117) T) ((-226 . -209) 9652) ((-225 . -209) 9605) ((-39 . -97) T) ((-837 . -975) T) ((-1080 . -661) T) ((-1079 . -661) T) ((-1073 . -661) T) ((-1073 . -725) NIL) ((-1073 . -728) NIL) ((-848 . -97) T) ((-1035 . -661) T) ((-705 . -97) T) ((-610 . -97) T) ((-445 . -1011) T) ((-311 . -1023) T) ((-158 . -1023) T) ((-291 . -847) 9584) ((-1147 . -652) 9425) ((-799 . -157) T) ((-1126 . -652) 9239) ((-775 . -21) 9191) ((-775 . -25) 9143) ((-221 . -1056) 9127) ((-122 . -480) 9060) ((-379 . -25) T) ((-379 . -21) T) ((-311 . -23) T) ((-154 . -560) 8828) ((-154 . -559) 8810) ((-158 . -23) T) ((-585 . -262) 8787) ((-485 . -33) T) ((-825 . -559) 8769) ((-87 . -1117) T) ((-773 . -559) 8751) ((-743 . -559) 8733) ((-703 . -559) 8715) ((-614 . -559) 8697) ((-216 . -587) 8547) ((-1082 . -1011) T) ((-1078 . -974) 8370) ((-1057 . -1117) T) ((-1034 . -974) 8213) ((-786 . -974) 8197) ((-1078 . -107) 8006) ((-1034 . -107) 7835) ((-786 . -107) 7814) ((-1136 . -560) NIL) ((-1136 . -559) 7796) ((-315 . -1058) T) ((-787 . -559) 7778) ((-990 . -260) 7757) ((-78 . -1117) T) ((-927 . -836) NIL) ((-554 . -260) 7733) ((-1104 . -480) 7666) ((-456 . -1117) T) ((-526 . -559) 7648) ((-446 . -260) 7627) ((-194 . -1117) T) ((-1000 . -207) 7611) ((-263 . -847) T) ((-752 . -280) 7590) ((-797 . -97) T) ((-716 . -207) 7574) ((-927 . -587) 7524) ((-884 . -260) 7501) ((-841 . -587) 7453) ((-577 . -21) T) ((-577 . -25) T) ((-553 . -21) T) ((-315 . -37) 7418) ((-629 . -659) 7385) ((-456 . -811) 7367) ((-456 . -813) 7349) ((-445 . -652) 7190) ((-194 . -811) 7172) ((-62 . -1117) T) ((-194 . -813) 7154) ((-553 . -25) T) ((-399 . -587) 7128) ((-456 . -959) 7088) ((-799 . -480) 7000) ((-194 . -959) 6960) ((-216 . -33) T) ((-923 . -1011) 6938) ((-1147 . -157) 6869) ((-1126 . -157) 6800) ((-647 . -133) 6779) ((-647 . -135) 6758) ((-636 . -124) T) ((-128 . -436) 6735) ((-597 . -595) 6719) ((-1054 . -559) 6651) ((-112 . -124) T) ((-448 . -1121) T) ((-554 . -552) 6627) ((-446 . -552) 6606) ((-308 . -307) 6575) ((-495 . -1011) T) ((-448 . -511) T) ((-1078 . -968) T) ((-1034 . -968) T) ((-786 . -968) T) ((-216 . -725) 6554) ((-216 . -728) 6505) ((-216 . -727) 6484) ((-1078 . -298) 6461) ((-216 . -661) 6392) ((-884 . -19) 6376) ((-456 . -349) 6358) ((-456 . -310) 6340) ((-1034 . -298) 6312) ((-326 . -1170) 6289) ((-194 . -349) 6271) ((-194 . -310) 6253) ((-884 . -552) 6230) ((-1078 . -209) T) ((-603 . -1011) T) ((-1159 . -1011) T) ((-1091 . -1011) T) ((-1000 . -228) 6167) ((-327 . -1011) T) ((-324 . -1011) T) ((-316 . -1011) T) ((-239 . -1011) T) ((-223 . -1011) T) ((-82 . -1117) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-1091 . -556) 6102) ((-449 . -1011) T) ((-1048 . -1011) T) ((-449 . -556) 6081) ((-226 . -730) 6032) ((-226 . -726) 5983) ((-225 . -730) 5934) ((-39 . -1058) NIL) ((-225 . -726) 5885) ((-994 . -847) 5836) ((-927 . -728) T) ((-927 . -725) T) ((-927 . -661) T) ((-895 . -728) T) ((-841 . -661) T) ((-89 . -458) 5820) ((-456 . -827) NIL) ((-837 . -1011) T) ((-201 . -974) 5785) ((-799 . -264) T) ((-194 . -827) NIL) ((-768 . -1023) 5764) ((-57 . -1011) 5714) ((-484 . -1011) 5692) ((-482 . -1011) 5642) ((-464 . -1011) 5620) ((-463 . -1011) 5570) ((-531 . -97) T) ((-519 . -97) T) ((-462 . -97) T) ((-445 . -157) 5501) ((-331 . -847) T) ((-325 . -847) T) ((-317 . -847) T) ((-201 . -107) 5457) ((-768 . -23) 5409) ((-399 . -661) T) ((-103 . -847) T) ((-39 . -37) 5354) ((-103 . -755) T) ((-532 . -321) T) ((-483 . -321) T) ((-1126 . -480) 5214) ((-288 . -423) 5193) ((-285 . -423) T) ((-769 . -260) 5172) ((-311 . -124) T) ((-158 . -124) T) ((-267 . -25) 5037) ((-267 . -21) 4921) ((-44 . -1094) 4900) ((-64 . -559) 4882) ((-819 . -559) 4864) ((-550 . -480) 4797) ((-44 . -102) 4747) ((-1013 . -397) 4731) ((-1013 . -340) 4710) ((-980 . -1117) T) ((-979 . -974) 4697) ((-879 . -974) 4540) ((-451 . -974) 4383) ((-603 . -652) 4367) ((-979 . -107) 4352) ((-879 . -107) 4181) ((-448 . -335) T) ((-327 . -652) 4133) ((-324 . -652) 4085) ((-316 . -652) 4037) ((-239 . -652) 3886) ((-223 . -652) 3735) ((-870 . -590) 3719) ((-451 . -107) 3548) ((-1164 . -97) T) ((-870 . -345) 3532) ((-1127 . -836) NIL) ((-72 . -559) 3514) ((-889 . -46) 3493) ((-564 . -1023) T) ((-1 . -1011) T) ((-634 . -97) T) ((-1163 . -97) 3443) ((-1155 . -587) 3368) ((-1148 . -587) 3265) ((-122 . -458) 3249) ((-1099 . -559) 3231) ((-1001 . -559) 3213) ((-362 . -23) T) ((-990 . -559) 3195) ((-85 . -1117) T) ((-1127 . -587) 3047) ((-837 . -652) 3012) ((-564 . -23) T) ((-554 . -559) 2994) ((-554 . -560) NIL) ((-446 . -560) NIL) ((-446 . -559) 2976) ((-477 . -1011) T) ((-473 . -1011) T) ((-323 . -25) T) ((-323 . -21) T) ((-123 . -282) 2914) ((-117 . -282) 2852) ((-545 . -587) 2839) ((-201 . -968) T) ((-544 . -587) 2764) ((-351 . -925) T) ((-201 . -219) T) ((-201 . -209) T) ((-884 . -560) 2725) ((-884 . -559) 2637) ((-797 . -37) 2624) ((-1147 . -264) 2575) ((-1126 . -264) 2526) ((-1029 . -423) T) ((-469 . -782) T) ((-288 . -1046) 2505) ((-922 . -135) 2484) ((-922 . -133) 2463) ((-462 . -282) 2450) ((-268 . -1094) 2429) ((-448 . -1023) T) ((-798 . -974) 2374) ((-566 . -97) T) ((-1104 . -458) 2358) ((-226 . -340) 2337) ((-225 . -340) 2316) ((-268 . -102) 2266) ((-979 . -968) T) ((-113 . -97) T) ((-879 . -968) T) ((-798 . -107) 2195) ((-448 . -23) T) ((-451 . -968) T) ((-979 . -209) T) ((-879 . -298) 2164) ((-451 . -298) 2121) ((-327 . -157) T) ((-324 . -157) T) ((-316 . -157) T) ((-239 . -157) 2032) ((-223 . -157) 1943) ((-889 . -959) 1841) ((-670 . -959) 1812) ((-1016 . -97) T) ((-1004 . -559) 1779) ((-956 . -559) 1761) ((-1155 . -661) T) ((-1148 . -661) T) ((-1127 . -725) NIL) ((-154 . -974) 1671) ((-1127 . -728) NIL) ((-837 . -157) T) ((-1127 . -661) T) ((-1174 . -139) 1655) ((-926 . -314) 1629) ((-923 . -480) 1562) ((-775 . -782) 1541) ((-519 . -1058) T) ((-445 . -264) 1492) ((-545 . -661) T) ((-333 . -559) 1474) ((-294 . -559) 1456) ((-390 . -959) 1354) ((-544 . -661) T) ((-379 . -782) 1305) ((-154 . -107) 1201) ((-768 . -124) 1153) ((-672 . -139) 1137) ((-1163 . -282) 1075) ((-456 . -280) T) ((-351 . -559) 1042) ((-485 . -933) 1026) ((-351 . -560) 940) ((-194 . -280) T) ((-129 . -139) 922) ((-649 . -260) 901) ((-456 . -944) T) ((-531 . -37) 888) ((-519 . -37) 875) ((-462 . -37) 840) ((-194 . -944) T) ((-798 . -968) T) ((-769 . -559) 822) ((-762 . -559) 804) ((-760 . -559) 786) ((-751 . -836) 765) ((-1185 . -1023) T) ((-1136 . -974) 588) ((-787 . -974) 572) ((-798 . -219) T) ((-798 . -209) NIL) ((-625 . -1117) T) ((-1185 . -23) T) ((-751 . -587) 497) ((-505 . -1117) T) ((-390 . -310) 481) ((-526 . -974) 468) ((-1136 . -107) 277) ((-636 . -581) 259) ((-787 . -107) 238) ((-353 . -23) T) ((-1091 . -480) 30))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index b6ba6655..e82f76f6 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3409486830) -(4198 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3409732469) +(4224 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -27,16 +27,16 @@ |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| - |BinaryFile| |Bits| |BiModule| |Boolean| |BasicOperatorFunctions1| - |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger| - |BalancedPAdicRational| |BinaryRecursiveAggregate&| - |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| - |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| - |BinaryTreeCategory| |BinaryTournament| |BinaryTree| - |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| - |CartesianTensorFunctions2| |CartesianTensor| |CharacterClass| - |CommonDenominator| |CombinatorialFunctionCategory| |Character| - |CharacteristicNonZero| |CharacteristicPolynomialPackage| + |Binding| |BinaryFile| |Bits| |BiModule| |Boolean| + |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| + |BalancedPAdicInteger| |BalancedPAdicRational| + |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| + |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| + |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| + |BinaryTree| |CancellationAbelianMonoid| |CachableSet| + |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| + |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| + |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| @@ -46,18 +46,19 @@ |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| - |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| - |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage| - |CyclicStreamTools| |ComplexTrigonometricManipulations| - |CoerceVectorMatrixPackage| |CycleIndicators| - |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| - |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| - |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| - |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| - |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| - |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| - |Database| |DoubleResultantPackage| |DistinctDegreeFactorize| - |DecimalExpansion| |ElementaryFunctionDefiniteIntegration| + |Contour| |CoordinateSystems| + |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| + |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| + |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| + |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| + |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| + |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| + |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| + |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| + |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| + |d03eefAnnaType| |d03fafAnnaType| |Database| |DoubleResultantPackage| + |DistinctDegreeFactorize| |DecimalExpansion| + |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| @@ -274,7 +275,7 @@ |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| - |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| + |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |ObjectProperty| |OrderedCancellationAbelianMonoid| |OctonionCategory&| |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| @@ -337,18 +338,19 @@ |PlottablePlaneCurveCategory| |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| - |PrintPackage| |PolynomialRing| |Product| |PropositionalLogic| - |PriorityQueueAggregate| |PseudoRemainderSequence| |Partition| - |PowerSeriesCategory&| |PowerSeriesCategory| - |PlottableSpaceCurveCategory| |PolynomialSetCategory&| - |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| - |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| - |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| - |PushVariables| |PAdicWildFunctionFieldIntegralBasis| - |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| - |QueryEquation| |QuotientFieldCategoryFunctions2| - |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| - |QueueAggregate| |QuaternionCategory&| |QuaternionCategory| + |PrintPackage| |PolynomialRing| |Product| |PropositionalFormula| + |PropositionalLogic| |PriorityQueueAggregate| + |PseudoRemainderSequence| |Partition| |PowerSeriesCategory&| + |PowerSeriesCategory| |PlottableSpaceCurveCategory| + |PolynomialSetCategory&| |PolynomialSetCategory| + |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| + |PolynomialSquareFree| |PointCategory| |PointFunctions2| + |PointPackage| |PartialTranscendentalFunctions| |PushVariables| + |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet2| + |QuasiAlgebraicSet| |QuasiComponentPackage| |QueryEquation| + |QuotientFieldCategoryFunctions2| |QuotientFieldCategory&| + |QuotientFieldCategory| |QuadraticForm| |QueueAggregate| + |QuaternionCategory&| |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| |RationalFactorize| @@ -377,12 +379,12 @@ |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache| - |StructuralConstantsPackage| |SequentialDifferentialPolynomial| - |SequentialDifferentialVariable| |SegmentFunctions2| - |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| - |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate| - |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set| - |SExpressionCategory| |SExpression| |SExpressionOf| + |Scope| |StructuralConstantsPackage| + |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| + |SegmentFunctions2| |SegmentBindingFunctions2| |SegmentBinding| + |SegmentCategory| |Segment| |SegmentExpansionCategory| |SetAggregate&| + |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| + |Set| |SExpressionCategory| |SExpression| |SExpressionOf| |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| @@ -458,638 +460,647 @@ |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |Category| |updateStatus!| |degree| |child| |inR?| - |wholeRagits| |factorPolynomial| |zeroMatrix| |rowEchelon| - |modularGcd| |edf2fi| |e01sef| |difference| |complexEigenvalues| - |makeVariable| |skewSFunction| |multiset| |e02dcf| |s14abf| - |constantLeft| |c06fpf| |position| |OMreadFile| |routines| - |symbolTableOf| |powmod| |setProperties| |deepestTail| |autoReduced?| - |setfirst!| |expintegrate| |UpTriBddDenomInv| |factorset| - |normalElement| |setrest!| |cSech| |halfExtendedResultant2| - |ListOfTerms| |constantKernel| |computeInt| |zeroDim?| - |perfectNthPower?| |zeroSquareMatrix| |log| |tree| |convergents| - |polyRicDE| |iicot| |expenseOfEvaluation| |imagj| |qfactor| |OMgetApp| - |mathieu23| |zeroDimPrime?| |invertibleSet| |allRootsOf| - |mapMatrixIfCan| |lyndon?| |subspace| |doublyTransitive?| |leftNorm| - |scan| |sequences| |c06eaf| |domainOf| |palgextint| |rotate| |square?| - |returns| |argumentList!| |orbit| |bombieriNorm| |nthr| - |multiEuclideanTree| |weierstrass| |exprHasAlgebraicWeight| |f02abf| - |sizeMultiplication| |comparison| |showSummary| |iicos| |getCode| - |myDegree| |any?| |imagI| |leftDiscriminant| |monomRDEsys| - |rischNormalize| |spherical| |traceMatrix| |generateIrredPoly| - |var1StepsDefault| |squareTop| |constDsolve| |changeMeasure| - |replaceKthElement| |getButtonValue| |makeSin| |showAttributes| - |absolutelyIrreducible?| |stiffnessAndStabilityOfODEIF| |curve| - |trailingCoefficient| |s21bcf| |commutative?| |list?| |coordinate| - |linSolve| |factor1| |diagonal| |multMonom| |monomials| - |factorSquareFreeByRecursion| |region| |ldf2vmf| - |semiResultantEuclidean1| |cross| |generator| |printTypes| - |writeLine!| |continuedFraction| |doubleDisc| |qPot| - |monicCompleteDecompose| |multinomial| |directory| BY |firstNumer| - |univariateSolve| Y |front| |quasiRegular| |pushup| |squareFreePart| - |gradient| |c06ebf| |operator| |associatedSystem| - |drawComplexVectorField| |pattern| |integral| |mainMonomials| - |KrullNumber| |pow| |inGroundField?| |weakBiRank| |vectorise| |mr| - |nthExponent| |tablePow| |pointSizeDefault| |nextNormalPrimitivePoly| - |viewDeltaYDefault| |unitsColorDefault| |cosSinInfo| |raisePolynomial| - |selectIntegrationRoutines| |leftRemainder| |normal01| |outputGeneral| - |lfextendedint| |systemCommand| |e02dff| |debug| |nand| |complexSolve| - |generalSqFr| |getlo| |initializeGroupForWordProblem| |formula| - |f02aef| |makeEq| |subPolSet?| |functionIsFracPolynomial?| - |rightMinimalPolynomial| |atoms| |iisqrt2| |topFortranOutputStack| - |stopTableGcd!| |adjoint| |singular?| |outputArgs| |pdf2df| - |coordinates| |constant| |sizePascalTriangle| |normal| |f07aef| - |numberOfFractionalTerms| |removeRoughlyRedundantFactorsInPols| UTS2UP - |d01ajf| |compound?| |palgint| |numericIfCan| |binaryTournament| - |kernel| |OMputEndError| |oddintegers| |complexNumeric| |roman| - |nextLatticePermutation| |LiePolyIfCan| |iExquo| |swapRows!| - |zeroSetSplitIntoTriangularSystems| |op| |rangePascalTriangle| |row| - |knownInfBasis| |shellSort| |composites| |shiftRight| |pointLists| - |interpretString| |fortranReal| |subresultantVector| |d02kef| - |tubePointsDefault| |printStats!| |nrows| |erf| |Aleph| |kernels| - |topPredicate| |cyclic?| |fortranCompilerName| |OMgetError| |dfRange| - |Ei| |showTheFTable| |d01bbf| |separate| |ncols| |remove| |tubePoints| - |mainVariables| |purelyAlgebraicLeadingMonomial?| |listexp| - |univariate| |listLoops| |intChoose| |removeSinhSq| |hasSolution?| - |closedCurve?| |true| |minPol| |match?| |setTex!| |dmpToHdmp| - |reducedForm| |euclideanNormalForm| |numberOfNormalPoly| |isPlus| - |noKaratsuba| |basisOfLeftNucleus| |radicalSimplify| |dilog| |last| - |relationsIdeal| |indices| |normalize| |totalDifferential| - |drawCurves| |squareFreePolynomial| |rootOf| |diagonalProduct| - |mkcomm| |check| |assoc| |sin| |stop| |nextSublist| |binomial| - |denominator| |toseSquareFreePart| |birth| |bezoutDiscriminant| - |UnVectorise| |pointColorDefault| |getSyntaxFormsFromFile| |dimension| - |cos| |newReduc| |fixedPointExquo| |mapmult| |lifting1| |powern| - |critMTonD1| |resetBadValues| |optpair| |zeroOf| |isPower| |tan| - |draw| |colorFunction| |optional?| |localIntegralBasis| |octon| - |mindegTerm| |cartesian| |setFormula!| |tRange| |magnitude| - |singularitiesOf| |tanSum| |cot| |basisOfCentroid| |lift| - |defineProperty| |multisect| |binarySearchTree| |e01bff| |setleaves!| - |exQuo| |lastSubResultant| |lambert| |subSet| |string| |sec| |dflist| - |reduce| |fortranDouble| |po| |internalIntegrate| |nthRootIfCan| - |listBranches| |useSingleFactorBound| |element?| |simpson| - |taylorQuoByVar| |evenInfiniteProduct| |csc| |sylvesterMatrix| |goto| - |rationalApproximation| |parts| |internalSubPolSet?| - |addMatchRestricted| |BumInSepFFE| |tail| |lazyPrem| |safeCeiling| - |contract| |startTable!| |mapUnivariate| |e01bef| |asin| |addBadValue| - |cycleElt| |makeObject| |limitedint| |predicates| |mapExponents| - |maximumExponent| |f01rdf| |extractTop!| |s17ahf| - |internalLastSubResultant| |normInvertible?| |aQuartic| |acos| - |extract!| |palglimint| |cSinh| |pseudoQuotient| |alternative?| - |acotIfCan| |pastel| |status| |setClipValue| |completeEval| - |prevPrime| |OMgetEndObject| |OMsend| |atan| |setFieldInfo| |bitCoef| - |extendedSubResultantGcd| |initiallyReduced?| |nthFractionalTerm| - |coef| |goodPoint| = |useNagFunctions| |constantRight| - |wordsForStrongGenerators| |nextsubResultant2| |acot| |nextNormalPoly| - |infRittWu?| |rightGcd| |lfextlimint| |groebner| |imaginary| - |dihedral| |ricDsolve| |rquo| |assign| |asec| |paraboloidal| |LiePoly| - |cTanh| |getCurve| |newTypeLists| SEGMENT |derivative| < |sin?| - |qroot| |setRealSteps| |nilFactor| |acsc| |dark| |closed?| - |mainContent| |outlineRender| > |ramified?| |lfunc| |leftQuotient| - |uniform| |e01sbf| |sinh| |putColorInfo| |clearTheSymbolTable| - |reverseLex| |quadraticForm| |minGbasis| <= |e01baf| |getPickedPoints| - |f01ref| |cosh| |outputAsTex| |readLine!| |heapSort| |prinb| - |lieAdmissible?| |tableau| |upperCase?| >= |quadratic?| |getMatch| - |zeroVector| |scalarMatrix| |laplace| |tanh| |reset| |bit?| |nextItem| - |normalDeriv| |c06fuf| |compBound| |coleman| |crest| |plot| - |splitNodeOf!| |coth| |rischDE| |FormatArabic| |lazyPremWithDefault| - |s14aaf| |bivariate?| |HenselLift| |degreeSubResultantEuclidean| - |possiblyInfinite?| |firstSubsetGray| |vspace| |backOldPos| |sech| - |write| |hypergeometric0F1| |component| |makeCrit| |leftExactQuotient| - |leastAffineMultiple| + |bitTruth| |bandedHessian| |splitSquarefree| - |csch| |nullSpace| |argumentListOf| |save| |jacobi| |setMinPoints| - |ScanRoman| |certainlySubVariety?| |predicate| |BasicMethod| - - |groebgen| |redpps| |s18acf| |mpsode| |asinh| |hermite| |shuffle| - |wordInGenerators| |useEisensteinCriterion| |one?| |systemSizeIF| / - |singRicDE| |isOp| |semiDegreeSubResultantEuclidean| - |stoseInvertibleSetreg| |complementaryBasis| |acosh| - |uncouplingMatrices| |node?| |t| |externalList| |commonDenominator| - |copyInto!| |symmetricProduct| |atanh| |perspective| |getMeasure| - |stoseLastSubResultant| |presub| |graphStates| |close| |cAcsch| - |viewport3D| |expPot| |f02bjf| |Ci| |maxColIndex| |moreAlgebraic?| - |red| |stripCommentsAndBlanks| |acoth| |permanent| |isobaric?| - |exponent| |d01alf| |quasiMonic?| |makeGraphImage| |infinite?| - |pureLex| |multiEuclidean| |lazyResidueClass| |perfectNthRoot| - |insert| |setAdaptive3D| |basisOfRightNucleus| |patternMatchTimes| - |d02gaf| |imagk| |buildSyntax| |hitherPlane| |isQuotient| |isTimes| - |display| |rightUnit| |meshFun2Var| |f04maf| |geometric| |remove!| - |oneDimensionalArray| |leadingIdeal| |midpoints| |decreasePrecision| - |empty?| |factorAndSplit| |setelt!| |insertMatch| |fillPascalTriangle| - |getOperator| |pomopo!| |leftMult| |power| |aQuadratic| - |univariatePolynomial| |sizeLess?| |simplifyLog| |cot2tan| - |plenaryPower| |resultantEuclidean| |eq?| |kmax| |movedPoints| - |padicFraction| |readIfCan!| |rootPower| |mkIntegral| |poisson| - |stoseIntegralLastSubResultant| |minordet| |basisOfNucleus| |ranges| - |points| |subtractIfCan| |decompose| |dequeue| |recolor| |vconcat| - |supDimElseRittWu?| |complexNormalize| |cyclic| - |expenseOfEvaluationIF| |integralRepresents| - |rightRegularRepresentation| |symbolIfCan| |height| |euler| |input| - |setPosition| |invertIfCan| |sub| |tryFunctionalDecomposition| |heap| - |alphanumeric| |exprHasWeightCosWXorSinWX| |irreducibleRepresentation| - |f01maf| |normalizedDivide| |mainVariable?| |library| |anfactor| - |palginfieldint| |prefixRagits| |numberOfComputedEntries| |setOrder| - |numerators| |distribute| |gethi| |characteristic| |root?| |cosh2sech| - |elRow2!| |pToDmp| |nodes| |userOrdered?| |setlast!| - |doubleFloatFormat| |fortranCharacter| |linearDependence| |rdHack1| - |leftTraceMatrix| |leftScalarTimes!| |symbolTable| |virtualDegree| - |consnewpol| |subscript| |calcRanges| |monic?| |mapExpon| |frst| - |equiv| |stFuncN| |c06ecf| |leftGcd| |delta| |iilog| |entry| |cAcot| - |hdmpToDmp| |semiResultantEuclideannaif| - |halfExtendedSubResultantGcd1| |iidsum| |reduceBasisAtInfinity| - |conjugate| |c06ekf| |trunc| |pushFortranOutputStack| |modTree| - |mainKernel| |varselect| |rangeIsFinite| |shiftLeft| |innerint| - |basisOfLeftAnnihilator| |finiteBasis| |nextPrimitivePoly| |fTable| - |arg1| |pseudoDivide| |keys| |popFortranOutputStack| |set| - |alternating| |cond| |pr2dmp| |laurentIfCan| |packageCall| |cAcos| - |leftAlternative?| |bezoutMatrix| |iisech| |pmintegrate| - |squareMatrix| |arg2| |numberOfChildren| |outputAsFortran| |say| - |interval| |clearTheFTable| |toseInvertible?| |f04axf| |s01eaf| - |simpsono| |rotatez| |reverse| |legendre| |definingEquations| - |fortranTypeOf| |monicRightFactorIfCan| |declare| - |numberOfIrreduciblePoly| |antiAssociative?| |makeop| |dequeue!| - |colorDef| |totalGroebner| |mapDown!| |duplicates| |algebraicSort| - |deepCopy| |conditions| |transpose| |symmetric?| |tanQ| - |minimalPolynomial| |transform| |e02bdf| |OMgetVariable| - |fortranInteger| |decrease| |clipParametric| |delete!| |decomposeFunc| - |f02awf| |match| |leaves| |csubst| |arrayStack| |iicosh| |approxSqrt| - |pmComplexintegrate| |minPoints| |toseInvertibleSet| |relerror| - |OMgetAttr| LODO2FUN |graphImage| |imagi| |lambda| |coefficient| - |moebiusMu| |pushdterm| |normFactors| |tValues| - |removeRedundantFactorsInContents| |fortranDoubleComplex| |ipow| - |removeSquaresIfCan| |stoseInternalLastSubResultant| |member?| - |prepareDecompose| |identityMatrix| |fixedPoints| |critT| - |quasiComponent| |splitDenominator| |randomLC| |overset?| - |mainVariable| |rootKerSimp| |clikeUniv| |crushedSet| |lazyPquo| - |rightUnits| |acothIfCan| |e04ucf| |unit| |closedCurve| |constant?| - |maxIndex| |commutator| |show| |OMputEndObject| |nextColeman| - |diagonal?| |split| |karatsubaDivide| |explimitedint| |eulerE| - |semiSubResultantGcdEuclidean1| |minimize| |f04atf| |midpoint| - |product| |infinityNorm| |find| |tensorProduct| |tanh2coth| |complex?| - |hasPredicate?| |baseRDEsys| |trace| |zero?| |solve| |readable?| - |returnTypeOf| |extendedint| |reseed| |validExponential| - |getGoodPrime| |dmpToP| |OMputEndBind| |leftTrace| |mathieu22| - |lazyPseudoRemainder| |finite?| |addmod| |complexLimit| |meshPar2Var| - |c05pbf| |generalizedContinuumHypothesisAssumed?| |mix| |sqfree| - |nthCoef| |pushdown| |inspect| |FormatRoman| |screenResolution3D| - |divide| |increase| |node| |rule| |prime?| |writable?| |usingTable?| - |unit?| |void| |seriesToOutputForm| |completeEchelonBasis| |scale| - |vector| |solid| |jacobiIdentity?| |genericRightNorm| |surface| - |complexZeros| |LyndonWordsList1| |exprToXXP| |factorial| - |computeCycleLength| |generalTwoFactor| |sinhcosh| |differentiate| - |numericalIntegration| |gderiv| |asimpson| |realZeros| |printInfo!| - |OMconnectTCP| |external?| |ocf2ocdf| |integralLastSubResultant| - |pushuconst| |constantIfCan| |OMopenFile| |cAtanh| |f01rcf| |Is| - |enumerate| |monomial| |subResultantGcdEuclidean| |nsqfree| - |mathieu12| |balancedFactorisation| |setScreenResolution3D| - |firstDenom| |subscriptedVariables| |integralCoordinates| |sncndn| - |multivariate| |split!| |indicialEquation| |OMgetBVar| |f02bbf| - |cycleTail| |exists?| |bits| |coord| |viewThetaDefault| |figureUnits| - |variables| |fortranLinkerArgs| |denom| |rCoord| |diophantineSystem| - FG2F |interpolate| |reducedDiscriminant| |nodeOf?| |var2StepsDefault| - |transcendent?| |cyclicSubmodule| |acscIfCan| |ldf2lst| |asinIfCan| - |solveLinearPolynomialEquationByFractions| |basisOfMiddleNucleus| - |leftDivide| |push!| |oblateSpheroidal| |directSum| |cyclicEqual?| - |pi| |idealiserMatrix| |refine| ~= |genericLeftMinimalPolynomial| - |gcdcofact| |OMgetType| |torsion?| |divergence| |infinity| |smith| - |multiplyExponents| |morphism| |nthFactor| |exponential1| |iFTable| - |nlde| |polyRDE| |rationalPower| |errorKind| |mesh| |iitanh| |entry?| - |differentialVariables| |createLowComplexityTable| |shift| |light| - |aspFilename| |simplify| |taylor| |cCos| |resultant| - |tryFunctionalDecomposition?| |stoseInvertible?| |positiveSolve| - |inverse| |jacobian| |iflist2Result| |laurent| |normDeriv2| |f04mbf| - |subResultantsChain| |lo| |lprop| |basisOfRightNucloid| |truncate| - |power!| |sort| |printStatement| |puiseux| |kovacic| |rowEch| |incr| - |numberOfComposites| |identitySquareMatrix| |trapezoidal| |corrPoly| - |algSplitSimple| |inverseIntegralMatrix| |genericPosition| - |OMgetEndAtp| |hi| |cothIfCan| |Lazard2| |c06gbf| |s19adf| |li| |nil| - |degreeSubResultant| |roughSubIdeal?| |transcendentalDecompose| - |recoverAfterFail| |scripted?| |palgLODE0| |linearPart| - |extensionDegree| |elliptic| |invertible?| |d01fcf| |printingInfo?| - |associator| |lllp| |subHeight| |listYoungTableaus| |iiatanh| - |intersect| |f02fjf| |optAttributes| |radicalEigenvectors| - |setMinPoints3D| |random| |s13aaf| |approximate| |removeZero| - |linearlyDependent?| |s17acf| |mapCoef| |symmetricRemainder| - |rightExtendedGcd| |semiLastSubResultantEuclidean| |segment| - |OMgetEndAttr| |lifting| |rotate!| |genericLeftNorm| |groebner?| - |c06gqf| |totolex| |superscript| |lastSubResultantElseSplit| GF2FG - |mdeg| |ReduceOrder| |fortranLiteral| |makeViewport2D| |lazy?| - |function| |logical?| |setnext!| |cExp| |coefChoose| |normalForm| - |genus| |checkRur| |setvalue!| |divisor| |cscIfCan| |bfEntry| |middle| - |e01bhf| |alphabetic| |sn| |fortranLiteralLine| |genericLeftTrace| - |headRemainder| |OMgetInteger| |prinpolINFO| |df2ef| |retractable?| - |datalist| |pol| |symbol| |triangSolve| |semicolonSeparate| |typeList| - |modularFactor| |mapdiv| |logpart| |OMconnInDevice| |primes| |df2fi| - |insertionSort!| |dimensionOfIrreducibleRepresentation| - |relativeApprox| |output| |generate| |integer| |sturmVariationsOf| - |unexpand| |basisOfLeftNucloid| |coerce| |modulus| |e02baf| - |OMputVariable| |more?| |reify| |updatD| |integers| |exprToGenUPS| - |parametric?| |implies| |incrementBy| |linGenPos| |iiasec| |case| - |cAcosh| |even?| |construct| |clearCache| |numberOfImproperPartitions| - |leadingSupport| |factors| |xor| |revert| |reciprocalPolynomial| - |expand| |getZechTable| |insertBottom!| |mesh?| |inv| |OMbindTCP| - |primeFactor| |primlimintfrac| |column| |plus!| |filterWhile| - |identification| |OMgetEndBind| |applyRules| |ground?| |monicDivide| - |integralDerivationMatrix| |e02adf| |screenResolution| |tanintegrate| - |filterUntil| |binomThmExpt| |removeRoughlyRedundantFactorsInPol| - |indiceSubResultantEuclidean| |ground| |hermiteH| |cap| |rst| |list| - |collectUnder| |select| |quotedOperators| |maxrow| |wronskianMatrix| - |negative?| |unravel| |lcm| |plus| |leadingMonomial| |setDifference| - |enterPointData| |less?| |internalDecompose| |pointColor| |polygon?| - |complement| |exquo| |totalfract| |cos2sec| |leadingCoefficient| - |parametersOf| |interpret| |setIntersection| |zag| |monomRDE| - |RemainderList| |palgRDE| |linears| |div| |viewDeltaXDefault| - |stirling1| |shallowExpand| |lfinfieldint| |primitiveMonomials| - |exponentialOrder| |setUnion| |exactQuotient!| |perfectSqrt| |s17aef| - |quo| |denomLODE| |B1solve| |quartic| |addPoint| |gcd| |matrix| - |commaSeparate| |reductum| |apply| |boundOfCauchy| |karatsuba| - |cyclicEntries| |removeSinSq| |high| |largest| |cot2trig| - |OMputEndApp| |union| |c06frf| |times| |rk4a| |OMencodingBinary| - |setImagSteps| |partitions| |palgintegrate| |condition| |rem| - |complete| |binaryFunction| |curve?| |false| |lquo| |chiSquare1| - |size| |pleskenSplit| |makeRecord| |selectSumOfSquaresRoutines| - |rootPoly| |nthExpon| |outputFixed| |findCycle| - |removeIrreducibleRedundantFactors| |ptree| |localUnquote| - |singularAtInfinity?| |d03edf| |modularGcdPrimitive| |shrinkable| - |solveLinearlyOverQ| |limit| |minimumExponent| - |exprHasLogarithmicWeights| |key?| |showArrayValues| - |mainDefiningPolynomial| |iiasech| |maxRowIndex| |drawComplex| |head| - |monom| |SturmHabichtMultiple| |f02wef| |removeZeroes| |first| - |e04dgf| |aromberg| |withPredicates| |chineseRemainder| |digit?| - |useSingleFactorBound?| |generalLambert| |listRepresentation| |rest| - |viewWriteDefault| |doubleRank| |factorsOfDegree| |generators| - |moduleSum| |pToHdmp| |setelt| |f2st| |property| |substitute| |regime| - |seed| |uniform01| |solveid| |rowEchLocal| |factorsOfCyclicGroupSize| - |removeDuplicates| |prindINFO| |completeHermite| |outputForm| - |stirling2| |internalSubQuasiComponent?| |meatAxe| |copy| |zerosOf| - |jordanAlgebra?| |slash| |subCase?| |algebraicDecompose| |cAsinh| - |coth2trigh| |tableForDiscreteLogarithm| |result| |elements| |units| - |createNormalPrimitivePoly| |completeHensel| |sortConstraints| - |partialFraction| |null?| |factorSquareFree| ^= |direction| - |modifyPointData| |integralBasisAtInfinity| |fortranCarriageReturn| - |denominators| |Vectorise| |ravel| |not| |coshIfCan| - |constantCoefficientRicDE| |autoCoerce| |cCsc| |s18aff| |sinIfCan| - |karatsubaOnce| |cCoth| |sechIfCan| |reshape| |iiacoth| - |unitCanonical| |hessian| |iiacos| |LazardQuotient| |escape| - |rightTrace| |fintegrate| |standardBasisOfCyclicSubmodule| |lhs| - |cyclePartition| |extendedEuclidean| |accuracyIF| |llprop| |open?| - |deleteRoutine!| |rhs| |code| |sorted?| |addPoint2| |prinshINFO| - |compile| |Nul| |padicallyExpand| |OMwrite| |univariate?| - |numberOfMonomials| |sh| |f04mcf| |showClipRegion| |completeSmith| - |failed?| |back| |compiledFunction| |bipolarCylindrical| - |algebraicCoefficients?| |update| |goodnessOfFit| |thetaCoord| - |solid?| |basisOfCenter| |e01sff| |loopPoints| |determinant| - |symmetricTensors| |setPoly| |listOfMonoms| |nextIrreduciblePoly| - |semiIndiceSubResultantEuclidean| |exteriorDifferential| |cPower| - |selectPDERoutines| |suffix?| |OMencodingUnknown| |top| |mathieu24| - |d02raf| |lexGroebner| |setprevious!| |s17agf| - |generalizedEigenvector| |rombergo| |continue| |companionBlocks| - |removeCoshSq| |fmecg| |maxrank| |qelt| |stopTableInvSet!| |f02xef| - |minRowIndex| |monicModulo| |prefix?| |reduction| |call| |pdct| - |squareFreeFactors| |second| |iisinh| |leadingExponent| |minus!| - |controlPanel| |constantOperator| |orbits| |quadraticNorm| - |selectAndPolynomials| |key| |third| |init| |computeBasis| |changeVar| - |digamma| |select!| |lepol| |simpleBounds?| |primintegrate| - |rationalFunction| |options| |separant| |resultantReduit| - |fractionPart| |constantOpIfCan| |algintegrate| |f02adf| - |prolateSpheroidal| |sdf2lst| |pointColorPalette| |repeating| |addiag| - |contractSolve| |filename| |inconsistent?| |untab| - |multiplyCoefficients| |flatten| |e02ajf| |printInfo| |symFunc| - |clearTable!| |generic| |divisors| |explicitlyFinite?| |elt| - |cyclicParents| |hexDigit?| |d02cjf| |digit| |initial| |opeval| - |shiftRoots| |infix?| |possiblyNewVariety?| |rewriteSetWithReduction| - |hue| |gcdcofactprim| |bitLength| |minrank| |primeFrobenius| |mask| - |pushucoef| |leadingCoefficientRicDE| |d02gbf| |permutations| - |stopMusserTrials| |primitive?| |firstUncouplingMatrix| |cCsch| - |parse| |setchildren!| |HermiteIntegrate| |f01qdf| |Si| - |internalAugment| |expt| |expIfCan| |hyperelliptic| |f04adf| - |OMputAtp| |countable?| |bernoulliB| |selectfirst| |inverseColeman| - |dn| |limitedIntegrate| |probablyZeroDim?| |mainMonomial| |iisin| - |sumOfKthPowerDivisors| |infiniteProduct| |gcdprim| |supRittWu?| - |startStats!| |expandLog| |s15aef| |gcdPolynomial| |equality| |f07fdf| - |chvar| |OMgetString| |c06gsf| |s21bbf| |positive?| |besselJ| - |repeating?| |nextSubsetGray| |totalDegree| |problemPoints| - |expressIdealMember| |option?| |empty| |leftRecip| |outerProduct| - |sparsityIF| |sincos| |factorOfDegree| |critB| |se2rfi| |tan2trig| - |vertConcat| |signAround| |separateFactors| |maxPoints3D| |isList| - |fortran| |mergeFactors| |OMputEndAtp| |f04arf| |roughUnitIdeal?| - |combineFeatureCompatibility| |setMaxPoints3D| |xRange| - |solveLinearPolynomialEquationByRecursion| |prepareSubResAlgo| |An| - |stFunc2| |dimensionsOf| |integerBound| |intcompBasis| |fractRadix| - |augment| |functionIsContinuousAtEndPoints| |fixedPoint| |yRange| - |floor| |s20acf| |critMonD1| |inRadical?| |setref| |binaryTree| - |copies| |inf| |selectODEIVPRoutines| |recur| |OMlistCDs| |zRange| - |separateDegrees| |rootsOf| |e02bef| |definingInequation| |bag| - |dioSolve| |explogs2trigs| |dominantTerm| |extractPoint| - |integralBasis| |genericRightDiscriminant| |cycleEntry| |map!| - |iiasinh| |unitNormalize| |rightCharacteristicPolynomial| - |palgextint0| |antiCommutator| |setCondition!| |localAbs| |anticoord| - |e02bcf| |besselI| |ffactor| |duplicates?| |qsetelt!| |psolve| - |iicsch| |getBadValues| |torsionIfCan| |summation| - |squareFreeLexTriangular| |splitLinear| |lazyPseudoQuotient| |s13adf| - |hconcat| |OMcloseConn| |rightQuotient| |algebraicOf| - |LowTriBddDenomInv| |inverseIntegralMatrixAtInfinity| |gbasis| - |conditionP| |mainPrimitivePart| |alphabetic?| |measure2Result| - |LagrangeInterpolation| |mvar| |quotient| |rewriteIdealWithRemainder| - |lp| |pseudoRemainder| |droot| |d01akf| |rk4| |factorList| - |showTheSymbolTable| |optimize| |cylindrical| |nonSingularModel| - |merge!| |enterInCache| |generalInfiniteProduct| |headReduced?| - |linkToFortran| |leastPower| |ratpart| |cycleLength| |univcase| - |removeCosSq| |linearMatrix| |testDim| - |rewriteSetByReducingWithParticularGenerators| |symbol?| |binary| - |submod| |character?| |rroot| |index| |quoByVar| |d02ejf| ^ - |factorSFBRlcUnit| |cyclicCopy| - |removeRoughlyRedundantFactorsInContents| |bumptab| |upperCase| - |twoFactor| |restorePrecision| |selectOptimizationRoutines| |acsch| - |generalizedEigenvectors| |realRoots| |brillhartTrials| - |definingPolynomial| |generalizedInverse| |tan2cot| |iibinom| - |rightPower| |sayLength| |cAcoth| |sumOfSquares| F2FG |dmp2rfi| |abs| - |e01bgf| |atanhIfCan| |partialDenominators| |mirror| |script| |polar| - |genericLeftDiscriminant| |fill!| |stoseInvertible?reg| |makeSeries| - |eigenMatrix| |leastMonomial| |argument| |quasiRegular?| |pair| - |bivariateSLPEBR| |showScalarValues| |objectOf| |increasePrecision| - |xn| |connect| |hexDigit| |initTable!| |quickSort| |rightRank| - |chebyshevT| |viewSizeDefault| |stack| |deepestInitial| |iiacsch| - |perfectSquare?| |yCoordinates| |entries| |eulerPhi| |cfirst| - |numberOfFactors| |gramschmidt| |associatedEquations| - |setVariableOrder| |eigenvectors| |tex| |OMgetAtp| |read!| - |stosePrepareSubResAlgo| |resultantReduitEuclidean| - |radicalEigenvalues| |maxPoints| |polarCoordinates| |df2mf| |cLog| - |viewport2D| |block| |leftLcm| |linear| |addPointLast| |d01aqf| - |removeRedundantFactors| |viewZoomDefault| |pointData| - |rightAlternative?| |linearPolynomials| |solve1| |internalIntegrate0| - |createIrreduciblePoly| |OMread| |s17akf| |s17dlf| - |ramifiedAtInfinity?| |nullary?| |rightTrim| |flexibleArray| - |legendreP| |root| |diff| |showIntensityFunctions| |polynomial| - |viewDefaults| |antisymmetricTensors| |chiSquare| |dec| |mkPrim| - |createMultiplicationMatrix| |leftTrim| |shanksDiscLogAlgorithm| - |complexRoots| |cSin| |cCot| |lowerCase?| |graphState| - |deleteProperty!| |s13acf| |outputSpacing| |polygamma| |overlabel| - |infix| |f07fef| |leftExtendedGcd| |cycle| - |rewriteIdealWithQuasiMonicGenerators| |lowerPolynomial| - |initiallyReduce| |hex| |iidprod| |message| |Lazard| - |expandTrigProducts| |dom| |bat| |rotatey| |patternMatch| |nthRoot| - |partialNumerators| |OMputBind| |Hausdorff| |associates?| |xCoord| - |aLinear| |reducedSystem| |rightRemainder| |arity| |computeCycleEntry| - |conjugates| |pointPlot| |iipow| |zoom| |OMencodingSGML| |schwerpunkt| - |outputAsScript| |schema| |diagonals| |equation| |infieldint| - |plotPolar| |bandedJacobian| |wholePart| |float?| |saturate| - |tracePowMod| |commutativeEquality| |prologue| |minColIndex| |iisqrt3| - |iiperm| |viewPosDefault| |showTheIFTable| |subresultantSequence| - |realEigenvectors| |palglimint0| |e02def| |simplifyExp| |wrregime| - |name| |extractProperty| |functionIsOscillatory| |complexIntegrate| - |sts2stst| |e04fdf| |cons| |stoseInvertible?sqfreg| |countRealRoots| - |squareFreePrim| |bumptab1| |createMultiplicationTable| - |clipWithRanges| |linearDependenceOverZ| |factorials| - |factorByRecursion| |SFunction| |rightTraceMatrix| |exp1| - |roughEqualIdeals?| |rightFactorCandidate| |laurentRep| - |resultantnaif| |f04faf| |e01daf| |LyndonBasis| |antisymmetric?| - |leviCivitaSymbol| |getMultiplicationMatrix| |reopen!| |pade| - |fullDisplay| |cotIfCan| |antiCommutative?| |e02gaf| |cAcsc| |label| - |changeWeightLevel| |redmat| |reindex| |setPredicates| |monomial?| - |setButtonValue| |e| |palgLODE| |basicSet| |mapGen| |lazyPseudoDivide| - |maxint| |f02axf| |subMatrix| |d02bbf| |newSubProgram| |cubic| - |listConjugateBases| |numberOfHues| |indiceSubResultant| |sample| - |ratPoly| |c05nbf| |highCommonTerms| |monicDecomposeIfCan| |double?| - |isExpt| |vedf2vef| |s21bdf| |elRow1!| |iomode| |presuper| |cAtan| - |cschIfCan| |shufflein| |approximants| |exponential| |flagFactor| - |f02agf| |drawToScale| |createRandomElement| |s17dcf| |color| |imagJ| - |tube| |linearAssociatedExp| |e04mbf| |OMputObject| |brace| |csc2sin| - |upDateBranches| |reorder| |weighted| |rightRecip| |s20adf| - |setAttributeButtonStep| |yellow| |selectFiniteRoutines| |OMserve| - |irreducibleFactors| |makeResult| |bfKeys| |rightZero| - |removeDuplicates!| |dihedralGroup| |npcoef| |exactQuotient| |tanNa| - |title| |s19abf| |curryRight| |ode2| |tanhIfCan| |trace2PowMod| |prem| - |integralAtInfinity?| |iprint| |horizConcat| |getDatabase| |palgint0| - |exprToUPS| |ParCond| |iicsc| |setColumn!| |isMult| - |toseLastSubResultant| |numeric| |solveInField| |principalIdeal| - |mainForm| |idealSimplify| |matrixGcd| |elColumn2!| |overbar| |value| - |error| |radical| |discriminant| |fixedDivisor| |selectOrPolynomials| - |finiteBound| |fracPart| |leftFactor| - |setLegalFortranSourceExtensions| |expandPower| |fortranLogical| |dim| - |assert| |ceiling| |collect| |numberOfComponents| |charpol| |s15adf| - |trigs2explogs| |bernoulli| |substring?| |phiCoord| |plusInfinity| - |setScreenResolution| |depth| |integral?| |makeprod| |evenlambert| - |monomialIntegrate| |normalized?| |doubleComplex?| - |selectMultiDimensionalRoutines| |sec2cos| |OMlistSymbols| - |minusInfinity| |properties| |setright!| |f01qef| |option| |e04gcf| - |rootBound| |create| |getMultiplicationTable| |pquo| |oddlambert| - |insertRoot!| |makingStats?| |central?| - |createLowComplexityNormalBasis| |lists| |normalDenom| |round| - |extractIndex| |useEisensteinCriterion?| |d03faf| |number?| - |upperCase!| |beauzamyBound| |rename!| |createThreeSpace| |aCubic| - |noLinearFactor?| |extend| |homogeneous?| |range| |extractBottom!| - |id| |ef2edf| |showTheRoutinesTable| |extractSplittingLeaf| - |translate| |rightExactQuotient| |henselFact| |coefficients| - |makeSketch| |write!| |deriv| |realElementary| |polyPart| |coHeight| - ** |stoseInvertibleSetsqfreg| |table| |parabolic| |mapUnivariateIfCan| - |radix| |trim| |univariatePolynomialsGcds| |linearlyDependentOverZ?| - |float| |pdf2ef| |new| |unparse| |unrankImproperPartitions1| - |logIfCan| |f02ajf| |fi2df| |zeroDimensional?| |linearAssociatedLog| - |failed| EQ |outputList| |radicalRoots| |atanIfCan| - |irreducibleFactor| |hspace| |palgRDE0| |retractIfCan| - |leftRankPolynomial| |OMputEndAttr| |kroneckerDelta| |child?| - |replace| |nextPrimitiveNormalPoly| |s17def| |makeMulti| - |outputFloating| |OMclose| |collectUpper| |latex| |changeBase| - |children| |position!| |matrixConcat3D| |ode1| |slex| |makeCos| - |stronglyReduced?| |s17ajf| |drawStyle| |nor| |bubbleSort!| |s17adf| - |zeroSetSplit| |nil?| |derivationCoordinates| - |halfExtendedSubResultantGcd2| |order| |stFunc1| |OMgetBind| - |clearDenominator| |lighting| |deepExpand| |OMputAttr| |over| - |nextPrime| |totalLex| |forLoop| |zeroDimPrimary?| |modifyPoint| - |subNodeOf?| GE |s18adf| |lagrange| |tubeRadius| RF2UTS - |triangularSystems| |setErrorBound| |cAsec| |alphanumeric?| GT - |rightFactorIfCan| |algebraic?| |iiacosh| |leftUnit| |computePowers| - |badNum| |level| |log10| |iiatan| |sqfrFactor| |testModulus| - |primextendedint| LE |left| |nextPartition| |getStream| |OMputFloat| - |rspace| |remainder| |leader| |resetNew| |complexForm| |integrate| - |createNormalElement| |exptMod| LT |getOrder| |car| |right| |c05adf| - |sinh2csch| |getVariableOrder| |squareFree| |quote| |s17dgf| - |tubeRadiusDefault| |c02agf| |cdr| |map| |laguerreL| |paren| |low| - |has?| |cup| |cycles| |const| |OMreceive| |sPol| |changeThreshhold| - |intensity| |scalarTypeOf| |asinhIfCan| |swap| |rur| |irreducible?| - |lazyIrreducibleFactors| |e01saf| |subQuasiComponent?| |e02daf| - |acosIfCan| |internalZeroSetSplit| |lSpaceBasis| |OMreadStr| |d01gaf| - |mightHaveRoots| |OMgetFloat| |inverseLaplace| |leftRank| - |strongGenerators| |bsolve| |module| |primPartElseUnitCanonical!| - |infLex?| |pair?| D |printHeader| |tab1| |swap!| - |constantToUnaryFunction| |characteristicSet| |resultantEuclideannaif| - |common| |graphs| |eigenvalues| |blankSeparate| |bottom!| - |nonLinearPart| |elementary| |errorInfo| |qinterval| |evaluateInverse| - |unvectorise| |GospersMethod| |convert| |numberOfPrimitivePoly| - |secIfCan| |leftFactorIfCan| |cyclotomicDecomposition| |endOfFile?| - |OMputString| |prime| |varList| |showTypeInOutput| |flexible?| - |postfix| |chainSubResultants| |space| |hdmpToP| |setsubMatrix!| - |rename| |moebius| |charthRoot| |ratDenom| |operation| |euclideanSize| - |rationalIfCan| |monicRightDivide| |rectangularMatrix| |normalise| - |sech2cosh| |groebnerFactorize| |blue| |OMUnknownCD?| |fibonacci| - |invertibleElseSplit?| |powerSum| |atrapezoidal| |pascalTriangle| - |retract| |purelyAlgebraic?| |startTableGcd!| |ratDsolve| |delay| - |identity| |OMgetSymbol| |pop!| |lowerCase!| |OMputError| - |shallowCopy| |index?| |tanAn| |repSq| |taylorRep| - |wordInStrongGenerators| |move| |minPoly| |cosIfCan| |print| |d03eef| - |numberOfOperations| |lyndon| |pile| |quadratic| |viewpoint| |hMonic| - |distFact| |cAsin| |htrigs| |point| |getRef| |ptFunc| - |OMunhandledSymbol| |width| |ksec| |unprotectedRemoveRedundantFactors| - |insert!| |att2Result| |lflimitedint| |radicalEigenvector| |size?| - |integralMatrixAtInfinity| |indicialEquationAtInfinity| |f02aaf| - |interReduce| |odd?| |structuralConstants| |associative?| |e04naf| - |series| |rootProduct| |particularSolution| |stopTable!| |precision| - |iiexp| |mapBivariate| |times!| |linear?| |enqueue!| |int| - |clipPointsDefault| |complexEigenvectors| |ScanFloatIgnoreSpacesIfCan| - |Beta| |resize| |listOfLists| |optional| |makeUnit| - |branchPointAtInfinity?| |solveRetract| |rk4f| |OMgetEndBVar| - |hasTopPredicate?| |sum| |createZechTable| |eisensteinIrreducible?| - |unitNormal| |min| |c06gcf| |f02akf| |lexTriangular| |sumOfDivisors| - |nary?| |getOperands| |next| |box| |credPol| |evaluate| - |quasiAlgebraicSet| |extendedIntegrate| |rdregime| |deref| |concat!| - |ddFact| |iteratedInitials| |primintfldpoly| - |basisOfCommutingElements| |explicitlyEmpty?| |clip| |sign| - |setLabelValue| |epilogue| |sup| |basisOfRightAnnihilator| |radPoly| - |OMReadError?| |polyred| |d01apf| |real?| |logGamma| |OMopenString| - |elliptic?| |cardinality| |checkPrecision| |asech| |besselK| |bright| - |inrootof| |trapezoidalo| |norm| |baseRDE| |polCase| |ord| |randomR| - |comp| |physicalLength!| |rubiksGroup| |d01amf| |minIndex| - |numberOfVariables| |multiple| |OMputSymbol| - |lastSubResultantEuclidean| |edf2ef| |splitConstant| |trivialIdeal?| - |represents| |applyQuote| |axes| |curry| |tanIfCan| - |noncommutativeJordanAlgebra?| |hasHi| |weight| |traverse| |safeFloor| - |lyndonIfCan| |recip| |OMputApp| |eval| |green| |iiGamma| |setClosed| - |leftMinimalPolynomial| |any| |in?| |primaryDecomp| |OMputBVar| - |reduceLODE| |doubleResultant| |selectNonFiniteRoutines| - |integralMatrix| |permutationRepresentation| |ruleset| |zCoord| - |makeViewport3D| |wreath| |leftCharacteristicPolynomial| |innerSolve1| - |bipolar| |#| |rowEchelonLocal| |adaptive?| |inHallBasis?| |lowerCase| - |transcendenceDegree| |nullary| |setOfMinN| |indicialEquations| - |ODESolve| |OMsetEncoding| |ellipticCylindrical| |cyclotomic| - |randnum| |semiResultantEuclidean2| |limitPlus| |primitivePart!| - |curveColor| |innerEigenvectors| |e02ddf| |frobenius| |suchThat| - |stiffnessAndStabilityFactor| |iitan| |eigenvector| |invmod| |search| - |solveLinear| |variationOfParameters| |rightDivide| |minPoints3D| - |close!| |center| |char| |sinhIfCan| |acoshIfCan| |compdegd| - |OMmakeConn| |resetAttributeButtons| |rightLcm| |leftZero| |maxdeg| - |principal?| |integerIfCan| |partialQuotients| |e04ycf| |lazyEvaluate| - |mainCoefficients| |sin2csc| |unitVector| |imagE| |permutation| - |debug3D| |intPatternMatch| |fixPredicate| |genericRightTraceForm| - |iCompose| |extension| |badValues| |swapColumns!| |prod| |makeSUP| - |LyndonWordsList| |setProperty| |discriminantEuclidean| |graeffe| - |reduced?| |rischDEsys| |e02bbf| |sylvesterSequence| |areEquivalent?| - |rk4qc| |changeNameToObjf| |complexElementary| |generic?| |qqq| - |radicalSolve| |mapUp!| |semiDiscriminantEuclidean| |d01asf| - |makeYoungTableau| |bumprow| |redPo| |e02akf| |leadingIndex| - |alternatingGroup| |currentSubProgram| |d02bhf| |measure| |numerator| - |Zero| |processTemplate| |appendPoint| |taylorIfCan| |discreteLog| - |iiabs| |gcdPrimitive| ~ |lazyIntegrate| |mergeDifference| - |branchIfCan| |compactFraction| |One| |toroidal| |cn| |adaptive3D?| - |lintgcd| |polynomialZeros| |outputMeasure| |PollardSmallFactor| |ran| - |pack!| |digits| |notelem| |members| |point?| |create3Space| |pole?| - |cyclotomicFactorization| |algDsolve| |oddInfiniteProduct| |edf2efi| - |realSolve| |simplifyPower| |multiple?| |quasiMonicPolynomials| - |rightOne| |basis| |endSubProgram| |primextintfrac| |s19aaf| - |asechIfCan| |resetVariableOrder| |UP2ifCan| |mapSolve| - |rightDiscriminant| |laguerre| |stronglyReduce| |polygon| |mainValue| - |cycleRagits| |getGraph| |normal?| |normalizedAssociate| - |OMsupportsCD?| |createPrimitiveElement| |createPrimitiveNormalPoly| - |symmetricGroup| |mulmod| |seriesSolve| |open| |normalizeIfCan| |mat| - |setValue!| |rational| |length| |rootRadius| |s18dcf| |is?| - |univariatePolynomials| |whatInfinity| |eyeDistance| - |representationType| |conjug| |ode| |scripts| |bivariatePolynomials| - |redPol| |associatorDependence| |leftUnits| |mantissa| |integer?| - |symmetricPower| |besselY| |terms| |rational?| |trueEqual| - |generalPosition| |omError| |subTriSet?| |s17aff| |wholeRadix| - |specialTrigs| |expr| |components| |leadingTerm| |hclf| |typeLists| - |f01qcf| |quoted?| |s21baf| |roughBase?| |clipSurface| |critpOrder| - |divideExponents| |append| |s17dhf| |subResultantChain| - |factorGroebnerBasis| |reducedContinuedFraction| - |parabolicCylindrical| |fullPartialFraction| |clearFortranOutputStack| - NOT |scaleRoots| |rank| |delete| |countRealRootsMultiple| |cSec| - |expextendedint| |printCode| |twist| |padecf| OR |setMaxPoints| - |branchPoint?| |copy!| |queue| |variable| |romberg| |lineColorDefault| - |fortranComplex| |addMatch| AND |reverse!| |e02ahf| - |nextsousResultant2| |characteristicSerie| |mainSquareFreePart| - |cAsech| |numberOfCycles| |medialSet| |readLineIfCan!| |style| - |localReal?| |dictionary| |genericRightMinimalPolynomial| - |rationalPoints| |sturmSequence| |removeSuperfluousQuasiComponents| - |critBonD| |leadingBasisTerm| |log2| |mainCharacterization| |eq| - |internalInfRittWu?| |janko2| |cyclicGroup| - |rewriteIdealWithHeadRemainder| |idealiser| |lazyGintegrate| |merge| - |removeSuperfluousCases| |musserTrials| |iter| |LazardQuotient2| - |complexNumericIfCan| |approxNthRoot| |showAll?| |e02agf| - |superHeight| |leaf?| |factorSquareFreePolynomial| |iifact| - |exponents| |/\\| |obj| |imagK| |elem?| |semiResultantReduitEuclidean| - |every?| |string?| |createGenericMatrix| |initials| |explicitEntries?| - |characteristicPolynomial| |\\/| |nullity| |cache| |e02zaf| |s14baf| - |operators| |reducedQPowers| |curryLeft| |numericalOptimization| - |numer| |setTopPredicate| |monicLeftDivide| |conditionsForIdempotents| - |solveLinearPolynomialEquation| |setAdaptive| |tower| - |createPrimitivePoly| |cRationalPower| |satisfy?| |distance| - |primPartElseUnitCanonical| |OMconnOutDevice| |putGraph| - |divisorCascade| |subset?| |powerAssociative?| |acschIfCan| - |dimensions| |headReduce| |makeFR| |semiSubResultantGcdEuclidean2| - |repeatUntilLoop| |rationalPoint?| |vark| * |df2st| |OMencodingXML| - |numFunEvals3D| |tanh2trigh| |extractClosed| |decimal| |internal?| - |generalizedContinuumHypothesisAssumed| |extendedResultant| - |coerceListOfPairs| |OMputEndBVar| |lazyVariations| |factor| |c02aff| - |exp| |balancedBinaryTree| |distdfact| |purelyTranscendental?| - |rootOfIrreduciblePoly| |declare!| |zero| |linearAssociatedOrder| - |viewPhiDefault| |moduloP| |sqrt| |setEmpty!| |f01brf| |setRow!| |dot| - |complex| |bringDown| |expintfldpoly| |complexExpand| |null| - |ScanFloatIgnoreSpaces| |real| |divideIfCan| UP2UTS |invmultisect| - |rootNormalize| |groebnerIdeal| |bracket| |curveColorPalette| |And| - |rightRankPolynomial| |coth2tanh| |removeRedundantFactorsInPols| - |imag| |showAllElements| |rules| |s19acf| |directProduct| |makeTerm| - |d01gbf| |showRegion| |subst| |Or| |adaptive| |minimumDegree| - |unaryFunction| |startTableInvSet!| |numFunEvals| |youngGroup| - |normalizeAtInfinity| |f01bsf| |factorFraction| |Not| |increment| - |powers| |ridHack1| |stoseInvertibleSet| |trigs| - |halfExtendedResultant1| |subNode?| |rotatex| |incrementKthElement| - |bezoutResultant| |expint| |clearTheIFTable| |universe| |destruct| - |unary?| |fractionFreeGauss!| |lfintegrate| |rightMult| |f04asf| - |coerceP| |sumSquares| |groebSolve| |diag| |weights| |coerceImages| - |cCosh| |rightScalarTimes!| |f01mcf| |iiacsc| |infieldIntegrate| - |OMParseError?| |makeFloatFunction| |patternVariable| |rootSplit| - |coercePreimagesImages| |iroot| |biRank| |critM| |laplacian| |f04qaf| - |objects| |ScanArabic| |SturmHabichtCoefficients| |asecIfCan| - |scanOneDimSubspaces| |choosemon| |overlap| |conical| |setPrologue!| - |f2df| |triangular?| |fglmIfCan| |base| |f02aff| |OMgetObject| - |s18aef| |lex| |d01anf| |double| |OMgetEndError| |or| - |symmetricSquare| |insertTop!| |realEigenvalues| |var1Steps| - |lieAlgebra?| |c06fqf| |s18def| |ParCondList| |symmetricDifference| - |quotientByP| |inc| |changeName| |and| |diagonalMatrix| |someBasis| - |rarrow| |regularRepresentation| |btwFact| |matrixDimensions| - |OMUnknownSymbol?| |argscript| |tubePlot| |dAndcExp| |iicoth| - |charClass| |OMgetEndApp| |removeConstantTerm| |e04jaf| |minset| - |prefix| |yCoord| |stoseSquareFreePart| |leftRegularRepresentation| - |hcrf| |checkForZero| |messagePrint| |degreePartition| |triangulate| - |toScale| |iiasin| |monomialIntPoly| |super| |mathieu11| |build| - |comment| F |hasoln| |extendIfCan| |freeOf?| |e02aef| - |brillhartIrreducible?| |nthFlag| |f07adf| |selectPolynomials| - |f04jgf| |getExplanations| |subResultantGcd| |test| - |algebraicVariables| |edf2df| |euclideanGroebner| |singleFactorBound| - |meshPar1Var| |divideIfCan!| |SturmHabicht| |compose| |chebyshevU| - |LyndonCoordinates| |OMputInteger| |startPolynomial| |whileLoop| - |returnType!| |airyAi| |graphCurves| |iiacot| |OMsupportsSymbol?| - |abelianGroup| |fractRagits| |mkAnswer| |orthonormalBasis| - |showFortranOutputStack| |RittWuCompare| |content| |max| |denomRicDE| - |Gamma| |radicalOfLeftTraceForm| |isAbsolutelyIrreducible?| |ignore?| - |neglist| |jordanAdmissible?| |unrankImproperPartitions0| |bat1| - |lexico| |socf2socdf| |csch2sinh| |axesColorDefault| |sort!| - |permutationGroup| |supersub| |atom?| |airyBi| |mindeg| |Frobenius| - |belong?| |concat| |fprindINFO| |leftPower| |top!| - |viewWriteAvailable| |selectsecond| |nonQsign| |quatern| - |SturmHabichtSequence| |partition| |froot| |setEpilogue!| |previous| - |hash| |clipBoolean| |rightNorm| |roughBasicSet| |closeComponent| - |rootSimp| |iisec| |genericRightTrace| |numberOfDivisors| |tab| - |count| |algint| |reduceByQuasiMonic| |setStatus| |extractIfCan| - |preprocess| |positiveRemainder| |PDESolve| |innerSolve| |setStatus!| - |composite| |ref| |updatF| |genericLeftTraceForm| |shade| - |cycleSplit!| |intermediateResultsIF| |physicalLength| - |collectQuasiMonic| |safetyMargin| |var2Steps| |lookup| |ideal| - |createNormalPoly| |harmonic| |lllip| |parent| |leftOne| |contains?| - |primitiveElement| |unmakeSUP| |newLine| |primitivePart| |cTan| - |setleft!| |primlimitedint| |nil| |infinite| |arbitraryExponent| - |approximate| |complex| |shallowMutable| |canonical| |noetherian| - |central| |partiallyOrderedSet| |arbitraryPrecision| - |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| - |additiveValuation| |unitsKnown| |canonicalUnitNormal| - |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| - |commutative|)
\ No newline at end of file + |Record| |Union| |Category| |indicialEquationAtInfinity| + |lastSubResultantElseSplit| |removeSinhSq| |rroot| |d02cjf| |delta| + |unitNormal| |factorAndSplit| |c06fpf| |Nul| |composites| |changeName| + |normalDenom| |plotPolar| |leftDivide| |laguerreL| |zerosOf| + |OMputAttr| |ScanArabic| |charClass| |generalizedEigenvector| |ord| + |splitConstant| |subResultantGcd| |mainVariable?| |coefficient| + |aQuartic| |Gamma| |sinhcosh| |stoseSquareFreePart| |ODESolve| + |hdmpToP| |systemSizeIF| |partition| |digit| |clipSurface| + |basisOfCenter| |implies?| |position!| |read!| |comparison| |declare| + |term?| |maxRowIndex| |logpart| |meshPar1Var| |dAndcExp| + |showTheFTable| |complexNumeric| |OMclose| |iisec| |ddFact| |iidsum| + |constantToUnaryFunction| |representationType| |d01gaf| |float?| + |fixedPointExquo| |depth| |log| |linearlyDependent?| + |supDimElseRittWu?| |solid?| |pow| |prindINFO| |nodeOf?| |trapezoidal| + |primintfldpoly| |setScreenResolution3D| |iiacoth| |ratpart| |latex| + |lazyVariations| |kernels| |inverseIntegralMatrixAtInfinity| |makeSUP| + |s19adf| |collect| |comment| |makeop| + |solveLinearPolynomialEquationByFractions| |roughBase?| + |oblateSpheroidal| |enumerate| |rationalPoints| + |ScanFloatIgnoreSpacesIfCan| |leaves| |cAtan| |univariate| |rk4a| + |redPo| |resultant| |equiv?| |genericRightMinimalPolynomial| |cAsin| + |moduloP| |idealiser| |lambda| |makeUnit| |internalDecompose| |even?| + |karatsubaDivide| |f02wef| |leftGcd| |karatsubaOnce| |showSummary| + |retractIfCan| |graphState| |nthr| |setref| |safeCeiling| + |parametersOf| |duplicates| |OMreceive| |gderiv| |ReduceOrder| + |components| |primPartElseUnitCanonical| |curve?| |factorial| + |lfextendedint| |e01sff| |ScanFloatIgnoreSpaces| |postfix| |d03edf| + |prime?| |semiResultantEuclidean2| |getVariableOrder| + |numberOfComponents| |setright!| |showAttributes| |cTanh| |setOfMinN| + |f01rdf| |llprop| |identityMatrix| |insertTop!| |lowerCase!| |linear?| + |outputAsScript| |toseLastSubResultant| |binarySearchTree| + |deleteProperty!| |fractRagits| |fmecg| |paren| |leftPower| + |selectIntegrationRoutines| |supRittWu?| |setProperties| + |antiAssociative?| |OMputEndBVar| |pdf2df| |dequeue!| |contract| + |nextPrimitivePoly| |bat1| |setPrologue!| |relativeApprox| |remainder| + |realZeros| BY |expIfCan| |halfExtendedSubResultantGcd2| |optpair| + |mainVariables| Y |nextIrreduciblePoly| |d01fcf| + |genericRightTraceForm| |top| |f01qcf| |scan| |nthFlag| |getOperator| + |rightMinimalPolynomial| |finiteBasis| |rule| |powerAssociative?| + |s20adf| |continue| |conditionP| |matrix| |void| |extendedint| + |e02adf| |assign| |nand| |cardinality| |hasoln| |leastAffineMultiple| + |shanksDiscLogAlgorithm| |OMgetType| |pointData| |alphanumeric| + |OMputBind| |pattern| |createIrreduciblePoly| |double?| |critMTonD1| + |formula| |iprint| |generator| |copy!| |c06gbf| |OMgetEndObject| + |mainDefiningPolynomial| |RemainderList| |pushuconst| + |screenResolution| |map| |d01asf| |cycleTail| + |SturmHabichtCoefficients| |s19acf| |unitCanonical| |getPickedPoints| + |binary| |square?| |open?| |symmetricDifference| |df2mf| + |monomialIntPoly| |PDESolve| |stoseIntegralLastSubResultant| + |polygon?| |distFact| |scale| |bipolarCylindrical| |eyeDistance| + |squareMatrix| |nrows| |OMgetAtp| |createMultiplicationMatrix| + |fglmIfCan| ~= |irreducible?| |plenaryPower| |var1StepsDefault| + |acscIfCan| |op| |extractSplittingLeaf| |ncols| |remove| |f02aff| + |setrest!| |intermediateResultsIF| |rischNormalize| + |createPrimitiveNormalPoly| |fullPartialFraction| |extensionDegree| + |convert| |nextPartition| |qqq| |true| |readIfCan!| + |dimensionOfIrreducibleRepresentation| |inverse| |flexibleArray| + |symmetricPower| |resetBadValues| |rewriteIdealWithRemainder| |last| + |rootPower| |bitTruth| |assoc| |modularGcdPrimitive| + |definingPolynomial| |lo| |magnitude| |symbol?| |dot| |algebraicOf| + |atrapezoidal| |match?| |hitherPlane| |badNum| |diagonal| |size?| + |pointLists| |incr| |clikeUniv| |complementaryBasis| |abs| |fortran| + |sturmVariationsOf| |minimumExponent| |lifting1| |rightUnit| + |removeRoughlyRedundantFactorsInPols| |genericLeftTraceForm| |hi| + |binomThmExpt| |startTableInvSet!| |bezoutMatrix| |multiset| + |shallowExpand| |returns| |lexico| |fortranCompilerName| |getMeasure| + |numberOfComputedEntries| |ridHack1| |outputList| |retract| |tab| + |newSubProgram| |internalSubQuasiComponent?| |writable?| |flagFactor| + |symbol| |index?| |divergence| |complete| |bivariate?| + |doubleComplex?| |readable?| |generalizedInverse| |leftLcm| + |wordInGenerators| ~ |acschIfCan| |nthRoot| |computeCycleLength| + |OMputError| |primlimintfrac| |s01eaf| |string| |integer| |null| + |floor| |genericPosition| |quoted?| |modularGcd| |trigs2explogs| + |univariateSolve| |curveColorPalette| |tanAn| |setOrder| |numerator| + |zeroDimensional?| |limitedint| |mix| |invertIfCan| |pointPlot| + |setnext!| |eigenvector| |overlabel| = |iitanh| |cscIfCan| + |balancedBinaryTree| |hexDigit?| |empty| |zeroMatrix| |segment| + |schema| |removeDuplicates!| |selectPolynomials| |leftAlternative?| + |e02bbf| |open| |generalInfiniteProduct| |janko2| |dn| |clearCache| < + |reducedSystem| |rubiksGroup| |whileLoop| |cschIfCan| |level| |f07adf| + |one?| > |removeZero| |ipow| |prinpolINFO| |leastMonomial| |interpret| + |updateStatus!| |iFTable| |polynomialZeros| <= |ldf2vmf| + |multiEuclidean| |OMsupportsSymbol?| |leader| |swap!| |laurentIfCan| + |OMUnknownSymbol?| >= |expr| |rightPower| |imagj| |generate| + |particularSolution| |list| |script| |upperCase!| |convergents| + |basisOfRightAnnihilator| |output| |setDifference| + |semiLastSubResultantEuclidean| |besselJ| |OMgetString| + |outputSpacing| |subResultantGcdEuclidean| |setStatus!| |incrementBy| + |palgLODE0| |setIntersection| |antisymmetricTensors| RF2UTS + |fortranDouble| |derivationCoordinates| |checkPrecision| |omError| + + |simplifyExp| |expand| |associates?| |setUnion| + |selectMultiDimensionalRoutines| |equation| |mapSolve| |variable| - + |mindegTerm| |primitiveElement| |filterWhile| |apply| |hclf| + |setMinPoints3D| |prepareDecompose| |rationalIfCan| / + |linearDependence| |filterUntil| |elRow2!| |OMbindTCP| + |irreducibleFactors| |reorder| |tablePow| |select| + |functionIsOscillatory| |size| |bindings| |tex| |multisect| + |reverseLex| |box| |resetVariableOrder| |padicallyExpand| |iExquo| + |lazyPseudoRemainder| |t| |errorInfo| |singular?| |transform| |mapUp!| + |e02zaf| |parent| |setchildren!| |lazyPseudoDivide| |compound?| + |viewDefaults| |resetAttributeButtons| |close| |f07fef| + |factorsOfCyclicGroupSize| |sec2cos| |leaf?| |laplacian| |rightOne| + |toScale| |insert| |generalTwoFactor| |shift| |nextItem| |OMputApp| + |bumptab| |nor| |expintegrate| |condition| |cCsc| |generalPosition| + |integralCoordinates| |leftTraceMatrix| |getGoodPrime| SEGMENT + |makeRecord| |satisfy?| |viewWriteDefault| |exponent| |display| + |getSyntaxFormsFromFile| |cCot| |insertRoot!| |tanSum| |morphism| + |fixedDivisor| |wrregime| |drawToScale| |squareFreeFactors| |pair?| + |interReduce| |tanh2trigh| |doublyTransitive?| |normInvertible?| + |shiftRight| |exptMod| |createMultiplicationTable| |conical| |range| + |leviCivitaSymbol| |lazyPquo| |rootSplit| |s17ajf| |gcdPolynomial| + |f2df| |equivOperands| |exponentialOrder| |imagE| |startPolynomial| + |int| |e01saf| |algDsolve| |interval| |setMaxPoints3D| + |removeRedundantFactorsInContents| |computeInt| |sortConstraints| + |monicCompleteDecompose| |root| |s17agf| |laguerre| |cCos| |input| + |specialTrigs| |laplace| |sumOfKthPowerDivisors| |compiledFunction| + |fillPascalTriangle| |cos2sec| |exprHasWeightCosWXorSinWX| |iiacsc| + |s17dgf| |library| |divide| |positiveSolve| |physicalLength!| |addmod| + |internalZeroSetSplit| |hspace| |f01bsf| |lyndon| |result| |csch| + |rename| |printStatement| |diagonalMatrix| |surface| |f04qaf| + |fortranLinkerArgs| |asinh| |getOperands| |distance| |setEpilogue!| + |setButtonValue| |clipBoolean| |numericalIntegration| |acosh| + |sturmSequence| |middle| |printTypes| |exists?| + |generalizedContinuumHypothesisAssumed| |atanh| |tubePoints| |cAsec| + |endOfFile?| |any?| |rarrow| |set| |torsion?| |taylorQuoByVar| |acoth| + |semiResultantEuclideannaif| |lowerCase| |f01mcf| |f01qdf| |exprToUPS| + |finite?| |asech| |rightZero| |compile| |makeViewport3D| |id| + |crushedSet| |subPolSet?| |setAdaptive3D| |light| |moreAlgebraic?| + |epilogue| |associative?| |distribute| |linearlyDependentOverZ?| + |getMatch| |multiple| |fTable| |binaryFunction| |ptree| |measure| + |airyBi| |critpOrder| |table| |checkForZero| |logGamma| + |separateDegrees| |applyQuote| |extendedEuclidean| + |getMultiplicationMatrix| |s21baf| |denomRicDE| + |removeIrreducibleRedundantFactors| |new| |eulerE| |tableau| |solve1| + |oddlambert| |cCsch| |f07aef| |complexElementary| |definingInequation| + |polygamma| |edf2ef| |e04ucf| |bezoutDiscriminant| |groebner| + |matrixConcat3D| |mainCharacterization| |cyclicEntries| |conjugates| + |call| |OMsetEncoding| |clearFortranOutputStack| |mulmod| |ParCond| + |ruleset| |insert!| |makeCrit| |complexEigenvalues| |enterInCache| + |quotedOperators| |trunc| |f01qef| |show| |exactQuotient!| + |multiplyExponents| |subNode?| |exactQuotient| |bits| + |idealiserMatrix| |power| |radicalEigenvector| |algintegrate| + |factorSquareFreePolynomial| |factorGroebnerBasis| |OMputString| + |listLoops| |headReduce| |reverse| |dmpToP| |aQuadratic| |trace| + |e02akf| |primes| |push| |suchThat| |quasiRegular| + |nextPrimitiveNormalPoly| |innerSolve1| |gcdcofactprim| |cyclicEqual?| + |lepol| |pointSizeDefault| |semiIndiceSubResultantEuclidean| + |getExplanations| |flexible?| UP2UTS |rotatex| |domainOf| + |scalarMatrix| |tower| |stoseInvertible?| |setEmpty!| + |doubleResultant| |setelt!| |ignore?| |center| + |selectOptimizationRoutines| |makeSketch| |highCommonTerms| |e02bcf| + |enterPointData| |derivative| |gramschmidt| |initial| |palgint0| + |countRealRoots| |setlast!| |zag| |printInfo| |scripted?| + |scanOneDimSubspaces| |create| |rotatey| |block| |taylorRep| + |getZechTable| |left| |list?| |setFormula!| |gbasis| |factor| + |transcendenceDegree| |topPredicate| |revert| |mdeg| + |standardBasisOfCyclicSubmodule| |rquo| |fortranCharacter| + |backOldPos| |removeSquaresIfCan| |right| |cAcsch| |member?| |sqrt| + |graphCurves| |superHeight| |property| |differentialVariables| + |rightExactQuotient| |closedCurve?| |validExponential| |e02ajf| + |listYoungTableaus| |real| |firstUncouplingMatrix| + |stosePrepareSubResAlgo| |infiniteProduct| |bfKeys| |Ci| + |symmetricProduct| |e04mbf| |solveInField| |intensity| + |setAttributeButtonStep| |linearAssociatedOrder| |imag| |OMcloseConn| + |squareFreePolynomial| |oddintegers| |internalSubPolSet?| |graphs| + |symbolTable| |directProduct| |sPol| |ode| |linGenPos| |c05pbf| + |bandedHessian| |polyRicDE| |leftOne| |reduceBasisAtInfinity| + |processTemplate| |listRepresentation| |perfectSqrt| |s19abf| + |totalDegree| |units| |pointColor| |normFactors| |expenseOfEvaluation| + |trapezoidalo| |collectUnder| |companionBlocks| |iicsc| |lflimitedint| + |diagonals| |OMputEndAtp| |dmpToHdmp| |digamma| |removeCoshSq| + |pushFortranOutputStack| |accuracyIF| |roman| |ricDsolve| + |numberOfVariables| |secIfCan| |toseInvertibleSet| |reverse!| |e01bff| + |f02adf| |legendreP| |destruct| |bat| |goodnessOfFit| + |viewSizeDefault| |popFortranOutputStack| |dequeue| |asimpson| |sh| + |triangSolve| |OMconnInDevice| |maxColIndex| |unravel| + |clipParametric| |s18acf| |optimize| |cAcos| |children| |difference| + |henselFact| |outputAsFortran| |nonLinearPart| |palgint| |vark| + |antiCommutator| |leftQuotient| LODO2FUN |ellipticCylindrical| + |gcdprim| |composite| |f02akf| |rightFactorCandidate| |s15aef| + |meatAxe| |coerceP| |edf2fi| |failed?| |LiePolyIfCan| |c02agf| + |addMatch| |iipow| |minPoly| |d01aqf| |nextNormalPoly| |writeLine!| + |code| |rk4f| |rightDiscriminant| |lintgcd| |showArrayValues| + |purelyAlgebraicLeadingMonomial?| |changeMeasure| + |nextLatticePermutation| |numerators| |characteristicSerie| + |fullDisplay| |high| |nthCoef| |normalizedAssociate| |seriesSolve| + |lieAlgebra?| |useSingleFactorBound| |nil| |outputFloating| + |repeating| |print| |cycleLength| |rotatez| |exponents| |basis| + |makeTerm| |commutativeEquality| |cot2trig| |iisqrt3| |permanent| + |leftRecip| |linearPolynomials| |sort!| |pquo| |mergeFactors| + |initializeGroupForWordProblem| |e02gaf| |printInfo!| |polyPart| + |minPol| |ldf2lst| |subresultantVector| |euclideanGroebner| + |monomials| |diag| |LowTriBddDenomInv| |gcdcofact| |unvectorise| |or?| + |prefixRagits| |unitVector| |radicalSimplify| |second| |ratPoly| + |isPlus| |bitLength| |rational?| |leftRank| |separateFactors| + |weakBiRank| |functionIsContinuousAtEndPoints| |splitDenominator| + |lfextlimint| |quasiComponent| |zeroSquareMatrix| |third| |function| + |blue| |startStats!| |bernoulliB| |badValues| |symbolTableOf| + |coth2trigh| |ef2edf| |hasTopPredicate?| |primlimitedint| |checkRur| + |divisorCascade| |curryRight| |polCase| + |createLowComplexityNormalBasis| |selectOrPolynomials| |modTree| + |lprop| |heap| |submod| |irreducibleRepresentation| |c05adf| + |outputFixed| |selectPDERoutines| |doubleDisc| |delete!| |sinhIfCan| + |gradient| |typeList| |inGroundField?| |OMopenString| |negative?| + |Beta| |listexp| |rombergo| |FormatRoman| |consnewpol| |chebyshevT| + |f04mbf| |semiResultantReduitEuclidean| |compBound| |se2rfi| |s13acf| + |mapmult| |rightScalarTimes!| |wholePart| |qroot| |corrPoly| + |OMgetEndBind| |realRoots| |seed| |palglimint0| |adaptive3D?| + |characteristicPolynomial| |pdct| |purelyAlgebraic?| |maxdeg| |vector| + |asinIfCan| |createNormalPrimitivePoly| |halfExtendedResultant1| + |extractClosed| |stFunc1| |simplifyPower| |bubbleSort!| + |primitivePart| |colorDef| |primPartElseUnitCanonical!| + |lazyIntegrate| |differentiate| |mapUnivariate| |escape| |outputForm| + |expenseOfEvaluationIF| |c06ebf| |getDatabase| |palgextint| + |controlPanel| |identity| |check| |neglist| |atanhIfCan| + |selectNonFiniteRoutines| |splitNodeOf!| |decomposeFunc| + |invmultisect| |var2Steps| |precision| |rk4| |case| + |halfExtendedSubResultantGcd1| |linear| |zeroVector| |modulus| + |cycleElt| |OMencodingSGML| |e04fdf| |tRange| |realElementary| + |leadingSupport| |has?| |weierstrass| |ffactor| + |wordInStrongGenerators| |fixedPoints| |coerce| |iiasec| + |associatorDependence| |cAcsc| |multiplyCoefficients| |entries| + |mapdiv| |computeBasis| |cyclicSubmodule| |integer?| |polynomial| + |construct| |pseudoRemainder| |viewPosDefault| |mkIntegral| |s13adf| + |positiveRemainder| |Is| |e04naf| |slash| |eigenMatrix| |multiple?| + |points| |rootProduct| |powerSum| D |makeVariable| |bernoulli| + |prinshINFO| |rightGcd| |maxrank| |simplify| |sample| + |associatedSystem| |leftFactorIfCan| |basisOfCommutingElements| + |leftUnit| |lcm| |iiasin| |genericLeftDiscriminant| |pushdown| + |split!| |whatInfinity| |mirror| |exquo| |printHeader| + |setLegalFortranSourceExtensions| |deref| |fprindINFO| |setMinPoints| + |basisOfNucleus| |exp1| |andOperands| |e02dcf| + |removeRedundantFactorsInPols| |f04adf| |bright| + |integralDerivationMatrix| |div| |iicoth| |screenResolution3D| + |addMatchRestricted| |imagK| |raisePolynomial| |d02bbf| |cAsech| + |externalList| |symmetricGroup| |decompose| |quo| |sign| |algint| + |numericalOptimization| |logical?| |reduceLODE| |gcd| + |pointColorPalette| |rightDivide| |ramifiedAtInfinity?| + |fortranLiteralLine| |updatD| |cycle| |curveColor| |OMputEndObject| + |dark| |listBranches| |possiblyInfinite?| |union| |ocf2ocdf| + |randomLC| |clearDenominator| |constant?| |expextendedint| + |viewport3D| |rem| |putGraph| |qfactor| |s20acf| |binding| |addPoint2| + |false| |localUnquote| |pmComplexintegrate| |s18dcf| |groebgen| + |rowEchelonLocal| |ParCondList| |eval| |rationalPoint?| |exprToGenUPS| + |directSum| |sizeMultiplication| |structuralConstants| |moebius| + |first| |unitNormalize| |evenInfiniteProduct| |e01sbf| |predicates| + |ScanRoman| |fractRadix| |upperCase?| |vertConcat| |divideExponents| + |npcoef| |returnTypeOf| |rest| |trim| |linearMatrix| |commaSeparate| + |bringDown| |frst| |expPot| |overset?| |partialNumerators| + |leadingTerm| |symbolIfCan| |limitedIntegrate| |SturmHabichtSequence| + |substitute| |e04dgf| |e01baf| |initTable!| |/\\| |geometric| + |showTheSymbolTable| |semiResultantEuclidean1| |logIfCan| |any| + |removeDuplicates| |appendPoint| |expintfldpoly| |s18aff| + |removeRedundantFactors| |character?| |lllp| |minGbasis| |e02aef| + |evaluateInverse| |cross| |prime| |SturmHabichtMultiple| |every?| + |startTableGcd!| |imagk| |quartic| |clearTheIFTable| |OMreadStr| + |iiacot| |trueEqual| |complexEigenvectors| |insertMatch| |s17aef| + |push!| |elliptic| |monomRDEsys| |toseSquareFreePart| |readLineIfCan!| + |find| |getGraph| |chvar| |cCoth| |irreducibleFactor| + |semiDiscriminantEuclidean| |s21bdf| |normalise| |monomialIntegrate| + |e02baf| |f04arf| |redmat| |completeEval| |multMonom| |distdfact| + |setvalue!| |chebyshevU| |var2StepsDefault| |plot| |rectangularMatrix| + |decrease| |setprevious!| |coefChoose| |palgextint0| |OMParseError?| + |nil?| |setelt| |rootPoly| |zCoord| |btwFact| |monicRightDivide| + |definingEquations| |internalLastSubResultant| |numeric| + |roughBasicSet| |presuper| |discriminantEuclidean| |superscript| + |tanintegrate| |cycleSplit!| |applyRules| |dictionary| + |complexIntegrate| |problemPoints| |xCoord| |c02aff| |addBadValue| + |setClipValue| |plus| |shuffle| |not| |relerror| |radical| |imagI| + |copy| |option?| |factor1| |s17dcf| |quote| |cothIfCan| |youngGroup| + |sts2stst| |primintegrate| |singularitiesOf| |reduced?| |quasiMonic?| + |stoseInternalLastSubResultant| |knownInfBasis| |realSolve| + |diagonal?| |retractable?| |unitsColorDefault| |properties| |yCoord| + |sparsityIF| |d02ejf| |nextSubsetGray| |asecIfCan| |iiexp| ^= + |bfEntry| |critB| |OMgetInteger| |stopTableInvSet!| + |variationOfParameters| |thetaCoord| |prolateSpheroidal| |split| + |rationalApproximation| |asinhIfCan| |cCosh| |autoCoerce| + |basisOfCentroid| |mat| |max| |subQuasiComponent?| + |quasiMonicPolynomials| |sincos| |approxNthRoot| |sup| + |factorByRecursion| |factorSquareFree| |pushNewContour| |goodPoint| + |resultantnaif| |merge| |torsionIfCan| |remove!| |say| |separant| + |B1solve| |rational| |mainValue| |currentScope| |toroidal| + |genericLeftMinimalPolynomial| |merge!| |oddInfiniteProduct| |sin2csc| + |translate| |dfRange| |scaleRoots| |iicosh| |nullity| + |currentCategoryFrame| |ratDenom| |iiasech| |leadingIdeal| + |degreePartition| |tan2trig| |resultantEuclideannaif| |BumInSepFFE| + |contours| |represents| |symmetricSquare| |f04mcf| |linearPart| + |c06gcf| |OMserve| |real?| |times| |reduction| |infix| |s21bbf| + |mathieu11| |selectODEIVPRoutines| |f04maf| |roughSubIdeal?| + |element?| |wronskianMatrix| |fortranInteger| |lineColorDefault| + |getStream| |zeroSetSplit| |primaryDecomp| |makeFloatFunction| + |createNormalPoly| |overbar| |commutative?| |makeGraphImage| + |stoseInvertible?sqfreg| |showRegion| |OMlistCDs| |graphStates| + |genericLeftTrace| |f02agf| |useEisensteinCriterion?| + |patternMatchTimes| |cup| |module| |subResultantChain| |csubst| + |replace| |length| |monom| |fortranReal| |extractPoint| |expint| + |headRemainder| |d02kef| |invertible?| |linkToFortran| + |defineProperty| |scripts| |innerint| |qinterval| |equiv| + |closedCurve| |key| |copyInto!| |orbits| |d02bhf| |aromberg| |e01sef| + |prevPrime| |options| |tracePowMod| |univariatePolynomialsGcds| + |common| |RittWuCompare| |expandLog| |sncndn| |matrixGcd| |elt| + |lyndonIfCan| |atoms| |bottom!| |iilog| |exprHasLogarithmicWeights| + |routines| |iicsch| |prologue| |rootRadius| |filename| + |resultantReduitEuclidean| |fracPart| |bivariateSLPEBR| |parametric?| + |compose| |component| |d01ajf| |minimize| |htrigs| |jordanAlgebra?| + |rangePascalTriangle| |reducedContinuedFraction| |d03faf| |kmax| + |not?| |completeEchelonBasis| |diff| |string?| |recoverAfterFail| + |besselI| |sorted?| |rightExtendedGcd| |belong?| |parse| + |makingStats?| |squareFreePrim| |mainVariable| |point?| |drawStyle| + |generic?| |changeWeightLevel| |cond| |constantOpIfCan| |monomial?| + |droot| |linears| |nextNormalPrimitivePoly| |csch2sinh| |elementary| + |laurentRep| |cn| |leadingIndex| |removeRoughlyRedundantFactorsInPol| + |style| |semiDegreeSubResultantEuclidean| |musserTrials| |imagi| + |iisqrt2| |OMencodingUnknown| |constantKernel| |separate| + |rightAlternative?| |expressIdealMember| |exprToXXP| |getRef| |pile| + |mapCoef| |semiSubResultantGcdEuclidean2| |deepExpand| |dmp2rfi| + |isExpt| |dim| |atanIfCan| |solveLinear| |OMconnectTCP| + |purelyTranscendental?| UTS2UP |region| |HermiteIntegrate| |opeval| + |df2st| |f01maf| |iiperm| |rightRecip| |generalSqFr| |OMputEndApp| + |iteratedInitials| |functionIsFracPolynomial?| |perfectSquare?| + |repeatUntilLoop| |innerEigenvectors| |qPot| |invmod| |setfirst!| + |presub| |infinityNorm| |prod| |genericRightDiscriminant| |conjug| + |tubeRadiusDefault| |width| |printingInfo?| |semicolonSeparate| + |primextintfrac| |d02gaf| |weighted| |nonQsign| |integerBound| + |univariate?| |brillhartIrreducible?| |f02bjf| |createRandomElement| + |unrankImproperPartitions1| |endSubProgram| + |generalizedContinuumHypothesisAssumed?| |pol| |removeConstantTerm| + |Vectorise| |cyclotomicDecomposition| |OMgetEndAtp| |red| |twist| + |allRootsOf| |e02bdf| |listOfLists| |denominator| |addiag| |acosIfCan| + |normal01| |parabolicCylindrical| |someBasis| |constant| |sn| + |inRadical?| |getCurve| |monic?| |constantCoefficientRicDE| |cAcot| + |minIndex| |numberOfComposites| |stopMusserTrials| + |useEisensteinCriterion| |OMputFloat| |cyclicGroup| |green| |f02awf| + |nullary?| |removeSuperfluousQuasiComponents| |tanNa| |baseRDEsys| + |minordet| |minus!| |adaptive?| |optional| |cSin| |s21bcf| |divisor| + |minrank| |rightRemainder| |extendedSubResultantGcd| |erf| |integral?| + |OMwrite| |argumentList!| |linSolve| |closed?| |nthExpon| |hcrf| + |airyAi| |less?| |beauzamyBound| |index| |OMputEndError| |froot| + |cAsinh| |outputAsTex| |bitCoef| |preprocess| |complex?| + |permutations| |innerSolve| |stoseInvertibleSet| |extendIfCan| + |notOperand| |upDateBranches| |OMreadFile| |leftFactor| |OMputAtp| + |mathieu23| |dilog| |point| |redPol| |extendedResultant| |product| + |stripCommentsAndBlanks| |removeCosSq| + |solveLinearPolynomialEquationByRecursion| |hdmpToDmp| |infieldint| + |complexForm| |isobaric?| |sin| |weights| |search| |cRationalPower| + |pair| |createGenericMatrix| |orbit| |stop| |OMgetFloat| + |impliesOperands| |palginfieldint| |limitPlus| |cos| |objectOf| + |numberOfOperations| |vedf2vef| |numberOfNormalPoly| |lexGroebner| + |\\/| |explimitedint| |fixedPoint| |schwerpunkt| + |useSingleFactorBound?| |tan| |series| |rootsOf| |totolex| |f02fjf| + |cyclotomic| |smith| |probablyZeroDim?| |cosIfCan| |lexTriangular| + |sub| |cot| |rootKerSimp| |infieldIntegrate| |viewDeltaYDefault| + |hessian| |OMgetObject| |d02raf| + |rewriteIdealWithQuasiMonicGenerators| |LyndonCoordinates| |f04jgf| + |sec| |graeffe| |select!| |showTheRoutinesTable| |UpTriBddDenomInv| + |drawCurves| |f04faf| |OMencodingBinary| |s19aaf| |setValue!| |csc| + |numer| |coercePreimagesImages| |univariatePolynomials| |s18adf| + |continuedFraction| |curry| |aspFilename| |pastel| |newTypeLists| + |min| |asin| |denom| |discreteLog| |partitions| |subspace| + |linearDependenceOverZ| |palglimint| |mathieu12| |setPosition| + |evenlambert| |acos| |finiteBound| |normal?| |permutationGroup| + |cycleRagits| |shellSort| |status| |reindex| |scalarTypeOf| |dioSolve| + |root?| |atan| |eisensteinIrreducible?| |pi| |message| |pade| + |selectfirst| |closeComponent| |rationalFunction| |numericIfCan| + |complexNumericIfCan| |rangeIsFinite| |lifting| |acot| |infinity| + |rightTrim| |iomode| |localIntegralBasis| |ideal| |normalizeIfCan| + |firstSubsetGray| |inverseColeman| |KrullNumber| |graphImage| + |explogs2trigs| |asec| |obj| |leftTrim| |d01amf| |dimension| |child?| + |subCase?| |is?| |minColIndex| |branchIfCan| |tubeRadius| + |initiallyReduced?| |acsc| |plusInfinity| |cache| |groebSolve| + |choosemon| |basisOfMiddleNucleus| |direction| |groebnerIdeal| + |bezoutResultant| |lighting| |inR?| |normalForm| |sinh| |traceMatrix| + |minusInfinity| |padecf| |name| |arrayStack| |stoseInvertible?reg| + |coord| |s18def| |stronglyReduced?| |exprHasAlgebraicWeight| + |variable?| |cosh| |dom| |complexRoots| |d01anf| |changeThreshhold| + |hasHi| |OMread| |sayLength| |elem?| |label| |completeHermite| + |aLinear| |tanh| |kernel| |solveLinearPolynomialEquation| + |viewWriteAvailable| |orthonormalBasis| |cosSinInfo| |pseudoDivide| + |insertBottom!| |low| |getlo| |trivialIdeal?| |coth| |draw| + |LagrangeInterpolation| |denominators| |integralMatrix| + |mapMatrixIfCan| |invertibleSet| |normalizedDivide| |zeroOf| + |OMgetAttr| |drawComplexVectorField| |createThreeSpace| |sech| + |divideIfCan| |localAbs| |polyred| |wreath| |perfectNthPower?| + |ramified?| |coefficients| |hex| |c06ekf| |rotate| |s17ahf| + |selectSumOfSquaresRoutines| |pushucoef| |subResultantsChain| + |SFunction| |compdegd| |radicalOfLeftTraceForm| |radicalEigenvectors| + |fortranComplex| |sqfrFactor| |critT| |leftMult| + |semiSubResultantGcdEuclidean1| |binaryTournament| + |monicRightFactorIfCan| |shiftLeft| |getOrder| |title| |makeObject| + |inc| |leftScalarTimes!| |polygon| |OMmakeConn| |expandTrigProducts| + |extractBottom!| |virtualDegree| |totalfract| |keys| |viewPhiDefault| + |e| |leadingBasisTerm| |mkPrim| |totalDifferential| |over| |error| + |nsqfree| |OMputEndAttr| |mainKernel| |iCompose| |coef| + |clearTheFTable| |palgRDE| |e02dff| |interpretString| |principalIdeal| + |assert| |removeSuperfluousCases| |currentSubProgram| |f2st| |coleman| + |cAcoth| |minPoints| |ode1| |clipWithRanges| |complexZeros| + |repeating?| |head| |subscript| |basisOfLeftNucloid| |usingTable?| + |dimensionsOf| |Lazard| |delay| |rightCharacteristicPolynomial| + |super| |OMgetEndError| |sdf2lst| |algebraicVariables| |unit?| + |outputArgs| |jacobi| |halfExtendedResultant2| |rotate!| |debug| + |crest| |column| |option| |leftDiscriminant| + |indiceSubResultantEuclidean| |setPredicates| |clearTheSymbolTable| + |certainlySubVariety?| |withPredicates| |prepareSubResAlgo| + |multiEuclideanTree| |sinh2csch| |leftZero| |lSpaceBasis| + |LazardQuotient2| |testDim| |OMputEndBind| |OMputInteger| |digits| + |indiceSubResultant| |duplicates?| |enqueue!| |terms| |node| |swap| + |OMsend| |solid| |squareFree| |extension| |e02ahf| |cyclic?| |cSinh| + |fractionFreeGauss!| |minset| |entry| |newLine| + |tryFunctionalDecomposition| |integralLastSubResultant| |dec| + |csc2sin| |zeroSetSplitIntoTriangularSystems| |quatern| |empty?| + |setleaves!| |taylor| |hexDigit| |An| ** |OMputObject| |makeCos| + |GospersMethod| |heapSort| |LazardQuotient| |iisinh| |laurent| + |exteriorDifferential| |branchPoint?| |float| |maxPoints| + |figureUnits| |elements| |deepestTail| |pop!| |euclideanSize| + |leftRegularRepresentation| |puiseux| |createPrimitiveElement| + |symmetricRemainder| |failed| |sechIfCan| |outputGeneral| EQ + |create3Space| |zeroDimPrimary?| |LyndonWordsList| |palgLODE| |c06fqf| + |coordinate| |viewZoomDefault| |log10| |triangular?| + |internalIntegrate| |OMunhandledSymbol| |constantIfCan| |sech2cosh| + |inv| |sumSquares| |patternVariable| |quasiAlgebraicSet| |getCode| + |coHeight| |showClipRegion| |inverseIntegralMatrix| |resultantReduit| + |eulerPhi| |normalize| |ground?| |jacobiIdentity?| |odd?| + |areEquivalent?| |squareTop| |subtractIfCan| |iifact| |singRicDE| + |OMputSymbol| |refine| |sinIfCan| |ground| |OMencodingXML| |ravel| + |stirling2| |eigenvectors| |directory| |increment| |mainForm| + |safeFloor| |cSec| |numberOfFactors| |Hausdorff| |leadingMonomial| + |e02agf| |listOfMonoms| |cSech| |reshape| |commutator| |nextSublist| + |clearTable!| |testModulus| |modifyPoint| |iiacosh| |rowEchelon| + |leadingCoefficient| |uniform01| |mainMonomials| |setPoly| |simpson| + |randnum| |tensorProduct| |e01bhf| |asechIfCan| + |integralMatrixAtInfinity| |zoom| |primitiveMonomials| |alphanumeric?| + |localReal?| GE |extract!| |lastSubResultantEuclidean| |abelianGroup| + |traverse| |numberOfDivisors| |rename!| |reductum| |extractIfCan| + |e02bef| GT |singularAtInfinity?| |chiSquare| |setVariableOrder| + |overlap| |iitan| |cyclotomicFactorization| |e04jaf| |rank| + |modularFactor| |OMUnknownCD?| LE |moebiusMu| |prem| |setTex!| + |makeYoungTableau| |write!| |antisymmetric?| |numberOfChildren| + |rspace| |leftTrace| LT |nilFactor| |coth2tanh| |iiabs| |update| + |sumOfSquares| |child| |augment| |f02xef| |iicos| |goto| |ode2| + |stoseInvertibleSetreg| |prinb| |wordsForStrongGenerators| |eq| + |trigs| |pseudoQuotient| |algSplitSimple| |c06ecf| |car| + |tableForDiscreteLogarithm| |primeFactor| |palgRDE0| |roughUnitIdeal?| + |cap| |iter| |cubic| |linearAssociatedLog| |fortranLogical| |cdr| + |swapRows!| |elColumn2!| |adjoint| |sort| + |factorSquareFreeByRecursion| |listConjugateBases| |cot2tan| |e02def| + |setColumn!| |collectQuasiMonic| |clip| |jordanAdmissible?| |randomR| + |lambert| |maxPoints3D| |lieAdmissible?| |evaluate| |karatsuba| + |infRittWu?| |OMgetVariable| |e04gcf| |jacobian| |lex| + |lastSubResultant| |position| |sylvesterSequence| |equality| + |headReduced?| |infLex?| |createLowComplexityTable| + |uncouplingMatrices| |d01akf| |iiasinh| |li| |unit| |userOrdered?| + |charpol| |chiSquare1| |edf2efi| |expandPower| |tanIfCan| |random| + |imaginary| |cAtanh| |restorePrecision| |leadingExponent| + |computeCycleEntry| |c06eaf| |splitSquarefree| |polarCoordinates| + |mainCoefficients| |SturmHabicht| |exp| |fractionPart| |lfintegrate| + |alternative?| |debug3D| |d01gbf| |rootOfIrreduciblePoly| |rst| + |conjugate| |lookup| |s17acf| |Si| |OMgetError| |alphabetic| + |leftNorm| |deepCopy| |f02abf| |s14aaf| |extractIndex| |vconcat| + |resetNew| |lowerPolynomial| |rdregime| |tab1| |cotIfCan| + |unprotectedRemoveRedundantFactors| |shrinkable| |relationsIdeal| + |maxrow| |identitySquareMatrix| |nthExponent| |mainPrimitivePart| + |e01bgf| |rules| |coerceImages| |poisson| |decimal| |idealSimplify| + |squareFreeLexTriangular| |subst| |back| |quoByVar| |c06gsf| |s17akf| + |initiallyReduce| |hconcat| |monomRDE| |att2Result| |trace2PowMod| + |maxint| |triangulate| |cycleEntry| |blankSeparate| F2FG + |radicalEigenvalues| |stopTable!| |lagrange| |cPower| |drawComplex| + |datalist| |unary?| |recolor| |leftRemainder| |mesh?| |quadraticNorm| + |transcendentalDecompose| |monicModulo| |intChoose| |nodes| + |findBinding| |tanh2coth| |lazyEvaluate| |s18aef| |implies| + |coordinates| |startTable!| |pack!| |uniform| |reciprocalPolynomial| + |palgintegrate| |objects| |determinant| |maximumExponent| |xor| + |sizeLess?| |unaryFunction| |symmetric?| |inconsistent?| + |hyperelliptic| |base| |selectFiniteRoutines| |contains?| |mantissa| + |solveLinearlyOverQ| |positive?| |supersub| |build| + |invertibleElseSplit?| |fortranDoubleComplex| |skewSFunction| + |coerceListOfPairs| |factorList| |calcRanges| |double| |completeSmith| + |normalizeAtInfinity| |radPoly| |subMatrix| |factors| |prefix| + |Lazard2| |monicDecomposeIfCan| |minimalPolynomial| + |basisOfRightNucloid| |cylindrical| |cAcosh| |forLoop| |solve| + |colorFunction| |showAllElements| |subscriptedVariables| |cExp| + |rightRegularRepresentation| |reducedDiscriminant| |permutation| + |rootNormalize| |brace| |resize| |viewThetaDefault| |principal?| + |reify| |normalDeriv| |s13aaf| |node?| |rur| |test| |lyndon?| + |factorOfDegree| |euclideanNormalForm| |oneDimensionalArray| + |saturate| |subset?| |c06frf| |e01daf| |e02ddf| |f01rcf| |critBonD| + |viewDeltaXDefault| |rightQuotient| |constantOperator| |unparse| + |df2ef| |createPrimitivePoly| |lazyResidueClass| |bracket| |euler| + |pmintegrate| |numFunEvals| |ranges| |BasicMethod| |declare!| + |OMgetEndAttr| |inHallBasis?| |quickSort| |realEigenvectors| + |stoseInvertibleSetsqfreg| |cfirst| |denomLODE| |value| + |leadingCoefficientRicDE| |c06fuf| |primextendedint| |internal?| + |cons| |isTimes| |vectorise| |imagJ| |axes| |quotientByP| |powmod| + |mpsode| |OMgetBind| |normalized?| |slex| |numberOfPrimitivePoly| + |OMgetEndApp| |wholeRadix| |rootSimp| |tubePlot| |color| + |setsubMatrix!| |makeResult| |viewport2D| |previous| |rischDEsys| + |atom?| |simplifyLog| |dihedral| |OMgetApp| |myDegree| |yellow| + |stirling1| |tree| |d02gbf| |kroneckerDelta| |normDeriv2| |d01alf| |#| + |lazyPremWithDefault| |integralBasisAtInfinity| |zero| |simpleBounds?| + |legendre| |pascalTriangle| |strongGenerators| |leftRankPolynomial| + |basicSet| |nextsubResultant2| |inverseLaplace| |packageCall| + |errorKind| |f02aef| |antiCommutative?| |And| |subTriSet?| |lquo| + |exQuo| |d01bbf| |deepestInitial| |powers| |Or| |char| |putColorInfo| + |reseed| ^ |plus!| |hypergeometric0F1| |perfectNthRoot| |binomial| + |Not| |sum| |inrootof| |nonSingularModel| |s14baf| |zero?| |cartesian| + |spherical| |tube| |quotient| |ref| |shufflein| |rightRank| + |extractTop!| |firstNumer| |getButtonValue| |cyclePartition| + |phiCoord| |genericLeftNorm| |bipolar| |anfactor| |cLog| + |lazyPseudoQuotient| |pToHdmp| |absolutelyIrreducible?| |s17dhf| + |e02daf| |indicialEquation| |degreeSubResultant| |move| + |characteristic| |iiatanh| |rewriteIdealWithHeadRemainder| + |basisOfLeftAnnihilator| |dihedralGroup| |brillhartTrials| |inf| + |OMputVariable| |Zero| |computePowers| |OMgetEndBVar| |findCycle| + |quasiRegular?| |rightLcm| |nthFractionalTerm| |roughEqualIdeals?| + |shallowCopy| |One| |setClosed| |ListOfTerms| |pr2dmp| |OMgetBVar| + |credPol| |ceiling| |psolve| |diagonalProduct| |zeroDim?| + |tubePointsDefault| |doubleRank| |comp| |gethi| |lhs| |digit?| + |horizConcat| |paraboloidal| |argscript| |insertionSort!| + |explicitEntries?| |multinomial| |bombieriNorm| |rhs| |transpose| + |fortranCarriageReturn| |normalElement| |setErrorBound| + |algebraicDecompose| |fill!| |leastPower| |iroot| |rischDE| + |nextPrime| |associator| |complexNormalize| |integral| + |numberOfIrreduciblePoly| |critM| |next| |divisors| + |basisOfRightNucleus| |hMonic| |bumptab1| |top!| |repSq| |close!| + |pToDmp| |qelt| |balancedFactorisation| |mkAnswer| |po| |times!| + |explicitlyFinite?| |pointColorDefault| |lfunc| |systemCommand| + |integralBasis| |setProperty| |createNormalElement| |arity| |isMult| + GF2FG |integerIfCan| |frobenius| |hue| |discriminant| |optional?| + |optAttributes| |chineseRemainder| |norm| |solveid| + |mainSquareFreePart| |physicalLength| |possiblyNewVariety?| |front| + |tan2cot| |normal| |rightUnits| |coshIfCan| |dimensions| + |partialDenominators| |realEigenvalues| |rowEchLocal| |minimumDegree| + |iisech| |HenselLift| |hasSolution?| |FormatArabic| + |extendedIntegrate| |ptFunc| |OMsupportsCD?| |countable?| |reopen!| + |intPatternMatch| |Frobenius| |append| |replaceKthElement| |order| + |viewpoint| |weight| |wholeRagits| |createZechTable| |f02axf| + |fortranLiteral| |setTopPredicate| NOT |genericRightNorm| + |nextsousResultant2| |delete| |cycles| |showIntensityFunctions| + |numberOfImproperPartitions| |reducedForm| |members| |iicot| |octon| + |isOp| |incrementKthElement| OR |chainSubResultants| |sin?| |mindeg| + |numberOfFractionalTerms| |autoReduced?| |algebraicCoefficients?| + |mapExponents| |tryFunctionalDecomposition?| |partialQuotients| + |nullary| AND |f02aaf| |useNagFunctions| |entry?| |mathieu22| + |midpoints| |increasePrecision| |redpps| |fixPredicate| |f04atf| + |tValues| |operator| |deleteRoutine!| |primitivePart!| |mesh| + |dominantTerm| |null?| |outputMeasure| |recur| |integralAtInfinity?| + |s17adf| |factorSFBRlcUnit| |substring?| |numberOfHues| |getBadValues| + |intersect| |hasPredicate?| |removeZeroes| |toseInvertible?| + |commonDenominator| |regularRepresentation| |internalAugment| + |charthRoot| |deriv| |quadratic?| |changeNameToObjf| |movedPoints| + |iiGamma| |univcase| |leftUnits| |clipPointsDefault| |extractProperty| + |s14abf| |s15adf| |isPower| |suffix?| |ran| |mergeDifference| + |taylorIfCan| |subHeight| |lazyGintegrate| |c05nbf| |besselK| |genus| + |PollardSmallFactor| |Aleph| |argumentListOf| |numberOfMonomials| + |acotIfCan| |genericRightTrace| |polyRDE| |internalInfRittWu?| + |adaptive| |gcdPrimitive| |reduceByQuasiMonic| |makeViewport2D| + |exponential| |prefix?| |xRange| |elRow1!| |mainContent| + |exponential1| |stoseLastSubResultant| |removeSinSq| |buildSyntax| + |init| |selectAndPolynomials| |mkcomm| |printStats!| |totalGroebner| + |connect| |yRange| |complexSolve| |primeFrobenius| |generic| |e01bef| + |stopTableGcd!| |splitLinear| |shiftRoots| |newReduc| |mightHaveRoots| + |factorFraction| |curve| |zRange| |biRank| + |combineFeatureCompatibility| |tanQ| |groebnerFactorize| + |transcendent?| |reducedQPowers| |interpolate| + |conditionsForIdempotents| |lists| |parts| |f04asf| |regime| |tail| + |bivariatePolynomials| |axesColorDefault| |map!| * |noLinearFactor?| + |LyndonWordsList1| |compactFraction| |f01brf| |stFuncN| |f01ref| + |rdHack1| |s17dlf| |lift| |setleft!| |and?| |eigenvalues| |dflist| + |qsetelt!| |operators| |argument| |bsolve| |noKaratsuba| + |basisOfLeftNucleus| |flatten| |besselY| |pureLex| |reduce| + |infinite?| |resultantEuclidean| |moduleSum| |more?| |bag| |const| + |extend| |term| |mainMonomial| |alphabetic?| |nullSpace| |fi2df| + |untab| |harmonic| |kovacic| |maxIndex| |infix?| |homogeneous?| + |mapUnivariateIfCan| |subNodeOf?| |sequences| |triangularSystems| + |stiffnessAndStabilityFactor| |mapDown!| |birth| |mask| |perspective| + |mapGen| |outlineRender| |linearAssociatedExp| |approximate| + |singleFactorBound| |s17def| FG2F |indices| |subresultantSequence| + |showAll?| |sylvesterMatrix| |pdf2ef| |iflist2Result| |e04ycf| + |complex| |edf2df| |explicitlyEmpty?| |simpsono| |padicFraction| + |univariatePolynomial| |var1Steps| |integralRepresents| + |rightFactorIfCan| |round| |OMlistSymbols| |boundOfCauchy| |mr| + |acsch| |minPoints3D| |partialFraction| + |rewriteSetByReducingWithParticularGenerators| |rCoord| |critMonD1| + |mapBivariate| |copies| |OMputBVar| |factorials| |content| |printCode| + |updatF| |factorset| |pole?| |showScalarValues| |setMaxPoints| |reset| + |quadraticForm| |identification| |changeVar| |polar| + |lazyIrreducibleFactors| |in?| |meshFun2Var| |concat!| + |modifyPointData| |universe| |meshPar2Var| |bumprow| |outerProduct| + |makeEq| |nextColeman| |showTheIFTable| |addPointLast| + |factorsOfDegree| |UnVectorise| |factorPolynomial| |setAdaptive| + |subSet| |lazy?| |write| |contractSolve| |d01apf| |monicLeftDivide| + |socf2socdf| |showFortranOutputStack| |pleskenSplit| |save| + |leftCharacteristicPolynomial| |stack| |algebraic?| |Ei| |aCubic| + |sizePascalTriangle| |tanhIfCan| |readLine!| |summation| + |intcompBasis| |ratDsolve| |orOperands| |df2fi| |swapColumns!| + |unexpand| |c06gqf| |setScreenResolution| |romberg| |algebraicSort| + |or| |cyclicParents| |rightTraceMatrix| |permutationRepresentation| + |iidprod| |isAbsolutelyIrreducible?| |predicate| |curryLeft| + |lazyPrem| |nlde| |OMconnOutDevice| |setStatus| |sumOfDivisors| + |countRealRootsMultiple| |showTypeInOutput| |and| |completeHensel| + |anticoord| |pomopo!| |LiePoly| |getMultiplicationTable| + |safetyMargin| |s17aff| |setCondition!| |trailingCoefficient| |rowEch| + |mathieu24| |leftMinimalPolynomial| |returnType!| |firstDenom| + |rootOf| |nary?| |noncommutativeJordanAlgebra?| |f02ajf| |rk4qc| + |isList| |queue| |twoFactor| |radicalSolve| |setRealSteps| + |decreasePrecision| |UP2ifCan| |seriesToOutputForm| |freeOf?| |lp| + |monomial| |squareFreePart| |approximants| |solveRetract| + |doubleFloatFormat| |baseRDE| F |typeLists| |groebner?| + |degreeSubResultantEuclidean| |makeMulti| |OMReadError?| |setRow!| + |diophantineSystem| |iiacsch| |truncate| |complexExpand| |nthFactor| + |shade| |powern| |divideIfCan!| |radicalRoots| |ksec| |pushup| + |multivariate| |isQuotient| |patternMatch| |sqfree| |cosh2sech| + |makeSeries| |measure2Result| |makeFR| |arg1| |totalLex| |xn| + |stFunc2| |stiffnessAndStabilityOfODEIF| |upperCase| |setFieldInfo| + |limit| |mapExpon| |variables| |unrankImproperPartitions0| |addPoint| + |mvar| |rightRankPolynomial| |f07fdf| |arg2| |changeBase| |eq?| + |initials| |iisin| |topFortranOutputStack| |generateIrredPoly| + |varList| |d03eef| |monicDivide| + |removeRoughlyRedundantFactorsInContents| |unmakeSUP| |OMgetSymbol| + |fintegrate| |central?| |rightMult| |iiacos| |cyclicCopy| + |lfinfieldint| |yCoordinates| |log2| |bandedJacobian| |pushdterm| + |indicialEquations| |characteristicSet| |acoshIfCan| |alternating| + |generalizedEigenvectors| |rewriteSetWithReduction| |hermiteH| + |conditions| |iibinom| |rationalPower| |notelem| |increase| + |approxSqrt| |f04axf| |leftExtendedGcd| |alternatingGroup| |expt| + |iiatan| |associatedEquations| |number?| |complement| |fortranTypeOf| + |hermite| |match| |external?| |fibonacci| |constantLeft| |hash| + |numFunEvals3D| |height| |integrate| |messagePrint| |numberOfCycles| + |stronglyReduce| |internalIntegrate0| |rightNorm| |rootBound| + |matrixDimensions| |concat| |integers| |inspect| |acothIfCan| + |setImagSteps| |count| |primitive?| |OMopenFile| |makeprod| |row| + |selectsecond| |minRowIndex| |cTan| |space| |operation| + |generalLambert| |constantRight| |largest| |binaryTree| |power!| + |medialSet| |branchPointAtInfinity?| |rightTrace| |makeSin| + |loopPoints| |collectUpper| |radix| |LyndonBasis| |degree| |f02bbf| + |midpoint| |lllip| |lowerCase?| |constDsolve| |setLabelValue| + |parabolic| |zeroDimPrime?| |complexLimit| |vspace| |signAround| + |nthRootIfCan| |cyclic| |symmetricTensors| |recip| |key?| |generators| + |leftExactQuotient| |quadratic| |elliptic?| |symFunc| |bit?| + |varselect| |nil| |infinite| |arbitraryExponent| |approximate| + |complex| |shallowMutable| |canonical| |noetherian| |central| + |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| + |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| + |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| + |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index ea830d7f..599c04f9 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4871 +1,4891 @@ -(3128700 . 3409486851) -((-2508 (((-107) (-1 (-107) |#2| |#2|) $) 63) (((-107) $) NIL)) (-4109 (($ (-1 (-107) |#2| |#2|) $) 17) (($ $) NIL)) (-2436 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-1125 (-517)) |#2|) 34)) (-3797 (($ $) 59)) (-1510 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1210 (((-517) (-1 (-107) |#2|) $) 22) (((-517) |#2| $) NIL) (((-517) |#2| $ (-517)) 71)) (-1525 (((-583 |#2|) $) 13)) (-3824 (($ (-1 (-107) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2737 (($ (-1 |#2| |#2|) $) 29)) (-3312 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-1734 (($ |#2| $ (-517)) NIL) (($ $ $ (-517)) 50)) (-1985 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 24)) (-3843 (((-107) (-1 (-107) |#2|) $) 21)) (-2612 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL) (($ $ (-1125 (-517))) 49)) (-3779 (($ $ (-517)) 56) (($ $ (-1125 (-517))) 55)) (-4140 (((-703) (-1 (-107) |#2|) $) 26) (((-703) |#2| $) NIL)) (-1704 (($ $ $ (-517)) 52)) (-2453 (($ $) 51)) (-2279 (($ (-583 |#2|)) 53)) (-4117 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-583 $)) 62)) (-2262 (((-787) $) 69)) (-1272 (((-107) (-1 (-107) |#2|) $) 20)) (-1572 (((-107) $ $) 70)) (-1596 (((-107) $ $) 73))) -(((-18 |#1| |#2|) (-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -1704 (|#1| |#1| |#1| (-517))) (-15 -2508 ((-107) |#1|)) (-15 -3824 (|#1| |#1| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2436 (|#2| |#1| (-1125 (-517)) |#2|)) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2436 (|#2| |#1| (-517) |#2|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -1525 ((-583 |#2|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2453 (|#1| |#1|))) (-19 |#2|) (-1112)) (T -18)) -NIL -(-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -1704 (|#1| |#1| |#1| (-517))) (-15 -2508 ((-107) |#1|)) (-15 -3824 (|#1| |#1| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2436 (|#2| |#1| (-1125 (-517)) |#2|)) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2436 (|#2| |#1| (-517) |#2|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -1525 ((-583 |#2|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2453 (|#1| |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1210 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 70)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 82 (|has| |#1| (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-19 |#1|) (-1189) (-1112)) (T -19)) -NIL -(-13 (-343 |t#1|) (-10 -7 (-6 -4196))) -(((-33) . T) ((-97) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1006) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-1112) . T)) -((-1783 (((-3 $ "failed") $ $) 12)) (-1680 (($ $) NIL) (($ $ $) 9)) (* (($ (-845) $) NIL) (($ (-703) $) 16) (($ (-517) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1783 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) (-21)) (T -20)) -NIL -(-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1783 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20))) -(((-21) (-1189)) (T -21)) -((-1680 (*1 *1 *1) (-4 *1 (-21))) (-1680 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517))))) -(-13 (-123) (-10 -8 (-15 -1680 ($ $)) (-15 -1680 ($ $ $)) (-15 * ($ (-517) $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-1992 (((-107) $) 10)) (-3038 (($) 15)) (* (($ (-845) $) 14) (($ (-703) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 -3038 (|#1|)) (-15 * (|#1| (-845) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 -3038 (|#1|)) (-15 * (|#1| (-845) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15))) -(((-23) (-1189)) (T -23)) -((-3663 (*1 *1) (-4 *1 (-23))) (-3038 (*1 *1) (-4 *1 (-23))) (-1992 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703))))) -(-13 (-25) (-10 -8 (-15 (-3663) ($) -1373) (-15 -3038 ($) -1373) (-15 -1992 ((-107) $)) (-15 * ($ (-703) $)))) -(((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((* (($ (-845) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-845) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-845) |#1|))) -((-2105 (((-107) $ $) 7)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13))) -(((-25) (-1189)) (T -25)) -((-1666 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-845))))) -(-13 (-1006) (-10 -8 (-15 -1666 ($ $ $)) (-15 * ($ (-845) $)))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2454 (((-583 $) (-876 $)) 29) (((-583 $) (-1073 $)) 16) (((-583 $) (-1073 $) (-1077)) 20)) (-1480 (($ (-876 $)) 27) (($ (-1073 $)) 11) (($ (-1073 $) (-1077)) 54)) (-2726 (((-583 $) (-876 $)) 30) (((-583 $) (-1073 $)) 18) (((-583 $) (-1073 $) (-1077)) 19)) (-1454 (($ (-876 $)) 28) (($ (-1073 $)) 13) (($ (-1073 $) (-1077)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -2454 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2454 ((-583 |#1|) (-1073 |#1|))) (-15 -2454 ((-583 |#1|) (-876 |#1|))) (-15 -1480 (|#1| (-1073 |#1|) (-1077))) (-15 -1480 (|#1| (-1073 |#1|))) (-15 -1480 (|#1| (-876 |#1|))) (-15 -2726 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2726 ((-583 |#1|) (-1073 |#1|))) (-15 -2726 ((-583 |#1|) (-876 |#1|))) (-15 -1454 (|#1| (-1073 |#1|) (-1077))) (-15 -1454 (|#1| (-1073 |#1|))) (-15 -1454 (|#1| (-876 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -2454 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2454 ((-583 |#1|) (-1073 |#1|))) (-15 -2454 ((-583 |#1|) (-876 |#1|))) (-15 -1480 (|#1| (-1073 |#1|) (-1077))) (-15 -1480 (|#1| (-1073 |#1|))) (-15 -1480 (|#1| (-876 |#1|))) (-15 -2726 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2726 ((-583 |#1|) (-1073 |#1|))) (-15 -2726 ((-583 |#1|) (-876 |#1|))) (-15 -1454 (|#1| (-1073 |#1|) (-1077))) (-15 -1454 (|#1| (-1073 |#1|))) (-15 -1454 (|#1| (-876 |#1|)))) -((-2105 (((-107) $ $) 7)) (-2454 (((-583 $) (-876 $)) 80) (((-583 $) (-1073 $)) 79) (((-583 $) (-1073 $) (-1077)) 78)) (-1480 (($ (-876 $)) 83) (($ (-1073 $)) 82) (($ (-1073 $) (-1077)) 81)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-3908 (($ $) 92)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2726 (((-583 $) (-876 $)) 86) (((-583 $) (-1073 $)) 85) (((-583 $) (-1073 $) (-1077)) 84)) (-1454 (($ (-876 $)) 89) (($ (-1073 $)) 88) (($ (-1073 $) (-1077)) 87)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 91)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) -(((-27) (-1189)) (T -27)) -((-1454 (*1 *1 *2) (-12 (-5 *2 (-876 *1)) (-4 *1 (-27)))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-27)))) (-1454 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 *1)) (-5 *3 (-1077)) (-4 *1 (-27)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *1)) (-5 *4 (-1077)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-876 *1)) (-4 *1 (-27)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-27)))) (-1480 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 *1)) (-5 *3 (-1077)) (-4 *1 (-27)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *1)) (-5 *4 (-1077)) (-4 *1 (-27)) (-5 *2 (-583 *1))))) -(-13 (-333) (-921) (-10 -8 (-15 -1454 ($ (-876 $))) (-15 -1454 ($ (-1073 $))) (-15 -1454 ($ (-1073 $) (-1077))) (-15 -2726 ((-583 $) (-876 $))) (-15 -2726 ((-583 $) (-1073 $))) (-15 -2726 ((-583 $) (-1073 $) (-1077))) (-15 -1480 ($ (-876 $))) (-15 -1480 ($ (-1073 $))) (-15 -1480 ($ (-1073 $) (-1077))) (-15 -2454 ((-583 $) (-876 $))) (-15 -2454 ((-583 $) (-1073 $))) (-15 -2454 ((-583 $) (-1073 $) (-1077))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-921) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T)) -((-2454 (((-583 $) (-876 $)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-1073 $) (-1077)) 50) (((-583 $) $) 19) (((-583 $) $ (-1077)) 41)) (-1480 (($ (-876 $)) NIL) (($ (-1073 $)) NIL) (($ (-1073 $) (-1077)) 52) (($ $) 17) (($ $ (-1077)) 37)) (-2726 (((-583 $) (-876 $)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-1073 $) (-1077)) 48) (((-583 $) $) 15) (((-583 $) $ (-1077)) 43)) (-1454 (($ (-876 $)) NIL) (($ (-1073 $)) NIL) (($ (-1073 $) (-1077)) NIL) (($ $) 12) (($ $ (-1077)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -2454 ((-583 |#1|) |#1| (-1077))) (-15 -1480 (|#1| |#1| (-1077))) (-15 -2454 ((-583 |#1|) |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -2726 ((-583 |#1|) |#1| (-1077))) (-15 -1454 (|#1| |#1| (-1077))) (-15 -2726 ((-583 |#1|) |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -2454 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2454 ((-583 |#1|) (-1073 |#1|))) (-15 -2454 ((-583 |#1|) (-876 |#1|))) (-15 -1480 (|#1| (-1073 |#1|) (-1077))) (-15 -1480 (|#1| (-1073 |#1|))) (-15 -1480 (|#1| (-876 |#1|))) (-15 -2726 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2726 ((-583 |#1|) (-1073 |#1|))) (-15 -2726 ((-583 |#1|) (-876 |#1|))) (-15 -1454 (|#1| (-1073 |#1|) (-1077))) (-15 -1454 (|#1| (-1073 |#1|))) (-15 -1454 (|#1| (-876 |#1|)))) (-29 |#2|) (-13 (-779) (-509))) (T -28)) -NIL -(-10 -8 (-15 -2454 ((-583 |#1|) |#1| (-1077))) (-15 -1480 (|#1| |#1| (-1077))) (-15 -2454 ((-583 |#1|) |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -2726 ((-583 |#1|) |#1| (-1077))) (-15 -1454 (|#1| |#1| (-1077))) (-15 -2726 ((-583 |#1|) |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -2454 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2454 ((-583 |#1|) (-1073 |#1|))) (-15 -2454 ((-583 |#1|) (-876 |#1|))) (-15 -1480 (|#1| (-1073 |#1|) (-1077))) (-15 -1480 (|#1| (-1073 |#1|))) (-15 -1480 (|#1| (-876 |#1|))) (-15 -2726 ((-583 |#1|) (-1073 |#1|) (-1077))) (-15 -2726 ((-583 |#1|) (-1073 |#1|))) (-15 -2726 ((-583 |#1|) (-876 |#1|))) (-15 -1454 (|#1| (-1073 |#1|) (-1077))) (-15 -1454 (|#1| (-1073 |#1|))) (-15 -1454 (|#1| (-876 |#1|)))) -((-2105 (((-107) $ $) 7)) (-2454 (((-583 $) (-876 $)) 80) (((-583 $) (-1073 $)) 79) (((-583 $) (-1073 $) (-1077)) 78) (((-583 $) $) 126) (((-583 $) $ (-1077)) 124)) (-1480 (($ (-876 $)) 83) (($ (-1073 $)) 82) (($ (-1073 $) (-1077)) 81) (($ $) 127) (($ $ (-1077)) 125)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-1077)) $) 201)) (-1428 (((-377 (-1073 $)) $ (-556 $)) 233 (|has| |#1| (-509)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-3864 (((-583 (-556 $)) $) 164)) (-1783 (((-3 $ "failed") $ $) 19)) (-3939 (($ $ (-583 (-556 $)) (-583 $)) 154) (($ $ (-583 (-265 $))) 153) (($ $ (-265 $)) 152)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-3908 (($ $) 92)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2726 (((-583 $) (-876 $)) 86) (((-583 $) (-1073 $)) 85) (((-583 $) (-1073 $) (-1077)) 84) (((-583 $) $) 130) (((-583 $) $ (-1077)) 128)) (-1454 (($ (-876 $)) 89) (($ (-1073 $)) 88) (($ (-1073 $) (-1077)) 87) (($ $) 131) (($ $ (-1077)) 129)) (-3220 (((-3 (-876 |#1|) "failed") $) 251 (|has| |#1| (-964))) (((-3 (-377 (-876 |#1|)) "failed") $) 235 (|has| |#1| (-509))) (((-3 |#1| "failed") $) 197) (((-3 (-517) "failed") $) 195 (|has| |#1| (-955 (-517)))) (((-3 (-1077) "failed") $) 188) (((-3 (-556 $) "failed") $) 139) (((-3 (-377 (-517)) "failed") $) 123 (-3786 (-12 (|has| |#1| (-955 (-517))) (|has| |#1| (-509))) (|has| |#1| (-955 (-377 (-517))))))) (-3402 (((-876 |#1|) $) 252 (|has| |#1| (-964))) (((-377 (-876 |#1|)) $) 236 (|has| |#1| (-509))) ((|#1| $) 198) (((-517) $) 194 (|has| |#1| (-955 (-517)))) (((-1077) $) 189) (((-556 $) $) 140) (((-377 (-517)) $) 122 (-3786 (-12 (|has| |#1| (-955 (-517))) (|has| |#1| (-509))) (|has| |#1| (-955 (-377 (-517))))))) (-2383 (($ $ $) 55)) (-2947 (((-623 |#1|) (-623 $)) 241 (|has| |#1| (-964))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 240 (|has| |#1| (-964))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 121 (-3786 (-4024 (|has| |#1| (-964)) (|has| |#1| (-579 (-517)))) (-4024 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))) (((-623 (-517)) (-623 $)) 120 (-3786 (-4024 (|has| |#1| (-964)) (|has| |#1| (-579 (-517)))) (-4024 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))))) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 193 (|has| |#1| (-810 (-349)))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 192 (|has| |#1| (-810 (-517))))) (-3314 (($ (-583 $)) 158) (($ $) 157)) (-3854 (((-583 (-109)) $) 165)) (-1325 (((-109) (-109)) 166)) (-1690 (((-107) $) 31)) (-3448 (((-107) $) 186 (|has| $ (-955 (-517))))) (-3662 (($ $) 218 (|has| |#1| (-964)))) (-3858 (((-1029 |#1| (-556 $)) $) 217 (|has| |#1| (-964)))) (-2940 (($ $ (-517)) 91)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3419 (((-1073 $) (-556 $)) 183 (|has| $ (-964)))) (-3480 (($ $ $) 137)) (-4095 (($ $ $) 136)) (-3312 (($ (-1 $ $) (-556 $)) 172)) (-1858 (((-3 (-556 $) "failed") $) 162)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-1412 (((-583 (-556 $)) $) 163)) (-1385 (($ (-109) (-583 $)) 171) (($ (-109) $) 170)) (-1743 (((-3 (-583 $) "failed") $) 212 (|has| |#1| (-1018)))) (-1481 (((-3 (-2 (|:| |val| $) (|:| -1725 (-517))) "failed") $) 221 (|has| |#1| (-964)))) (-1442 (((-3 (-583 $) "failed") $) 214 (|has| |#1| (-25)))) (-3102 (((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3044 (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-1077)) 220 (|has| |#1| (-964))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-109)) 219 (|has| |#1| (-964))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $) 213 (|has| |#1| (-1018)))) (-3731 (((-107) $ (-1077)) 169) (((-107) $ (-109)) 168)) (-2291 (($ $) 70)) (-1795 (((-703) $) 161)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 199)) (-2311 ((|#1| $) 200)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-4060 (((-107) $ (-1077)) 174) (((-107) $ $) 173)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2278 (((-107) $) 185 (|has| $ (-955 (-517))))) (-3552 (($ $ (-1077) (-703) (-1 $ $)) 225 (|has| |#1| (-964))) (($ $ (-1077) (-703) (-1 $ (-583 $))) 224 (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 223 (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ $))) 222 (|has| |#1| (-964))) (($ $ (-583 (-109)) (-583 $) (-1077)) 211 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1077)) 210 (|has| |#1| (-558 (-493)))) (($ $) 209 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1077))) 208 (|has| |#1| (-558 (-493)))) (($ $ (-1077)) 207 (|has| |#1| (-558 (-493)))) (($ $ (-109) (-1 $ $)) 182) (($ $ (-109) (-1 $ (-583 $))) 181) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 180) (($ $ (-583 (-109)) (-583 (-1 $ $))) 179) (($ $ (-1077) (-1 $ $)) 178) (($ $ (-1077) (-1 $ (-583 $))) 177) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) 176) (($ $ (-583 (-1077)) (-583 (-1 $ $))) 175) (($ $ (-583 $) (-583 $)) 146) (($ $ $ $) 145) (($ $ (-265 $)) 144) (($ $ (-583 (-265 $))) 143) (($ $ (-583 (-556 $)) (-583 $)) 142) (($ $ (-556 $) $) 141)) (-3388 (((-703) $) 58)) (-2612 (($ (-109) (-583 $)) 151) (($ (-109) $ $ $ $) 150) (($ (-109) $ $ $) 149) (($ (-109) $ $) 148) (($ (-109) $) 147)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-1816 (($ $ $) 160) (($ $) 159)) (-2042 (($ $ (-1077)) 249 (|has| |#1| (-964))) (($ $ (-583 (-1077))) 248 (|has| |#1| (-964))) (($ $ (-1077) (-703)) 247 (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) 246 (|has| |#1| (-964)))) (-1463 (($ $) 228 (|has| |#1| (-509)))) (-2082 (((-1029 |#1| (-556 $)) $) 227 (|has| |#1| (-509)))) (-2819 (($ $) 184 (|has| $ (-964)))) (-3367 (((-493) $) 255 (|has| |#1| (-558 (-493)))) (($ (-388 $)) 226 (|has| |#1| (-509))) (((-816 (-349)) $) 191 (|has| |#1| (-558 (-816 (-349))))) (((-816 (-517)) $) 190 (|has| |#1| (-558 (-816 (-517)))))) (-1853 (($ $ $) 254 (|has| |#1| (-442)))) (-1970 (($ $ $) 253 (|has| |#1| (-442)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-876 |#1|)) 250 (|has| |#1| (-964))) (($ (-377 (-876 |#1|))) 234 (|has| |#1| (-509))) (($ (-377 (-876 (-377 |#1|)))) 232 (|has| |#1| (-509))) (($ (-876 (-377 |#1|))) 231 (|has| |#1| (-509))) (($ (-377 |#1|)) 230 (|has| |#1| (-509))) (($ (-1029 |#1| (-556 $))) 216 (|has| |#1| (-964))) (($ |#1|) 196) (($ (-1077)) 187) (($ (-556 $)) 138)) (-3385 (((-3 $ "failed") $) 239 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3488 (($ (-583 $)) 156) (($ $) 155)) (-4116 (((-107) (-109)) 167)) (-2944 (((-107) $ $) 39)) (-3540 (($ (-1077) (-583 $)) 206) (($ (-1077) $ $ $ $) 205) (($ (-1077) $ $ $) 204) (($ (-1077) $ $) 203) (($ (-1077) $) 202)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1077)) 245 (|has| |#1| (-964))) (($ $ (-583 (-1077))) 244 (|has| |#1| (-964))) (($ $ (-1077) (-703)) 243 (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) 242 (|has| |#1| (-964)))) (-1630 (((-107) $ $) 134)) (-1606 (((-107) $ $) 133)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 135)) (-1596 (((-107) $ $) 132)) (-1692 (($ $ $) 64) (($ (-1029 |#1| (-556 $)) (-1029 |#1| (-556 $))) 229 (|has| |#1| (-509)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-156))) (($ |#1| $) 237 (|has| |#1| (-156))))) -(((-29 |#1|) (-1189) (-13 (-779) (-509))) (T -29)) -((-1454 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-2726 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-1454 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-2726 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-1480 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-2454 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-1480 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-2454 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-400 |t#1|) (-10 -8 (-15 -1454 ($ $)) (-15 -2726 ((-583 $) $)) (-15 -1454 ($ $ (-1077))) (-15 -2726 ((-583 $) $ (-1077))) (-15 -1480 ($ $)) (-15 -2454 ((-583 $) $)) (-15 -1480 ($ $ (-1077))) (-15 -2454 ((-583 $) $ (-1077))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-816 (-349))) |has| |#1| (-558 (-816 (-349)))) ((-558 (-816 (-517))) |has| |#1| (-558 (-816 (-517)))) ((-217) . T) ((-262) . T) ((-278) . T) ((-280 $) . T) ((-273) . T) ((-333) . T) ((-347 |#1|) |has| |#1| (-964)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-400 |#1|) . T) ((-421) . T) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) ((-579 |#1|) |has| |#1| (-964)) ((-650 #0#) . T) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-824 (-1077)) |has| |#1| (-964)) ((-810 (-349)) |has| |#1| (-810 (-349))) ((-810 (-517)) |has| |#1| (-810 (-517))) ((-808 |#1|) . T) ((-844) . T) ((-921) . T) ((-955 (-377 (-517))) -3786 (|has| |#1| (-955 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517))))) ((-955 (-377 (-876 |#1|))) |has| |#1| (-509)) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 (-556 $)) . T) ((-955 (-876 |#1|)) |has| |#1| (-964)) ((-955 (-1077)) . T) ((-955 |#1|) . T) ((-970 #0#) . T) ((-970 |#1|) |has| |#1| (-156)) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1112) . T) ((-1116) . T)) -((-2712 (((-1001 (-199)) $) NIL)) (-2700 (((-1001 (-199)) $) NIL)) (-2104 (($ $ (-199)) 123)) (-3187 (($ (-876 (-517)) (-1077) (-1077) (-1001 (-377 (-517))) (-1001 (-377 (-517)))) 85)) (-1515 (((-583 (-583 (-867 (-199)))) $) 135)) (-2262 (((-787) $) 147))) -(((-30) (-13 (-878) (-10 -8 (-15 -3187 ($ (-876 (-517)) (-1077) (-1077) (-1001 (-377 (-517))) (-1001 (-377 (-517))))) (-15 -2104 ($ $ (-199)))))) (T -30)) -((-3187 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-876 (-517))) (-5 *3 (-1077)) (-5 *4 (-1001 (-377 (-517)))) (-5 *1 (-30)))) (-2104 (*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30))))) -(-13 (-878) (-10 -8 (-15 -3187 ($ (-876 (-517)) (-1077) (-1077) (-1001 (-377 (-517))) (-1001 (-377 (-517))))) (-15 -2104 ($ $ (-199))))) -((-1454 ((|#2| (-1073 |#2|) (-1077)) 42)) (-1325 (((-109) (-109)) 55)) (-3419 (((-1073 |#2|) (-556 |#2|)) 131 (|has| |#1| (-955 (-517))))) (-3986 ((|#2| |#1| (-517)) 110 (|has| |#1| (-955 (-517))))) (-3520 ((|#2| (-1073 |#2|) |#2|) 30)) (-2777 (((-787) (-583 |#2|)) 86)) (-2819 ((|#2| |#2|) 127 (|has| |#1| (-955 (-517))))) (-4116 (((-107) (-109)) 18)) (** ((|#2| |#2| (-377 (-517))) 91 (|has| |#1| (-955 (-517)))))) -(((-31 |#1| |#2|) (-10 -7 (-15 -1454 (|#2| (-1073 |#2|) (-1077))) (-15 -1325 ((-109) (-109))) (-15 -4116 ((-107) (-109))) (-15 -3520 (|#2| (-1073 |#2|) |#2|)) (-15 -2777 ((-787) (-583 |#2|))) (IF (|has| |#1| (-955 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -3419 ((-1073 |#2|) (-556 |#2|))) (-15 -2819 (|#2| |#2|)) (-15 -3986 (|#2| |#1| (-517)))) |%noBranch|)) (-13 (-779) (-509)) (-400 |#1|)) (T -31)) -((-3986 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-955 *4)) (-4 *3 (-13 (-779) (-509))))) (-2819 (*1 *2 *2) (-12 (-4 *3 (-955 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-955 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1073 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-955 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))) (-3520 (*1 *2 *3 *2) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) (-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *2)) (-5 *4 (-1077)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509)))))) -(-10 -7 (-15 -1454 (|#2| (-1073 |#2|) (-1077))) (-15 -1325 ((-109) (-109))) (-15 -4116 ((-107) (-109))) (-15 -3520 (|#2| (-1073 |#2|) |#2|)) (-15 -2777 ((-787) (-583 |#2|))) (IF (|has| |#1| (-955 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -3419 ((-1073 |#2|) (-556 |#2|))) (-15 -2819 (|#2| |#2|)) (-15 -3986 (|#2| |#1| (-517)))) |%noBranch|)) -((-3443 (((-107) $ (-703)) 16)) (-3038 (($) 10)) (-2266 (((-107) $ (-703)) 15)) (-2328 (((-107) $ (-703)) 14)) (-1770 (((-107) $ $) 8)) (-1754 (((-107) $) 13))) -(((-32 |#1|) (-10 -8 (-15 -3038 (|#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703))) (-15 -1754 ((-107) |#1|)) (-15 -1770 ((-107) |#1| |#1|))) (-33)) (T -32)) -NIL -(-10 -8 (-15 -3038 (|#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703))) (-15 -1754 ((-107) |#1|)) (-15 -1770 ((-107) |#1| |#1|))) -((-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-2266 (((-107) $ (-703)) 9)) (-2328 (((-107) $ (-703)) 10)) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2453 (($ $) 13)) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-33) (-1189)) (T -33)) -((-1770 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2453 (*1 *1 *1) (-4 *1 (-33))) (-2679 (*1 *1) (-4 *1 (-33))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2328 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-3443 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-3038 (*1 *1) (-4 *1 (-33))) (-3573 (*1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-33)) (-5 *2 (-703))))) -(-13 (-1112) (-10 -8 (-15 -1770 ((-107) $ $)) (-15 -2453 ($ $)) (-15 -2679 ($)) (-15 -1754 ((-107) $)) (-15 -2328 ((-107) $ (-703))) (-15 -2266 ((-107) $ (-703))) (-15 -3443 ((-107) $ (-703))) (-15 -3038 ($) -1373) (IF (|has| $ (-6 -4195)) (-15 -3573 ((-703) $)) |%noBranch|))) -(((-1112) . T)) -((-1706 (($ $) 11)) (-1685 (($ $) 10)) (-3517 (($ $) 9)) (-2815 (($ $) 8)) (-1722 (($ $) 7)) (-1698 (($ $) 6))) -(((-34) (-1189)) (T -34)) -((-1706 (*1 *1 *1) (-4 *1 (-34))) (-1685 (*1 *1 *1) (-4 *1 (-34))) (-3517 (*1 *1 *1) (-4 *1 (-34))) (-2815 (*1 *1 *1) (-4 *1 (-34))) (-1722 (*1 *1 *1) (-4 *1 (-34))) (-1698 (*1 *1 *1) (-4 *1 (-34)))) -(-13 (-10 -8 (-15 -1698 ($ $)) (-15 -1722 ($ $)) (-15 -2815 ($ $)) (-15 -3517 ($ $)) (-15 -1685 ($ $)) (-15 -1706 ($ $)))) -((-2105 (((-107) $ $) 19 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-3112 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 125)) (-2577 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 148)) (-1529 (($ $) 146)) (-3195 (($) 72) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 71)) (-3351 (((-1163) $ |#1| |#1|) 99 (|has| $ (-6 -4196))) (((-1163) $ (-517) (-517)) 178 (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 159 (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 209) (((-107) $) 203 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-4109 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 200 (|has| $ (-6 -4196))) (($ $) 199 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2226 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 134 (|has| $ (-6 -4196)))) (-1223 (($ $ $) 155 (|has| $ (-6 -4196)))) (-1825 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 157 (|has| $ (-6 -4196)))) (-1218 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 153 (|has| $ (-6 -4196)))) (-2436 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 189 (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-1125 (-517)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 160 (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "last" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 158 (|has| $ (-6 -4196))) (($ $ "rest" $) 156 (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "first" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 154 (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "value" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 133 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 132 (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 45 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 216)) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 55 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 175 (|has| $ (-6 -4195)))) (-2567 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 147)) (-3599 (((-3 |#2| "failed") |#1| $) 61)) (-3038 (($) 7 T CONST)) (-3797 (($ $) 201 (|has| $ (-6 -4196)))) (-1894 (($ $) 211)) (-2429 (($ $ (-703)) 142) (($ $) 140)) (-3081 (($ $) 214 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-2446 (($ $) 58 (-3786 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))) (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 46 (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 220) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 215 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 54 (|has| $ (-6 -4195))) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 174 (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 56 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 53 (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 52 (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 176 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 173 (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 172 (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 190 (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) 88) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) 188)) (-1655 (((-107) $) 192)) (-1210 (((-517) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 208) (((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 207 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) (((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) 206 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 30 (|has| $ (-6 -4195))) (((-583 |#2|) $) 79 (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 114 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 123)) (-1700 (((-107) $ $) 131 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-3204 (($ (-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 169)) (-2266 (((-107) $ (-703)) 9)) (-3531 ((|#1| $) 96 (|has| |#1| (-779))) (((-517) $) 180 (|has| (-517) (-779)))) (-3480 (($ $ $) 198 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-2785 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3824 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 29 (|has| $ (-6 -4195))) (((-583 |#2|) $) 80 (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 115 (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195)))) (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))))) (-1969 ((|#1| $) 95 (|has| |#1| (-779))) (((-517) $) 181 (|has| (-517) (-779)))) (-4095 (($ $ $) 197 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 34 (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4196))) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 110 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 109)) (-2315 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 225)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 128)) (-3834 (((-107) $) 124)) (-3232 (((-1060) $) 22 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1447 (($ $ (-703)) 145) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 143)) (-1869 (((-583 |#1|) $) 63)) (-2409 (((-107) |#1| $) 64)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 39)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 40) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) 219) (($ $ $ (-517)) 218)) (-1734 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) 162) (($ $ $ (-517)) 161)) (-1449 (((-583 |#1|) $) 93) (((-583 (-517)) $) 183)) (-3413 (((-107) |#1| $) 92) (((-107) (-517) $) 184)) (-4130 (((-1024) $) 21 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-2420 ((|#2| $) 97 (|has| |#1| (-779))) (($ $ (-703)) 139) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 137)) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 51) (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 171)) (-2837 (($ $ |#2|) 98 (|has| $ (-6 -4196))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 179 (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 41)) (-2611 (((-107) $) 191)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 32 (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 112 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) 26 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 25 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 24 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 23 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 121 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 120 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 119 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) 118 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 182 (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-2862 (((-583 |#2|) $) 91) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 185)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 187) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) 186) (($ $ (-1125 (-517))) 165) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "first") 138) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "value") 126)) (-3868 (((-517) $ $) 129)) (-3808 (($) 49) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 48)) (-1921 (($ $ (-517)) 222) (($ $ (-1125 (-517))) 221)) (-3779 (($ $ (-517)) 164) (($ $ (-1125 (-517))) 163)) (-1414 (((-107) $) 127)) (-2074 (($ $) 151)) (-4155 (($ $) 152 (|has| $ (-6 -4196)))) (-2792 (((-703) $) 150)) (-2736 (($ $) 149)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 31 (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 113 (|has| $ (-6 -4195)))) (-1704 (($ $ $ (-517)) 202 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493)))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 50) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 170)) (-3495 (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 224) (($ $ $) 223)) (-4117 (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 168) (($ (-583 $)) 167) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 136) (($ $ $) 135)) (-2262 (((-787) $) 18 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787)))))) (-3234 (((-583 $) $) 122)) (-3224 (((-107) $ $) 130 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 42)) (-1458 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") |#1| $) 108)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 33 (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 111 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 195 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1606 (((-107) $ $) 194 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1572 (((-107) $ $) 20 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1618 (((-107) $ $) 196 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1596 (((-107) $ $) 193 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-35 |#1| |#2|) (-1189) (-1006) (-1006)) (T -35)) -((-1458 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-2 (|:| -2576 *3) (|:| -1846 *4)))))) -(-13 (-1089 |t#1| |t#2|) (-603 (-2 (|:| -2576 |t#1|) (|:| -1846 |t#2|))) (-10 -8 (-15 -1458 ((-3 (-2 (|:| -2576 |t#1|) (|:| -1846 |t#2|)) "failed") |t#1| $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((-97) -3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779))) ((-557 (-787)) -3786 (|has| |#2| (-1006)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787)))) ((-138 #1=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-258 #2=(-517) #1#) . T) ((-258 |#1| |#2|) . T) ((-260 #2# #1#) . T) ((-260 |#1| |#2|) . T) ((-280 #1#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-254 #1#) . T) ((-343 #1#) . T) ((-456 #1#) . T) ((-456 |#2|) . T) ((-550 #2# #1#) . T) ((-550 |#1| |#2|) . T) ((-478 #1# #1#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-554 |#1| |#2|) . T) ((-588 #1#) . T) ((-603 #1#) . T) ((-779) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)) ((-929 #1#) . T) ((-1006) -3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779))) ((-1051 #1#) . T) ((-1089 |#1| |#2|) . T) ((-1112) . T) ((-1146 #1#) . T)) -((-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10))) -(((-36 |#1| |#2|) (-10 -8 (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-37 |#2|) (-156)) (T -36)) -NIL -(-10 -8 (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-37 |#1|) (-1189) (-156)) (T -37)) -((-2262 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156))))) -(-13 (-964) (-650 |t#1|) (-10 -8 (-15 -2262 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-1975 (((-388 |#1|) |#1|) 38)) (-3896 (((-388 |#1|) |#1|) 27) (((-388 |#1|) |#1| (-583 (-47))) 30)) (-1248 (((-107) |#1|) 54))) -(((-38 |#1|) (-10 -7 (-15 -3896 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1975 ((-388 |#1|) |#1|)) (-15 -1248 ((-107) |#1|))) (-1134 (-47))) (T -38)) -((-1248 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47))))) (-1975 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47))))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47))))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47)))))) -(-10 -7 (-15 -3896 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1975 ((-388 |#1|) |#1|)) (-15 -1248 ((-107) |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2861 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-2491 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2025 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-1278 (((-623 (-377 |#2|)) (-1158 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1991 (((-377 |#2|) $) NIL)) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3306 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1765 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2390 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-2401 (((-107)) NIL)) (-1369 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| (-377 |#2|) (-955 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-3539 (($ (-1158 (-377 |#2|)) (-1158 $)) NIL) (($ (-1158 (-377 |#2|))) 57) (($ (-1158 |#2|) |#2|) 124)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2383 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-4028 (((-623 (-377 |#2|)) $ (-1158 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-377 |#2|))) (|:| |vec| (-1158 (-377 |#2|)))) (-623 $) (-1158 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-1852 (((-1158 $) (-1158 $)) NIL)) (-1510 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3550 (((-3 $ "failed") $) NIL)) (-3810 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3881 (((-107) |#1| |#1|) NIL)) (-3778 (((-845)) NIL)) (-2192 (($) NIL (|has| (-377 |#2|) (-338)))) (-2897 (((-107)) NIL)) (-1607 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2356 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-4172 (($ $) NIL)) (-4169 (($) NIL (|has| (-377 |#2|) (-319)))) (-2634 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2627 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-2022 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3250 (((-845) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-845)) $) NIL (|has| (-377 |#2|) (-319)))) (-1690 (((-107) $) NIL)) (-3128 (((-703)) NIL)) (-3947 (((-1158 $) (-1158 $)) 100)) (-3522 (((-377 |#2|) $) NIL)) (-2784 (((-583 (-876 |#1|)) (-1077)) NIL (|has| |#1| (-333)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1914 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-4161 (((-845) $) NIL (|has| (-377 |#2|) (-338)))) (-1497 ((|#3| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3232 (((-1060) $) NIL)) (-1398 (((-1163) (-703)) 78)) (-2765 (((-623 (-377 |#2|))) 51)) (-2160 (((-623 (-377 |#2|))) 44)) (-2291 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1792 (($ (-1158 |#2|) |#2|) 125)) (-3444 (((-623 (-377 |#2|))) 45)) (-3564 (((-623 (-377 |#2|))) 43)) (-2303 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-2067 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) 63)) (-2474 (((-1158 $)) 42)) (-2734 (((-1158 $)) 41)) (-3093 (((-107) $) NIL)) (-3138 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2578 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-2803 (($ (-845)) NIL (|has| (-377 |#2|) (-338)))) (-2645 (((-3 |#2| "failed")) NIL)) (-4130 (((-1024) $) NIL)) (-2224 (((-703)) NIL)) (-1306 (($) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| (-377 |#2|) (-333)))) (-2361 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3896 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2333 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3388 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-2612 ((|#1| $ |#1| |#1|) NIL)) (-2178 (((-3 |#2| "failed")) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3115 (((-377 |#2|) (-1158 $)) NIL) (((-377 |#2|)) 39)) (-3667 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-2042 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3248 (((-623 (-377 |#2|)) (-1158 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2819 ((|#3|) 50)) (-3718 (($) NIL (|has| (-377 |#2|) (-319)))) (-1372 (((-1158 (-377 |#2|)) $ (-1158 $)) NIL) (((-623 (-377 |#2|)) (-1158 $) (-1158 $)) NIL) (((-1158 (-377 |#2|)) $) 58) (((-623 (-377 |#2|)) (-1158 $)) 101)) (-3367 (((-1158 (-377 |#2|)) $) NIL) (($ (-1158 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-1697 (((-1158 $) (-1158 $)) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3786 (|has| (-377 |#2|) (-955 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3385 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3848 ((|#3| $) NIL)) (-1818 (((-703)) NIL)) (-3471 (((-107)) 37)) (-3788 (((-107) |#1|) 49) (((-107) |#2|) 131)) (-3700 (((-1158 $)) 91)) (-2944 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2159 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1288 (((-107)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-3663 (($) 16 T CONST)) (-3675 (($) 26 T CONST)) (-3348 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333))))) -(((-39 |#1| |#2| |#3| |#4|) (-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1398 ((-1163) (-703))))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) |#3|) (T -39)) -((-1398 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1134 *4)) (-5 *2 (-1163)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1134 (-377 *5))) (-14 *7 *6)))) -(-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1398 ((-1163) (-703))))) -((-3984 ((|#2| |#2|) 47)) (-4135 ((|#2| |#2|) 117 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-955 (-517)))))) (-3453 ((|#2| |#2|) 86 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-955 (-517)))))) (-1775 ((|#2| |#2|) 87 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-955 (-517)))))) (-1959 ((|#2| (-109) |#2| (-703)) 74 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-955 (-517)))))) (-3039 (((-1073 |#2|) |#2|) 44)) (-3386 ((|#2| |#2| (-583 (-556 |#2|))) 17) ((|#2| |#2| (-583 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15))) -(((-40 |#1| |#2|) (-10 -7 (-15 -3984 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2| (-583 |#2|))) (-15 -3386 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -3039 ((-1073 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-955 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -1775 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -1959 (|#2| (-109) |#2| (-703)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-509) (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 |#1| (-556 $)) $)) (-15 -2082 ((-1029 |#1| (-556 $)) $)) (-15 -2262 ($ (-1029 |#1| (-556 $))))))) (T -40)) -((-1959 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-955 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *5 (-556 $)) $)) (-15 -2082 ((-1029 *5 (-556 $)) $)) (-15 -2262 ($ (-1029 *5 (-556 $))))))))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $))))))))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $))))))))) (-1775 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $))))))))) (-3039 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1073 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $)) (-15 -2082 ((-1029 *4 (-556 $)) $)) (-15 -2262 ($ (-1029 *4 (-556 $))))))))) (-3386 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $)) (-15 -2082 ((-1029 *4 (-556 $)) $)) (-15 -2262 ($ (-1029 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3386 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $)) (-15 -2082 ((-1029 *4 (-556 $)) $)) (-15 -2262 ($ (-1029 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3386 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $))))))))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $))))))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) (-15 -2082 ((-1029 *3 (-556 $)) $)) (-15 -2262 ($ (-1029 *3 (-556 $)))))))))) -(-10 -7 (-15 -3984 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2| (-583 |#2|))) (-15 -3386 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -3039 ((-1073 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-955 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -1775 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -1959 (|#2| (-109) |#2| (-703)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3896 (((-388 (-1073 |#3|)) (-1073 |#3|) (-583 (-47))) 22) (((-388 |#3|) |#3| (-583 (-47))) 18))) -(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3896 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3896 ((-388 (-1073 |#3|)) (-1073 |#3|) (-583 (-47))))) (-779) (-725) (-873 (-47) |#2| |#1|)) (T -41)) -((-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-873 (-47) *6 *5)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-873 (-47) *6 *5))))) -(-10 -7 (-15 -3896 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3896 ((-388 (-1073 |#3|)) (-1073 |#3|) (-583 (-47))))) -((-1334 (((-703) |#2|) 65)) (-2854 (((-703) |#2|) 68)) (-4098 (((-583 |#2|)) 33)) (-3341 (((-703) |#2|) 67)) (-2431 (((-703) |#2|) 64)) (-3987 (((-703) |#2|) 66)) (-2146 (((-583 (-623 |#1|))) 60)) (-1736 (((-583 |#2|)) 55)) (-3506 (((-583 |#2|) |#2|) 43)) (-1780 (((-583 |#2|)) 57)) (-2096 (((-583 |#2|)) 56)) (-2261 (((-583 (-623 |#1|))) 48)) (-1444 (((-583 |#2|)) 54)) (-1863 (((-583 |#2|) |#2|) 42)) (-3499 (((-583 |#2|)) 50)) (-1496 (((-583 (-623 |#1|))) 61)) (-2530 (((-583 |#2|)) 59)) (-3700 (((-1158 |#2|) (-1158 |#2|)) 84 (|has| |#1| (-278))))) -(((-42 |#1| |#2|) (-10 -7 (-15 -3341 ((-703) |#2|)) (-15 -2854 ((-703) |#2|)) (-15 -2431 ((-703) |#2|)) (-15 -1334 ((-703) |#2|)) (-15 -3987 ((-703) |#2|)) (-15 -3499 ((-583 |#2|))) (-15 -1863 ((-583 |#2|) |#2|)) (-15 -3506 ((-583 |#2|) |#2|)) (-15 -1444 ((-583 |#2|))) (-15 -1736 ((-583 |#2|))) (-15 -2096 ((-583 |#2|))) (-15 -1780 ((-583 |#2|))) (-15 -2530 ((-583 |#2|))) (-15 -2261 ((-583 (-623 |#1|)))) (-15 -2146 ((-583 (-623 |#1|)))) (-15 -1496 ((-583 (-623 |#1|)))) (-15 -4098 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -3700 ((-1158 |#2|) (-1158 |#2|))) |%noBranch|)) (-509) (-387 |#1|)) (T -42)) -((-3700 (*1 *2 *2) (-12 (-5 *2 (-1158 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) (-4098 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1496 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2146 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2261 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2530 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1780 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2096 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1736 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1444 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3506 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-1863 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3499 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-1334 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2431 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2854 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4))))) -(-10 -7 (-15 -3341 ((-703) |#2|)) (-15 -2854 ((-703) |#2|)) (-15 -2431 ((-703) |#2|)) (-15 -1334 ((-703) |#2|)) (-15 -3987 ((-703) |#2|)) (-15 -3499 ((-583 |#2|))) (-15 -1863 ((-583 |#2|) |#2|)) (-15 -3506 ((-583 |#2|) |#2|)) (-15 -1444 ((-583 |#2|))) (-15 -1736 ((-583 |#2|))) (-15 -2096 ((-583 |#2|))) (-15 -1780 ((-583 |#2|))) (-15 -2530 ((-583 |#2|))) (-15 -2261 ((-583 (-623 |#1|)))) (-15 -2146 ((-583 (-623 |#1|)))) (-15 -1496 ((-583 (-623 |#1|)))) (-15 -4098 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -3700 ((-1158 |#2|) (-1158 |#2|))) |%noBranch|)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1966 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1158 (-623 |#1|)) (-1158 $)) NIL) (((-1158 (-623 |#1|))) 24)) (-4026 (((-1158 $)) 50)) (-3038 (($) NIL T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-1745 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2998 (((-623 |#1|) (-1158 $)) NIL) (((-623 |#1|)) NIL)) (-2496 ((|#1| $) NIL)) (-1793 (((-623 |#1|) $ (-1158 $)) NIL) (((-623 |#1|) $) NIL)) (-3071 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-3928 (((-1073 (-876 |#1|))) NIL (|has| |#1| (-333)))) (-2823 (($ $ (-845)) NIL)) (-4132 ((|#1| $) NIL)) (-1363 (((-1073 |#1|) $) NIL (|has| |#1| (-509)))) (-3708 ((|#1| (-1158 $)) NIL) ((|#1|) NIL)) (-2740 (((-1073 |#1|) $) NIL)) (-2889 (((-107)) 86)) (-3539 (($ (-1158 |#1|) (-1158 $)) NIL) (($ (-1158 |#1|)) NIL)) (-3550 (((-3 $ "failed") $) 14 (|has| |#1| (-509)))) (-3778 (((-845)) 51)) (-3874 (((-107)) NIL)) (-1768 (($ $ (-845)) NIL)) (-3544 (((-107)) NIL)) (-4016 (((-107)) NIL)) (-1627 (((-107)) 88)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-3277 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-1830 (((-623 |#1|) (-1158 $)) NIL) (((-623 |#1|)) NIL)) (-2002 ((|#1| $) NIL)) (-4044 (((-623 |#1|) $ (-1158 $)) NIL) (((-623 |#1|) $) NIL)) (-2680 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-3221 (((-1073 (-876 |#1|))) NIL (|has| |#1| (-333)))) (-4119 (($ $ (-845)) NIL)) (-1249 ((|#1| $) NIL)) (-3556 (((-1073 |#1|) $) NIL (|has| |#1| (-509)))) (-1274 ((|#1| (-1158 $)) NIL) ((|#1|) NIL)) (-3570 (((-1073 |#1|) $) NIL)) (-1878 (((-107)) 85)) (-3232 (((-1060) $) NIL)) (-2455 (((-107)) 92)) (-4102 (((-107)) 91)) (-2032 (((-107)) 93)) (-4130 (((-1024) $) NIL)) (-3377 (((-107)) 87)) (-2612 ((|#1| $ (-517)) 53)) (-1372 (((-1158 |#1|) $ (-1158 $)) 47) (((-623 |#1|) (-1158 $) (-1158 $)) NIL) (((-1158 |#1|) $) 28) (((-623 |#1|) (-1158 $)) NIL)) (-3367 (((-1158 |#1|) $) NIL) (($ (-1158 |#1|)) NIL)) (-3861 (((-583 (-876 |#1|)) (-1158 $)) NIL) (((-583 (-876 |#1|))) NIL)) (-1970 (($ $ $) NIL)) (-1293 (((-107)) 83)) (-2262 (((-787) $) 68) (($ (-1158 |#1|)) 22)) (-3700 (((-1158 $)) 44)) (-3741 (((-583 (-1158 |#1|))) NIL (|has| |#1| (-509)))) (-2182 (($ $ $ $) NIL)) (-3450 (((-107)) 81)) (-2365 (($ (-623 |#1|) $) 18)) (-2742 (($ $ $) NIL)) (-3014 (((-107)) 84)) (-1901 (((-107)) 82)) (-1555 (((-107)) 80)) (-3663 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1044 |#2| |#1|) $) 19))) -(((-43 |#1| |#2| |#3| |#4|) (-13 (-387 |#1|) (-585 (-1044 |#2| |#1|)) (-10 -8 (-15 -2262 ($ (-1158 |#1|))))) (-333) (-845) (-583 (-1077)) (-1158 (-623 |#1|))) (T -43)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-333)) (-14 *6 (-1158 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-845)) (-14 *5 (-583 (-1077)))))) -(-13 (-387 |#1|) (-585 (-1044 |#2| |#1|)) (-10 -8 (-15 -2262 ($ (-1158 |#1|))))) -((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3112 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-2577 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1529 (($ $) NIL)) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196))) (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (((-107) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-4109 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779))))) (-2149 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2226 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196)))) (-1223 (($ $ $) 27 (|has| $ (-6 -4196)))) (-1825 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196)))) (-1218 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 29 (|has| $ (-6 -4196)))) (-2436 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-1125 (-517)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "last" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196))) (($ $ "rest" $) NIL (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "first" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "value" (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2567 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3599 (((-3 |#2| "failed") |#1| $) 37)) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2429 (($ $ (-703)) NIL) (($ $) 24)) (-3081 (($ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1210 (((-517) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) (((-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 18 (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 18 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-3204 (($ (-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 32 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-2785 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3824 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 34 (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196))) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2315 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) 42 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1447 (($ $ (-703)) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1869 (((-583 |#1|) $) 20)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1734 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 |#1|) $) NIL) (((-583 (-517)) $) NIL)) (-3413 (((-107) |#1| $) NIL) (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779))) (($ $ (-703)) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 23)) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-2611 (((-107) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-2862 (((-583 |#2|) $) NIL) (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 17)) (-1754 (((-107) $) 16)) (-2679 (($) 13)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ (-517)) NIL) (($ $ (-1125 (-517))) NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "first") NIL) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $ "value") NIL)) (-3868 (((-517) $ $) NIL)) (-3808 (($) 12) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1921 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-1414 (((-107) $) NIL)) (-2074 (($ $) NIL)) (-4155 (($ $) NIL (|has| $ (-6 -4196)))) (-2792 (((-703) $) NIL)) (-2736 (($ $) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3495 (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL) (($ $ $) NIL)) (-4117 (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL) (($ (-583 $)) NIL) (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 25) (($ $ $) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1458 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") |#1| $) 44)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1618 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-779)))) (-3573 (((-703) $) 22 (|has| $ (-6 -4195))))) -(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1006) (-1006)) (T -44)) +(3134436 . 3409732489) +((-2629 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-2078 (($ (-1 (-108) |#2| |#2|) $) 17) (($ $) NIL)) (-2421 ((|#2| $ (-519) |#2|) NIL) ((|#2| $ (-1130 (-519)) |#2|) 34)) (-1998 (($ $) 59)) (-3874 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3297 (((-519) (-1 (-108) |#2|) $) 22) (((-519) |#2| $) NIL) (((-519) |#2| $ (-519)) 71)) (-3844 (((-585 |#2|) $) 13)) (-2500 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3850 (($ (-1 |#2| |#2|) $) 29)) (-1405 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-1672 (($ |#2| $ (-519)) NIL) (($ $ $ (-519)) 50)) (-2395 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-2379 (((-108) (-1 (-108) |#2|) $) 21)) (-2598 ((|#2| $ (-519) |#2|) NIL) ((|#2| $ (-519)) NIL) (($ $ (-1130 (-519))) 49)) (-3720 (($ $ (-519)) 56) (($ $ (-1130 (-519))) 55)) (-4155 (((-705) (-1 (-108) |#2|) $) 26) (((-705) |#2| $) NIL)) (-2584 (($ $ $ (-519)) 52)) (-2449 (($ $) 51)) (-2228 (($ (-585 |#2|)) 53)) (-4150 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-585 $)) 62)) (-2217 (((-790) $) 69)) (-1778 (((-108) (-1 (-108) |#2|) $) 20)) (-1543 (((-108) $ $) 70)) (-1561 (((-108) $ $) 73))) +(((-18 |#1| |#2|) (-10 -8 (-15 -1543 ((-108) |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1561 ((-108) |#1| |#1|)) (-15 -2078 (|#1| |#1|)) (-15 -2078 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1998 (|#1| |#1|)) (-15 -2584 (|#1| |#1| |#1| (-519))) (-15 -2629 ((-108) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -3297 ((-519) |#2| |#1| (-519))) (-15 -3297 ((-519) |#2| |#1|)) (-15 -3297 ((-519) (-1 (-108) |#2|) |#1|)) (-15 -2629 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2500 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2421 (|#2| |#1| (-1130 (-519)) |#2|)) (-15 -1672 (|#1| |#1| |#1| (-519))) (-15 -1672 (|#1| |#2| |#1| (-519))) (-15 -3720 (|#1| |#1| (-1130 (-519)))) (-15 -3720 (|#1| |#1| (-519))) (-15 -2598 (|#1| |#1| (-1130 (-519)))) (-15 -1405 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4150 (|#1| (-585 |#1|))) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4150 (|#1| |#2| |#1|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -2228 (|#1| (-585 |#2|))) (-15 -2395 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2598 (|#2| |#1| (-519))) (-15 -2598 (|#2| |#1| (-519) |#2|)) (-15 -2421 (|#2| |#1| (-519) |#2|)) (-15 -4155 ((-705) |#2| |#1|)) (-15 -3844 ((-585 |#2|) |#1|)) (-15 -4155 ((-705) (-1 (-108) |#2|) |#1|)) (-15 -2379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 (|#1| |#1|))) (-19 |#2|) (-1117)) (T -18)) +NIL +(-10 -8 (-15 -1543 ((-108) |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1561 ((-108) |#1| |#1|)) (-15 -2078 (|#1| |#1|)) (-15 -2078 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1998 (|#1| |#1|)) (-15 -2584 (|#1| |#1| |#1| (-519))) (-15 -2629 ((-108) |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -3297 ((-519) |#2| |#1| (-519))) (-15 -3297 ((-519) |#2| |#1|)) (-15 -3297 ((-519) (-1 (-108) |#2|) |#1|)) (-15 -2629 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2500 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2421 (|#2| |#1| (-1130 (-519)) |#2|)) (-15 -1672 (|#1| |#1| |#1| (-519))) (-15 -1672 (|#1| |#2| |#1| (-519))) (-15 -3720 (|#1| |#1| (-1130 (-519)))) (-15 -3720 (|#1| |#1| (-519))) (-15 -2598 (|#1| |#1| (-1130 (-519)))) (-15 -1405 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4150 (|#1| (-585 |#1|))) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4150 (|#1| |#2| |#1|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -2228 (|#1| (-585 |#2|))) (-15 -2395 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2598 (|#2| |#1| (-519))) (-15 -2598 (|#2| |#1| (-519) |#2|)) (-15 -2421 (|#2| |#1| (-519) |#2|)) (-15 -4155 ((-705) |#2| |#1|)) (-15 -3844 ((-585 |#2|) |#1|)) (-15 -4155 ((-705) (-1 (-108) |#2|) |#1|)) (-15 -2379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 (|#1| |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1583 (((-1168) $ (-519) (-519)) 40 (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4222))) (($ $) 88 (-12 (|has| |#1| (-782)) (|has| $ (-6 -4222))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) 8)) (-2421 ((|#1| $ (-519) |#1|) 52 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) 58 (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-1998 (($ $) 90 (|has| $ (-6 -4222)))) (-1868 (($ $) 100)) (-2366 (($ $) 78 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#1| $) 77 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) 53 (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) 51)) (-3297 (((-519) (-1 (-108) |#1|) $) 97) (((-519) |#1| $) 96 (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) 95 (|has| |#1| (-1011)))) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-1822 (($ (-705) |#1|) 69)) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 43 (|has| (-519) (-782)))) (-2864 (($ $ $) 87 (|has| |#1| (-782)))) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 44 (|has| (-519) (-782)))) (-2489 (($ $ $) 86 (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1672 (($ |#1| $ (-519)) 60) (($ $ $ (-519)) 59)) (-3909 (((-585 (-519)) $) 46)) (-1506 (((-108) (-519) $) 47)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2331 ((|#1| $) 42 (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3640 (($ $ |#1|) 41 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) 48)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ (-519) |#1|) 50) ((|#1| $ (-519)) 49) (($ $ (-1130 (-519))) 63)) (-3720 (($ $ (-519)) 62) (($ $ (-1130 (-519))) 61)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2584 (($ $ $ (-519)) 91 (|has| $ (-6 -4222)))) (-2449 (($ $) 13)) (-1446 (((-495) $) 79 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 70)) (-4150 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-585 $)) 65)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) 84 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 83 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-1578 (((-108) $ $) 85 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 82 (|has| |#1| (-782)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-19 |#1|) (-1194) (-1117)) (T -19)) +NIL +(-13 (-345 |t#1|) (-10 -7 (-6 -4222))) +(((-33) . T) ((-97) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782))) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-260 #0=(-519) |#1|) . T) ((-262 #0# |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-345 |#1|) . T) ((-458 |#1|) . T) ((-552 #0# |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-590 |#1|) . T) ((-782) |has| |#1| (-782)) ((-1011) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782))) ((-1117) . T)) +((-3167 (((-3 $ "failed") $ $) 12)) (-1623 (($ $) NIL) (($ $ $) 9)) (* (($ (-848) $) NIL) (($ (-705) $) 16) (($ (-519) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 -3167 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|))) (-21)) (T -20)) +NIL +(-10 -8 (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 -3167 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20))) +(((-21) (-1194)) (T -21)) +((-1623 (*1 *1 *1) (-4 *1 (-21))) (-1623 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-519))))) +(-13 (-124) (-10 -8 (-15 -1623 ($ $)) (-15 -1623 ($ $ $)) (-15 * ($ (-519) $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-3569 (((-108) $) 10)) (-2249 (($) 15)) (* (($ (-848) $) 14) (($ (-705) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-705) |#1|)) (-15 -3569 ((-108) |#1|)) (-15 -2249 (|#1|)) (-15 * (|#1| (-848) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-705) |#1|)) (-15 -3569 ((-108) |#1|)) (-15 -2249 (|#1|)) (-15 * (|#1| (-848) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-2249 (($) 17 T CONST)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15))) +(((-23) (-1194)) (T -23)) +((-3602 (*1 *1) (-4 *1 (-23))) (-2249 (*1 *1) (-4 *1 (-23))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-705))))) +(-13 (-25) (-10 -8 (-15 (-3602) ($) -2730) (-15 -2249 ($) -2730) (-15 -3569 ((-108) $)) (-15 * ($ (-705) $)))) +(((-25) . T) ((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((* (($ (-848) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-848) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-848) |#1|))) +((-1430 (((-108) $ $) 7)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1543 (((-108) $ $) 6)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13))) +(((-25) (-1194)) (T -25)) +((-1614 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-848))))) +(-13 (-1011) (-10 -8 (-15 -1614 ($ $ $)) (-15 * ($ (-848) $)))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-1211 (((-585 $) (-879 $)) 29) (((-585 $) (-1078 $)) 16) (((-585 $) (-1078 $) (-1082)) 20)) (-2977 (($ (-879 $)) 27) (($ (-1078 $)) 11) (($ (-1078 $) (-1082)) 54)) (-2825 (((-585 $) (-879 $)) 30) (((-585 $) (-1078 $)) 18) (((-585 $) (-1078 $) (-1082)) 19)) (-4027 (($ (-879 $)) 28) (($ (-1078 $)) 13) (($ (-1078 $) (-1082)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1211 ((-585 |#1|) (-1078 |#1|) (-1082))) (-15 -1211 ((-585 |#1|) (-1078 |#1|))) (-15 -1211 ((-585 |#1|) (-879 |#1|))) (-15 -2977 (|#1| (-1078 |#1|) (-1082))) (-15 -2977 (|#1| (-1078 |#1|))) (-15 -2977 (|#1| (-879 |#1|))) (-15 -2825 ((-585 |#1|) (-1078 |#1|) (-1082))) (-15 -2825 ((-585 |#1|) (-1078 |#1|))) (-15 -2825 ((-585 |#1|) (-879 |#1|))) (-15 -4027 (|#1| (-1078 |#1|) (-1082))) (-15 -4027 (|#1| (-1078 |#1|))) (-15 -4027 (|#1| (-879 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1211 ((-585 |#1|) (-1078 |#1|) (-1082))) (-15 -1211 ((-585 |#1|) (-1078 |#1|))) (-15 -1211 ((-585 |#1|) (-879 |#1|))) (-15 -2977 (|#1| (-1078 |#1|) (-1082))) (-15 -2977 (|#1| (-1078 |#1|))) (-15 -2977 (|#1| (-879 |#1|))) (-15 -2825 ((-585 |#1|) (-1078 |#1|) (-1082))) (-15 -2825 ((-585 |#1|) (-1078 |#1|))) (-15 -2825 ((-585 |#1|) (-879 |#1|))) (-15 -4027 (|#1| (-1078 |#1|) (-1082))) (-15 -4027 (|#1| (-1078 |#1|))) (-15 -4027 (|#1| (-879 |#1|)))) +((-1430 (((-108) $ $) 7)) (-1211 (((-585 $) (-879 $)) 80) (((-585 $) (-1078 $)) 79) (((-585 $) (-1078 $) (-1082)) 78)) (-2977 (($ (-879 $)) 83) (($ (-1078 $)) 82) (($ (-1078 $) (-1082)) 81)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 73)) (-3093 (((-390 $) $) 72)) (-1934 (($ $) 92)) (-3409 (((-108) $ $) 59)) (-2249 (($) 17 T CONST)) (-2825 (((-585 $) (-879 $)) 86) (((-585 $) (-1078 $)) 85) (((-585 $) (-1078 $) (-1082)) 84)) (-4027 (($ (-879 $)) 89) (($ (-1078 $)) 88) (($ (-1078 $) (-1082)) 87)) (-2311 (($ $ $) 55)) (-4193 (((-3 $ "failed") $) 34)) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-1320 (((-108) $) 71)) (-1568 (((-108) $) 31)) (-1517 (($ $ (-519)) 91)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 70)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-1921 (((-390 $) $) 74)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-3129 (((-705) $) 58)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-379 (-519))) 65)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 69)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ $) 64)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 68) (($ $ (-379 (-519))) 90)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 67) (($ (-379 (-519)) $) 66))) +(((-27) (-1194)) (T -27)) +((-4027 (*1 *1 *2) (-12 (-5 *2 (-879 *1)) (-4 *1 (-27)))) (-4027 (*1 *1 *2) (-12 (-5 *2 (-1078 *1)) (-4 *1 (-27)))) (-4027 (*1 *1 *2 *3) (-12 (-5 *2 (-1078 *1)) (-5 *3 (-1082)) (-4 *1 (-27)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-879 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-1078 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-1078 *1)) (-5 *4 (-1082)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-2977 (*1 *1 *2) (-12 (-5 *2 (-879 *1)) (-4 *1 (-27)))) (-2977 (*1 *1 *2) (-12 (-5 *2 (-1078 *1)) (-4 *1 (-27)))) (-2977 (*1 *1 *2 *3) (-12 (-5 *2 (-1078 *1)) (-5 *3 (-1082)) (-4 *1 (-27)))) (-1211 (*1 *2 *3) (-12 (-5 *3 (-879 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1211 (*1 *2 *3) (-12 (-5 *3 (-1078 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) (-1211 (*1 *2 *3 *4) (-12 (-5 *3 (-1078 *1)) (-5 *4 (-1082)) (-4 *1 (-27)) (-5 *2 (-585 *1))))) +(-13 (-335) (-925) (-10 -8 (-15 -4027 ($ (-879 $))) (-15 -4027 ($ (-1078 $))) (-15 -4027 ($ (-1078 $) (-1082))) (-15 -2825 ((-585 $) (-879 $))) (-15 -2825 ((-585 $) (-1078 $))) (-15 -2825 ((-585 $) (-1078 $) (-1082))) (-15 -2977 ($ (-879 $))) (-15 -2977 ($ (-1078 $))) (-15 -2977 ($ (-1078 $) (-1082))) (-15 -1211 ((-585 $) (-879 $))) (-15 -1211 ((-585 $) (-1078 $))) (-15 -1211 ((-585 $) (-1078 $) (-1082))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-157) . T) ((-219) . T) ((-264) . T) ((-280) . T) ((-335) . T) ((-423) . T) ((-511) . T) ((-587 #0#) . T) ((-587 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-661) . T) ((-847) . T) ((-925) . T) ((-974 #0#) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1121) . T)) +((-1211 (((-585 $) (-879 $)) NIL) (((-585 $) (-1078 $)) NIL) (((-585 $) (-1078 $) (-1082)) 50) (((-585 $) $) 19) (((-585 $) $ (-1082)) 41)) (-2977 (($ (-879 $)) NIL) (($ (-1078 $)) NIL) (($ (-1078 $) (-1082)) 52) (($ $) 17) (($ $ (-1082)) 37)) (-2825 (((-585 $) (-879 $)) NIL) (((-585 $) (-1078 $)) NIL) (((-585 $) (-1078 $) (-1082)) 48) (((-585 $) $) 15) (((-585 $) $ (-1082)) 43)) (-4027 (($ (-879 $)) NIL) (($ (-1078 $)) NIL) (($ (-1078 $) (-1082)) NIL) (($ $) 12) (($ $ (-1082)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1211 ((-585 |#1|) |#1| (-1082))) (-15 -2977 (|#1| |#1| (-1082))) (-15 -1211 ((-585 |#1|) |#1|)) (-15 -2977 (|#1| |#1|)) (-15 -2825 ((-585 |#1|) |#1| (-1082))) (-15 -4027 (|#1| |#1| (-1082))) (-15 -2825 ((-585 |#1|) |#1|)) (-15 -4027 (|#1| |#1|)) (-15 -1211 ((-585 |#1|) (-1078 |#1|) (-1082))) (-15 -1211 ((-585 |#1|) (-1078 |#1|))) (-15 -1211 ((-585 |#1|) (-879 |#1|))) (-15 -2977 (|#1| (-1078 |#1|) (-1082))) (-15 -2977 (|#1| (-1078 |#1|))) (-15 -2977 (|#1| (-879 |#1|))) (-15 -2825 ((-585 |#1|) (-1078 |#1|) (-1082))) (-15 -2825 ((-585 |#1|) (-1078 |#1|))) (-15 -2825 ((-585 |#1|) (-879 |#1|))) (-15 -4027 (|#1| (-1078 |#1|) (-1082))) (-15 -4027 (|#1| (-1078 |#1|))) (-15 -4027 (|#1| (-879 |#1|)))) (-29 |#2|) (-13 (-782) (-511))) (T -28)) +NIL +(-10 -8 (-15 -1211 ((-585 |#1|) |#1| (-1082))) (-15 -2977 (|#1| |#1| (-1082))) (-15 -1211 ((-585 |#1|) |#1|)) (-15 -2977 (|#1| |#1|)) (-15 -2825 ((-585 |#1|) |#1| (-1082))) (-15 -4027 (|#1| |#1| (-1082))) (-15 -2825 ((-585 |#1|) |#1|)) (-15 -4027 (|#1| |#1|)) (-15 -1211 ((-585 |#1|) (-1078 |#1|) (-1082))) (-15 -1211 ((-585 |#1|) (-1078 |#1|))) (-15 -1211 ((-585 |#1|) (-879 |#1|))) (-15 -2977 (|#1| (-1078 |#1|) (-1082))) (-15 -2977 (|#1| (-1078 |#1|))) (-15 -2977 (|#1| (-879 |#1|))) (-15 -2825 ((-585 |#1|) (-1078 |#1|) (-1082))) (-15 -2825 ((-585 |#1|) (-1078 |#1|))) (-15 -2825 ((-585 |#1|) (-879 |#1|))) (-15 -4027 (|#1| (-1078 |#1|) (-1082))) (-15 -4027 (|#1| (-1078 |#1|))) (-15 -4027 (|#1| (-879 |#1|)))) +((-1430 (((-108) $ $) 7)) (-1211 (((-585 $) (-879 $)) 80) (((-585 $) (-1078 $)) 79) (((-585 $) (-1078 $) (-1082)) 78) (((-585 $) $) 126) (((-585 $) $ (-1082)) 124)) (-2977 (($ (-879 $)) 83) (($ (-1078 $)) 82) (($ (-1078 $) (-1082)) 81) (($ $) 127) (($ $ (-1082)) 125)) (-3569 (((-108) $) 16)) (-4083 (((-585 (-1082)) $) 201)) (-1283 (((-379 (-1078 $)) $ (-558 $)) 233 (|has| |#1| (-511)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-1890 (((-585 (-558 $)) $) 164)) (-3167 (((-3 $ "failed") $ $) 19)) (-3364 (($ $ (-585 (-558 $)) (-585 $)) 154) (($ $ (-585 (-267 $))) 153) (($ $ (-267 $)) 152)) (-4043 (($ $) 73)) (-3093 (((-390 $) $) 72)) (-1934 (($ $) 92)) (-3409 (((-108) $ $) 59)) (-2249 (($) 17 T CONST)) (-2825 (((-585 $) (-879 $)) 86) (((-585 $) (-1078 $)) 85) (((-585 $) (-1078 $) (-1082)) 84) (((-585 $) $) 130) (((-585 $) $ (-1082)) 128)) (-4027 (($ (-879 $)) 89) (($ (-1078 $)) 88) (($ (-1078 $) (-1082)) 87) (($ $) 131) (($ $ (-1082)) 129)) (-1301 (((-3 (-879 |#1|) "failed") $) 251 (|has| |#1| (-968))) (((-3 (-379 (-879 |#1|)) "failed") $) 235 (|has| |#1| (-511))) (((-3 |#1| "failed") $) 197) (((-3 (-519) "failed") $) 195 (|has| |#1| (-959 (-519)))) (((-3 (-1082) "failed") $) 188) (((-3 (-558 $) "failed") $) 139) (((-3 (-379 (-519)) "failed") $) 123 (-3730 (-12 (|has| |#1| (-959 (-519))) (|has| |#1| (-511))) (|has| |#1| (-959 (-379 (-519))))))) (-1499 (((-879 |#1|) $) 252 (|has| |#1| (-968))) (((-379 (-879 |#1|)) $) 236 (|has| |#1| (-511))) ((|#1| $) 198) (((-519) $) 194 (|has| |#1| (-959 (-519)))) (((-1082) $) 189) (((-558 $) $) 140) (((-379 (-519)) $) 122 (-3730 (-12 (|has| |#1| (-959 (-519))) (|has| |#1| (-511))) (|has| |#1| (-959 (-379 (-519))))))) (-2311 (($ $ $) 55)) (-1562 (((-625 |#1|) (-625 $)) 241 (|has| |#1| (-968))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 240 (|has| |#1| (-968))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 121 (-3730 (-4012 (|has| |#1| (-968)) (|has| |#1| (-581 (-519)))) (-4012 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))))) (((-625 (-519)) (-625 $)) 120 (-3730 (-4012 (|has| |#1| (-968)) (|has| |#1| (-581 (-519)))) (-4012 (|has| |#1| (-581 (-519))) (|has| |#1| (-968)))))) (-4193 (((-3 $ "failed") $) 34)) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-1320 (((-108) $) 71)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 193 (|has| |#1| (-813 (-351)))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 192 (|has| |#1| (-813 (-519))))) (-1340 (($ (-585 $)) 158) (($ $) 157)) (-3866 (((-585 (-110)) $) 165)) (-3752 (((-110) (-110)) 166)) (-1568 (((-108) $) 31)) (-3164 (((-108) $) 186 (|has| $ (-959 (-519))))) (-1534 (($ $) 218 (|has| |#1| (-968)))) (-2855 (((-1034 |#1| (-558 $)) $) 217 (|has| |#1| (-968)))) (-1517 (($ $ (-519)) 91)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-2042 (((-1078 $) (-558 $)) 183 (|has| $ (-968)))) (-2864 (($ $ $) 137)) (-2489 (($ $ $) 136)) (-1405 (($ (-1 $ $) (-558 $)) 172)) (-3029 (((-3 (-558 $) "failed") $) 162)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-1268 (((-585 (-558 $)) $) 163)) (-2959 (($ (-110) (-585 $)) 171) (($ (-110) $) 170)) (-3499 (((-3 (-585 $) "failed") $) 212 (|has| |#1| (-1023)))) (-3785 (((-3 (-2 (|:| |val| $) (|:| -1690 (-519))) "failed") $) 221 (|has| |#1| (-968)))) (-2100 (((-3 (-585 $) "failed") $) 214 (|has| |#1| (-25)))) (-3672 (((-3 (-2 (|:| -3031 (-519)) (|:| |var| (-558 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2669 (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $ (-1082)) 220 (|has| |#1| (-968))) (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $ (-110)) 219 (|has| |#1| (-968))) (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $) 213 (|has| |#1| (-1023)))) (-2917 (((-108) $ (-1082)) 169) (((-108) $ (-110)) 168)) (-3151 (($ $) 70)) (-4141 (((-705) $) 161)) (-4139 (((-1029) $) 10)) (-3162 (((-108) $) 199)) (-3173 ((|#1| $) 200)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-4040 (((-108) $ (-1082)) 174) (((-108) $ $) 173)) (-1921 (((-390 $) $) 74)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-1295 (((-108) $) 185 (|has| $ (-959 (-519))))) (-2324 (($ $ (-1082) (-705) (-1 $ $)) 225 (|has| |#1| (-968))) (($ $ (-1082) (-705) (-1 $ (-585 $))) 224 (|has| |#1| (-968))) (($ $ (-585 (-1082)) (-585 (-705)) (-585 (-1 $ (-585 $)))) 223 (|has| |#1| (-968))) (($ $ (-585 (-1082)) (-585 (-705)) (-585 (-1 $ $))) 222 (|has| |#1| (-968))) (($ $ (-585 (-110)) (-585 $) (-1082)) 211 (|has| |#1| (-560 (-495)))) (($ $ (-110) $ (-1082)) 210 (|has| |#1| (-560 (-495)))) (($ $) 209 (|has| |#1| (-560 (-495)))) (($ $ (-585 (-1082))) 208 (|has| |#1| (-560 (-495)))) (($ $ (-1082)) 207 (|has| |#1| (-560 (-495)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-585 $))) 181) (($ $ (-585 (-110)) (-585 (-1 $ (-585 $)))) 180) (($ $ (-585 (-110)) (-585 (-1 $ $))) 179) (($ $ (-1082) (-1 $ $)) 178) (($ $ (-1082) (-1 $ (-585 $))) 177) (($ $ (-585 (-1082)) (-585 (-1 $ (-585 $)))) 176) (($ $ (-585 (-1082)) (-585 (-1 $ $))) 175) (($ $ (-585 $) (-585 $)) 146) (($ $ $ $) 145) (($ $ (-267 $)) 144) (($ $ (-585 (-267 $))) 143) (($ $ (-585 (-558 $)) (-585 $)) 142) (($ $ (-558 $) $) 141)) (-3129 (((-705) $) 58)) (-2598 (($ (-110) (-585 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-1802 (($ $ $) 160) (($ $) 159)) (-2181 (($ $ (-1082)) 249 (|has| |#1| (-968))) (($ $ (-585 (-1082))) 248 (|has| |#1| (-968))) (($ $ (-1082) (-705)) 247 (|has| |#1| (-968))) (($ $ (-585 (-1082)) (-585 (-705))) 246 (|has| |#1| (-968)))) (-2724 (($ $) 228 (|has| |#1| (-511)))) (-2866 (((-1034 |#1| (-558 $)) $) 227 (|has| |#1| (-511)))) (-1462 (($ $) 184 (|has| $ (-968)))) (-1446 (((-495) $) 255 (|has| |#1| (-560 (-495)))) (($ (-390 $)) 226 (|has| |#1| (-511))) (((-819 (-351)) $) 191 (|has| |#1| (-560 (-819 (-351))))) (((-819 (-519)) $) 190 (|has| |#1| (-560 (-819 (-519)))))) (-3333 (($ $ $) 254 (|has| |#1| (-444)))) (-3190 (($ $ $) 253 (|has| |#1| (-444)))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-379 (-519))) 65) (($ (-879 |#1|)) 250 (|has| |#1| (-968))) (($ (-379 (-879 |#1|))) 234 (|has| |#1| (-511))) (($ (-379 (-879 (-379 |#1|)))) 232 (|has| |#1| (-511))) (($ (-879 (-379 |#1|))) 231 (|has| |#1| (-511))) (($ (-379 |#1|)) 230 (|has| |#1| (-511))) (($ (-1034 |#1| (-558 $))) 216 (|has| |#1| (-968))) (($ |#1|) 196) (($ (-1082)) 187) (($ (-558 $)) 138)) (-3773 (((-3 $ "failed") $) 239 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1647 (($ (-585 $)) 156) (($ $) 155)) (-2631 (((-108) (-110)) 167)) (-1617 (((-108) $ $) 39)) (-1816 (($ (-1082) (-585 $)) 206) (($ (-1082) $ $ $ $) 205) (($ (-1082) $ $ $) 204) (($ (-1082) $ $) 203) (($ (-1082) $) 202)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 69)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-1082)) 245 (|has| |#1| (-968))) (($ $ (-585 (-1082))) 244 (|has| |#1| (-968))) (($ $ (-1082) (-705)) 243 (|has| |#1| (-968))) (($ $ (-585 (-1082)) (-585 (-705))) 242 (|has| |#1| (-968)))) (-1586 (((-108) $ $) 134)) (-1569 (((-108) $ $) 133)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 135)) (-1561 (((-108) $ $) 132)) (-1632 (($ $ $) 64) (($ (-1034 |#1| (-558 $)) (-1034 |#1| (-558 $))) 229 (|has| |#1| (-511)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 68) (($ $ (-379 (-519))) 90)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 67) (($ (-379 (-519)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-157))) (($ |#1| $) 237 (|has| |#1| (-157))))) +(((-29 |#1|) (-1194) (-13 (-782) (-511))) (T -29)) +((-4027 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-782) (-511))))) (-2825 (*1 *2 *1) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *2 (-585 *1)) (-4 *1 (-29 *3)))) (-4027 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-782) (-511))))) (-2825 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-585 *1)) (-4 *1 (-29 *4)))) (-2977 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-782) (-511))))) (-1211 (*1 *2 *1) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *2 (-585 *1)) (-4 *1 (-29 *3)))) (-2977 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-782) (-511))))) (-1211 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-585 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-402 |t#1|) (-10 -8 (-15 -4027 ($ $)) (-15 -2825 ((-585 $) $)) (-15 -4027 ($ $ (-1082))) (-15 -2825 ((-585 $) $ (-1082))) (-15 -2977 ($ $)) (-15 -1211 ((-585 $) $)) (-15 -2977 ($ $ (-1082))) (-15 -1211 ((-585 $) $ (-1082))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-560 (-819 (-351))) |has| |#1| (-560 (-819 (-351)))) ((-560 (-819 (-519))) |has| |#1| (-560 (-819 (-519)))) ((-219) . T) ((-264) . T) ((-280) . T) ((-282 $) . T) ((-275) . T) ((-335) . T) ((-349 |#1|) |has| |#1| (-968)) ((-372 |#1|) . T) ((-383 |#1|) . T) ((-402 |#1|) . T) ((-423) . T) ((-444) |has| |#1| (-444)) ((-480 (-558 $) $) . T) ((-480 $ $) . T) ((-511) . T) ((-587 #0#) . T) ((-587 |#1|) |has| |#1| (-157)) ((-587 $) . T) ((-581 (-519)) -12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))) ((-581 |#1|) |has| |#1| (-968)) ((-652 #0#) . T) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) . T) ((-661) . T) ((-782) . T) ((-827 (-1082)) |has| |#1| (-968)) ((-813 (-351)) |has| |#1| (-813 (-351))) ((-813 (-519)) |has| |#1| (-813 (-519))) ((-811 |#1|) . T) ((-847) . T) ((-925) . T) ((-959 (-379 (-519))) -3730 (|has| |#1| (-959 (-379 (-519)))) (-12 (|has| |#1| (-511)) (|has| |#1| (-959 (-519))))) ((-959 (-379 (-879 |#1|))) |has| |#1| (-511)) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 (-558 $)) . T) ((-959 (-879 |#1|)) |has| |#1| (-968)) ((-959 (-1082)) . T) ((-959 |#1|) . T) ((-974 #0#) . T) ((-974 |#1|) |has| |#1| (-157)) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1117) . T) ((-1121) . T)) +((-3822 (((-1006 (-201)) $) NIL)) (-3809 (((-1006 (-201)) $) NIL)) (-3171 (($ $ (-201)) 123)) (-1898 (($ (-879 (-519)) (-1082) (-1082) (-1006 (-379 (-519))) (-1006 (-379 (-519)))) 85)) (-2302 (((-585 (-585 (-870 (-201)))) $) 135)) (-2217 (((-790) $) 147))) +(((-30) (-13 (-881) (-10 -8 (-15 -1898 ($ (-879 (-519)) (-1082) (-1082) (-1006 (-379 (-519))) (-1006 (-379 (-519))))) (-15 -3171 ($ $ (-201)))))) (T -30)) +((-1898 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-879 (-519))) (-5 *3 (-1082)) (-5 *4 (-1006 (-379 (-519)))) (-5 *1 (-30)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-30))))) +(-13 (-881) (-10 -8 (-15 -1898 ($ (-879 (-519)) (-1082) (-1082) (-1006 (-379 (-519))) (-1006 (-379 (-519))))) (-15 -3171 ($ $ (-201))))) +((-4027 ((|#2| (-1078 |#2|) (-1082)) 42)) (-3752 (((-110) (-110)) 55)) (-2042 (((-1078 |#2|) (-558 |#2|)) 131 (|has| |#1| (-959 (-519))))) (-3642 ((|#2| |#1| (-519)) 110 (|has| |#1| (-959 (-519))))) (-3566 ((|#2| (-1078 |#2|) |#2|) 30)) (-2643 (((-790) (-585 |#2|)) 86)) (-1462 ((|#2| |#2|) 127 (|has| |#1| (-959 (-519))))) (-2631 (((-108) (-110)) 18)) (** ((|#2| |#2| (-379 (-519))) 91 (|has| |#1| (-959 (-519)))))) +(((-31 |#1| |#2|) (-10 -7 (-15 -4027 (|#2| (-1078 |#2|) (-1082))) (-15 -3752 ((-110) (-110))) (-15 -2631 ((-108) (-110))) (-15 -3566 (|#2| (-1078 |#2|) |#2|)) (-15 -2643 ((-790) (-585 |#2|))) (IF (|has| |#1| (-959 (-519))) (PROGN (-15 ** (|#2| |#2| (-379 (-519)))) (-15 -2042 ((-1078 |#2|) (-558 |#2|))) (-15 -1462 (|#2| |#2|)) (-15 -3642 (|#2| |#1| (-519)))) |%noBranch|)) (-13 (-782) (-511)) (-402 |#1|)) (T -31)) +((-3642 (*1 *2 *3 *4) (-12 (-5 *4 (-519)) (-4 *2 (-402 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-959 *4)) (-4 *3 (-13 (-782) (-511))))) (-1462 (*1 *2 *2) (-12 (-4 *3 (-959 (-519))) (-4 *3 (-13 (-782) (-511))) (-5 *1 (-31 *3 *2)) (-4 *2 (-402 *3)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-558 *5)) (-4 *5 (-402 *4)) (-4 *4 (-959 (-519))) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-1078 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-379 (-519))) (-4 *4 (-959 (-519))) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-31 *4 *2)) (-4 *2 (-402 *4)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-402 *4)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-790)) (-5 *1 (-31 *4 *5)))) (-3566 (*1 *2 *3 *2) (-12 (-5 *3 (-1078 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-31 *4 *2)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-402 *4)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-782) (-511))) (-5 *1 (-31 *3 *4)) (-4 *4 (-402 *3)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-1078 *2)) (-5 *4 (-1082)) (-4 *2 (-402 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-782) (-511)))))) +(-10 -7 (-15 -4027 (|#2| (-1078 |#2|) (-1082))) (-15 -3752 ((-110) (-110))) (-15 -2631 ((-108) (-110))) (-15 -3566 (|#2| (-1078 |#2|) |#2|)) (-15 -2643 ((-790) (-585 |#2|))) (IF (|has| |#1| (-959 (-519))) (PROGN (-15 ** (|#2| |#2| (-379 (-519)))) (-15 -2042 ((-1078 |#2|) (-558 |#2|))) (-15 -1462 (|#2| |#2|)) (-15 -3642 (|#2| |#1| (-519)))) |%noBranch|)) +((-1473 (((-108) $ (-705)) 16)) (-2249 (($) 10)) (-3878 (((-108) $ (-705)) 15)) (-2768 (((-108) $ (-705)) 14)) (-4091 (((-108) $ $) 8)) (-3108 (((-108) $) 13))) +(((-32 |#1|) (-10 -8 (-15 -2249 (|#1|)) (-15 -1473 ((-108) |#1| (-705))) (-15 -3878 ((-108) |#1| (-705))) (-15 -2768 ((-108) |#1| (-705))) (-15 -3108 ((-108) |#1|)) (-15 -4091 ((-108) |#1| |#1|))) (-33)) (T -32)) +NIL +(-10 -8 (-15 -2249 (|#1|)) (-15 -1473 ((-108) |#1| (-705))) (-15 -3878 ((-108) |#1| (-705))) (-15 -2768 ((-108) |#1| (-705))) (-15 -3108 ((-108) |#1|)) (-15 -4091 ((-108) |#1| |#1|))) +((-1473 (((-108) $ (-705)) 8)) (-2249 (($) 7 T CONST)) (-3878 (((-108) $ (-705)) 9)) (-2768 (((-108) $ (-705)) 10)) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2449 (($ $) 13)) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-33) (-1194)) (T -33)) +((-4091 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2449 (*1 *1 *1) (-4 *1 (-33))) (-1548 (*1 *1) (-4 *1 (-33))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2768 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-705)) (-5 *2 (-108)))) (-3878 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-705)) (-5 *2 (-108)))) (-1473 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-705)) (-5 *2 (-108)))) (-2249 (*1 *1) (-4 *1 (-33))) (-3532 (*1 *2 *1) (-12 (|has| *1 (-6 -4221)) (-4 *1 (-33)) (-5 *2 (-705))))) +(-13 (-1117) (-10 -8 (-15 -4091 ((-108) $ $)) (-15 -2449 ($ $)) (-15 -1548 ($)) (-15 -3108 ((-108) $)) (-15 -2768 ((-108) $ (-705))) (-15 -3878 ((-108) $ (-705))) (-15 -1473 ((-108) $ (-705))) (-15 -2249 ($) -2730) (IF (|has| $ (-6 -4221)) (-15 -3532 ((-705) $)) |%noBranch|))) +(((-1117) . T)) +((-1774 (($ $) 11)) (-1761 (($ $) 10)) (-1790 (($ $) 9)) (-3929 (($ $) 8)) (-1783 (($ $) 7)) (-1768 (($ $) 6))) +(((-34) (-1194)) (T -34)) +((-1774 (*1 *1 *1) (-4 *1 (-34))) (-1761 (*1 *1 *1) (-4 *1 (-34))) (-1790 (*1 *1 *1) (-4 *1 (-34))) (-3929 (*1 *1 *1) (-4 *1 (-34))) (-1783 (*1 *1 *1) (-4 *1 (-34))) (-1768 (*1 *1 *1) (-4 *1 (-34)))) +(-13 (-10 -8 (-15 -1768 ($ $)) (-15 -1783 ($ $)) (-15 -3929 ($ $)) (-15 -1790 ($ $)) (-15 -1761 ($ $)) (-15 -1774 ($ $)))) +((-1430 (((-108) $ $) 19 (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-3493 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 125)) (-2111 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 148)) (-3847 (($ $) 146)) (-1812 (($) 72) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 71)) (-1583 (((-1168) $ |#1| |#1|) 99 (|has| $ (-6 -4222))) (((-1168) $ (-519) (-519)) 178 (|has| $ (-6 -4222)))) (-2258 (($ $ (-519)) 159 (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-2078 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 200 (|has| $ (-6 -4222))) (($ $) 199 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)) (|has| $ (-6 -4222))))) (-3276 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-1473 (((-108) $ (-705)) 8)) (-2410 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 134 (|has| $ (-6 -4222)))) (-1440 (($ $ $) 155 (|has| $ (-6 -4222)))) (-1907 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 157 (|has| $ (-6 -4222)))) (-2692 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 153 (|has| $ (-6 -4222)))) (-2421 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 189 (|has| $ (-6 -4222))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-1130 (-519)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 160 (|has| $ (-6 -4222))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "last" (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 158 (|has| $ (-6 -4222))) (($ $ "rest" $) 156 (|has| $ (-6 -4222))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "first" (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 154 (|has| $ (-6 -4222))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "value" (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 133 (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) 132 (|has| $ (-6 -4222)))) (-2846 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 45 (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 216)) (-1640 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 55 (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 175 (|has| $ (-6 -4221)))) (-2098 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 147)) (-2802 (((-3 |#2| "failed") |#1| $) 61)) (-2249 (($) 7 T CONST)) (-1998 (($ $) 201 (|has| $ (-6 -4222)))) (-1868 (($ $) 211)) (-2343 (($ $ (-705)) 142) (($ $) 140)) (-1552 (($ $) 214 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-2366 (($ $) 58 (-3730 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221))) (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))))) (-2502 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 47 (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 46 (|has| $ (-6 -4221))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 220) (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 215 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-1438 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 54 (|has| $ (-6 -4221))) (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 174 (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 56 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 53 (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 52 (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 176 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 173 (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 172 (|has| $ (-6 -4221)))) (-3865 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4222))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 190 (|has| $ (-6 -4222)))) (-3659 ((|#2| $ |#1|) 88) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519)) 188)) (-2303 (((-108) $) 192)) (-3297 (((-519) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 208) (((-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 207 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))) (((-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519)) 206 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-3844 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 30 (|has| $ (-6 -4221))) (((-585 |#2|) $) 79 (|has| $ (-6 -4221))) (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 114 (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) 123)) (-3458 (((-108) $ $) 131 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-1822 (($ (-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 169)) (-3878 (((-108) $ (-705)) 9)) (-2737 ((|#1| $) 96 (|has| |#1| (-782))) (((-519) $) 180 (|has| (-519) (-782)))) (-2864 (($ $ $) 198 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-2511 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-2500 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-3725 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 29 (|has| $ (-6 -4221))) (((-585 |#2|) $) 80 (|has| $ (-6 -4221))) (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 115 (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1011)) (|has| $ (-6 -4221)))) (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221))))) (-3890 ((|#1| $) 95 (|has| |#1| (-782))) (((-519) $) 181 (|has| (-519) (-782)))) (-2489 (($ $ $) 197 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 34 (|has| $ (-6 -4222))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4222))) (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 110 (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 109)) (-1592 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 225)) (-2768 (((-108) $ (-705)) 10)) (-1281 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 128)) (-1668 (((-108) $) 124)) (-1266 (((-1065) $) 22 (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-1457 (($ $ (-705)) 145) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 143)) (-3019 (((-585 |#1|) $) 63)) (-4194 (((-108) |#1| $) 64)) (-4152 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 39)) (-1846 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 40) (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519)) 219) (($ $ $ (-519)) 218)) (-1672 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519)) 162) (($ $ $ (-519)) 161)) (-3909 (((-585 |#1|) $) 93) (((-585 (-519)) $) 183)) (-1506 (((-108) |#1| $) 92) (((-108) (-519) $) 184)) (-4139 (((-1029) $) 21 (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-2331 ((|#2| $) 97 (|has| |#1| (-782))) (($ $ (-705)) 139) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 137)) (-2395 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 51) (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 171)) (-3640 (($ $ |#2|) 98 (|has| $ (-6 -4222))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 179 (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 41)) (-3664 (((-108) $) 191)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 32 (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 112 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) 26 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 25 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 24 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 23 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) 86 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) 84 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 (-267 |#2|))) 83 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 121 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 120 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 119 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) 118 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011)))) (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 182 (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-2222 (((-585 |#2|) $) 91) (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 185)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 187) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519)) 186) (($ $ (-1130 (-519))) 165) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "first") 138) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "value") 126)) (-1763 (((-519) $ $) 129)) (-2436 (($) 49) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 48)) (-2137 (($ $ (-519)) 222) (($ $ (-1130 (-519))) 221)) (-3720 (($ $ (-519)) 164) (($ $ (-1130 (-519))) 163)) (-3096 (((-108) $) 127)) (-1407 (($ $) 151)) (-2434 (($ $) 152 (|has| $ (-6 -4222)))) (-2067 (((-705) $) 150)) (-3376 (($ $) 149)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 31 (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (((-705) |#2| $) 81 (-12 (|has| |#2| (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 113 (|has| $ (-6 -4221)))) (-2584 (($ $ $ (-519)) 202 (|has| $ (-6 -4222)))) (-2449 (($ $) 13)) (-1446 (((-495) $) 59 (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495)))))) (-2228 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 50) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 170)) (-3954 (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 224) (($ $ $) 223)) (-4150 (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 168) (($ (-585 $)) 167) (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 136) (($ $ $) 135)) (-2217 (((-790) $) 18 (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790))) (|has| |#2| (-559 (-790))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790)))))) (-2018 (((-585 $) $) 122)) (-2915 (((-108) $ $) 130 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-3879 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 42)) (-1460 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") |#1| $) 108)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 33 (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 111 (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) 195 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-1569 (((-108) $ $) 194 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-1543 (((-108) $ $) 20 (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-1578 (((-108) $ $) 196 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-1561 (((-108) $ $) 193 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-35 |#1| |#2|) (-1194) (-1011) (-1011)) (T -35)) +((-1460 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-5 *2 (-2 (|:| -2583 *3) (|:| -3100 *4)))))) +(-13 (-1094 |t#1| |t#2|) (-605 (-2 (|:| -2583 |t#1|) (|:| -3100 |t#2|))) (-10 -8 (-15 -1460 ((-3 (-2 (|:| -2583 |t#1|) (|:| -3100 |t#2|)) "failed") |t#1| $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T) ((-97) -3730 (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782))) ((-559 (-790)) -3730 (|has| |#2| (-1011)) (|has| |#2| (-559 (-790))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790)))) ((-139 #1=(-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T) ((-560 (-495)) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))) ((-205 #0#) . T) ((-211 #0#) . T) ((-260 #2=(-519) #1#) . T) ((-260 |#1| |#2|) . T) ((-262 #2# #1#) . T) ((-262 |#1| |#2|) . T) ((-282 #1#) -12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))) ((-282 |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((-256 #1#) . T) ((-345 #1#) . T) ((-458 #1#) . T) ((-458 |#2|) . T) ((-552 #2# #1#) . T) ((-552 |#1| |#2|) . T) ((-480 #1# #1#) -12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))) ((-480 |#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((-556 |#1| |#2|) . T) ((-590 #1#) . T) ((-605 #1#) . T) ((-782) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)) ((-933 #1#) . T) ((-1011) -3730 (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782))) ((-1056 #1#) . T) ((-1094 |#1| |#2|) . T) ((-1117) . T) ((-1151 #1#) . T)) +((-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#2|) 10))) +(((-36 |#1| |#2|) (-10 -8 (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) (-37 |#2|) (-157)) (T -36)) +NIL +(-10 -8 (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 37)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-37 |#1|) (-1194) (-157)) (T -37)) +((-2217 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-157))))) +(-13 (-968) (-652 |t#1|) (-10 -8 (-15 -2217 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-652 |#1|) . T) ((-661) . T) ((-974 |#1|) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-2482 (((-390 |#1|) |#1|) 38)) (-1921 (((-390 |#1|) |#1|) 27) (((-390 |#1|) |#1| (-585 (-47))) 30)) (-1704 (((-108) |#1|) 54))) +(((-38 |#1|) (-10 -7 (-15 -1921 ((-390 |#1|) |#1| (-585 (-47)))) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -2482 ((-390 |#1|) |#1|)) (-15 -1704 ((-108) |#1|))) (-1139 (-47))) (T -38)) +((-1704 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1139 (-47))))) (-2482 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1139 (-47))))) (-1921 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1139 (-47))))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-47))) (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1139 (-47)))))) +(-10 -7 (-15 -1921 ((-390 |#1|) |#1| (-585 (-47)))) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -2482 ((-390 |#1|) |#1|)) (-15 -1704 ((-108) |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4108 (((-2 (|:| |num| (-1163 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| (-379 |#2|) (-335)))) (-1410 (($ $) NIL (|has| (-379 |#2|) (-335)))) (-3060 (((-108) $) NIL (|has| (-379 |#2|) (-335)))) (-2935 (((-625 (-379 |#2|)) (-1163 $)) NIL) (((-625 (-379 |#2|))) NIL)) (-1871 (((-379 |#2|) $) NIL)) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| (-379 |#2|) (-321)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL (|has| (-379 |#2|) (-335)))) (-3093 (((-390 $) $) NIL (|has| (-379 |#2|) (-335)))) (-3409 (((-108) $ $) NIL (|has| (-379 |#2|) (-335)))) (-1642 (((-705)) NIL (|has| (-379 |#2|) (-340)))) (-3222 (((-108)) NIL)) (-1654 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| (-379 |#2|) (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| (-379 |#2|) (-959 (-379 (-519))))) (((-3 (-379 |#2|) "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| (-379 |#2|) (-959 (-519)))) (((-379 (-519)) $) NIL (|has| (-379 |#2|) (-959 (-379 (-519))))) (((-379 |#2|) $) NIL)) (-2528 (($ (-1163 (-379 |#2|)) (-1163 $)) NIL) (($ (-1163 (-379 |#2|))) 57) (($ (-1163 |#2|) |#2|) 124)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-379 |#2|) (-321)))) (-2311 (($ $ $) NIL (|has| (-379 |#2|) (-335)))) (-3771 (((-625 (-379 |#2|)) $ (-1163 $)) NIL) (((-625 (-379 |#2|)) $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| (-379 |#2|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| (-379 |#2|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-379 |#2|))) (|:| |vec| (-1163 (-379 |#2|)))) (-625 $) (-1163 $)) NIL) (((-625 (-379 |#2|)) (-625 $)) NIL)) (-1971 (((-1163 $) (-1163 $)) NIL)) (-3874 (($ |#3|) NIL) (((-3 $ "failed") (-379 |#3|)) NIL (|has| (-379 |#2|) (-335)))) (-4193 (((-3 $ "failed") $) NIL)) (-1279 (((-585 (-585 |#1|))) NIL (|has| |#1| (-340)))) (-2325 (((-108) |#1| |#1|) NIL)) (-3229 (((-848)) NIL)) (-3314 (($) NIL (|has| (-379 |#2|) (-340)))) (-2295 (((-108)) NIL)) (-2987 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2286 (($ $ $) NIL (|has| (-379 |#2|) (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| (-379 |#2|) (-335)))) (-2177 (($ $) NIL)) (-1625 (($) NIL (|has| (-379 |#2|) (-321)))) (-4156 (((-108) $) NIL (|has| (-379 |#2|) (-321)))) (-3824 (($ $ (-705)) NIL (|has| (-379 |#2|) (-321))) (($ $) NIL (|has| (-379 |#2|) (-321)))) (-1320 (((-108) $) NIL (|has| (-379 |#2|) (-335)))) (-3709 (((-848) $) NIL (|has| (-379 |#2|) (-321))) (((-768 (-848)) $) NIL (|has| (-379 |#2|) (-321)))) (-1568 (((-108) $) NIL)) (-1323 (((-705)) NIL)) (-3430 (((-1163 $) (-1163 $)) 100)) (-3681 (((-379 |#2|) $) NIL)) (-3567 (((-585 (-879 |#1|)) (-1082)) NIL (|has| |#1| (-335)))) (-1675 (((-3 $ "failed") $) NIL (|has| (-379 |#2|) (-321)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| (-379 |#2|) (-335)))) (-3437 ((|#3| $) NIL (|has| (-379 |#2|) (-335)))) (-3334 (((-848) $) NIL (|has| (-379 |#2|) (-340)))) (-3860 ((|#3| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| (-379 |#2|) (-335))) (($ $ $) NIL (|has| (-379 |#2|) (-335)))) (-1266 (((-1065) $) NIL)) (-2462 (((-1168) (-705)) 78)) (-1269 (((-625 (-379 |#2|))) 51)) (-3158 (((-625 (-379 |#2|))) 44)) (-3151 (($ $) NIL (|has| (-379 |#2|) (-335)))) (-3923 (($ (-1163 |#2|) |#2|) 125)) (-3206 (((-625 (-379 |#2|))) 45)) (-2973 (((-625 (-379 |#2|))) 43)) (-2274 (((-2 (|:| |num| (-625 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-1683 (((-2 (|:| |num| (-1163 |#2|)) (|:| |den| |#2|)) $) 63)) (-3534 (((-1163 $)) 42)) (-3668 (((-1163 $)) 41)) (-3760 (((-108) $) NIL)) (-2760 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3816 (($) NIL (|has| (-379 |#2|) (-321)) CONST)) (-2770 (($ (-848)) NIL (|has| (-379 |#2|) (-340)))) (-3413 (((-3 |#2| "failed")) NIL)) (-4139 (((-1029) $) NIL)) (-3794 (((-705)) NIL)) (-1397 (($) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| (-379 |#2|) (-335)))) (-2292 (($ (-585 $)) NIL (|has| (-379 |#2|) (-335))) (($ $ $) NIL (|has| (-379 |#2|) (-335)))) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| (-379 |#2|) (-321)))) (-1921 (((-390 $) $) NIL (|has| (-379 |#2|) (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-379 |#2|) (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| (-379 |#2|) (-335)))) (-2261 (((-3 $ "failed") $ $) NIL (|has| (-379 |#2|) (-335)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| (-379 |#2|) (-335)))) (-3129 (((-705) $) NIL (|has| (-379 |#2|) (-335)))) (-2598 ((|#1| $ |#1| |#1|) NIL)) (-2391 (((-3 |#2| "failed")) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| (-379 |#2|) (-335)))) (-3677 (((-379 |#2|) (-1163 $)) NIL) (((-379 |#2|)) 39)) (-2867 (((-705) $) NIL (|has| (-379 |#2|) (-321))) (((-3 (-705) "failed") $ $) NIL (|has| (-379 |#2|) (-321)))) (-2181 (($ $ (-1 (-379 |#2|) (-379 |#2|)) (-705)) NIL (|has| (-379 |#2|) (-335))) (($ $ (-1 (-379 |#2|) (-379 |#2|))) NIL (|has| (-379 |#2|) (-335))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-705)) NIL (-3730 (-12 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321)))) (($ $) NIL (-3730 (-12 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321))))) (-1611 (((-625 (-379 |#2|)) (-1163 $) (-1 (-379 |#2|) (-379 |#2|))) NIL (|has| (-379 |#2|) (-335)))) (-1462 ((|#3|) 50)) (-3132 (($) NIL (|has| (-379 |#2|) (-321)))) (-3399 (((-1163 (-379 |#2|)) $ (-1163 $)) NIL) (((-625 (-379 |#2|)) (-1163 $) (-1163 $)) NIL) (((-1163 (-379 |#2|)) $) 58) (((-625 (-379 |#2|)) (-1163 $)) 101)) (-1446 (((-1163 (-379 |#2|)) $) NIL) (($ (-1163 (-379 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| (-379 |#2|) (-321)))) (-1477 (((-1163 $) (-1163 $)) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ (-379 |#2|)) NIL) (($ (-379 (-519))) NIL (-3730 (|has| (-379 |#2|) (-959 (-379 (-519)))) (|has| (-379 |#2|) (-335)))) (($ $) NIL (|has| (-379 |#2|) (-335)))) (-3773 (($ $) NIL (|has| (-379 |#2|) (-321))) (((-3 $ "failed") $) NIL (|has| (-379 |#2|) (-133)))) (-2165 ((|#3| $) NIL)) (-3594 (((-705)) NIL)) (-4171 (((-108)) 37)) (-3122 (((-108) |#1|) 49) (((-108) |#2|) 131)) (-2070 (((-1163 $)) 91)) (-1617 (((-108) $ $) NIL (|has| (-379 |#2|) (-335)))) (-3260 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3588 (((-108)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| (-379 |#2|) (-335)))) (-3602 (($) 16 T CONST)) (-3611 (($) 26 T CONST)) (-2242 (($ $ (-1 (-379 |#2|) (-379 |#2|)) (-705)) NIL (|has| (-379 |#2|) (-335))) (($ $ (-1 (-379 |#2|) (-379 |#2|))) NIL (|has| (-379 |#2|) (-335))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-705)) NIL (-3730 (-12 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321)))) (($ $) NIL (-3730 (-12 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321))))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL (|has| (-379 |#2|) (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| (-379 |#2|) (-335)))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 |#2|)) NIL) (($ (-379 |#2|) $) NIL) (($ (-379 (-519)) $) NIL (|has| (-379 |#2|) (-335))) (($ $ (-379 (-519))) NIL (|has| (-379 |#2|) (-335))))) +(((-39 |#1| |#2| |#3| |#4|) (-13 (-314 |#1| |#2| |#3|) (-10 -7 (-15 -2462 ((-1168) (-705))))) (-335) (-1139 |#1|) (-1139 (-379 |#2|)) |#3|) (T -39)) +((-2462 (*1 *2 *3) (-12 (-5 *3 (-705)) (-4 *4 (-335)) (-4 *5 (-1139 *4)) (-5 *2 (-1168)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1139 (-379 *5))) (-14 *7 *6)))) +(-13 (-314 |#1| |#2| |#3|) (-10 -7 (-15 -2462 ((-1168) (-705))))) +((-1713 ((|#2| |#2|) 47)) (-3512 ((|#2| |#2|) 117 (-12 (|has| |#2| (-402 |#1|)) (|has| |#1| (-423)) (|has| |#1| (-782)) (|has| |#1| (-959 (-519)))))) (-2240 ((|#2| |#2|) 86 (-12 (|has| |#2| (-402 |#1|)) (|has| |#1| (-423)) (|has| |#1| (-782)) (|has| |#1| (-959 (-519)))))) (-1458 ((|#2| |#2|) 87 (-12 (|has| |#2| (-402 |#1|)) (|has| |#1| (-423)) (|has| |#1| (-782)) (|has| |#1| (-959 (-519)))))) (-2835 ((|#2| (-110) |#2| (-705)) 74 (-12 (|has| |#2| (-402 |#1|)) (|has| |#1| (-423)) (|has| |#1| (-782)) (|has| |#1| (-959 (-519)))))) (-2099 (((-1078 |#2|) |#2|) 44)) (-2520 ((|#2| |#2| (-585 (-558 |#2|))) 17) ((|#2| |#2| (-585 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15))) +(((-40 |#1| |#2|) (-10 -7 (-15 -1713 (|#2| |#2|)) (-15 -2520 (|#2| |#2|)) (-15 -2520 (|#2| |#2| |#2|)) (-15 -2520 (|#2| |#2| (-585 |#2|))) (-15 -2520 (|#2| |#2| (-585 (-558 |#2|)))) (-15 -2099 ((-1078 |#2|) |#2|)) (IF (|has| |#1| (-782)) (IF (|has| |#1| (-423)) (IF (|has| |#1| (-959 (-519))) (IF (|has| |#2| (-402 |#1|)) (PROGN (-15 -1458 (|#2| |#2|)) (-15 -2240 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -2835 (|#2| (-110) |#2| (-705)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-511) (-13 (-335) (-275) (-10 -8 (-15 -2855 ((-1034 |#1| (-558 $)) $)) (-15 -2866 ((-1034 |#1| (-558 $)) $)) (-15 -2217 ($ (-1034 |#1| (-558 $))))))) (T -40)) +((-2835 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-705)) (-4 *5 (-423)) (-4 *5 (-782)) (-4 *5 (-959 (-519))) (-4 *5 (-511)) (-5 *1 (-40 *5 *2)) (-4 *2 (-402 *5)) (-4 *2 (-13 (-335) (-275) (-10 -8 (-15 -2855 ((-1034 *5 (-558 $)) $)) (-15 -2866 ((-1034 *5 (-558 $)) $)) (-15 -2217 ($ (-1034 *5 (-558 $))))))))) (-3512 (*1 *2 *2) (-12 (-4 *3 (-423)) (-4 *3 (-782)) (-4 *3 (-959 (-519))) (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3)) (-4 *2 (-13 (-335) (-275) (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) (-15 -2866 ((-1034 *3 (-558 $)) $)) (-15 -2217 ($ (-1034 *3 (-558 $))))))))) (-2240 (*1 *2 *2) (-12 (-4 *3 (-423)) (-4 *3 (-782)) (-4 *3 (-959 (-519))) (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3)) (-4 *2 (-13 (-335) (-275) (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) (-15 -2866 ((-1034 *3 (-558 $)) $)) (-15 -2217 ($ (-1034 *3 (-558 $))))))))) (-1458 (*1 *2 *2) (-12 (-4 *3 (-423)) (-4 *3 (-782)) (-4 *3 (-959 (-519))) (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3)) (-4 *2 (-13 (-335) (-275) (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) (-15 -2866 ((-1034 *3 (-558 $)) $)) (-15 -2217 ($ (-1034 *3 (-558 $))))))))) (-2099 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-1078 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-335) (-275) (-10 -8 (-15 -2855 ((-1034 *4 (-558 $)) $)) (-15 -2866 ((-1034 *4 (-558 $)) $)) (-15 -2217 ($ (-1034 *4 (-558 $))))))))) (-2520 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-558 *2))) (-4 *2 (-13 (-335) (-275) (-10 -8 (-15 -2855 ((-1034 *4 (-558 $)) $)) (-15 -2866 ((-1034 *4 (-558 $)) $)) (-15 -2217 ($ (-1034 *4 (-558 $))))))) (-4 *4 (-511)) (-5 *1 (-40 *4 *2)))) (-2520 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-335) (-275) (-10 -8 (-15 -2855 ((-1034 *4 (-558 $)) $)) (-15 -2866 ((-1034 *4 (-558 $)) $)) (-15 -2217 ($ (-1034 *4 (-558 $))))))) (-4 *4 (-511)) (-5 *1 (-40 *4 *2)))) (-2520 (*1 *2 *2 *2) (-12 (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-335) (-275) (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) (-15 -2866 ((-1034 *3 (-558 $)) $)) (-15 -2217 ($ (-1034 *3 (-558 $))))))))) (-2520 (*1 *2 *2) (-12 (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-335) (-275) (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) (-15 -2866 ((-1034 *3 (-558 $)) $)) (-15 -2217 ($ (-1034 *3 (-558 $))))))))) (-1713 (*1 *2 *2) (-12 (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-335) (-275) (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) (-15 -2866 ((-1034 *3 (-558 $)) $)) (-15 -2217 ($ (-1034 *3 (-558 $)))))))))) +(-10 -7 (-15 -1713 (|#2| |#2|)) (-15 -2520 (|#2| |#2|)) (-15 -2520 (|#2| |#2| |#2|)) (-15 -2520 (|#2| |#2| (-585 |#2|))) (-15 -2520 (|#2| |#2| (-585 (-558 |#2|)))) (-15 -2099 ((-1078 |#2|) |#2|)) (IF (|has| |#1| (-782)) (IF (|has| |#1| (-423)) (IF (|has| |#1| (-959 (-519))) (IF (|has| |#2| (-402 |#1|)) (PROGN (-15 -1458 (|#2| |#2|)) (-15 -2240 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -2835 (|#2| (-110) |#2| (-705)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-1921 (((-390 (-1078 |#3|)) (-1078 |#3|) (-585 (-47))) 22) (((-390 |#3|) |#3| (-585 (-47))) 18))) +(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -1921 ((-390 |#3|) |#3| (-585 (-47)))) (-15 -1921 ((-390 (-1078 |#3|)) (-1078 |#3|) (-585 (-47))))) (-782) (-727) (-876 (-47) |#2| |#1|)) (T -41)) +((-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-47))) (-4 *5 (-782)) (-4 *6 (-727)) (-4 *7 (-876 (-47) *6 *5)) (-5 *2 (-390 (-1078 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1078 *7)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-47))) (-4 *5 (-782)) (-4 *6 (-727)) (-5 *2 (-390 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-876 (-47) *6 *5))))) +(-10 -7 (-15 -1921 ((-390 |#3|) |#3| (-585 (-47)))) (-15 -1921 ((-390 (-1078 |#3|)) (-1078 |#3|) (-585 (-47))))) +((-2105 (((-705) |#2|) 65)) (-3576 (((-705) |#2|) 68)) (-2998 (((-585 |#2|)) 33)) (-2103 (((-705) |#2|) 67)) (-3622 (((-705) |#2|) 64)) (-3835 (((-705) |#2|) 66)) (-3438 (((-585 (-625 |#1|))) 60)) (-3652 (((-585 |#2|)) 55)) (-1596 (((-585 |#2|) |#2|) 43)) (-2267 (((-585 |#2|)) 57)) (-2927 (((-585 |#2|)) 56)) (-3050 (((-585 (-625 |#1|))) 48)) (-3870 (((-585 |#2|)) 54)) (-3597 (((-585 |#2|) |#2|) 42)) (-2252 (((-585 |#2|)) 50)) (-2487 (((-585 (-625 |#1|))) 61)) (-1231 (((-585 |#2|)) 59)) (-2070 (((-1163 |#2|) (-1163 |#2|)) 84 (|has| |#1| (-280))))) +(((-42 |#1| |#2|) (-10 -7 (-15 -2103 ((-705) |#2|)) (-15 -3576 ((-705) |#2|)) (-15 -3622 ((-705) |#2|)) (-15 -2105 ((-705) |#2|)) (-15 -3835 ((-705) |#2|)) (-15 -2252 ((-585 |#2|))) (-15 -3597 ((-585 |#2|) |#2|)) (-15 -1596 ((-585 |#2|) |#2|)) (-15 -3870 ((-585 |#2|))) (-15 -3652 ((-585 |#2|))) (-15 -2927 ((-585 |#2|))) (-15 -2267 ((-585 |#2|))) (-15 -1231 ((-585 |#2|))) (-15 -3050 ((-585 (-625 |#1|)))) (-15 -3438 ((-585 (-625 |#1|)))) (-15 -2487 ((-585 (-625 |#1|)))) (-15 -2998 ((-585 |#2|))) (IF (|has| |#1| (-280)) (-15 -2070 ((-1163 |#2|) (-1163 |#2|))) |%noBranch|)) (-511) (-389 |#1|)) (T -42)) +((-2070 (*1 *2 *2) (-12 (-5 *2 (-1163 *4)) (-4 *4 (-389 *3)) (-4 *3 (-280)) (-4 *3 (-511)) (-5 *1 (-42 *3 *4)))) (-2998 (*1 *2) (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-389 *3)))) (-2487 (*1 *2) (-12 (-4 *3 (-511)) (-5 *2 (-585 (-625 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-389 *3)))) (-3438 (*1 *2) (-12 (-4 *3 (-511)) (-5 *2 (-585 (-625 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-389 *3)))) (-3050 (*1 *2) (-12 (-4 *3 (-511)) (-5 *2 (-585 (-625 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-389 *3)))) (-1231 (*1 *2) (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-389 *3)))) (-2267 (*1 *2) (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-389 *3)))) (-2927 (*1 *2) (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-389 *3)))) (-3652 (*1 *2) (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-389 *3)))) (-3870 (*1 *2) (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-389 *3)))) (-1596 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-585 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-389 *4)))) (-3597 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-585 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-389 *4)))) (-2252 (*1 *2) (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-389 *3)))) (-3835 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-42 *4 *3)) (-4 *3 (-389 *4)))) (-2105 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-42 *4 *3)) (-4 *3 (-389 *4)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-42 *4 *3)) (-4 *3 (-389 *4)))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-42 *4 *3)) (-4 *3 (-389 *4)))) (-2103 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-42 *4 *3)) (-4 *3 (-389 *4))))) +(-10 -7 (-15 -2103 ((-705) |#2|)) (-15 -3576 ((-705) |#2|)) (-15 -3622 ((-705) |#2|)) (-15 -2105 ((-705) |#2|)) (-15 -3835 ((-705) |#2|)) (-15 -2252 ((-585 |#2|))) (-15 -3597 ((-585 |#2|) |#2|)) (-15 -1596 ((-585 |#2|) |#2|)) (-15 -3870 ((-585 |#2|))) (-15 -3652 ((-585 |#2|))) (-15 -2927 ((-585 |#2|))) (-15 -2267 ((-585 |#2|))) (-15 -1231 ((-585 |#2|))) (-15 -3050 ((-585 (-625 |#1|)))) (-15 -3438 ((-585 (-625 |#1|)))) (-15 -2487 ((-585 (-625 |#1|)))) (-15 -2998 ((-585 |#2|))) (IF (|has| |#1| (-280)) (-15 -2070 ((-1163 |#2|) (-1163 |#2|))) |%noBranch|)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3307 (((-3 $ "failed")) NIL (|has| |#1| (-511)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-2329 (((-1163 (-625 |#1|)) (-1163 $)) NIL) (((-1163 (-625 |#1|))) 24)) (-2729 (((-1163 $)) 50)) (-2249 (($) NIL T CONST)) (-3689 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) NIL (|has| |#1| (-511)))) (-1483 (((-3 $ "failed")) NIL (|has| |#1| (-511)))) (-3999 (((-625 |#1|) (-1163 $)) NIL) (((-625 |#1|)) NIL)) (-4172 ((|#1| $) NIL)) (-3447 (((-625 |#1|) $ (-1163 $)) NIL) (((-625 |#1|) $) NIL)) (-2682 (((-3 $ "failed") $) NIL (|has| |#1| (-511)))) (-4087 (((-1078 (-879 |#1|))) NIL (|has| |#1| (-335)))) (-1588 (($ $ (-848)) NIL)) (-4147 ((|#1| $) NIL)) (-1370 (((-1078 |#1|) $) NIL (|has| |#1| (-511)))) (-2048 ((|#1| (-1163 $)) NIL) ((|#1|) NIL)) (-3055 (((-1078 |#1|) $) NIL)) (-2660 (((-108)) 86)) (-2528 (($ (-1163 |#1|) (-1163 $)) NIL) (($ (-1163 |#1|)) NIL)) (-4193 (((-3 $ "failed") $) 14 (|has| |#1| (-511)))) (-3229 (((-848)) 51)) (-1373 (((-108)) NIL)) (-1432 (($ $ (-848)) NIL)) (-4029 (((-108)) NIL)) (-2061 (((-108)) NIL)) (-3288 (((-108)) 88)) (-3780 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) NIL (|has| |#1| (-511)))) (-2253 (((-3 $ "failed")) NIL (|has| |#1| (-511)))) (-1684 (((-625 |#1|) (-1163 $)) NIL) (((-625 |#1|)) NIL)) (-3241 ((|#1| $) NIL)) (-3130 (((-625 |#1|) $ (-1163 $)) NIL) (((-625 |#1|) $) NIL)) (-2076 (((-3 $ "failed") $) NIL (|has| |#1| (-511)))) (-3540 (((-1078 (-879 |#1|))) NIL (|has| |#1| (-335)))) (-1341 (($ $ (-848)) NIL)) (-3339 ((|#1| $) NIL)) (-4024 (((-1078 |#1|) $) NIL (|has| |#1| (-511)))) (-3069 ((|#1| (-1163 $)) NIL) ((|#1|) NIL)) (-3978 (((-1078 |#1|) $) NIL)) (-1554 (((-108)) 85)) (-1266 (((-1065) $) NIL)) (-2618 (((-108)) 92)) (-3284 (((-108)) 91)) (-3163 (((-108)) 93)) (-4139 (((-1029) $) NIL)) (-1885 (((-108)) 87)) (-2598 ((|#1| $ (-519)) 53)) (-3399 (((-1163 |#1|) $ (-1163 $)) 47) (((-625 |#1|) (-1163 $) (-1163 $)) NIL) (((-1163 |#1|) $) 28) (((-625 |#1|) (-1163 $)) NIL)) (-1446 (((-1163 |#1|) $) NIL) (($ (-1163 |#1|)) NIL)) (-3842 (((-585 (-879 |#1|)) (-1163 $)) NIL) (((-585 (-879 |#1|))) NIL)) (-3190 (($ $ $) NIL)) (-2553 (((-108)) 83)) (-2217 (((-790) $) 68) (($ (-1163 |#1|)) 22)) (-2070 (((-1163 $)) 44)) (-2219 (((-585 (-1163 |#1|))) NIL (|has| |#1| (-511)))) (-3645 (($ $ $ $) NIL)) (-1801 (((-108)) 81)) (-1627 (($ (-625 |#1|) $) 18)) (-2025 (($ $ $) NIL)) (-3547 (((-108)) 84)) (-1345 (((-108)) 82)) (-3328 (((-108)) 80)) (-3602 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1049 |#2| |#1|) $) 19))) +(((-43 |#1| |#2| |#3| |#4|) (-13 (-389 |#1|) (-587 (-1049 |#2| |#1|)) (-10 -8 (-15 -2217 ($ (-1163 |#1|))))) (-335) (-848) (-585 (-1082)) (-1163 (-625 |#1|))) (T -43)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-335)) (-14 *6 (-1163 (-625 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-848)) (-14 *5 (-585 (-1082)))))) +(-13 (-389 |#1|) (-587 (-1049 |#2| |#1|)) (-10 -8 (-15 -2217 ($ (-1163 |#1|))))) +((-1430 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3493 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-2111 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-3847 (($ $) NIL)) (-1812 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1583 (((-1168) $ |#1| |#1|) NIL (|has| $ (-6 -4222))) (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2258 (($ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-2078 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4222))) (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782))))) (-3276 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-1473 (((-108) $ (-705)) NIL)) (-2410 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4222)))) (-1440 (($ $ $) 27 (|has| $ (-6 -4222)))) (-1907 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4222)))) (-2692 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 29 (|has| $ (-6 -4222)))) (-2421 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4222))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-1130 (-519)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4222))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "last" (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4222))) (($ $ "rest" $) NIL (|has| $ (-6 -4222))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "first" (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4222))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "value" (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) NIL (|has| $ (-6 -4222)))) (-2846 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL)) (-1640 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-2098 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-2802 (((-3 |#2| "failed") |#1| $) 37)) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2343 (($ $ (-705)) NIL) (($ $) 24)) (-1552 (($ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-2502 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-1438 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4222))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4222)))) (-3659 ((|#2| $ |#1|) NIL) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519)) NIL)) (-2303 (((-108) $) NIL)) (-3297 (((-519) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (((-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))) (((-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519)) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-3844 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 18 (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221))) (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 18 (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) NIL)) (-3458 (((-108) $ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-1822 (($ (-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 ((|#1| $) NIL (|has| |#1| (-782))) (((-519) $) 32 (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-2511 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-2500 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-3725 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221))) (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011)))) (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-3890 ((|#1| $) NIL (|has| |#1| (-782))) (((-519) $) 34 (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4222))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222))) (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL)) (-1592 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1281 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL)) (-1668 (((-108) $) NIL)) (-1266 (((-1065) $) 42 (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-1457 (($ $ (-705)) NIL) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-3019 (((-585 |#1|) $) 20)) (-4194 (((-108) |#1| $) NIL)) (-4152 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-1846 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL) (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519)) NIL) (($ $ $ (-519)) NIL)) (-1672 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519)) NIL) (($ $ $ (-519)) NIL)) (-3909 (((-585 |#1|) $) NIL) (((-585 (-519)) $) NIL)) (-1506 (((-108) |#1| $) NIL) (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-2331 ((|#2| $) NIL (|has| |#1| (-782))) (($ $ (-705)) NIL) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 23)) (-2395 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL)) (-3640 (($ $ |#2|) NIL (|has| $ (-6 -4222))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-3664 (((-108) $) NIL)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011)))) (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-2222 (((-585 |#2|) $) NIL) (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 17)) (-3108 (((-108) $) 16)) (-1548 (($) 13)) (-2598 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ (-519)) NIL) (($ $ (-1130 (-519))) NIL) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "first") NIL) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $ "value") NIL)) (-1763 (((-519) $ $) NIL)) (-2436 (($) 12) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-2137 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-3720 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-3096 (((-108) $) NIL)) (-1407 (($ $) NIL)) (-2434 (($ $) NIL (|has| $ (-6 -4222)))) (-2067 (((-705) $) NIL)) (-3376 (($ $) NIL)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011)))) (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-3954 (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL) (($ $ $) NIL)) (-4150 (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL) (($ (-585 $)) NIL) (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 25) (($ $ $) NIL)) (-2217 (((-790) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790))) (|has| |#2| (-559 (-790)))))) (-2018 (((-585 $) $) NIL)) (-2915 (((-108) $ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-3879 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1460 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") |#1| $) 44)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-1569 (((-108) $ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-1543 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-1578 (((-108) $ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-1561 (((-108) $ $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-782)))) (-3532 (((-705) $) 22 (|has| $ (-6 -4221))))) +(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1011) (-1011)) (T -44)) NIL (-35 |#1| |#2|) -((-3022 (((-107) $) 12)) (-3312 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-377 (-517)) $) 24) (($ $ (-377 (-517))) NIL))) -(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3022 ((-107) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) (-46 |#2| |#3|) (-964) (-724)) (T -45)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3022 ((-107) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3022 (((-107) $) 62)) (-2059 (($ |#1| |#2|) 61)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1191 ((|#2| $) 64)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1939 ((|#1| $ |#2|) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) -(((-46 |#1| |#2|) (-1189) (-964) (-724)) (T -46)) -((-2336 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-107)))) (-2059 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))) (-1939 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) (-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)) (-4 *2 (-333))))) -(-13 (-964) (-106 |t#1| |t#1|) (-10 -8 (-15 -2336 (|t#1| $)) (-15 -2325 ($ $)) (-15 -1191 (|t#2| $)) (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (-15 -3022 ((-107) $)) (-15 -2059 ($ |t#1| |t#2|)) (-15 -2364 ($ $)) (-15 -1939 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-333)) (-15 -1692 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-6 (-156)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-509)) (-6 (-509)) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-6 (-37 (-377 (-517)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-2454 (((-583 $) (-1073 $) (-1077)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-876 $)) NIL)) (-1480 (($ (-1073 $) (-1077)) NIL) (($ (-1073 $)) NIL) (($ (-876 $)) NIL)) (-1992 (((-107) $) 11)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-3864 (((-583 (-556 $)) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3939 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2726 (((-583 $) (-1073 $) (-1077)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-876 $)) NIL)) (-1454 (($ (-1073 $) (-1077)) NIL) (($ (-1073 $)) NIL) (($ (-876 $)) NIL)) (-3220 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3402 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2383 (($ $ $) NIL)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-377 (-517)))) (|:| |vec| (-1158 (-377 (-517))))) (-623 $) (-1158 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-1510 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3314 (($ $) NIL) (($ (-583 $)) NIL)) (-3854 (((-583 (-109)) $) NIL)) (-1325 (((-109) (-109)) NIL)) (-1690 (((-107) $) 14)) (-3448 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3858 (((-1029 (-517) (-556 $)) $) NIL)) (-2940 (($ $ (-517)) NIL)) (-3522 (((-1073 $) (-1073 $) (-556 $)) NIL) (((-1073 $) (-1073 $) (-583 (-556 $))) NIL) (($ $ (-556 $)) NIL) (($ $ (-583 (-556 $))) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3419 (((-1073 $) (-556 $)) NIL (|has| $ (-964)))) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 $ $) (-556 $)) NIL)) (-1858 (((-3 (-556 $) "failed") $) NIL)) (-2323 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-1412 (((-583 (-556 $)) $) NIL)) (-1385 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-3731 (((-107) $ (-109)) NIL) (((-107) $ (-1077)) NIL)) (-2291 (($ $) NIL)) (-1795 (((-703) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ (-583 $)) NIL) (($ $ $) NIL)) (-4060 (((-107) $ $) NIL) (((-107) $ (-1077)) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1077) (-1 $ (-583 $))) NIL) (($ $ (-1077) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3388 (((-703) $) NIL)) (-2612 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-1816 (($ $) NIL) (($ $ $) NIL)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-2082 (((-1029 (-517) (-556 $)) $) NIL)) (-2819 (($ $) NIL (|has| $ (-964)))) (-3367 (((-349) $) NIL) (((-199) $) NIL) (((-153 (-349)) $) NIL)) (-2262 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1029 (-517) (-556 $))) NIL)) (-1818 (((-703)) NIL)) (-3488 (($ $) NIL) (($ (-583 $)) NIL)) (-4116 (((-107) (-109)) NIL)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) 7 T CONST)) (-3675 (($) 12 T CONST)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 16)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (-1680 (($ $ $) 15) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL))) -(((-47) (-13 (-273) (-27) (-955 (-517)) (-955 (-377 (-517))) (-579 (-517)) (-940) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2262 ($ (-1029 (-517) (-556 $)))) (-15 -3858 ((-1029 (-517) (-556 $)) $)) (-15 -2082 ((-1029 (-517) (-556 $)) $)) (-15 -1510 ($ $)) (-15 -3522 ((-1073 $) (-1073 $) (-556 $))) (-15 -3522 ((-1073 $) (-1073 $) (-583 (-556 $)))) (-15 -3522 ($ $ (-556 $))) (-15 -3522 ($ $ (-583 (-556 $))))))) (T -47)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1510 (*1 *1 *1) (-5 *1 (-47))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47))))) -(-13 (-273) (-27) (-955 (-517)) (-955 (-377 (-517))) (-579 (-517)) (-940) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2262 ($ (-1029 (-517) (-556 $)))) (-15 -3858 ((-1029 (-517) (-556 $)) $)) (-15 -2082 ((-1029 (-517) (-556 $)) $)) (-15 -1510 ($ $)) (-15 -3522 ((-1073 $) (-1073 $) (-556 $))) (-15 -3522 ((-1073 $) (-1073 $) (-583 (-556 $)))) (-15 -3522 ($ $ (-556 $))) (-15 -3522 ($ $ (-583 (-556 $)))))) -((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 7)) (-1572 (((-107) $ $) NIL))) -(((-48) (-1006)) (T -48)) -NIL -(-1006) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 60)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2240 (((-107) $) 20)) (-3220 (((-3 |#1| "failed") $) 23)) (-3402 ((|#1| $) 24)) (-2364 (($ $) 27)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2336 ((|#1| $) 21)) (-3814 (($ $) 49)) (-3232 (((-1060) $) NIL)) (-3176 (((-107) $) 28)) (-4130 (((-1024) $) NIL)) (-1306 (($ (-703)) 47)) (-3898 (($ (-583 (-517))) 48)) (-1191 (((-703) $) 29)) (-2262 (((-787) $) 63) (($ (-517)) 44) (($ |#1|) 42)) (-1939 ((|#1| $ $) 19)) (-1818 (((-703)) 46)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 30 T CONST)) (-3675 (($) 14 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 40)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-49 |#1| |#2|) (-13 (-561 |#1|) (-955 |#1|) (-10 -8 (-15 -2336 (|#1| $)) (-15 -3814 ($ $)) (-15 -2364 ($ $)) (-15 -1939 (|#1| $ $)) (-15 -1306 ($ (-703))) (-15 -3898 ($ (-583 (-517)))) (-15 -3176 ((-107) $)) (-15 -2240 ((-107) $)) (-15 -1191 ((-703) $)) (-15 -3312 ($ (-1 |#1| |#1|) $)))) (-964) (-583 (-1077))) (T -49)) -((-2336 (*1 *2 *1) (-12 (-4 *2 (-964)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1077))))) (-3814 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-964)) (-14 *3 (-583 (-1077))))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-964)) (-14 *3 (-583 (-1077))))) (-1939 (*1 *2 *1 *1) (-12 (-4 *2 (-964)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1077))))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))))) (-1191 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1077)))))) -(-13 (-561 |#1|) (-955 |#1|) (-10 -8 (-15 -2336 (|#1| $)) (-15 -3814 ($ $)) (-15 -2364 ($ $)) (-15 -1939 (|#1| $ $)) (-15 -1306 ($ (-703))) (-15 -3898 ($ (-583 (-517)))) (-15 -3176 ((-107) $)) (-15 -2240 ((-107) $)) (-15 -1191 ((-703) $)) (-15 -3312 ($ (-1 |#1| |#1|) $)))) -((-2240 (((-107) (-51)) 13)) (-3220 (((-3 |#1| "failed") (-51)) 21)) (-3402 ((|#1| (-51)) 22)) (-2262 (((-51) |#1|) 18))) -(((-50 |#1|) (-10 -7 (-15 -2262 ((-51) |#1|)) (-15 -3220 ((-3 |#1| "failed") (-51))) (-15 -2240 ((-107) (-51))) (-15 -3402 (|#1| (-51)))) (-1112)) (T -50)) -((-3402 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1112)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1112)))) (-3220 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1112)))) (-2262 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1112))))) -(-10 -7 (-15 -2262 ((-51) |#1|)) (-15 -3220 ((-3 |#1| "failed") (-51))) (-15 -2240 ((-107) (-51))) (-15 -3402 (|#1| (-51)))) -((-2105 (((-107) $ $) NIL)) (-3376 (((-1060) (-107)) 25)) (-2847 (((-787) $) 24)) (-3839 (((-706) $) 12)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1253 (((-787) $) 16)) (-2936 (((-1010) $) 14)) (-2262 (((-787) $) 32)) (-3557 (($ (-1010) (-706)) 33)) (-1572 (((-107) $ $) 18))) -(((-51) (-13 (-1006) (-10 -8 (-15 -3557 ($ (-1010) (-706))) (-15 -1253 ((-787) $)) (-15 -2847 ((-787) $)) (-15 -2936 ((-1010) $)) (-15 -3839 ((-706) $)) (-15 -3376 ((-1060) (-107)))))) (T -51)) -((-3557 (*1 *1 *2 *3) (-12 (-5 *2 (-1010)) (-5 *3 (-706)) (-5 *1 (-51)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-51)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1060)) (-5 *1 (-51))))) -(-13 (-1006) (-10 -8 (-15 -3557 ($ (-1010) (-706))) (-15 -1253 ((-787) $)) (-15 -2847 ((-787) $)) (-15 -2936 ((-1010) $)) (-15 -3839 ((-706) $)) (-15 -3376 ((-1060) (-107))))) -((-2365 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2365 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-964) (-585 |#1|) (-781 |#1|)) (T -52)) -((-2365 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-964)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5))))) -(-10 -7 (-15 -2365 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2400 ((|#3| |#3| (-583 (-1077))) 35)) (-2300 ((|#3| (-583 (-986 |#1| |#2| |#3|)) |#3| (-845)) 22) ((|#3| (-583 (-986 |#1| |#2| |#3|)) |#3|) 20))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2300 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3|)) (-15 -2300 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3| (-845))) (-15 -2400 (|#3| |#3| (-583 (-1077))))) (-1006) (-13 (-964) (-810 |#1|) (-779) (-558 (-816 |#1|))) (-13 (-400 |#2|) (-810 |#1|) (-558 (-816 |#1|)))) (T -53)) -((-2400 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))))) (-2300 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-986 *5 *6 *2))) (-5 *4 (-845)) (-4 *5 (-1006)) (-4 *6 (-13 (-964) (-810 *5) (-779) (-558 (-816 *5)))) (-4 *2 (-13 (-400 *6) (-810 *5) (-558 (-816 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2300 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-986 *4 *5 *2))) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))) (-5 *1 (-53 *4 *5 *2))))) -(-10 -7 (-15 -2300 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3|)) (-15 -2300 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3| (-845))) (-15 -2400 (|#3| |#3| (-583 (-1077))))) -((-3443 (((-107) $ (-703)) 23)) (-3911 (($ $ (-517) |#3|) 45)) (-3101 (($ $ (-517) |#4|) 49)) (-1397 ((|#3| $ (-517)) 58)) (-1525 (((-583 |#2|) $) 30)) (-2266 (((-107) $ (-703)) 25)) (-1949 (((-107) |#2| $) 53)) (-2737 (($ (-1 |#2| |#2|) $) 37)) (-3312 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-2328 (((-107) $ (-703)) 24)) (-2837 (($ $ |#2|) 34)) (-3843 (((-107) (-1 (-107) |#2|) $) 19)) (-2612 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) 27)) (-4140 (((-703) (-1 (-107) |#2|) $) 28) (((-703) |#2| $) 55)) (-2453 (($ $) 33)) (-2295 ((|#4| $ (-517)) 61)) (-2262 (((-787) $) 66)) (-1272 (((-107) (-1 (-107) |#2|) $) 18)) (-1572 (((-107) $ $) 52)) (-3573 (((-703) $) 26))) -(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3101 (|#1| |#1| (-517) |#4|)) (-15 -3911 (|#1| |#1| (-517) |#3|)) (-15 -1525 ((-583 |#2|) |#1|)) (-15 -2295 (|#4| |#1| (-517))) (-15 -1397 (|#3| |#1| (-517))) (-15 -2612 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517))) (-15 -2837 (|#1| |#1| |#2|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -1949 ((-107) |#2| |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703))) (-15 -2453 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1112) (-343 |#2|) (-343 |#2|)) (T -54)) -NIL -(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3101 (|#1| |#1| (-517) |#4|)) (-15 -3911 (|#1| |#1| (-517) |#3|)) (-15 -1525 ((-583 |#2|) |#1|)) (-15 -2295 (|#4| |#1| (-517))) (-15 -1397 (|#3| |#1| (-517))) (-15 -2612 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517))) (-15 -2837 (|#1| |#1| |#2|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -1949 ((-107) |#2| |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703))) (-15 -2453 (|#1| |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) (-517) |#1|) 44)) (-3911 (($ $ (-517) |#2|) 42)) (-3101 (($ $ (-517) |#3|) 41)) (-3038 (($) 7 T CONST)) (-1397 ((|#2| $ (-517)) 46)) (-2750 ((|#1| $ (-517) (-517) |#1|) 43)) (-2557 ((|#1| $ (-517) (-517)) 48)) (-1525 (((-583 |#1|) $) 30)) (-1409 (((-703) $) 51)) (-3204 (($ (-703) (-703) |#1|) 57)) (-1422 (((-703) $) 50)) (-2266 (((-107) $ (-703)) 9)) (-2560 (((-517) $) 55)) (-2970 (((-517) $) 53)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2413 (((-517) $) 54)) (-1718 (((-517) $) 52)) (-2737 (($ (-1 |#1| |#1|) $) 34)) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) 56)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2295 ((|#3| $ (-517)) 45)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-55 |#1| |#2| |#3|) (-1189) (-1112) (-343 |t#1|) (-343 |t#1|)) (T -55)) -((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3204 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1112)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2837 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2560 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1718 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-2612 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1112)))) (-2557 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1112)))) (-2612 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-1397 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1112)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1112)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) (-2436 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-2750 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-3911 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))) (-3101 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1112)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3312 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3312 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))) -(-13 (-456 |t#1|) (-10 -8 (-6 -4196) (-6 -4195) (-15 -3204 ($ (-703) (-703) |t#1|)) (-15 -2837 ($ $ |t#1|)) (-15 -2560 ((-517) $)) (-15 -2413 ((-517) $)) (-15 -2970 ((-517) $)) (-15 -1718 ((-517) $)) (-15 -1409 ((-703) $)) (-15 -1422 ((-703) $)) (-15 -2612 (|t#1| $ (-517) (-517))) (-15 -2557 (|t#1| $ (-517) (-517))) (-15 -2612 (|t#1| $ (-517) (-517) |t#1|)) (-15 -1397 (|t#2| $ (-517))) (-15 -2295 (|t#3| $ (-517))) (-15 -1525 ((-583 |t#1|) $)) (-15 -2436 (|t#1| $ (-517) (-517) |t#1|)) (-15 -2750 (|t#1| $ (-517) (-517) |t#1|)) (-15 -3911 ($ $ (-517) |t#2|)) (-15 -3101 ($ $ (-517) |t#3|)) (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (-15 -2737 ($ (-1 |t#1| |t#1|) $)) (-15 -3312 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3312 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-1250 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-1510 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3312 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) -(((-56 |#1| |#2|) (-10 -7 (-15 -1250 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3312 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1112) (-1112)) (T -56)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-56 *5 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) -(-10 -7 (-15 -1250 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3312 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1750 (($ (-583 |#1|)) 13) (($ (-703) |#1|) 14)) (-3204 (($ (-703) |#1|) 9)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 7)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1750 ($ (-583 |#1|))) (-15 -1750 ($ (-703) |#1|)))) (-1112)) (T -57)) -((-1750 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-57 *3)))) (-1750 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1112))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1750 ($ (-583 |#1|))) (-15 -1750 ($ (-703) |#1|)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3911 (($ $ (-517) (-57 |#1|)) NIL)) (-3101 (($ $ (-517) (-57 |#1|)) NIL)) (-3038 (($) NIL T CONST)) (-1397 (((-57 |#1|) $ (-517)) NIL)) (-2750 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2557 ((|#1| $ (-517) (-517)) NIL)) (-1525 (((-583 |#1|) $) NIL)) (-1409 (((-703) $) NIL)) (-3204 (($ (-703) (-703) |#1|) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2295 (((-57 |#1|) $ (-517)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4196))) (-1112)) (T -58)) -NIL -(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4196))) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 69) (((-3 $ "failed") (-1158 (-286 (-517)))) 58) (((-3 $ "failed") (-1158 (-876 (-349)))) 91) (((-3 $ "failed") (-1158 (-876 (-517)))) 80) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 47) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 36)) (-3402 (($ (-1158 (-286 (-349)))) 65) (($ (-1158 (-286 (-517)))) 54) (($ (-1158 (-876 (-349)))) 87) (($ (-1158 (-876 (-517)))) 76) (($ (-1158 (-377 (-876 (-349))))) 43) (($ (-1158 (-377 (-876 (-517))))) 29)) (-1885 (((-1163) $) 118)) (-2262 (((-787) $) 111) (($ (-583 (-300))) 100) (($ (-300)) 94) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 97) (($ (-1158 (-309 (-2279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2279) (-632)))) 28))) -(((-59 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2279) (-632))))))) (-1077)) (T -59)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2279) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2279) (-632))))))) -((-1885 (((-1163) $) 48) (((-1163)) 49)) (-2262 (((-787) $) 45))) -(((-60 |#1|) (-13 (-365) (-10 -7 (-15 -1885 ((-1163))))) (-1077)) (T -60)) -((-1885 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-60 *3)) (-14 *3 (-1077))))) -(-13 (-365) (-10 -7 (-15 -1885 ((-1163))))) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 142) (((-3 $ "failed") (-1158 (-286 (-517)))) 132) (((-3 $ "failed") (-1158 (-876 (-349)))) 163) (((-3 $ "failed") (-1158 (-876 (-517)))) 152) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 121) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 110)) (-3402 (($ (-1158 (-286 (-349)))) 138) (($ (-1158 (-286 (-517)))) 128) (($ (-1158 (-876 (-349)))) 159) (($ (-1158 (-876 (-517)))) 148) (($ (-1158 (-377 (-876 (-349))))) 117) (($ (-1158 (-377 (-876 (-517))))) 103)) (-1885 (((-1163) $) 96)) (-2262 (((-787) $) 90) (($ (-583 (-300))) 28) (($ (-300)) 34) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 31) (($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632)))) 88))) -(((-61 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632))))))) (-1077)) (T -61)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632))))))) -((-3220 (((-3 $ "failed") (-286 (-349))) 36) (((-3 $ "failed") (-286 (-517))) 41) (((-3 $ "failed") (-876 (-349))) 46) (((-3 $ "failed") (-876 (-517))) 51) (((-3 $ "failed") (-377 (-876 (-349)))) 31) (((-3 $ "failed") (-377 (-876 (-517)))) 26)) (-3402 (($ (-286 (-349))) 34) (($ (-286 (-517))) 39) (($ (-876 (-349))) 44) (($ (-876 (-517))) 49) (($ (-377 (-876 (-349)))) 29) (($ (-377 (-876 (-517)))) 23)) (-1885 (((-1163) $) 73)) (-2262 (((-787) $) 66) (($ (-583 (-300))) 57) (($ (-300)) 63) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 60) (($ (-309 (-2279 (QUOTE X)) (-2279) (-632))) 22))) -(((-62 |#1|) (-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279 (QUOTE X)) (-2279) (-632)))))) (-1077)) (T -62)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-309 (-2279 (QUOTE X)) (-2279) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1077))))) -(-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279 (QUOTE X)) (-2279) (-632)))))) -((-3220 (((-3 $ "failed") (-623 (-286 (-349)))) 100) (((-3 $ "failed") (-623 (-286 (-517)))) 89) (((-3 $ "failed") (-623 (-876 (-349)))) 122) (((-3 $ "failed") (-623 (-876 (-517)))) 111) (((-3 $ "failed") (-623 (-377 (-876 (-349))))) 78) (((-3 $ "failed") (-623 (-377 (-876 (-517))))) 67)) (-3402 (($ (-623 (-286 (-349)))) 96) (($ (-623 (-286 (-517)))) 85) (($ (-623 (-876 (-349)))) 118) (($ (-623 (-876 (-517)))) 107) (($ (-623 (-377 (-876 (-349))))) 74) (($ (-623 (-377 (-876 (-517))))) 60)) (-1885 (((-1163) $) 130)) (-2262 (((-787) $) 124) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 30) (($ (-623 (-309 (-2279) (-2279 (QUOTE X) (QUOTE HESS)) (-632)))) 53))) -(((-63 |#1|) (-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279) (-2279 (QUOTE X) (QUOTE HESS)) (-632))))))) (-1077)) (T -63)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2279) (-2279 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1077))))) -(-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279) (-2279 (QUOTE X) (QUOTE HESS)) (-632))))))) -((-3220 (((-3 $ "failed") (-286 (-349))) 54) (((-3 $ "failed") (-286 (-517))) 59) (((-3 $ "failed") (-876 (-349))) 64) (((-3 $ "failed") (-876 (-517))) 69) (((-3 $ "failed") (-377 (-876 (-349)))) 49) (((-3 $ "failed") (-377 (-876 (-517)))) 44)) (-3402 (($ (-286 (-349))) 52) (($ (-286 (-517))) 57) (($ (-876 (-349))) 62) (($ (-876 (-517))) 67) (($ (-377 (-876 (-349)))) 47) (($ (-377 (-876 (-517)))) 41)) (-1885 (((-1163) $) 78)) (-2262 (((-787) $) 72) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 30) (($ (-309 (-2279) (-2279 (QUOTE XC)) (-632))) 38))) -(((-64 |#1|) (-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE XC)) (-632)))))) (-1077)) (T -64)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-309 (-2279) (-2279 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1077))))) -(-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE XC)) (-632)))))) -((-1885 (((-1163) $) 63)) (-2262 (((-787) $) 57) (($ (-623 (-632))) 49) (($ (-583 (-300))) 48) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 53))) -(((-65 |#1|) (-353) (-1077)) (T -65)) -NIL -(-353) -((-1885 (((-1163) $) 64)) (-2262 (((-787) $) 58) (($ (-623 (-632))) 50) (($ (-583 (-300))) 49) (($ (-300)) 52) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 55))) -(((-66 |#1|) (-353) (-1077)) (T -66)) -NIL -(-353) -((-1885 (((-1163) $) NIL) (((-1163)) 32)) (-2262 (((-787) $) NIL))) -(((-67 |#1|) (-13 (-365) (-10 -7 (-15 -1885 ((-1163))))) (-1077)) (T -67)) -((-1885 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-67 *3)) (-14 *3 (-1077))))) -(-13 (-365) (-10 -7 (-15 -1885 ((-1163))))) -((-1885 (((-1163) $) 68)) (-2262 (((-787) $) 62) (($ (-623 (-632))) 53) (($ (-583 (-300))) 56) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 52))) -(((-68 |#1|) (-353) (-1077)) (T -68)) -NIL -(-353) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 98) (((-3 $ "failed") (-1158 (-286 (-517)))) 87) (((-3 $ "failed") (-1158 (-876 (-349)))) 119) (((-3 $ "failed") (-1158 (-876 (-517)))) 108) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 76) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 65)) (-3402 (($ (-1158 (-286 (-349)))) 94) (($ (-1158 (-286 (-517)))) 83) (($ (-1158 (-876 (-349)))) 115) (($ (-1158 (-876 (-517)))) 104) (($ (-1158 (-377 (-876 (-349))))) 72) (($ (-1158 (-377 (-876 (-517))))) 58)) (-1885 (((-1163) $) 133)) (-2262 (((-787) $) 127) (($ (-583 (-300))) 122) (($ (-300)) 125) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 50) (($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))) 51))) -(((-69 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632))))))) (-1077)) (T -69)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632))))))) -((-1885 (((-1163) $) 32) (((-1163)) 31)) (-2262 (((-787) $) 35))) -(((-70 |#1|) (-13 (-365) (-10 -7 (-15 -1885 ((-1163))))) (-1077)) (T -70)) -((-1885 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-70 *3)) (-14 *3 (-1077))))) -(-13 (-365) (-10 -7 (-15 -1885 ((-1163))))) -((-1885 (((-1163) $) 62)) (-2262 (((-787) $) 56) (($ (-623 (-632))) 47) (($ (-583 (-300))) 50) (($ (-300)) 53) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 46))) -(((-71 |#1|) (-353) (-1077)) (T -71)) -NIL -(-353) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 119) (((-3 $ "failed") (-1158 (-286 (-517)))) 108) (((-3 $ "failed") (-1158 (-876 (-349)))) 141) (((-3 $ "failed") (-1158 (-876 (-517)))) 130) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 98) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 87)) (-3402 (($ (-1158 (-286 (-349)))) 115) (($ (-1158 (-286 (-517)))) 104) (($ (-1158 (-876 (-349)))) 137) (($ (-1158 (-876 (-517)))) 126) (($ (-1158 (-377 (-876 (-349))))) 94) (($ (-1158 (-377 (-876 (-517))))) 80)) (-1885 (((-1163) $) 73)) (-2262 (((-787) $) 27) (($ (-583 (-300))) 63) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 66) (($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) 60))) -(((-72 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632))))))) (-1077)) (T -72)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632))))))) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 125) (((-3 $ "failed") (-1158 (-286 (-517)))) 114) (((-3 $ "failed") (-1158 (-876 (-349)))) 147) (((-3 $ "failed") (-1158 (-876 (-517)))) 136) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 103) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 92)) (-3402 (($ (-1158 (-286 (-349)))) 121) (($ (-1158 (-286 (-517)))) 110) (($ (-1158 (-876 (-349)))) 143) (($ (-1158 (-876 (-517)))) 132) (($ (-1158 (-377 (-876 (-349))))) 99) (($ (-1158 (-377 (-876 (-517))))) 85)) (-1885 (((-1163) $) 78)) (-2262 (((-787) $) 70) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) NIL) (($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE EPS)) (-2279 (QUOTE -1318)) (-632)))) 65))) -(((-73 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE EPS)) (-2279 (QUOTE -1318)) (-632))))))) (-1077) (-1077) (-1077)) (T -73)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE X) (QUOTE EPS)) (-2279 (QUOTE -1318)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1077)) (-14 *4 (-1077)) (-14 *5 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE EPS)) (-2279 (QUOTE -1318)) (-632))))))) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 129) (((-3 $ "failed") (-1158 (-286 (-517)))) 118) (((-3 $ "failed") (-1158 (-876 (-349)))) 151) (((-3 $ "failed") (-1158 (-876 (-517)))) 140) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 107) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 96)) (-3402 (($ (-1158 (-286 (-349)))) 125) (($ (-1158 (-286 (-517)))) 114) (($ (-1158 (-876 (-349)))) 147) (($ (-1158 (-876 (-517)))) 136) (($ (-1158 (-377 (-876 (-349))))) 103) (($ (-1158 (-377 (-876 (-517))))) 89)) (-1885 (((-1163) $) 82)) (-2262 (((-787) $) 74) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) NIL) (($ (-1158 (-309 (-2279 (QUOTE EPS)) (-2279 (QUOTE YA) (QUOTE YB)) (-632)))) 69))) -(((-74 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE EPS)) (-2279 (QUOTE YA) (QUOTE YB)) (-632))))))) (-1077) (-1077) (-1077)) (T -74)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE EPS)) (-2279 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1077)) (-14 *4 (-1077)) (-14 *5 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE EPS)) (-2279 (QUOTE YA) (QUOTE YB)) (-632))))))) -((-3220 (((-3 $ "failed") (-286 (-349))) 77) (((-3 $ "failed") (-286 (-517))) 82) (((-3 $ "failed") (-876 (-349))) 87) (((-3 $ "failed") (-876 (-517))) 92) (((-3 $ "failed") (-377 (-876 (-349)))) 72) (((-3 $ "failed") (-377 (-876 (-517)))) 67)) (-3402 (($ (-286 (-349))) 75) (($ (-286 (-517))) 80) (($ (-876 (-349))) 85) (($ (-876 (-517))) 90) (($ (-377 (-876 (-349)))) 70) (($ (-377 (-876 (-517)))) 64)) (-1885 (((-1163) $) 61)) (-2262 (((-787) $) 49) (($ (-583 (-300))) 45) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 53) (($ (-309 (-2279) (-2279 (QUOTE X)) (-632))) 46))) -(((-75 |#1|) (-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE X)) (-632)))))) (-1077)) (T -75)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-309 (-2279) (-2279 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1077))))) -(-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE X)) (-632)))))) -((-3220 (((-3 $ "failed") (-286 (-349))) 41) (((-3 $ "failed") (-286 (-517))) 46) (((-3 $ "failed") (-876 (-349))) 51) (((-3 $ "failed") (-876 (-517))) 56) (((-3 $ "failed") (-377 (-876 (-349)))) 36) (((-3 $ "failed") (-377 (-876 (-517)))) 31)) (-3402 (($ (-286 (-349))) 39) (($ (-286 (-517))) 44) (($ (-876 (-349))) 49) (($ (-876 (-517))) 54) (($ (-377 (-876 (-349)))) 34) (($ (-377 (-876 (-517)))) 28)) (-1885 (((-1163) $) 77)) (-2262 (((-787) $) 71) (($ (-583 (-300))) 62) (($ (-300)) 68) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 65) (($ (-309 (-2279) (-2279 (QUOTE X)) (-632))) 27))) -(((-76 |#1|) (-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE X)) (-632)))))) (-1077)) (T -76)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-309 (-2279) (-2279 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1077))))) -(-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279) (-2279 (QUOTE X)) (-632)))))) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 84) (((-3 $ "failed") (-1158 (-286 (-517)))) 73) (((-3 $ "failed") (-1158 (-876 (-349)))) 106) (((-3 $ "failed") (-1158 (-876 (-517)))) 95) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 62) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 51)) (-3402 (($ (-1158 (-286 (-349)))) 80) (($ (-1158 (-286 (-517)))) 69) (($ (-1158 (-876 (-349)))) 102) (($ (-1158 (-876 (-517)))) 91) (($ (-1158 (-377 (-876 (-349))))) 58) (($ (-1158 (-377 (-876 (-517))))) 44)) (-1885 (((-1163) $) 122)) (-2262 (((-787) $) 116) (($ (-583 (-300))) 109) (($ (-300)) 36) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 112) (($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632)))) 37))) -(((-77 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632))))))) (-1077)) (T -77)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE XC)) (-632))))))) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 137) (((-3 $ "failed") (-1158 (-286 (-517)))) 126) (((-3 $ "failed") (-1158 (-876 (-349)))) 158) (((-3 $ "failed") (-1158 (-876 (-517)))) 147) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 116) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 105)) (-3402 (($ (-1158 (-286 (-349)))) 133) (($ (-1158 (-286 (-517)))) 122) (($ (-1158 (-876 (-349)))) 154) (($ (-1158 (-876 (-517)))) 143) (($ (-1158 (-377 (-876 (-349))))) 112) (($ (-1158 (-377 (-876 (-517))))) 98)) (-1885 (((-1163) $) 91)) (-2262 (((-787) $) 85) (($ (-583 (-300))) 76) (($ (-300)) 83) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 81) (($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) 77))) -(((-78 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632))))))) (-1077)) (T -78)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632))))))) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 73) (((-3 $ "failed") (-1158 (-286 (-517)))) 62) (((-3 $ "failed") (-1158 (-876 (-349)))) 95) (((-3 $ "failed") (-1158 (-876 (-517)))) 84) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 51) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 40)) (-3402 (($ (-1158 (-286 (-349)))) 69) (($ (-1158 (-286 (-517)))) 58) (($ (-1158 (-876 (-349)))) 91) (($ (-1158 (-876 (-517)))) 80) (($ (-1158 (-377 (-876 (-349))))) 47) (($ (-1158 (-377 (-876 (-517))))) 33)) (-1885 (((-1163) $) 121)) (-2262 (((-787) $) 115) (($ (-583 (-300))) 106) (($ (-300)) 112) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 110) (($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) 32))) -(((-79 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632))))))) (-1077)) (T -79)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279) (-2279 (QUOTE X)) (-632))))))) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 90) (((-3 $ "failed") (-1158 (-286 (-517)))) 79) (((-3 $ "failed") (-1158 (-876 (-349)))) 112) (((-3 $ "failed") (-1158 (-876 (-517)))) 101) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 68) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 57)) (-3402 (($ (-1158 (-286 (-349)))) 86) (($ (-1158 (-286 (-517)))) 75) (($ (-1158 (-876 (-349)))) 108) (($ (-1158 (-876 (-517)))) 97) (($ (-1158 (-377 (-876 (-349))))) 64) (($ (-1158 (-377 (-876 (-517))))) 50)) (-1885 (((-1163) $) 43)) (-2262 (((-787) $) 36) (($ (-583 (-300))) 26) (($ (-300)) 29) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 32) (($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632)))) 27))) -(((-80 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632))))))) (-1077)) (T -80)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632))))))) -((-3220 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-876 (-349)))) 125) (((-3 $ "failed") (-623 (-876 (-517)))) 114) (((-3 $ "failed") (-623 (-377 (-876 (-349))))) 82) (((-3 $ "failed") (-623 (-377 (-876 (-517))))) 71)) (-3402 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-876 (-349)))) 121) (($ (-623 (-876 (-517)))) 110) (($ (-623 (-377 (-876 (-349))))) 78) (($ (-623 (-377 (-876 (-517))))) 64)) (-1885 (((-1163) $) 57)) (-2262 (((-787) $) 43) (($ (-583 (-300))) 50) (($ (-300)) 39) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 47) (($ (-623 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632)))) 40))) -(((-81 |#1|) (-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632))))))) (-1077)) (T -81)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1077))))) -(-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE X) (QUOTE -1318)) (-2279) (-632))))))) -((-3220 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-876 (-349)))) 124) (((-3 $ "failed") (-623 (-876 (-517)))) 113) (((-3 $ "failed") (-623 (-377 (-876 (-349))))) 81) (((-3 $ "failed") (-623 (-377 (-876 (-517))))) 70)) (-3402 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-876 (-349)))) 120) (($ (-623 (-876 (-517)))) 109) (($ (-623 (-377 (-876 (-349))))) 77) (($ (-623 (-377 (-876 (-517))))) 63)) (-1885 (((-1163) $) 56)) (-2262 (((-787) $) 50) (($ (-583 (-300))) 44) (($ (-300)) 47) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 40) (($ (-623 (-309 (-2279 (QUOTE X)) (-2279) (-632)))) 41))) -(((-82 |#1|) (-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE X)) (-2279) (-632))))))) (-1077)) (T -82)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2279 (QUOTE X)) (-2279) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1077))))) -(-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE X)) (-2279) (-632))))))) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 99) (((-3 $ "failed") (-1158 (-286 (-517)))) 88) (((-3 $ "failed") (-1158 (-876 (-349)))) 121) (((-3 $ "failed") (-1158 (-876 (-517)))) 110) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 77) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 66)) (-3402 (($ (-1158 (-286 (-349)))) 95) (($ (-1158 (-286 (-517)))) 84) (($ (-1158 (-876 (-349)))) 117) (($ (-1158 (-876 (-517)))) 106) (($ (-1158 (-377 (-876 (-349))))) 73) (($ (-1158 (-377 (-876 (-517))))) 59)) (-1885 (((-1163) $) 45)) (-2262 (((-787) $) 39) (($ (-583 (-300))) 48) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 51) (($ (-1158 (-309 (-2279 (QUOTE X)) (-2279) (-632)))) 36))) -(((-83 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279) (-632))))))) (-1077)) (T -83)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE X)) (-2279) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279) (-632))))))) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 74) (((-3 $ "failed") (-1158 (-286 (-517)))) 63) (((-3 $ "failed") (-1158 (-876 (-349)))) 96) (((-3 $ "failed") (-1158 (-876 (-517)))) 85) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 52) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 41)) (-3402 (($ (-1158 (-286 (-349)))) 70) (($ (-1158 (-286 (-517)))) 59) (($ (-1158 (-876 (-349)))) 92) (($ (-1158 (-876 (-517)))) 81) (($ (-1158 (-377 (-876 (-349))))) 48) (($ (-1158 (-377 (-876 (-517))))) 34)) (-1885 (((-1163) $) 122)) (-2262 (((-787) $) 116) (($ (-583 (-300))) 107) (($ (-300)) 113) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 111) (($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))) 33))) -(((-84 |#1|) (-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632))))))) (-1077)) (T -84)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1077))))) -(-13 (-410) (-10 -8 (-15 -2262 ($ (-1158 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632))))))) -((-3220 (((-3 $ "failed") (-623 (-286 (-349)))) 105) (((-3 $ "failed") (-623 (-286 (-517)))) 94) (((-3 $ "failed") (-623 (-876 (-349)))) 127) (((-3 $ "failed") (-623 (-876 (-517)))) 116) (((-3 $ "failed") (-623 (-377 (-876 (-349))))) 83) (((-3 $ "failed") (-623 (-377 (-876 (-517))))) 72)) (-3402 (($ (-623 (-286 (-349)))) 101) (($ (-623 (-286 (-517)))) 90) (($ (-623 (-876 (-349)))) 123) (($ (-623 (-876 (-517)))) 112) (($ (-623 (-377 (-876 (-349))))) 79) (($ (-623 (-377 (-876 (-517))))) 65)) (-1885 (((-1163) $) 58)) (-2262 (((-787) $) 52) (($ (-583 (-300))) 42) (($ (-300)) 49) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 47) (($ (-623 (-309 (-2279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2279) (-632)))) 43))) -(((-85 |#1|) (-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2279) (-632))))))) (-1077)) (T -85)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2279) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1077))))) -(-13 (-354) (-10 -8 (-15 -2262 ($ (-623 (-309 (-2279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2279) (-632))))))) -((-1885 (((-1163) $) 44)) (-2262 (((-787) $) 38) (($ (-1158 (-632))) 88) (($ (-583 (-300))) 29) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 32))) -(((-86 |#1|) (-409) (-1077)) (T -86)) -NIL -(-409) -((-3220 (((-3 $ "failed") (-286 (-349))) 42) (((-3 $ "failed") (-286 (-517))) 47) (((-3 $ "failed") (-876 (-349))) 52) (((-3 $ "failed") (-876 (-517))) 57) (((-3 $ "failed") (-377 (-876 (-349)))) 37) (((-3 $ "failed") (-377 (-876 (-517)))) 32)) (-3402 (($ (-286 (-349))) 40) (($ (-286 (-517))) 45) (($ (-876 (-349))) 50) (($ (-876 (-517))) 55) (($ (-377 (-876 (-349)))) 35) (($ (-377 (-876 (-517)))) 29)) (-1885 (((-1163) $) 88)) (-2262 (((-787) $) 82) (($ (-583 (-300))) 76) (($ (-300)) 79) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 73) (($ (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632))) 28))) -(((-87 |#1|) (-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))))) (-1077)) (T -87)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1077))))) -(-13 (-366) (-10 -8 (-15 -2262 ($ (-309 (-2279 (QUOTE X)) (-2279 (QUOTE -1318)) (-632)))))) -((-1699 (((-1158 (-623 |#1|)) (-623 |#1|)) 55)) (-1326 (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 (-583 (-845))))) |#2| (-845)) 45)) (-2867 (((-2 (|:| |minor| (-583 (-845))) (|:| -3817 |#2|) (|:| |minors| (-583 (-583 (-845)))) (|:| |ops| (-583 |#2|))) |#2| (-845)) 63 (|has| |#1| (-333))))) -(((-88 |#1| |#2|) (-10 -7 (-15 -1326 ((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 (-583 (-845))))) |#2| (-845))) (-15 -1699 ((-1158 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -2867 ((-2 (|:| |minor| (-583 (-845))) (|:| -3817 |#2|) (|:| |minors| (-583 (-583 (-845)))) (|:| |ops| (-583 |#2|))) |#2| (-845))) |%noBranch|)) (-509) (-593 |#1|)) (T -88)) -((-2867 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-845))) (|:| -3817 *3) (|:| |minors| (-583 (-583 (-845)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-845)) (-4 *3 (-593 *5)))) (-1699 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1158 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))) (-1326 (*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -3725 (-623 *5)) (|:| |vec| (-1158 (-583 (-845)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-845)) (-4 *3 (-593 *5))))) -(-10 -7 (-15 -1326 ((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 (-583 (-845))))) |#2| (-845))) (-15 -1699 ((-1158 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -2867 ((-2 (|:| |minor| (-583 (-845))) (|:| -3817 |#2|) (|:| |minors| (-583 (-583 (-845)))) (|:| |ops| (-583 |#2|))) |#2| (-845))) |%noBranch|)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2544 ((|#1| $) 35)) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-2098 ((|#1| |#1| $) 30)) (-3409 ((|#1| $) 28)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) NIL)) (-3439 (($ |#1| $) 31)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1551 ((|#1| $) 29)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 16)) (-2679 (($) 39)) (-3137 (((-703) $) 26)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 15)) (-2262 (((-787) $) 25 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) NIL)) (-1927 (($ (-583 |#1|)) 37)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 13 (|has| |#1| (-1006)))) (-3573 (((-703) $) 10 (|has| $ (-6 -4195))))) -(((-89 |#1|) (-13 (-1025 |#1|) (-10 -8 (-15 -1927 ($ (-583 |#1|))))) (-1006)) (T -89)) -((-1927 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-89 *3))))) -(-13 (-1025 |#1|) (-10 -8 (-15 -1927 ($ (-583 |#1|))))) -((-1588 (($ $) 10)) (-1601 (($ $) 12))) -(((-90 |#1|) (-10 -8 (-15 -1601 (|#1| |#1|)) (-15 -1588 (|#1| |#1|))) (-91)) (T -90)) -NIL -(-10 -8 (-15 -1601 (|#1| |#1|)) (-15 -1588 (|#1| |#1|))) -((-1564 (($ $) 11)) (-1536 (($ $) 10)) (-1588 (($ $) 9)) (-1601 (($ $) 8)) (-1577 (($ $) 7)) (-1550 (($ $) 6))) -(((-91) (-1189)) (T -91)) -((-1564 (*1 *1 *1) (-4 *1 (-91))) (-1536 (*1 *1 *1) (-4 *1 (-91))) (-1588 (*1 *1 *1) (-4 *1 (-91))) (-1601 (*1 *1 *1) (-4 *1 (-91))) (-1577 (*1 *1 *1) (-4 *1 (-91))) (-1550 (*1 *1 *1) (-4 *1 (-91)))) -(-13 (-10 -8 (-15 -1550 ($ $)) (-15 -1577 ($ $)) (-15 -1601 ($ $)) (-15 -1588 ($ $)) (-15 -1536 ($ $)) (-15 -1564 ($ $)))) -((-2105 (((-107) $ $) NIL)) (-3023 (((-349) (-1060) (-349)) 42) (((-349) (-1060) (-1060) (-349)) 41)) (-3073 (((-349) (-349)) 33)) (-3611 (((-1163)) 36)) (-3232 (((-1060) $) NIL)) (-2019 (((-349) (-1060) (-1060)) 46) (((-349) (-1060)) 48)) (-4130 (((-1024) $) NIL)) (-1285 (((-349) (-1060) (-1060)) 47)) (-1919 (((-349) (-1060) (-1060)) 49) (((-349) (-1060)) 50)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-92) (-13 (-1006) (-10 -7 (-15 -2019 ((-349) (-1060) (-1060))) (-15 -2019 ((-349) (-1060))) (-15 -1919 ((-349) (-1060) (-1060))) (-15 -1919 ((-349) (-1060))) (-15 -1285 ((-349) (-1060) (-1060))) (-15 -3611 ((-1163))) (-15 -3073 ((-349) (-349))) (-15 -3023 ((-349) (-1060) (-349))) (-15 -3023 ((-349) (-1060) (-1060) (-349))) (-6 -4195)))) (T -92)) -((-2019 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1919 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1285 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3611 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-92)))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))) (-3023 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1060)) (-5 *1 (-92)))) (-3023 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1060)) (-5 *1 (-92))))) -(-13 (-1006) (-10 -7 (-15 -2019 ((-349) (-1060) (-1060))) (-15 -2019 ((-349) (-1060))) (-15 -1919 ((-349) (-1060) (-1060))) (-15 -1919 ((-349) (-1060))) (-15 -1285 ((-349) (-1060) (-1060))) (-15 -3611 ((-1163))) (-15 -3073 ((-349) (-349))) (-15 -3023 ((-349) (-1060) (-349))) (-15 -3023 ((-349) (-1060) (-1060) (-349))) (-6 -4195))) -NIL -(((-93) (-1189)) (T -93)) -NIL -(-13 (-10 -7 (-6 -4195) (-6 (-4197 "*")) (-6 -4196) (-6 -4192) (-6 -4190) (-6 -4189) (-6 -4188) (-6 -4193) (-6 -4187) (-6 -4186) (-6 -4185) (-6 -4184) (-6 -4183) (-6 -4191) (-6 -4194) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4182))) -((-2105 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-2114 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-517))) 22)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 14)) (-4130 (((-1024) $) NIL)) (-2612 ((|#1| $ |#1|) 11)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) 20)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 8 T CONST)) (-1572 (((-107) $ $) 10)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) 28) (($ $ (-703)) NIL) (($ $ (-517)) 16)) (* (($ $ $) 29))) -(((-94 |#1|) (-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2114 ($ (-1 |#1| |#1|))) (-15 -2114 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2114 ($ (-1 |#1| |#1| (-517)))))) (-964)) (T -94)) -((-2114 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-94 *3)))) (-2114 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-94 *3)))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-964)) (-5 *1 (-94 *3))))) -(-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2114 ($ (-1 |#1| |#1|))) (-15 -2114 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2114 ($ (-1 |#1| |#1| (-517)))))) -((-2063 (((-388 |#2|) |#2| (-583 |#2|)) 10) (((-388 |#2|) |#2| |#2|) 11))) -(((-95 |#1| |#2|) (-10 -7 (-15 -2063 ((-388 |#2|) |#2| |#2|)) (-15 -2063 ((-388 |#2|) |#2| (-583 |#2|)))) (-13 (-421) (-134)) (-1134 |#1|)) (T -95)) -((-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))) (-2063 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1134 *4))))) -(-10 -7 (-15 -2063 ((-388 |#2|) |#2| |#2|)) (-15 -2063 ((-388 |#2|) |#2| (-583 |#2|)))) -((-2105 (((-107) $ $) 10))) -(((-96 |#1|) (-10 -8 (-15 -2105 ((-107) |#1| |#1|))) (-97)) (T -96)) -NIL -(-10 -8 (-15 -2105 ((-107) |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1572 (((-107) $ $) 6))) -(((-97) (-1189)) (T -97)) -((-2105 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) (-1572 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107))))) -(-13 (-10 -8 (-15 -1572 ((-107) $ $)) (-15 -2105 ((-107) $ $)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) 13 (|has| $ (-6 -4196)))) (-3149 (($ $ $) NIL (|has| $ (-6 -4196)))) (-4174 (($ $ $) NIL (|has| $ (-6 -4196)))) (-1502 (($ $ (-583 |#1|)) 15)) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "left" $) NIL (|has| $ (-6 -4196))) (($ $ "right" $) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3302 (($ $) 11)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2020 (($ $ |#1| $) 17)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-3650 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1906 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 35)) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3287 (($ $) 10)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) 12)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 9)) (-2679 (($) 16)) (-2612 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3899 (($ (-703) |#1|) 19)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-98 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -3899 ($ (-703) |#1|)) (-15 -1502 ($ $ (-583 |#1|))) (-15 -3650 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3650 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1906 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1906 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1006)) (T -98)) -((-3899 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1006)))) (-1502 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-98 *3)))) (-3650 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1006)))) (-3650 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-98 *3)))) (-1906 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (-5 *1 (-98 *2)))) (-1906 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1006)) (-5 *1 (-98 *2))))) -(-13 (-120 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -3899 ($ (-703) |#1|)) (-15 -1502 ($ $ (-583 |#1|))) (-15 -3650 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3650 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1906 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1906 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) -((-1522 ((|#3| |#2| |#2|) 29)) (-3960 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4197 "*"))))) (-1879 ((|#3| |#2| |#2|) 30)) (-1466 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4197 "*")))))) -(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1522 (|#3| |#2| |#2|)) (-15 -1879 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4197 "*"))) (PROGN (-15 -3960 (|#1| |#2| |#2|)) (-15 -1466 (|#1| |#2|))) |%noBranch|)) (-964) (-1134 |#1|) (-621 |#1| |#4| |#5|) (-343 |#1|) (-343 |#1|)) (T -99)) -((-1466 (*1 *2 *3) (-12 (|has| *2 (-6 (-4197 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-964)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1134 *2)) (-4 *4 (-621 *2 *5 *6)))) (-3960 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4197 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-964)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1134 *2)) (-4 *4 (-621 *2 *5 *6)))) (-1879 (*1 *2 *3 *3) (-12 (-4 *4 (-964)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1134 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))) (-1522 (*1 *2 *3 *3) (-12 (-4 *4 (-964)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1134 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4))))) -(-10 -7 (-15 -1522 (|#3| |#2| |#2|)) (-15 -1879 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4197 "*"))) (PROGN (-15 -3960 (|#1| |#2| |#2|)) (-15 -1466 (|#1| |#2|))) |%noBranch|)) -((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3079 (((-583 (-1077))) 32)) (-2229 (((-2 (|:| |zeros| (-1058 (-199))) (|:| |ones| (-1058 (-199))) (|:| |singularities| (-1058 (-199)))) (-1077)) 35)) (-1572 (((-107) $ $) NIL))) -(((-100) (-13 (-1006) (-10 -7 (-15 -3079 ((-583 (-1077)))) (-15 -2229 ((-2 (|:| |zeros| (-1058 (-199))) (|:| |ones| (-1058 (-199))) (|:| |singularities| (-1058 (-199)))) (-1077))) (-6 -4195)))) (T -100)) -((-3079 (*1 *2) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-100)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-2 (|:| |zeros| (-1058 (-199))) (|:| |ones| (-1058 (-199))) (|:| |singularities| (-1058 (-199))))) (-5 *1 (-100))))) -(-13 (-1006) (-10 -7 (-15 -3079 ((-583 (-1077)))) (-15 -2229 ((-2 (|:| |zeros| (-1058 (-199))) (|:| |ones| (-1058 (-199))) (|:| |singularities| (-1058 (-199)))) (-1077))) (-6 -4195))) -((-2729 (($ (-583 |#2|)) 11))) -(((-101 |#1| |#2|) (-10 -8 (-15 -2729 (|#1| (-583 |#2|)))) (-102 |#2|) (-1112)) (T -101)) -NIL -(-10 -8 (-15 -2729 (|#1| (-583 |#2|)))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-102 |#1|) (-1189) (-1112)) (T -102)) -((-2729 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-102 *3)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112)))) (-3439 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112))))) -(-13 (-456 |t#1|) (-10 -8 (-6 -4196) (-15 -2729 ($ (-583 |t#1|))) (-15 -1551 (|t#1| $)) (-15 -3439 ($ |t#1| $)) (-15 -2015 (|t#1| $)))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-517) $) NIL (|has| (-517) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-517) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-517) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-955 (-517))))) (-3402 (((-517) $) NIL) (((-1077) $) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-517) (-955 (-517)))) (((-517) $) NIL (|has| (-517) (-955 (-517))))) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-517) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-517) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-517) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-517) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-517) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-517) (-1053)))) (-2321 (((-107) $) NIL (|has| (-517) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-517) (-779)))) (-3312 (($ (-1 (-517) (-517)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-517) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2713 (((-517) $) NIL (|has| (-517) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1077)) (-583 (-517))) NIL (|has| (-517) (-478 (-1077) (-517)))) (($ $ (-1077) (-517)) NIL (|has| (-517) (-478 (-1077) (-517))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-517) $) NIL)) (-3367 (((-816 (-517)) $) NIL (|has| (-517) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-517) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-940))) (((-199) $) NIL (|has| (-517) (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1077)) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL) (((-923 2) $) 9)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-517) (-833))) (|has| (-517) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-517) $) NIL (|has| (-517) (-502)))) (-2799 (($ (-377 (-517))) 8)) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| (-517) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1692 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL))) -(((-103) (-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 2) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -2799 ($ (-377 (-517))))))) (T -103)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-923 2)) (-5 *1 (-103)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103))))) -(-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 2) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -2799 ($ (-377 (-517)))))) -((-2105 (((-107) $ $) NIL)) (-3188 (((-1024) $ (-1024)) 23)) (-3010 (($ $ (-1060)) 17)) (-1774 (((-3 (-1024) "failed") $) 22)) (-2872 (((-1024) $) 20)) (-3235 (((-1024) $ (-1024)) 25)) (-1210 (((-1024) $) 24)) (-3723 (($ (-358)) NIL) (($ (-358) (-1060)) 16)) (-2981 (((-358) $) NIL)) (-3232 (((-1060) $) NIL)) (-3048 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3604 (($ $) 18)) (-1572 (((-107) $ $) NIL))) -(((-104) (-13 (-334 (-358) (-1024)) (-10 -8 (-15 -1774 ((-3 (-1024) "failed") $)) (-15 -1210 ((-1024) $)) (-15 -3235 ((-1024) $ (-1024)))))) (T -104)) -((-1774 (*1 *2 *1) (|partial| -12 (-5 *2 (-1024)) (-5 *1 (-104)))) (-1210 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-104)))) (-3235 (*1 *2 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-104))))) -(-13 (-334 (-358) (-1024)) (-10 -8 (-15 -1774 ((-3 (-1024) "failed") $)) (-15 -1210 ((-1024) $)) (-15 -3235 ((-1024) $ (-1024))))) -((-2105 (((-107) $ $) NIL)) (-3670 (($ $) NIL)) (-2284 (($ $ $) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-4109 (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4196)))) (-2149 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2436 (((-107) $ (-1125 (-517)) (-107)) NIL (|has| $ (-6 -4196))) (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1423 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1510 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-2750 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4196)))) (-2557 (((-107) $ (-517)) NIL)) (-1210 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1006))) (((-517) (-107) $) NIL (|has| (-107) (-1006))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1525 (((-583 (-107)) $) NIL (|has| $ (-6 -4195)))) (-4011 (($ $ $) NIL)) (-2479 (($ $) NIL)) (-3243 (($ $ $) NIL)) (-3204 (($ (-703) (-107)) 8)) (-1353 (($ $ $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL)) (-3824 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-3687 (((-583 (-107)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL)) (-2737 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-107) (-107) (-107)) $ $) NIL) (($ (-1 (-107) (-107)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-107) $) NIL (|has| (-517) (-779)))) (-1985 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2837 (($ $ (-107)) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-2862 (((-583 (-107)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 (($ $ (-1125 (-517))) NIL) (((-107) $ (-517)) NIL) (((-107) $ (-517) (-107)) NIL)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-4140 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2279 (($ (-583 (-107))) NIL)) (-4117 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2262 (((-787) $) NIL)) (-2076 (($ (-703) (-107)) 9)) (-1272 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-4024 (($ $ $) NIL)) (-2806 (($ $) NIL)) (-3849 (($ $ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-3838 (($ $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-105) (-13 (-118) (-10 -8 (-15 -2076 ($ (-703) (-107)))))) (T -105)) -((-2076 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105))))) -(-13 (-118) (-10 -8 (-15 -2076 ($ (-703) (-107))))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-106 |#1| |#2|) (-1189) (-964) (-964)) (T -106)) -NIL -(-13 (-585 |t#1|) (-970 |t#2|) (-10 -7 (-6 -4190) (-6 -4189))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-970 |#2|) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-3670 (($ $) 12)) (-2284 (($ $ $) 17)) (-1434 (($) 8 T CONST)) (-4069 (((-107) $) 7)) (-2390 (((-703)) 26)) (-2192 (($) 32)) (-4011 (($ $ $) 15)) (-2479 (($ $) 10)) (-3243 (($ $ $) 18)) (-1353 (($ $ $) 19)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-4161 (((-845) $) 31)) (-3232 (((-1060) $) NIL)) (-2803 (($ (-845)) 30)) (-2272 (($ $ $) 21)) (-4130 (((-1024) $) NIL)) (-2387 (($) 9 T CONST)) (-1840 (($ $ $) 22)) (-3367 (((-493) $) 38)) (-2262 (((-787) $) 41)) (-4024 (($ $ $) 13)) (-2806 (($ $) 11)) (-3849 (($ $ $) 16)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 20)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 24)) (-3838 (($ $ $) 14))) -(((-107) (-13 (-779) (-338) (-598) (-888) (-558 (-493)) (-10 -8 (-15 -1434 ($) -1373) (-15 -2387 ($) -1373) (-15 -2806 ($ $)) (-15 -2284 ($ $ $)) (-15 -1353 ($ $ $)) (-15 -3243 ($ $ $)) (-15 -4069 ((-107) $))))) (T -107)) -((-1434 (*1 *1) (-5 *1 (-107))) (-2387 (*1 *1) (-5 *1 (-107))) (-2806 (*1 *1 *1) (-5 *1 (-107))) (-2284 (*1 *1 *1 *1) (-5 *1 (-107))) (-1353 (*1 *1 *1 *1) (-5 *1 (-107))) (-3243 (*1 *1 *1 *1) (-5 *1 (-107))) (-4069 (*1 *1 *1) (-5 *1 (-107)))) -(-13 (-779) (-338) (-598) (-888) (-558 (-493)) (-10 -8 (-15 -1434 ($) -1373) (-15 -2387 ($) -1373) (-15 -2806 ($ $)) (-15 -2284 ($ $ $)) (-15 -1353 ($ $ $)) (-15 -3243 ($ $ $)) (-15 -4069 ((-107) $)))) -((-3490 (((-3 (-1 |#1| (-583 |#1|)) "failed") (-109)) 18) (((-109) (-109) (-1 |#1| |#1|)) 13) (((-109) (-109) (-1 |#1| (-583 |#1|))) 11) (((-3 |#1| "failed") (-109) (-583 |#1|)) 20)) (-1595 (((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109)) 24) (((-109) (-109) (-1 |#1| |#1|)) 30) (((-109) (-109) (-583 (-1 |#1| (-583 |#1|)))) 26)) (-2572 (((-109) |#1|) 54 (|has| |#1| (-779)))) (-2591 (((-3 |#1| "failed") (-109)) 49 (|has| |#1| (-779))))) -(((-108 |#1|) (-10 -7 (-15 -3490 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3490 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3490 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3490 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1595 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1595 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1595 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -2572 ((-109) |#1|)) (-15 -2591 ((-3 |#1| "failed") (-109)))) |%noBranch|)) (-1006)) (T -108)) -((-2591 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1006)) (-4 *2 (-779)) (-5 *1 (-108 *2)))) (-2572 (*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1006)))) (-1595 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1006)))) (-1595 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006)) (-5 *1 (-108 *4)))) (-1595 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1006)) (-5 *1 (-108 *4)))) (-3490 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1006)))) (-3490 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006)) (-5 *1 (-108 *4)))) (-3490 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1006)) (-5 *1 (-108 *4)))) (-3490 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1006))))) -(-10 -7 (-15 -3490 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3490 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3490 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3490 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1595 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1595 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1595 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -2572 ((-109) |#1|)) (-15 -2591 ((-3 |#1| "failed") (-109)))) |%noBranch|)) -((-2105 (((-107) $ $) NIL)) (-3546 (((-703) $) 68) (($ $ (-703)) 30)) (-3965 (((-107) $) 32)) (-3636 (($ $ (-1060) (-706)) 26)) (-1215 (($ $ (-44 (-1060) (-706))) 13)) (-2438 (((-3 (-706) "failed") $ (-1060)) 24)) (-3148 (((-44 (-1060) (-706)) $) 12)) (-1325 (($ (-1077)) 15) (($ (-1077) (-703)) 20)) (-2898 (((-107) $) 31)) (-3485 (((-107) $) 33)) (-2981 (((-1077) $) 8)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-3731 (((-107) $ (-1077)) 10)) (-1797 (($ $ (-1 (-493) (-583 (-493)))) 50) (((-3 (-1 (-493) (-583 (-493))) "failed") $) 54)) (-4130 (((-1024) $) NIL)) (-3316 (((-107) $ (-1060)) 29)) (-2665 (($ $ (-1 (-107) $ $)) 35)) (-1744 (((-3 (-1 (-787) (-583 (-787))) "failed") $) 52) (($ $ (-1 (-787) (-583 (-787)))) 41) (($ $ (-1 (-787) (-787))) 43)) (-2919 (($ $ (-1060)) 45)) (-2453 (($ $) 61)) (-1267 (($ $ (-1 (-107) $ $)) 36)) (-2262 (((-787) $) 48)) (-3125 (($ $ (-1060)) 27)) (-2949 (((-3 (-703) "failed") $) 56)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 67)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 73))) -(((-109) (-13 (-779) (-10 -8 (-15 -2981 ((-1077) $)) (-15 -3148 ((-44 (-1060) (-706)) $)) (-15 -2453 ($ $)) (-15 -1325 ($ (-1077))) (-15 -1325 ($ (-1077) (-703))) (-15 -2949 ((-3 (-703) "failed") $)) (-15 -2898 ((-107) $)) (-15 -3965 ((-107) $)) (-15 -3485 ((-107) $)) (-15 -3546 ((-703) $)) (-15 -3546 ($ $ (-703))) (-15 -2665 ($ $ (-1 (-107) $ $))) (-15 -1267 ($ $ (-1 (-107) $ $))) (-15 -1744 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1744 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1744 ($ $ (-1 (-787) (-787)))) (-15 -1797 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1797 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -3731 ((-107) $ (-1077))) (-15 -3316 ((-107) $ (-1060))) (-15 -3125 ($ $ (-1060))) (-15 -2919 ($ $ (-1060))) (-15 -2438 ((-3 (-706) "failed") $ (-1060))) (-15 -3636 ($ $ (-1060) (-706))) (-15 -1215 ($ $ (-44 (-1060) (-706))))))) (T -109)) -((-2981 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-109)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-44 (-1060) (-706))) (-5 *1 (-109)))) (-2453 (*1 *1 *1) (-5 *1 (-109))) (-1325 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-109)))) (-1325 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *1 (-109)))) (-2949 (*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-3546 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1267 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1744 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1744 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1744 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) (-1797 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1797 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-107)) (-5 *1 (-109)))) (-3316 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-109)))) (-3125 (*1 *1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-109)))) (-2919 (*1 *1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-109)))) (-2438 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1060)) (-5 *2 (-706)) (-5 *1 (-109)))) (-3636 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-706)) (-5 *1 (-109)))) (-1215 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1060) (-706))) (-5 *1 (-109))))) -(-13 (-779) (-10 -8 (-15 -2981 ((-1077) $)) (-15 -3148 ((-44 (-1060) (-706)) $)) (-15 -2453 ($ $)) (-15 -1325 ($ (-1077))) (-15 -1325 ($ (-1077) (-703))) (-15 -2949 ((-3 (-703) "failed") $)) (-15 -2898 ((-107) $)) (-15 -3965 ((-107) $)) (-15 -3485 ((-107) $)) (-15 -3546 ((-703) $)) (-15 -3546 ($ $ (-703))) (-15 -2665 ($ $ (-1 (-107) $ $))) (-15 -1267 ($ $ (-1 (-107) $ $))) (-15 -1744 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1744 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1744 ($ $ (-1 (-787) (-787)))) (-15 -1797 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1797 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -3731 ((-107) $ (-1077))) (-15 -3316 ((-107) $ (-1060))) (-15 -3125 ($ $ (-1060))) (-15 -2919 ($ $ (-1060))) (-15 -2438 ((-3 (-706) "failed") $ (-1060))) (-15 -3636 ($ $ (-1060) (-706))) (-15 -1215 ($ $ (-44 (-1060) (-706)))))) -((-2706 (((-517) |#2|) 36))) -(((-110 |#1| |#2|) (-10 -7 (-15 -2706 ((-517) |#2|))) (-13 (-333) (-955 (-377 (-517)))) (-1134 |#1|)) (T -110)) -((-2706 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-955 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1134 *4))))) -(-10 -7 (-15 -2706 ((-517) |#2|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $ (-517)) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2902 (($ (-1073 (-517)) (-517)) NIL)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4021 (($ $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-3250 (((-703) $) NIL)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2263 (((-517)) NIL)) (-3907 (((-517) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3175 (($ $ (-517)) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3685 (((-1058 (-517)) $) NIL)) (-2384 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2194 (((-517) $ (-517)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL))) -(((-111 |#1|) (-793 |#1|) (-517)) (T -111)) -NIL -(-793 |#1|) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-111 |#1|) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-111 |#1|) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-111 |#1|) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-111 |#1|) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-111 |#1|) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-111 |#1|) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-111 |#1|) (-955 (-517))))) (-3402 (((-111 |#1|) $) NIL) (((-1077) $) NIL (|has| (-111 |#1|) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-111 |#1|) (-955 (-517)))) (((-517) $) NIL (|has| (-111 |#1|) (-955 (-517))))) (-2419 (($ $) NIL) (($ (-517) $) NIL)) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-111 |#1|))) (|:| |vec| (-1158 (-111 |#1|)))) (-623 $) (-1158 $)) NIL) (((-623 (-111 |#1|)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-111 |#1|) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-111 |#1|) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-111 |#1|) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-111 |#1|) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-111 |#1|) (-1053)))) (-2321 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-4095 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-3312 (($ (-1 (-111 |#1|) (-111 |#1|)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-111 |#1|) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-111 |#1|) (-278)))) (-2713 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-111 |#1|) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-111 |#1|) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-111 |#1|)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-111 |#1|) (-111 |#1|)) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-265 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-265 (-111 |#1|)))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-1077)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-478 (-1077) (-111 |#1|)))) (($ $ (-1077) (-111 |#1|)) NIL (|has| (-111 |#1|) (-478 (-1077) (-111 |#1|))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-111 |#1|)) NIL (|has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1077)) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-111 |#1|) $) NIL)) (-3367 (((-816 (-517)) $) NIL (|has| (-111 |#1|) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-111 |#1|) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-111 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-111 |#1|) (-940))) (((-199) $) NIL (|has| (-111 |#1|) (-940)))) (-1309 (((-157 (-377 (-517))) $) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-111 |#1|)) NIL) (($ (-1077)) NIL (|has| (-111 |#1|) (-955 (-1077))))) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-833))) (|has| (-111 |#1|) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-2944 (((-107) $ $) NIL)) (-2194 (((-377 (-517)) $ (-517)) NIL)) (-2829 (($ $) NIL (|has| (-111 |#1|) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1077)) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-111 |#1|) (-824 (-1077)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1692 (($ $ $) NIL) (($ (-111 |#1|) (-111 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-111 |#1|) $) NIL) (($ $ (-111 |#1|)) NIL))) -(((-112 |#1|) (-13 (-912 (-111 |#1|)) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $)))) (-517)) (T -112)) -((-2194 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) (-2419 (*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) (-2419 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2)))) -(-13 (-912 (-111 |#1|)) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $)))) -((-2436 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-1823 (((-583 $) $) 27)) (-1700 (((-107) $ $) 32)) (-1949 (((-107) |#2| $) 36)) (-1925 (((-583 |#2|) $) 22)) (-3834 (((-107) $) 16)) (-2612 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1414 (((-107) $) 45)) (-2262 (((-787) $) 41)) (-3234 (((-583 $) $) 28)) (-1572 (((-107) $ $) 34)) (-3573 (((-703) $) 43))) -(((-113 |#1| |#2|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -2436 (|#1| |#1| "right" |#1|)) (-15 -2436 (|#1| |#1| "left" |#1|)) (-15 -2612 (|#1| |#1| "right")) (-15 -2612 (|#1| |#1| "left")) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -1700 ((-107) |#1| |#1|)) (-15 -1925 ((-583 |#2|) |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -1949 ((-107) |#2| |#1|)) (-15 -3573 ((-703) |#1|))) (-114 |#2|) (-1112)) (T -113)) -NIL -(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -2436 (|#1| |#1| "right" |#1|)) (-15 -2436 (|#1| |#1| "left" |#1|)) (-15 -2612 (|#1| |#1| "right")) (-15 -2612 (|#1| |#1| "left")) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -1700 ((-107) |#1| |#1|)) (-15 -1925 ((-583 |#2|) |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -1949 ((-107) |#2| |#1|)) (-15 -3573 ((-703) |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-3149 (($ $ $) 52 (|has| $ (-6 -4196)))) (-4174 (($ $ $) 54 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) (($ $ "left" $) 55 (|has| $ (-6 -4196))) (($ $ "right" $) 53 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-3302 (($ $) 57)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3287 (($ $) 59)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3868 (((-517) $ $) 44)) (-1414 (((-107) $) 46)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-114 |#1|) (-1189) (-1112)) (T -114)) -((-3287 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1112)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1112)))) (-3302 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1112)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1112)))) (-2436 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4196)) (-4 *1 (-114 *3)) (-4 *3 (-1112)))) (-4174 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-114 *2)) (-4 *2 (-1112)))) (-2436 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4196)) (-4 *1 (-114 *3)) (-4 *3 (-1112)))) (-3149 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-114 *2)) (-4 *2 (-1112))))) -(-13 (-929 |t#1|) (-10 -8 (-15 -3287 ($ $)) (-15 -2612 ($ $ "left")) (-15 -3302 ($ $)) (-15 -2612 ($ $ "right")) (IF (|has| $ (-6 -4196)) (PROGN (-15 -2436 ($ $ "left" $)) (-15 -4174 ($ $ $)) (-15 -2436 ($ $ "right" $)) (-15 -3149 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-3174 (((-107) |#1|) 24)) (-2818 (((-703) (-703)) 23) (((-703)) 22)) (-4062 (((-107) |#1| (-107)) 25) (((-107) |#1|) 26))) -(((-115 |#1|) (-10 -7 (-15 -4062 ((-107) |#1|)) (-15 -4062 ((-107) |#1| (-107))) (-15 -2818 ((-703))) (-15 -2818 ((-703) (-703))) (-15 -3174 ((-107) |#1|))) (-1134 (-517))) (T -115)) -((-3174 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))) (-2818 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))) (-2818 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))) (-4062 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))) (-4062 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517)))))) -(-10 -7 (-15 -4062 ((-107) |#1|)) (-15 -4062 ((-107) |#1| (-107))) (-15 -2818 ((-703))) (-15 -2818 ((-703) (-703))) (-15 -3174 ((-107) |#1|))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) 15)) (-1975 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-3149 (($ $ $) 18 (|has| $ (-6 -4196)))) (-4174 (($ $ $) 20 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "left" $) NIL (|has| $ (-6 -4196))) (($ $ "right" $) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3302 (($ $) 17)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2020 (($ $ |#1| $) 23)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3287 (($ $) 19)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-3158 (($ |#1| $) 24)) (-3439 (($ |#1| $) 10)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 14)) (-2679 (($) 8)) (-2612 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1500 (($ (-583 |#1|)) 12)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-116 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4196) (-6 -4195) (-15 -1500 ($ (-583 |#1|))) (-15 -3439 ($ |#1| $)) (-15 -3158 ($ |#1| $)) (-15 -1975 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-779)) (T -116)) -((-1500 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-3158 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-1975 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779))))) -(-13 (-120 |#1|) (-10 -8 (-6 -4196) (-6 -4195) (-15 -1500 ($ (-583 |#1|))) (-15 -3439 ($ |#1| $)) (-15 -3158 ($ |#1| $)) (-15 -1975 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-3670 (($ $) 14)) (-2479 (($ $) 11)) (-3243 (($ $ $) 24)) (-1353 (($ $ $) 22)) (-2806 (($ $) 12)) (-3849 (($ $ $) 20)) (-3838 (($ $ $) 18))) -(((-117 |#1|) (-10 -8 (-15 -3243 (|#1| |#1| |#1|)) (-15 -1353 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3849 (|#1| |#1| |#1|))) (-118)) (T -117)) -NIL -(-10 -8 (-15 -3243 (|#1| |#1| |#1|)) (-15 -1353 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2479 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3849 (|#1| |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-3670 (($ $) 104)) (-2284 (($ $ $) 25)) (-3351 (((-1163) $ (-517) (-517)) 67 (|has| $ (-6 -4196)))) (-2508 (((-107) $) 99 (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) 93)) (-4109 (($ $) 103 (-12 (|has| (-107) (-779)) (|has| $ (-6 -4196)))) (($ (-1 (-107) (-107) (-107)) $) 102 (|has| $ (-6 -4196)))) (-2149 (($ $) 98 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) 92)) (-3443 (((-107) $ (-703)) 38)) (-2436 (((-107) $ (-1125 (-517)) (-107)) 89 (|has| $ (-6 -4196))) (((-107) $ (-517) (-107)) 55 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-107)) $) 72 (|has| $ (-6 -4195)))) (-3038 (($) 39 T CONST)) (-3797 (($ $) 101 (|has| $ (-6 -4196)))) (-1894 (($ $) 91)) (-2446 (($ $) 69 (-12 (|has| (-107) (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ (-1 (-107) (-107)) $) 73 (|has| $ (-6 -4195))) (($ (-107) $) 70 (-12 (|has| (-107) (-1006)) (|has| $ (-6 -4195))))) (-1510 (((-107) (-1 (-107) (-107) (-107)) $) 75 (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) 74 (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) 71 (-12 (|has| (-107) (-1006)) (|has| $ (-6 -4195))))) (-2750 (((-107) $ (-517) (-107)) 54 (|has| $ (-6 -4196)))) (-2557 (((-107) $ (-517)) 56)) (-1210 (((-517) (-107) $ (-517)) 96 (|has| (-107) (-1006))) (((-517) (-107) $) 95 (|has| (-107) (-1006))) (((-517) (-1 (-107) (-107)) $) 94)) (-1525 (((-583 (-107)) $) 46 (|has| $ (-6 -4195)))) (-4011 (($ $ $) 26)) (-2479 (($ $) 31)) (-3243 (($ $ $) 28)) (-3204 (($ (-703) (-107)) 78)) (-1353 (($ $ $) 29)) (-2266 (((-107) $ (-703)) 37)) (-3531 (((-517) $) 64 (|has| (-517) (-779)))) (-3480 (($ $ $) 13)) (-3824 (($ $ $) 97 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) 90)) (-3687 (((-583 (-107)) $) 47 (|has| $ (-6 -4195)))) (-1949 (((-107) (-107) $) 49 (-12 (|has| (-107) (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 63 (|has| (-517) (-779)))) (-4095 (($ $ $) 14)) (-2737 (($ (-1 (-107) (-107)) $) 42 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-107) (-107) (-107)) $ $) 83) (($ (-1 (-107) (-107)) $) 41)) (-2328 (((-107) $ (-703)) 36)) (-3232 (((-1060) $) 9)) (-1734 (($ $ $ (-517)) 88) (($ (-107) $ (-517)) 87)) (-1449 (((-583 (-517)) $) 61)) (-3413 (((-107) (-517) $) 60)) (-4130 (((-1024) $) 10)) (-2420 (((-107) $) 65 (|has| (-517) (-779)))) (-1985 (((-3 (-107) "failed") (-1 (-107) (-107)) $) 76)) (-2837 (($ $ (-107)) 66 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-107)) $) 44 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-107)) (-583 (-107))) 53 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-107) (-107)) 52 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-265 (-107))) 51 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-583 (-265 (-107)))) 50 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006))))) (-1770 (((-107) $ $) 32)) (-2124 (((-107) (-107) $) 62 (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-2862 (((-583 (-107)) $) 59)) (-1754 (((-107) $) 35)) (-2679 (($) 34)) (-2612 (($ $ (-1125 (-517))) 84) (((-107) $ (-517)) 58) (((-107) $ (-517) (-107)) 57)) (-3779 (($ $ (-1125 (-517))) 86) (($ $ (-517)) 85)) (-4140 (((-703) (-107) $) 48 (-12 (|has| (-107) (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) (-107)) $) 45 (|has| $ (-6 -4195)))) (-1704 (($ $ $ (-517)) 100 (|has| $ (-6 -4196)))) (-2453 (($ $) 33)) (-3367 (((-493) $) 68 (|has| (-107) (-558 (-493))))) (-2279 (($ (-583 (-107))) 77)) (-4117 (($ (-583 $)) 82) (($ $ $) 81) (($ (-107) $) 80) (($ $ (-107)) 79)) (-2262 (((-787) $) 11)) (-1272 (((-107) (-1 (-107) (-107)) $) 43 (|has| $ (-6 -4195)))) (-4024 (($ $ $) 27)) (-2806 (($ $) 30)) (-3849 (($ $ $) 106)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-3838 (($ $ $) 105)) (-3573 (((-703) $) 40 (|has| $ (-6 -4195))))) -(((-118) (-1189)) (T -118)) -((-2479 (*1 *1 *1) (-4 *1 (-118))) (-2806 (*1 *1 *1) (-4 *1 (-118))) (-1353 (*1 *1 *1 *1) (-4 *1 (-118))) (-3243 (*1 *1 *1 *1) (-4 *1 (-118))) (-4024 (*1 *1 *1 *1) (-4 *1 (-118))) (-4011 (*1 *1 *1 *1) (-4 *1 (-118))) (-2284 (*1 *1 *1 *1) (-4 *1 (-118)))) -(-13 (-779) (-598) (-19 (-107)) (-10 -8 (-15 -2479 ($ $)) (-15 -2806 ($ $)) (-15 -1353 ($ $ $)) (-15 -3243 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -2284 ($ $ $)))) -(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 #0=(-107)) . T) ((-558 (-493)) |has| (-107) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006))) ((-588 #0#) . T) ((-598) . T) ((-19 #0#) . T) ((-779) . T) ((-1006) . T) ((-1112) . T)) -((-2737 (($ (-1 |#2| |#2|) $) 22)) (-2453 (($ $) 16)) (-3573 (((-703) $) 24))) -(((-119 |#1| |#2|) (-10 -8 (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -2453 (|#1| |#1|))) (-120 |#2|) (-1006)) (T -119)) -NIL -(-10 -8 (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -2453 (|#1| |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-3149 (($ $ $) 52 (|has| $ (-6 -4196)))) (-4174 (($ $ $) 54 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) (($ $ "left" $) 55 (|has| $ (-6 -4196))) (($ $ "right" $) 53 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-3302 (($ $) 57)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-2020 (($ $ |#1| $) 60)) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3287 (($ $) 59)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3868 (((-517) $ $) 44)) (-1414 (((-107) $) 46)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-120 |#1|) (-1189) (-1006)) (T -120)) -((-2020 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1006))))) -(-13 (-114 |t#1|) (-10 -8 (-6 -4196) (-6 -4195) (-15 -2020 ($ $ |t#1| $)))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-114 |#1|) . T) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) 15)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) 19 (|has| $ (-6 -4196)))) (-3149 (($ $ $) 20 (|has| $ (-6 -4196)))) (-4174 (($ $ $) 18 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "left" $) NIL (|has| $ (-6 -4196))) (($ $ "right" $) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3302 (($ $) 21)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2020 (($ $ |#1| $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3287 (($ $) NIL)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-3439 (($ |#1| $) 10)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 14)) (-2679 (($) 8)) (-2612 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 17)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1384 (($ (-583 |#1|)) 12)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-121 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4196) (-15 -1384 ($ (-583 |#1|))) (-15 -3439 ($ |#1| $)))) (-779)) (T -121)) -((-1384 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779))))) -(-13 (-120 |#1|) (-10 -8 (-6 -4196) (-15 -1384 ($ (-583 |#1|))) (-15 -3439 ($ |#1| $)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) 24)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) 26 (|has| $ (-6 -4196)))) (-3149 (($ $ $) 30 (|has| $ (-6 -4196)))) (-4174 (($ $ $) 28 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "left" $) NIL (|has| $ (-6 -4196))) (($ $ "right" $) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3302 (($ $) 20)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2020 (($ $ |#1| $) 15)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3287 (($ $) 19)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) 21)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 18)) (-2679 (($) 11)) (-2612 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2718 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 10 (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-122 |#1|) (-13 (-120 |#1|) (-10 -8 (-15 -2718 ($ |#1|)) (-15 -2718 ($ $ |#1| $)))) (-1006)) (T -122)) -((-2718 (*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1006)))) (-2718 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1006))))) -(-13 (-120 |#1|) (-10 -8 (-15 -2718 ($ |#1|)) (-15 -2718 ($ $ |#1| $)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15))) -(((-123) (-1189)) (T -123)) -((-1783 (*1 *1 *1 *1) (|partial| -4 *1 (-123)))) -(-13 (-23) (-10 -8 (-15 -1783 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2105 (((-107) $ $) 7)) (-1798 (((-1163) $ (-703)) 19)) (-1210 (((-703) $) 20)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18))) -(((-124) (-1189)) (T -124)) -((-1210 (*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1163))))) -(-13 (-779) (-10 -8 (-15 -1210 ((-703) $)) (-15 -1798 ((-1163) $ (-703))))) -(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-703) "failed") $) 38)) (-3402 (((-703) $) 36)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) 26)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2010 (((-107)) 39)) (-3891 (((-107) (-107)) 41)) (-2005 (((-107) $) 23)) (-2648 (((-107) $) 35)) (-2262 (((-787) $) 22) (($ (-703)) 14)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) 12 T CONST)) (-3675 (($) 11 T CONST)) (-1411 (($ (-703)) 15)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 24)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 25)) (-1680 (((-3 $ "failed") $ $) 29)) (-1666 (($ $ $) 27)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL) (($ $ $) 34)) (* (($ (-703) $) 32) (($ (-845) $) NIL) (($ $ $) 30))) -(((-125) (-13 (-779) (-23) (-659) (-955 (-703)) (-10 -8 (-6 (-4197 "*")) (-15 -1680 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1411 ($ (-703))) (-15 -2005 ((-107) $)) (-15 -2648 ((-107) $)) (-15 -2010 ((-107))) (-15 -3891 ((-107) (-107)))))) (T -125)) -((-1680 (*1 *1 *1 *1) (|partial| -5 *1 (-125))) (** (*1 *1 *1 *1) (-5 *1 (-125))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-2010 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125))))) -(-13 (-779) (-23) (-659) (-955 (-703)) (-10 -8 (-6 (-4197 "*")) (-15 -1680 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1411 ($ (-703))) (-15 -2005 ((-107) $)) (-15 -2648 ((-107) $)) (-15 -2010 ((-107))) (-15 -3891 ((-107) (-107))))) -((-2489 (((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|)) 14)) (-3312 (((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)) 18))) -(((-126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2489 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -3312 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)))) (-517) (-703) (-156) (-156)) (T -126)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) (-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8))))) -(-10 -7 (-15 -2489 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -3312 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)))) -((-2105 (((-107) $ $) NIL)) (-2322 (($ (-583 |#3|)) 39)) (-1911 (($ $) 98) (($ $ (-517) (-517)) 97)) (-3038 (($) 17)) (-3220 (((-3 |#3| "failed") $) 59)) (-3402 ((|#3| $) NIL)) (-3020 (($ $ (-583 (-517))) 99)) (-2478 (((-583 |#3|) $) 35)) (-3778 (((-703) $) 43)) (-1983 (($ $ $) 92)) (-3008 (($) 42)) (-3232 (((-1060) $) NIL)) (-3223 (($) 16)) (-4130 (((-1024) $) NIL)) (-2612 ((|#3| $) 45) ((|#3| $ (-517)) 46) ((|#3| $ (-517) (-517)) 47) ((|#3| $ (-517) (-517) (-517)) 48) ((|#3| $ (-517) (-517) (-517) (-517)) 49) ((|#3| $ (-583 (-517))) 51)) (-1191 (((-703) $) 44)) (-1532 (($ $ (-517) $ (-517)) 93) (($ $ (-517) (-517)) 95)) (-2262 (((-787) $) 66) (($ |#3|) 67) (($ (-214 |#2| |#3|)) 74) (($ (-1044 |#2| |#3|)) 77) (($ (-583 |#3|)) 52) (($ (-583 $)) 57)) (-3663 (($) 68 T CONST)) (-3675 (($) 69 T CONST)) (-1572 (((-107) $ $) 79)) (-1680 (($ $) 85) (($ $ $) 83)) (-1666 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-517)) 88) (($ (-517) $) 87) (($ $ $) 94))) -(((-127 |#1| |#2| |#3|) (-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2262 ($ (-214 |#2| |#3|))) (-15 -2262 ($ (-1044 |#2| |#3|))) (-15 -2262 ($ (-583 |#3|))) (-15 -2262 ($ (-583 $))) (-15 -3778 ((-703) $)) (-15 -2612 (|#3| $)) (-15 -2612 (|#3| $ (-517))) (-15 -2612 (|#3| $ (-517) (-517))) (-15 -2612 (|#3| $ (-517) (-517) (-517))) (-15 -2612 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -2612 (|#3| $ (-583 (-517)))) (-15 -1983 ($ $ $)) (-15 * ($ $ $)) (-15 -1532 ($ $ (-517) $ (-517))) (-15 -1532 ($ $ (-517) (-517))) (-15 -1911 ($ $)) (-15 -1911 ($ $ (-517) (-517))) (-15 -3020 ($ $ (-583 (-517)))) (-15 -3223 ($)) (-15 -3008 ($)) (-15 -2478 ((-583 |#3|) $)) (-15 -2322 ($ (-583 |#3|))) (-15 -3038 ($)))) (-517) (-703) (-156)) (T -127)) -((-1983 (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1044 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) (-2612 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2612 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2612 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2612 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-1532 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-1532 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-1911 (*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-1911 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-3020 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3223 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-3008 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-3038 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156))))) -(-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2262 ($ (-214 |#2| |#3|))) (-15 -2262 ($ (-1044 |#2| |#3|))) (-15 -2262 ($ (-583 |#3|))) (-15 -2262 ($ (-583 $))) (-15 -3778 ((-703) $)) (-15 -2612 (|#3| $)) (-15 -2612 (|#3| $ (-517))) (-15 -2612 (|#3| $ (-517) (-517))) (-15 -2612 (|#3| $ (-517) (-517) (-517))) (-15 -2612 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -2612 (|#3| $ (-583 (-517)))) (-15 -1983 ($ $ $)) (-15 * ($ $ $)) (-15 -1532 ($ $ (-517) $ (-517))) (-15 -1532 ($ $ (-517) (-517))) (-15 -1911 ($ $)) (-15 -1911 ($ $ (-517) (-517))) (-15 -3020 ($ $ (-583 (-517)))) (-15 -3223 ($)) (-15 -3008 ($)) (-15 -2478 ((-583 |#3|) $)) (-15 -2322 ($ (-583 |#3|))) (-15 -3038 ($)))) -((-2105 (((-107) $ $) NIL)) (-2811 (($) 15 T CONST)) (-3963 (($) NIL (|has| (-131) (-338)))) (-2374 (($ $ $) 17) (($ $ (-131)) NIL) (($ (-131) $) NIL)) (-4020 (($ $ $) NIL)) (-3873 (((-107) $ $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| (-131) (-338)))) (-1871 (($) NIL) (($ (-583 (-131))) NIL)) (-2582 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1749 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195))) (($ (-131) $) 51 (|has| $ (-6 -4195)))) (-1423 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195))) (($ (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1510 (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-2192 (($) NIL (|has| (-131) (-338)))) (-1525 (((-583 (-131)) $) 60 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3480 (((-131) $) NIL (|has| (-131) (-779)))) (-3687 (((-583 (-131)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-131) $) 26 (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-4095 (((-131) $) NIL (|has| (-131) (-779)))) (-2737 (($ (-1 (-131) (-131)) $) 59 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-131) (-131)) $) 55)) (-3577 (($) 16 T CONST)) (-4161 (((-845) $) NIL (|has| (-131) (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2187 (($ $ $) 29)) (-2015 (((-131) $) 52)) (-3439 (($ (-131) $) 50)) (-2803 (($ (-845)) NIL (|has| (-131) (-338)))) (-2851 (($) 14 T CONST)) (-4130 (((-1024) $) NIL)) (-1985 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-1551 (((-131) $) 53)) (-3843 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 48)) (-2616 (($) 13 T CONST)) (-1201 (($ $ $) 31) (($ $ (-131)) NIL)) (-3808 (($ (-583 (-131))) NIL) (($) NIL)) (-4140 (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006)))) (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-1060) $) 36) (((-493) $) NIL (|has| (-131) (-558 (-493)))) (((-583 (-131)) $) 34)) (-2279 (($ (-583 (-131))) NIL)) (-2332 (($ $) 32 (|has| (-131) (-338)))) (-2262 (((-787) $) 46)) (-4036 (($ (-1060)) 12) (($ (-583 (-131))) 43)) (-3515 (((-703) $) NIL)) (-3066 (($) 49) (($ (-583 (-131))) NIL)) (-2729 (($ (-583 (-131))) NIL)) (-1272 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-1803 (($) 19 T CONST)) (-2232 (($) 18 T CONST)) (-1572 (((-107) $ $) 22)) (-1596 (((-107) $ $) NIL)) (-3573 (((-703) $) 47 (|has| $ (-6 -4195))))) -(((-128) (-13 (-1006) (-558 (-1060)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -4036 ($ (-1060))) (-15 -4036 ($ (-583 (-131)))) (-15 -2616 ($) -1373) (-15 -2851 ($) -1373) (-15 -2811 ($) -1373) (-15 -3577 ($) -1373) (-15 -2232 ($) -1373) (-15 -1803 ($) -1373)))) (T -128)) -((-4036 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-128)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) (-2616 (*1 *1) (-5 *1 (-128))) (-2851 (*1 *1) (-5 *1 (-128))) (-2811 (*1 *1) (-5 *1 (-128))) (-3577 (*1 *1) (-5 *1 (-128))) (-2232 (*1 *1) (-5 *1 (-128))) (-1803 (*1 *1) (-5 *1 (-128)))) -(-13 (-1006) (-558 (-1060)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -4036 ($ (-1060))) (-15 -4036 ($ (-583 (-131)))) (-15 -2616 ($) -1373) (-15 -2851 ($) -1373) (-15 -2811 ($) -1373) (-15 -3577 ($) -1373) (-15 -2232 ($) -1373) (-15 -1803 ($) -1373))) -((-1955 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1703 ((|#1| |#3|) 9)) (-3253 ((|#3| |#3|) 15))) -(((-129 |#1| |#2| |#3|) (-10 -7 (-15 -1703 (|#1| |#3|)) (-15 -3253 (|#3| |#3|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-912 |#1|) (-343 |#2|)) (T -129)) -((-1955 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) (-3253 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-912 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) (-1703 (*1 *2 *3) (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4))))) -(-10 -7 (-15 -1703 (|#1| |#3|)) (-15 -3253 (|#3| |#3|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3624 (($ $ $) 8)) (-2038 (($ $) 7)) (-1462 (($ $ $) 6))) -(((-130) (-1189)) (T -130)) -((-3624 (*1 *1 *1 *1) (-4 *1 (-130))) (-2038 (*1 *1 *1) (-4 *1 (-130))) (-1462 (*1 *1 *1 *1) (-4 *1 (-130)))) -(-13 (-10 -8 (-15 -1462 ($ $ $)) (-15 -2038 ($ $)) (-15 -3624 ($ $ $)))) -((-2105 (((-107) $ $) NIL)) (-1629 (((-107) $) 38)) (-2811 (($ $) 50)) (-3380 (($) 25)) (-2390 (((-703)) 16)) (-2192 (($) 24)) (-3307 (($) 26)) (-3525 (((-517) $) 21)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-2917 (((-107) $) 40)) (-3577 (($ $) 51)) (-4161 (((-845) $) 22)) (-3232 (((-1060) $) 46)) (-2803 (($ (-845)) 20)) (-2614 (((-107) $) 36)) (-4130 (((-1024) $) NIL)) (-2495 (($) 27)) (-2425 (((-107) $) 34)) (-2262 (((-787) $) 29)) (-3606 (($ (-517)) 18) (($ (-1060)) 49)) (-3272 (((-107) $) 44)) (-2769 (((-107) $) 42)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 13)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 14))) -(((-131) (-13 (-773) (-10 -8 (-15 -3525 ((-517) $)) (-15 -3606 ($ (-517))) (-15 -3606 ($ (-1060))) (-15 -3380 ($)) (-15 -3307 ($)) (-15 -2495 ($)) (-15 -2811 ($ $)) (-15 -3577 ($ $)) (-15 -2425 ((-107) $)) (-15 -2614 ((-107) $)) (-15 -2769 ((-107) $)) (-15 -1629 ((-107) $)) (-15 -2917 ((-107) $)) (-15 -3272 ((-107) $))))) (T -131)) -((-3525 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-3606 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-3606 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-131)))) (-3380 (*1 *1) (-5 *1 (-131))) (-3307 (*1 *1) (-5 *1 (-131))) (-2495 (*1 *1) (-5 *1 (-131))) (-2811 (*1 *1 *1) (-5 *1 (-131))) (-3577 (*1 *1 *1) (-5 *1 (-131))) (-2425 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) -(-13 (-773) (-10 -8 (-15 -3525 ((-517) $)) (-15 -3606 ($ (-517))) (-15 -3606 ($ (-1060))) (-15 -3380 ($)) (-15 -3307 ($)) (-15 -2495 ($)) (-15 -2811 ($ $)) (-15 -3577 ($ $)) (-15 -2425 ((-107) $)) (-15 -2614 ((-107) $)) (-15 -2769 ((-107) $)) (-15 -1629 ((-107) $)) (-15 -2917 ((-107) $)) (-15 -3272 ((-107) $)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-3385 (((-3 $ "failed") $) 35)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-132) (-1189)) (T -132)) -((-3385 (*1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-964) (-10 -8 (-15 -3385 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-3848 ((|#1| (-623 |#1|) |#1|) 17))) -(((-133 |#1|) (-10 -7 (-15 -3848 (|#1| (-623 |#1|) |#1|))) (-156)) (T -133)) -((-3848 (*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2))))) -(-10 -7 (-15 -3848 (|#1| (-623 |#1|) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-134) (-1189)) (T -134)) -NIL -(-13 (-964)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2394 (((-2 (|:| -1725 (-703)) (|:| -1570 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703)) 70)) (-3507 (((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|) 52)) (-1776 (((-2 (|:| -1570 (-377 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1571 ((|#1| |#3| |#3|) 40)) (-3552 ((|#3| |#3| (-377 |#2|) (-377 |#2|)) 19)) (-2667 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|) 49))) -(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -1776 ((-2 (|:| -1570 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3507 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -2394 ((-2 (|:| -1725 (-703)) (|:| -1570 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1571 (|#1| |#3| |#3|)) (-15 -3552 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2667 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|))) (-1116) (-1134 |#1|) (-1134 (-377 |#2|))) (T -135)) -((-2667 (*1 *2 *3 *3) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5))))) (-3552 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1134 *3)))) (-1571 (*1 *2 *3 *3) (-12 (-4 *4 (-1134 *2)) (-4 *2 (-1116)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1134 (-377 *4))))) (-2394 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1116)) (-4 *6 (-1134 *5)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1134 *3)))) (-3507 (*1 *2 *3) (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5))))) (-1776 (*1 *2 *3) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| -1570 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5)))))) -(-10 -7 (-15 -1776 ((-2 (|:| -1570 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3507 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -2394 ((-2 (|:| -1725 (-703)) (|:| -1570 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1571 (|#1| |#3| |#3|)) (-15 -3552 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2667 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|))) -((-3862 (((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|)) 32))) -(((-136 |#1| |#2|) (-10 -7 (-15 -3862 ((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|)))) (-502) (-150 |#1|)) (T -136)) -((-3862 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 *5))) (-5 *3 (-1073 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5))))) -(-10 -7 (-15 -3862 ((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|)))) -((-2317 (($ (-1 (-107) |#2|) $) 29)) (-2446 (($ $) 36)) (-1423 (($ (-1 (-107) |#2|) $) 27) (($ |#2| $) 32)) (-1510 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1985 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 19)) (-3843 (((-107) (-1 (-107) |#2|) $) 16)) (-4140 (((-703) (-1 (-107) |#2|) $) 13) (((-703) |#2| $) NIL)) (-1272 (((-107) (-1 (-107) |#2|) $) 15)) (-3573 (((-703) $) 11))) -(((-137 |#1| |#2|) (-10 -8 (-15 -2446 (|#1| |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2317 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|))) (-138 |#2|) (-1112)) (T -137)) -NIL -(-10 -8 (-15 -2446 (|#1| |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2317 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2317 (($ (-1 (-107) |#1|) $) 44 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2446 (($ $) 41 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195))) (($ |#1| $) 42 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 48)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 40 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 49)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-138 |#1|) (-1189) (-1112)) (T -138)) -((-2279 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-138 *3)))) (-1985 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1112)))) (-1510 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)))) (-1510 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)))) (-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *3)) (-4 *3 (-1112)))) (-2317 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *3)) (-4 *3 (-1112)))) (-1510 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)))) (-1423 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)) (-4 *2 (-1006)))) (-2446 (*1 *1 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)) (-4 *2 (-1006))))) -(-13 (-456 |t#1|) (-10 -8 (-15 -2279 ($ (-583 |t#1|))) (-15 -1985 ((-3 |t#1| "failed") (-1 (-107) |t#1|) $)) (IF (|has| $ (-6 -4195)) (PROGN (-15 -1510 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1510 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1423 ($ (-1 (-107) |t#1|) $)) (-15 -2317 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -1510 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1423 ($ |t#1| $)) (-15 -2446 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) 86)) (-1690 (((-107) $) NIL)) (-2059 (($ |#2| (-583 (-845))) 57)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3024 (($ (-845)) 48)) (-1470 (((-125)) 23)) (-2262 (((-787) $) 69) (($ (-517)) 46) (($ |#2|) 47)) (-1939 ((|#2| $ (-583 (-845))) 59)) (-1818 (((-703)) 20)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 40 T CONST)) (-3675 (($) 44 T CONST)) (-1572 (((-107) $ $) 26)) (-1692 (($ $ |#2|) NIL)) (-1680 (($ $) 34) (($ $ $) 32)) (-1666 (($ $ $) 30)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-139 |#1| |#2| |#3|) (-13 (-964) (-37 |#2|) (-1165 |#2|) (-10 -8 (-15 -3024 ($ (-845))) (-15 -2059 ($ |#2| (-583 (-845)))) (-15 -1939 (|#2| $ (-583 (-845)))) (-15 -3550 ((-3 $ "failed") $)))) (-845) (-333) (-913 |#1| |#2|)) (T -139)) -((-3550 (*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-845)) (-4 *3 (-333)) (-14 *4 (-913 *2 *3)))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-913 *3 *4)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-845))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-845)) (-4 *2 (-333)) (-14 *5 (-913 *4 *2)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-845))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-845)) (-14 *5 (-913 *4 *2))))) -(-13 (-964) (-37 |#2|) (-1165 |#2|) (-10 -8 (-15 -3024 ($ (-845))) (-15 -2059 ($ |#2| (-583 (-845)))) (-15 -1939 (|#2| $ (-583 (-845)))) (-15 -3550 ((-3 $ "failed") $)))) -((-2993 (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199)))) (-199) (-199) (-199) (-199)) 38)) (-1920 (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517))) 63) (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851)) 64)) (-3501 (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199))))) 67) (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-867 (-199)))) 66) (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517))) 58) (((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851)) 59))) -(((-140) (-10 -7 (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517)))) (-15 -1920 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851))) (-15 -1920 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517)))) (-15 -2993 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199)))) (-199) (-199) (-199) (-199))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-867 (-199))))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199)))))))) (T -140)) -((-3501 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-867 (-199))))))) (-3501 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-867 (-199)))))) (-2993 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 *4)))) (|:| |xValues| (-1001 *4)) (|:| |yValues| (-1001 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-867 *4)))))) (-1920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140)))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140)))) (-3501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-851)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-851)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) (-5 *1 (-140))))) -(-10 -7 (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517)))) (-15 -1920 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851))) (-15 -1920 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-851) (-377 (-517)) (-377 (-517)))) (-15 -2993 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199)))) (-199) (-199) (-199) (-199))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-867 (-199))))) (-15 -3501 ((-2 (|:| |brans| (-583 (-583 (-867 (-199))))) (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199)))) (-583 (-583 (-867 (-199))))))) -((-2035 (((-583 (-153 |#2|)) |#1| |#2|) 45))) -(((-141 |#1| |#2|) (-10 -7 (-15 -2035 ((-583 (-153 |#2|)) |#1| |#2|))) (-1134 (-153 (-517))) (-13 (-333) (-777))) (T -141)) -((-2035 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1134 (-153 (-517)))) (-4 *4 (-13 (-333) (-777)))))) -(-10 -7 (-15 -2035 ((-583 (-153 |#2|)) |#1| |#2|))) -((-2105 (((-107) $ $) NIL)) (-3074 (($) 16)) (-1720 (($) 15)) (-3036 (((-845)) 23)) (-3232 (((-1060) $) NIL)) (-2623 (((-517) $) 20)) (-4130 (((-1024) $) NIL)) (-3553 (($) 17)) (-3060 (($ (-517)) 24)) (-2262 (((-787) $) 30)) (-3395 (($) 18)) (-1572 (((-107) $ $) 14)) (-1666 (($ $ $) 13)) (* (($ (-845) $) 22) (($ (-199) $) 8))) -(((-142) (-13 (-25) (-10 -8 (-15 * ($ (-845) $)) (-15 * ($ (-199) $)) (-15 -1666 ($ $ $)) (-15 -1720 ($)) (-15 -3074 ($)) (-15 -3553 ($)) (-15 -3395 ($)) (-15 -2623 ((-517) $)) (-15 -3036 ((-845))) (-15 -3060 ($ (-517)))))) (T -142)) -((-1666 (*1 *1 *1 *1) (-5 *1 (-142))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-142)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) (-1720 (*1 *1) (-5 *1 (-142))) (-3074 (*1 *1) (-5 *1 (-142))) (-3553 (*1 *1) (-5 *1 (-142))) (-3395 (*1 *1) (-5 *1 (-142))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) (-3036 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-142)))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142))))) -(-13 (-25) (-10 -8 (-15 * ($ (-845) $)) (-15 * ($ (-199) $)) (-15 -1666 ($ $ $)) (-15 -1720 ($)) (-15 -3074 ($)) (-15 -3553 ($)) (-15 -3395 ($)) (-15 -2623 ((-517) $)) (-15 -3036 ((-845))) (-15 -3060 ($ (-517))))) -((-2755 ((|#2| |#2| (-999 |#2|)) 87) ((|#2| |#2| (-1077)) 67)) (-1983 ((|#2| |#2| (-999 |#2|)) 86) ((|#2| |#2| (-1077)) 66)) (-3624 ((|#2| |#2| |#2|) 27)) (-1325 (((-109) (-109)) 97)) (-1946 ((|#2| (-583 |#2|)) 116)) (-2953 ((|#2| (-583 |#2|)) 134)) (-2972 ((|#2| (-583 |#2|)) 124)) (-3836 ((|#2| |#2|) 122)) (-1851 ((|#2| (-583 |#2|)) 109)) (-2932 ((|#2| (-583 |#2|)) 110)) (-2822 ((|#2| (-583 |#2|)) 132)) (-2995 ((|#2| |#2| (-1077)) 54) ((|#2| |#2|) 53)) (-2038 ((|#2| |#2|) 23)) (-1462 ((|#2| |#2| |#2|) 26)) (-4116 (((-107) (-109)) 47)) (** ((|#2| |#2| |#2|) 38))) -(((-143 |#1| |#2|) (-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1462 (|#2| |#2| |#2|)) (-15 -3624 (|#2| |#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -2995 (|#2| |#2| (-1077))) (-15 -2755 (|#2| |#2| (-1077))) (-15 -2755 (|#2| |#2| (-999 |#2|))) (-15 -1983 (|#2| |#2| (-1077))) (-15 -1983 (|#2| |#2| (-999 |#2|))) (-15 -3836 (|#2| |#2|)) (-15 -2822 (|#2| (-583 |#2|))) (-15 -2972 (|#2| (-583 |#2|))) (-15 -2953 (|#2| (-583 |#2|))) (-15 -1851 (|#2| (-583 |#2|))) (-15 -2932 (|#2| (-583 |#2|))) (-15 -1946 (|#2| (-583 |#2|)))) (-13 (-779) (-509)) (-400 |#1|)) (T -143)) -((-1946 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1983 (*1 *2 *2 *3) (-12 (-5 *3 (-999 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-1983 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *3 (-999 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-2995 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-2995 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-2038 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3624 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1462 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4))))) -(-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1462 (|#2| |#2| |#2|)) (-15 -3624 (|#2| |#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -2995 (|#2| |#2|)) (-15 -2995 (|#2| |#2| (-1077))) (-15 -2755 (|#2| |#2| (-1077))) (-15 -2755 (|#2| |#2| (-999 |#2|))) (-15 -1983 (|#2| |#2| (-1077))) (-15 -1983 (|#2| |#2| (-999 |#2|))) (-15 -3836 (|#2| |#2|)) (-15 -2822 (|#2| (-583 |#2|))) (-15 -2972 (|#2| (-583 |#2|))) (-15 -2953 (|#2| (-583 |#2|))) (-15 -1851 (|#2| (-583 |#2|))) (-15 -2932 (|#2| (-583 |#2|))) (-15 -1946 (|#2| (-583 |#2|)))) -((-2450 ((|#1| |#1| |#1|) 52)) (-2347 ((|#1| |#1| |#1|) 49)) (-3624 ((|#1| |#1| |#1|) 43)) (-4126 ((|#1| |#1|) 34)) (-1313 ((|#1| |#1| (-583 |#1|)) 42)) (-2038 ((|#1| |#1|) 36)) (-1462 ((|#1| |#1| |#1|) 39))) -(((-144 |#1|) (-10 -7 (-15 -1462 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -1313 (|#1| |#1| (-583 |#1|))) (-15 -4126 (|#1| |#1|)) (-15 -3624 (|#1| |#1| |#1|)) (-15 -2347 (|#1| |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|))) (-502)) (T -144)) -((-2450 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-2347 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3624 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-4126 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1313 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))) (-2038 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1462 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))) -(-10 -7 (-15 -1462 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -1313 (|#1| |#1| (-583 |#1|))) (-15 -4126 (|#1| |#1|)) (-15 -3624 (|#1| |#1| |#1|)) (-15 -2347 (|#1| |#1| |#1|)) (-15 -2450 (|#1| |#1| |#1|))) -((-2755 (($ $ (-1077)) 12) (($ $ (-999 $)) 11)) (-1983 (($ $ (-1077)) 10) (($ $ (-999 $)) 9)) (-3624 (($ $ $) 8)) (-2995 (($ $) 14) (($ $ (-1077)) 13)) (-2038 (($ $) 7)) (-1462 (($ $ $) 6))) -(((-145) (-1189)) (T -145)) -((-2995 (*1 *1 *1) (-4 *1 (-145))) (-2995 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077)))) (-2755 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-145)))) (-1983 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077)))) (-1983 (*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-145))))) -(-13 (-130) (-10 -8 (-15 -2995 ($ $)) (-15 -2995 ($ $ (-1077))) (-15 -2755 ($ $ (-1077))) (-15 -2755 ($ $ (-999 $))) (-15 -1983 ($ $ (-1077))) (-15 -1983 ($ $ (-999 $))))) -(((-130) . T)) -((-2105 (((-107) $ $) NIL)) (-1456 (($ (-517)) 13) (($ $ $) 14)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 17)) (-1572 (((-107) $ $) 9))) -(((-146) (-13 (-1006) (-10 -8 (-15 -1456 ($ (-517))) (-15 -1456 ($ $ $))))) (T -146)) -((-1456 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))) (-1456 (*1 *1 *1 *1) (-5 *1 (-146)))) -(-13 (-1006) (-10 -8 (-15 -1456 ($ (-517))) (-15 -1456 ($ $ $)))) -((-1325 (((-109) (-1077)) 97))) -(((-147) (-10 -7 (-15 -1325 ((-109) (-1077))))) (T -147)) -((-1325 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-109)) (-5 *1 (-147))))) -(-10 -7 (-15 -1325 ((-109) (-1077)))) -((-3326 ((|#3| |#3|) 20))) -(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3326 (|#3| |#3|))) (-964) (-1134 |#1|) (-1134 |#2|)) (T -148)) -((-3326 (*1 *2 *2) (-12 (-4 *3 (-964)) (-4 *4 (-1134 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1134 *4))))) -(-10 -7 (-15 -3326 (|#3| |#3|))) -((-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 216)) (-1991 ((|#2| $) 96)) (-1636 (($ $) 243)) (-1482 (($ $) 237)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 40)) (-1612 (($ $) 241)) (-1459 (($ $) 235)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 138)) (-2383 (($ $ $) 221)) (-2947 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 154) (((-623 |#2|) (-623 $)) 148)) (-1510 (($ (-1073 |#2|)) 119) (((-3 $ "failed") (-377 (-1073 |#2|))) NIL)) (-3550 (((-3 $ "failed") $) 208)) (-3389 (((-3 (-377 (-517)) "failed") $) 198)) (-3748 (((-107) $) 193)) (-3727 (((-377 (-517)) $) 196)) (-3778 (((-845)) 89)) (-2356 (($ $ $) 223)) (-2877 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2102 (($) 232)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 185) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 190)) (-3522 ((|#2| $) 94)) (-1914 (((-1073 |#2|) $) 121)) (-3312 (($ (-1 |#2| |#2|) $) 102)) (-1232 (($ $) 234)) (-1497 (((-1073 |#2|) $) 120)) (-2291 (($ $) 201)) (-1583 (($) 97)) (-3835 (((-388 (-1073 $)) (-1073 $)) 88)) (-1195 (((-388 (-1073 $)) (-1073 $)) 57)) (-2333 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3898 (($ $) 233)) (-3388 (((-703) $) 218)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 227)) (-3115 ((|#2| (-1158 $)) NIL) ((|#2|) 91)) (-2042 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2819 (((-1073 |#2|)) 114)) (-1622 (($ $) 242)) (-1471 (($ $) 236)) (-1372 (((-1158 |#2|) $ (-1158 $)) 127) (((-623 |#2|) (-1158 $) (-1158 $)) NIL) (((-1158 |#2|) $) 110) (((-623 |#2|) (-1158 $)) NIL)) (-3367 (((-1158 |#2|) $) NIL) (($ (-1158 |#2|)) NIL) (((-1073 |#2|) $) NIL) (($ (-1073 |#2|)) NIL) (((-816 (-517)) $) 176) (((-816 (-349)) $) 180) (((-153 (-349)) $) 166) (((-153 (-199)) $) 161) (((-493) $) 172)) (-1853 (($ $) 98)) (-2262 (((-787) $) 137) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-377 (-517))) NIL) (($ $) NIL)) (-3848 (((-1073 |#2|) $) 23)) (-1818 (((-703)) 100)) (-1706 (($ $) 246)) (-1564 (($ $) 240)) (-1685 (($ $) 244)) (-1536 (($ $) 238)) (-2842 ((|#2| $) 231)) (-1698 (($ $) 245)) (-1550 (($ $) 239)) (-2829 (($ $) 156)) (-1572 (((-107) $ $) 104)) (-1596 (((-107) $ $) 192)) (-1680 (($ $) 106) (($ $ $) NIL)) (-1666 (($ $ $) 105)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) 265) (($ $ $) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL))) -(((-149 |#1| |#2|) (-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2262 (|#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3388 ((-703) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-153 (-199)) |#1|)) (-15 -3367 ((-153 (-349)) |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2102 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2877 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2842 (|#2| |#1|)) (-15 -2829 (|#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1853 (|#1| |#1|)) (-15 -1583 (|#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1510 ((-3 |#1| "failed") (-377 (-1073 |#2|)))) (-15 -1497 ((-1073 |#2|) |#1|)) (-15 -3367 (|#1| (-1073 |#2|))) (-15 -1510 (|#1| (-1073 |#2|))) (-15 -2819 ((-1073 |#2|))) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 ((-1073 |#2|) |#1|)) (-15 -3115 (|#2|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1914 ((-1073 |#2|) |#1|)) (-15 -3848 ((-1073 |#2|) |#1|)) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -3522 (|#2| |#1|)) (-15 -1991 (|#2| |#1|)) (-15 -3778 ((-845))) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-150 |#2|) (-156)) (T -149)) -((-1818 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3778 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-845)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3115 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) (-2819 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1073 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4))))) -(-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2262 (|#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3388 ((-703) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-153 (-199)) |#1|)) (-15 -3367 ((-153 (-349)) |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2102 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2877 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2842 (|#2| |#1|)) (-15 -2829 (|#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1853 (|#1| |#1|)) (-15 -1583 (|#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -1510 ((-3 |#1| "failed") (-377 (-1073 |#2|)))) (-15 -1497 ((-1073 |#2|) |#1|)) (-15 -3367 (|#1| (-1073 |#2|))) (-15 -1510 (|#1| (-1073 |#2|))) (-15 -2819 ((-1073 |#2|))) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 ((-1073 |#2|) |#1|)) (-15 -3115 (|#2|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1914 ((-1073 |#2|) |#1|)) (-15 -3848 ((-1073 |#2|) |#1|)) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -3522 (|#2| |#1|)) (-15 -1991 (|#2| |#1|)) (-15 -3778 ((-845))) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 93 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-2491 (($ $) 94 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-2025 (((-107) $) 96 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-1278 (((-623 |#1|) (-1158 $)) 46) (((-623 |#1|)) 61)) (-1991 ((|#1| $) 52)) (-1636 (($ $) 228 (|has| |#1| (-1098)))) (-1482 (($ $) 211 (|has| |#1| (-1098)))) (-2461 (((-1086 (-845) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 242 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1322 (($ $) 113 (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-3306 (((-388 $) $) 114 (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-3908 (($ $) 241 (-12 (|has| |#1| (-921)) (|has| |#1| (-1098))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 245 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1765 (((-107) $ $) 104 (|has| |#1| (-278)))) (-2390 (((-703)) 87 (|has| |#1| (-338)))) (-1612 (($ $) 227 (|has| |#1| (-1098)))) (-1459 (($ $) 212 (|has| |#1| (-1098)))) (-1659 (($ $) 226 (|has| |#1| (-1098)))) (-1508 (($ $) 213 (|has| |#1| (-1098)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 169 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3402 (((-517) $) 170 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 165)) (-3539 (($ (-1158 |#1|) (-1158 $)) 48) (($ (-1158 |#1|)) 64)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2383 (($ $ $) 108 (|has| |#1| (-278)))) (-4028 (((-623 |#1|) $ (-1158 $)) 53) (((-623 |#1|) $) 59)) (-2947 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-1510 (($ (-1073 |#1|)) 158) (((-3 $ "failed") (-377 (-1073 |#1|))) 155 (|has| |#1| (-333)))) (-3550 (((-3 $ "failed") $) 34)) (-3919 ((|#1| $) 253)) (-3389 (((-3 (-377 (-517)) "failed") $) 246 (|has| |#1| (-502)))) (-3748 (((-107) $) 248 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 247 (|has| |#1| (-502)))) (-3778 (((-845)) 54)) (-2192 (($) 90 (|has| |#1| (-338)))) (-2356 (($ $ $) 107 (|has| |#1| (-278)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 102 (|has| |#1| (-278)))) (-4169 (($) 149 (|has| |#1| (-319)))) (-2634 (((-107) $) 150 (|has| |#1| (-319)))) (-2627 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-2022 (((-107) $) 115 (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-2877 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-973)) (|has| |#1| (-1098))))) (-2102 (($) 238 (|has| |#1| (-1098)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 261 (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 260 (|has| |#1| (-810 (-349))))) (-3250 (((-845) $) 152 (|has| |#1| (-319))) (((-765 (-845)) $) 138 (|has| |#1| (-319)))) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 240 (-12 (|has| |#1| (-921)) (|has| |#1| (-1098))))) (-3522 ((|#1| $) 51)) (-1639 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-278)))) (-1914 (((-1073 |#1|) $) 44 (|has| |#1| (-333)))) (-3480 (($ $ $) 207 (|has| |#1| (-779)))) (-4095 (($ $ $) 206 (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) 262)) (-4161 (((-845) $) 89 (|has| |#1| (-338)))) (-1232 (($ $) 235 (|has| |#1| (-1098)))) (-1497 (((-1073 |#1|) $) 156)) (-2323 (($ (-583 $)) 100 (-3786 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (($ $ $) 99 (-3786 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 116 (|has| |#1| (-333)))) (-2578 (($) 143 (|has| |#1| (-319)) CONST)) (-2803 (($ (-845)) 88 (|has| |#1| (-338)))) (-1583 (($) 257)) (-3931 ((|#1| $) 254)) (-4130 (((-1024) $) 10)) (-1306 (($) 160)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 101 (-3786 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-2361 (($ (-583 $)) 98 (-3786 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (($ $ $) 97 (-3786 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 146 (|has| |#1| (-319)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 244 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1195 (((-388 (-1073 $)) (-1073 $)) 243 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-3896 (((-388 $) $) 112 (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 109 (|has| |#1| (-278)))) (-2333 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 92 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-278)))) (-3898 (($ $) 236 (|has| |#1| (-1098)))) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) 268 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 266 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 265 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 264 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) 263 (|has| |#1| (-478 (-1077) |#1|)))) (-3388 (((-703) $) 105 (|has| |#1| (-278)))) (-2612 (($ $ |#1|) 269 (|has| |#1| (-258 |#1| |#1|)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 106 (|has| |#1| (-278)))) (-3115 ((|#1| (-1158 $)) 47) ((|#1|) 60)) (-3667 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-2042 (($ $ (-1 |#1| |#1|) (-703)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-583 (-1077)) (-583 (-703))) 130 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 131 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 132 (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) 133 (|has| |#1| (-824 (-1077)))) (($ $ (-703)) 135 (-3786 (-4024 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 137 (-3786 (-4024 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4024 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-3248 (((-623 |#1|) (-1158 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2819 (((-1073 |#1|)) 159)) (-1670 (($ $) 225 (|has| |#1| (-1098)))) (-1521 (($ $) 214 (|has| |#1| (-1098)))) (-3718 (($) 148 (|has| |#1| (-319)))) (-1647 (($ $) 224 (|has| |#1| (-1098)))) (-1495 (($ $) 215 (|has| |#1| (-1098)))) (-1622 (($ $) 223 (|has| |#1| (-1098)))) (-1471 (($ $) 216 (|has| |#1| (-1098)))) (-1372 (((-1158 |#1|) $ (-1158 $)) 50) (((-623 |#1|) (-1158 $) (-1158 $)) 49) (((-1158 |#1|) $) 66) (((-623 |#1|) (-1158 $)) 65)) (-3367 (((-1158 |#1|) $) 63) (($ (-1158 |#1|)) 62) (((-1073 |#1|) $) 171) (($ (-1073 |#1|)) 157) (((-816 (-517)) $) 259 (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) 258 (|has| |#1| (-558 (-816 (-349))))) (((-153 (-349)) $) 210 (|has| |#1| (-940))) (((-153 (-199)) $) 209 (|has| |#1| (-940))) (((-493) $) 208 (|has| |#1| (-558 (-493))))) (-1853 (($ $) 256)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 145 (-3786 (-4024 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))) (|has| |#1| (-319))))) (-3913 (($ |#1| |#1|) 255)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 86 (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517)))))) (($ $) 91 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-3385 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (-3786 (-4024 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))) (|has| |#1| (-132))))) (-3848 (((-1073 |#1|) $) 45)) (-1818 (((-703)) 29)) (-3700 (((-1158 $)) 67)) (-1706 (($ $) 234 (|has| |#1| (-1098)))) (-1564 (($ $) 222 (|has| |#1| (-1098)))) (-2944 (((-107) $ $) 95 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833)))))) (-1685 (($ $) 233 (|has| |#1| (-1098)))) (-1536 (($ $) 221 (|has| |#1| (-1098)))) (-3517 (($ $) 232 (|has| |#1| (-1098)))) (-1588 (($ $) 220 (|has| |#1| (-1098)))) (-2842 ((|#1| $) 250 (|has| |#1| (-1098)))) (-2815 (($ $) 231 (|has| |#1| (-1098)))) (-1601 (($ $) 219 (|has| |#1| (-1098)))) (-1722 (($ $) 230 (|has| |#1| (-1098)))) (-1577 (($ $) 218 (|has| |#1| (-1098)))) (-1698 (($ $) 229 (|has| |#1| (-1098)))) (-1550 (($ $) 217 (|has| |#1| (-1098)))) (-2829 (($ $) 251 (|has| |#1| (-973)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1 |#1| |#1|) (-703)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-583 (-1077)) (-583 (-703))) 126 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 127 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 128 (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) 129 (|has| |#1| (-824 (-1077)))) (($ $ (-703)) 134 (-3786 (-4024 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 136 (-3786 (-4024 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4024 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-1630 (((-107) $ $) 204 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 203 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 205 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 202 (|has| |#1| (-779)))) (-1692 (($ $ $) 121 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-377 (-517))) 239 (-12 (|has| |#1| (-921)) (|has| |#1| (-1098)))) (($ $ $) 237 (|has| |#1| (-1098))) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333))))) -(((-150 |#1|) (-1189) (-156)) (T -150)) -((-3522 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1583 (*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1853 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3913 (*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2333 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2829 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-973)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1098)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-973)) (-4 *3 (-1098)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-3389 (*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517)))))) -(-13 (-657 |t#1| (-1073 |t#1|)) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-370 |t#1|) (-808 |t#1|) (-347 |t#1|) (-156) (-10 -8 (-6 -3913) (-15 -1583 ($)) (-15 -1853 ($ $)) (-15 -3913 ($ |t#1| |t#1|)) (-15 -3931 (|t#1| $)) (-15 -3919 (|t#1| $)) (-15 -3522 (|t#1| $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-509)) (-15 -2333 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-278)) (-6 (-278)) |%noBranch|) (IF (|has| |t#1| (-6 -4194)) (-6 -4194) |%noBranch|) (IF (|has| |t#1| (-6 -4191)) (-6 -4191) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-940)) (PROGN (-6 (-558 (-153 (-199)))) (-6 (-558 (-153 (-349))))) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -2829 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1098)) (PROGN (-6 (-1098)) (-15 -2842 (|t#1| $)) (IF (|has| |t#1| (-921)) (-6 (-921)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -2877 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-833)) (IF (|has| |t#1| (-278)) (-6 (-833)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-34) |has| |#1| (-1098)) ((-91) |has| |#1| (-1098)) ((-97) . T) ((-106 #0# #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3786 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-153 (-199))) |has| |#1| (-940)) ((-558 (-153 (-349))) |has| |#1| (-940)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-816 (-349))) |has| |#1| (-558 (-816 (-349)))) ((-558 (-816 (-517))) |has| |#1| (-558 (-816 (-517)))) ((-558 #1=(-1073 |#1|)) . T) ((-205 |#1|) . T) ((-207) -3786 (|has| |#1| (-319)) (|has| |#1| (-207))) ((-217) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-256) |has| |#1| (-1098)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3786 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-278) -3786 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3786 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| #1#) . T) ((-379 |#1| #1#) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-458) |has| |#1| (-1098)) ((-478 (-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) -3786 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-585 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-657 |#1| #1#) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-810 (-349)) |has| |#1| (-810 (-349))) ((-810 (-517)) |has| |#1| (-810 (-517))) ((-808 |#1|) . T) ((-833) -12 (|has| |#1| (-278)) (|has| |#1| (-833))) ((-844) -3786 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-921) -12 (|has| |#1| (-921)) (|has| |#1| (-1098))) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-970 |#1|) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| |#1| (-319)) ((-1098) |has| |#1| (-1098)) ((-1101) |has| |#1| (-1098)) ((-1112) . T) ((-1116) -3786 (|has| |#1| (-319)) (|has| |#1| (-333)) (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) -((-3896 (((-388 |#2|) |#2|) 63))) -(((-151 |#1| |#2|) (-10 -7 (-15 -3896 ((-388 |#2|) |#2|))) (-278) (-1134 (-153 |#1|))) (T -151)) -((-3896 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1134 (-153 *4)))))) -(-10 -7 (-15 -3896 ((-388 |#2|) |#2|))) -((-3312 (((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)) 14))) -(((-152 |#1| |#2|) (-10 -7 (-15 -3312 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)))) (-156) (-156)) (T -152)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6))))) -(-10 -7 (-15 -3312 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 33)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-2491 (($ $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-2025 (((-107) $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-1278 (((-623 |#1|) (-1158 $)) NIL) (((-623 |#1|)) NIL)) (-1991 ((|#1| $) NIL)) (-1636 (($ $) NIL (|has| |#1| (-1098)))) (-1482 (($ $) NIL (|has| |#1| (-1098)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1322 (($ $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-3306 (((-388 $) $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-3908 (($ $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-1098))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-278)))) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL (|has| |#1| (-1098)))) (-1459 (($ $) NIL (|has| |#1| (-1098)))) (-1659 (($ $) NIL (|has| |#1| (-1098)))) (-1508 (($ $) NIL (|has| |#1| (-1098)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-3539 (($ (-1158 |#1|) (-1158 $)) NIL) (($ (-1158 |#1|)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2383 (($ $ $) NIL (|has| |#1| (-278)))) (-4028 (((-623 |#1|) $ (-1158 $)) NIL) (((-623 |#1|) $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1510 (($ (-1073 |#1|)) NIL) (((-3 $ "failed") (-377 (-1073 |#1|))) NIL (|has| |#1| (-333)))) (-3550 (((-3 $ "failed") $) NIL)) (-3919 ((|#1| $) 13)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-3748 (((-107) $) NIL (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-3778 (((-845)) NIL)) (-2192 (($) NIL (|has| |#1| (-338)))) (-2356 (($ $ $) NIL (|has| |#1| (-278)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-278)))) (-4169 (($) NIL (|has| |#1| (-319)))) (-2634 (((-107) $) NIL (|has| |#1| (-319)))) (-2627 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-2022 (((-107) $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-2877 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1098))))) (-2102 (($) NIL (|has| |#1| (-1098)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| |#1| (-810 (-349))))) (-3250 (((-845) $) NIL (|has| |#1| (-319))) (((-765 (-845)) $) NIL (|has| |#1| (-319)))) (-1690 (((-107) $) 35)) (-2940 (($ $ (-517)) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-1098))))) (-3522 ((|#1| $) 46)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-1914 (((-1073 |#1|) $) NIL (|has| |#1| (-333)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-1232 (($ $) NIL (|has| |#1| (-1098)))) (-1497 (((-1073 |#1|) $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-2578 (($) NIL (|has| |#1| (-319)) CONST)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-1583 (($) NIL)) (-3931 ((|#1| $) 15)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-278)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| |#1| (-319)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-833))))) (-3896 (((-388 $) $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-333))))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-278)))) (-2333 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 47 (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-3898 (($ $) NIL (|has| |#1| (-1098)))) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-478 (-1077) |#1|)))) (-3388 (((-703) $) NIL (|has| |#1| (-278)))) (-2612 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-278)))) (-3115 ((|#1| (-1158 $)) NIL) ((|#1|) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-2042 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-3248 (((-623 |#1|) (-1158 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2819 (((-1073 |#1|)) NIL)) (-1670 (($ $) NIL (|has| |#1| (-1098)))) (-1521 (($ $) NIL (|has| |#1| (-1098)))) (-3718 (($) NIL (|has| |#1| (-319)))) (-1647 (($ $) NIL (|has| |#1| (-1098)))) (-1495 (($ $) NIL (|has| |#1| (-1098)))) (-1622 (($ $) NIL (|has| |#1| (-1098)))) (-1471 (($ $) NIL (|has| |#1| (-1098)))) (-1372 (((-1158 |#1|) $ (-1158 $)) NIL) (((-623 |#1|) (-1158 $) (-1158 $)) NIL) (((-1158 |#1|) $) NIL) (((-623 |#1|) (-1158 $)) NIL)) (-3367 (((-1158 |#1|) $) NIL) (($ (-1158 |#1|)) NIL) (((-1073 |#1|) $) NIL) (($ (-1073 |#1|)) NIL) (((-816 (-517)) $) NIL (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| |#1| (-558 (-816 (-349))))) (((-153 (-349)) $) NIL (|has| |#1| (-940))) (((-153 (-199)) $) NIL (|has| |#1| (-940))) (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1853 (($ $) 45)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-319))))) (-3913 (($ |#1| |#1|) 37)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 36) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-3385 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-3848 (((-1073 |#1|) $) NIL)) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL)) (-1706 (($ $) NIL (|has| |#1| (-1098)))) (-1564 (($ $) NIL (|has| |#1| (-1098)))) (-2944 (((-107) $ $) NIL (-3786 (-12 (|has| |#1| (-278)) (|has| |#1| (-833))) (|has| |#1| (-509))))) (-1685 (($ $) NIL (|has| |#1| (-1098)))) (-1536 (($ $) NIL (|has| |#1| (-1098)))) (-3517 (($ $) NIL (|has| |#1| (-1098)))) (-1588 (($ $) NIL (|has| |#1| (-1098)))) (-2842 ((|#1| $) NIL (|has| |#1| (-1098)))) (-2815 (($ $) NIL (|has| |#1| (-1098)))) (-1601 (($ $) NIL (|has| |#1| (-1098)))) (-1722 (($ $) NIL (|has| |#1| (-1098)))) (-1577 (($ $) NIL (|has| |#1| (-1098)))) (-1698 (($ $) NIL (|has| |#1| (-1098)))) (-1550 (($ $) NIL (|has| |#1| (-1098)))) (-2829 (($ $) NIL (|has| |#1| (-973)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 28 T CONST)) (-3675 (($) 30 T CONST)) (-2514 (((-1060) $) 23 (|has| |#1| (-760))) (((-1060) $ (-107)) 25 (|has| |#1| (-760))) (((-1163) (-754) $) 26 (|has| |#1| (-760))) (((-1163) (-754) $ (-107)) 27 (|has| |#1| (-760)))) (-3348 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 39)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-1098)))) (($ $ $) NIL (|has| |#1| (-1098))) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))))) -(((-153 |#1|) (-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|))) (-156)) (T -153)) -NIL -(-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|))) -((-3367 (((-816 |#1|) |#3|) 22))) -(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -3367 ((-816 |#1|) |#3|))) (-1006) (-13 (-558 (-816 |#1|)) (-156)) (-150 |#2|)) (T -154)) -((-3367 (*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-816 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1006)) (-4 *3 (-150 *5))))) -(-10 -7 (-15 -3367 ((-816 |#1|) |#3|))) -((-2105 (((-107) $ $) NIL)) (-2529 (((-107) $) 9)) (-2031 (((-107) $ (-107)) 11)) (-3204 (($) 12)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2453 (($ $) 13)) (-2262 (((-787) $) 17)) (-1603 (((-107) $) 8)) (-1712 (((-107) $ (-107)) 10)) (-1572 (((-107) $ $) NIL))) -(((-155) (-13 (-1006) (-10 -8 (-15 -3204 ($)) (-15 -1603 ((-107) $)) (-15 -2529 ((-107) $)) (-15 -1712 ((-107) $ (-107))) (-15 -2031 ((-107) $ (-107))) (-15 -2453 ($ $))))) (T -155)) -((-3204 (*1 *1) (-5 *1 (-155))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-1712 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2031 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2453 (*1 *1 *1) (-5 *1 (-155)))) -(-13 (-1006) (-10 -8 (-15 -3204 ($)) (-15 -1603 ((-107) $)) (-15 -2529 ((-107) $)) (-15 -1712 ((-107) $ (-107))) (-15 -2031 ((-107) $ (-107))) (-15 -2453 ($ $)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-156) (-1189)) (T -156)) -NIL -(-13 (-964) (-106 $ $) (-10 -7 (-6 (-4197 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 ((|#1| $) 75)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-1439 (($ $) 19)) (-3772 (($ |#1| (-1058 |#1|)) 48)) (-3550 (((-3 $ "failed") $) 117)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3617 (((-1058 |#1|) $) 82)) (-2941 (((-1058 |#1|) $) 79)) (-2832 (((-1058 |#1|) $) 80)) (-1690 (((-107) $) NIL)) (-1815 (((-1058 |#1|) $) 88)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2323 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-3175 (($ $ (-517)) 91)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2476 (((-1058 |#1|) $) 89)) (-1234 (((-1058 (-377 |#1|)) $) 13)) (-1309 (($ (-377 |#1|)) 17) (($ |#1| (-1058 |#1|) (-1058 |#1|)) 38)) (-2384 (($ $) 93)) (-2262 (((-787) $) 127) (($ (-517)) 51) (($ |#1|) 52) (($ (-377 |#1|)) 36) (($ (-377 (-517))) NIL) (($ $) NIL)) (-1818 (((-703)) 64)) (-2944 (((-107) $ $) NIL)) (-3053 (((-1058 (-377 |#1|)) $) 18)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 25 T CONST)) (-3675 (($) 28 T CONST)) (-1572 (((-107) $ $) 35)) (-1692 (($ $ $) 115)) (-1680 (($ $) 106) (($ $ $) 103)) (-1666 (($ $ $) 101)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-377 |#1|) $) 111) (($ $ (-377 |#1|)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL))) -(((-157 |#1|) (-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -1309 ($ (-377 |#1|))) (-15 -1309 ($ |#1| (-1058 |#1|) (-1058 |#1|))) (-15 -3772 ($ |#1| (-1058 |#1|))) (-15 -2941 ((-1058 |#1|) $)) (-15 -2832 ((-1058 |#1|) $)) (-15 -3617 ((-1058 |#1|) $)) (-15 -2964 (|#1| $)) (-15 -1439 ($ $)) (-15 -3053 ((-1058 (-377 |#1|)) $)) (-15 -1234 ((-1058 (-377 |#1|)) $)) (-15 -1815 ((-1058 |#1|) $)) (-15 -2476 ((-1058 |#1|) $)) (-15 -3175 ($ $ (-517))) (-15 -2384 ($ $)))) (-278)) (T -157)) -((-1309 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) (-1309 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3772 (*1 *1 *2 *3) (-12 (-5 *3 (-1058 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2964 (*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-1439 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-1058 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1234 (*1 *2 *1) (-12 (-5 *2 (-1058 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2476 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2384 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278))))) -(-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -1309 ($ (-377 |#1|))) (-15 -1309 ($ |#1| (-1058 |#1|) (-1058 |#1|))) (-15 -3772 ($ |#1| (-1058 |#1|))) (-15 -2941 ((-1058 |#1|) $)) (-15 -2832 ((-1058 |#1|) $)) (-15 -3617 ((-1058 |#1|) $)) (-15 -2964 (|#1| $)) (-15 -1439 ($ $)) (-15 -3053 ((-1058 (-377 |#1|)) $)) (-15 -1234 ((-1058 (-377 |#1|)) $)) (-15 -1815 ((-1058 |#1|) $)) (-15 -2476 ((-1058 |#1|) $)) (-15 -3175 ($ $ (-517))) (-15 -2384 ($ $)))) -((-3676 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 40)) (-1277 (((-867 |#1|) (-867 |#1|)) 19)) (-2594 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 36)) (-2835 (((-867 |#1|) (-867 |#1|)) 17)) (-1589 (((-867 |#1|) (-867 |#1|)) 25)) (-3773 (((-867 |#1|) (-867 |#1|)) 24)) (-3196 (((-867 |#1|) (-867 |#1|)) 23)) (-2099 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 37)) (-3584 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 35)) (-2178 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 34)) (-2783 (((-867 |#1|) (-867 |#1|)) 18)) (-3998 (((-1 (-867 |#1|) (-867 |#1|)) |#1| |#1|) 43)) (-1489 (((-867 |#1|) (-867 |#1|)) 8)) (-2524 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 39)) (-3572 (((-1 (-867 |#1|) (-867 |#1|)) |#1|) 38))) -(((-158 |#1|) (-10 -7 (-15 -1489 ((-867 |#1|) (-867 |#1|))) (-15 -2835 ((-867 |#1|) (-867 |#1|))) (-15 -2783 ((-867 |#1|) (-867 |#1|))) (-15 -1277 ((-867 |#1|) (-867 |#1|))) (-15 -3196 ((-867 |#1|) (-867 |#1|))) (-15 -3773 ((-867 |#1|) (-867 |#1|))) (-15 -1589 ((-867 |#1|) (-867 |#1|))) (-15 -2178 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3584 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2594 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2099 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3572 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2524 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3676 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3998 ((-1 (-867 |#1|) (-867 |#1|)) |#1| |#1|))) (-13 (-333) (-1098) (-921))) (T -158)) -((-3998 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-3676 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-2524 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-3572 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-2099 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-2594 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-3584 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-2178 (*1 *2 *3) (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1098) (-921))))) (-1589 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-3773 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-3196 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-1277 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-2835 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) (-5 *1 (-158 *3))))) -(-10 -7 (-15 -1489 ((-867 |#1|) (-867 |#1|))) (-15 -2835 ((-867 |#1|) (-867 |#1|))) (-15 -2783 ((-867 |#1|) (-867 |#1|))) (-15 -1277 ((-867 |#1|) (-867 |#1|))) (-15 -3196 ((-867 |#1|) (-867 |#1|))) (-15 -3773 ((-867 |#1|) (-867 |#1|))) (-15 -1589 ((-867 |#1|) (-867 |#1|))) (-15 -2178 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3584 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2594 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2099 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3572 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -2524 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3676 ((-1 (-867 |#1|) (-867 |#1|)) |#1|)) (-15 -3998 ((-1 (-867 |#1|) (-867 |#1|)) |#1| |#1|))) -((-3848 ((|#2| |#3|) 27))) -(((-159 |#1| |#2| |#3|) (-10 -7 (-15 -3848 (|#2| |#3|))) (-156) (-1134 |#1|) (-657 |#1| |#2|)) (T -159)) -((-3848 (*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1134 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2))))) -(-10 -7 (-15 -3848 (|#2| |#3|))) -((-2939 (((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)) 47 (|has| (-876 |#2|) (-810 |#1|))))) -(((-160 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-876 |#2|) (-810 |#1|)) (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))) |%noBranch|)) (-1006) (-13 (-810 |#1|) (-156)) (-150 |#2|)) (T -160)) -((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *3)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-4 *3 (-150 *6)) (-4 (-876 *6) (-810 *5)) (-4 *6 (-13 (-810 *5) (-156))) (-5 *1 (-160 *5 *6 *3))))) -(-10 -7 (IF (|has| (-876 |#2|) (-810 |#1|)) (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))) |%noBranch|)) -((-1262 (((-583 |#1|) (-583 |#1|) |#1|) 36)) (-1857 (((-583 |#1|) |#1| (-583 |#1|)) 19)) (-2424 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 31) ((|#1| (-583 |#1|) (-583 |#1|)) 29))) -(((-161 |#1|) (-10 -7 (-15 -1857 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2424 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2424 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1262 ((-583 |#1|) (-583 |#1|) |#1|))) (-278)) (T -161)) -((-1262 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))) (-2424 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) (-2424 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) (-1857 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3))))) -(-10 -7 (-15 -1857 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2424 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2424 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1262 ((-583 |#1|) (-583 |#1|) |#1|))) -((-4081 (((-2 (|:| |start| |#2|) (|:| -2283 (-388 |#2|))) |#2|) 61)) (-3270 ((|#1| |#1|) 54)) (-2956 (((-153 |#1|) |#2|) 83)) (-3729 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-2286 ((|#2| |#2|) 82)) (-2391 (((-388 |#2|) |#2| |#1|) 113) (((-388 |#2|) |#2| |#1| (-107)) 80)) (-3522 ((|#1| |#2|) 112)) (-3638 ((|#2| |#2|) 119)) (-3896 (((-388 |#2|) |#2|) 134) (((-388 |#2|) |#2| |#1|) 32) (((-388 |#2|) |#2| |#1| (-107)) 133)) (-3872 (((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2|) 132) (((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2| (-107)) 75)) (-2035 (((-583 (-153 |#1|)) |#2| |#1|) 40) (((-583 (-153 |#1|)) |#2|) 41))) -(((-162 |#1| |#2|) (-10 -7 (-15 -2035 ((-583 (-153 |#1|)) |#2|)) (-15 -2035 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -3872 ((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2| (-107))) (-15 -3872 ((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2|)) (-15 -3896 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3896 ((-388 |#2|) |#2| |#1|)) (-15 -3896 ((-388 |#2|) |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3522 (|#1| |#2|)) (-15 -2391 ((-388 |#2|) |#2| |#1| (-107))) (-15 -2391 ((-388 |#2|) |#2| |#1|)) (-15 -2286 (|#2| |#2|)) (-15 -3729 (|#1| |#2| |#1|)) (-15 -3729 (|#1| |#2|)) (-15 -2956 ((-153 |#1|) |#2|)) (-15 -3270 (|#1| |#1|)) (-15 -4081 ((-2 (|:| |start| |#2|) (|:| -2283 (-388 |#2|))) |#2|))) (-13 (-333) (-777)) (-1134 (-153 |#1|))) (T -162)) -((-4081 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -2283 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3270 (*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1134 (-153 *2))))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1134 *2)))) (-3729 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1134 (-153 *2))))) (-3729 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1134 (-153 *2))))) (-2286 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1134 (-153 *3))))) (-2391 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-2391 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3522 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1134 (-153 *2))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1134 (-153 *3))))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3896 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3896 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3872 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2283 (-583 *3)) (|:| -3113 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-3872 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2283 (-583 *3)) (|:| -3113 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1134 (-153 *5))))) (-2035 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4)))))) -(-10 -7 (-15 -2035 ((-583 (-153 |#1|)) |#2|)) (-15 -2035 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -3872 ((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2| (-107))) (-15 -3872 ((-583 (-2 (|:| -2283 (-583 |#2|)) (|:| -3113 |#1|))) |#2| |#2|)) (-15 -3896 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3896 ((-388 |#2|) |#2| |#1|)) (-15 -3896 ((-388 |#2|) |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3522 (|#1| |#2|)) (-15 -2391 ((-388 |#2|) |#2| |#1| (-107))) (-15 -2391 ((-388 |#2|) |#2| |#1|)) (-15 -2286 (|#2| |#2|)) (-15 -3729 (|#1| |#2| |#1|)) (-15 -3729 (|#1| |#2|)) (-15 -2956 ((-153 |#1|) |#2|)) (-15 -3270 (|#1| |#1|)) (-15 -4081 ((-2 (|:| |start| |#2|) (|:| -2283 (-388 |#2|))) |#2|))) -((-1538 (((-3 |#2| "failed") |#2|) 14)) (-2039 (((-703) |#2|) 16)) (-2950 ((|#2| |#2| |#2|) 18))) -(((-163 |#1| |#2|) (-10 -7 (-15 -1538 ((-3 |#2| "failed") |#2|)) (-15 -2039 ((-703) |#2|)) (-15 -2950 (|#2| |#2| |#2|))) (-1112) (-610 |#1|)) (T -163)) -((-2950 (*1 *2 *2 *2) (-12 (-4 *3 (-1112)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))) (-2039 (*1 *2 *3) (-12 (-4 *4 (-1112)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))) (-1538 (*1 *2 *2) (|partial| -12 (-4 *3 (-1112)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3))))) -(-10 -7 (-15 -1538 ((-3 |#2| "failed") |#2|)) (-15 -2039 ((-703) |#2|)) (-15 -2950 (|#2| |#2| |#2|))) -((-3955 ((|#2| |#2|) 28)) (-3511 (((-107) |#2|) 19)) (-3919 (((-286 |#1|) |#2|) 12)) (-3931 (((-286 |#1|) |#2|) 14)) (-1789 ((|#2| |#2| (-1077)) 68) ((|#2| |#2|) 69)) (-3295 (((-153 (-286 |#1|)) |#2|) 9)) (-3646 ((|#2| |#2| (-1077)) 65) ((|#2| |#2|) 58))) -(((-164 |#1| |#2|) (-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1077))) (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1077))) (-15 -3919 ((-286 |#1|) |#2|)) (-15 -3931 ((-286 |#1|) |#2|)) (-15 -3511 ((-107) |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3295 ((-153 (-286 |#1|)) |#2|))) (-13 (-509) (-779) (-955 (-517))) (-13 (-27) (-1098) (-400 (-153 |#1|)))) (T -164)) -((-3295 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3)))))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-3646 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3)))))) (-1789 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *4)))))) (-1789 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3))))))) -(-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1077))) (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1077))) (-15 -3919 ((-286 |#1|) |#2|)) (-15 -3931 ((-286 |#1|) |#2|)) (-15 -3511 ((-107) |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3295 ((-153 (-286 |#1|)) |#2|))) -((-3970 (((-1158 (-623 (-876 |#1|))) (-1158 (-623 |#1|))) 22)) (-2262 (((-1158 (-623 (-377 (-876 |#1|)))) (-1158 (-623 |#1|))) 30))) -(((-165 |#1|) (-10 -7 (-15 -3970 ((-1158 (-623 (-876 |#1|))) (-1158 (-623 |#1|)))) (-15 -2262 ((-1158 (-623 (-377 (-876 |#1|)))) (-1158 (-623 |#1|))))) (-156)) (T -165)) -((-2262 (*1 *2 *3) (-12 (-5 *3 (-1158 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1158 (-623 (-377 (-876 *4))))) (-5 *1 (-165 *4)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-1158 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1158 (-623 (-876 *4)))) (-5 *1 (-165 *4))))) -(-10 -7 (-15 -3970 ((-1158 (-623 (-876 |#1|))) (-1158 (-623 |#1|)))) (-15 -2262 ((-1158 (-623 (-377 (-876 |#1|)))) (-1158 (-623 |#1|))))) -((-3569 (((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517)))) 66)) (-1204 (((-1079 (-377 (-517))) (-583 (-517)) (-583 (-517))) 74)) (-3399 (((-1079 (-377 (-517))) (-517)) 40)) (-3356 (((-1079 (-377 (-517))) (-517)) 52)) (-3552 (((-377 (-517)) (-1079 (-377 (-517)))) 62)) (-3361 (((-1079 (-377 (-517))) (-517)) 32)) (-1584 (((-1079 (-377 (-517))) (-517)) 48)) (-1790 (((-1079 (-377 (-517))) (-517)) 46)) (-3317 (((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517)))) 60)) (-2384 (((-1079 (-377 (-517))) (-517)) 25)) (-2313 (((-377 (-517)) (-1079 (-377 (-517))) (-1079 (-377 (-517)))) 64)) (-1872 (((-1079 (-377 (-517))) (-517)) 30)) (-2997 (((-1079 (-377 (-517))) (-583 (-517))) 71))) -(((-166) (-10 -7 (-15 -2384 ((-1079 (-377 (-517))) (-517))) (-15 -3399 ((-1079 (-377 (-517))) (-517))) (-15 -3361 ((-1079 (-377 (-517))) (-517))) (-15 -1872 ((-1079 (-377 (-517))) (-517))) (-15 -1790 ((-1079 (-377 (-517))) (-517))) (-15 -1584 ((-1079 (-377 (-517))) (-517))) (-15 -3356 ((-1079 (-377 (-517))) (-517))) (-15 -2313 ((-377 (-517)) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -3317 ((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -3552 ((-377 (-517)) (-1079 (-377 (-517))))) (-15 -3569 ((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -2997 ((-1079 (-377 (-517))) (-583 (-517)))) (-15 -1204 ((-1079 (-377 (-517))) (-583 (-517)) (-583 (-517)))))) (T -166)) -((-1204 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)))) (-3569 (*1 *2 *2 *2) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1079 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-3317 (*1 *2 *2 *2) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)))) (-2313 (*1 *2 *3 *3) (-12 (-5 *3 (-1079 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-3356 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1584 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1790 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1872 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3361 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3399 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2384 (*1 *2 *3) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) -(-10 -7 (-15 -2384 ((-1079 (-377 (-517))) (-517))) (-15 -3399 ((-1079 (-377 (-517))) (-517))) (-15 -3361 ((-1079 (-377 (-517))) (-517))) (-15 -1872 ((-1079 (-377 (-517))) (-517))) (-15 -1790 ((-1079 (-377 (-517))) (-517))) (-15 -1584 ((-1079 (-377 (-517))) (-517))) (-15 -3356 ((-1079 (-377 (-517))) (-517))) (-15 -2313 ((-377 (-517)) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -3317 ((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -3552 ((-377 (-517)) (-1079 (-377 (-517))))) (-15 -3569 ((-1079 (-377 (-517))) (-1079 (-377 (-517))) (-1079 (-377 (-517))))) (-15 -2997 ((-1079 (-377 (-517))) (-583 (-517)))) (-15 -1204 ((-1079 (-377 (-517))) (-583 (-517)) (-583 (-517))))) -((-3691 (((-388 (-1073 (-517))) (-517)) 28)) (-3371 (((-583 (-1073 (-517))) (-517)) 23)) (-3585 (((-1073 (-517)) (-517)) 21))) -(((-167) (-10 -7 (-15 -3371 ((-583 (-1073 (-517))) (-517))) (-15 -3585 ((-1073 (-517)) (-517))) (-15 -3691 ((-388 (-1073 (-517))) (-517))))) (T -167)) -((-3691 (*1 *2 *3) (-12 (-5 *2 (-388 (-1073 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))) (-3585 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) (-3371 (*1 *2 *3) (-12 (-5 *2 (-583 (-1073 (-517)))) (-5 *1 (-167)) (-5 *3 (-517))))) -(-10 -7 (-15 -3371 ((-583 (-1073 (-517))) (-517))) (-15 -3585 ((-1073 (-517)) (-517))) (-15 -3691 ((-388 (-1073 (-517))) (-517)))) -((-1493 (((-1058 (-199)) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 101)) (-2595 (((-583 (-1060)) (-1058 (-199))) NIL)) (-1860 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77)) (-2676 (((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199)))) NIL)) (-2093 (((-583 (-1060)) (-583 (-199))) NIL)) (-1356 (((-199) (-1001 (-772 (-199)))) 22)) (-1817 (((-199) (-1001 (-772 (-199)))) 23)) (-2983 (((-349) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 93)) (-2710 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 40)) (-3884 (((-1060) (-199)) NIL)) (-2363 (((-1060) (-583 (-1060))) 19)) (-4023 (((-953) (-1077) (-1077) (-953)) 12))) -(((-168) (-10 -7 (-15 -1860 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2710 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -2983 ((-349) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2676 ((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199)))) (-15 -2363 ((-1060) (-583 (-1060)))) (-15 -4023 ((-953) (-1077) (-1077) (-953))))) (T -168)) -((-4023 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-953)) (-5 *3 (-1077)) (-5 *1 (-168)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-168)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-168)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-168)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-168)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-168)))) (-2676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1077)) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168))))) -(-10 -7 (-15 -1860 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2710 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -2983 ((-349) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2676 ((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199)))) (-15 -2363 ((-1060) (-583 (-1060)))) (-15 -4023 ((-953) (-1077) (-1077) (-953)))) -((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 53) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 28) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-169) (-719)) (T -169)) -NIL -(-719) -((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 58) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-170) (-719)) (T -170)) -NIL -(-719) -((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 67) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-171) (-719)) (T -171)) -NIL -(-719) -((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 54) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 30) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-172) (-719)) (T -172)) -NIL -(-719) -((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 65) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 35) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-173) (-719)) (T -173)) -NIL -(-719) -((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 71) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-174) (-719)) (T -174)) -NIL -(-719) -((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 78) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 43) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-175) (-719)) (T -175)) -NIL -(-719) -((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 68) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-176) (-719)) (T -176)) -NIL -(-719) -((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 62)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-177) (-719)) (T -177)) -NIL -(-719) -((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 60)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 32)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-178) (-719)) (T -178)) -NIL -(-719) -((-2105 (((-107) $ $) NIL)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 89) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-179) (-719)) (T -179)) -NIL -(-719) -((-1804 (((-3 (-2 (|:| -1395 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 81)) (-2408 (((-517) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 39)) (-1264 (((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 69))) -(((-180) (-10 -7 (-15 -1804 ((-3 (-2 (|:| -1395 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1264 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2408 ((-517) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -180)) -((-2408 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))) (-1264 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))) (-1804 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1395 (-109)) (|:| |w| (-199)))) (-5 *1 (-180))))) -(-10 -7 (-15 -1804 ((-3 (-2 (|:| -1395 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1264 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2408 ((-517) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) -((-1691 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-1289 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 128)) (-3595 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199)))) 88)) (-2682 (((-349) (-623 (-286 (-199)))) 111)) (-2138 (((-623 (-286 (-199))) (-1158 (-286 (-199))) (-583 (-1077))) 108)) (-4156 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-1791 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3552 (((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1077)) (-1158 (-286 (-199)))) 100)) (-2698 (((-349) (-349) (-583 (-349))) 105) (((-349) (-349) (-349)) 103)) (-2502 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33))) -(((-181) (-10 -7 (-15 -2698 ((-349) (-349) (-349))) (-15 -2698 ((-349) (-349) (-583 (-349)))) (-15 -2682 ((-349) (-623 (-286 (-199))))) (-15 -2138 ((-623 (-286 (-199))) (-1158 (-286 (-199))) (-583 (-1077)))) (-15 -3552 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1077)) (-1158 (-286 (-199))))) (-15 -3595 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -1289 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1691 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1791 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2502 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4156 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -181)) -((-4156 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-1289 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-3595 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-3552 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1077))) (-5 *4 (-1158 (-286 (-199)))) (-5 *1 (-181)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *4 (-583 (-1077))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2698 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2698 (*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181))))) -(-10 -7 (-15 -2698 ((-349) (-349) (-349))) (-15 -2698 ((-349) (-349) (-583 (-349)))) (-15 -2682 ((-349) (-623 (-286 (-199))))) (-15 -2138 ((-623 (-286 (-199))) (-1158 (-286 (-199))) (-583 (-1077)))) (-15 -3552 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1077)) (-1158 (-286 (-199))))) (-15 -3595 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -1289 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1691 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1791 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2502 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4156 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) -((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3582 (((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1572 (((-107) $ $) NIL))) -(((-182) (-732)) (T -182)) -NIL -(-732) -((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3582 (((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1572 (((-107) $ $) NIL))) -(((-183) (-732)) (T -183)) -NIL -(-732) -((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3582 (((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 64)) (-1572 (((-107) $ $) NIL))) -(((-184) (-732)) (T -184)) -NIL -(-732) -((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3582 (((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 73)) (-1572 (((-107) $ $) NIL))) -(((-185) (-732)) (T -185)) -NIL -(-732) -((-3375 (((-583 (-1077)) (-1077) (-703)) 22)) (-2066 (((-286 (-199)) (-286 (-199))) 29)) (-3514 (((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 67)) (-3160 (((-107) (-199) (-199) (-583 (-286 (-199)))) 43))) -(((-186) (-10 -7 (-15 -3375 ((-583 (-1077)) (-1077) (-703))) (-15 -2066 ((-286 (-199)) (-286 (-199)))) (-15 -3160 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -3514 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))))))) (T -186)) -((-3514 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))) (-3160 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1077))) (-5 *1 (-186)) (-5 *3 (-1077))))) -(-10 -7 (-15 -3375 ((-583 (-1077)) (-1077) (-703))) (-15 -2066 ((-286 (-199)) (-286 (-199)))) (-15 -3160 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -3514 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))))) -((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 17)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-4147 (((-953) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 55)) (-1572 (((-107) $ $) NIL))) -(((-187) (-819)) (T -187)) -NIL -(-819) -((-2105 (((-107) $ $) NIL)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 12)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-4147 (((-953) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) NIL)) (-1572 (((-107) $ $) NIL))) -(((-188) (-819)) (T -188)) -NIL -(-819) -((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3012 (((-1163) $) 36) (((-1163) $ (-845) (-845)) 38)) (-2612 (($ $ (-909)) 19) (((-219 (-1060)) $ (-1077)) 15)) (-1744 (((-1163) $) 34)) (-2262 (((-787) $) 31) (($ (-583 |#1|)) 8)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $ $) 27)) (-1666 (($ $ $) 22))) -(((-189 |#1|) (-13 (-1006) (-10 -8 (-15 -2612 ($ $ (-909))) (-15 -2612 ((-219 (-1060)) $ (-1077))) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -2262 ($ (-583 |#1|))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $)) (-15 -3012 ((-1163) $ (-845) (-845))))) (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))) (T -189)) -((-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-909)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-219 (-1060))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ *3)) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))))) (-1666 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))))) (-1680 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $))))) (-5 *1 (-189 *3)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $)) (-15 -3012 (*2 $))))))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $)) (-15 -3012 (*2 $))))))) (-3012 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $)) (-15 -3012 (*2 $)))))))) -(-13 (-1006) (-10 -8 (-15 -2612 ($ $ (-909))) (-15 -2612 ((-219 (-1060)) $ (-1077))) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -2262 ($ (-583 |#1|))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $)) (-15 -3012 ((-1163) $ (-845) (-845))))) -((-3562 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3562 (|#2| |#4| (-1 |#2| |#2|)))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -190)) -((-3562 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1134 (-377 *2))) (-4 *2 (-1134 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6))))) -(-10 -7 (-15 -3562 (|#2| |#4| (-1 |#2| |#2|)))) -((-2967 ((|#2| |#2| (-703) |#2|) 41)) (-3091 ((|#2| |#2| (-703) |#2|) 37)) (-2690 (((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|)))) 57)) (-2725 (((-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|))) |#2|) 52)) (-3328 (((-107) |#2|) 49)) (-2470 (((-388 |#2|) |#2|) 76)) (-3896 (((-388 |#2|) |#2|) 75)) (-3298 ((|#2| |#2| (-703) |#2|) 35)) (-3900 (((-2 (|:| |cont| |#1|) (|:| -2283 (-583 (-2 (|:| |irr| |#2|) (|:| -1332 (-517)))))) |#2| (-107)) 68))) -(((-191 |#1| |#2|) (-10 -7 (-15 -3896 ((-388 |#2|) |#2|)) (-15 -2470 ((-388 |#2|) |#2|)) (-15 -3900 ((-2 (|:| |cont| |#1|) (|:| -2283 (-583 (-2 (|:| |irr| |#2|) (|:| -1332 (-517)))))) |#2| (-107))) (-15 -2725 ((-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|))) |#2|)) (-15 -2690 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|))))) (-15 -3298 (|#2| |#2| (-703) |#2|)) (-15 -3091 (|#2| |#2| (-703) |#2|)) (-15 -2967 (|#2| |#2| (-703) |#2|)) (-15 -3328 ((-107) |#2|))) (-319) (-1134 |#1|)) (T -191)) -((-3328 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1134 *4)))) (-2967 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1134 *4)))) (-3091 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1134 *4)))) (-3298 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1134 *4)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3633 *5)))) (-4 *5 (-1134 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) (-2725 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3633 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1134 *4)))) (-3900 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1134 *5)))) (-2470 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1134 *4)))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1134 *4))))) -(-10 -7 (-15 -3896 ((-388 |#2|) |#2|)) (-15 -2470 ((-388 |#2|) |#2|)) (-15 -3900 ((-2 (|:| |cont| |#1|) (|:| -2283 (-583 (-2 (|:| |irr| |#2|) (|:| -1332 (-517)))))) |#2| (-107))) (-15 -2725 ((-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|))) |#2|)) (-15 -2690 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3633 |#2|))))) (-15 -3298 (|#2| |#2| (-703) |#2|)) (-15 -3091 (|#2| |#2| (-703) |#2|)) (-15 -2967 (|#2| |#2| (-703) |#2|)) (-15 -3328 ((-107) |#2|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-517) $) NIL (|has| (-517) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-517) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-517) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-955 (-517))))) (-3402 (((-517) $) NIL) (((-1077) $) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-517) (-955 (-517)))) (((-517) $) NIL (|has| (-517) (-955 (-517))))) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-517) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-517) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-517) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-517) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-517) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-517) (-1053)))) (-2321 (((-107) $) NIL (|has| (-517) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-517) (-779)))) (-3312 (($ (-1 (-517) (-517)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-517) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2713 (((-517) $) NIL (|has| (-517) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1077)) (-583 (-517))) NIL (|has| (-517) (-478 (-1077) (-517)))) (($ $ (-1077) (-517)) NIL (|has| (-517) (-478 (-1077) (-517))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-517) $) NIL)) (-3889 (($ (-377 (-517))) 8)) (-3367 (((-816 (-517)) $) NIL (|has| (-517) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-517) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-940))) (((-199) $) NIL (|has| (-517) (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1077)) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL) (((-923 10) $) 9)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-517) (-833))) (|has| (-517) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-517) $) NIL (|has| (-517) (-502)))) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| (-517) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1692 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL))) -(((-192) (-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 10) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -3889 ($ (-377 (-517))))))) (T -192)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-923 10)) (-5 *1 (-192)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-3889 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192))))) -(-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 10) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -3889 ($ (-377 (-517)))))) -((-3296 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|)) (-1060)) 27) (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|))) 23)) (-1862 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1077) (-772 |#2|) (-772 |#2|) (-107)) 16))) -(((-193 |#1| |#2|) (-10 -7 (-15 -3296 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|)))) (-15 -3296 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|)) (-1060))) (-15 -1862 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1077) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-882) (-29 |#1|))) (T -193)) -((-1862 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1077)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1098) (-882) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))) (-3296 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-999 (-772 *3))) (-5 *5 (-1060)) (-4 *3 (-13 (-1098) (-882) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *4 (-999 (-772 *3))) (-4 *3 (-13 (-1098) (-882) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3))))) -(-10 -7 (-15 -3296 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|)))) (-15 -3296 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-999 (-772 |#2|)) (-1060))) (-15 -1862 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1077) (-772 |#2|) (-772 |#2|) (-107)))) -((-3296 (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|)))) (-1060)) 44) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|))))) 41) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|))) (-1060)) 45) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|)))) 17))) -(((-194 |#1|) (-10 -7 (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|))))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|))) (-1060))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|)))))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|)))) (-1060)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (T -194)) -((-3296 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-999 (-772 (-377 (-876 *6))))) (-5 *5 (-1060)) (-5 *3 (-377 (-876 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *4 (-999 (-772 (-377 (-876 *5))))) (-5 *3 (-377 (-876 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) (-3296 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-876 *6))) (-5 *4 (-999 (-772 (-286 *6)))) (-5 *5 (-1060)) (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-999 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5))))) -(-10 -7 (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|))))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-286 |#1|))) (-1060))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|)))))) (-15 -3296 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-876 |#1|)) (-999 (-772 (-377 (-876 |#1|)))) (-1060)))) -((-1510 (((-2 (|:| -2242 (-1073 |#1|)) (|:| |deg| (-845))) (-1073 |#1|)) 21)) (-2287 (((-583 (-286 |#2|)) (-286 |#2|) (-845)) 43))) -(((-195 |#1| |#2|) (-10 -7 (-15 -1510 ((-2 (|:| -2242 (-1073 |#1|)) (|:| |deg| (-845))) (-1073 |#1|))) (-15 -2287 ((-583 (-286 |#2|)) (-286 |#2|) (-845)))) (-964) (-13 (-509) (-779))) (T -195)) -((-2287 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-964)))) (-1510 (*1 *2 *3) (-12 (-4 *4 (-964)) (-5 *2 (-2 (|:| -2242 (-1073 *4)) (|:| |deg| (-845)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1073 *4)) (-4 *5 (-13 (-509) (-779)))))) -(-10 -7 (-15 -1510 ((-2 (|:| -2242 (-1073 |#1|)) (|:| |deg| (-845))) (-1073 |#1|))) (-15 -2287 ((-583 (-286 |#2|)) (-286 |#2|) (-845)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-4120 ((|#1| $) NIL)) (-2544 ((|#1| $) 25)) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-2205 (($ $) NIL)) (-3797 (($ $) 31)) (-2098 ((|#1| |#1| $) NIL)) (-3409 ((|#1| $) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3728 (((-703) $) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) NIL)) (-4013 ((|#1| |#1| $) 28)) (-2289 ((|#1| |#1| $) 30)) (-3439 (($ |#1| $) NIL)) (-1795 (((-703) $) 27)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1319 ((|#1| $) NIL)) (-1545 ((|#1| $) 26)) (-3178 ((|#1| $) 24)) (-1551 ((|#1| $) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-3461 ((|#1| |#1| $) NIL)) (-1754 (((-107) $) 9)) (-2679 (($) NIL)) (-1903 ((|#1| $) NIL)) (-1785 (($) NIL) (($ (-583 |#1|)) 16)) (-3137 (((-703) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3359 ((|#1| $) 13)) (-2729 (($ (-583 |#1|)) NIL)) (-2522 ((|#1| $) NIL)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-196 |#1|) (-13 (-227 |#1|) (-10 -8 (-15 -1785 ($ (-583 |#1|))))) (-1006)) (T -196)) -((-1785 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-196 *3))))) -(-13 (-227 |#1|) (-10 -8 (-15 -1785 ($ (-583 |#1|))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1451 (($ (-286 |#1|)) 23)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2240 (((-107) $) NIL)) (-3220 (((-3 (-286 |#1|) "failed") $) NIL)) (-3402 (((-286 |#1|) $) NIL)) (-2364 (($ $) 31)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3312 (($ (-1 (-286 |#1|) (-286 |#1|)) $) NIL)) (-2336 (((-286 |#1|) $) NIL)) (-3814 (($ $) 30)) (-3232 (((-1060) $) NIL)) (-3176 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($ (-703)) NIL)) (-2539 (($ $) 32)) (-1191 (((-517) $) NIL)) (-2262 (((-787) $) 57) (($ (-517)) NIL) (($ (-286 |#1|)) NIL)) (-1939 (((-286 |#1|) $ $) NIL)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 25 T CONST)) (-3675 (($) 50 T CONST)) (-1572 (((-107) $ $) 28)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 19)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 24) (($ (-286 |#1|) $) 18))) -(((-197 |#1| |#2|) (-13 (-561 (-286 |#1|)) (-955 (-286 |#1|)) (-10 -8 (-15 -2336 ((-286 |#1|) $)) (-15 -3814 ($ $)) (-15 -2364 ($ $)) (-15 -1939 ((-286 |#1|) $ $)) (-15 -1306 ($ (-703))) (-15 -3176 ((-107) $)) (-15 -2240 ((-107) $)) (-15 -1191 ((-517) $)) (-15 -3312 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1451 ($ (-286 |#1|))) (-15 -2539 ($ $)))) (-13 (-964) (-779)) (-583 (-1077))) (T -197)) -((-2336 (*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-3814 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779))) (-14 *3 (-583 (-1077))))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779))) (-14 *3 (-583 (-1077))))) (-1939 (*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-1191 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-964) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1077))))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-964) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1077))))) (-2539 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779))) (-14 *3 (-583 (-1077)))))) -(-13 (-561 (-286 |#1|)) (-955 (-286 |#1|)) (-10 -8 (-15 -2336 ((-286 |#1|) $)) (-15 -3814 ($ $)) (-15 -2364 ($ $)) (-15 -1939 ((-286 |#1|) $ $)) (-15 -1306 ($ (-703))) (-15 -3176 ((-107) $)) (-15 -2240 ((-107) $)) (-15 -1191 ((-517) $)) (-15 -3312 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1451 ($ (-286 |#1|))) (-15 -2539 ($ $)))) -((-4100 (((-107) (-1060)) 22)) (-1228 (((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107)) 32)) (-4046 (((-3 (-107) "failed") (-1073 |#2|) (-772 |#2|) (-772 |#2|) (-107)) 73) (((-3 (-107) "failed") (-876 |#1|) (-1077) (-772 |#2|) (-772 |#2|) (-107)) 74))) -(((-198 |#1| |#2|) (-10 -7 (-15 -4100 ((-107) (-1060))) (-15 -1228 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -4046 ((-3 (-107) "failed") (-876 |#1|) (-1077) (-772 |#2|) (-772 |#2|) (-107))) (-15 -4046 ((-3 (-107) "failed") (-1073 |#2|) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-29 |#1|))) (T -198)) -((-4046 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1073 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1098) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))) (-4046 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-876 *6)) (-5 *4 (-1077)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1098) (-29 *6))) (-5 *1 (-198 *6 *7)))) (-1228 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1098) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1098) (-29 *4)))))) -(-10 -7 (-15 -4100 ((-107) (-1060))) (-15 -1228 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -4046 ((-3 (-107) "failed") (-876 |#1|) (-1077) (-772 |#2|) (-772 |#2|) (-107))) (-15 -4046 ((-3 (-107) "failed") (-1073 |#2|) (-772 |#2|) (-772 |#2|) (-107)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 89)) (-2964 (((-517) $) 99)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2147 (($ $) NIL)) (-1636 (($ $) 77)) (-1482 (($ $) 65)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) 56)) (-1765 (((-107) $ $) NIL)) (-1612 (($ $) 75)) (-1459 (($ $) 63)) (-3502 (((-517) $) 116)) (-1659 (($ $) 80)) (-1508 (($ $) 67)) (-3038 (($) NIL T CONST)) (-3164 (($ $) NIL)) (-3220 (((-3 (-517) "failed") $) 115) (((-3 (-377 (-517)) "failed") $) 112)) (-3402 (((-517) $) 113) (((-377 (-517)) $) 110)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) 92)) (-1524 (((-377 (-517)) $ (-703)) 108) (((-377 (-517)) $ (-703) (-703)) 107)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3456 (((-845)) 29) (((-845) (-845)) NIL (|has| $ (-6 -4186)))) (-2671 (((-107) $) NIL)) (-2102 (($) 39)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL)) (-3250 (((-517) $) 35)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL)) (-3522 (($ $) NIL)) (-2321 (((-107) $) 88)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) 53) (($) 34 (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-4095 (($ $ $) 52) (($) 33 (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-3743 (((-517) $) 27)) (-3815 (($ $) 30)) (-3281 (($ $) 57)) (-1232 (($ $) 62)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2848 (((-845) (-517)) NIL (|has| $ (-6 -4186)))) (-4130 (((-1024) $) NIL) (((-517) $) 90)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL)) (-2713 (($ $) NIL)) (-3202 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-845)) 100)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1725 (((-517) $) 28)) (-2999 (($) 38)) (-3898 (($ $) 61)) (-3388 (((-703) $) NIL)) (-1826 (((-1060) (-1060)) 8)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3685 (((-845)) NIL) (((-845) (-845)) NIL (|has| $ (-6 -4186)))) (-2042 (($ $ (-703)) NIL) (($ $) 93)) (-1753 (((-845) (-517)) NIL (|has| $ (-6 -4186)))) (-1670 (($ $) 78)) (-1521 (($ $) 68)) (-1647 (($ $) 79)) (-1495 (($ $) 66)) (-1622 (($ $) 76)) (-1471 (($ $) 64)) (-3367 (((-349) $) 104) (((-199) $) 101) (((-816 (-349)) $) NIL) (((-493) $) 45)) (-2262 (((-787) $) 42) (($ (-517)) 60) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 60) (($ (-377 (-517))) NIL)) (-1818 (((-703)) NIL)) (-3126 (($ $) NIL)) (-2076 (((-845)) 32) (((-845) (-845)) NIL (|has| $ (-6 -4186)))) (-4003 (((-845)) 25)) (-1706 (($ $) 83)) (-1564 (($ $) 71) (($ $ $) 109)) (-2944 (((-107) $ $) NIL)) (-1685 (($ $) 81)) (-1536 (($ $) 69)) (-3517 (($ $) 86)) (-1588 (($ $) 74)) (-2815 (($ $) 84)) (-1601 (($ $) 72)) (-1722 (($ $) 85)) (-1577 (($ $) 73)) (-1698 (($ $) 82)) (-1550 (($ $) 70)) (-2829 (($ $) 117)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 36 T CONST)) (-3675 (($) 37 T CONST)) (-2514 (((-1060) $) 19) (((-1060) $ (-107)) 21) (((-1163) (-754) $) 22) (((-1163) (-754) $ (-107)) 23)) (-4097 (($ $) 96)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-3466 (($ $ $) 98)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 54)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 46)) (-1692 (($ $ $) 87) (($ $ (-517)) 55)) (-1680 (($ $) 47) (($ $ $) 49)) (-1666 (($ $ $) 48)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 58) (($ $ (-377 (-517))) 128) (($ $ $) 59)) (* (($ (-845) $) 31) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 50) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) -(((-199) (-13 (-374) (-207) (-760) (-1098) (-558 (-493)) (-10 -8 (-15 -1692 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2999 ($)) (-15 -4130 ((-517) $)) (-15 -3815 ($ $)) (-15 -3281 ($ $)) (-15 -1564 ($ $ $)) (-15 -4097 ($ $)) (-15 -3466 ($ $ $)) (-15 -1826 ((-1060) (-1060))) (-15 -1524 ((-377 (-517)) $ (-703))) (-15 -1524 ((-377 (-517)) $ (-703) (-703)))))) (T -199)) -((** (*1 *1 *1 *1) (-5 *1 (-199))) (-1692 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-2999 (*1 *1) (-5 *1 (-199))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-3815 (*1 *1 *1) (-5 *1 (-199))) (-3281 (*1 *1 *1) (-5 *1 (-199))) (-1564 (*1 *1 *1 *1) (-5 *1 (-199))) (-4097 (*1 *1 *1) (-5 *1 (-199))) (-3466 (*1 *1 *1 *1) (-5 *1 (-199))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-199)))) (-1524 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) (-1524 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199))))) -(-13 (-374) (-207) (-760) (-1098) (-558 (-493)) (-10 -8 (-15 -1692 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2999 ($)) (-15 -4130 ((-517) $)) (-15 -3815 ($ $)) (-15 -3281 ($ $)) (-15 -1564 ($ $ $)) (-15 -4097 ($ $)) (-15 -3466 ($ $ $)) (-15 -1826 ((-1060) (-1060))) (-15 -1524 ((-377 (-517)) $ (-703))) (-15 -1524 ((-377 (-517)) $ (-703) (-703))))) -((-2922 (((-153 (-199)) (-703) (-153 (-199))) 11) (((-199) (-703) (-199)) 12)) (-3512 (((-153 (-199)) (-153 (-199))) 13) (((-199) (-199)) 14)) (-1661 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 19) (((-199) (-199) (-199)) 22)) (-2581 (((-153 (-199)) (-153 (-199))) 25) (((-199) (-199)) 24)) (-3746 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 43) (((-199) (-199) (-199)) 35)) (-3518 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 48) (((-199) (-199) (-199)) 45)) (-2672 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 15) (((-199) (-199) (-199)) 16)) (-2747 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 17) (((-199) (-199) (-199)) 18)) (-4113 (((-153 (-199)) (-153 (-199))) 60) (((-199) (-199)) 59)) (-4084 (((-199) (-199)) 54) (((-153 (-199)) (-153 (-199))) 58)) (-4097 (((-153 (-199)) (-153 (-199))) 7) (((-199) (-199)) 9)) (-3466 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 30) (((-199) (-199) (-199)) 26))) -(((-200) (-10 -7 (-15 -4097 ((-199) (-199))) (-15 -4097 ((-153 (-199)) (-153 (-199)))) (-15 -3466 ((-199) (-199) (-199))) (-15 -3466 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3512 ((-199) (-199))) (-15 -3512 ((-153 (-199)) (-153 (-199)))) (-15 -2581 ((-199) (-199))) (-15 -2581 ((-153 (-199)) (-153 (-199)))) (-15 -2922 ((-199) (-703) (-199))) (-15 -2922 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -2672 ((-199) (-199) (-199))) (-15 -2672 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3746 ((-199) (-199) (-199))) (-15 -3746 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2747 ((-199) (-199) (-199))) (-15 -2747 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3518 ((-199) (-199) (-199))) (-15 -3518 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -4084 ((-153 (-199)) (-153 (-199)))) (-15 -4084 ((-199) (-199))) (-15 -4113 ((-199) (-199))) (-15 -4113 ((-153 (-199)) (-153 (-199)))) (-15 -1661 ((-199) (-199) (-199))) (-15 -1661 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))) (T -200)) -((-1661 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1661 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-4113 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3518 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3518 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2747 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2747 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3746 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3746 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2672 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2672 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2922 (*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) (-2922 (*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) (-2581 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2581 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3512 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3512 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3466 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3466 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-4097 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200))))) -(-10 -7 (-15 -4097 ((-199) (-199))) (-15 -4097 ((-153 (-199)) (-153 (-199)))) (-15 -3466 ((-199) (-199) (-199))) (-15 -3466 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3512 ((-199) (-199))) (-15 -3512 ((-153 (-199)) (-153 (-199)))) (-15 -2581 ((-199) (-199))) (-15 -2581 ((-153 (-199)) (-153 (-199)))) (-15 -2922 ((-199) (-703) (-199))) (-15 -2922 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -2672 ((-199) (-199) (-199))) (-15 -2672 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3746 ((-199) (-199) (-199))) (-15 -3746 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2747 ((-199) (-199) (-199))) (-15 -2747 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -3518 ((-199) (-199) (-199))) (-15 -3518 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -4084 ((-153 (-199)) (-153 (-199)))) (-15 -4084 ((-199) (-199))) (-15 -4113 ((-199) (-199))) (-15 -4113 ((-153 (-199)) (-153 (-199)))) (-15 -1661 ((-199) (-199) (-199))) (-15 -1661 ((-153 (-199)) (-153 (-199)) (-153 (-199))))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703) (-703)) NIL)) (-2688 (($ $ $) NIL)) (-1911 (($ (-1158 |#1|)) NIL) (($ $) NIL)) (-3183 (($ |#1| |#1| |#1|) 32)) (-1912 (((-107) $) NIL)) (-1393 (($ $ (-517) (-517)) NIL)) (-3632 (($ $ (-517) (-517)) NIL)) (-3031 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-1281 (($ $) NIL)) (-1256 (((-107) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-3382 (($ $ (-517) (-517) $) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3911 (($ $ (-517) (-1158 |#1|)) NIL)) (-3101 (($ $ (-517) (-1158 |#1|)) NIL)) (-2029 (($ |#1| |#1| |#1|) 31)) (-1634 (($ (-703) |#1|) NIL)) (-3038 (($) NIL T CONST)) (-1197 (($ $) NIL (|has| |#1| (-278)))) (-1397 (((-1158 |#1|) $ (-517)) NIL)) (-1893 (($ |#1|) 30)) (-2938 (($ |#1|) 29)) (-3958 (($ |#1|) 28)) (-3778 (((-703) $) NIL (|has| |#1| (-509)))) (-2750 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2557 ((|#1| $ (-517) (-517)) NIL)) (-1525 (((-583 |#1|) $) NIL)) (-3850 (((-703) $) NIL (|has| |#1| (-509)))) (-1671 (((-583 (-1158 |#1|)) $) NIL (|has| |#1| (-509)))) (-1409 (((-703) $) NIL)) (-3204 (($ (-703) (-703) |#1|) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-1779 ((|#1| $) NIL (|has| |#1| (-6 (-4197 "*"))))) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2362 (($ (-583 (-583 |#1|))) 10)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3468 (((-583 (-583 |#1|)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2137 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-3407 (($) 11)) (-3095 (($ $ $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-4025 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1974 (((-107) $) NIL)) (-2533 ((|#1| $) NIL (|has| |#1| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2295 (((-1158 |#1|) $ (-517)) NIL)) (-2262 (($ (-1158 |#1|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1158 |#1|) $ (-1158 |#1|)) 14) (((-1158 |#1|) (-1158 |#1|) $) NIL) (((-867 |#1|) $ (-867 |#1|)) 20)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-201 |#1|) (-13 (-621 |#1| (-1158 |#1|) (-1158 |#1|)) (-10 -8 (-15 * ((-867 |#1|) $ (-867 |#1|))) (-15 -3407 ($)) (-15 -3958 ($ |#1|)) (-15 -2938 ($ |#1|)) (-15 -1893 ($ |#1|)) (-15 -2029 ($ |#1| |#1| |#1|)) (-15 -3183 ($ |#1| |#1| |#1|)))) (-13 (-333) (-1098))) (T -201)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098))) (-5 *1 (-201 *3)))) (-3407 (*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) (-3958 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) (-2938 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) (-1893 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) (-2029 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) (-3183 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098)))))) -(-13 (-621 |#1| (-1158 |#1|) (-1158 |#1|)) (-10 -8 (-15 * ((-867 |#1|) $ (-867 |#1|))) (-15 -3407 ($)) (-15 -3958 ($ |#1|)) (-15 -2938 ($ |#1|)) (-15 -1893 ($ |#1|)) (-15 -2029 ($ |#1| |#1| |#1|)) (-15 -3183 ($ |#1| |#1| |#1|)))) -((-2582 (($ (-1 (-107) |#2|) $) 16)) (-1749 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 24)) (-3808 (($) NIL) (($ (-583 |#2|)) 11)) (-1572 (((-107) $ $) 22))) -(((-202 |#1| |#2|) (-10 -8 (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -3808 (|#1| (-583 |#2|))) (-15 -3808 (|#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-203 |#2|) (-1006)) (T -202)) -NIL -(-10 -8 (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -3808 (|#1| (-583 |#2|))) (-15 -3808 (|#1|)) (-15 -1572 ((-107) |#1| |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-203 |#1|) (-1189) (-1006)) (T -203)) -NIL -(-13 (-209 |t#1|)) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-2042 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) 11) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) 19) (($ $ (-703)) NIL) (($ $) 16)) (-3348 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-703)) 14) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL))) -(((-204 |#1| |#2|) (-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -3348 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -3348 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3348 (|#1| |#1| (-1077))) (-15 -3348 (|#1| |#1| (-583 (-1077)))) (-15 -3348 (|#1| |#1| (-1077) (-703))) (-15 -3348 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3348 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3348 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|)))) (-205 |#2|) (-964)) (T -204)) -NIL -(-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -3348 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -3348 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3348 (|#1| |#1| (-1077))) (-15 -3348 (|#1| |#1| (-583 (-1077)))) (-15 -3348 (|#1| |#1| (-1077) (-703))) (-15 -3348 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3348 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3348 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2042 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-703)) 51) (($ $ (-583 (-1077)) (-583 (-703))) 44 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 43 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 42 (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) 41 (|has| |#1| (-824 (-1077)))) (($ $ (-703)) 39 (|has| |#1| (-207))) (($ $) 37 (|has| |#1| (-207)))) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-703)) 49) (($ $ (-583 (-1077)) (-583 (-703))) 48 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 47 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 46 (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) 45 (|has| |#1| (-824 (-1077)))) (($ $ (-703)) 40 (|has| |#1| (-207))) (($ $) 38 (|has| |#1| (-207)))) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-205 |#1|) (-1189) (-964)) (T -205)) -((-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-964)))) (-2042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-964)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-964)))) (-3348 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-964))))) -(-13 (-964) (-10 -8 (-15 -2042 ($ $ (-1 |t#1| |t#1|))) (-15 -2042 ($ $ (-1 |t#1| |t#1|) (-703))) (-15 -3348 ($ $ (-1 |t#1| |t#1|))) (-15 -3348 ($ $ (-1 |t#1| |t#1|) (-703))) (IF (|has| |t#1| (-207)) (-6 (-207)) |%noBranch|) (IF (|has| |t#1| (-824 (-1077))) (-6 (-824 (-1077))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-207) |has| |#1| (-207)) ((-585 $) . T) ((-659) . T) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2042 (($ $) NIL) (($ $ (-703)) 10)) (-3348 (($ $) 8) (($ $ (-703)) 12))) -(((-206 |#1|) (-10 -8 (-15 -3348 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-703))) (-15 -3348 (|#1| |#1|)) (-15 -2042 (|#1| |#1|))) (-207)) (T -206)) -NIL -(-10 -8 (-15 -3348 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-703))) (-15 -3348 (|#1| |#1|)) (-15 -2042 (|#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2042 (($ $) 38) (($ $ (-703)) 36)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $) 37) (($ $ (-703)) 35)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-207) (-1189)) (T -207)) -((-2042 (*1 *1 *1) (-4 *1 (-207))) (-3348 (*1 *1 *1) (-4 *1 (-207))) (-2042 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) (-3348 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703))))) -(-13 (-964) (-10 -8 (-15 -2042 ($ $)) (-15 -3348 ($ $)) (-15 -2042 ($ $ (-703))) (-15 -3348 ($ $ (-703))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-3808 (($) 12) (($ (-583 |#2|)) NIL)) (-2453 (($ $) 14)) (-2279 (($ (-583 |#2|)) 10)) (-2262 (((-787) $) 21))) -(((-208 |#1| |#2|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -3808 (|#1| (-583 |#2|))) (-15 -3808 (|#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -2453 (|#1| |#1|))) (-209 |#2|) (-1006)) (T -208)) -NIL -(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -3808 (|#1| (-583 |#2|))) (-15 -3808 (|#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -2453 (|#1| |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-209 |#1|) (-1189) (-1006)) (T -209)) -((-3808 (*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1006)))) (-3808 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-209 *3)))) (-1749 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-209 *2)) (-4 *2 (-1006)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-209 *3)) (-4 *3 (-1006)))) (-2582 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-209 *3)) (-4 *3 (-1006))))) -(-13 (-102 |t#1|) (-138 |t#1|) (-10 -8 (-15 -3808 ($)) (-15 -3808 ($ (-583 |t#1|))) (IF (|has| $ (-6 -4195)) (PROGN (-15 -1749 ($ |t#1| $)) (-15 -1749 ($ (-1 (-107) |t#1|) $)) (-15 -2582 ($ (-1 (-107) |t#1|) $))) |%noBranch|))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-2730 (((-2 (|:| |varOrder| (-583 (-1077))) (|:| |inhom| (-3 (-583 (-1158 (-703))) "failed")) (|:| |hom| (-583 (-1158 (-703))))) (-265 (-876 (-517)))) 25))) -(((-210) (-10 -7 (-15 -2730 ((-2 (|:| |varOrder| (-583 (-1077))) (|:| |inhom| (-3 (-583 (-1158 (-703))) "failed")) (|:| |hom| (-583 (-1158 (-703))))) (-265 (-876 (-517))))))) (T -210)) -((-2730 (*1 *2 *3) (-12 (-5 *3 (-265 (-876 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1077))) (|:| |inhom| (-3 (-583 (-1158 (-703))) "failed")) (|:| |hom| (-583 (-1158 (-703)))))) (-5 *1 (-210))))) -(-10 -7 (-15 -2730 ((-2 (|:| |varOrder| (-583 (-1077))) (|:| |inhom| (-3 (-583 (-1158 (-703))) "failed")) (|:| |hom| (-583 (-1158 (-703))))) (-265 (-876 (-517)))))) -((-2390 (((-703)) 51)) (-2947 (((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 $) (-1158 $)) 49) (((-623 |#3|) (-623 $)) 41) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-1470 (((-125)) 57)) (-2042 (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2262 (((-1158 |#3|) $) NIL) (($ |#3|) NIL) (((-787) $) NIL) (($ (-517)) 12) (($ (-377 (-517))) NIL)) (-1818 (((-703)) 15)) (-1692 (($ $ |#3|) 54))) -(((-211 |#1| |#2| |#3|) (-10 -8 (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|)) (-15 -1818 ((-703))) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2262 (|#1| |#3|)) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2947 ((-623 |#3|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 |#1|) (-1158 |#1|))) (-15 -2390 ((-703))) (-15 -1692 (|#1| |#1| |#3|)) (-15 -1470 ((-125))) (-15 -2262 ((-1158 |#3|) |#1|))) (-212 |#2| |#3|) (-703) (-1112)) (T -211)) -((-1470 (*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1112)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-2390 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1112)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-1818 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1112)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5))))) -(-10 -8 (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|)) (-15 -1818 ((-703))) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2262 (|#1| |#3|)) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2947 ((-623 |#3|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 |#1|) (-1158 |#1|))) (-15 -2390 ((-703))) (-15 -1692 (|#1| |#1| |#3|)) (-15 -1470 ((-125))) (-15 -2262 ((-1158 |#3|) |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#2| (-1006)))) (-1992 (((-107) $) 72 (|has| |#2| (-123)))) (-3622 (($ (-845)) 127 (|has| |#2| (-964)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-3505 (($ $ $) 123 (|has| |#2| (-725)))) (-1783 (((-3 $ "failed") $ $) 74 (|has| |#2| (-123)))) (-3443 (((-107) $ (-703)) 8)) (-2390 (((-703)) 109 (|has| |#2| (-338)))) (-3502 (((-517) $) 121 (|has| |#2| (-777)))) (-2436 ((|#2| $ (-517) |#2|) 52 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-3220 (((-3 (-517) "failed") $) 67 (-4024 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-3 (-377 (-517)) "failed") $) 64 (-4024 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1006)))) (-3402 (((-517) $) 68 (-4024 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-377 (-517)) $) 65 (-4024 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) ((|#2| $) 60 (|has| |#2| (-1006)))) (-2947 (((-623 (-517)) (-623 $)) 108 (-4024 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 107 (-4024 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 106 (|has| |#2| (-964))) (((-623 |#2|) (-623 $)) 105 (|has| |#2| (-964)))) (-3550 (((-3 $ "failed") $) 99 (|has| |#2| (-964)))) (-2192 (($) 112 (|has| |#2| (-338)))) (-2750 ((|#2| $ (-517) |#2|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#2| $ (-517)) 51)) (-2671 (((-107) $) 119 (|has| |#2| (-777)))) (-1525 (((-583 |#2|) $) 30 (|has| $ (-6 -4195)))) (-1690 (((-107) $) 102 (|has| |#2| (-964)))) (-2321 (((-107) $) 120 (|has| |#2| (-777)))) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 118 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-3687 (((-583 |#2|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 117 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-2737 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2|) $) 35)) (-4161 (((-845) $) 111 (|has| |#2| (-338)))) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#2| (-1006)))) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-2803 (($ (-845)) 110 (|has| |#2| (-338)))) (-4130 (((-1024) $) 21 (|has| |#2| (-1006)))) (-2420 ((|#2| $) 42 (|has| (-517) (-779)))) (-2837 (($ $ |#2|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#2| $ (-517) |#2|) 50) ((|#2| $ (-517)) 49)) (-3912 ((|#2| $ $) 126 (|has| |#2| (-964)))) (-3935 (($ (-1158 |#2|)) 128)) (-1470 (((-125)) 125 (|has| |#2| (-333)))) (-2042 (($ $) 92 (-4024 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) 90 (-4024 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) 88 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) 87 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) 86 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) 85 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) 78 (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-964)))) (-4140 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4195))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-1158 |#2|) $) 129) (($ (-517)) 66 (-3786 (-4024 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (|has| |#2| (-964)))) (($ (-377 (-517))) 63 (-4024 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (($ |#2|) 62 (|has| |#2| (-1006))) (((-787) $) 18 (|has| |#2| (-557 (-787))))) (-1818 (((-703)) 104 (|has| |#2| (-964)))) (-1272 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4195)))) (-2829 (($ $) 122 (|has| |#2| (-777)))) (-2806 (($ $ (-703)) 100 (|has| |#2| (-964))) (($ $ (-845)) 96 (|has| |#2| (-964)))) (-3663 (($) 71 (|has| |#2| (-123)) CONST)) (-3675 (($) 103 (|has| |#2| (-964)) CONST)) (-3348 (($ $) 91 (-4024 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) 89 (-4024 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) 84 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) 83 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) 82 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) 81 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) 80 (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-964)))) (-1630 (((-107) $ $) 115 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1606 (((-107) $ $) 114 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1572 (((-107) $ $) 20 (|has| |#2| (-1006)))) (-1618 (((-107) $ $) 116 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1596 (((-107) $ $) 113 (-3786 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1692 (($ $ |#2|) 124 (|has| |#2| (-333)))) (-1680 (($ $ $) 94 (|has| |#2| (-964))) (($ $) 93 (|has| |#2| (-964)))) (-1666 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-703)) 101 (|has| |#2| (-964))) (($ $ (-845)) 97 (|has| |#2| (-964)))) (* (($ $ $) 98 (|has| |#2| (-964))) (($ (-517) $) 95 (|has| |#2| (-964))) (($ $ |#2|) 76 (|has| |#2| (-659))) (($ |#2| $) 75 (|has| |#2| (-659))) (($ (-703) $) 73 (|has| |#2| (-123))) (($ (-845) $) 70 (|has| |#2| (-25)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-212 |#1| |#2|) (-1189) (-703) (-1112)) (T -212)) -((-3935 (*1 *1 *2) (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1112)) (-4 *1 (-212 *3 *4)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-212 *3 *4)) (-4 *4 (-964)) (-4 *4 (-1112)))) (-3912 (*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-964)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-659)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-659))))) -(-13 (-550 (-517) |t#2|) (-557 (-1158 |t#2|)) (-10 -8 (-6 -4195) (-15 -3935 ($ (-1158 |t#2|))) (IF (|has| |t#2| (-1006)) (-6 (-381 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-964)) (PROGN (-6 (-106 |t#2| |t#2|)) (-6 (-205 |t#2|)) (-6 (-347 |t#2|)) (-15 -3622 ($ (-845))) (-15 -3912 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-123)) (-6 (-123)) |%noBranch|) (IF (|has| |t#2| (-659)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#2| (-156)) (PROGN (-6 (-37 |t#2|)) (-6 (-156))) |%noBranch|) (IF (|has| |t#2| (-6 -4192)) (-6 -4192) |%noBranch|) (IF (|has| |t#2| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |t#2| (-725)) (-6 (-725)) |%noBranch|) (IF (|has| |t#2| (-333)) (-6 (-1165 |t#2|)) |%noBranch|))) -(((-21) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-23) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-25) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) -3786 (|has| |#2| (-1006)) (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-106 |#2| |#2|) -3786 (|has| |#2| (-964)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-106 $ $) |has| |#2| (-156)) ((-123) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-557 (-787)) -3786 (|has| |#2| (-1006)) (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-557 (-787))) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-557 (-1158 |#2|)) . T) ((-156) |has| |#2| (-156)) ((-205 |#2|) |has| |#2| (-964)) ((-207) -12 (|has| |#2| (-207)) (|has| |#2| (-964))) ((-258 #0=(-517) |#2|) . T) ((-260 #0# |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-338) |has| |#2| (-338)) ((-347 |#2|) |has| |#2| (-964)) ((-381 |#2|) |has| |#2| (-1006)) ((-456 |#2|) . T) ((-550 #0# |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-585 |#2|) -3786 (|has| |#2| (-964)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-585 $) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-579 (-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964))) ((-579 |#2|) |has| |#2| (-964)) ((-650 |#2|) -3786 (|has| |#2| (-333)) (|has| |#2| (-156))) ((-659) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-723) |has| |#2| (-777)) ((-724) -3786 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-725) |has| |#2| (-725)) ((-726) -3786 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-727) -3786 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-777) |has| |#2| (-777)) ((-779) -3786 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-824 (-1077)) -12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964))) ((-955 (-377 (-517))) -12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006))) ((-955 (-517)) -12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) ((-955 |#2|) |has| |#2| (-1006)) ((-970 |#2|) -3786 (|has| |#2| (-964)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-970 $) |has| |#2| (-156)) ((-964) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-971) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1018) -3786 (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1006) -3786 (|has| |#2| (-1006)) (|has| |#2| (-964)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-1112) . T) ((-1165 |#2|) |has| |#2| (-333))) -((-1250 (((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 21)) (-1510 ((|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 23)) (-3312 (((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)) 18))) -(((-213 |#1| |#2| |#3|) (-10 -7 (-15 -1250 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1510 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3312 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)))) (-703) (-1112) (-1112)) (T -213)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1112)) (-4 *2 (-1112)) (-5 *1 (-213 *5 *6 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1112)) (-4 *5 (-1112)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5))))) -(-10 -7 (-15 -1250 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1510 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3312 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)))) -((-2105 (((-107) $ $) NIL (|has| |#2| (-1006)))) (-1992 (((-107) $) NIL (|has| |#2| (-123)))) (-3622 (($ (-845)) 56 (|has| |#2| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) 60 (|has| |#2| (-725)))) (-1783 (((-3 $ "failed") $ $) 48 (|has| |#2| (-123)))) (-3443 (((-107) $ (-703)) 17)) (-2390 (((-703)) NIL (|has| |#2| (-338)))) (-3502 (((-517) $) NIL (|has| |#2| (-777)))) (-2436 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1006)))) (-3402 (((-517) $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) ((|#2| $) 27 (|has| |#2| (-1006)))) (-2947 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL (|has| |#2| (-964))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-964)))) (-3550 (((-3 $ "failed") $) 53 (|has| |#2| (-964)))) (-2192 (($) NIL (|has| |#2| (-338)))) (-2750 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ (-517)) 51)) (-2671 (((-107) $) NIL (|has| |#2| (-777)))) (-1525 (((-583 |#2|) $) 15 (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#2| (-964)))) (-2321 (((-107) $) NIL (|has| |#2| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 20 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-3687 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 (((-517) $) 50 (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2737 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2|) $) 41)) (-4161 (((-845) $) NIL (|has| |#2| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#2| (-1006)))) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#2| (-338)))) (-4130 (((-1024) $) NIL (|has| |#2| (-1006)))) (-2420 ((|#2| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#2|) $) 24 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) 21)) (-3912 ((|#2| $ $) NIL (|has| |#2| (-964)))) (-3935 (($ (-1158 |#2|)) 18)) (-1470 (((-125)) NIL (|has| |#2| (-333)))) (-2042 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-4140 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#2|) $) 10) (($ (-517)) NIL (-3786 (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (|has| |#2| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (($ |#2|) 13 (|has| |#2| (-1006))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-1818 (((-703)) NIL (|has| |#2| (-964)))) (-1272 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#2| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (-3663 (($) 35 (|has| |#2| (-123)) CONST)) (-3675 (($) 38 (|has| |#2| (-964)) CONST)) (-3348 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) 26 (|has| |#2| (-1006)))) (-1618 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1596 (((-107) $ $) 58 (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $ $) NIL (|has| |#2| (-964))) (($ $) NIL (|has| |#2| (-964)))) (-1666 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (* (($ $ $) 49 (|has| |#2| (-964))) (($ (-517) $) NIL (|has| |#2| (-964))) (($ $ |#2|) 42 (|has| |#2| (-659))) (($ |#2| $) 43 (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-845) $) NIL (|has| |#2| (-25)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-214 |#1| |#2|) (-212 |#1| |#2|) (-703) (-1112)) (T -214)) -NIL -(-212 |#1| |#2|) -((-2824 (((-517) (-583 (-1060))) 24) (((-517) (-1060)) 19)) (-1886 (((-1163) (-583 (-1060))) 29) (((-1163) (-1060)) 28)) (-4171 (((-1060)) 14)) (-2719 (((-1060) (-517) (-1060)) 16)) (-3605 (((-583 (-1060)) (-583 (-1060)) (-517) (-1060)) 25) (((-1060) (-1060) (-517) (-1060)) 23)) (-3519 (((-583 (-1060)) (-583 (-1060))) 13) (((-583 (-1060)) (-1060)) 11))) -(((-215) (-10 -7 (-15 -3519 ((-583 (-1060)) (-1060))) (-15 -3519 ((-583 (-1060)) (-583 (-1060)))) (-15 -4171 ((-1060))) (-15 -2719 ((-1060) (-517) (-1060))) (-15 -3605 ((-1060) (-1060) (-517) (-1060))) (-15 -3605 ((-583 (-1060)) (-583 (-1060)) (-517) (-1060))) (-15 -1886 ((-1163) (-1060))) (-15 -1886 ((-1163) (-583 (-1060)))) (-15 -2824 ((-517) (-1060))) (-15 -2824 ((-517) (-583 (-1060)))))) (T -215)) -((-2824 (*1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-517)) (-5 *1 (-215)))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-517)) (-5 *1 (-215)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1163)) (-5 *1 (-215)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-215)))) (-3605 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1060))) (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *1 (-215)))) (-3605 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-215)))) (-2719 (*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-215)))) (-4171 (*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-215)))) (-3519 (*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-215)))) (-3519 (*1 *2 *3) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-215)) (-5 *3 (-1060))))) -(-10 -7 (-15 -3519 ((-583 (-1060)) (-1060))) (-15 -3519 ((-583 (-1060)) (-583 (-1060)))) (-15 -4171 ((-1060))) (-15 -2719 ((-1060) (-517) (-1060))) (-15 -3605 ((-1060) (-1060) (-517) (-1060))) (-15 -3605 ((-583 (-1060)) (-583 (-1060)) (-517) (-1060))) (-15 -1886 ((-1163) (-1060))) (-15 -1886 ((-1163) (-583 (-1060)))) (-15 -2824 ((-517) (-1060))) (-15 -2824 ((-517) (-583 (-1060))))) -((-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 9)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 18)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) 25) (($ $ (-377 (-517))) NIL))) -(((-216 |#1|) (-10 -8 (-15 -2806 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2806 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 -2806 (|#1| |#1| (-845))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) (-217)) (T -216)) -NIL -(-10 -8 (-15 -2806 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2806 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 -2806 (|#1| |#1| (-845))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 39)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 44)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 40)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 41)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 43) (($ $ (-377 (-517))) 42))) -(((-217) (-1189)) (T -217)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2806 (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2291 (*1 *1 *1) (-4 *1 (-217)))) -(-13 (-262) (-37 (-377 (-517))) (-10 -8 (-15 ** ($ $ (-517))) (-15 -2806 ($ $ (-517))) (-15 -2291 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-262) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-659) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-1529 (($ $) 57)) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-2548 (($ $ $) 53 (|has| $ (-6 -4196)))) (-2220 (($ $ $) 52 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-4129 (($ $) 56)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-3487 (($ $) 55)) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1447 ((|#1| $) 59)) (-2415 (($ $) 58)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47)) (-3868 (((-517) $ $) 44)) (-1414 (((-107) $) 46)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3495 (($ $ $) 54 (|has| $ (-6 -4196)))) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-218 |#1|) (-1189) (-1112)) (T -218)) -((-1447 (*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-2415 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-1529 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-3487 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-3495 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-2548 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112)))) (-2220 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112))))) -(-13 (-929 |t#1|) (-10 -8 (-15 -1447 (|t#1| $)) (-15 -2415 ($ $)) (-15 -1529 ($ $)) (-15 -4129 ($ $)) (-15 -3487 ($ $)) (IF (|has| $ (-6 -4196)) (PROGN (-15 -3495 ($ $ $)) (-15 -2548 ($ $ $)) (-15 -2220 ($ $ $))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) NIL)) (-2577 ((|#1| $) NIL)) (-1529 (($ $) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-4109 (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-2149 (($ $) 10 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1223 (($ $ $) NIL (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "rest" $) NIL (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2567 ((|#1| $) NIL)) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2429 (($ $) NIL) (($ $ (-703)) NIL)) (-3081 (($ $) NIL (|has| |#1| (-1006)))) (-2446 (($ $) 7 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) NIL (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1210 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006))) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2785 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3824 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2315 (($ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1447 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3439 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-2611 (((-107) $) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1125 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-703) $ "count") 16)) (-3868 (((-517) $ $) NIL)) (-1921 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-2241 (($ (-583 |#1|)) 22)) (-1414 (((-107) $) NIL)) (-2074 (($ $) NIL)) (-4155 (($ $) NIL (|has| $ (-6 -4196)))) (-2792 (((-703) $) NIL)) (-2736 (($ $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-3495 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4117 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2262 (($ (-583 |#1|)) 17) (((-583 |#1|) $) 18) (((-787) $) 21 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) 14 (|has| $ (-6 -4195))))) -(((-219 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2262 ($ (-583 |#1|))) (-15 -2262 ((-583 |#1|) $)) (-15 -2241 ($ (-583 |#1|))) (-15 -2612 ($ $ "unique")) (-15 -2612 ($ $ "sort")) (-15 -2612 ((-703) $ "count")))) (-779)) (T -219)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2241 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779))))) -(-13 (-603 |#1|) (-10 -8 (-15 -2262 ($ (-583 |#1|))) (-15 -2262 ((-583 |#1|) $)) (-15 -2241 ($ (-583 |#1|))) (-15 -2612 ($ $ "unique")) (-15 -2612 ($ $ "sort")) (-15 -2612 ((-703) $ "count")))) -((-2913 (((-3 (-703) "failed") |#1| |#1| (-703)) 27))) -(((-220 |#1|) (-10 -7 (-15 -2913 ((-3 (-703) "failed") |#1| |#1| (-703)))) (-13 (-659) (-338) (-10 -7 (-15 ** (|#1| |#1| (-517)))))) (T -220)) -((-2913 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3))))) -(-10 -7 (-15 -2913 ((-3 (-703) "failed") |#1| |#1| (-703)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-789 |#1|)) $) NIL)) (-1428 (((-1073 $) $ (-789 |#1|)) NIL) (((-1073 |#2|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2491 (($ $) NIL (|has| |#2| (-509)))) (-2025 (((-107) $) NIL (|has| |#2| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL (|has| |#2| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-789 |#1|) $) NIL)) (-2133 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3069 (($ $ (-583 (-517))) NIL)) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#2| (-833)))) (-1760 (($ $ |#2| (-214 (-3573 |#1|) (-703)) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#2|) (-789 |#1|)) NIL) (($ (-1073 $) (-789 |#1|)) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#2| (-214 (-3573 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-789 |#1|)) NIL)) (-3942 (((-214 (-3573 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-1542 (($ (-1 (-214 (-3573 |#1|) (-703)) (-214 (-3573 |#1|) (-703))) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-1958 (((-3 (-789 |#1|) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#2| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -1725 (-703))) "failed") $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#2| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-833)))) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3115 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2042 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1191 (((-214 (-3573 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-214 (-3573 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-221 |#1| |#2|) (-13 (-873 |#2| (-214 (-3573 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517)))))) (-583 (-1077)) (-964)) (T -221)) -((-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1077))) (-4 *4 (-964))))) -(-13 (-873 |#2| (-214 (-3573 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517)))))) -((-1268 (((-1163) $) 13)) (-2267 (((-1082) $) 11)) (-2262 (((-787) $) 7))) -(((-222) (-13 (-557 (-787)) (-10 -8 (-15 -2267 ((-1082) $)) (-15 -1268 ((-1163) $))))) (T -222)) -((-2267 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-222)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-222))))) -(-13 (-557 (-787)) (-10 -8 (-15 -2267 ((-1082) $)) (-15 -1268 ((-1163) $)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3622 (($ (-845)) NIL (|has| |#4| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) NIL (|has| |#4| (-725)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#4| (-338)))) (-3502 (((-517) $) NIL (|has| |#4| (-777)))) (-2436 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1006))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#4| (-955 (-517))) (|has| |#4| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#4| (-955 (-377 (-517)))) (|has| |#4| (-1006))))) (-3402 ((|#4| $) NIL (|has| |#4| (-1006))) (((-517) $) NIL (-12 (|has| |#4| (-955 (-517))) (|has| |#4| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#4| (-955 (-377 (-517)))) (|has| |#4| (-1006))))) (-2947 (((-2 (|:| -3725 (-623 |#4|)) (|:| |vec| (-1158 |#4|))) (-623 $) (-1158 $)) NIL (|has| |#4| (-964))) (((-623 |#4|) (-623 $)) NIL (|has| |#4| (-964))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-964)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-964))))) (-3550 (((-3 $ "failed") $) NIL (|has| |#4| (-964)))) (-2192 (($) NIL (|has| |#4| (-338)))) (-2750 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#4| $ (-517)) NIL)) (-2671 (((-107) $) NIL (|has| |#4| (-777)))) (-1525 (((-583 |#4|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#4| (-964)))) (-2321 (((-107) $) NIL (|has| |#4| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-3687 (((-583 |#4|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-2737 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#4| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#4| (-338)))) (-4130 (((-1024) $) NIL)) (-2420 ((|#4| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#4|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2862 (((-583 |#4|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#4| $ (-517) |#4|) NIL) ((|#4| $ (-517)) 12)) (-3912 ((|#4| $ $) NIL (|has| |#4| (-964)))) (-3935 (($ (-1158 |#4|)) NIL)) (-1470 (((-125)) NIL (|has| |#4| (-333)))) (-2042 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-964))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-964)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-964))))) (-4140 (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195))) (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#4|) $) NIL) (((-787) $) NIL) (($ |#4|) NIL (|has| |#4| (-1006))) (($ (-517)) NIL (-3786 (-12 (|has| |#4| (-955 (-517))) (|has| |#4| (-1006))) (|has| |#4| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#4| (-955 (-377 (-517)))) (|has| |#4| (-1006))))) (-1818 (((-703)) NIL (|has| |#4| (-964)))) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#4| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#4| (-964))) (($ $ (-845)) NIL (|has| |#4| (-964)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL (|has| |#4| (-964)) CONST)) (-3348 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-964))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#4| (-824 (-1077))) (|has| |#4| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-964)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-964))))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1596 (((-107) $ $) NIL (-3786 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1692 (($ $ |#4|) NIL (|has| |#4| (-333)))) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#4| (-964))) (($ $ (-845)) NIL (|has| |#4| (-964)))) (* (($ |#2| $) 14) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-659))) (($ |#4| $) NIL (|has| |#4| (-659))) (($ $ $) NIL (|has| |#4| (-964)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-223 |#1| |#2| |#3| |#4|) (-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|)) (-845) (-964) (-1027 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-585 |#2|)) (T -223)) -NIL -(-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3622 (($ (-845)) NIL (|has| |#3| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) NIL (|has| |#3| (-725)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#3| (-338)))) (-3502 (((-517) $) NIL (|has| |#3| (-777)))) (-2436 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1006))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006))))) (-3402 ((|#3| $) NIL (|has| |#3| (-1006))) (((-517) $) NIL (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006))))) (-2947 (((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 $) (-1158 $)) NIL (|has| |#3| (-964))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-964))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964))))) (-3550 (((-3 $ "failed") $) NIL (|has| |#3| (-964)))) (-2192 (($) NIL (|has| |#3| (-338)))) (-2750 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#3| $ (-517)) NIL)) (-2671 (((-107) $) NIL (|has| |#3| (-777)))) (-1525 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#3| (-964)))) (-2321 (((-107) $) NIL (|has| |#3| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-3687 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2737 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#3| |#3|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#3| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#3| (-338)))) (-4130 (((-1024) $) NIL)) (-2420 ((|#3| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#3|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-2862 (((-583 |#3|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) 11)) (-3912 ((|#3| $ $) NIL (|has| |#3| (-964)))) (-3935 (($ (-1158 |#3|)) NIL)) (-1470 (((-125)) NIL (|has| |#3| (-333)))) (-2042 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-964))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964))))) (-4140 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#3|) $) NIL) (((-787) $) NIL) (($ |#3|) NIL (|has| |#3| (-1006))) (($ (-517)) NIL (-3786 (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006))) (|has| |#3| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006))))) (-1818 (((-703)) NIL (|has| |#3| (-964)))) (-1272 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#3| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#3| (-964))) (($ $ (-845)) NIL (|has| |#3| (-964)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL (|has| |#3| (-964)) CONST)) (-3348 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-964))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-964))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964))))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1596 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1692 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#3| (-964))) (($ $ (-845)) NIL (|has| |#3| (-964)))) (* (($ |#2| $) 13) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ $ $) NIL (|has| |#3| (-964)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-224 |#1| |#2| |#3|) (-13 (-212 |#1| |#3|) (-585 |#2|)) (-703) (-964) (-585 |#2|)) (T -224)) -NIL -(-13 (-212 |#1| |#3|) (-585 |#2|)) -((-3974 (((-583 (-703)) $) 47) (((-583 (-703)) $ |#3|) 50)) (-3546 (((-703) $) 49) (((-703) $ |#3|) 52)) (-2588 (($ $) 65)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3250 (((-703) $ |#3|) 39) (((-703) $) 36)) (-1203 (((-1 $ (-703)) |#3|) 15) (((-1 $ (-703)) $) 77)) (-3293 ((|#4| $) 58)) (-1724 (((-107) $) 56)) (-2617 (($ $) 64)) (-3552 (($ $ (-583 (-265 $))) 96) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-583 |#3|) (-583 |#2|)) 84)) (-2042 (($ $ |#4|) NIL) (($ $ (-583 |#4|)) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) NIL) (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2125 (((-583 |#3|) $) 75)) (-1191 ((|#5| $) NIL) (((-703) $ |#4|) NIL) (((-583 (-703)) $ (-583 |#4|)) NIL) (((-703) $ |#3|) 44)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-377 (-517))) NIL) (($ $) NIL))) -(((-225 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3552 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#3| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#3| |#1|)) (-15 -1203 ((-1 |#1| (-703)) |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2617 (|#1| |#1|)) (-15 -3293 (|#4| |#1|)) (-15 -1724 ((-107) |#1|)) (-15 -3546 ((-703) |#1| |#3|)) (-15 -3974 ((-583 (-703)) |#1| |#3|)) (-15 -3546 ((-703) |#1|)) (-15 -3974 ((-583 (-703)) |#1|)) (-15 -1191 ((-703) |#1| |#3|)) (-15 -3250 ((-703) |#1|)) (-15 -3250 ((-703) |#1| |#3|)) (-15 -2125 ((-583 |#3|) |#1|)) (-15 -1203 ((-1 |#1| (-703)) |#3|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -2262 (|#1| |#3|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -1191 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -1191 ((-703) |#1| |#4|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -2262 (|#1| |#4|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#4| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#4| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1191 (|#5| |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2042 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2042 (|#1| |#1| |#4| (-703))) (-15 -2042 (|#1| |#1| (-583 |#4|))) (-15 -2042 (|#1| |#1| |#4|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-226 |#2| |#3| |#4| |#5|) (-964) (-779) (-239 |#3|) (-725)) (T -225)) -NIL -(-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3552 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#3| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#3| |#1|)) (-15 -1203 ((-1 |#1| (-703)) |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2617 (|#1| |#1|)) (-15 -3293 (|#4| |#1|)) (-15 -1724 ((-107) |#1|)) (-15 -3546 ((-703) |#1| |#3|)) (-15 -3974 ((-583 (-703)) |#1| |#3|)) (-15 -3546 ((-703) |#1|)) (-15 -3974 ((-583 (-703)) |#1|)) (-15 -1191 ((-703) |#1| |#3|)) (-15 -3250 ((-703) |#1|)) (-15 -3250 ((-703) |#1| |#3|)) (-15 -2125 ((-583 |#3|) |#1|)) (-15 -1203 ((-1 |#1| (-703)) |#3|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -2262 (|#1| |#3|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -1191 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -1191 ((-703) |#1| |#4|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -2262 (|#1| |#4|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#4| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#4| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1191 (|#5| |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2042 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2042 (|#1| |#1| |#4| (-703))) (-15 -2042 (|#1| |#1| (-583 |#4|))) (-15 -2042 (|#1| |#1| |#4|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3974 (((-583 (-703)) $) 214) (((-583 (-703)) $ |#2|) 212)) (-3546 (((-703) $) 213) (((-703) $ |#2|) 211)) (-2080 (((-583 |#3|) $) 110)) (-1428 (((-1073 $) $ |#3|) 125) (((-1073 |#1|) $) 124)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2491 (($ $) 88 (|has| |#1| (-509)))) (-2025 (((-107) $) 90 (|has| |#1| (-509)))) (-2675 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 100 (|has| |#1| (-833)))) (-1322 (($ $) 98 (|has| |#1| (-421)))) (-3306 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 103 (|has| |#1| (-833)))) (-2588 (($ $) 207)) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-955 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3402 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-955 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-955 (-517)))) ((|#3| $) 135) ((|#2| $) 220)) (-2133 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-2364 (($ $) 154)) (-2947 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3550 (((-3 $ "failed") $) 34)) (-4172 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2350 (((-583 $) $) 109)) (-2022 (((-107) $) 96 (|has| |#1| (-833)))) (-1760 (($ $ |#1| |#4| $) 172)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 84 (-12 (|has| |#3| (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 83 (-12 (|has| |#3| (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ |#2|) 217) (((-703) $) 216)) (-1690 (((-107) $) 31)) (-2516 (((-703) $) 169)) (-2069 (($ (-1073 |#1|) |#3|) 117) (($ (-1073 $) |#3|) 116)) (-1300 (((-583 $) $) 126)) (-3022 (((-107) $) 152)) (-2059 (($ |#1| |#4|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#3|) 120)) (-3942 ((|#4| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3480 (($ $ $) 79 (|has| |#1| (-779)))) (-4095 (($ $ $) 78 (|has| |#1| (-779)))) (-1542 (($ (-1 |#4| |#4|) $) 171)) (-3312 (($ (-1 |#1| |#1|) $) 151)) (-1203 (((-1 $ (-703)) |#2|) 219) (((-1 $ (-703)) $) 206 (|has| |#1| (-207)))) (-1958 (((-3 |#3| "failed") $) 123)) (-2325 (($ $) 149)) (-2336 ((|#1| $) 148)) (-3293 ((|#3| $) 209)) (-2323 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3232 (((-1060) $) 9)) (-1724 (((-107) $) 210)) (-1743 (((-3 (-583 $) "failed") $) 114)) (-1442 (((-3 (-583 $) "failed") $) 115)) (-3044 (((-3 (-2 (|:| |var| |#3|) (|:| -1725 (-703))) "failed") $) 113)) (-2617 (($ $) 208)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 166)) (-2311 ((|#1| $) 167)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 95 (|has| |#1| (-421)))) (-2361 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 102 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 101 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 99 (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) 204 (|has| |#1| (-207))) (($ $ |#2| |#1|) 203 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) 202 (|has| |#1| (-207)))) (-3115 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2042 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39) (($ $) 238 (|has| |#1| (-207))) (($ $ (-703)) 236 (|has| |#1| (-207))) (($ $ (-1077)) 234 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 233 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 232 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 231 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2125 (((-583 |#2|) $) 218)) (-1191 ((|#4| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129) (((-703) $ |#2|) 215)) (-3367 (((-816 (-349)) $) 82 (-12 (|has| |#3| (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) 81 (-12 (|has| |#3| (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 104 (-4024 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-377 (-517))) 72 (-3786 (|has| |#1| (-955 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) 168)) (-1939 ((|#1| $ |#4|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-3385 (((-3 $ "failed") $) 73 (-3786 (-4024 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 29)) (-2308 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35) (($ $) 237 (|has| |#1| (-207))) (($ $ (-703)) 235 (|has| |#1| (-207))) (($ $ (-1077)) 230 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 229 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 228 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 227 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1630 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-226 |#1| |#2| |#3| |#4|) (-1189) (-964) (-779) (-239 |t#2|) (-725)) (T -226)) -((-1203 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))) (-3250 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-1191 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-3546 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3974 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-3546 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))) (-2617 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-964)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-2588 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-964)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-1203 (*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6))))) -(-13 (-873 |t#1| |t#4| |t#3|) (-205 |t#1|) (-955 |t#2|) (-10 -8 (-15 -1203 ((-1 $ (-703)) |t#2|)) (-15 -2125 ((-583 |t#2|) $)) (-15 -3250 ((-703) $ |t#2|)) (-15 -3250 ((-703) $)) (-15 -1191 ((-703) $ |t#2|)) (-15 -3974 ((-583 (-703)) $)) (-15 -3546 ((-703) $)) (-15 -3974 ((-583 (-703)) $ |t#2|)) (-15 -3546 ((-703) $ |t#2|)) (-15 -1724 ((-107) $)) (-15 -3293 (|t#3| $)) (-15 -2617 ($ $)) (-15 -2588 ($ $)) (IF (|has| |t#1| (-207)) (PROGN (-6 (-478 |t#2| |t#1|)) (-6 (-478 |t#2| $)) (-6 (-280 $)) (-15 -1203 ((-1 $ (-703)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#3| (-558 (-816 (-349))))) ((-558 (-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#3| (-558 (-816 (-517))))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-262) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#4|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-833)) (|has| |#1| (-421))) ((-478 |#2| |#1|) |has| |#1| (-207)) ((-478 |#2| $) |has| |#1| (-207)) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-824 |#3|) . T) ((-810 (-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#3| (-810 (-349)))) ((-810 (-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#3| (-810 (-517)))) ((-873 |#1| |#4| |#3|) . T) ((-833) |has| |#1| (-833)) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-955 |#2|) . T) ((-955 |#3|) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) |has| |#1| (-833))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-4120 ((|#1| $) 54)) (-2544 ((|#1| $) 44)) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-2205 (($ $) 60)) (-3797 (($ $) 48)) (-2098 ((|#1| |#1| $) 46)) (-3409 ((|#1| $) 45)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3728 (((-703) $) 61)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-4013 ((|#1| |#1| $) 52)) (-2289 ((|#1| |#1| $) 51)) (-3439 (($ |#1| $) 40)) (-1795 (((-703) $) 55)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1319 ((|#1| $) 62)) (-1545 ((|#1| $) 50)) (-3178 ((|#1| $) 49)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-3461 ((|#1| |#1| $) 58)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1903 ((|#1| $) 59)) (-1785 (($) 57) (($ (-583 |#1|)) 56)) (-3137 (((-703) $) 43)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3359 ((|#1| $) 53)) (-2729 (($ (-583 |#1|)) 42)) (-2522 ((|#1| $) 63)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-227 |#1|) (-1189) (-1112)) (T -227)) -((-1785 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-227 *3)))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-4013 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-2289 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112))))) -(-13 (-1025 |t#1|) (-914 |t#1|) (-10 -8 (-15 -1785 ($)) (-15 -1785 ($ (-583 |t#1|))) (-15 -1795 ((-703) $)) (-15 -4120 (|t#1| $)) (-15 -3359 (|t#1| $)) (-15 -4013 (|t#1| |t#1| $)) (-15 -2289 (|t#1| |t#1| $)) (-15 -1545 (|t#1| $)) (-15 -3178 (|t#1| $)) (-15 -3797 ($ $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-914 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1025 |#1|) . T) ((-1112) . T)) -((-1786 (((-1 (-867 (-199)) (-199) (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 139)) (-1539 (((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349))) 160) (((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 158) (((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349))) 163) (((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 159) (((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349))) 150) (((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 149) (((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349))) 129) (((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236))) 127) (((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349))) 128) (((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236))) 125)) (-1483 (((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349))) 162) (((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 161) (((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349))) 165) (((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 164) (((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349))) 152) (((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236))) 151) (((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349))) 135) (((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236))) 134) (((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349))) 133) (((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236))) 132) (((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349))) 99) (((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236))) 98) (((-1159) (-1 (-199) (-199)) (-1001 (-349))) 95) (((-1159) (-1 (-199) (-199)) (-1001 (-349)) (-583 (-236))) 94))) -(((-228) (-10 -7 (-15 -1483 ((-1159) (-1 (-199) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-1 (-199) (-199)) (-1001 (-349)))) (-15 -1483 ((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1483 ((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1483 ((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)))) (-15 -1786 ((-1 (-867 (-199)) (-199) (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -228)) -((-1786 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-867 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1539 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-801 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-801 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *2 (-1159)) (-5 *1 (-228)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1001 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228))))) -(-10 -7 (-15 -1483 ((-1159) (-1 (-199) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-1 (-199) (-199)) (-1001 (-349)))) (-15 -1483 ((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-801 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1483 ((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-803 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-803 (-1 (-199) (-199))) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199)) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-349)) (-1001 (-349)))) (-15 -1483 ((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)))) (-15 -1539 ((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-806 (-1 (-199) (-199) (-199))) (-1001 (-349)) (-1001 (-349)))) (-15 -1786 ((-1 (-867 (-199)) (-199) (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))))) -((-1483 (((-1159) (-265 |#2|) (-1077) (-1077) (-583 (-236))) 93))) -(((-229 |#1| |#2|) (-10 -7 (-15 -1483 ((-1159) (-265 |#2|) (-1077) (-1077) (-583 (-236))))) (-13 (-509) (-779) (-955 (-517))) (-400 |#1|)) (T -229)) -((-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1077)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-1159)) (-5 *1 (-229 *6 *7))))) -(-10 -7 (-15 -1483 ((-1159) (-265 |#2|) (-1077) (-1077) (-583 (-236))))) -((-1599 (((-517) (-517)) 50)) (-2379 (((-517) (-517)) 51)) (-1559 (((-199) (-199)) 52)) (-1327 (((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199))) 49)) (-2414 (((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199)) (-107)) 47))) -(((-230) (-10 -7 (-15 -2414 ((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199)) (-107))) (-15 -1327 ((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199)))) (-15 -1599 ((-517) (-517))) (-15 -2379 ((-517) (-517))) (-15 -1559 ((-199) (-199))))) (T -230)) -((-1559 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-1599 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-1327 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1001 (-199))) (-5 *2 (-1160)) (-5 *1 (-230)))) (-2414 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1001 (-199))) (-5 *5 (-107)) (-5 *2 (-1160)) (-5 *1 (-230))))) -(-10 -7 (-15 -2414 ((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199)) (-107))) (-15 -1327 ((-1160) (-1 (-153 (-199)) (-153 (-199))) (-1001 (-199)) (-1001 (-199)))) (-15 -1599 ((-517) (-517))) (-15 -2379 ((-517) (-517))) (-15 -1559 ((-199) (-199)))) -((-2262 (((-999 (-349)) (-999 (-286 |#1|))) 16))) -(((-231 |#1|) (-10 -7 (-15 -2262 ((-999 (-349)) (-999 (-286 |#1|))))) (-13 (-779) (-509) (-558 (-349)))) (T -231)) -((-2262 (*1 *2 *3) (-12 (-5 *3 (-999 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-999 (-349))) (-5 *1 (-231 *4))))) -(-10 -7 (-15 -2262 ((-999 (-349)) (-999 (-286 |#1|))))) -((-1539 (((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349))) 69) (((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236))) 68) (((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349))) 59) (((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236))) 58) (((-1037 (-199)) (-803 |#1|) (-999 (-349))) 50) (((-1037 (-199)) (-803 |#1|) (-999 (-349)) (-583 (-236))) 49)) (-1483 (((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349))) 72) (((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236))) 71) (((-1160) |#1| (-999 (-349)) (-999 (-349))) 62) (((-1160) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236))) 61) (((-1160) (-803 |#1|) (-999 (-349))) 54) (((-1160) (-803 |#1|) (-999 (-349)) (-583 (-236))) 53) (((-1159) (-801 |#1|) (-999 (-349))) 41) (((-1159) (-801 |#1|) (-999 (-349)) (-583 (-236))) 40) (((-1159) |#1| (-999 (-349))) 33) (((-1159) |#1| (-999 (-349)) (-583 (-236))) 32))) -(((-232 |#1|) (-10 -7 (-15 -1483 ((-1159) |#1| (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) |#1| (-999 (-349)))) (-15 -1483 ((-1159) (-801 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-801 |#1|) (-999 (-349)))) (-15 -1483 ((-1160) (-803 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-803 |#1|) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) (-803 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-803 |#1|) (-999 (-349)))) (-15 -1483 ((-1160) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) |#1| (-999 (-349)) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349)))) (-15 -1483 ((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349))))) (-13 (-558 (-493)) (-1006))) (T -232)) -((-1539 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-806 *5)) (-5 *4 (-999 (-349))) (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *5)))) (-1539 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-806 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *6)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-806 *5)) (-5 *4 (-999 (-349))) (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) (-5 *1 (-232 *5)))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-806 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) (-5 *1 (-232 *6)))) (-1539 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) (-1539 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1160)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) (-1483 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-803 *5)) (-5 *4 (-999 (-349))) (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *5)))) (-1539 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-803 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *6)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-803 *5)) (-5 *4 (-999 (-349))) (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) (-5 *1 (-232 *5)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-803 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) (-5 *1 (-232 *6)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-801 *5)) (-5 *4 (-999 (-349))) (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1159)) (-5 *1 (-232 *5)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-801 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1159)) (-5 *1 (-232 *6)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1159)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) (-1483 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006)))))) -(-10 -7 (-15 -1483 ((-1159) |#1| (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) |#1| (-999 (-349)))) (-15 -1483 ((-1159) (-801 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1159) (-801 |#1|) (-999 (-349)))) (-15 -1483 ((-1160) (-803 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-803 |#1|) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) (-803 |#1|) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-803 |#1|) (-999 (-349)))) (-15 -1483 ((-1160) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) |#1| (-999 (-349)) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) |#1| (-999 (-349)) (-999 (-349)))) (-15 -1483 ((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1483 ((-1160) (-806 |#1|) (-999 (-349)) (-999 (-349)))) (-15 -1539 ((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349)) (-583 (-236)))) (-15 -1539 ((-1037 (-199)) (-806 |#1|) (-999 (-349)) (-999 (-349))))) -((-1483 (((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236))) 21) (((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199))) 22) (((-1159) (-583 (-867 (-199))) (-583 (-236))) 13) (((-1159) (-583 (-867 (-199)))) 14) (((-1159) (-583 (-199)) (-583 (-199)) (-583 (-236))) 18) (((-1159) (-583 (-199)) (-583 (-199))) 19))) -(((-233) (-10 -7 (-15 -1483 ((-1159) (-583 (-199)) (-583 (-199)))) (-15 -1483 ((-1159) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1483 ((-1159) (-583 (-867 (-199))))) (-15 -1483 ((-1159) (-583 (-867 (-199))) (-583 (-236)))) (-15 -1483 ((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1483 ((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))) (T -233)) -((-1483 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-233)))) (-1483 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1160)) (-5 *1 (-233)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-233)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *2 (-1159)) (-5 *1 (-233)))) (-1483 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-233)))) (-1483 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1159)) (-5 *1 (-233))))) -(-10 -7 (-15 -1483 ((-1159) (-583 (-199)) (-583 (-199)))) (-15 -1483 ((-1159) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1483 ((-1159) (-583 (-867 (-199))))) (-15 -1483 ((-1159) (-583 (-867 (-199))) (-583 (-236)))) (-15 -1483 ((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1483 ((-1160) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236))))) -((-3427 (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 24)) (-4160 (((-845) (-583 (-236)) (-845)) 49)) (-4015 (((-845) (-583 (-236)) (-845)) 48)) (-2464 (((-583 (-349)) (-583 (-236)) (-583 (-349))) 65)) (-3267 (((-349) (-583 (-236)) (-349)) 55)) (-1424 (((-845) (-583 (-236)) (-845)) 50)) (-4050 (((-107) (-583 (-236)) (-107)) 26)) (-3086 (((-1060) (-583 (-236)) (-1060)) 19)) (-3806 (((-1060) (-583 (-236)) (-1060)) 25)) (-3380 (((-1037 (-199)) (-583 (-236))) 43)) (-1781 (((-583 (-1001 (-349))) (-583 (-236)) (-583 (-1001 (-349)))) 37)) (-2596 (((-798) (-583 (-236)) (-798)) 31)) (-3926 (((-798) (-583 (-236)) (-798)) 32)) (-2077 (((-1 (-867 (-199)) (-867 (-199))) (-583 (-236)) (-1 (-867 (-199)) (-867 (-199)))) 60)) (-4131 (((-107) (-583 (-236)) (-107)) 15)) (-3941 (((-107) (-583 (-236)) (-107)) 14))) -(((-234) (-10 -7 (-15 -3941 ((-107) (-583 (-236)) (-107))) (-15 -4131 ((-107) (-583 (-236)) (-107))) (-15 -3427 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3086 ((-1060) (-583 (-236)) (-1060))) (-15 -3806 ((-1060) (-583 (-236)) (-1060))) (-15 -4050 ((-107) (-583 (-236)) (-107))) (-15 -2596 ((-798) (-583 (-236)) (-798))) (-15 -3926 ((-798) (-583 (-236)) (-798))) (-15 -1781 ((-583 (-1001 (-349))) (-583 (-236)) (-583 (-1001 (-349))))) (-15 -4015 ((-845) (-583 (-236)) (-845))) (-15 -4160 ((-845) (-583 (-236)) (-845))) (-15 -3380 ((-1037 (-199)) (-583 (-236)))) (-15 -1424 ((-845) (-583 (-236)) (-845))) (-15 -3267 ((-349) (-583 (-236)) (-349))) (-15 -2077 ((-1 (-867 (-199)) (-867 (-199))) (-583 (-236)) (-1 (-867 (-199)) (-867 (-199))))) (-15 -2464 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))) (T -234)) -((-2464 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2077 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3267 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1424 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-234)))) (-4160 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4015 (*1 *2 *3 *2) (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1781 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3926 (*1 *2 *3 *2) (-12 (-5 *2 (-798)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2596 (*1 *2 *3 *2) (-12 (-5 *2 (-798)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4050 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3806 (*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3086 (*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3427 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4131 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3941 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))) -(-10 -7 (-15 -3941 ((-107) (-583 (-236)) (-107))) (-15 -4131 ((-107) (-583 (-236)) (-107))) (-15 -3427 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3086 ((-1060) (-583 (-236)) (-1060))) (-15 -3806 ((-1060) (-583 (-236)) (-1060))) (-15 -4050 ((-107) (-583 (-236)) (-107))) (-15 -2596 ((-798) (-583 (-236)) (-798))) (-15 -3926 ((-798) (-583 (-236)) (-798))) (-15 -1781 ((-583 (-1001 (-349))) (-583 (-236)) (-583 (-1001 (-349))))) (-15 -4015 ((-845) (-583 (-236)) (-845))) (-15 -4160 ((-845) (-583 (-236)) (-845))) (-15 -3380 ((-1037 (-199)) (-583 (-236)))) (-15 -1424 ((-845) (-583 (-236)) (-845))) (-15 -3267 ((-349) (-583 (-236)) (-349))) (-15 -2077 ((-1 (-867 (-199)) (-867 (-199))) (-583 (-236)) (-1 (-867 (-199)) (-867 (-199))))) (-15 -2464 ((-583 (-349)) (-583 (-236)) (-583 (-349))))) -((-3151 (((-3 |#1| "failed") (-583 (-236)) (-1077)) 17))) -(((-235 |#1|) (-10 -7 (-15 -3151 ((-3 |#1| "failed") (-583 (-236)) (-1077)))) (-1112)) (T -235)) -((-3151 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1077)) (-5 *1 (-235 *2)) (-4 *2 (-1112))))) -(-10 -7 (-15 -3151 ((-3 |#1| "failed") (-583 (-236)) (-1077)))) -((-2105 (((-107) $ $) NIL)) (-3427 (($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 14)) (-4160 (($ (-845)) 70)) (-4015 (($ (-845)) 69)) (-1966 (($ (-583 (-349))) 76)) (-3267 (($ (-349)) 55)) (-1424 (($ (-845)) 71)) (-4050 (($ (-107)) 22)) (-3086 (($ (-1060)) 17)) (-3806 (($ (-1060)) 18)) (-3380 (($ (-1037 (-199))) 65)) (-1781 (($ (-583 (-1001 (-349)))) 61)) (-3177 (($ (-583 (-1001 (-349)))) 56) (($ (-583 (-1001 (-377 (-517))))) 60)) (-2330 (($ (-349)) 28) (($ (-798)) 32)) (-2678 (((-107) (-583 $) (-1077)) 85)) (-3151 (((-3 (-51) "failed") (-583 $) (-1077)) 87)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3590 (($ (-349)) 33) (($ (-798)) 34)) (-1372 (($ (-1 (-867 (-199)) (-867 (-199)))) 54)) (-2077 (($ (-1 (-867 (-199)) (-867 (-199)))) 72)) (-1484 (($ (-1 (-199) (-199))) 38) (($ (-1 (-199) (-199) (-199))) 42) (($ (-1 (-199) (-199) (-199) (-199))) 46)) (-2262 (((-787) $) 81)) (-3501 (($ (-107)) 23) (($ (-583 (-1001 (-349)))) 50)) (-3941 (($ (-107)) 24)) (-1572 (((-107) $ $) 83))) -(((-236) (-13 (-1006) (-10 -8 (-15 -3941 ($ (-107))) (-15 -3501 ($ (-107))) (-15 -3427 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3086 ($ (-1060))) (-15 -3806 ($ (-1060))) (-15 -4050 ($ (-107))) (-15 -3501 ($ (-583 (-1001 (-349))))) (-15 -1372 ($ (-1 (-867 (-199)) (-867 (-199))))) (-15 -2330 ($ (-349))) (-15 -2330 ($ (-798))) (-15 -3590 ($ (-349))) (-15 -3590 ($ (-798))) (-15 -1484 ($ (-1 (-199) (-199)))) (-15 -1484 ($ (-1 (-199) (-199) (-199)))) (-15 -1484 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3267 ($ (-349))) (-15 -3177 ($ (-583 (-1001 (-349))))) (-15 -3177 ($ (-583 (-1001 (-377 (-517)))))) (-15 -1781 ($ (-583 (-1001 (-349))))) (-15 -3380 ($ (-1037 (-199)))) (-15 -4015 ($ (-845))) (-15 -4160 ($ (-845))) (-15 -1424 ($ (-845))) (-15 -2077 ($ (-1 (-867 (-199)) (-867 (-199))))) (-15 -1966 ($ (-583 (-349)))) (-15 -3151 ((-3 (-51) "failed") (-583 $) (-1077))) (-15 -2678 ((-107) (-583 $) (-1077)))))) (T -236)) -((-3941 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3427 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) (-3086 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-236)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-236)))) (-4050 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236)))) (-1372 (*1 *1 *2) (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *1 (-236)))) (-2330 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2330 (*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-236)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) (-3267 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-3177 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236)))) (-3177 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-377 (-517))))) (-5 *1 (-236)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-236)))) (-4015 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236)))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236)))) (-1424 (*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236)))) (-2077 (*1 *1 *2) (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *1 (-236)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) (-3151 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1077)) (-5 *2 (-51)) (-5 *1 (-236)))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1077)) (-5 *2 (-107)) (-5 *1 (-236))))) -(-13 (-1006) (-10 -8 (-15 -3941 ($ (-107))) (-15 -3501 ($ (-107))) (-15 -3427 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3086 ($ (-1060))) (-15 -3806 ($ (-1060))) (-15 -4050 ($ (-107))) (-15 -3501 ($ (-583 (-1001 (-349))))) (-15 -1372 ($ (-1 (-867 (-199)) (-867 (-199))))) (-15 -2330 ($ (-349))) (-15 -2330 ($ (-798))) (-15 -3590 ($ (-349))) (-15 -3590 ($ (-798))) (-15 -1484 ($ (-1 (-199) (-199)))) (-15 -1484 ($ (-1 (-199) (-199) (-199)))) (-15 -1484 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3267 ($ (-349))) (-15 -3177 ($ (-583 (-1001 (-349))))) (-15 -3177 ($ (-583 (-1001 (-377 (-517)))))) (-15 -1781 ($ (-583 (-1001 (-349))))) (-15 -3380 ($ (-1037 (-199)))) (-15 -4015 ($ (-845))) (-15 -4160 ($ (-845))) (-15 -1424 ($ (-845))) (-15 -2077 ($ (-1 (-867 (-199)) (-867 (-199))))) (-15 -1966 ($ (-583 (-349)))) (-15 -3151 ((-3 (-51) "failed") (-583 $) (-1077))) (-15 -2678 ((-107) (-583 $) (-1077))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3974 (((-583 (-703)) $) NIL) (((-583 (-703)) $ |#2|) NIL)) (-3546 (((-703) $) NIL) (((-703) $ |#2|) NIL)) (-2080 (((-583 |#3|) $) NIL)) (-1428 (((-1073 $) $ |#3|) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 |#3|)) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-2588 (($ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1029 |#1| |#2|) "failed") $) 20)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1029 |#1| |#2|) $) NIL)) (-2133 (($ $ $ |#3|) NIL (|has| |#1| (-156)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-489 |#3|) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| |#1| (-810 (-349))) (|has| |#3| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| |#1| (-810 (-517))) (|has| |#3| (-810 (-517)))))) (-3250 (((-703) $ |#2|) NIL) (((-703) $) 10)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#1|) |#3|) NIL) (($ (-1073 $) |#3|) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#3|) NIL)) (-3942 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 |#3|) (-489 |#3|)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1203 (((-1 $ (-703)) |#2|) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1958 (((-3 |#3| "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3293 ((|#3| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1724 (((-107) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| |#3|) (|:| -1725 (-703))) "failed") $) NIL)) (-2617 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-583 |#3|) (-583 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-207))) (($ $ |#2| |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3115 (($ $ |#3|) NIL (|has| |#1| (-156)))) (-2042 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2125 (((-583 |#2|) $) NIL)) (-1191 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL) (((-703) $ |#2|) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#3| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#3| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1029 |#1| |#2|)) 28) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-237 |#1| |#2| |#3|) (-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-955 (-1029 |#1| |#2|))) (-964) (-779) (-239 |#2|)) (T -237)) -NIL -(-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-955 (-1029 |#1| |#2|))) -((-3546 (((-703) $) 30)) (-3220 (((-3 |#2| "failed") $) 17)) (-3402 ((|#2| $) 27)) (-2042 (($ $) 12) (($ $ (-703)) 15)) (-2262 (((-787) $) 26) (($ |#2|) 10)) (-1572 (((-107) $ $) 20)) (-1596 (((-107) $ $) 29))) -(((-238 |#1| |#2|) (-10 -8 (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3546 ((-703) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-239 |#2|) (-779)) (T -238)) -NIL -(-10 -8 (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3546 ((-703) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-3546 (((-703) $) 22)) (-3791 ((|#1| $) 23)) (-3220 (((-3 |#1| "failed") $) 27)) (-3402 ((|#1| $) 26)) (-3250 (((-703) $) 24)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-1203 (($ |#1| (-703)) 25)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2042 (($ $) 21) (($ $ (-703)) 20)) (-2262 (((-787) $) 11) (($ |#1|) 28)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18))) -(((-239 |#1|) (-1189) (-779)) (T -239)) -((-2262 (*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-1203 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3546 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-2042 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779))))) -(-13 (-779) (-955 |t#1|) (-10 -8 (-15 -1203 ($ |t#1| (-703))) (-15 -3250 ((-703) $)) (-15 -3791 (|t#1| $)) (-15 -3546 ((-703) $)) (-15 -2042 ($ $)) (-15 -2042 ($ $ (-703))) (-15 -2262 ($ |t#1|)))) -(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-955 |#1|) . T) ((-1006) . T)) -((-2080 (((-583 (-1077)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 40)) (-3375 (((-583 (-1077)) (-286 (-199)) (-703)) 79)) (-2826 (((-3 (-286 (-199)) "failed") (-286 (-199))) 50)) (-2757 (((-286 (-199)) (-286 (-199))) 65)) (-2467 (((-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 26)) (-2584 (((-107) (-583 (-286 (-199)))) 83)) (-1631 (((-107) (-286 (-199))) 24)) (-2189 (((-583 (-1060)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))))) 105)) (-3360 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 87)) (-2176 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 85)) (-2795 (((-623 (-199)) (-583 (-286 (-199))) (-703)) 94)) (-3460 (((-107) (-286 (-199))) 20) (((-107) (-583 (-286 (-199)))) 84)) (-3118 (((-583 (-199)) (-583 (-772 (-199))) (-199)) 14)) (-1237 (((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 100)) (-3645 (((-953) (-1077) (-953)) 33))) -(((-240) (-10 -7 (-15 -3118 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -2467 ((-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2826 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2757 ((-286 (-199)) (-286 (-199)))) (-15 -2584 ((-107) (-583 (-286 (-199))))) (-15 -3460 ((-107) (-583 (-286 (-199))))) (-15 -3460 ((-107) (-286 (-199)))) (-15 -2795 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -2176 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3360 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -1631 ((-107) (-286 (-199)))) (-15 -2080 ((-583 (-1077)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -3375 ((-583 (-1077)) (-286 (-199)) (-703))) (-15 -3645 ((-953) (-1077) (-953))) (-15 -1237 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -2189 ((-583 (-1060)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))))))) (T -240)) -((-2189 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))))) (-5 *2 (-583 (-1060))) (-5 *1 (-240)))) (-1237 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) (-3645 (*1 *2 *3 *2) (-12 (-5 *2 (-953)) (-5 *3 (-1077)) (-5 *1 (-240)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1077))) (-5 *1 (-240)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) (-5 *2 (-583 (-1077))) (-5 *1 (-240)))) (-1631 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3360 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-2826 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-2467 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240))))) -(-10 -7 (-15 -3118 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -2467 ((-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2826 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2757 ((-286 (-199)) (-286 (-199)))) (-15 -2584 ((-107) (-583 (-286 (-199))))) (-15 -3460 ((-107) (-583 (-286 (-199))))) (-15 -3460 ((-107) (-286 (-199)))) (-15 -2795 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -2176 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3360 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -1631 ((-107) (-286 (-199)))) (-15 -2080 ((-583 (-1077)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -3375 ((-583 (-1077)) (-286 (-199)) (-703))) (-15 -3645 ((-953) (-1077) (-953))) (-15 -1237 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -2189 ((-583 (-1060)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))))))) -((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 39)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 20) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-241) (-768)) (T -241)) -NIL -(-768) -((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 54) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 49)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 29) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 31)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-242) (-768)) (T -242)) -NIL -(-768) -((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 73) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 40) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 51)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-243) (-768)) (T -243)) -NIL -(-768) -((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 27) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-244) (-768)) (T -244)) -NIL -(-768) -((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-245) (-768)) (T -245)) -NIL -(-768) -((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-246) (-768)) (T -246)) -NIL -(-768) -((-2105 (((-107) $ $) NIL)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 73)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 19) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-247) (-768)) (T -247)) -NIL -(-768) -((-2105 (((-107) $ $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3837 (((-583 (-517)) $) 17)) (-1191 (((-703) $) 15)) (-2262 (((-787) $) 21) (($ (-583 (-517))) 13)) (-2512 (($ (-703)) 18)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 9)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 11))) -(((-248) (-13 (-779) (-10 -8 (-15 -2262 ($ (-583 (-517)))) (-15 -1191 ((-703) $)) (-15 -3837 ((-583 (-517)) $)) (-15 -2512 ($ (-703)))))) (T -248)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-1191 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-2512 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248))))) -(-13 (-779) (-10 -8 (-15 -2262 ($ (-583 (-517)))) (-15 -1191 ((-703) $)) (-15 -3837 ((-583 (-517)) $)) (-15 -2512 ($ (-703))))) -((-1636 ((|#2| |#2|) 77)) (-1482 ((|#2| |#2|) 65)) (-3755 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107))))) 116)) (-1612 ((|#2| |#2|) 75)) (-1459 ((|#2| |#2|) 63)) (-1659 ((|#2| |#2|) 79)) (-1508 ((|#2| |#2|) 67)) (-2102 ((|#2|) 46)) (-1325 (((-109) (-109)) 95)) (-1232 ((|#2| |#2|) 61)) (-3807 (((-107) |#2|) 134)) (-2123 ((|#2| |#2|) 180)) (-3596 ((|#2| |#2|) 156)) (-2971 ((|#2|) 59)) (-1365 ((|#2|) 58)) (-2568 ((|#2| |#2|) 176)) (-2656 ((|#2| |#2|) 152)) (-1880 ((|#2| |#2|) 184)) (-4136 ((|#2| |#2|) 160)) (-1845 ((|#2| |#2|) 148)) (-3457 ((|#2| |#2|) 150)) (-2752 ((|#2| |#2|) 186)) (-3100 ((|#2| |#2|) 162)) (-4035 ((|#2| |#2|) 182)) (-1236 ((|#2| |#2|) 158)) (-1928 ((|#2| |#2|) 178)) (-1269 ((|#2| |#2|) 154)) (-2186 ((|#2| |#2|) 192)) (-3282 ((|#2| |#2|) 168)) (-2738 ((|#2| |#2|) 188)) (-4051 ((|#2| |#2|) 164)) (-2412 ((|#2| |#2|) 196)) (-2275 ((|#2| |#2|) 172)) (-2859 ((|#2| |#2|) 198)) (-3979 ((|#2| |#2|) 174)) (-2490 ((|#2| |#2|) 194)) (-4086 ((|#2| |#2|) 170)) (-3276 ((|#2| |#2|) 190)) (-2493 ((|#2| |#2|) 166)) (-3898 ((|#2| |#2|) 62)) (-1670 ((|#2| |#2|) 80)) (-1521 ((|#2| |#2|) 68)) (-1647 ((|#2| |#2|) 78)) (-1495 ((|#2| |#2|) 66)) (-1622 ((|#2| |#2|) 76)) (-1471 ((|#2| |#2|) 64)) (-4116 (((-107) (-109)) 93)) (-1706 ((|#2| |#2|) 83)) (-1564 ((|#2| |#2|) 71)) (-1685 ((|#2| |#2|) 81)) (-1536 ((|#2| |#2|) 69)) (-3517 ((|#2| |#2|) 85)) (-1588 ((|#2| |#2|) 73)) (-2815 ((|#2| |#2|) 86)) (-1601 ((|#2| |#2|) 74)) (-1722 ((|#2| |#2|) 84)) (-1577 ((|#2| |#2|) 72)) (-1698 ((|#2| |#2|) 82)) (-1550 ((|#2| |#2|) 70))) -(((-249 |#1| |#2|) (-10 -7 (-15 -3898 (|#2| |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -1459 (|#2| |#2|)) (-15 -1471 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -1508 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -1636 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -3517 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2102 (|#2|)) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1365 (|#2|)) (-15 -2971 (|#2|)) (-15 -3457 (|#2| |#2|)) (-15 -1845 (|#2| |#2|)) (-15 -2656 (|#2| |#2|)) (-15 -1269 (|#2| |#2|)) (-15 -3596 (|#2| |#2|)) (-15 -1236 (|#2| |#2|)) (-15 -4136 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -3282 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -1928 (|#2| |#2|)) (-15 -2123 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -1880 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -2738 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -2186 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -2412 (|#2| |#2|)) (-15 -2859 (|#2| |#2|)) (-15 -3755 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3807 ((-107) |#2|))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-921))) (T -249)) -((-3807 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-921))))) (-3755 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-921))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))) (-2859 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2412 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2490 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2738 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2752 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1880 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-4035 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2123 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1928 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2568 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3979 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3282 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2493 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3100 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-4136 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1236 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3596 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1269 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2656 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1845 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3457 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-2971 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-1365 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-921))))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-921))))) (-2102 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3517 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1636 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1508 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1459 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921))))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-921)))))) -(-10 -7 (-15 -3898 (|#2| |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -1459 (|#2| |#2|)) (-15 -1471 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -1508 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1588 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1622 (|#2| |#2|)) (-15 -1636 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1698 (|#2| |#2|)) (-15 -1706 (|#2| |#2|)) (-15 -1722 (|#2| |#2|)) (-15 -3517 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2102 (|#2|)) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1365 (|#2|)) (-15 -2971 (|#2|)) (-15 -3457 (|#2| |#2|)) (-15 -1845 (|#2| |#2|)) (-15 -2656 (|#2| |#2|)) (-15 -1269 (|#2| |#2|)) (-15 -3596 (|#2| |#2|)) (-15 -1236 (|#2| |#2|)) (-15 -4136 (|#2| |#2|)) (-15 -3100 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -3282 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -1928 (|#2| |#2|)) (-15 -2123 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -1880 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -2738 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -2186 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -2412 (|#2| |#2|)) (-15 -2859 (|#2| |#2|)) (-15 -3755 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3807 ((-107) |#2|))) -((-1998 (((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1077)) 133)) (-1913 ((|#2| (-377 (-517)) |#2|) 50)) (-3923 ((|#2| |#2| (-556 |#2|)) 126)) (-1276 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1077)) 125)) (-3190 ((|#2| |#2| (-1077)) 19) ((|#2| |#2|) 22)) (-1450 ((|#2| |#2| (-1077)) 139) ((|#2| |#2|) 137))) -(((-250 |#1| |#2|) (-10 -7 (-15 -1450 (|#2| |#2|)) (-15 -1450 (|#2| |#2| (-1077))) (-15 -1276 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1077))) (-15 -3190 (|#2| |#2|)) (-15 -3190 (|#2| |#2| (-1077))) (-15 -1998 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1077))) (-15 -3923 (|#2| |#2| (-556 |#2|))) (-15 -1913 (|#2| (-377 (-517)) |#2|))) (-13 (-509) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -250)) -((-1913 (*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-3923 (*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))) (-1998 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1077)) (-4 *2 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-3190 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) (-1276 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-1450 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-1450 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3)))))) -(-10 -7 (-15 -1450 (|#2| |#2|)) (-15 -1450 (|#2| |#2| (-1077))) (-15 -1276 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1077))) (-15 -3190 (|#2| |#2|)) (-15 -3190 (|#2| |#2| (-1077))) (-15 -1998 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1077))) (-15 -3923 (|#2| |#2| (-556 |#2|))) (-15 -1913 (|#2| (-377 (-517)) |#2|))) -((-3090 (((-3 |#3| "failed") |#3|) 110)) (-1636 ((|#3| |#3|) 131)) (-3543 (((-3 |#3| "failed") |#3|) 82)) (-1482 ((|#3| |#3|) 121)) (-3607 (((-3 |#3| "failed") |#3|) 58)) (-1612 ((|#3| |#3|) 129)) (-2485 (((-3 |#3| "failed") |#3|) 46)) (-1459 ((|#3| |#3|) 119)) (-2488 (((-3 |#3| "failed") |#3|) 112)) (-1659 ((|#3| |#3|) 133)) (-3369 (((-3 |#3| "failed") |#3|) 84)) (-1508 ((|#3| |#3|) 123)) (-1514 (((-3 |#3| "failed") |#3| (-703)) 36)) (-3207 (((-3 |#3| "failed") |#3|) 74)) (-1232 ((|#3| |#3|) 118)) (-2644 (((-3 |#3| "failed") |#3|) 44)) (-3898 ((|#3| |#3|) 117)) (-3051 (((-3 |#3| "failed") |#3|) 113)) (-1670 ((|#3| |#3|) 134)) (-2228 (((-3 |#3| "failed") |#3|) 85)) (-1521 ((|#3| |#3|) 124)) (-2164 (((-3 |#3| "failed") |#3|) 111)) (-1647 ((|#3| |#3|) 132)) (-3013 (((-3 |#3| "failed") |#3|) 83)) (-1495 ((|#3| |#3|) 122)) (-2480 (((-3 |#3| "failed") |#3|) 60)) (-1622 ((|#3| |#3|) 130)) (-3420 (((-3 |#3| "failed") |#3|) 48)) (-1471 ((|#3| |#3|) 120)) (-2831 (((-3 |#3| "failed") |#3|) 66)) (-1706 ((|#3| |#3|) 137)) (-3216 (((-3 |#3| "failed") |#3|) 104)) (-1564 ((|#3| |#3|) 142)) (-3325 (((-3 |#3| "failed") |#3|) 62)) (-1685 ((|#3| |#3|) 135)) (-2094 (((-3 |#3| "failed") |#3|) 50)) (-1536 ((|#3| |#3|) 125)) (-3704 (((-3 |#3| "failed") |#3|) 70)) (-3517 ((|#3| |#3|) 139)) (-3994 (((-3 |#3| "failed") |#3|) 54)) (-1588 ((|#3| |#3|) 127)) (-3875 (((-3 |#3| "failed") |#3|) 72)) (-2815 ((|#3| |#3|) 140)) (-2092 (((-3 |#3| "failed") |#3|) 56)) (-1601 ((|#3| |#3|) 128)) (-1964 (((-3 |#3| "failed") |#3|) 68)) (-1722 ((|#3| |#3|) 138)) (-1556 (((-3 |#3| "failed") |#3|) 107)) (-1577 ((|#3| |#3|) 143)) (-3608 (((-3 |#3| "failed") |#3|) 64)) (-1698 ((|#3| |#3|) 136)) (-3333 (((-3 |#3| "failed") |#3|) 52)) (-1550 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333))))) -(((-251 |#1| |#2| |#3|) (-13 (-903 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3898 (|#3| |#3|)) (-15 -1232 (|#3| |#3|)) (-15 -1459 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -1508 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1601 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1636 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -3517 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)))) (-37 (-377 (-517))) (-1149 |#1|) (-1120 |#1| |#2|)) (T -251)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1149 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1120 *4 *5)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1459 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1508 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1636 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-3517 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4))))) -(-13 (-903 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3898 (|#3| |#3|)) (-15 -1232 (|#3| |#3|)) (-15 -1459 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -1508 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1601 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1636 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -3517 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)))) -((-3090 (((-3 |#3| "failed") |#3|) 66)) (-1636 ((|#3| |#3|) 133)) (-3543 (((-3 |#3| "failed") |#3|) 50)) (-1482 ((|#3| |#3|) 121)) (-3607 (((-3 |#3| "failed") |#3|) 62)) (-1612 ((|#3| |#3|) 131)) (-2485 (((-3 |#3| "failed") |#3|) 46)) (-1459 ((|#3| |#3|) 119)) (-2488 (((-3 |#3| "failed") |#3|) 70)) (-1659 ((|#3| |#3|) 135)) (-3369 (((-3 |#3| "failed") |#3|) 54)) (-1508 ((|#3| |#3|) 123)) (-1514 (((-3 |#3| "failed") |#3| (-703)) 35)) (-3207 (((-3 |#3| "failed") |#3|) 44)) (-1232 ((|#3| |#3|) 112)) (-2644 (((-3 |#3| "failed") |#3|) 42)) (-3898 ((|#3| |#3|) 118)) (-3051 (((-3 |#3| "failed") |#3|) 72)) (-1670 ((|#3| |#3|) 136)) (-2228 (((-3 |#3| "failed") |#3|) 56)) (-1521 ((|#3| |#3|) 124)) (-2164 (((-3 |#3| "failed") |#3|) 68)) (-1647 ((|#3| |#3|) 134)) (-3013 (((-3 |#3| "failed") |#3|) 52)) (-1495 ((|#3| |#3|) 122)) (-2480 (((-3 |#3| "failed") |#3|) 64)) (-1622 ((|#3| |#3|) 132)) (-3420 (((-3 |#3| "failed") |#3|) 48)) (-1471 ((|#3| |#3|) 120)) (-2831 (((-3 |#3| "failed") |#3|) 78)) (-1706 ((|#3| |#3|) 139)) (-3216 (((-3 |#3| "failed") |#3|) 58)) (-1564 ((|#3| |#3|) 127)) (-3325 (((-3 |#3| "failed") |#3|) 74)) (-1685 ((|#3| |#3|) 137)) (-2094 (((-3 |#3| "failed") |#3|) 102)) (-1536 ((|#3| |#3|) 125)) (-3704 (((-3 |#3| "failed") |#3|) 82)) (-3517 ((|#3| |#3|) 141)) (-3994 (((-3 |#3| "failed") |#3|) 109)) (-1588 ((|#3| |#3|) 129)) (-3875 (((-3 |#3| "failed") |#3|) 84)) (-2815 ((|#3| |#3|) 142)) (-2092 (((-3 |#3| "failed") |#3|) 111)) (-1601 ((|#3| |#3|) 130)) (-1964 (((-3 |#3| "failed") |#3|) 80)) (-1722 ((|#3| |#3|) 140)) (-1556 (((-3 |#3| "failed") |#3|) 60)) (-1577 ((|#3| |#3|) 128)) (-3608 (((-3 |#3| "failed") |#3|) 76)) (-1698 ((|#3| |#3|) 138)) (-3333 (((-3 |#3| "failed") |#3|) 105)) (-1550 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333))))) -(((-252 |#1| |#2| |#3| |#4|) (-13 (-903 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3898 (|#3| |#3|)) (-15 -1232 (|#3| |#3|)) (-15 -1459 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -1508 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1601 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1636 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -3517 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)))) (-37 (-377 (-517))) (-1118 |#1|) (-1141 |#1| |#2|) (-903 |#2|)) (T -252)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1118 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1141 *4 *5)) (-4 *6 (-903 *5)))) (-3898 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1459 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1471 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1508 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1588 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1622 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1636 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1698 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1706 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-3517 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4))))) -(-13 (-903 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |%noBranch|) (-15 -3898 (|#3| |#3|)) (-15 -1232 (|#3| |#3|)) (-15 -1459 (|#3| |#3|)) (-15 -1471 (|#3| |#3|)) (-15 -1482 (|#3| |#3|)) (-15 -1495 (|#3| |#3|)) (-15 -1508 (|#3| |#3|)) (-15 -1521 (|#3| |#3|)) (-15 -1536 (|#3| |#3|)) (-15 -1550 (|#3| |#3|)) (-15 -1564 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1588 (|#3| |#3|)) (-15 -1601 (|#3| |#3|)) (-15 -1612 (|#3| |#3|)) (-15 -1622 (|#3| |#3|)) (-15 -1636 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1659 (|#3| |#3|)) (-15 -1670 (|#3| |#3|)) (-15 -1685 (|#3| |#3|)) (-15 -1698 (|#3| |#3|)) (-15 -1706 (|#3| |#3|)) (-15 -1722 (|#3| |#3|)) (-15 -3517 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)))) -((-2317 (($ (-1 (-107) |#2|) $) 23)) (-2446 (($ $) 36)) (-1749 (($ (-1 (-107) |#2|) $) NIL) (($ |#2| $) 34)) (-1423 (($ |#2| $) 31) (($ (-1 (-107) |#2|) $) 17)) (-2785 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1734 (($ |#2| $ (-517)) 19) (($ $ $ (-517)) 21)) (-3779 (($ $ (-517)) 11) (($ $ (-1125 (-517))) 14)) (-3495 (($ $ |#2|) 29) (($ $ $) NIL)) (-4117 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-583 $)) NIL))) -(((-253 |#1| |#2|) (-10 -8 (-15 -2785 (|#1| |#1| |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -2785 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#2|)) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2317 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -2446 (|#1| |#1|))) (-254 |#2|) (-1112)) (T -253)) -NIL -(-10 -8 (-15 -2785 (|#1| |#1| |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -2785 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#2|)) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -1423 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2317 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -2446 (|#1| |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) 85)) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3081 (($ $) 83 (|has| |#1| (-1006)))) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ (-1 (-107) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1006)))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-2785 (($ (-1 (-107) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-3439 (($ |#1| $ (-517)) 88) (($ $ $ (-517)) 87)) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-1921 (($ $ (-517)) 91) (($ $ (-1125 (-517))) 90)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 70)) (-3495 (($ $ |#1|) 93) (($ $ $) 92)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-254 |#1|) (-1189) (-1112)) (T -254)) -((-3495 (*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)))) (-3495 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)))) (-1921 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-1921 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-3439 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1112)))) (-3439 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-2785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-2582 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) (-1749 (*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-1006)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-1006)))) (-2785 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-779))))) -(-13 (-588 |t#1|) (-10 -8 (-6 -4196) (-15 -3495 ($ $ |t#1|)) (-15 -3495 ($ $ $)) (-15 -1921 ($ $ (-517))) (-15 -1921 ($ $ (-1125 (-517)))) (-15 -1749 ($ (-1 (-107) |t#1|) $)) (-15 -3439 ($ |t#1| $ (-517))) (-15 -3439 ($ $ $ (-517))) (-15 -2785 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -2582 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -1749 ($ |t#1| $)) (-15 -3081 ($ $))) |%noBranch|) (IF (|has| |t#1| (-779)) (-15 -2785 ($ $ $)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) +((-2642 (((-108) $) 12)) (-1405 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-379 (-519)) $) 24) (($ $ (-379 (-519))) NIL))) +(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-379 (-519)))) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 -2642 ((-108) |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|))) (-46 |#2| |#3|) (-968) (-726)) (T -45)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-379 (-519)))) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 -2642 ((-108) |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 51 (|has| |#1| (-511)))) (-1410 (($ $) 52 (|has| |#1| (-511)))) (-3060 (((-108) $) 54 (|has| |#1| (-511)))) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-3218 (($ $) 60)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-2642 (((-108) $) 62)) (-4042 (($ |#1| |#2|) 61)) (-1405 (($ (-1 |#1| |#1|) $) 63)) (-3185 (($ $) 65)) (-3197 ((|#1| $) 66)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-511)))) (-4178 ((|#2| $) 64)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ (-379 (-519))) 57 (|has| |#1| (-37 (-379 (-519))))) (($ $) 49 (|has| |#1| (-511))) (($ |#1|) 47 (|has| |#1| (-157)))) (-1220 ((|#1| $ |#2|) 59)) (-3773 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 53 (|has| |#1| (-511)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#1|) 58 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-379 (-519)) $) 56 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 55 (|has| |#1| (-37 (-379 (-519))))))) +(((-46 |#1| |#2|) (-1194) (-968) (-726)) (T -46)) +((-3197 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968)))) (-3185 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)))) (-2642 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) (-5 *2 (-108)))) (-4042 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)))) (-3218 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)))) (-1220 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968)))) (-1632 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)) (-4 *2 (-335))))) +(-13 (-968) (-107 |t#1| |t#1|) (-10 -8 (-15 -3197 (|t#1| $)) (-15 -3185 ($ $)) (-15 -4178 (|t#2| $)) (-15 -1405 ($ (-1 |t#1| |t#1|) $)) (-15 -2642 ((-108) $)) (-15 -4042 ($ |t#1| |t#2|)) (-15 -3218 ($ $)) (-15 -1220 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-335)) (-15 -1632 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-6 (-157)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-511)) (-6 (-511)) |%noBranch|) (IF (|has| |t#1| (-37 (-379 (-519)))) (-6 (-37 (-379 (-519)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-511)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-379 (-519)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-264) |has| |#1| (-511)) ((-511) |has| |#1| (-511)) ((-587 #0#) |has| |#1| (-37 (-379 (-519)))) ((-587 |#1|) . T) ((-587 $) . T) ((-652 #0#) |has| |#1| (-37 (-379 (-519)))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) |has| |#1| (-511)) ((-661) . T) ((-974 #0#) |has| |#1| (-37 (-379 (-519)))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-1211 (((-585 $) (-1078 $) (-1082)) NIL) (((-585 $) (-1078 $)) NIL) (((-585 $) (-879 $)) NIL)) (-2977 (($ (-1078 $) (-1082)) NIL) (($ (-1078 $)) NIL) (($ (-879 $)) NIL)) (-3569 (((-108) $) 11)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-1890 (((-585 (-558 $)) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-3364 (($ $ (-267 $)) NIL) (($ $ (-585 (-267 $))) NIL) (($ $ (-585 (-558 $)) (-585 $)) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-1934 (($ $) NIL)) (-3409 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-2825 (((-585 $) (-1078 $) (-1082)) NIL) (((-585 $) (-1078 $)) NIL) (((-585 $) (-879 $)) NIL)) (-4027 (($ (-1078 $) (-1082)) NIL) (($ (-1078 $)) NIL) (($ (-879 $)) NIL)) (-1301 (((-3 (-558 $) "failed") $) NIL) (((-3 (-519) "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL)) (-1499 (((-558 $) $) NIL) (((-519) $) NIL) (((-379 (-519)) $) NIL)) (-2311 (($ $ $) NIL)) (-1562 (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-625 (-519)) (-625 $)) NIL) (((-2 (|:| -2488 (-625 (-379 (-519)))) (|:| |vec| (-1163 (-379 (-519))))) (-625 $) (-1163 $)) NIL) (((-625 (-379 (-519))) (-625 $)) NIL)) (-3874 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-1340 (($ $) NIL) (($ (-585 $)) NIL)) (-3866 (((-585 (-110)) $) NIL)) (-3752 (((-110) (-110)) NIL)) (-1568 (((-108) $) 14)) (-3164 (((-108) $) NIL (|has| $ (-959 (-519))))) (-2855 (((-1034 (-519) (-558 $)) $) NIL)) (-1517 (($ $ (-519)) NIL)) (-3681 (((-1078 $) (-1078 $) (-558 $)) NIL) (((-1078 $) (-1078 $) (-585 (-558 $))) NIL) (($ $ (-558 $)) NIL) (($ $ (-585 (-558 $))) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2042 (((-1078 $) (-558 $)) NIL (|has| $ (-968)))) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1405 (($ (-1 $ $) (-558 $)) NIL)) (-3029 (((-3 (-558 $) "failed") $) NIL)) (-2254 (($ (-585 $)) NIL) (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-1268 (((-585 (-558 $)) $) NIL)) (-2959 (($ (-110) $) NIL) (($ (-110) (-585 $)) NIL)) (-2917 (((-108) $ (-110)) NIL) (((-108) $ (-1082)) NIL)) (-3151 (($ $) NIL)) (-4141 (((-705) $) NIL)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ (-585 $)) NIL) (($ $ $) NIL)) (-4040 (((-108) $ $) NIL) (((-108) $ (-1082)) NIL)) (-1921 (((-390 $) $) NIL)) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1295 (((-108) $) NIL (|has| $ (-959 (-519))))) (-2324 (($ $ (-558 $) $) NIL) (($ $ (-585 (-558 $)) (-585 $)) NIL) (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-585 (-1082)) (-585 (-1 $ $))) NIL) (($ $ (-585 (-1082)) (-585 (-1 $ (-585 $)))) NIL) (($ $ (-1082) (-1 $ (-585 $))) NIL) (($ $ (-1082) (-1 $ $)) NIL) (($ $ (-585 (-110)) (-585 (-1 $ $))) NIL) (($ $ (-585 (-110)) (-585 (-1 $ (-585 $)))) NIL) (($ $ (-110) (-1 $ (-585 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3129 (((-705) $) NIL)) (-2598 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-585 $)) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-1802 (($ $) NIL) (($ $ $) NIL)) (-2181 (($ $ (-705)) NIL) (($ $) NIL)) (-2866 (((-1034 (-519) (-558 $)) $) NIL)) (-1462 (($ $) NIL (|has| $ (-968)))) (-1446 (((-351) $) NIL) (((-201) $) NIL) (((-154 (-351)) $) NIL)) (-2217 (((-790) $) NIL) (($ (-558 $)) NIL) (($ (-379 (-519))) NIL) (($ $) NIL) (($ (-519)) NIL) (($ (-1034 (-519) (-558 $))) NIL)) (-3594 (((-705)) NIL)) (-1647 (($ $) NIL) (($ (-585 $)) NIL)) (-2631 (((-108) (-110)) NIL)) (-1617 (((-108) $ $) NIL)) (-3559 (($ $ (-519)) NIL) (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (-3602 (($) 7 T CONST)) (-3611 (($) 12 T CONST)) (-2242 (($ $ (-705)) NIL) (($ $) NIL)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 16)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL)) (-1623 (($ $ $) 15) (($ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-379 (-519))) NIL) (($ $ (-519)) NIL) (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (* (($ (-379 (-519)) $) NIL) (($ $ (-379 (-519))) NIL) (($ $ $) NIL) (($ (-519) $) NIL) (($ (-705) $) NIL) (($ (-848) $) NIL))) +(((-47) (-13 (-275) (-27) (-959 (-519)) (-959 (-379 (-519))) (-581 (-519)) (-944) (-581 (-379 (-519))) (-135) (-560 (-154 (-351))) (-209) (-10 -8 (-15 -2217 ($ (-1034 (-519) (-558 $)))) (-15 -2855 ((-1034 (-519) (-558 $)) $)) (-15 -2866 ((-1034 (-519) (-558 $)) $)) (-15 -3874 ($ $)) (-15 -3681 ((-1078 $) (-1078 $) (-558 $))) (-15 -3681 ((-1078 $) (-1078 $) (-585 (-558 $)))) (-15 -3681 ($ $ (-558 $))) (-15 -3681 ($ $ (-585 (-558 $))))))) (T -47)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1034 (-519) (-558 (-47)))) (-5 *1 (-47)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1034 (-519) (-558 (-47)))) (-5 *1 (-47)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-1034 (-519) (-558 (-47)))) (-5 *1 (-47)))) (-3874 (*1 *1 *1) (-5 *1 (-47))) (-3681 (*1 *2 *2 *3) (-12 (-5 *2 (-1078 (-47))) (-5 *3 (-558 (-47))) (-5 *1 (-47)))) (-3681 (*1 *2 *2 *3) (-12 (-5 *2 (-1078 (-47))) (-5 *3 (-585 (-558 (-47)))) (-5 *1 (-47)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-558 (-47))) (-5 *1 (-47)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-558 (-47)))) (-5 *1 (-47))))) +(-13 (-275) (-27) (-959 (-519)) (-959 (-379 (-519))) (-581 (-519)) (-944) (-581 (-379 (-519))) (-135) (-560 (-154 (-351))) (-209) (-10 -8 (-15 -2217 ($ (-1034 (-519) (-558 $)))) (-15 -2855 ((-1034 (-519) (-558 $)) $)) (-15 -2866 ((-1034 (-519) (-558 $)) $)) (-15 -3874 ($ $)) (-15 -3681 ((-1078 $) (-1078 $) (-558 $))) (-15 -3681 ((-1078 $) (-1078 $) (-585 (-558 $)))) (-15 -3681 ($ $ (-558 $))) (-15 -3681 ($ $ (-585 (-558 $)))))) +((-1430 (((-108) $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 7)) (-1543 (((-108) $ $) NIL))) +(((-48) (-1011)) (T -48)) +NIL +(-1011) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 60)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-2465 (((-108) $) 20)) (-1301 (((-3 |#1| "failed") $) 23)) (-1499 ((|#1| $) 24)) (-3218 (($ $) 27)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-3197 ((|#1| $) 21)) (-3022 (($ $) 49)) (-1266 (((-1065) $) NIL)) (-3892 (((-108) $) 28)) (-4139 (((-1029) $) NIL)) (-1397 (($ (-705)) 47)) (-3325 (($ (-585 (-519))) 48)) (-4178 (((-705) $) 29)) (-2217 (((-790) $) 63) (($ (-519)) 44) (($ |#1|) 42)) (-1220 ((|#1| $ $) 19)) (-3594 (((-705)) 46)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 30 T CONST)) (-3611 (($) 14 T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 40)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-49 |#1| |#2|) (-13 (-563 |#1|) (-959 |#1|) (-10 -8 (-15 -3197 (|#1| $)) (-15 -3022 ($ $)) (-15 -3218 ($ $)) (-15 -1220 (|#1| $ $)) (-15 -1397 ($ (-705))) (-15 -3325 ($ (-585 (-519)))) (-15 -3892 ((-108) $)) (-15 -2465 ((-108) $)) (-15 -4178 ((-705) $)) (-15 -1405 ($ (-1 |#1| |#1|) $)))) (-968) (-585 (-1082))) (T -49)) +((-3197 (*1 *2 *1) (-12 (-4 *2 (-968)) (-5 *1 (-49 *2 *3)) (-14 *3 (-585 (-1082))))) (-3022 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-968)) (-14 *3 (-585 (-1082))))) (-3218 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-968)) (-14 *3 (-585 (-1082))))) (-1220 (*1 *2 *1 *1) (-12 (-4 *2 (-968)) (-5 *1 (-49 *2 *3)) (-14 *3 (-585 (-1082))))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-49 *3 *4)) (-4 *3 (-968)) (-14 *4 (-585 (-1082))))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-49 *3 *4)) (-4 *3 (-968)) (-14 *4 (-585 (-1082))))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-968)) (-14 *4 (-585 (-1082))))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-968)) (-14 *4 (-585 (-1082))))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-49 *3 *4)) (-4 *3 (-968)) (-14 *4 (-585 (-1082))))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-49 *3 *4)) (-14 *4 (-585 (-1082)))))) +(-13 (-563 |#1|) (-959 |#1|) (-10 -8 (-15 -3197 (|#1| $)) (-15 -3022 ($ $)) (-15 -3218 ($ $)) (-15 -1220 (|#1| $ $)) (-15 -1397 ($ (-705))) (-15 -3325 ($ (-585 (-519)))) (-15 -3892 ((-108) $)) (-15 -2465 ((-108) $)) (-15 -4178 ((-705) $)) (-15 -1405 ($ (-1 |#1| |#1|) $)))) +((-2465 (((-108) (-51)) 13)) (-1301 (((-3 |#1| "failed") (-51)) 21)) (-1499 ((|#1| (-51)) 22)) (-2217 (((-51) |#1|) 18))) +(((-50 |#1|) (-10 -7 (-15 -2217 ((-51) |#1|)) (-15 -1301 ((-3 |#1| "failed") (-51))) (-15 -2465 ((-108) (-51))) (-15 -1499 (|#1| (-51)))) (-1117)) (T -50)) +((-1499 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1117)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1117)))) (-1301 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1117)))) (-2217 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1117))))) +(-10 -7 (-15 -2217 ((-51) |#1|)) (-15 -1301 ((-3 |#1| "failed") (-51))) (-15 -2465 ((-108) (-51))) (-15 -1499 (|#1| (-51)))) +((-1430 (((-108) $ $) NIL)) (-4011 (((-1065) (-108)) 25)) (-2813 (((-790) $) 24)) (-2911 (((-708) $) 12)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1888 (((-790) $) 16)) (-2947 (((-1015) $) 14)) (-2217 (((-790) $) 32)) (-2365 (($ (-1015) (-708)) 33)) (-1543 (((-108) $ $) 18))) +(((-51) (-13 (-1011) (-10 -8 (-15 -2365 ($ (-1015) (-708))) (-15 -1888 ((-790) $)) (-15 -2813 ((-790) $)) (-15 -2947 ((-1015) $)) (-15 -2911 ((-708) $)) (-15 -4011 ((-1065) (-108)))))) (T -51)) +((-2365 (*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-708)) (-5 *1 (-51)))) (-1888 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-51)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-51)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-51)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1065)) (-5 *1 (-51))))) +(-13 (-1011) (-10 -8 (-15 -2365 ($ (-1015) (-708))) (-15 -1888 ((-790) $)) (-15 -2813 ((-790) $)) (-15 -2947 ((-1015) $)) (-15 -2911 ((-708) $)) (-15 -4011 ((-1065) (-108))))) +((-1627 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1627 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-968) (-587 |#1|) (-784 |#1|)) (T -52)) +((-1627 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-587 *5)) (-4 *5 (-968)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-784 *5))))) +(-10 -7 (-15 -1627 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-2318 ((|#3| |#3| (-585 (-1082))) 35)) (-2435 ((|#3| (-585 (-990 |#1| |#2| |#3|)) |#3| (-848)) 22) ((|#3| (-585 (-990 |#1| |#2| |#3|)) |#3|) 20))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2435 (|#3| (-585 (-990 |#1| |#2| |#3|)) |#3|)) (-15 -2435 (|#3| (-585 (-990 |#1| |#2| |#3|)) |#3| (-848))) (-15 -2318 (|#3| |#3| (-585 (-1082))))) (-1011) (-13 (-968) (-813 |#1|) (-782) (-560 (-819 |#1|))) (-13 (-402 |#2|) (-813 |#1|) (-560 (-819 |#1|)))) (T -53)) +((-2318 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-1082))) (-4 *4 (-1011)) (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-402 *5) (-813 *4) (-560 (-819 *4)))))) (-2435 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-585 (-990 *5 *6 *2))) (-5 *4 (-848)) (-4 *5 (-1011)) (-4 *6 (-13 (-968) (-813 *5) (-782) (-560 (-819 *5)))) (-4 *2 (-13 (-402 *6) (-813 *5) (-560 (-819 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2435 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-990 *4 *5 *2))) (-4 *4 (-1011)) (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) (-4 *2 (-13 (-402 *5) (-813 *4) (-560 (-819 *4)))) (-5 *1 (-53 *4 *5 *2))))) +(-10 -7 (-15 -2435 (|#3| (-585 (-990 |#1| |#2| |#3|)) |#3|)) (-15 -2435 (|#3| (-585 (-990 |#1| |#2| |#3|)) |#3| (-848))) (-15 -2318 (|#3| |#3| (-585 (-1082))))) +((-1473 (((-108) $ (-705)) 23)) (-4054 (($ $ (-519) |#3|) 45)) (-3281 (($ $ (-519) |#4|) 49)) (-4159 ((|#3| $ (-519)) 58)) (-3844 (((-585 |#2|) $) 30)) (-3878 (((-108) $ (-705)) 25)) (-1933 (((-108) |#2| $) 53)) (-3850 (($ (-1 |#2| |#2|) $) 37)) (-1405 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-2768 (((-108) $ (-705)) 24)) (-3640 (($ $ |#2|) 34)) (-2379 (((-108) (-1 (-108) |#2|) $) 19)) (-2598 ((|#2| $ (-519) (-519)) NIL) ((|#2| $ (-519) (-519) |#2|) 27)) (-4155 (((-705) (-1 (-108) |#2|) $) 28) (((-705) |#2| $) 55)) (-2449 (($ $) 33)) (-3067 ((|#4| $ (-519)) 61)) (-2217 (((-790) $) 66)) (-1778 (((-108) (-1 (-108) |#2|) $) 18)) (-1543 (((-108) $ $) 52)) (-3532 (((-705) $) 26))) +(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1405 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3281 (|#1| |#1| (-519) |#4|)) (-15 -4054 (|#1| |#1| (-519) |#3|)) (-15 -3844 ((-585 |#2|) |#1|)) (-15 -3067 (|#4| |#1| (-519))) (-15 -4159 (|#3| |#1| (-519))) (-15 -2598 (|#2| |#1| (-519) (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519) (-519))) (-15 -3640 (|#1| |#1| |#2|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -1933 ((-108) |#2| |#1|)) (-15 -4155 ((-705) |#2| |#1|)) (-15 -4155 ((-705) (-1 (-108) |#2|) |#1|)) (-15 -2379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3532 ((-705) |#1|)) (-15 -1473 ((-108) |#1| (-705))) (-15 -3878 ((-108) |#1| (-705))) (-15 -2768 ((-108) |#1| (-705))) (-15 -2449 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1117) (-345 |#2|) (-345 |#2|)) (T -54)) +NIL +(-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1405 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3281 (|#1| |#1| (-519) |#4|)) (-15 -4054 (|#1| |#1| (-519) |#3|)) (-15 -3844 ((-585 |#2|) |#1|)) (-15 -3067 (|#4| |#1| (-519))) (-15 -4159 (|#3| |#1| (-519))) (-15 -2598 (|#2| |#1| (-519) (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519) (-519))) (-15 -3640 (|#1| |#1| |#2|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -1933 ((-108) |#2| |#1|)) (-15 -4155 ((-705) |#2| |#1|)) (-15 -4155 ((-705) (-1 (-108) |#2|) |#1|)) (-15 -2379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3532 ((-705) |#1|)) (-15 -1473 ((-108) |#1| (-705))) (-15 -3878 ((-108) |#1| (-705))) (-15 -2768 ((-108) |#1| (-705))) (-15 -2449 (|#1| |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) 8)) (-2421 ((|#1| $ (-519) (-519) |#1|) 44)) (-4054 (($ $ (-519) |#2|) 42)) (-3281 (($ $ (-519) |#3|) 41)) (-2249 (($) 7 T CONST)) (-4159 ((|#2| $ (-519)) 46)) (-3865 ((|#1| $ (-519) (-519) |#1|) 43)) (-3659 ((|#1| $ (-519) (-519)) 48)) (-3844 (((-585 |#1|) $) 30)) (-1426 (((-705) $) 51)) (-1822 (($ (-705) (-705) |#1|) 57)) (-1437 (((-705) $) 50)) (-3878 (((-108) $ (-705)) 9)) (-4161 (((-519) $) 55)) (-2918 (((-519) $) 53)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-1238 (((-519) $) 54)) (-2012 (((-519) $) 52)) (-3850 (($ (-1 |#1| |#1|) $) 34)) (-1405 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-3640 (($ $ |#1|) 56)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ (-519) (-519)) 49) ((|#1| $ (-519) (-519) |#1|) 47)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-3067 ((|#3| $ (-519)) 45)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-55 |#1| |#2| |#3|) (-1194) (-1117) (-345 |t#1|) (-345 |t#1|)) (T -55)) +((-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-1822 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-705)) (-4 *3 (-1117)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-3640 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-519)))) (-1238 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-519)))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-519)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-519)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-705)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-705)))) (-2598 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-519)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-345 *2)) (-4 *5 (-345 *2)) (-4 *2 (-1117)))) (-3659 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-519)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-345 *2)) (-4 *5 (-345 *2)) (-4 *2 (-1117)))) (-2598 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-519)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1117)) (-4 *4 (-345 *2)) (-4 *5 (-345 *2)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1117)) (-4 *5 (-345 *4)) (-4 *2 (-345 *4)))) (-3067 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1117)) (-4 *5 (-345 *4)) (-4 *2 (-345 *4)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-585 *3)))) (-2421 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-519)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1117)) (-4 *4 (-345 *2)) (-4 *5 (-345 *2)))) (-3865 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-519)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1117)) (-4 *4 (-345 *2)) (-4 *5 (-345 *2)))) (-4054 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-519)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1117)) (-4 *3 (-345 *4)) (-4 *5 (-345 *4)))) (-3281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-519)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1117)) (-4 *5 (-345 *4)) (-4 *3 (-345 *4)))) (-3850 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-1405 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-1405 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3))))) +(-13 (-458 |t#1|) (-10 -8 (-6 -4222) (-6 -4221) (-15 -1822 ($ (-705) (-705) |t#1|)) (-15 -3640 ($ $ |t#1|)) (-15 -4161 ((-519) $)) (-15 -1238 ((-519) $)) (-15 -2918 ((-519) $)) (-15 -2012 ((-519) $)) (-15 -1426 ((-705) $)) (-15 -1437 ((-705) $)) (-15 -2598 (|t#1| $ (-519) (-519))) (-15 -3659 (|t#1| $ (-519) (-519))) (-15 -2598 (|t#1| $ (-519) (-519) |t#1|)) (-15 -4159 (|t#2| $ (-519))) (-15 -3067 (|t#3| $ (-519))) (-15 -3844 ((-585 |t#1|) $)) (-15 -2421 (|t#1| $ (-519) (-519) |t#1|)) (-15 -3865 (|t#1| $ (-519) (-519) |t#1|)) (-15 -4054 ($ $ (-519) |t#2|)) (-15 -3281 ($ $ (-519) |t#3|)) (-15 -1405 ($ (-1 |t#1| |t#1|) $)) (-15 -3850 ($ (-1 |t#1| |t#1|) $)) (-15 -1405 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1405 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-1367 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3874 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1405 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) +(((-56 |#1| |#2|) (-10 -7 (-15 -1367 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3874 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1405 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1117) (-1117)) (T -56)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3874 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1117)) (-4 *2 (-1117)) (-5 *1 (-56 *5 *2)))) (-1367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1117)) (-4 *5 (-1117)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))) +(-10 -7 (-15 -1367 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3874 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1405 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4222))) (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| |#1| (-782))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#1| $ (-519) |#1|) 11 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) NIL (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) NIL)) (-3297 (((-519) (-1 (-108) |#1|) $) NIL) (((-519) |#1| $) NIL (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) NIL (|has| |#1| (-1011)))) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3464 (($ (-585 |#1|)) 13) (($ (-705) |#1|) 14)) (-1822 (($ (-705) |#1|) 9)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1672 (($ |#1| $ (-519)) NIL) (($ $ $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2331 ((|#1| $) NIL (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3640 (($ $ |#1|) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) 7)) (-2598 ((|#1| $ (-519) |#1|) NIL) ((|#1| $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-3720 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) NIL)) (-4150 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-585 $)) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3464 ($ (-585 |#1|))) (-15 -3464 ($ (-705) |#1|)))) (-1117)) (T -57)) +((-3464 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-57 *3)))) (-3464 (*1 *1 *2 *3) (-12 (-5 *2 (-705)) (-5 *1 (-57 *3)) (-4 *3 (-1117))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3464 ($ (-585 |#1|))) (-15 -3464 ($ (-705) |#1|)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#1| $ (-519) (-519) |#1|) NIL)) (-4054 (($ $ (-519) (-57 |#1|)) NIL)) (-3281 (($ $ (-519) (-57 |#1|)) NIL)) (-2249 (($) NIL T CONST)) (-4159 (((-57 |#1|) $ (-519)) NIL)) (-3865 ((|#1| $ (-519) (-519) |#1|) NIL)) (-3659 ((|#1| $ (-519) (-519)) NIL)) (-3844 (((-585 |#1|) $) NIL)) (-1426 (((-705) $) NIL)) (-1822 (($ (-705) (-705) |#1|) NIL)) (-1437 (((-705) $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-4161 (((-519) $) NIL)) (-2918 (((-519) $) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1238 (((-519) $) NIL)) (-2012 (((-519) $) NIL)) (-3850 (($ (-1 |#1| |#1|) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-3640 (($ $ |#1|) NIL)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ (-519) (-519)) NIL) ((|#1| $ (-519) (-519) |#1|) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-3067 (((-57 |#1|) $ (-519)) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4222))) (-1117)) (T -58)) +NIL +(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4222))) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 69) (((-3 $ "failed") (-1163 (-288 (-519)))) 58) (((-3 $ "failed") (-1163 (-879 (-351)))) 91) (((-3 $ "failed") (-1163 (-879 (-519)))) 80) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 47) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 36)) (-1499 (($ (-1163 (-288 (-351)))) 65) (($ (-1163 (-288 (-519)))) 54) (($ (-1163 (-879 (-351)))) 87) (($ (-1163 (-879 (-519)))) 76) (($ (-1163 (-379 (-879 (-351))))) 43) (($ (-1163 (-379 (-879 (-519))))) 29)) (-2021 (((-1168) $) 118)) (-2217 (((-790) $) 111) (($ (-585 (-302))) 100) (($ (-302)) 94) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 97) (($ (-1163 (-311 (-2228 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2228) (-634)))) 28))) +(((-59 |#1|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2228) (-634))))))) (-1082)) (T -59)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2228) (-634)))) (-5 *1 (-59 *3)) (-14 *3 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2228) (-634))))))) +((-2021 (((-1168) $) 48) (((-1168)) 49)) (-2217 (((-790) $) 45))) +(((-60 |#1|) (-13 (-367) (-10 -7 (-15 -2021 ((-1168))))) (-1082)) (T -60)) +((-2021 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-60 *3)) (-14 *3 (-1082))))) +(-13 (-367) (-10 -7 (-15 -2021 ((-1168))))) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 142) (((-3 $ "failed") (-1163 (-288 (-519)))) 132) (((-3 $ "failed") (-1163 (-879 (-351)))) 163) (((-3 $ "failed") (-1163 (-879 (-519)))) 152) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 121) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 110)) (-1499 (($ (-1163 (-288 (-351)))) 138) (($ (-1163 (-288 (-519)))) 128) (($ (-1163 (-879 (-351)))) 159) (($ (-1163 (-879 (-519)))) 148) (($ (-1163 (-379 (-879 (-351))))) 117) (($ (-1163 (-379 (-879 (-519))))) 103)) (-2021 (((-1168) $) 96)) (-2217 (((-790) $) 90) (($ (-585 (-302))) 28) (($ (-302)) 34) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 31) (($ (-1163 (-311 (-2228) (-2228 (QUOTE XC)) (-634)))) 88))) +(((-61 |#1|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228) (-2228 (QUOTE XC)) (-634))))))) (-1082)) (T -61)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228) (-2228 (QUOTE XC)) (-634)))) (-5 *1 (-61 *3)) (-14 *3 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228) (-2228 (QUOTE XC)) (-634))))))) +((-1301 (((-3 $ "failed") (-288 (-351))) 36) (((-3 $ "failed") (-288 (-519))) 41) (((-3 $ "failed") (-879 (-351))) 46) (((-3 $ "failed") (-879 (-519))) 51) (((-3 $ "failed") (-379 (-879 (-351)))) 31) (((-3 $ "failed") (-379 (-879 (-519)))) 26)) (-1499 (($ (-288 (-351))) 34) (($ (-288 (-519))) 39) (($ (-879 (-351))) 44) (($ (-879 (-519))) 49) (($ (-379 (-879 (-351)))) 29) (($ (-379 (-879 (-519)))) 23)) (-2021 (((-1168) $) 73)) (-2217 (((-790) $) 66) (($ (-585 (-302))) 57) (($ (-302)) 63) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 60) (($ (-311 (-2228 (QUOTE X)) (-2228) (-634))) 22))) +(((-62 |#1|) (-13 (-368) (-10 -8 (-15 -2217 ($ (-311 (-2228 (QUOTE X)) (-2228) (-634)))))) (-1082)) (T -62)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-311 (-2228 (QUOTE X)) (-2228) (-634))) (-5 *1 (-62 *3)) (-14 *3 (-1082))))) +(-13 (-368) (-10 -8 (-15 -2217 ($ (-311 (-2228 (QUOTE X)) (-2228) (-634)))))) +((-1301 (((-3 $ "failed") (-625 (-288 (-351)))) 100) (((-3 $ "failed") (-625 (-288 (-519)))) 89) (((-3 $ "failed") (-625 (-879 (-351)))) 122) (((-3 $ "failed") (-625 (-879 (-519)))) 111) (((-3 $ "failed") (-625 (-379 (-879 (-351))))) 78) (((-3 $ "failed") (-625 (-379 (-879 (-519))))) 67)) (-1499 (($ (-625 (-288 (-351)))) 96) (($ (-625 (-288 (-519)))) 85) (($ (-625 (-879 (-351)))) 118) (($ (-625 (-879 (-519)))) 107) (($ (-625 (-379 (-879 (-351))))) 74) (($ (-625 (-379 (-879 (-519))))) 60)) (-2021 (((-1168) $) 130)) (-2217 (((-790) $) 124) (($ (-585 (-302))) 27) (($ (-302)) 33) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 30) (($ (-625 (-311 (-2228) (-2228 (QUOTE X) (QUOTE HESS)) (-634)))) 53))) +(((-63 |#1|) (-13 (-356) (-10 -8 (-15 -2217 ($ (-625 (-311 (-2228) (-2228 (QUOTE X) (QUOTE HESS)) (-634))))))) (-1082)) (T -63)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-625 (-311 (-2228) (-2228 (QUOTE X) (QUOTE HESS)) (-634)))) (-5 *1 (-63 *3)) (-14 *3 (-1082))))) +(-13 (-356) (-10 -8 (-15 -2217 ($ (-625 (-311 (-2228) (-2228 (QUOTE X) (QUOTE HESS)) (-634))))))) +((-1301 (((-3 $ "failed") (-288 (-351))) 54) (((-3 $ "failed") (-288 (-519))) 59) (((-3 $ "failed") (-879 (-351))) 64) (((-3 $ "failed") (-879 (-519))) 69) (((-3 $ "failed") (-379 (-879 (-351)))) 49) (((-3 $ "failed") (-379 (-879 (-519)))) 44)) (-1499 (($ (-288 (-351))) 52) (($ (-288 (-519))) 57) (($ (-879 (-351))) 62) (($ (-879 (-519))) 67) (($ (-379 (-879 (-351)))) 47) (($ (-379 (-879 (-519)))) 41)) (-2021 (((-1168) $) 78)) (-2217 (((-790) $) 72) (($ (-585 (-302))) 27) (($ (-302)) 33) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 30) (($ (-311 (-2228) (-2228 (QUOTE XC)) (-634))) 38))) +(((-64 |#1|) (-13 (-368) (-10 -8 (-15 -2217 ($ (-311 (-2228) (-2228 (QUOTE XC)) (-634)))))) (-1082)) (T -64)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-311 (-2228) (-2228 (QUOTE XC)) (-634))) (-5 *1 (-64 *3)) (-14 *3 (-1082))))) +(-13 (-368) (-10 -8 (-15 -2217 ($ (-311 (-2228) (-2228 (QUOTE XC)) (-634)))))) +((-2021 (((-1168) $) 63)) (-2217 (((-790) $) 57) (($ (-625 (-634))) 49) (($ (-585 (-302))) 48) (($ (-302)) 55) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 53))) +(((-65 |#1|) (-355) (-1082)) (T -65)) +NIL +(-355) +((-2021 (((-1168) $) 64)) (-2217 (((-790) $) 58) (($ (-625 (-634))) 50) (($ (-585 (-302))) 49) (($ (-302)) 52) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 55))) +(((-66 |#1|) (-355) (-1082)) (T -66)) +NIL +(-355) +((-2021 (((-1168) $) NIL) (((-1168)) 32)) (-2217 (((-790) $) NIL))) +(((-67 |#1|) (-13 (-367) (-10 -7 (-15 -2021 ((-1168))))) (-1082)) (T -67)) +((-2021 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-67 *3)) (-14 *3 (-1082))))) +(-13 (-367) (-10 -7 (-15 -2021 ((-1168))))) +((-2021 (((-1168) $) 68)) (-2217 (((-790) $) 62) (($ (-625 (-634))) 53) (($ (-585 (-302))) 56) (($ (-302)) 59) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 52))) +(((-68 |#1|) (-355) (-1082)) (T -68)) +NIL +(-355) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 98) (((-3 $ "failed") (-1163 (-288 (-519)))) 87) (((-3 $ "failed") (-1163 (-879 (-351)))) 119) (((-3 $ "failed") (-1163 (-879 (-519)))) 108) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 76) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 65)) (-1499 (($ (-1163 (-288 (-351)))) 94) (($ (-1163 (-288 (-519)))) 83) (($ (-1163 (-879 (-351)))) 115) (($ (-1163 (-879 (-519)))) 104) (($ (-1163 (-379 (-879 (-351))))) 72) (($ (-1163 (-379 (-879 (-519))))) 58)) (-2021 (((-1168) $) 133)) (-2217 (((-790) $) 127) (($ (-585 (-302))) 122) (($ (-302)) 125) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 50) (($ (-1163 (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634)))) 51))) +(((-69 |#1|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634))))))) (-1082)) (T -69)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634)))) (-5 *1 (-69 *3)) (-14 *3 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634))))))) +((-2021 (((-1168) $) 32) (((-1168)) 31)) (-2217 (((-790) $) 35))) +(((-70 |#1|) (-13 (-367) (-10 -7 (-15 -2021 ((-1168))))) (-1082)) (T -70)) +((-2021 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-70 *3)) (-14 *3 (-1082))))) +(-13 (-367) (-10 -7 (-15 -2021 ((-1168))))) +((-2021 (((-1168) $) 62)) (-2217 (((-790) $) 56) (($ (-625 (-634))) 47) (($ (-585 (-302))) 50) (($ (-302)) 53) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 46))) +(((-71 |#1|) (-355) (-1082)) (T -71)) +NIL +(-355) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 119) (((-3 $ "failed") (-1163 (-288 (-519)))) 108) (((-3 $ "failed") (-1163 (-879 (-351)))) 141) (((-3 $ "failed") (-1163 (-879 (-519)))) 130) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 98) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 87)) (-1499 (($ (-1163 (-288 (-351)))) 115) (($ (-1163 (-288 (-519)))) 104) (($ (-1163 (-879 (-351)))) 137) (($ (-1163 (-879 (-519)))) 126) (($ (-1163 (-379 (-879 (-351))))) 94) (($ (-1163 (-379 (-879 (-519))))) 80)) (-2021 (((-1168) $) 73)) (-2217 (((-790) $) 27) (($ (-585 (-302))) 63) (($ (-302)) 59) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 66) (($ (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634)))) 60))) +(((-72 |#1|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634))))))) (-1082)) (T -72)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634)))) (-5 *1 (-72 *3)) (-14 *3 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634))))))) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 125) (((-3 $ "failed") (-1163 (-288 (-519)))) 114) (((-3 $ "failed") (-1163 (-879 (-351)))) 147) (((-3 $ "failed") (-1163 (-879 (-519)))) 136) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 103) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 92)) (-1499 (($ (-1163 (-288 (-351)))) 121) (($ (-1163 (-288 (-519)))) 110) (($ (-1163 (-879 (-351)))) 143) (($ (-1163 (-879 (-519)))) 132) (($ (-1163 (-379 (-879 (-351))))) 99) (($ (-1163 (-379 (-879 (-519))))) 85)) (-2021 (((-1168) $) 78)) (-2217 (((-790) $) 70) (($ (-585 (-302))) NIL) (($ (-302)) NIL) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) NIL) (($ (-1163 (-311 (-2228 (QUOTE X) (QUOTE EPS)) (-2228 (QUOTE -1361)) (-634)))) 65))) +(((-73 |#1| |#2| |#3|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE X) (QUOTE EPS)) (-2228 (QUOTE -1361)) (-634))))))) (-1082) (-1082) (-1082)) (T -73)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228 (QUOTE X) (QUOTE EPS)) (-2228 (QUOTE -1361)) (-634)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1082)) (-14 *4 (-1082)) (-14 *5 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE X) (QUOTE EPS)) (-2228 (QUOTE -1361)) (-634))))))) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 129) (((-3 $ "failed") (-1163 (-288 (-519)))) 118) (((-3 $ "failed") (-1163 (-879 (-351)))) 151) (((-3 $ "failed") (-1163 (-879 (-519)))) 140) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 107) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 96)) (-1499 (($ (-1163 (-288 (-351)))) 125) (($ (-1163 (-288 (-519)))) 114) (($ (-1163 (-879 (-351)))) 147) (($ (-1163 (-879 (-519)))) 136) (($ (-1163 (-379 (-879 (-351))))) 103) (($ (-1163 (-379 (-879 (-519))))) 89)) (-2021 (((-1168) $) 82)) (-2217 (((-790) $) 74) (($ (-585 (-302))) NIL) (($ (-302)) NIL) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) NIL) (($ (-1163 (-311 (-2228 (QUOTE EPS)) (-2228 (QUOTE YA) (QUOTE YB)) (-634)))) 69))) +(((-74 |#1| |#2| |#3|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE EPS)) (-2228 (QUOTE YA) (QUOTE YB)) (-634))))))) (-1082) (-1082) (-1082)) (T -74)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228 (QUOTE EPS)) (-2228 (QUOTE YA) (QUOTE YB)) (-634)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1082)) (-14 *4 (-1082)) (-14 *5 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE EPS)) (-2228 (QUOTE YA) (QUOTE YB)) (-634))))))) +((-1301 (((-3 $ "failed") (-288 (-351))) 77) (((-3 $ "failed") (-288 (-519))) 82) (((-3 $ "failed") (-879 (-351))) 87) (((-3 $ "failed") (-879 (-519))) 92) (((-3 $ "failed") (-379 (-879 (-351)))) 72) (((-3 $ "failed") (-379 (-879 (-519)))) 67)) (-1499 (($ (-288 (-351))) 75) (($ (-288 (-519))) 80) (($ (-879 (-351))) 85) (($ (-879 (-519))) 90) (($ (-379 (-879 (-351)))) 70) (($ (-379 (-879 (-519)))) 64)) (-2021 (((-1168) $) 61)) (-2217 (((-790) $) 49) (($ (-585 (-302))) 45) (($ (-302)) 55) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 53) (($ (-311 (-2228) (-2228 (QUOTE X)) (-634))) 46))) +(((-75 |#1|) (-13 (-368) (-10 -8 (-15 -2217 ($ (-311 (-2228) (-2228 (QUOTE X)) (-634)))))) (-1082)) (T -75)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-311 (-2228) (-2228 (QUOTE X)) (-634))) (-5 *1 (-75 *3)) (-14 *3 (-1082))))) +(-13 (-368) (-10 -8 (-15 -2217 ($ (-311 (-2228) (-2228 (QUOTE X)) (-634)))))) +((-1301 (((-3 $ "failed") (-288 (-351))) 41) (((-3 $ "failed") (-288 (-519))) 46) (((-3 $ "failed") (-879 (-351))) 51) (((-3 $ "failed") (-879 (-519))) 56) (((-3 $ "failed") (-379 (-879 (-351)))) 36) (((-3 $ "failed") (-379 (-879 (-519)))) 31)) (-1499 (($ (-288 (-351))) 39) (($ (-288 (-519))) 44) (($ (-879 (-351))) 49) (($ (-879 (-519))) 54) (($ (-379 (-879 (-351)))) 34) (($ (-379 (-879 (-519)))) 28)) (-2021 (((-1168) $) 77)) (-2217 (((-790) $) 71) (($ (-585 (-302))) 62) (($ (-302)) 68) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 65) (($ (-311 (-2228) (-2228 (QUOTE X)) (-634))) 27))) +(((-76 |#1|) (-13 (-368) (-10 -8 (-15 -2217 ($ (-311 (-2228) (-2228 (QUOTE X)) (-634)))))) (-1082)) (T -76)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-311 (-2228) (-2228 (QUOTE X)) (-634))) (-5 *1 (-76 *3)) (-14 *3 (-1082))))) +(-13 (-368) (-10 -8 (-15 -2217 ($ (-311 (-2228) (-2228 (QUOTE X)) (-634)))))) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 84) (((-3 $ "failed") (-1163 (-288 (-519)))) 73) (((-3 $ "failed") (-1163 (-879 (-351)))) 106) (((-3 $ "failed") (-1163 (-879 (-519)))) 95) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 62) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 51)) (-1499 (($ (-1163 (-288 (-351)))) 80) (($ (-1163 (-288 (-519)))) 69) (($ (-1163 (-879 (-351)))) 102) (($ (-1163 (-879 (-519)))) 91) (($ (-1163 (-379 (-879 (-351))))) 58) (($ (-1163 (-379 (-879 (-519))))) 44)) (-2021 (((-1168) $) 122)) (-2217 (((-790) $) 116) (($ (-585 (-302))) 109) (($ (-302)) 36) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 112) (($ (-1163 (-311 (-2228) (-2228 (QUOTE XC)) (-634)))) 37))) +(((-77 |#1|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228) (-2228 (QUOTE XC)) (-634))))))) (-1082)) (T -77)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228) (-2228 (QUOTE XC)) (-634)))) (-5 *1 (-77 *3)) (-14 *3 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228) (-2228 (QUOTE XC)) (-634))))))) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 137) (((-3 $ "failed") (-1163 (-288 (-519)))) 126) (((-3 $ "failed") (-1163 (-879 (-351)))) 158) (((-3 $ "failed") (-1163 (-879 (-519)))) 147) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 116) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 105)) (-1499 (($ (-1163 (-288 (-351)))) 133) (($ (-1163 (-288 (-519)))) 122) (($ (-1163 (-879 (-351)))) 154) (($ (-1163 (-879 (-519)))) 143) (($ (-1163 (-379 (-879 (-351))))) 112) (($ (-1163 (-379 (-879 (-519))))) 98)) (-2021 (((-1168) $) 91)) (-2217 (((-790) $) 85) (($ (-585 (-302))) 76) (($ (-302)) 83) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 81) (($ (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634)))) 77))) +(((-78 |#1|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634))))))) (-1082)) (T -78)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634)))) (-5 *1 (-78 *3)) (-14 *3 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634))))))) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 73) (((-3 $ "failed") (-1163 (-288 (-519)))) 62) (((-3 $ "failed") (-1163 (-879 (-351)))) 95) (((-3 $ "failed") (-1163 (-879 (-519)))) 84) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 51) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 40)) (-1499 (($ (-1163 (-288 (-351)))) 69) (($ (-1163 (-288 (-519)))) 58) (($ (-1163 (-879 (-351)))) 91) (($ (-1163 (-879 (-519)))) 80) (($ (-1163 (-379 (-879 (-351))))) 47) (($ (-1163 (-379 (-879 (-519))))) 33)) (-2021 (((-1168) $) 121)) (-2217 (((-790) $) 115) (($ (-585 (-302))) 106) (($ (-302)) 112) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 110) (($ (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634)))) 32))) +(((-79 |#1|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634))))))) (-1082)) (T -79)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634)))) (-5 *1 (-79 *3)) (-14 *3 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228) (-2228 (QUOTE X)) (-634))))))) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 90) (((-3 $ "failed") (-1163 (-288 (-519)))) 79) (((-3 $ "failed") (-1163 (-879 (-351)))) 112) (((-3 $ "failed") (-1163 (-879 (-519)))) 101) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 68) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 57)) (-1499 (($ (-1163 (-288 (-351)))) 86) (($ (-1163 (-288 (-519)))) 75) (($ (-1163 (-879 (-351)))) 108) (($ (-1163 (-879 (-519)))) 97) (($ (-1163 (-379 (-879 (-351))))) 64) (($ (-1163 (-379 (-879 (-519))))) 50)) (-2021 (((-1168) $) 43)) (-2217 (((-790) $) 36) (($ (-585 (-302))) 26) (($ (-302)) 29) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 32) (($ (-1163 (-311 (-2228 (QUOTE X) (QUOTE -1361)) (-2228) (-634)))) 27))) +(((-80 |#1|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE X) (QUOTE -1361)) (-2228) (-634))))))) (-1082)) (T -80)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228 (QUOTE X) (QUOTE -1361)) (-2228) (-634)))) (-5 *1 (-80 *3)) (-14 *3 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE X) (QUOTE -1361)) (-2228) (-634))))))) +((-1301 (((-3 $ "failed") (-625 (-288 (-351)))) 103) (((-3 $ "failed") (-625 (-288 (-519)))) 92) (((-3 $ "failed") (-625 (-879 (-351)))) 125) (((-3 $ "failed") (-625 (-879 (-519)))) 114) (((-3 $ "failed") (-625 (-379 (-879 (-351))))) 82) (((-3 $ "failed") (-625 (-379 (-879 (-519))))) 71)) (-1499 (($ (-625 (-288 (-351)))) 99) (($ (-625 (-288 (-519)))) 88) (($ (-625 (-879 (-351)))) 121) (($ (-625 (-879 (-519)))) 110) (($ (-625 (-379 (-879 (-351))))) 78) (($ (-625 (-379 (-879 (-519))))) 64)) (-2021 (((-1168) $) 57)) (-2217 (((-790) $) 43) (($ (-585 (-302))) 50) (($ (-302)) 39) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 47) (($ (-625 (-311 (-2228 (QUOTE X) (QUOTE -1361)) (-2228) (-634)))) 40))) +(((-81 |#1|) (-13 (-356) (-10 -8 (-15 -2217 ($ (-625 (-311 (-2228 (QUOTE X) (QUOTE -1361)) (-2228) (-634))))))) (-1082)) (T -81)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-625 (-311 (-2228 (QUOTE X) (QUOTE -1361)) (-2228) (-634)))) (-5 *1 (-81 *3)) (-14 *3 (-1082))))) +(-13 (-356) (-10 -8 (-15 -2217 ($ (-625 (-311 (-2228 (QUOTE X) (QUOTE -1361)) (-2228) (-634))))))) +((-1301 (((-3 $ "failed") (-625 (-288 (-351)))) 103) (((-3 $ "failed") (-625 (-288 (-519)))) 92) (((-3 $ "failed") (-625 (-879 (-351)))) 124) (((-3 $ "failed") (-625 (-879 (-519)))) 113) (((-3 $ "failed") (-625 (-379 (-879 (-351))))) 81) (((-3 $ "failed") (-625 (-379 (-879 (-519))))) 70)) (-1499 (($ (-625 (-288 (-351)))) 99) (($ (-625 (-288 (-519)))) 88) (($ (-625 (-879 (-351)))) 120) (($ (-625 (-879 (-519)))) 109) (($ (-625 (-379 (-879 (-351))))) 77) (($ (-625 (-379 (-879 (-519))))) 63)) (-2021 (((-1168) $) 56)) (-2217 (((-790) $) 50) (($ (-585 (-302))) 44) (($ (-302)) 47) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 40) (($ (-625 (-311 (-2228 (QUOTE X)) (-2228) (-634)))) 41))) +(((-82 |#1|) (-13 (-356) (-10 -8 (-15 -2217 ($ (-625 (-311 (-2228 (QUOTE X)) (-2228) (-634))))))) (-1082)) (T -82)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-625 (-311 (-2228 (QUOTE X)) (-2228) (-634)))) (-5 *1 (-82 *3)) (-14 *3 (-1082))))) +(-13 (-356) (-10 -8 (-15 -2217 ($ (-625 (-311 (-2228 (QUOTE X)) (-2228) (-634))))))) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 99) (((-3 $ "failed") (-1163 (-288 (-519)))) 88) (((-3 $ "failed") (-1163 (-879 (-351)))) 121) (((-3 $ "failed") (-1163 (-879 (-519)))) 110) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 77) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 66)) (-1499 (($ (-1163 (-288 (-351)))) 95) (($ (-1163 (-288 (-519)))) 84) (($ (-1163 (-879 (-351)))) 117) (($ (-1163 (-879 (-519)))) 106) (($ (-1163 (-379 (-879 (-351))))) 73) (($ (-1163 (-379 (-879 (-519))))) 59)) (-2021 (((-1168) $) 45)) (-2217 (((-790) $) 39) (($ (-585 (-302))) 48) (($ (-302)) 35) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 51) (($ (-1163 (-311 (-2228 (QUOTE X)) (-2228) (-634)))) 36))) +(((-83 |#1|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE X)) (-2228) (-634))))))) (-1082)) (T -83)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228 (QUOTE X)) (-2228) (-634)))) (-5 *1 (-83 *3)) (-14 *3 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE X)) (-2228) (-634))))))) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 74) (((-3 $ "failed") (-1163 (-288 (-519)))) 63) (((-3 $ "failed") (-1163 (-879 (-351)))) 96) (((-3 $ "failed") (-1163 (-879 (-519)))) 85) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 52) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 41)) (-1499 (($ (-1163 (-288 (-351)))) 70) (($ (-1163 (-288 (-519)))) 59) (($ (-1163 (-879 (-351)))) 92) (($ (-1163 (-879 (-519)))) 81) (($ (-1163 (-379 (-879 (-351))))) 48) (($ (-1163 (-379 (-879 (-519))))) 34)) (-2021 (((-1168) $) 122)) (-2217 (((-790) $) 116) (($ (-585 (-302))) 107) (($ (-302)) 113) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 111) (($ (-1163 (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634)))) 33))) +(((-84 |#1|) (-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634))))))) (-1082)) (T -84)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634)))) (-5 *1 (-84 *3)) (-14 *3 (-1082))))) +(-13 (-412) (-10 -8 (-15 -2217 ($ (-1163 (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634))))))) +((-1301 (((-3 $ "failed") (-625 (-288 (-351)))) 105) (((-3 $ "failed") (-625 (-288 (-519)))) 94) (((-3 $ "failed") (-625 (-879 (-351)))) 127) (((-3 $ "failed") (-625 (-879 (-519)))) 116) (((-3 $ "failed") (-625 (-379 (-879 (-351))))) 83) (((-3 $ "failed") (-625 (-379 (-879 (-519))))) 72)) (-1499 (($ (-625 (-288 (-351)))) 101) (($ (-625 (-288 (-519)))) 90) (($ (-625 (-879 (-351)))) 123) (($ (-625 (-879 (-519)))) 112) (($ (-625 (-379 (-879 (-351))))) 79) (($ (-625 (-379 (-879 (-519))))) 65)) (-2021 (((-1168) $) 58)) (-2217 (((-790) $) 52) (($ (-585 (-302))) 42) (($ (-302)) 49) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 47) (($ (-625 (-311 (-2228 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2228) (-634)))) 43))) +(((-85 |#1|) (-13 (-356) (-10 -8 (-15 -2217 ($ (-625 (-311 (-2228 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2228) (-634))))))) (-1082)) (T -85)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-625 (-311 (-2228 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2228) (-634)))) (-5 *1 (-85 *3)) (-14 *3 (-1082))))) +(-13 (-356) (-10 -8 (-15 -2217 ($ (-625 (-311 (-2228 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2228) (-634))))))) +((-2021 (((-1168) $) 44)) (-2217 (((-790) $) 38) (($ (-1163 (-634))) 88) (($ (-585 (-302))) 29) (($ (-302)) 35) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 32))) +(((-86 |#1|) (-411) (-1082)) (T -86)) +NIL +(-411) +((-1301 (((-3 $ "failed") (-288 (-351))) 42) (((-3 $ "failed") (-288 (-519))) 47) (((-3 $ "failed") (-879 (-351))) 52) (((-3 $ "failed") (-879 (-519))) 57) (((-3 $ "failed") (-379 (-879 (-351)))) 37) (((-3 $ "failed") (-379 (-879 (-519)))) 32)) (-1499 (($ (-288 (-351))) 40) (($ (-288 (-519))) 45) (($ (-879 (-351))) 50) (($ (-879 (-519))) 55) (($ (-379 (-879 (-351)))) 35) (($ (-379 (-879 (-519)))) 29)) (-2021 (((-1168) $) 88)) (-2217 (((-790) $) 82) (($ (-585 (-302))) 76) (($ (-302)) 79) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 73) (($ (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634))) 28))) +(((-87 |#1|) (-13 (-368) (-10 -8 (-15 -2217 ($ (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634)))))) (-1082)) (T -87)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634))) (-5 *1 (-87 *3)) (-14 *3 (-1082))))) +(-13 (-368) (-10 -8 (-15 -2217 ($ (-311 (-2228 (QUOTE X)) (-2228 (QUOTE -1361)) (-634)))))) +((-3303 (((-1163 (-625 |#1|)) (-625 |#1|)) 55)) (-2250 (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 (-585 (-848))))) |#2| (-848)) 45)) (-4130 (((-2 (|:| |minor| (-585 (-848))) (|:| -3257 |#2|) (|:| |minors| (-585 (-585 (-848)))) (|:| |ops| (-585 |#2|))) |#2| (-848)) 63 (|has| |#1| (-335))))) +(((-88 |#1| |#2|) (-10 -7 (-15 -2250 ((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 (-585 (-848))))) |#2| (-848))) (-15 -3303 ((-1163 (-625 |#1|)) (-625 |#1|))) (IF (|has| |#1| (-335)) (-15 -4130 ((-2 (|:| |minor| (-585 (-848))) (|:| -3257 |#2|) (|:| |minors| (-585 (-585 (-848)))) (|:| |ops| (-585 |#2|))) |#2| (-848))) |%noBranch|)) (-511) (-595 |#1|)) (T -88)) +((-4130 (*1 *2 *3 *4) (-12 (-4 *5 (-335)) (-4 *5 (-511)) (-5 *2 (-2 (|:| |minor| (-585 (-848))) (|:| -3257 *3) (|:| |minors| (-585 (-585 (-848)))) (|:| |ops| (-585 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-848)) (-4 *3 (-595 *5)))) (-3303 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-1163 (-625 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-625 *4)) (-4 *5 (-595 *4)))) (-2250 (*1 *2 *3 *4) (-12 (-4 *5 (-511)) (-5 *2 (-2 (|:| -2488 (-625 *5)) (|:| |vec| (-1163 (-585 (-848)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-848)) (-4 *3 (-595 *5))))) +(-10 -7 (-15 -2250 ((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 (-585 (-848))))) |#2| (-848))) (-15 -3303 ((-1163 (-625 |#1|)) (-625 |#1|))) (IF (|has| |#1| (-335)) (-15 -4130 ((-2 (|:| |minor| (-585 (-848))) (|:| -3257 |#2|) (|:| |minors| (-585 (-585 (-848)))) (|:| |ops| (-585 |#2|))) |#2| (-848))) |%noBranch|)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1365 ((|#1| $) 35)) (-1473 (((-108) $ (-705)) NIL)) (-2249 (($) NIL T CONST)) (-2390 ((|#1| |#1| $) 30)) (-3128 ((|#1| $) 28)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4152 ((|#1| $) NIL)) (-1846 (($ |#1| $) 31)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-3212 ((|#1| $) 29)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 16)) (-1548 (($) 39)) (-1253 (((-705) $) 26)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) 15)) (-2217 (((-790) $) 25 (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) NIL)) (-2939 (($ (-585 |#1|)) 37)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 13 (|has| |#1| (-1011)))) (-3532 (((-705) $) 10 (|has| $ (-6 -4221))))) +(((-89 |#1|) (-13 (-1030 |#1|) (-10 -8 (-15 -2939 ($ (-585 |#1|))))) (-1011)) (T -89)) +((-2939 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-89 *3))))) +(-13 (-1030 |#1|) (-10 -8 (-15 -2939 ($ (-585 |#1|))))) +((-2910 (($ $) 10)) (-2922 (($ $) 12))) +(((-90 |#1|) (-10 -8 (-15 -2922 (|#1| |#1|)) (-15 -2910 (|#1| |#1|))) (-91)) (T -90)) +NIL +(-10 -8 (-15 -2922 (|#1| |#1|)) (-15 -2910 (|#1| |#1|))) +((-2886 (($ $) 11)) (-2865 (($ $) 10)) (-2910 (($ $) 9)) (-2922 (($ $) 8)) (-2898 (($ $) 7)) (-2875 (($ $) 6))) +(((-91) (-1194)) (T -91)) +((-2886 (*1 *1 *1) (-4 *1 (-91))) (-2865 (*1 *1 *1) (-4 *1 (-91))) (-2910 (*1 *1 *1) (-4 *1 (-91))) (-2922 (*1 *1 *1) (-4 *1 (-91))) (-2898 (*1 *1 *1) (-4 *1 (-91))) (-2875 (*1 *1 *1) (-4 *1 (-91)))) +(-13 (-10 -8 (-15 -2875 ($ $)) (-15 -2898 ($ $)) (-15 -2922 ($ $)) (-15 -2910 ($ $)) (-15 -2865 ($ $)) (-15 -2886 ($ $)))) +((-1430 (((-108) $ $) NIL)) (-1765 (((-351) (-1065) (-351)) 42) (((-351) (-1065) (-1065) (-351)) 41)) (-1954 (((-351) (-351)) 33)) (-1663 (((-1168)) 36)) (-1266 (((-1065) $) NIL)) (-4123 (((-351) (-1065) (-1065)) 46) (((-351) (-1065)) 48)) (-4139 (((-1029) $) NIL)) (-3579 (((-351) (-1065) (-1065)) 47)) (-2415 (((-351) (-1065) (-1065)) 49) (((-351) (-1065)) 50)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-92) (-13 (-1011) (-10 -7 (-15 -4123 ((-351) (-1065) (-1065))) (-15 -4123 ((-351) (-1065))) (-15 -2415 ((-351) (-1065) (-1065))) (-15 -2415 ((-351) (-1065))) (-15 -3579 ((-351) (-1065) (-1065))) (-15 -1663 ((-1168))) (-15 -1954 ((-351) (-351))) (-15 -1765 ((-351) (-1065) (-351))) (-15 -1765 ((-351) (-1065) (-1065) (-351))) (-6 -4221)))) (T -92)) +((-4123 (*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-92)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-92)))) (-2415 (*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-92)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-92)))) (-3579 (*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-92)))) (-1663 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-92)))) (-1954 (*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-92)))) (-1765 (*1 *2 *3 *2) (-12 (-5 *2 (-351)) (-5 *3 (-1065)) (-5 *1 (-92)))) (-1765 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-351)) (-5 *3 (-1065)) (-5 *1 (-92))))) +(-13 (-1011) (-10 -7 (-15 -4123 ((-351) (-1065) (-1065))) (-15 -4123 ((-351) (-1065))) (-15 -2415 ((-351) (-1065) (-1065))) (-15 -2415 ((-351) (-1065))) (-15 -3579 ((-351) (-1065) (-1065))) (-15 -1663 ((-1168))) (-15 -1954 ((-351) (-351))) (-15 -1765 ((-351) (-1065) (-351))) (-15 -1765 ((-351) (-1065) (-1065) (-351))) (-6 -4221))) +NIL +(((-93) (-1194)) (T -93)) +NIL +(-13 (-10 -7 (-6 -4221) (-6 (-4223 "*")) (-6 -4222) (-6 -4218) (-6 -4216) (-6 -4215) (-6 -4214) (-6 -4219) (-6 -4213) (-6 -4212) (-6 -4211) (-6 -4210) (-6 -4209) (-6 -4217) (-6 -4220) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4208))) +((-1430 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) NIL)) (-1696 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-519))) 22)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 14)) (-4139 (((-1029) $) NIL)) (-2598 ((|#1| $ |#1|) 11)) (-3333 (($ $ $) NIL)) (-3190 (($ $ $) NIL)) (-2217 (((-790) $) 20)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3611 (($) 8 T CONST)) (-1543 (((-108) $ $) 10)) (-1632 (($ $ $) NIL)) (** (($ $ (-848)) 28) (($ $ (-705)) NIL) (($ $ (-519)) 16)) (* (($ $ $) 29))) +(((-94 |#1|) (-13 (-444) (-260 |#1| |#1|) (-10 -8 (-15 -1696 ($ (-1 |#1| |#1|))) (-15 -1696 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1696 ($ (-1 |#1| |#1| (-519)))))) (-968)) (T -94)) +((-1696 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-94 *3)))) (-1696 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-94 *3)))) (-1696 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-519))) (-4 *3 (-968)) (-5 *1 (-94 *3))))) +(-13 (-444) (-260 |#1| |#1|) (-10 -8 (-15 -1696 ($ (-1 |#1| |#1|))) (-15 -1696 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1696 ($ (-1 |#1| |#1| (-519)))))) +((-3660 (((-390 |#2|) |#2| (-585 |#2|)) 10) (((-390 |#2|) |#2| |#2|) 11))) +(((-95 |#1| |#2|) (-10 -7 (-15 -3660 ((-390 |#2|) |#2| |#2|)) (-15 -3660 ((-390 |#2|) |#2| (-585 |#2|)))) (-13 (-423) (-135)) (-1139 |#1|)) (T -95)) +((-3660 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1139 *5)) (-4 *5 (-13 (-423) (-135))) (-5 *2 (-390 *3)) (-5 *1 (-95 *5 *3)))) (-3660 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-423) (-135))) (-5 *2 (-390 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1139 *4))))) +(-10 -7 (-15 -3660 ((-390 |#2|) |#2| |#2|)) (-15 -3660 ((-390 |#2|) |#2| (-585 |#2|)))) +((-1430 (((-108) $ $) 10))) +(((-96 |#1|) (-10 -8 (-15 -1430 ((-108) |#1| |#1|))) (-97)) (T -96)) +NIL +(-10 -8 (-15 -1430 ((-108) |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-1543 (((-108) $ $) 6))) +(((-97) (-1194)) (T -97)) +((-1430 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-1543 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))) +(-13 (-10 -8 (-15 -1543 ((-108) $ $)) (-15 -1430 ((-108) $ $)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3493 ((|#1| $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-2410 ((|#1| $ |#1|) 13 (|has| $ (-6 -4222)))) (-1324 (($ $ $) NIL (|has| $ (-6 -4222)))) (-3861 (($ $ $) NIL (|has| $ (-6 -4222)))) (-3109 (($ $ (-585 |#1|)) 15)) (-2421 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4222))) (($ $ "left" $) NIL (|has| $ (-6 -4222))) (($ $ "right" $) NIL (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) NIL (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1931 (($ $) 11)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) NIL)) (-3458 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3089 (($ $ |#1| $) 17)) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1656 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3898 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-585 |#1|) |#1| |#1| |#1|)) 35)) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1917 (($ $) 10)) (-1281 (((-585 |#1|) $) NIL)) (-1668 (((-108) $) 12)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 9)) (-1548 (($) 16)) (-2598 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1763 (((-519) $ $) NIL)) (-3096 (((-108) $) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) NIL)) (-2915 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1546 (($ (-705) |#1|) 19)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4221) (-6 -4222) (-15 -1546 ($ (-705) |#1|)) (-15 -3109 ($ $ (-585 |#1|))) (-15 -1656 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1656 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3898 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3898 ($ $ |#1| (-1 (-585 |#1|) |#1| |#1| |#1|))))) (-1011)) (T -98)) +((-1546 (*1 *1 *2 *3) (-12 (-5 *2 (-705)) (-5 *1 (-98 *3)) (-4 *3 (-1011)))) (-3109 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-98 *3)))) (-1656 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1011)))) (-1656 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1011)) (-5 *1 (-98 *3)))) (-3898 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1011)) (-5 *1 (-98 *2)))) (-3898 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-585 *2) *2 *2 *2)) (-4 *2 (-1011)) (-5 *1 (-98 *2))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4221) (-6 -4222) (-15 -1546 ($ (-705) |#1|)) (-15 -3109 ($ $ (-585 |#1|))) (-15 -1656 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1656 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3898 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3898 ($ $ |#1| (-1 (-585 |#1|) |#1| |#1| |#1|))))) +((-3912 ((|#3| |#2| |#2|) 29)) (-2930 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4223 "*"))))) (-1489 ((|#3| |#2| |#2|) 30)) (-1834 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4223 "*")))))) +(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3912 (|#3| |#2| |#2|)) (-15 -1489 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4223 "*"))) (PROGN (-15 -2930 (|#1| |#2| |#2|)) (-15 -1834 (|#1| |#2|))) |%noBranch|)) (-968) (-1139 |#1|) (-623 |#1| |#4| |#5|) (-345 |#1|) (-345 |#1|)) (T -99)) +((-1834 (*1 *2 *3) (-12 (|has| *2 (-6 (-4223 "*"))) (-4 *5 (-345 *2)) (-4 *6 (-345 *2)) (-4 *2 (-968)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1139 *2)) (-4 *4 (-623 *2 *5 *6)))) (-2930 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4223 "*"))) (-4 *5 (-345 *2)) (-4 *6 (-345 *2)) (-4 *2 (-968)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1139 *2)) (-4 *4 (-623 *2 *5 *6)))) (-1489 (*1 *2 *3 *3) (-12 (-4 *4 (-968)) (-4 *2 (-623 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1139 *4)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)))) (-3912 (*1 *2 *3 *3) (-12 (-4 *4 (-968)) (-4 *2 (-623 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1139 *4)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4))))) +(-10 -7 (-15 -3912 (|#3| |#2| |#2|)) (-15 -1489 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4223 "*"))) (PROGN (-15 -2930 (|#1| |#2| |#2|)) (-15 -1834 (|#1| |#2|))) |%noBranch|)) +((-1430 (((-108) $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1948 (((-585 (-1082))) 32)) (-2475 (((-2 (|:| |zeros| (-1063 (-201))) (|:| |ones| (-1063 (-201))) (|:| |singularities| (-1063 (-201)))) (-1082)) 35)) (-1543 (((-108) $ $) NIL))) +(((-100) (-13 (-1011) (-10 -7 (-15 -1948 ((-585 (-1082)))) (-15 -2475 ((-2 (|:| |zeros| (-1063 (-201))) (|:| |ones| (-1063 (-201))) (|:| |singularities| (-1063 (-201)))) (-1082))) (-6 -4221)))) (T -100)) +((-1948 (*1 *2) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-100)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-2 (|:| |zeros| (-1063 (-201))) (|:| |ones| (-1063 (-201))) (|:| |singularities| (-1063 (-201))))) (-5 *1 (-100))))) +(-13 (-1011) (-10 -7 (-15 -1948 ((-585 (-1082)))) (-15 -2475 ((-2 (|:| |zeros| (-1063 (-201))) (|:| |ones| (-1063 (-201))) (|:| |singularities| (-1063 (-201)))) (-1082))) (-6 -4221))) +((-3879 (($ (-585 |#2|)) 11))) +(((-101 |#1| |#2|) (-10 -8 (-15 -3879 (|#1| (-585 |#2|)))) (-102 |#2|) (-1117)) (T -101)) +NIL +(-10 -8 (-15 -3879 (|#1| (-585 |#2|)))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) 8)) (-2249 (($) 7 T CONST)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4152 ((|#1| $) 39)) (-1846 (($ |#1| $) 40)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-3212 ((|#1| $) 41)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) 42)) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-102 |#1|) (-1194) (-1117)) (T -102)) +((-3879 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-4 *1 (-102 *3)))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1117)))) (-1846 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1117)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1117))))) +(-13 (-458 |t#1|) (-10 -8 (-6 -4222) (-15 -3879 ($ (-585 |t#1|))) (-15 -3212 (|t#1| $)) (-15 -1846 ($ |t#1| $)) (-15 -4152 (|t#1| $)))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2157 (((-519) $) NIL (|has| (-519) (-280)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL (|has| (-519) (-755)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL) (((-3 (-1082) "failed") $) NIL (|has| (-519) (-959 (-1082)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| (-519) (-959 (-519)))) (((-3 (-519) "failed") $) NIL (|has| (-519) (-959 (-519))))) (-1499 (((-519) $) NIL) (((-1082) $) NIL (|has| (-519) (-959 (-1082)))) (((-379 (-519)) $) NIL (|has| (-519) (-959 (-519)))) (((-519) $) NIL (|has| (-519) (-959 (-519))))) (-2311 (($ $ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| (-519) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| (-519) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-625 (-519)) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| (-519) (-504)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3419 (((-108) $) NIL (|has| (-519) (-755)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (|has| (-519) (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (|has| (-519) (-813 (-351))))) (-1568 (((-108) $) NIL)) (-1534 (($ $) NIL)) (-2855 (((-519) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| (-519) (-1058)))) (-2143 (((-108) $) NIL (|has| (-519) (-755)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| (-519) (-782)))) (-1405 (($ (-1 (-519) (-519)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| (-519) (-1058)) CONST)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) NIL (|has| (-519) (-280))) (((-379 (-519)) $) NIL)) (-1525 (((-519) $) NIL (|has| (-519) (-504)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2324 (($ $ (-585 (-519)) (-585 (-519))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-519) (-519)) NIL (|has| (-519) (-282 (-519)))) (($ $ (-267 (-519))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-585 (-267 (-519)))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-585 (-1082)) (-585 (-519))) NIL (|has| (-519) (-480 (-1082) (-519)))) (($ $ (-1082) (-519)) NIL (|has| (-519) (-480 (-1082) (-519))))) (-3129 (((-705) $) NIL)) (-2598 (($ $ (-519)) NIL (|has| (-519) (-260 (-519) (-519))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2181 (($ $) NIL (|has| (-519) (-209))) (($ $ (-705)) NIL (|has| (-519) (-209))) (($ $ (-1082)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1 (-519) (-519)) (-705)) NIL) (($ $ (-1 (-519) (-519))) NIL)) (-2724 (($ $) NIL)) (-2866 (((-519) $) NIL)) (-1446 (((-819 (-519)) $) NIL (|has| (-519) (-560 (-819 (-519))))) (((-819 (-351)) $) NIL (|has| (-519) (-560 (-819 (-351))))) (((-495) $) NIL (|has| (-519) (-560 (-495)))) (((-351) $) NIL (|has| (-519) (-944))) (((-201) $) NIL (|has| (-519) (-944)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| (-519) (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) 7) (($ (-519)) NIL) (($ (-1082)) NIL (|has| (-519) (-959 (-1082)))) (((-379 (-519)) $) NIL) (((-927 2) $) 9)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| (-519) (-836))) (|has| (-519) (-133))))) (-3594 (((-705)) NIL)) (-3617 (((-519) $) NIL (|has| (-519) (-504)))) (-1412 (($ (-379 (-519))) 8)) (-1617 (((-108) $ $) NIL)) (-1478 (($ $) NIL (|has| (-519) (-755)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $) NIL (|has| (-519) (-209))) (($ $ (-705)) NIL (|has| (-519) (-209))) (($ $ (-1082)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1 (-519) (-519)) (-705)) NIL) (($ $ (-1 (-519) (-519))) NIL)) (-1586 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1569 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1561 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1632 (($ $ $) NIL) (($ (-519) (-519)) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ (-519) $) NIL) (($ $ (-519)) NIL))) +(((-103) (-13 (-916 (-519)) (-10 -8 (-15 -2217 ((-379 (-519)) $)) (-15 -2217 ((-927 2) $)) (-15 -3326 ((-379 (-519)) $)) (-15 -1412 ($ (-379 (-519))))))) (T -103)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-103)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-927 2)) (-5 *1 (-103)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-103)))) (-1412 (*1 *1 *2) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-103))))) +(-13 (-916 (-519)) (-10 -8 (-15 -2217 ((-379 (-519)) $)) (-15 -2217 ((-927 2) $)) (-15 -3326 ((-379 (-519)) $)) (-15 -1412 ($ (-379 (-519)))))) +((-2467 (((-585 (-729)) $) 13)) (-2938 (((-1082) $) 10)) (-2217 (((-790) $) 19)) (-2315 (($ (-1082) (-585 (-729))) 14))) +(((-104) (-13 (-559 (-790)) (-10 -8 (-15 -2938 ((-1082) $)) (-15 -2467 ((-585 (-729)) $)) (-15 -2315 ($ (-1082) (-585 (-729))))))) (T -104)) +((-2938 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-104)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-585 (-729))) (-5 *1 (-104)))) (-2315 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-729))) (-5 *1 (-104))))) +(-13 (-559 (-790)) (-10 -8 (-15 -2938 ((-1082) $)) (-15 -2467 ((-585 (-729)) $)) (-15 -2315 ($ (-1082) (-585 (-729)))))) +((-1430 (((-108) $ $) NIL)) (-3237 (((-1029) $ (-1029)) 23)) (-3704 (($ $ (-1065)) 17)) (-1450 (((-3 (-1029) "failed") $) 22)) (-1234 (((-1029) $) 20)) (-1233 (((-1029) $ (-1029)) 25)) (-3297 (((-1029) $) 24)) (-1556 (($ (-360)) NIL) (($ (-360) (-1065)) 16)) (-2938 (((-360) $) NIL)) (-1266 (((-1065) $) NIL)) (-2901 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-3657 (($ $) 18)) (-1543 (((-108) $ $) NIL))) +(((-105) (-13 (-336 (-360) (-1029)) (-10 -8 (-15 -1450 ((-3 (-1029) "failed") $)) (-15 -3297 ((-1029) $)) (-15 -1233 ((-1029) $ (-1029)))))) (T -105)) +((-1450 (*1 *2 *1) (|partial| -12 (-5 *2 (-1029)) (-5 *1 (-105)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-105)))) (-1233 (*1 *2 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-105))))) +(-13 (-336 (-360) (-1029)) (-10 -8 (-15 -1450 ((-3 (-1029) "failed") $)) (-15 -3297 ((-1029) $)) (-15 -1233 ((-1029) $ (-1029))))) +((-1430 (((-108) $ $) NIL)) (-1515 (($ $) NIL)) (-3408 (($ $ $) NIL)) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) $) NIL (|has| (-108) (-782))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2078 (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| (-108) (-782)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4222)))) (-3276 (($ $) NIL (|has| (-108) (-782))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-2421 (((-108) $ (-1130 (-519)) (-108)) NIL (|has| $ (-6 -4222))) (((-108) $ (-519) (-108)) NIL (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011))))) (-1438 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4221))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011))))) (-3874 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011))))) (-3865 (((-108) $ (-519) (-108)) NIL (|has| $ (-6 -4222)))) (-3659 (((-108) $ (-519)) NIL)) (-3297 (((-519) (-108) $ (-519)) NIL (|has| (-108) (-1011))) (((-519) (-108) $) NIL (|has| (-108) (-1011))) (((-519) (-1 (-108) (-108)) $) NIL)) (-3844 (((-585 (-108)) $) NIL (|has| $ (-6 -4221)))) (-3997 (($ $ $) NIL)) (-2445 (($ $) NIL)) (-1678 (($ $ $) NIL)) (-1822 (($ (-705) (-108)) 8)) (-1382 (($ $ $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL)) (-2500 (($ $ $) NIL (|has| (-108) (-782))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3725 (((-585 (-108)) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL)) (-3850 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-1672 (($ $ $ (-519)) NIL) (($ (-108) $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 (((-108) $) NIL (|has| (-519) (-782)))) (-2395 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-3640 (($ $ (-108)) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-108)) (-585 (-108))) NIL (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011)))) (($ $ (-267 (-108))) NIL (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011)))) (($ $ (-585 (-267 (-108)))) NIL (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011))))) (-2222 (((-585 (-108)) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 (($ $ (-1130 (-519))) NIL) (((-108) $ (-519)) NIL) (((-108) $ (-519) (-108)) NIL)) (-3720 (($ $ (-1130 (-519))) NIL) (($ $ (-519)) NIL)) (-4155 (((-705) (-108) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011)))) (((-705) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4221)))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-108) (-560 (-495))))) (-2228 (($ (-585 (-108))) NIL)) (-4150 (($ (-585 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2217 (((-790) $) NIL)) (-1858 (($ (-705) (-108)) 9)) (-1778 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4221)))) (-4012 (($ $ $) NIL)) (-3559 (($ $) NIL)) (-2818 (($ $ $) NIL)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL)) (-2360 (($ $ $) NIL)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-106) (-13 (-119) (-10 -8 (-15 -1858 ($ (-705) (-108)))))) (T -106)) +((-1858 (*1 *1 *2 *3) (-12 (-5 *2 (-705)) (-5 *3 (-108)) (-5 *1 (-106))))) +(-13 (-119) (-10 -8 (-15 -1858 ($ (-705) (-108))))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-107 |#1| |#2|) (-1194) (-968) (-968)) (T -107)) +NIL +(-13 (-587 |t#1|) (-974 |t#2|) (-10 -7 (-6 -4216) (-6 -4215))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-974 |#2|) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-1515 (($ $) 12)) (-3408 (($ $ $) 17)) (-1449 (($) 8 T CONST)) (-3460 (((-108) $) 7)) (-1642 (((-705)) 26)) (-3314 (($) 32)) (-3997 (($ $ $) 15)) (-2445 (($ $) 10)) (-1678 (($ $ $) 18)) (-1382 (($ $ $) 19)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-3334 (((-848) $) 31)) (-1266 (((-1065) $) NIL)) (-2770 (($ (-848)) 30)) (-3398 (($ $ $) 21)) (-4139 (((-1029) $) NIL)) (-2317 (($) 9 T CONST)) (-2581 (($ $ $) 22)) (-1446 (((-495) $) 38)) (-2217 (((-790) $) 41)) (-4012 (($ $ $) 13)) (-3559 (($ $) 11)) (-2818 (($ $ $) 16)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 20)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 24)) (-2360 (($ $ $) 14))) +(((-108) (-13 (-782) (-340) (-600) (-892) (-560 (-495)) (-10 -8 (-15 -1449 ($) -2730) (-15 -2317 ($) -2730) (-15 -3559 ($ $)) (-15 -3408 ($ $ $)) (-15 -1382 ($ $ $)) (-15 -1678 ($ $ $)) (-15 -3460 ((-108) $))))) (T -108)) +((-1449 (*1 *1) (-5 *1 (-108))) (-2317 (*1 *1) (-5 *1 (-108))) (-3559 (*1 *1 *1) (-5 *1 (-108))) (-3408 (*1 *1 *1 *1) (-5 *1 (-108))) (-1382 (*1 *1 *1 *1) (-5 *1 (-108))) (-1678 (*1 *1 *1 *1) (-5 *1 (-108))) (-3460 (*1 *1 *1) (-5 *1 (-108)))) +(-13 (-782) (-340) (-600) (-892) (-560 (-495)) (-10 -8 (-15 -1449 ($) -2730) (-15 -2317 ($) -2730) (-15 -3559 ($ $)) (-15 -3408 ($ $ $)) (-15 -1382 ($ $ $)) (-15 -1678 ($ $ $)) (-15 -3460 ((-108) $)))) +((-3289 (((-3 (-1 |#1| (-585 |#1|)) "failed") (-110)) 18) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-585 |#1|))) 11) (((-3 |#1| "failed") (-110) (-585 |#1|)) 20)) (-1902 (((-3 (-585 (-1 |#1| (-585 |#1|))) "failed") (-110)) 24) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-585 (-1 |#1| (-585 |#1|)))) 26)) (-3474 (((-110) |#1|) 54 (|has| |#1| (-782)))) (-2641 (((-3 |#1| "failed") (-110)) 49 (|has| |#1| (-782))))) +(((-109 |#1|) (-10 -7 (-15 -3289 ((-3 |#1| "failed") (-110) (-585 |#1|))) (-15 -3289 ((-110) (-110) (-1 |#1| (-585 |#1|)))) (-15 -3289 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3289 ((-3 (-1 |#1| (-585 |#1|)) "failed") (-110))) (-15 -1902 ((-110) (-110) (-585 (-1 |#1| (-585 |#1|))))) (-15 -1902 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1902 ((-3 (-585 (-1 |#1| (-585 |#1|))) "failed") (-110))) (IF (|has| |#1| (-782)) (PROGN (-15 -3474 ((-110) |#1|)) (-15 -2641 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1011)) (T -109)) +((-2641 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1011)) (-4 *2 (-782)) (-5 *1 (-109 *2)))) (-3474 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-782)) (-4 *3 (-1011)))) (-1902 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-585 (-1 *4 (-585 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1011)))) (-1902 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1011)) (-5 *1 (-109 *4)))) (-1902 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-585 (-1 *4 (-585 *4)))) (-4 *4 (-1011)) (-5 *1 (-109 *4)))) (-3289 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-585 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1011)))) (-3289 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1011)) (-5 *1 (-109 *4)))) (-3289 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-585 *4))) (-4 *4 (-1011)) (-5 *1 (-109 *4)))) (-3289 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-585 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1011))))) +(-10 -7 (-15 -3289 ((-3 |#1| "failed") (-110) (-585 |#1|))) (-15 -3289 ((-110) (-110) (-1 |#1| (-585 |#1|)))) (-15 -3289 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3289 ((-3 (-1 |#1| (-585 |#1|)) "failed") (-110))) (-15 -1902 ((-110) (-110) (-585 (-1 |#1| (-585 |#1|))))) (-15 -1902 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1902 ((-3 (-585 (-1 |#1| (-585 |#1|))) "failed") (-110))) (IF (|has| |#1| (-782)) (PROGN (-15 -3474 ((-110) |#1|)) (-15 -2641 ((-3 |#1| "failed") (-110)))) |%noBranch|)) +((-1430 (((-108) $ $) NIL)) (-3711 (((-705) $) 68) (($ $ (-705)) 30)) (-3385 (((-108) $) 32)) (-3669 (($ $ (-1065) (-708)) 26)) (-1344 (($ $ (-44 (-1065) (-708))) 13)) (-1937 (((-3 (-708) "failed") $ (-1065)) 24)) (-2467 (((-44 (-1065) (-708)) $) 12)) (-3752 (($ (-1082)) 15) (($ (-1082) (-705)) 20)) (-2745 (((-108) $) 31)) (-4028 (((-108) $) 33)) (-2938 (((-1082) $) 8)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-2917 (((-108) $ (-1082)) 10)) (-1734 (($ $ (-1 (-495) (-585 (-495)))) 50) (((-3 (-1 (-495) (-585 (-495))) "failed") $) 54)) (-4139 (((-1029) $) NIL)) (-2212 (((-108) $ (-1065)) 29)) (-3299 (($ $ (-1 (-108) $ $)) 35)) (-1691 (((-3 (-1 (-790) (-585 (-790))) "failed") $) 52) (($ $ (-1 (-790) (-585 (-790)))) 41) (($ $ (-1 (-790) (-790))) 43)) (-1337 (($ $ (-1065)) 45)) (-2449 (($ $) 61)) (-1235 (($ $ (-1 (-108) $ $)) 36)) (-2217 (((-790) $) 48)) (-3037 (($ $ (-1065)) 27)) (-3671 (((-3 (-705) "failed") $) 56)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 67)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 73))) +(((-110) (-13 (-782) (-10 -8 (-15 -2938 ((-1082) $)) (-15 -2467 ((-44 (-1065) (-708)) $)) (-15 -2449 ($ $)) (-15 -3752 ($ (-1082))) (-15 -3752 ($ (-1082) (-705))) (-15 -3671 ((-3 (-705) "failed") $)) (-15 -2745 ((-108) $)) (-15 -3385 ((-108) $)) (-15 -4028 ((-108) $)) (-15 -3711 ((-705) $)) (-15 -3711 ($ $ (-705))) (-15 -3299 ($ $ (-1 (-108) $ $))) (-15 -1235 ($ $ (-1 (-108) $ $))) (-15 -1691 ((-3 (-1 (-790) (-585 (-790))) "failed") $)) (-15 -1691 ($ $ (-1 (-790) (-585 (-790))))) (-15 -1691 ($ $ (-1 (-790) (-790)))) (-15 -1734 ($ $ (-1 (-495) (-585 (-495))))) (-15 -1734 ((-3 (-1 (-495) (-585 (-495))) "failed") $)) (-15 -2917 ((-108) $ (-1082))) (-15 -2212 ((-108) $ (-1065))) (-15 -3037 ($ $ (-1065))) (-15 -1337 ($ $ (-1065))) (-15 -1937 ((-3 (-708) "failed") $ (-1065))) (-15 -3669 ($ $ (-1065) (-708))) (-15 -1344 ($ $ (-44 (-1065) (-708))))))) (T -110)) +((-2938 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-110)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-44 (-1065) (-708))) (-5 *1 (-110)))) (-2449 (*1 *1 *1) (-5 *1 (-110))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-110)))) (-3752 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-705)) (-5 *1 (-110)))) (-3671 (*1 *2 *1) (|partial| -12 (-5 *2 (-705)) (-5 *1 (-110)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3711 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-110)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-110)))) (-3299 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1235 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1691 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-790) (-585 (-790)))) (-5 *1 (-110)))) (-1691 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-790) (-585 (-790)))) (-5 *1 (-110)))) (-1691 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-790) (-790))) (-5 *1 (-110)))) (-1734 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-495) (-585 (-495)))) (-5 *1 (-110)))) (-1734 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-495) (-585 (-495)))) (-5 *1 (-110)))) (-2917 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-108)) (-5 *1 (-110)))) (-3037 (*1 *1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-110)))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-110)))) (-1937 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1065)) (-5 *2 (-708)) (-5 *1 (-110)))) (-3669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1065)) (-5 *3 (-708)) (-5 *1 (-110)))) (-1344 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1065) (-708))) (-5 *1 (-110))))) +(-13 (-782) (-10 -8 (-15 -2938 ((-1082) $)) (-15 -2467 ((-44 (-1065) (-708)) $)) (-15 -2449 ($ $)) (-15 -3752 ($ (-1082))) (-15 -3752 ($ (-1082) (-705))) (-15 -3671 ((-3 (-705) "failed") $)) (-15 -2745 ((-108) $)) (-15 -3385 ((-108) $)) (-15 -4028 ((-108) $)) (-15 -3711 ((-705) $)) (-15 -3711 ($ $ (-705))) (-15 -3299 ($ $ (-1 (-108) $ $))) (-15 -1235 ($ $ (-1 (-108) $ $))) (-15 -1691 ((-3 (-1 (-790) (-585 (-790))) "failed") $)) (-15 -1691 ($ $ (-1 (-790) (-585 (-790))))) (-15 -1691 ($ $ (-1 (-790) (-790)))) (-15 -1734 ($ $ (-1 (-495) (-585 (-495))))) (-15 -1734 ((-3 (-1 (-495) (-585 (-495))) "failed") $)) (-15 -2917 ((-108) $ (-1082))) (-15 -2212 ((-108) $ (-1065))) (-15 -3037 ($ $ (-1065))) (-15 -1337 ($ $ (-1065))) (-15 -1937 ((-3 (-708) "failed") $ (-1065))) (-15 -3669 ($ $ (-1065) (-708))) (-15 -1344 ($ $ (-44 (-1065) (-708)))))) +((-2706 (((-519) |#2|) 36))) +(((-111 |#1| |#2|) (-10 -7 (-15 -2706 ((-519) |#2|))) (-13 (-335) (-959 (-379 (-519)))) (-1139 |#1|)) (T -111)) +((-2706 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-959 (-379 *2)))) (-5 *2 (-519)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1139 *4))))) +(-10 -7 (-15 -2706 ((-519) |#2|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1934 (($ $ (-519)) NIL)) (-3409 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-1730 (($ (-1078 (-519)) (-519)) NIL)) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3503 (($ $) NIL)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-3709 (((-705) $) NIL)) (-1568 (((-108) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2205 (((-519)) NIL)) (-1290 (((-519) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3881 (($ $ (-519)) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-3084 (((-1063 (-519)) $) NIL)) (-1508 (($ $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL)) (-3594 (((-705)) NIL)) (-1617 (((-108) $ $) NIL)) (-3905 (((-519) $ (-519)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL))) +(((-112 |#1|) (-796 |#1|) (-519)) (T -112)) +NIL +(-796 |#1|) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2157 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-280)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-112 |#1|) (-836)))) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| (-112 |#1|) (-836)))) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL (|has| (-112 |#1|) (-755)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1082) "failed") $) NIL (|has| (-112 |#1|) (-959 (-1082)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| (-112 |#1|) (-959 (-519)))) (((-3 (-519) "failed") $) NIL (|has| (-112 |#1|) (-959 (-519))))) (-1499 (((-112 |#1|) $) NIL) (((-1082) $) NIL (|has| (-112 |#1|) (-959 (-1082)))) (((-379 (-519)) $) NIL (|has| (-112 |#1|) (-959 (-519)))) (((-519) $) NIL (|has| (-112 |#1|) (-959 (-519))))) (-3768 (($ $) NIL) (($ (-519) $) NIL)) (-2311 (($ $ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| (-112 |#1|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| (-112 |#1|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-112 |#1|))) (|:| |vec| (-1163 (-112 |#1|)))) (-625 $) (-1163 $)) NIL) (((-625 (-112 |#1|)) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| (-112 |#1|) (-504)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3419 (((-108) $) NIL (|has| (-112 |#1|) (-755)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (|has| (-112 |#1|) (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (|has| (-112 |#1|) (-813 (-351))))) (-1568 (((-108) $) NIL)) (-1534 (($ $) NIL)) (-2855 (((-112 |#1|) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1058)))) (-2143 (((-108) $) NIL (|has| (-112 |#1|) (-755)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) NIL (|has| (-112 |#1|) (-782)))) (-2489 (($ $ $) NIL (|has| (-112 |#1|) (-782)))) (-1405 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| (-112 |#1|) (-1058)) CONST)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) NIL (|has| (-112 |#1|) (-280)))) (-1525 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-504)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-112 |#1|) (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-112 |#1|) (-836)))) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2324 (($ $ (-585 (-112 |#1|)) (-585 (-112 |#1|))) NIL (|has| (-112 |#1|) (-282 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-282 (-112 |#1|)))) (($ $ (-267 (-112 |#1|))) NIL (|has| (-112 |#1|) (-282 (-112 |#1|)))) (($ $ (-585 (-267 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-282 (-112 |#1|)))) (($ $ (-585 (-1082)) (-585 (-112 |#1|))) NIL (|has| (-112 |#1|) (-480 (-1082) (-112 |#1|)))) (($ $ (-1082) (-112 |#1|)) NIL (|has| (-112 |#1|) (-480 (-1082) (-112 |#1|))))) (-3129 (((-705) $) NIL)) (-2598 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-260 (-112 |#1|) (-112 |#1|))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2181 (($ $) NIL (|has| (-112 |#1|) (-209))) (($ $ (-705)) NIL (|has| (-112 |#1|) (-209))) (($ $ (-1082)) NIL (|has| (-112 |#1|) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-112 |#1|) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-112 |#1|) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-112 |#1|) (-827 (-1082)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-705)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-2724 (($ $) NIL)) (-2866 (((-112 |#1|) $) NIL)) (-1446 (((-819 (-519)) $) NIL (|has| (-112 |#1|) (-560 (-819 (-519))))) (((-819 (-351)) $) NIL (|has| (-112 |#1|) (-560 (-819 (-351))))) (((-495) $) NIL (|has| (-112 |#1|) (-560 (-495)))) (((-351) $) NIL (|has| (-112 |#1|) (-944))) (((-201) $) NIL (|has| (-112 |#1|) (-944)))) (-2859 (((-158 (-379 (-519))) $) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ (-112 |#1|)) NIL) (($ (-1082)) NIL (|has| (-112 |#1|) (-959 (-1082))))) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-836))) (|has| (-112 |#1|) (-133))))) (-3594 (((-705)) NIL)) (-3617 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-504)))) (-1617 (((-108) $ $) NIL)) (-3905 (((-379 (-519)) $ (-519)) NIL)) (-1478 (($ $) NIL (|has| (-112 |#1|) (-755)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $) NIL (|has| (-112 |#1|) (-209))) (($ $ (-705)) NIL (|has| (-112 |#1|) (-209))) (($ $ (-1082)) NIL (|has| (-112 |#1|) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-112 |#1|) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-112 |#1|) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-112 |#1|) (-827 (-1082)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-705)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-1586 (((-108) $ $) NIL (|has| (-112 |#1|) (-782)))) (-1569 (((-108) $ $) NIL (|has| (-112 |#1|) (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| (-112 |#1|) (-782)))) (-1561 (((-108) $ $) NIL (|has| (-112 |#1|) (-782)))) (-1632 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL))) +(((-113 |#1|) (-13 (-916 (-112 |#1|)) (-10 -8 (-15 -3905 ((-379 (-519)) $ (-519))) (-15 -2859 ((-158 (-379 (-519))) $)) (-15 -3768 ($ $)) (-15 -3768 ($ (-519) $)))) (-519)) (T -113)) +((-3905 (*1 *2 *1 *3) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-519)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-158 (-379 (-519)))) (-5 *1 (-113 *3)) (-14 *3 (-519)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-519)))) (-3768 (*1 *1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-113 *3)) (-14 *3 *2)))) +(-13 (-916 (-112 |#1|)) (-10 -8 (-15 -3905 ((-379 (-519)) $ (-519))) (-15 -2859 ((-158 (-379 (-519))) $)) (-15 -3768 ($ $)) (-15 -3768 ($ (-519) $)))) +((-2421 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3393 (((-585 $) $) 27)) (-3458 (((-108) $ $) 32)) (-1933 (((-108) |#2| $) 36)) (-1281 (((-585 |#2|) $) 22)) (-1668 (((-108) $) 16)) (-2598 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3096 (((-108) $) 45)) (-2217 (((-790) $) 41)) (-2018 (((-585 $) $) 28)) (-1543 (((-108) $ $) 34)) (-3532 (((-705) $) 43))) +(((-114 |#1| |#2|) (-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -2421 (|#1| |#1| "right" |#1|)) (-15 -2421 (|#1| |#1| "left" |#1|)) (-15 -2598 (|#1| |#1| "right")) (-15 -2598 (|#1| |#1| "left")) (-15 -2421 (|#2| |#1| "value" |#2|)) (-15 -3458 ((-108) |#1| |#1|)) (-15 -1281 ((-585 |#2|) |#1|)) (-15 -3096 ((-108) |#1|)) (-15 -2598 (|#2| |#1| "value")) (-15 -1668 ((-108) |#1|)) (-15 -3393 ((-585 |#1|) |#1|)) (-15 -2018 ((-585 |#1|) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -1933 ((-108) |#2| |#1|)) (-15 -3532 ((-705) |#1|))) (-115 |#2|) (-1117)) (T -114)) +NIL +(-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -2421 (|#1| |#1| "right" |#1|)) (-15 -2421 (|#1| |#1| "left" |#1|)) (-15 -2598 (|#1| |#1| "right")) (-15 -2598 (|#1| |#1| "left")) (-15 -2421 (|#2| |#1| "value" |#2|)) (-15 -3458 ((-108) |#1| |#1|)) (-15 -1281 ((-585 |#2|) |#1|)) (-15 -3096 ((-108) |#1|)) (-15 -2598 (|#2| |#1| "value")) (-15 -1668 ((-108) |#1|)) (-15 -3393 ((-585 |#1|) |#1|)) (-15 -2018 ((-585 |#1|) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -1933 ((-108) |#2| |#1|)) (-15 -3532 ((-705) |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3493 ((|#1| $) 48)) (-1473 (((-108) $ (-705)) 8)) (-2410 ((|#1| $ |#1|) 39 (|has| $ (-6 -4222)))) (-1324 (($ $ $) 52 (|has| $ (-6 -4222)))) (-3861 (($ $ $) 54 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4222))) (($ $ "left" $) 55 (|has| $ (-6 -4222))) (($ $ "right" $) 53 (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) 41 (|has| $ (-6 -4222)))) (-2249 (($) 7 T CONST)) (-1931 (($ $) 57)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) 50)) (-3458 (((-108) $ $) 42 (|has| |#1| (-1011)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1917 (($ $) 59)) (-1281 (((-585 |#1|) $) 45)) (-1668 (((-108) $) 49)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1763 (((-519) $ $) 44)) (-3096 (((-108) $) 46)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) 51)) (-2915 (((-108) $ $) 43 (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-115 |#1|) (-1194) (-1117)) (T -115)) +((-1917 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1117)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1117)))) (-1931 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1117)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1117)))) (-2421 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4222)) (-4 *1 (-115 *3)) (-4 *3 (-1117)))) (-3861 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-115 *2)) (-4 *2 (-1117)))) (-2421 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4222)) (-4 *1 (-115 *3)) (-4 *3 (-1117)))) (-1324 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-115 *2)) (-4 *2 (-1117))))) +(-13 (-933 |t#1|) (-10 -8 (-15 -1917 ($ $)) (-15 -2598 ($ $ "left")) (-15 -1931 ($ $)) (-15 -2598 ($ $ "right")) (IF (|has| $ (-6 -4222)) (PROGN (-15 -2421 ($ $ "left" $)) (-15 -3861 ($ $ $)) (-15 -2421 ($ $ "right" $)) (-15 -1324 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-933 |#1|) . T) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-3852 (((-108) |#1|) 24)) (-3599 (((-705) (-705)) 23) (((-705)) 22)) (-2708 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26))) +(((-116 |#1|) (-10 -7 (-15 -2708 ((-108) |#1|)) (-15 -2708 ((-108) |#1| (-108))) (-15 -3599 ((-705))) (-15 -3599 ((-705) (-705))) (-15 -3852 ((-108) |#1|))) (-1139 (-519))) (T -116)) +((-3852 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1139 (-519))))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-705)) (-5 *1 (-116 *3)) (-4 *3 (-1139 (-519))))) (-3599 (*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-116 *3)) (-4 *3 (-1139 (-519))))) (-2708 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1139 (-519))))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1139 (-519)))))) +(-10 -7 (-15 -2708 ((-108) |#1|)) (-15 -2708 ((-108) |#1| (-108))) (-15 -3599 ((-705))) (-15 -3599 ((-705) (-705))) (-15 -3852 ((-108) |#1|))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3493 ((|#1| $) 15)) (-2482 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1473 (((-108) $ (-705)) NIL)) (-2410 ((|#1| $ |#1|) NIL (|has| $ (-6 -4222)))) (-1324 (($ $ $) 18 (|has| $ (-6 -4222)))) (-3861 (($ $ $) 20 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4222))) (($ $ "left" $) NIL (|has| $ (-6 -4222))) (($ $ "right" $) NIL (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) NIL (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1931 (($ $) 17)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) NIL)) (-3458 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3089 (($ $ |#1| $) 23)) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1917 (($ $) 19)) (-1281 (((-585 |#1|) $) NIL)) (-1668 (((-108) $) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1694 (($ |#1| $) 24)) (-1846 (($ |#1| $) 10)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 14)) (-1548 (($) 8)) (-2598 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1763 (((-519) $ $) NIL)) (-3096 (((-108) $) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) NIL)) (-2915 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1336 (($ (-585 |#1|)) 12)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4222) (-6 -4221) (-15 -1336 ($ (-585 |#1|))) (-15 -1846 ($ |#1| $)) (-15 -1694 ($ |#1| $)) (-15 -2482 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-782)) (T -117)) +((-1336 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-117 *3)))) (-1846 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-782)))) (-1694 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-782)))) (-2482 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-782))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4222) (-6 -4221) (-15 -1336 ($ (-585 |#1|))) (-15 -1846 ($ |#1| $)) (-15 -1694 ($ |#1| $)) (-15 -2482 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-1515 (($ $) 14)) (-2445 (($ $) 11)) (-1678 (($ $ $) 24)) (-1382 (($ $ $) 22)) (-3559 (($ $) 12)) (-2818 (($ $ $) 20)) (-2360 (($ $ $) 18))) +(((-118 |#1|) (-10 -8 (-15 -1678 (|#1| |#1| |#1|)) (-15 -1382 (|#1| |#1| |#1|)) (-15 -3559 (|#1| |#1|)) (-15 -2445 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|))) (-119)) (T -118)) +NIL +(-10 -8 (-15 -1678 (|#1| |#1| |#1|)) (-15 -1382 (|#1| |#1| |#1|)) (-15 -3559 (|#1| |#1|)) (-15 -2445 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-1515 (($ $) 104)) (-3408 (($ $ $) 25)) (-1583 (((-1168) $ (-519) (-519)) 67 (|has| $ (-6 -4222)))) (-2629 (((-108) $) 99 (|has| (-108) (-782))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-2078 (($ $) 103 (-12 (|has| (-108) (-782)) (|has| $ (-6 -4222)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4222)))) (-3276 (($ $) 98 (|has| (-108) (-782))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-1473 (((-108) $ (-705)) 38)) (-2421 (((-108) $ (-1130 (-519)) (-108)) 89 (|has| $ (-6 -4222))) (((-108) $ (-519) (-108)) 55 (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4221)))) (-2249 (($) 39 T CONST)) (-1998 (($ $) 101 (|has| $ (-6 -4222)))) (-1868 (($ $) 91)) (-2366 (($ $) 69 (-12 (|has| (-108) (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4221))) (($ (-108) $) 70 (-12 (|has| (-108) (-1011)) (|has| $ (-6 -4221))))) (-3874 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1011)) (|has| $ (-6 -4221))))) (-3865 (((-108) $ (-519) (-108)) 54 (|has| $ (-6 -4222)))) (-3659 (((-108) $ (-519)) 56)) (-3297 (((-519) (-108) $ (-519)) 96 (|has| (-108) (-1011))) (((-519) (-108) $) 95 (|has| (-108) (-1011))) (((-519) (-1 (-108) (-108)) $) 94)) (-3844 (((-585 (-108)) $) 46 (|has| $ (-6 -4221)))) (-3997 (($ $ $) 26)) (-2445 (($ $) 31)) (-1678 (($ $ $) 28)) (-1822 (($ (-705) (-108)) 78)) (-1382 (($ $ $) 29)) (-3878 (((-108) $ (-705)) 37)) (-2737 (((-519) $) 64 (|has| (-519) (-782)))) (-2864 (($ $ $) 13)) (-2500 (($ $ $) 97 (|has| (-108) (-782))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-3725 (((-585 (-108)) $) 47 (|has| $ (-6 -4221)))) (-1933 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 63 (|has| (-519) (-782)))) (-2489 (($ $ $) 14)) (-3850 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-2768 (((-108) $ (-705)) 36)) (-1266 (((-1065) $) 9)) (-1672 (($ $ $ (-519)) 88) (($ (-108) $ (-519)) 87)) (-3909 (((-585 (-519)) $) 61)) (-1506 (((-108) (-519) $) 60)) (-4139 (((-1029) $) 10)) (-2331 (((-108) $) 65 (|has| (-519) (-782)))) (-2395 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-3640 (($ $ (-108)) 66 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-108)) (-585 (-108))) 53 (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011)))) (($ $ (-267 (-108))) 51 (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011)))) (($ $ (-585 (-267 (-108)))) 50 (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011))))) (-4091 (((-108) $ $) 32)) (-3744 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011))))) (-2222 (((-585 (-108)) $) 59)) (-3108 (((-108) $) 35)) (-1548 (($) 34)) (-2598 (($ $ (-1130 (-519))) 84) (((-108) $ (-519)) 58) (((-108) $ (-519) (-108)) 57)) (-3720 (($ $ (-1130 (-519))) 86) (($ $ (-519)) 85)) (-4155 (((-705) (-108) $) 48 (-12 (|has| (-108) (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4221)))) (-2584 (($ $ $ (-519)) 100 (|has| $ (-6 -4222)))) (-2449 (($ $) 33)) (-1446 (((-495) $) 68 (|has| (-108) (-560 (-495))))) (-2228 (($ (-585 (-108))) 77)) (-4150 (($ (-585 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-2217 (((-790) $) 11)) (-1778 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4221)))) (-4012 (($ $ $) 27)) (-3559 (($ $) 30)) (-2818 (($ $ $) 106)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18)) (-2360 (($ $ $) 105)) (-3532 (((-705) $) 40 (|has| $ (-6 -4221))))) +(((-119) (-1194)) (T -119)) +((-2445 (*1 *1 *1) (-4 *1 (-119))) (-3559 (*1 *1 *1) (-4 *1 (-119))) (-1382 (*1 *1 *1 *1) (-4 *1 (-119))) (-1678 (*1 *1 *1 *1) (-4 *1 (-119))) (-4012 (*1 *1 *1 *1) (-4 *1 (-119))) (-3997 (*1 *1 *1 *1) (-4 *1 (-119))) (-3408 (*1 *1 *1 *1) (-4 *1 (-119)))) +(-13 (-782) (-600) (-19 (-108)) (-10 -8 (-15 -2445 ($ $)) (-15 -3559 ($ $)) (-15 -1382 ($ $ $)) (-15 -1678 ($ $ $)) (-15 -4012 ($ $ $)) (-15 -3997 ($ $ $)) (-15 -3408 ($ $ $)))) +(((-33) . T) ((-97) . T) ((-559 (-790)) . T) ((-139 #0=(-108)) . T) ((-560 (-495)) |has| (-108) (-560 (-495))) ((-260 #1=(-519) #0#) . T) ((-262 #1# #0#) . T) ((-282 #0#) -12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011))) ((-345 #0#) . T) ((-458 #0#) . T) ((-552 #1# #0#) . T) ((-480 #0# #0#) -12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011))) ((-590 #0#) . T) ((-600) . T) ((-19 #0#) . T) ((-782) . T) ((-1011) . T) ((-1117) . T)) +((-3850 (($ (-1 |#2| |#2|) $) 22)) (-2449 (($ $) 16)) (-3532 (((-705) $) 24))) +(((-120 |#1| |#2|) (-10 -8 (-15 -3850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3532 ((-705) |#1|)) (-15 -2449 (|#1| |#1|))) (-121 |#2|) (-1011)) (T -120)) +NIL +(-10 -8 (-15 -3850 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3532 ((-705) |#1|)) (-15 -2449 (|#1| |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3493 ((|#1| $) 48)) (-1473 (((-108) $ (-705)) 8)) (-2410 ((|#1| $ |#1|) 39 (|has| $ (-6 -4222)))) (-1324 (($ $ $) 52 (|has| $ (-6 -4222)))) (-3861 (($ $ $) 54 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4222))) (($ $ "left" $) 55 (|has| $ (-6 -4222))) (($ $ "right" $) 53 (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) 41 (|has| $ (-6 -4222)))) (-2249 (($) 7 T CONST)) (-1931 (($ $) 57)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) 50)) (-3458 (((-108) $ $) 42 (|has| |#1| (-1011)))) (-3089 (($ $ |#1| $) 60)) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1917 (($ $) 59)) (-1281 (((-585 |#1|) $) 45)) (-1668 (((-108) $) 49)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1763 (((-519) $ $) 44)) (-3096 (((-108) $) 46)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) 51)) (-2915 (((-108) $ $) 43 (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-121 |#1|) (-1194) (-1011)) (T -121)) +((-3089 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1011))))) +(-13 (-115 |t#1|) (-10 -8 (-6 -4222) (-6 -4221) (-15 -3089 ($ $ |t#1| $)))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-115 |#1|) . T) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-933 |#1|) . T) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3493 ((|#1| $) 15)) (-1473 (((-108) $ (-705)) NIL)) (-2410 ((|#1| $ |#1|) 19 (|has| $ (-6 -4222)))) (-1324 (($ $ $) 20 (|has| $ (-6 -4222)))) (-3861 (($ $ $) 18 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4222))) (($ $ "left" $) NIL (|has| $ (-6 -4222))) (($ $ "right" $) NIL (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) NIL (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1931 (($ $) 21)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) NIL)) (-3458 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3089 (($ $ |#1| $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1917 (($ $) NIL)) (-1281 (((-585 |#1|) $) NIL)) (-1668 (((-108) $) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1846 (($ |#1| $) 10)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 14)) (-1548 (($) 8)) (-2598 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1763 (((-519) $ $) NIL)) (-3096 (((-108) $) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) 17)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) NIL)) (-2915 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3005 (($ (-585 |#1|)) 12)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4222) (-15 -3005 ($ (-585 |#1|))) (-15 -1846 ($ |#1| $)))) (-782)) (T -122)) +((-3005 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-122 *3)))) (-1846 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-782))))) +(-13 (-121 |#1|) (-10 -8 (-6 -4222) (-15 -3005 ($ (-585 |#1|))) (-15 -1846 ($ |#1| $)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3493 ((|#1| $) 24)) (-1473 (((-108) $ (-705)) NIL)) (-2410 ((|#1| $ |#1|) 26 (|has| $ (-6 -4222)))) (-1324 (($ $ $) 30 (|has| $ (-6 -4222)))) (-3861 (($ $ $) 28 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4222))) (($ $ "left" $) NIL (|has| $ (-6 -4222))) (($ $ "right" $) NIL (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) NIL (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1931 (($ $) 20)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) NIL)) (-3458 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3089 (($ $ |#1| $) 15)) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1917 (($ $) 19)) (-1281 (((-585 |#1|) $) NIL)) (-1668 (((-108) $) 21)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 18)) (-1548 (($) 11)) (-2598 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1763 (((-519) $ $) NIL)) (-3096 (((-108) $) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) NIL)) (-2915 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-4168 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 10 (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -4168 ($ |#1|)) (-15 -4168 ($ $ |#1| $)))) (-1011)) (T -123)) +((-4168 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1011)))) (-4168 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1011))))) +(-13 (-121 |#1|) (-10 -8 (-15 -4168 ($ |#1|)) (-15 -4168 ($ $ |#1| $)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15))) +(((-124) (-1194)) (T -124)) +((-3167 (*1 *1 *1 *1) (|partial| -4 *1 (-124)))) +(-13 (-23) (-10 -8 (-15 -3167 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-1430 (((-108) $ $) 7)) (-2873 (((-1168) $ (-705)) 19)) (-3297 (((-705) $) 20)) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18))) +(((-125) (-1194)) (T -125)) +((-3297 (*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-705)))) (-2873 (*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-705)) (-5 *2 (-1168))))) +(-13 (-782) (-10 -8 (-15 -3297 ((-705) $)) (-15 -2873 ((-1168) $ (-705))))) +(((-97) . T) ((-559 (-790)) . T) ((-782) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-705) "failed") $) 38)) (-1499 (((-705) $) 36)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) 26)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2713 (((-108)) 39)) (-1773 (((-108) (-108)) 41)) (-1789 (((-108) $) 23)) (-3703 (((-108) $) 35)) (-2217 (((-790) $) 22) (($ (-705)) 14)) (-3559 (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (-3602 (($) 12 T CONST)) (-3611 (($) 11 T CONST)) (-3796 (($ (-705)) 15)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 24)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 25)) (-1623 (((-3 $ "failed") $ $) 29)) (-1614 (($ $ $) 27)) (** (($ $ (-705)) NIL) (($ $ (-848)) NIL) (($ $ $) 34)) (* (($ (-705) $) 32) (($ (-848) $) NIL) (($ $ $) 30))) +(((-126) (-13 (-782) (-23) (-661) (-959 (-705)) (-10 -8 (-6 (-4223 "*")) (-15 -1623 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3796 ($ (-705))) (-15 -1789 ((-108) $)) (-15 -3703 ((-108) $)) (-15 -2713 ((-108))) (-15 -1773 ((-108) (-108)))))) (T -126)) +((-1623 (*1 *1 *1 *1) (|partial| -5 *1 (-126))) (** (*1 *1 *1 *1) (-5 *1 (-126))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-126)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-2713 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) +(-13 (-782) (-23) (-661) (-959 (-705)) (-10 -8 (-6 (-4223 "*")) (-15 -1623 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3796 ($ (-705))) (-15 -1789 ((-108) $)) (-15 -3703 ((-108) $)) (-15 -2713 ((-108))) (-15 -1773 ((-108) (-108))))) +((-3189 (((-128 |#1| |#2| |#4|) (-585 |#4|) (-128 |#1| |#2| |#3|)) 14)) (-1405 (((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)) 18))) +(((-127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3189 ((-128 |#1| |#2| |#4|) (-585 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1405 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) (-519) (-705) (-157) (-157)) (T -127)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-519)) (-14 *6 (-705)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) (-3189 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-519)) (-14 *6 (-705)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8))))) +(-10 -7 (-15 -3189 ((-128 |#1| |#2| |#4|) (-585 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1405 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) +((-1430 (((-108) $ $) NIL)) (-2013 (($ (-585 |#3|)) 39)) (-3635 (($ $) 98) (($ $ (-519) (-519)) 97)) (-2249 (($) 17)) (-1301 (((-3 |#3| "failed") $) 59)) (-1499 ((|#3| $) NIL)) (-2882 (($ $ (-585 (-519))) 99)) (-3175 (((-585 |#3|) $) 35)) (-3229 (((-705) $) 43)) (-2792 (($ $ $) 92)) (-1711 (($) 42)) (-1266 (((-1065) $) NIL)) (-3529 (($) 16)) (-4139 (((-1029) $) NIL)) (-2598 ((|#3| $) 45) ((|#3| $ (-519)) 46) ((|#3| $ (-519) (-519)) 47) ((|#3| $ (-519) (-519) (-519)) 48) ((|#3| $ (-519) (-519) (-519) (-519)) 49) ((|#3| $ (-585 (-519))) 51)) (-4178 (((-705) $) 44)) (-1349 (($ $ (-519) $ (-519)) 93) (($ $ (-519) (-519)) 95)) (-2217 (((-790) $) 66) (($ |#3|) 67) (($ (-216 |#2| |#3|)) 74) (($ (-1049 |#2| |#3|)) 77) (($ (-585 |#3|)) 52) (($ (-585 $)) 57)) (-3602 (($) 68 T CONST)) (-3611 (($) 69 T CONST)) (-1543 (((-108) $ $) 79)) (-1623 (($ $) 85) (($ $ $) 83)) (-1614 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-519)) 88) (($ (-519) $) 87) (($ $ $) 94))) +(((-128 |#1| |#2| |#3|) (-13 (-436 |#3| (-705)) (-441 (-519) (-705)) (-10 -8 (-15 -2217 ($ (-216 |#2| |#3|))) (-15 -2217 ($ (-1049 |#2| |#3|))) (-15 -2217 ($ (-585 |#3|))) (-15 -2217 ($ (-585 $))) (-15 -3229 ((-705) $)) (-15 -2598 (|#3| $)) (-15 -2598 (|#3| $ (-519))) (-15 -2598 (|#3| $ (-519) (-519))) (-15 -2598 (|#3| $ (-519) (-519) (-519))) (-15 -2598 (|#3| $ (-519) (-519) (-519) (-519))) (-15 -2598 (|#3| $ (-585 (-519)))) (-15 -2792 ($ $ $)) (-15 * ($ $ $)) (-15 -1349 ($ $ (-519) $ (-519))) (-15 -1349 ($ $ (-519) (-519))) (-15 -3635 ($ $)) (-15 -3635 ($ $ (-519) (-519))) (-15 -2882 ($ $ (-585 (-519)))) (-15 -3529 ($)) (-15 -1711 ($)) (-15 -3175 ((-585 |#3|) $)) (-15 -2013 ($ (-585 |#3|))) (-15 -2249 ($)))) (-519) (-705) (-157)) (T -128)) +((-2792 (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) (-4 *4 (-157)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-216 *4 *5)) (-14 *4 (-705)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1049 *4 *5)) (-14 *4 (-705)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)) (-14 *4 (-705)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)) (-14 *4 (-705)) (-4 *5 (-157)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)) (-14 *4 *2) (-4 *5 (-157)))) (-2598 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-519)) (-14 *4 (-705)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-705)))) (-2598 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-519)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-705)))) (-2598 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-519)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-705)))) (-2598 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-519)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-705)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-519))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 (-519)) (-14 *5 (-705)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) (-4 *4 (-157)))) (-1349 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-705)) (-4 *5 (-157)))) (-1349 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-705)) (-4 *5 (-157)))) (-3635 (*1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) (-4 *4 (-157)))) (-3635 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-705)) (-4 *5 (-157)))) (-2882 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)) (-14 *4 (-705)) (-4 *5 (-157)))) (-3529 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) (-4 *4 (-157)))) (-1711 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) (-4 *4 (-157)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-585 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)) (-14 *4 (-705)) (-4 *5 (-157)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-585 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)) (-14 *4 (-705)))) (-2249 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) (-4 *4 (-157))))) +(-13 (-436 |#3| (-705)) (-441 (-519) (-705)) (-10 -8 (-15 -2217 ($ (-216 |#2| |#3|))) (-15 -2217 ($ (-1049 |#2| |#3|))) (-15 -2217 ($ (-585 |#3|))) (-15 -2217 ($ (-585 $))) (-15 -3229 ((-705) $)) (-15 -2598 (|#3| $)) (-15 -2598 (|#3| $ (-519))) (-15 -2598 (|#3| $ (-519) (-519))) (-15 -2598 (|#3| $ (-519) (-519) (-519))) (-15 -2598 (|#3| $ (-519) (-519) (-519) (-519))) (-15 -2598 (|#3| $ (-585 (-519)))) (-15 -2792 ($ $ $)) (-15 * ($ $ $)) (-15 -1349 ($ $ (-519) $ (-519))) (-15 -1349 ($ $ (-519) (-519))) (-15 -3635 ($ $)) (-15 -3635 ($ $ (-519) (-519))) (-15 -2882 ($ $ (-585 (-519)))) (-15 -3529 ($)) (-15 -1711 ($)) (-15 -3175 ((-585 |#3|) $)) (-15 -2013 ($ (-585 |#3|))) (-15 -2249 ($)))) +((-1430 (((-108) $ $) NIL)) (-4079 (($) 15 T CONST)) (-3956 (($) NIL (|has| (-132) (-340)))) (-2304 (($ $ $) 17) (($ $ (-132)) NIL) (($ (-132) $) NIL)) (-1415 (($ $ $) NIL)) (-3466 (((-108) $ $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-1642 (((-705)) NIL (|has| (-132) (-340)))) (-1780 (($) NIL) (($ (-585 (-132))) NIL)) (-2846 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-2502 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221))) (($ (-132) $) 51 (|has| $ (-6 -4221)))) (-1438 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221))) (($ (-132) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-3874 (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4221))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4221))) (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-3314 (($) NIL (|has| (-132) (-340)))) (-3844 (((-585 (-132)) $) 60 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2864 (((-132) $) NIL (|has| (-132) (-782)))) (-3725 (((-585 (-132)) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-132) $) 26 (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-2489 (((-132) $) NIL (|has| (-132) (-782)))) (-3850 (($ (-1 (-132) (-132)) $) 59 (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-132) (-132)) $) 55)) (-1785 (($) 16 T CONST)) (-3334 (((-848) $) NIL (|has| (-132) (-340)))) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-3766 (($ $ $) 29)) (-4152 (((-132) $) 52)) (-1846 (($ (-132) $) 50)) (-2770 (($ (-848)) NIL (|has| (-132) (-340)))) (-3111 (($) 14 T CONST)) (-4139 (((-1029) $) NIL)) (-2395 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-3212 (((-132) $) 53)) (-2379 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-132)) (-585 (-132))) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-267 (-132))) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-585 (-267 (-132)))) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) 48)) (-1229 (($) 13 T CONST)) (-2019 (($ $ $) 31) (($ $ (-132)) NIL)) (-2436 (($ (-585 (-132))) NIL) (($) NIL)) (-4155 (((-705) (-132) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011)))) (((-705) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-1065) $) 36) (((-495) $) NIL (|has| (-132) (-560 (-495)))) (((-585 (-132)) $) 34)) (-2228 (($ (-585 (-132))) NIL)) (-4132 (($ $) 32 (|has| (-132) (-340)))) (-2217 (((-790) $) 46)) (-1214 (($ (-1065)) 12) (($ (-585 (-132))) 43)) (-1383 (((-705) $) NIL)) (-3451 (($) 49) (($ (-585 (-132))) NIL)) (-3879 (($ (-585 (-132))) NIL)) (-1778 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-1389 (($) 19 T CONST)) (-3338 (($) 18 T CONST)) (-1543 (((-108) $ $) 22)) (-1561 (((-108) $ $) NIL)) (-3532 (((-705) $) 47 (|has| $ (-6 -4221))))) +(((-129) (-13 (-1011) (-560 (-1065)) (-397 (-132)) (-560 (-585 (-132))) (-10 -8 (-15 -1214 ($ (-1065))) (-15 -1214 ($ (-585 (-132)))) (-15 -1229 ($) -2730) (-15 -3111 ($) -2730) (-15 -4079 ($) -2730) (-15 -1785 ($) -2730) (-15 -3338 ($) -2730) (-15 -1389 ($) -2730)))) (T -129)) +((-1214 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-129)))) (-1214 (*1 *1 *2) (-12 (-5 *2 (-585 (-132))) (-5 *1 (-129)))) (-1229 (*1 *1) (-5 *1 (-129))) (-3111 (*1 *1) (-5 *1 (-129))) (-4079 (*1 *1) (-5 *1 (-129))) (-1785 (*1 *1) (-5 *1 (-129))) (-3338 (*1 *1) (-5 *1 (-129))) (-1389 (*1 *1) (-5 *1 (-129)))) +(-13 (-1011) (-560 (-1065)) (-397 (-132)) (-560 (-585 (-132))) (-10 -8 (-15 -1214 ($ (-1065))) (-15 -1214 ($ (-585 (-132)))) (-15 -1229 ($) -2730) (-15 -3111 ($) -2730) (-15 -4079 ($) -2730) (-15 -1785 ($) -2730) (-15 -3338 ($) -2730) (-15 -1389 ($) -2730))) +((-2107 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3770 ((|#1| |#3|) 9)) (-2307 ((|#3| |#3|) 15))) +(((-130 |#1| |#2| |#3|) (-10 -7 (-15 -3770 (|#1| |#3|)) (-15 -2307 (|#3| |#3|)) (-15 -2107 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-511) (-916 |#1|) (-345 |#2|)) (T -130)) +((-2107 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-916 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3)) (-4 *3 (-345 *5)))) (-2307 (*1 *2 *2) (-12 (-4 *3 (-511)) (-4 *4 (-916 *3)) (-5 *1 (-130 *3 *4 *2)) (-4 *2 (-345 *4)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-916 *2)) (-4 *2 (-511)) (-5 *1 (-130 *2 *4 *3)) (-4 *3 (-345 *4))))) +(-10 -7 (-15 -3770 (|#1| |#3|)) (-15 -2307 (|#3| |#3|)) (-15 -2107 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3449 (($ $ $) 8)) (-1314 (($ $) 7)) (-3563 (($ $ $) 6))) +(((-131) (-1194)) (T -131)) +((-3449 (*1 *1 *1 *1) (-4 *1 (-131))) (-1314 (*1 *1 *1) (-4 *1 (-131))) (-3563 (*1 *1 *1 *1) (-4 *1 (-131)))) +(-13 (-10 -8 (-15 -3563 ($ $ $)) (-15 -1314 ($ $)) (-15 -3449 ($ $ $)))) +((-1430 (((-108) $ $) NIL)) (-2338 (((-108) $) 38)) (-4079 (($ $) 50)) (-4163 (($) 25)) (-1642 (((-705)) 16)) (-3314 (($) 24)) (-2453 (($) 26)) (-1216 (((-519) $) 21)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-4182 (((-108) $) 40)) (-1785 (($ $) 51)) (-3334 (((-848) $) 22)) (-1266 (((-1065) $) 46)) (-2770 (($ (-848)) 20)) (-1547 (((-108) $) 36)) (-4139 (((-1029) $) NIL)) (-2183 (($) 27)) (-3626 (((-108) $) 34)) (-2217 (((-790) $) 29)) (-3556 (($ (-519)) 18) (($ (-1065)) 49)) (-3209 (((-108) $) 44)) (-3884 (((-108) $) 42)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 13)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 14))) +(((-132) (-13 (-776) (-10 -8 (-15 -1216 ((-519) $)) (-15 -3556 ($ (-519))) (-15 -3556 ($ (-1065))) (-15 -4163 ($)) (-15 -2453 ($)) (-15 -2183 ($)) (-15 -4079 ($ $)) (-15 -1785 ($ $)) (-15 -3626 ((-108) $)) (-15 -1547 ((-108) $)) (-15 -3884 ((-108) $)) (-15 -2338 ((-108) $)) (-15 -4182 ((-108) $)) (-15 -3209 ((-108) $))))) (T -132)) +((-1216 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-132)))) (-3556 (*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-132)))) (-3556 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-132)))) (-4163 (*1 *1) (-5 *1 (-132))) (-2453 (*1 *1) (-5 *1 (-132))) (-2183 (*1 *1) (-5 *1 (-132))) (-4079 (*1 *1 *1) (-5 *1 (-132))) (-1785 (*1 *1 *1) (-5 *1 (-132))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) +(-13 (-776) (-10 -8 (-15 -1216 ((-519) $)) (-15 -3556 ($ (-519))) (-15 -3556 ($ (-1065))) (-15 -4163 ($)) (-15 -2453 ($)) (-15 -2183 ($)) (-15 -4079 ($ $)) (-15 -1785 ($ $)) (-15 -3626 ((-108) $)) (-15 -1547 ((-108) $)) (-15 -3884 ((-108) $)) (-15 -2338 ((-108) $)) (-15 -4182 ((-108) $)) (-15 -3209 ((-108) $)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 28)) (-3773 (((-3 $ "failed") $) 35)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-133) (-1194)) (T -133)) +((-3773 (*1 *1 *1) (|partial| -4 *1 (-133)))) +(-13 (-968) (-10 -8 (-15 -3773 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 $) . T) ((-661) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-2165 ((|#1| (-625 |#1|) |#1|) 17))) +(((-134 |#1|) (-10 -7 (-15 -2165 (|#1| (-625 |#1|) |#1|))) (-157)) (T -134)) +((-2165 (*1 *2 *3 *2) (-12 (-5 *3 (-625 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2))))) +(-10 -7 (-15 -2165 (|#1| (-625 |#1|) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 28)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-135) (-1194)) (T -135)) +NIL +(-13 (-968)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 $) . T) ((-661) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-2422 (((-2 (|:| -1690 (-705)) (|:| -3031 (-379 |#2|)) (|:| |radicand| |#2|)) (-379 |#2|) (-705)) 70)) (-3431 (((-3 (-2 (|:| |radicand| (-379 |#2|)) (|:| |deg| (-705))) "failed") |#3|) 52)) (-2231 (((-2 (|:| -3031 (-379 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-2498 ((|#1| |#3| |#3|) 40)) (-2324 ((|#3| |#3| (-379 |#2|) (-379 |#2|)) 19)) (-2397 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-379 |#2|)) (|:| |c2| (-379 |#2|)) (|:| |deg| (-705))) |#3| |#3|) 49))) +(((-136 |#1| |#2| |#3|) (-10 -7 (-15 -2231 ((-2 (|:| -3031 (-379 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3431 ((-3 (-2 (|:| |radicand| (-379 |#2|)) (|:| |deg| (-705))) "failed") |#3|)) (-15 -2422 ((-2 (|:| -1690 (-705)) (|:| -3031 (-379 |#2|)) (|:| |radicand| |#2|)) (-379 |#2|) (-705))) (-15 -2498 (|#1| |#3| |#3|)) (-15 -2324 (|#3| |#3| (-379 |#2|) (-379 |#2|))) (-15 -2397 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-379 |#2|)) (|:| |c2| (-379 |#2|)) (|:| |deg| (-705))) |#3| |#3|))) (-1121) (-1139 |#1|) (-1139 (-379 |#2|))) (T -136)) +((-2397 (*1 *2 *3 *3) (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-379 *5)) (|:| |c2| (-379 *5)) (|:| |deg| (-705)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1139 (-379 *5))))) (-2324 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-379 *5)) (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1139 *3)))) (-2498 (*1 *2 *3 *3) (-12 (-4 *4 (-1139 *2)) (-4 *2 (-1121)) (-5 *1 (-136 *2 *4 *3)) (-4 *3 (-1139 (-379 *4))))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-379 *6)) (-4 *5 (-1121)) (-4 *6 (-1139 *5)) (-5 *2 (-2 (|:| -1690 (-705)) (|:| -3031 *3) (|:| |radicand| *6))) (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-705)) (-4 *7 (-1139 *3)))) (-3431 (*1 *2 *3) (|partial| -12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-5 *2 (-2 (|:| |radicand| (-379 *5)) (|:| |deg| (-705)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1139 (-379 *5))))) (-2231 (*1 *2 *3) (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-5 *2 (-2 (|:| -3031 (-379 *5)) (|:| |poly| *3))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1139 (-379 *5)))))) +(-10 -7 (-15 -2231 ((-2 (|:| -3031 (-379 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3431 ((-3 (-2 (|:| |radicand| (-379 |#2|)) (|:| |deg| (-705))) "failed") |#3|)) (-15 -2422 ((-2 (|:| -1690 (-705)) (|:| -3031 (-379 |#2|)) (|:| |radicand| |#2|)) (-379 |#2|) (-705))) (-15 -2498 (|#1| |#3| |#3|)) (-15 -2324 (|#3| |#3| (-379 |#2|) (-379 |#2|))) (-15 -2397 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-379 |#2|)) (|:| |c2| (-379 |#2|)) (|:| |deg| (-705))) |#3| |#3|))) +((-2960 (((-3 (-585 (-1078 |#2|)) "failed") (-585 (-1078 |#2|)) (-1078 |#2|)) 32))) +(((-137 |#1| |#2|) (-10 -7 (-15 -2960 ((-3 (-585 (-1078 |#2|)) "failed") (-585 (-1078 |#2|)) (-1078 |#2|)))) (-504) (-151 |#1|)) (T -137)) +((-2960 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1078 *5))) (-5 *3 (-1078 *5)) (-4 *5 (-151 *4)) (-4 *4 (-504)) (-5 *1 (-137 *4 *5))))) +(-10 -7 (-15 -2960 ((-3 (-585 (-1078 |#2|)) "failed") (-585 (-1078 |#2|)) (-1078 |#2|)))) +((-1640 (($ (-1 (-108) |#2|) $) 29)) (-2366 (($ $) 36)) (-1438 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-3874 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2395 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-2379 (((-108) (-1 (-108) |#2|) $) 16)) (-4155 (((-705) (-1 (-108) |#2|) $) 13) (((-705) |#2| $) NIL)) (-1778 (((-108) (-1 (-108) |#2|) $) 15)) (-3532 (((-705) $) 11))) +(((-138 |#1| |#2|) (-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -1438 (|#1| |#2| |#1|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1640 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1438 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2395 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4155 ((-705) |#2| |#1|)) (-15 -4155 ((-705) (-1 (-108) |#2|) |#1|)) (-15 -2379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3532 ((-705) |#1|))) (-139 |#2|) (-1117)) (T -138)) +NIL +(-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -1438 (|#1| |#2| |#1|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1640 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1438 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2395 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4155 ((-705) |#2| |#1|)) (-15 -4155 ((-705) (-1 (-108) |#2|) |#1|)) (-15 -2379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3532 ((-705) |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) 8)) (-1640 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-2366 (($ $) 41 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4221))) (($ |#1| $) 42 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 40 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 49)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-139 |#1|) (-1194) (-1117)) (T -139)) +((-2228 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-4 *1 (-139 *3)))) (-2395 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2)) (-4 *2 (-1117)))) (-3874 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4221)) (-4 *1 (-139 *2)) (-4 *2 (-1117)))) (-3874 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4221)) (-4 *1 (-139 *2)) (-4 *2 (-1117)))) (-1438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4221)) (-4 *1 (-139 *3)) (-4 *3 (-1117)))) (-1640 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4221)) (-4 *1 (-139 *3)) (-4 *3 (-1117)))) (-3874 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1011)) (|has| *1 (-6 -4221)) (-4 *1 (-139 *2)) (-4 *2 (-1117)))) (-1438 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4221)) (-4 *1 (-139 *2)) (-4 *2 (-1117)) (-4 *2 (-1011)))) (-2366 (*1 *1 *1) (-12 (|has| *1 (-6 -4221)) (-4 *1 (-139 *2)) (-4 *2 (-1117)) (-4 *2 (-1011))))) +(-13 (-458 |t#1|) (-10 -8 (-15 -2228 ($ (-585 |t#1|))) (-15 -2395 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4221)) (PROGN (-15 -3874 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3874 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1438 ($ (-1 (-108) |t#1|) $)) (-15 -1640 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1011)) (PROGN (-15 -3874 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1438 ($ |t#1| $)) (-15 -2366 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) 86)) (-1568 (((-108) $) NIL)) (-4042 (($ |#2| (-585 (-848))) 57)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-3021 (($ (-848)) 48)) (-2914 (((-126)) 23)) (-2217 (((-790) $) 69) (($ (-519)) 46) (($ |#2|) 47)) (-1220 ((|#2| $ (-585 (-848))) 59)) (-3594 (((-705)) 20)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 40 T CONST)) (-3611 (($) 44 T CONST)) (-1543 (((-108) $ $) 26)) (-1632 (($ $ |#2|) NIL)) (-1623 (($ $) 34) (($ $ $) 32)) (-1614 (($ $ $) 30)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-140 |#1| |#2| |#3|) (-13 (-968) (-37 |#2|) (-1170 |#2|) (-10 -8 (-15 -3021 ($ (-848))) (-15 -4042 ($ |#2| (-585 (-848)))) (-15 -1220 (|#2| $ (-585 (-848)))) (-15 -4193 ((-3 $ "failed") $)))) (-848) (-335) (-917 |#1| |#2|)) (T -140)) +((-4193 (*1 *1 *1) (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-848)) (-4 *3 (-335)) (-14 *4 (-917 *2 *3)))) (-3021 (*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-335)) (-14 *5 (-917 *3 *4)))) (-4042 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-848))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-848)) (-4 *2 (-335)) (-14 *5 (-917 *4 *2)))) (-1220 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-848))) (-4 *2 (-335)) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-848)) (-14 *5 (-917 *4 *2))))) +(-13 (-968) (-37 |#2|) (-1170 |#2|) (-10 -8 (-15 -3021 ($ (-848))) (-15 -4042 ($ |#2| (-585 (-848)))) (-15 -1220 (|#2| $ (-585 (-848)))) (-15 -4193 ((-3 $ "failed") $)))) +((-3045 (((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-585 (-585 (-870 (-201)))) (-201) (-201) (-201) (-201)) 38)) (-2014 (((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854) (-379 (-519)) (-379 (-519))) 63) (((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854)) 64)) (-3283 (((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-585 (-585 (-870 (-201))))) 67) (((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-585 (-870 (-201)))) 66) (((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854) (-379 (-519)) (-379 (-519))) 58) (((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854)) 59))) +(((-141) (-10 -7 (-15 -3283 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854))) (-15 -3283 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854) (-379 (-519)) (-379 (-519)))) (-15 -2014 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854))) (-15 -2014 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854) (-379 (-519)) (-379 (-519)))) (-15 -3045 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-585 (-585 (-870 (-201)))) (-201) (-201) (-201) (-201))) (-15 -3283 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-585 (-870 (-201))))) (-15 -3283 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-585 (-585 (-870 (-201)))))))) (T -141)) +((-3283 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) (-5 *1 (-141)) (-5 *3 (-585 (-585 (-870 (-201))))))) (-3283 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) (-5 *1 (-141)) (-5 *3 (-585 (-870 (-201)))))) (-3045 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-201)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-870 *4)))) (|:| |xValues| (-1006 *4)) (|:| |yValues| (-1006 *4)))) (-5 *1 (-141)) (-5 *3 (-585 (-585 (-870 *4)))))) (-2014 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-854)) (-5 *4 (-379 (-519))) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) (-5 *1 (-141)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) (-5 *1 (-141)))) (-3283 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-854)) (-5 *4 (-379 (-519))) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) (-5 *1 (-141)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) (-5 *1 (-141))))) +(-10 -7 (-15 -3283 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854))) (-15 -3283 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854) (-379 (-519)) (-379 (-519)))) (-15 -2014 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854))) (-15 -2014 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-854) (-379 (-519)) (-379 (-519)))) (-15 -3045 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-585 (-585 (-870 (-201)))) (-201) (-201) (-201) (-201))) (-15 -3283 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-585 (-870 (-201))))) (-15 -3283 ((-2 (|:| |brans| (-585 (-585 (-870 (-201))))) (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201)))) (-585 (-585 (-870 (-201))))))) +((-3046 (((-585 (-154 |#2|)) |#1| |#2|) 45))) +(((-142 |#1| |#2|) (-10 -7 (-15 -3046 ((-585 (-154 |#2|)) |#1| |#2|))) (-1139 (-154 (-519))) (-13 (-335) (-780))) (T -142)) +((-3046 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-154 *4))) (-5 *1 (-142 *3 *4)) (-4 *3 (-1139 (-154 (-519)))) (-4 *4 (-13 (-335) (-780)))))) +(-10 -7 (-15 -3046 ((-585 (-154 |#2|)) |#1| |#2|))) +((-1430 (((-108) $ $) NIL)) (-3525 (($) 16)) (-2719 (($) 15)) (-3764 (((-848)) 23)) (-1266 (((-1065) $) NIL)) (-3676 (((-519) $) 20)) (-4139 (((-1029) $) NIL)) (-2743 (($) 17)) (-3514 (($ (-519)) 24)) (-2217 (((-790) $) 30)) (-2113 (($) 18)) (-1543 (((-108) $ $) 14)) (-1614 (($ $ $) 13)) (* (($ (-848) $) 22) (($ (-201) $) 8))) +(((-143) (-13 (-25) (-10 -8 (-15 * ($ (-848) $)) (-15 * ($ (-201) $)) (-15 -1614 ($ $ $)) (-15 -2719 ($)) (-15 -3525 ($)) (-15 -2743 ($)) (-15 -2113 ($)) (-15 -3676 ((-519) $)) (-15 -3764 ((-848))) (-15 -3514 ($ (-519)))))) (T -143)) +((-1614 (*1 *1 *1 *1) (-5 *1 (-143))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-143)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-143)))) (-2719 (*1 *1) (-5 *1 (-143))) (-3525 (*1 *1) (-5 *1 (-143))) (-2743 (*1 *1) (-5 *1 (-143))) (-2113 (*1 *1) (-5 *1 (-143))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-143)))) (-3764 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-143)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-143))))) +(-13 (-25) (-10 -8 (-15 * ($ (-848) $)) (-15 * ($ (-201) $)) (-15 -1614 ($ $ $)) (-15 -2719 ($)) (-15 -3525 ($)) (-15 -2743 ($)) (-15 -2113 ($)) (-15 -3676 ((-519) $)) (-15 -3764 ((-848))) (-15 -3514 ($ (-519))))) +((-3986 ((|#2| |#2| (-1004 |#2|)) 87) ((|#2| |#2| (-1082)) 67)) (-2792 ((|#2| |#2| (-1004 |#2|)) 86) ((|#2| |#2| (-1082)) 66)) (-3449 ((|#2| |#2| |#2|) 27)) (-3752 (((-110) (-110)) 97)) (-1571 ((|#2| (-585 |#2|)) 116)) (-2041 ((|#2| (-585 |#2|)) 134)) (-2681 ((|#2| (-585 |#2|)) 124)) (-3168 ((|#2| |#2|) 122)) (-1247 ((|#2| (-585 |#2|)) 109)) (-4001 ((|#2| (-585 |#2|)) 110)) (-4120 ((|#2| (-585 |#2|)) 132)) (-3938 ((|#2| |#2| (-1082)) 54) ((|#2| |#2|) 53)) (-1314 ((|#2| |#2|) 23)) (-3563 ((|#2| |#2| |#2|) 26)) (-2631 (((-108) (-110)) 47)) (** ((|#2| |#2| |#2|) 38))) +(((-144 |#1| |#2|) (-10 -7 (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3563 (|#2| |#2| |#2|)) (-15 -3449 (|#2| |#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -3938 (|#2| |#2| (-1082))) (-15 -3986 (|#2| |#2| (-1082))) (-15 -3986 (|#2| |#2| (-1004 |#2|))) (-15 -2792 (|#2| |#2| (-1082))) (-15 -2792 (|#2| |#2| (-1004 |#2|))) (-15 -3168 (|#2| |#2|)) (-15 -4120 (|#2| (-585 |#2|))) (-15 -2681 (|#2| (-585 |#2|))) (-15 -2041 (|#2| (-585 |#2|))) (-15 -1247 (|#2| (-585 |#2|))) (-15 -4001 (|#2| (-585 |#2|))) (-15 -1571 (|#2| (-585 |#2|)))) (-13 (-782) (-511)) (-402 |#1|)) (T -144)) +((-1571 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-782) (-511))))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-782) (-511))))) (-1247 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-782) (-511))))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-782) (-511))))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-782) (-511))))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-782) (-511))))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) (-4 *2 (-402 *3)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-144 *4 *2)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-144 *4 *2)) (-4 *2 (-402 *4)))) (-3986 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-144 *4 *2)))) (-3986 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-144 *4 *2)) (-4 *2 (-402 *4)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-144 *4 *2)) (-4 *2 (-402 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) (-4 *2 (-402 *3)))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) (-4 *2 (-402 *3)))) (-3449 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) (-4 *2 (-402 *3)))) (-3563 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) (-4 *2 (-402 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) (-4 *2 (-402 *3)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *4)) (-4 *4 (-402 *3)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) (-5 *1 (-144 *4 *5)) (-4 *5 (-402 *4))))) +(-10 -7 (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3563 (|#2| |#2| |#2|)) (-15 -3449 (|#2| |#2| |#2|)) (-15 -1314 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -3938 (|#2| |#2| (-1082))) (-15 -3986 (|#2| |#2| (-1082))) (-15 -3986 (|#2| |#2| (-1004 |#2|))) (-15 -2792 (|#2| |#2| (-1082))) (-15 -2792 (|#2| |#2| (-1004 |#2|))) (-15 -3168 (|#2| |#2|)) (-15 -4120 (|#2| (-585 |#2|))) (-15 -2681 (|#2| (-585 |#2|))) (-15 -2041 (|#2| (-585 |#2|))) (-15 -1247 (|#2| (-585 |#2|))) (-15 -4001 (|#2| (-585 |#2|))) (-15 -1571 (|#2| (-585 |#2|)))) +((-3176 ((|#1| |#1| |#1|) 52)) (-3526 ((|#1| |#1| |#1|) 49)) (-3449 ((|#1| |#1| |#1|) 43)) (-1228 ((|#1| |#1|) 34)) (-3632 ((|#1| |#1| (-585 |#1|)) 42)) (-1314 ((|#1| |#1|) 36)) (-3563 ((|#1| |#1| |#1|) 39))) +(((-145 |#1|) (-10 -7 (-15 -3563 (|#1| |#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -3632 (|#1| |#1| (-585 |#1|))) (-15 -1228 (|#1| |#1|)) (-15 -3449 (|#1| |#1| |#1|)) (-15 -3526 (|#1| |#1| |#1|)) (-15 -3176 (|#1| |#1| |#1|))) (-504)) (T -145)) +((-3176 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504)))) (-3526 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504)))) (-3449 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504)))) (-1228 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504)))) (-3632 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-504)) (-5 *1 (-145 *2)))) (-1314 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504)))) (-3563 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504))))) +(-10 -7 (-15 -3563 (|#1| |#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -3632 (|#1| |#1| (-585 |#1|))) (-15 -1228 (|#1| |#1|)) (-15 -3449 (|#1| |#1| |#1|)) (-15 -3526 (|#1| |#1| |#1|)) (-15 -3176 (|#1| |#1| |#1|))) +((-3986 (($ $ (-1082)) 12) (($ $ (-1004 $)) 11)) (-2792 (($ $ (-1082)) 10) (($ $ (-1004 $)) 9)) (-3449 (($ $ $) 8)) (-3938 (($ $) 14) (($ $ (-1082)) 13)) (-1314 (($ $) 7)) (-3563 (($ $ $) 6))) +(((-146) (-1194)) (T -146)) +((-3938 (*1 *1 *1) (-4 *1 (-146))) (-3938 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1082)))) (-3986 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1082)))) (-3986 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-146)))) (-2792 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1082)))) (-2792 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-146))))) +(-13 (-131) (-10 -8 (-15 -3938 ($ $)) (-15 -3938 ($ $ (-1082))) (-15 -3986 ($ $ (-1082))) (-15 -3986 ($ $ (-1004 $))) (-15 -2792 ($ $ (-1082))) (-15 -2792 ($ $ (-1004 $))))) +(((-131) . T)) +((-1430 (((-108) $ $) NIL)) (-3818 (($ (-519)) 13) (($ $ $) 14)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 17)) (-1543 (((-108) $ $) 9))) +(((-147) (-13 (-1011) (-10 -8 (-15 -3818 ($ (-519))) (-15 -3818 ($ $ $))))) (T -147)) +((-3818 (*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-147)))) (-3818 (*1 *1 *1 *1) (-5 *1 (-147)))) +(-13 (-1011) (-10 -8 (-15 -3818 ($ (-519))) (-15 -3818 ($ $ $)))) +((-3752 (((-110) (-1082)) 97))) +(((-148) (-10 -7 (-15 -3752 ((-110) (-1082))))) (T -148)) +((-3752 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-148))))) +(-10 -7 (-15 -3752 ((-110) (-1082)))) +((-3090 ((|#3| |#3|) 20))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3090 (|#3| |#3|))) (-968) (-1139 |#1|) (-1139 |#2|)) (T -149)) +((-3090 (*1 *2 *2) (-12 (-4 *3 (-968)) (-4 *4 (-1139 *3)) (-5 *1 (-149 *3 *4 *2)) (-4 *2 (-1139 *4))))) +(-10 -7 (-15 -3090 (|#3| |#3|))) +((-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 216)) (-1871 ((|#2| $) 96)) (-2958 (($ $) 243)) (-2823 (($ $) 237)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 40)) (-2934 (($ $) 241)) (-2800 (($ $) 235)) (-1301 (((-3 (-519) "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-1499 (((-519) $) NIL) (((-379 (-519)) $) NIL) ((|#2| $) 138)) (-2311 (($ $ $) 221)) (-1562 (((-625 (-519)) (-625 $)) NIL) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) 154) (((-625 |#2|) (-625 $)) 148)) (-3874 (($ (-1078 |#2|)) 119) (((-3 $ "failed") (-379 (-1078 |#2|))) NIL)) (-4193 (((-3 $ "failed") $) 208)) (-1631 (((-3 (-379 (-519)) "failed") $) 198)) (-2102 (((-108) $) 193)) (-2506 (((-379 (-519)) $) 196)) (-3229 (((-848)) 89)) (-2286 (($ $ $) 223)) (-3322 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2888 (($) 232)) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 185) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 190)) (-3681 ((|#2| $) 94)) (-3437 (((-1078 |#2|) $) 121)) (-1405 (($ (-1 |#2| |#2|) $) 102)) (-1254 (($ $) 234)) (-3860 (((-1078 |#2|) $) 120)) (-3151 (($ $) 201)) (-3315 (($) 97)) (-1863 (((-390 (-1078 $)) (-1078 $)) 88)) (-3966 (((-390 (-1078 $)) (-1078 $)) 57)) (-2261 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3325 (($ $) 233)) (-3129 (((-705) $) 218)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 227)) (-3677 ((|#2| (-1163 $)) NIL) ((|#2|) 91)) (-2181 (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082)) NIL) (($ $ (-705)) NIL) (($ $) NIL)) (-1462 (((-1078 |#2|)) 114)) (-2946 (($ $) 242)) (-2812 (($ $) 236)) (-3399 (((-1163 |#2|) $ (-1163 $)) 127) (((-625 |#2|) (-1163 $) (-1163 $)) NIL) (((-1163 |#2|) $) 110) (((-625 |#2|) (-1163 $)) NIL)) (-1446 (((-1163 |#2|) $) NIL) (($ (-1163 |#2|)) NIL) (((-1078 |#2|) $) NIL) (($ (-1078 |#2|)) NIL) (((-819 (-519)) $) 176) (((-819 (-351)) $) 180) (((-154 (-351)) $) 166) (((-154 (-201)) $) 161) (((-495) $) 172)) (-3333 (($ $) 98)) (-2217 (((-790) $) 137) (($ (-519)) NIL) (($ |#2|) NIL) (($ (-379 (-519))) NIL) (($ $) NIL)) (-2165 (((-1078 |#2|) $) 23)) (-3594 (((-705)) 100)) (-1774 (($ $) 246)) (-2886 (($ $) 240)) (-1761 (($ $) 244)) (-2865 (($ $) 238)) (-3867 ((|#2| $) 231)) (-1768 (($ $) 245)) (-2875 (($ $) 239)) (-1478 (($ $) 156)) (-1543 (((-108) $ $) 104)) (-1561 (((-108) $ $) 192)) (-1623 (($ $) 106) (($ $ $) NIL)) (-1614 (($ $ $) 105)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-379 (-519))) 265) (($ $ $) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-379 (-519)) $) NIL) (($ $ (-379 (-519))) NIL))) +(((-150 |#1| |#2|) (-10 -8 (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2217 (|#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1201 ((-2 (|:| -3307 |#1|) (|:| -4208 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -3129 ((-705) |#1|)) (-15 -1745 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1|)) (-15 ** (|#1| |#1| (-519))) (-15 * (|#1| |#1| (-379 (-519)))) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -1561 ((-108) |#1| |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1446 ((-154 (-201)) |#1|)) (-15 -1446 ((-154 (-351)) |#1|)) (-15 -2823 (|#1| |#1|)) (-15 -2800 (|#1| |#1|)) (-15 -2812 (|#1| |#1|)) (-15 -2875 (|#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2934 (|#1| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -1774 (|#1| |#1|)) (-15 -1254 (|#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2888 (|#1|)) (-15 ** (|#1| |#1| (-379 (-519)))) (-15 -3966 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -1863 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -2960 ((-3 (-585 (-1078 |#1|)) "failed") (-585 (-1078 |#1|)) (-1078 |#1|))) (-15 -1631 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2506 ((-379 (-519)) |#1|)) (-15 -2102 ((-108) |#1|)) (-15 -3322 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3867 (|#2| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3333 (|#1| |#1|)) (-15 -3315 (|#1|)) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -4068 ((-816 (-351) |#1|) |#1| (-819 (-351)) (-816 (-351) |#1|))) (-15 -4068 ((-816 (-519) |#1|) |#1| (-819 (-519)) (-816 (-519) |#1|))) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -3874 ((-3 |#1| "failed") (-379 (-1078 |#2|)))) (-15 -3860 ((-1078 |#2|) |#1|)) (-15 -1446 (|#1| (-1078 |#2|))) (-15 -3874 (|#1| (-1078 |#2|))) (-15 -1462 ((-1078 |#2|))) (-15 -1562 ((-625 |#2|) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1446 ((-1078 |#2|) |#1|)) (-15 -3677 (|#2|)) (-15 -1446 (|#1| (-1163 |#2|))) (-15 -1446 ((-1163 |#2|) |#1|)) (-15 -3399 ((-625 |#2|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1|)) (-15 -3437 ((-1078 |#2|) |#1|)) (-15 -2165 ((-1078 |#2|) |#1|)) (-15 -3677 (|#2| (-1163 |#1|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1| (-1163 |#1|))) (-15 -3681 (|#2| |#1|)) (-15 -1871 (|#2| |#1|)) (-15 -3229 ((-848))) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 -3594 ((-705))) (-15 ** (|#1| |#1| (-705))) (-15 -4193 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-848))) (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) (-151 |#2|) (-157)) (T -150)) +((-3594 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-705)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-3229 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-848)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-3677 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2)))) (-1462 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1078 *4)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4))))) +(-10 -8 (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2217 (|#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1201 ((-2 (|:| -3307 |#1|) (|:| -4208 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -3129 ((-705) |#1|)) (-15 -1745 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1|)) (-15 ** (|#1| |#1| (-519))) (-15 * (|#1| |#1| (-379 (-519)))) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -1561 ((-108) |#1| |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1446 ((-154 (-201)) |#1|)) (-15 -1446 ((-154 (-351)) |#1|)) (-15 -2823 (|#1| |#1|)) (-15 -2800 (|#1| |#1|)) (-15 -2812 (|#1| |#1|)) (-15 -2875 (|#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2934 (|#1| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -1774 (|#1| |#1|)) (-15 -1254 (|#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2888 (|#1|)) (-15 ** (|#1| |#1| (-379 (-519)))) (-15 -3966 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -1863 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -2960 ((-3 (-585 (-1078 |#1|)) "failed") (-585 (-1078 |#1|)) (-1078 |#1|))) (-15 -1631 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2506 ((-379 (-519)) |#1|)) (-15 -2102 ((-108) |#1|)) (-15 -3322 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3867 (|#2| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3333 (|#1| |#1|)) (-15 -3315 (|#1|)) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -4068 ((-816 (-351) |#1|) |#1| (-819 (-351)) (-816 (-351) |#1|))) (-15 -4068 ((-816 (-519) |#1|) |#1| (-819 (-519)) (-816 (-519) |#1|))) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -3874 ((-3 |#1| "failed") (-379 (-1078 |#2|)))) (-15 -3860 ((-1078 |#2|) |#1|)) (-15 -1446 (|#1| (-1078 |#2|))) (-15 -3874 (|#1| (-1078 |#2|))) (-15 -1462 ((-1078 |#2|))) (-15 -1562 ((-625 |#2|) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1446 ((-1078 |#2|) |#1|)) (-15 -3677 (|#2|)) (-15 -1446 (|#1| (-1163 |#2|))) (-15 -1446 ((-1163 |#2|) |#1|)) (-15 -3399 ((-625 |#2|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1|)) (-15 -3437 ((-1078 |#2|) |#1|)) (-15 -2165 ((-1078 |#2|) |#1|)) (-15 -3677 (|#2| (-1163 |#1|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1| (-1163 |#1|))) (-15 -3681 (|#2| |#1|)) (-15 -1871 (|#2| |#1|)) (-15 -3229 ((-848))) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 -3594 ((-705))) (-15 ** (|#1| |#1| (-705))) (-15 -4193 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-848))) (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 93 (-3730 (|has| |#1| (-511)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))))) (-1410 (($ $) 94 (-3730 (|has| |#1| (-511)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))))) (-3060 (((-108) $) 96 (-3730 (|has| |#1| (-511)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))))) (-2935 (((-625 |#1|) (-1163 $)) 46) (((-625 |#1|)) 61)) (-1871 ((|#1| $) 52)) (-2958 (($ $) 228 (|has| |#1| (-1103)))) (-2823 (($ $) 211 (|has| |#1| (-1103)))) (-3263 (((-1091 (-848) (-705)) (-519)) 147 (|has| |#1| (-321)))) (-3167 (((-3 $ "failed") $ $) 19)) (-1958 (((-390 (-1078 $)) (-1078 $)) 242 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))))) (-4043 (($ $) 113 (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-335))))) (-3093 (((-390 $) $) 114 (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-335))))) (-1934 (($ $) 241 (-12 (|has| |#1| (-925)) (|has| |#1| (-1103))))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 245 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))))) (-3409 (((-108) $ $) 104 (|has| |#1| (-280)))) (-1642 (((-705)) 87 (|has| |#1| (-340)))) (-2934 (($ $) 227 (|has| |#1| (-1103)))) (-2800 (($ $) 212 (|has| |#1| (-1103)))) (-2981 (($ $) 226 (|has| |#1| (-1103)))) (-2844 (($ $) 213 (|has| |#1| (-1103)))) (-2249 (($) 17 T CONST)) (-1301 (((-3 (-519) "failed") $) 169 (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) 167 (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 166)) (-1499 (((-519) $) 170 (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) 168 (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) 165)) (-2528 (($ (-1163 |#1|) (-1163 $)) 48) (($ (-1163 |#1|)) 64)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-321)))) (-2311 (($ $ $) 108 (|has| |#1| (-280)))) (-3771 (((-625 |#1|) $ (-1163 $)) 53) (((-625 |#1|) $) 59)) (-1562 (((-625 (-519)) (-625 $)) 164 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 163 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 162) (((-625 |#1|) (-625 $)) 161)) (-3874 (($ (-1078 |#1|)) 158) (((-3 $ "failed") (-379 (-1078 |#1|))) 155 (|has| |#1| (-335)))) (-4193 (((-3 $ "failed") $) 34)) (-1944 ((|#1| $) 253)) (-1631 (((-3 (-379 (-519)) "failed") $) 246 (|has| |#1| (-504)))) (-2102 (((-108) $) 248 (|has| |#1| (-504)))) (-2506 (((-379 (-519)) $) 247 (|has| |#1| (-504)))) (-3229 (((-848)) 54)) (-3314 (($) 90 (|has| |#1| (-340)))) (-2286 (($ $ $) 107 (|has| |#1| (-280)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 102 (|has| |#1| (-280)))) (-1625 (($) 149 (|has| |#1| (-321)))) (-4156 (((-108) $) 150 (|has| |#1| (-321)))) (-3824 (($ $ (-705)) 141 (|has| |#1| (-321))) (($ $) 140 (|has| |#1| (-321)))) (-1320 (((-108) $) 115 (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-335))))) (-3322 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-977)) (|has| |#1| (-1103))))) (-2888 (($) 238 (|has| |#1| (-1103)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 261 (|has| |#1| (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 260 (|has| |#1| (-813 (-351))))) (-3709 (((-848) $) 152 (|has| |#1| (-321))) (((-768 (-848)) $) 138 (|has| |#1| (-321)))) (-1568 (((-108) $) 31)) (-1517 (($ $ (-519)) 240 (-12 (|has| |#1| (-925)) (|has| |#1| (-1103))))) (-3681 ((|#1| $) 51)) (-1675 (((-3 $ "failed") $) 142 (|has| |#1| (-321)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 111 (|has| |#1| (-280)))) (-3437 (((-1078 |#1|) $) 44 (|has| |#1| (-335)))) (-2864 (($ $ $) 207 (|has| |#1| (-782)))) (-2489 (($ $ $) 206 (|has| |#1| (-782)))) (-1405 (($ (-1 |#1| |#1|) $) 262)) (-3334 (((-848) $) 89 (|has| |#1| (-340)))) (-1254 (($ $) 235 (|has| |#1| (-1103)))) (-3860 (((-1078 |#1|) $) 156)) (-2254 (($ (-585 $)) 100 (-3730 (|has| |#1| (-280)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836))))) (($ $ $) 99 (-3730 (|has| |#1| (-280)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))))) (-1266 (((-1065) $) 9)) (-3151 (($ $) 116 (|has| |#1| (-335)))) (-3816 (($) 143 (|has| |#1| (-321)) CONST)) (-2770 (($ (-848)) 88 (|has| |#1| (-340)))) (-3315 (($) 257)) (-1956 ((|#1| $) 254)) (-4139 (((-1029) $) 10)) (-1397 (($) 160)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 101 (-3730 (|has| |#1| (-280)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))))) (-2292 (($ (-585 $)) 98 (-3730 (|has| |#1| (-280)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836))))) (($ $ $) 97 (-3730 (|has| |#1| (-280)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))))) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) 146 (|has| |#1| (-321)))) (-1863 (((-390 (-1078 $)) (-1078 $)) 244 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))))) (-3966 (((-390 (-1078 $)) (-1078 $)) 243 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))))) (-1921 (((-390 $) $) 112 (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-335))))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-280))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 109 (|has| |#1| (-280)))) (-2261 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-511))) (((-3 $ "failed") $ $) 92 (-3730 (|has| |#1| (-511)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 103 (|has| |#1| (-280)))) (-3325 (($ $) 236 (|has| |#1| (-1103)))) (-2324 (($ $ (-585 |#1|) (-585 |#1|)) 268 (|has| |#1| (-282 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-282 |#1|))) (($ $ (-267 |#1|)) 266 (|has| |#1| (-282 |#1|))) (($ $ (-585 (-267 |#1|))) 265 (|has| |#1| (-282 |#1|))) (($ $ (-585 (-1082)) (-585 |#1|)) 264 (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-1082) |#1|) 263 (|has| |#1| (-480 (-1082) |#1|)))) (-3129 (((-705) $) 105 (|has| |#1| (-280)))) (-2598 (($ $ |#1|) 269 (|has| |#1| (-260 |#1| |#1|)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 106 (|has| |#1| (-280)))) (-3677 ((|#1| (-1163 $)) 47) ((|#1|) 60)) (-2867 (((-705) $) 151 (|has| |#1| (-321))) (((-3 (-705) "failed") $ $) 139 (|has| |#1| (-321)))) (-2181 (($ $ (-1 |#1| |#1|) (-705)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-585 (-1082)) (-585 (-705))) 130 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 131 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 132 (|has| |#1| (-827 (-1082)))) (($ $ (-1082)) 133 (|has| |#1| (-827 (-1082)))) (($ $ (-705)) 135 (-3730 (-4012 (|has| |#1| (-335)) (|has| |#1| (-209))) (|has| |#1| (-209)) (-4012 (|has| |#1| (-209)) (|has| |#1| (-335))))) (($ $) 137 (-3730 (-4012 (|has| |#1| (-335)) (|has| |#1| (-209))) (|has| |#1| (-209)) (-4012 (|has| |#1| (-209)) (|has| |#1| (-335)))))) (-1611 (((-625 |#1|) (-1163 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-335)))) (-1462 (((-1078 |#1|)) 159)) (-1754 (($ $) 225 (|has| |#1| (-1103)))) (-2854 (($ $) 214 (|has| |#1| (-1103)))) (-3132 (($) 148 (|has| |#1| (-321)))) (-2969 (($ $) 224 (|has| |#1| (-1103)))) (-2834 (($ $) 215 (|has| |#1| (-1103)))) (-2946 (($ $) 223 (|has| |#1| (-1103)))) (-2812 (($ $) 216 (|has| |#1| (-1103)))) (-3399 (((-1163 |#1|) $ (-1163 $)) 50) (((-625 |#1|) (-1163 $) (-1163 $)) 49) (((-1163 |#1|) $) 66) (((-625 |#1|) (-1163 $)) 65)) (-1446 (((-1163 |#1|) $) 63) (($ (-1163 |#1|)) 62) (((-1078 |#1|) $) 171) (($ (-1078 |#1|)) 157) (((-819 (-519)) $) 259 (|has| |#1| (-560 (-819 (-519))))) (((-819 (-351)) $) 258 (|has| |#1| (-560 (-819 (-351))))) (((-154 (-351)) $) 210 (|has| |#1| (-944))) (((-154 (-201)) $) 209 (|has| |#1| (-944))) (((-495) $) 208 (|has| |#1| (-560 (-495))))) (-3333 (($ $) 256)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 145 (-3730 (-4012 (|has| $ (-133)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))) (|has| |#1| (-321))))) (-3916 (($ |#1| |#1|) 255)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 37) (($ (-379 (-519))) 86 (-3730 (|has| |#1| (-335)) (|has| |#1| (-959 (-379 (-519)))))) (($ $) 91 (-3730 (|has| |#1| (-511)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))))) (-3773 (($ $) 144 (|has| |#1| (-321))) (((-3 $ "failed") $) 43 (-3730 (-4012 (|has| $ (-133)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))) (|has| |#1| (-133))))) (-2165 (((-1078 |#1|) $) 45)) (-3594 (((-705)) 29)) (-2070 (((-1163 $)) 67)) (-1774 (($ $) 234 (|has| |#1| (-1103)))) (-2886 (($ $) 222 (|has| |#1| (-1103)))) (-1617 (((-108) $ $) 95 (-3730 (|has| |#1| (-511)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836)))))) (-1761 (($ $) 233 (|has| |#1| (-1103)))) (-2865 (($ $) 221 (|has| |#1| (-1103)))) (-1790 (($ $) 232 (|has| |#1| (-1103)))) (-2910 (($ $) 220 (|has| |#1| (-1103)))) (-3867 ((|#1| $) 250 (|has| |#1| (-1103)))) (-3929 (($ $) 231 (|has| |#1| (-1103)))) (-2922 (($ $) 219 (|has| |#1| (-1103)))) (-1783 (($ $) 230 (|has| |#1| (-1103)))) (-2898 (($ $) 218 (|has| |#1| (-1103)))) (-1768 (($ $) 229 (|has| |#1| (-1103)))) (-2875 (($ $) 217 (|has| |#1| (-1103)))) (-1478 (($ $) 251 (|has| |#1| (-977)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 117 (|has| |#1| (-335)))) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-1 |#1| |#1|) (-705)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-585 (-1082)) (-585 (-705))) 126 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 127 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 128 (|has| |#1| (-827 (-1082)))) (($ $ (-1082)) 129 (|has| |#1| (-827 (-1082)))) (($ $ (-705)) 134 (-3730 (-4012 (|has| |#1| (-335)) (|has| |#1| (-209))) (|has| |#1| (-209)) (-4012 (|has| |#1| (-209)) (|has| |#1| (-335))))) (($ $) 136 (-3730 (-4012 (|has| |#1| (-335)) (|has| |#1| (-209))) (|has| |#1| (-209)) (-4012 (|has| |#1| (-209)) (|has| |#1| (-335)))))) (-1586 (((-108) $ $) 204 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 203 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 205 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 202 (|has| |#1| (-782)))) (-1632 (($ $ $) 121 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-379 (-519))) 239 (-12 (|has| |#1| (-925)) (|has| |#1| (-1103)))) (($ $ $) 237 (|has| |#1| (-1103))) (($ $ (-519)) 118 (|has| |#1| (-335)))) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-379 (-519)) $) 120 (|has| |#1| (-335))) (($ $ (-379 (-519))) 119 (|has| |#1| (-335))))) +(((-151 |#1|) (-1194) (-157)) (T -151)) +((-3681 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-3315 (*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-3333 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-3916 (*1 *1 *2 *2) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2261 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-511)))) (-1478 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-977)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1103)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-977)) (-4 *3 (-1103)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-108)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-379 (-519))))) (-1631 (*1 *2 *1) (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-379 (-519)))))) +(-13 (-659 |t#1| (-1078 |t#1|)) (-383 |t#1|) (-207 |t#1|) (-310 |t#1|) (-372 |t#1|) (-811 |t#1|) (-349 |t#1|) (-157) (-10 -8 (-6 -3916) (-15 -3315 ($)) (-15 -3333 ($ $)) (-15 -3916 ($ |t#1| |t#1|)) (-15 -1956 (|t#1| $)) (-15 -1944 (|t#1| $)) (-15 -3681 (|t#1| $)) (IF (|has| |t#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |t#1| (-511)) (PROGN (-6 (-511)) (-15 -2261 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-280)) (-6 (-280)) |%noBranch|) (IF (|has| |t#1| (-6 -4220)) (-6 -4220) |%noBranch|) (IF (|has| |t#1| (-6 -4217)) (-6 -4217) |%noBranch|) (IF (|has| |t#1| (-335)) (-6 (-335)) |%noBranch|) (IF (|has| |t#1| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-944)) (PROGN (-6 (-560 (-154 (-201)))) (-6 (-560 (-154 (-351))))) |%noBranch|) (IF (|has| |t#1| (-977)) (-15 -1478 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1103)) (PROGN (-6 (-1103)) (-15 -3867 (|t#1| $)) (IF (|has| |t#1| (-925)) (-6 (-925)) |%noBranch|) (IF (|has| |t#1| (-977)) (-15 -3322 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-504)) (PROGN (-15 -2102 ((-108) $)) (-15 -2506 ((-379 (-519)) $)) (-15 -1631 ((-3 (-379 (-519)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-836)) (IF (|has| |t#1| (-280)) (-6 (-836)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-37 |#1|) . T) ((-37 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-321)) (|has| |#1| (-335)) (|has| |#1| (-280))) ((-34) |has| |#1| (-1103)) ((-91) |has| |#1| (-1103)) ((-97) . T) ((-107 #0# #0#) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3730 (|has| |#1| (-321)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) . T) ((-560 (-154 (-201))) |has| |#1| (-944)) ((-560 (-154 (-351))) |has| |#1| (-944)) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-560 (-819 (-351))) |has| |#1| (-560 (-819 (-351)))) ((-560 (-819 (-519))) |has| |#1| (-560 (-819 (-519)))) ((-560 #1=(-1078 |#1|)) . T) ((-207 |#1|) . T) ((-209) -3730 (|has| |#1| (-321)) (|has| |#1| (-209))) ((-219) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-258) |has| |#1| (-1103)) ((-260 |#1| $) |has| |#1| (-260 |#1| |#1|)) ((-264) -3730 (|has| |#1| (-511)) (|has| |#1| (-321)) (|has| |#1| (-335)) (|has| |#1| (-280))) ((-280) -3730 (|has| |#1| (-321)) (|has| |#1| (-335)) (|has| |#1| (-280))) ((-282 |#1|) |has| |#1| (-282 |#1|)) ((-335) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-374) |has| |#1| (-321)) ((-340) -3730 (|has| |#1| (-340)) (|has| |#1| (-321))) ((-321) |has| |#1| (-321)) ((-342 |#1| #1#) . T) ((-381 |#1| #1#) . T) ((-310 |#1|) . T) ((-349 |#1|) . T) ((-372 |#1|) . T) ((-383 |#1|) . T) ((-423) -3730 (|has| |#1| (-321)) (|has| |#1| (-335)) (|has| |#1| (-280))) ((-460) |has| |#1| (-1103)) ((-480 (-1082) |#1|) |has| |#1| (-480 (-1082) |#1|)) ((-480 |#1| |#1|) |has| |#1| (-282 |#1|)) ((-511) -3730 (|has| |#1| (-511)) (|has| |#1| (-321)) (|has| |#1| (-335)) (|has| |#1| (-280))) ((-587 #0#) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-587 |#1|) . T) ((-587 $) . T) ((-581 (-519)) |has| |#1| (-581 (-519))) ((-581 |#1|) . T) ((-652 #0#) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-652 |#1|) . T) ((-652 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-321)) (|has| |#1| (-335)) (|has| |#1| (-280))) ((-659 |#1| #1#) . T) ((-661) . T) ((-782) |has| |#1| (-782)) ((-827 (-1082)) |has| |#1| (-827 (-1082))) ((-813 (-351)) |has| |#1| (-813 (-351))) ((-813 (-519)) |has| |#1| (-813 (-519))) ((-811 |#1|) . T) ((-836) -12 (|has| |#1| (-280)) (|has| |#1| (-836))) ((-847) -3730 (|has| |#1| (-321)) (|has| |#1| (-335)) (|has| |#1| (-280))) ((-925) -12 (|has| |#1| (-925)) (|has| |#1| (-1103))) ((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 |#1|) . T) ((-974 #0#) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-974 |#1|) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1058) |has| |#1| (-321)) ((-1103) |has| |#1| (-1103)) ((-1106) |has| |#1| (-1103)) ((-1117) . T) ((-1121) -3730 (|has| |#1| (-321)) (|has| |#1| (-335)) (-12 (|has| |#1| (-280)) (|has| |#1| (-836))))) +((-1921 (((-390 |#2|) |#2|) 63))) +(((-152 |#1| |#2|) (-10 -7 (-15 -1921 ((-390 |#2|) |#2|))) (-280) (-1139 (-154 |#1|))) (T -152)) +((-1921 (*1 *2 *3) (-12 (-4 *4 (-280)) (-5 *2 (-390 *3)) (-5 *1 (-152 *4 *3)) (-4 *3 (-1139 (-154 *4)))))) +(-10 -7 (-15 -1921 ((-390 |#2|) |#2|))) +((-1405 (((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)) 14))) +(((-153 |#1| |#2|) (-10 -7 (-15 -1405 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)))) (-157) (-157)) (T -153)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-154 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-5 *2 (-154 *6)) (-5 *1 (-153 *5 *6))))) +(-10 -7 (-15 -1405 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 33)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-511))))) (-1410 (($ $) NIL (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-511))))) (-3060 (((-108) $) NIL (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-511))))) (-2935 (((-625 |#1|) (-1163 $)) NIL) (((-625 |#1|)) NIL)) (-1871 ((|#1| $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-1103)))) (-2823 (($ $) NIL (|has| |#1| (-1103)))) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| |#1| (-321)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| |#1| (-280)) (|has| |#1| (-836))))) (-4043 (($ $) NIL (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-335))))) (-3093 (((-390 $) $) NIL (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-335))))) (-1934 (($ $) NIL (-12 (|has| |#1| (-925)) (|has| |#1| (-1103))))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (-12 (|has| |#1| (-280)) (|has| |#1| (-836))))) (-3409 (((-108) $ $) NIL (|has| |#1| (-280)))) (-1642 (((-705)) NIL (|has| |#1| (-340)))) (-2934 (($ $) NIL (|has| |#1| (-1103)))) (-2800 (($ $) NIL (|has| |#1| (-1103)))) (-2981 (($ $) NIL (|has| |#1| (-1103)))) (-2844 (($ $) NIL (|has| |#1| (-1103)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) NIL)) (-2528 (($ (-1163 |#1|) (-1163 $)) NIL) (($ (-1163 |#1|)) NIL)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-321)))) (-2311 (($ $ $) NIL (|has| |#1| (-280)))) (-3771 (((-625 |#1|) $ (-1163 $)) NIL) (((-625 |#1|) $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-3874 (($ (-1078 |#1|)) NIL) (((-3 $ "failed") (-379 (-1078 |#1|))) NIL (|has| |#1| (-335)))) (-4193 (((-3 $ "failed") $) NIL)) (-1944 ((|#1| $) 13)) (-1631 (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-504)))) (-2102 (((-108) $) NIL (|has| |#1| (-504)))) (-2506 (((-379 (-519)) $) NIL (|has| |#1| (-504)))) (-3229 (((-848)) NIL)) (-3314 (($) NIL (|has| |#1| (-340)))) (-2286 (($ $ $) NIL (|has| |#1| (-280)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-280)))) (-1625 (($) NIL (|has| |#1| (-321)))) (-4156 (((-108) $) NIL (|has| |#1| (-321)))) (-3824 (($ $ (-705)) NIL (|has| |#1| (-321))) (($ $) NIL (|has| |#1| (-321)))) (-1320 (((-108) $) NIL (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-335))))) (-3322 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-977)) (|has| |#1| (-1103))))) (-2888 (($) NIL (|has| |#1| (-1103)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (|has| |#1| (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (|has| |#1| (-813 (-351))))) (-3709 (((-848) $) NIL (|has| |#1| (-321))) (((-768 (-848)) $) NIL (|has| |#1| (-321)))) (-1568 (((-108) $) 35)) (-1517 (($ $ (-519)) NIL (-12 (|has| |#1| (-925)) (|has| |#1| (-1103))))) (-3681 ((|#1| $) 46)) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-321)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-280)))) (-3437 (((-1078 |#1|) $) NIL (|has| |#1| (-335)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-3334 (((-848) $) NIL (|has| |#1| (-340)))) (-1254 (($ $) NIL (|has| |#1| (-1103)))) (-3860 (((-1078 |#1|) $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-280))) (($ $ $) NIL (|has| |#1| (-280)))) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL (|has| |#1| (-335)))) (-3816 (($) NIL (|has| |#1| (-321)) CONST)) (-2770 (($ (-848)) NIL (|has| |#1| (-340)))) (-3315 (($) NIL)) (-1956 ((|#1| $) 15)) (-4139 (((-1029) $) NIL)) (-1397 (($) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-280)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-280))) (($ $ $) NIL (|has| |#1| (-280)))) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| |#1| (-321)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| |#1| (-280)) (|has| |#1| (-836))))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| |#1| (-280)) (|has| |#1| (-836))))) (-1921 (((-390 $) $) NIL (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-335))))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-280))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-280)))) (-2261 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-511))) (((-3 $ "failed") $ $) 47 (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-511))))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-280)))) (-3325 (($ $) NIL (|has| |#1| (-1103)))) (-2324 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-282 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-282 |#1|))) (($ $ (-267 |#1|)) NIL (|has| |#1| (-282 |#1|))) (($ $ (-585 (-267 |#1|))) NIL (|has| |#1| (-282 |#1|))) (($ $ (-585 (-1082)) (-585 |#1|)) NIL (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-1082) |#1|) NIL (|has| |#1| (-480 (-1082) |#1|)))) (-3129 (((-705) $) NIL (|has| |#1| (-280)))) (-2598 (($ $ |#1|) NIL (|has| |#1| (-260 |#1| |#1|)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-280)))) (-3677 ((|#1| (-1163 $)) NIL) ((|#1|) NIL)) (-2867 (((-705) $) NIL (|has| |#1| (-321))) (((-3 (-705) "failed") $ $) NIL (|has| |#1| (-321)))) (-2181 (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $) NIL (|has| |#1| (-209)))) (-1611 (((-625 |#1|) (-1163 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-335)))) (-1462 (((-1078 |#1|)) NIL)) (-1754 (($ $) NIL (|has| |#1| (-1103)))) (-2854 (($ $) NIL (|has| |#1| (-1103)))) (-3132 (($) NIL (|has| |#1| (-321)))) (-2969 (($ $) NIL (|has| |#1| (-1103)))) (-2834 (($ $) NIL (|has| |#1| (-1103)))) (-2946 (($ $) NIL (|has| |#1| (-1103)))) (-2812 (($ $) NIL (|has| |#1| (-1103)))) (-3399 (((-1163 |#1|) $ (-1163 $)) NIL) (((-625 |#1|) (-1163 $) (-1163 $)) NIL) (((-1163 |#1|) $) NIL) (((-625 |#1|) (-1163 $)) NIL)) (-1446 (((-1163 |#1|) $) NIL) (($ (-1163 |#1|)) NIL) (((-1078 |#1|) $) NIL) (($ (-1078 |#1|)) NIL) (((-819 (-519)) $) NIL (|has| |#1| (-560 (-819 (-519))))) (((-819 (-351)) $) NIL (|has| |#1| (-560 (-819 (-351))))) (((-154 (-351)) $) NIL (|has| |#1| (-944))) (((-154 (-201)) $) NIL (|has| |#1| (-944))) (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-3333 (($ $) 45)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-321))))) (-3916 (($ |#1| |#1|) 37)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) 36) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-335)) (|has| |#1| (-959 (-379 (-519)))))) (($ $) NIL (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-511))))) (-3773 (($ $) NIL (|has| |#1| (-321))) (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-2165 (((-1078 |#1|) $) NIL)) (-3594 (((-705)) NIL)) (-2070 (((-1163 $)) NIL)) (-1774 (($ $) NIL (|has| |#1| (-1103)))) (-2886 (($ $) NIL (|has| |#1| (-1103)))) (-1617 (((-108) $ $) NIL (-3730 (-12 (|has| |#1| (-280)) (|has| |#1| (-836))) (|has| |#1| (-511))))) (-1761 (($ $) NIL (|has| |#1| (-1103)))) (-2865 (($ $) NIL (|has| |#1| (-1103)))) (-1790 (($ $) NIL (|has| |#1| (-1103)))) (-2910 (($ $) NIL (|has| |#1| (-1103)))) (-3867 ((|#1| $) NIL (|has| |#1| (-1103)))) (-3929 (($ $) NIL (|has| |#1| (-1103)))) (-2922 (($ $) NIL (|has| |#1| (-1103)))) (-1783 (($ $) NIL (|has| |#1| (-1103)))) (-2898 (($ $) NIL (|has| |#1| (-1103)))) (-1768 (($ $) NIL (|has| |#1| (-1103)))) (-2875 (($ $) NIL (|has| |#1| (-1103)))) (-1478 (($ $) NIL (|has| |#1| (-977)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (-3602 (($) 28 T CONST)) (-3611 (($) 30 T CONST)) (-2761 (((-1065) $) 23 (|has| |#1| (-763))) (((-1065) $ (-108)) 25 (|has| |#1| (-763))) (((-1168) (-757) $) 26 (|has| |#1| (-763))) (((-1168) (-757) $ (-108)) 27 (|has| |#1| (-763)))) (-2242 (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $) NIL (|has| |#1| (-209)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1632 (($ $ $) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 39)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-379 (-519))) NIL (-12 (|has| |#1| (-925)) (|has| |#1| (-1103)))) (($ $ $) NIL (|has| |#1| (-1103))) (($ $ (-519)) NIL (|has| |#1| (-335)))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-379 (-519)) $) NIL (|has| |#1| (-335))) (($ $ (-379 (-519))) NIL (|has| |#1| (-335))))) +(((-154 |#1|) (-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-763)) (-6 (-763)) |%noBranch|))) (-157)) (T -154)) +NIL +(-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-763)) (-6 (-763)) |%noBranch|))) +((-1446 (((-819 |#1|) |#3|) 22))) +(((-155 |#1| |#2| |#3|) (-10 -7 (-15 -1446 ((-819 |#1|) |#3|))) (-1011) (-13 (-560 (-819 |#1|)) (-157)) (-151 |#2|)) (T -155)) +((-1446 (*1 *2 *3) (-12 (-4 *5 (-13 (-560 *2) (-157))) (-5 *2 (-819 *4)) (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1011)) (-4 *3 (-151 *5))))) +(-10 -7 (-15 -1446 ((-819 |#1|) |#3|))) +((-1430 (((-108) $ $) NIL)) (-1257 (((-108) $) 9)) (-3092 (((-108) $ (-108)) 11)) (-1822 (($) 12)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2449 (($ $) 13)) (-2217 (((-790) $) 17)) (-2764 (((-108) $) 8)) (-1664 (((-108) $ (-108)) 10)) (-1543 (((-108) $ $) NIL))) +(((-156) (-13 (-1011) (-10 -8 (-15 -1822 ($)) (-15 -2764 ((-108) $)) (-15 -1257 ((-108) $)) (-15 -1664 ((-108) $ (-108))) (-15 -3092 ((-108) $ (-108))) (-15 -2449 ($ $))))) (T -156)) +((-1822 (*1 *1) (-5 *1 (-156))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-1257 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-1664 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-3092 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-2449 (*1 *1 *1) (-5 *1 (-156)))) +(-13 (-1011) (-10 -8 (-15 -1822 ($)) (-15 -2764 ((-108) $)) (-15 -1257 ((-108) $)) (-15 -1664 ((-108) $ (-108))) (-15 -3092 ((-108) $ (-108))) (-15 -2449 ($ $)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 28)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-157) (-1194)) (T -157)) +NIL +(-13 (-968) (-107 $ $) (-10 -7 (-6 (-4223 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 $) . T) ((-661) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2157 ((|#1| $) 75)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-2311 (($ $ $) NIL)) (-3724 (($ $) 19)) (-2620 (($ |#1| (-1063 |#1|)) 48)) (-4193 (((-3 $ "failed") $) 117)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3739 (((-1063 |#1|) $) 82)) (-2351 (((-1063 |#1|) $) 79)) (-3692 (((-1063 |#1|) $) 80)) (-1568 (((-108) $) NIL)) (-2054 (((-1063 |#1|) $) 88)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2254 (($ (-585 $)) NIL) (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ (-585 $)) NIL) (($ $ $) NIL)) (-1921 (((-390 $) $) NIL)) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL)) (-3881 (($ $ (-519)) 91)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2972 (((-1063 |#1|) $) 89)) (-1595 (((-1063 (-379 |#1|)) $) 13)) (-2859 (($ (-379 |#1|)) 17) (($ |#1| (-1063 |#1|) (-1063 |#1|)) 38)) (-1508 (($ $) 93)) (-2217 (((-790) $) 127) (($ (-519)) 51) (($ |#1|) 52) (($ (-379 |#1|)) 36) (($ (-379 (-519))) NIL) (($ $) NIL)) (-3594 (((-705)) 64)) (-1617 (((-108) $ $) NIL)) (-4044 (((-1063 (-379 |#1|)) $) 18)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 25 T CONST)) (-3611 (($) 28 T CONST)) (-1543 (((-108) $ $) 35)) (-1632 (($ $ $) 115)) (-1623 (($ $) 106) (($ $ $) 103)) (-1614 (($ $ $) 101)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-379 |#1|) $) 111) (($ $ (-379 |#1|)) NIL) (($ (-379 (-519)) $) NIL) (($ $ (-379 (-519))) NIL))) +(((-158 |#1|) (-13 (-37 |#1|) (-37 (-379 |#1|)) (-335) (-10 -8 (-15 -2859 ($ (-379 |#1|))) (-15 -2859 ($ |#1| (-1063 |#1|) (-1063 |#1|))) (-15 -2620 ($ |#1| (-1063 |#1|))) (-15 -2351 ((-1063 |#1|) $)) (-15 -3692 ((-1063 |#1|) $)) (-15 -3739 ((-1063 |#1|) $)) (-15 -2157 (|#1| $)) (-15 -3724 ($ $)) (-15 -4044 ((-1063 (-379 |#1|)) $)) (-15 -1595 ((-1063 (-379 |#1|)) $)) (-15 -2054 ((-1063 |#1|) $)) (-15 -2972 ((-1063 |#1|) $)) (-15 -3881 ($ $ (-519))) (-15 -1508 ($ $)))) (-280)) (T -158)) +((-2859 (*1 *1 *2) (-12 (-5 *2 (-379 *3)) (-4 *3 (-280)) (-5 *1 (-158 *3)))) (-2859 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1063 *2)) (-4 *2 (-280)) (-5 *1 (-158 *2)))) (-2620 (*1 *1 *2 *3) (-12 (-5 *3 (-1063 *2)) (-4 *2 (-280)) (-5 *1 (-158 *2)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-158 *3)) (-4 *3 (-280)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-158 *3)) (-4 *3 (-280)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-158 *3)) (-4 *3 (-280)))) (-2157 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-280)))) (-3724 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-280)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1063 (-379 *3))) (-5 *1 (-158 *3)) (-4 *3 (-280)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-1063 (-379 *3))) (-5 *1 (-158 *3)) (-4 *3 (-280)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-158 *3)) (-4 *3 (-280)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-158 *3)) (-4 *3 (-280)))) (-3881 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-158 *3)) (-4 *3 (-280)))) (-1508 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-280))))) +(-13 (-37 |#1|) (-37 (-379 |#1|)) (-335) (-10 -8 (-15 -2859 ($ (-379 |#1|))) (-15 -2859 ($ |#1| (-1063 |#1|) (-1063 |#1|))) (-15 -2620 ($ |#1| (-1063 |#1|))) (-15 -2351 ((-1063 |#1|) $)) (-15 -3692 ((-1063 |#1|) $)) (-15 -3739 ((-1063 |#1|) $)) (-15 -2157 (|#1| $)) (-15 -3724 ($ $)) (-15 -4044 ((-1063 (-379 |#1|)) $)) (-15 -1595 ((-1063 (-379 |#1|)) $)) (-15 -2054 ((-1063 |#1|) $)) (-15 -2972 ((-1063 |#1|) $)) (-15 -3881 ($ $ (-519))) (-15 -1508 ($ $)))) +((-1874 (($ (-104) $) 13)) (-3394 (((-3 (-104) "failed") (-1082) $) 12)) (-2217 (((-790) $) 16)) (-1643 (((-585 (-104)) $) 7))) +(((-159) (-13 (-559 (-790)) (-10 -8 (-15 -1643 ((-585 (-104)) $)) (-15 -1874 ($ (-104) $)) (-15 -3394 ((-3 (-104) "failed") (-1082) $))))) (T -159)) +((-1643 (*1 *2 *1) (-12 (-5 *2 (-585 (-104))) (-5 *1 (-159)))) (-1874 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159)))) (-3394 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-104)) (-5 *1 (-159))))) +(-13 (-559 (-790)) (-10 -8 (-15 -1643 ((-585 (-104)) $)) (-15 -1874 ($ (-104) $)) (-15 -3394 ((-3 (-104) "failed") (-1082) $)))) +((-2509 (((-1 (-870 |#1|) (-870 |#1|)) |#1|) 40)) (-3571 (((-870 |#1|) (-870 |#1|)) 19)) (-2481 (((-1 (-870 |#1|) (-870 |#1|)) |#1|) 36)) (-3950 (((-870 |#1|) (-870 |#1|)) 17)) (-3628 (((-870 |#1|) (-870 |#1|)) 25)) (-2728 (((-870 |#1|) (-870 |#1|)) 24)) (-4185 (((-870 |#1|) (-870 |#1|)) 23)) (-1277 (((-1 (-870 |#1|) (-870 |#1|)) |#1|) 37)) (-2028 (((-1 (-870 |#1|) (-870 |#1|)) |#1|) 35)) (-2391 (((-1 (-870 |#1|) (-870 |#1|)) |#1|) 34)) (-3439 (((-870 |#1|) (-870 |#1|)) 18)) (-1709 (((-1 (-870 |#1|) (-870 |#1|)) |#1| |#1|) 43)) (-3570 (((-870 |#1|) (-870 |#1|)) 8)) (-1423 (((-1 (-870 |#1|) (-870 |#1|)) |#1|) 39)) (-3583 (((-1 (-870 |#1|) (-870 |#1|)) |#1|) 38))) +(((-160 |#1|) (-10 -7 (-15 -3570 ((-870 |#1|) (-870 |#1|))) (-15 -3950 ((-870 |#1|) (-870 |#1|))) (-15 -3439 ((-870 |#1|) (-870 |#1|))) (-15 -3571 ((-870 |#1|) (-870 |#1|))) (-15 -4185 ((-870 |#1|) (-870 |#1|))) (-15 -2728 ((-870 |#1|) (-870 |#1|))) (-15 -3628 ((-870 |#1|) (-870 |#1|))) (-15 -2391 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -2028 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -2481 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -1277 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -3583 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -1423 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -2509 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -1709 ((-1 (-870 |#1|) (-870 |#1|)) |#1| |#1|))) (-13 (-335) (-1103) (-925))) (T -160)) +((-1709 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-335) (-1103) (-925))))) (-2509 (*1 *2 *3) (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-335) (-1103) (-925))))) (-1423 (*1 *2 *3) (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-335) (-1103) (-925))))) (-3583 (*1 *2 *3) (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-335) (-1103) (-925))))) (-1277 (*1 *2 *3) (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-335) (-1103) (-925))))) (-2481 (*1 *2 *3) (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-335) (-1103) (-925))))) (-2028 (*1 *2 *3) (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-335) (-1103) (-925))))) (-2391 (*1 *2 *3) (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-335) (-1103) (-925))))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) (-5 *1 (-160 *3)))) (-2728 (*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) (-5 *1 (-160 *3)))) (-4185 (*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) (-5 *1 (-160 *3)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) (-5 *1 (-160 *3)))) (-3439 (*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) (-5 *1 (-160 *3)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) (-5 *1 (-160 *3)))) (-3570 (*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) (-5 *1 (-160 *3))))) +(-10 -7 (-15 -3570 ((-870 |#1|) (-870 |#1|))) (-15 -3950 ((-870 |#1|) (-870 |#1|))) (-15 -3439 ((-870 |#1|) (-870 |#1|))) (-15 -3571 ((-870 |#1|) (-870 |#1|))) (-15 -4185 ((-870 |#1|) (-870 |#1|))) (-15 -2728 ((-870 |#1|) (-870 |#1|))) (-15 -3628 ((-870 |#1|) (-870 |#1|))) (-15 -2391 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -2028 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -2481 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -1277 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -3583 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -1423 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -2509 ((-1 (-870 |#1|) (-870 |#1|)) |#1|)) (-15 -1709 ((-1 (-870 |#1|) (-870 |#1|)) |#1| |#1|))) +((-2165 ((|#2| |#3|) 27))) +(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -2165 (|#2| |#3|))) (-157) (-1139 |#1|) (-659 |#1| |#2|)) (T -161)) +((-2165 (*1 *2 *3) (-12 (-4 *4 (-157)) (-4 *2 (-1139 *4)) (-5 *1 (-161 *4 *2 *3)) (-4 *3 (-659 *4 *2))))) +(-10 -7 (-15 -2165 (|#2| |#3|))) +((-4068 (((-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|)) 47 (|has| (-879 |#2|) (-813 |#1|))))) +(((-162 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-879 |#2|) (-813 |#1|)) (-15 -4068 ((-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|))) |%noBranch|)) (-1011) (-13 (-813 |#1|) (-157)) (-151 |#2|)) (T -162)) +((-4068 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *5 *3)) (-5 *4 (-819 *5)) (-4 *5 (-1011)) (-4 *3 (-151 *6)) (-4 (-879 *6) (-813 *5)) (-4 *6 (-13 (-813 *5) (-157))) (-5 *1 (-162 *5 *6 *3))))) +(-10 -7 (IF (|has| (-879 |#2|) (-813 |#1|)) (-15 -4068 ((-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|))) |%noBranch|)) +((-3076 (((-585 |#1|) (-585 |#1|) |#1|) 36)) (-2128 (((-585 |#1|) |#1| (-585 |#1|)) 19)) (-3680 (((-585 |#1|) (-585 (-585 |#1|)) (-585 |#1|)) 31) ((|#1| (-585 |#1|) (-585 |#1|)) 29))) +(((-163 |#1|) (-10 -7 (-15 -2128 ((-585 |#1|) |#1| (-585 |#1|))) (-15 -3680 (|#1| (-585 |#1|) (-585 |#1|))) (-15 -3680 ((-585 |#1|) (-585 (-585 |#1|)) (-585 |#1|))) (-15 -3076 ((-585 |#1|) (-585 |#1|) |#1|))) (-280)) (T -163)) +((-3076 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-280)) (-5 *1 (-163 *3)))) (-3680 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-585 *4))) (-5 *2 (-585 *4)) (-4 *4 (-280)) (-5 *1 (-163 *4)))) (-3680 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-163 *2)) (-4 *2 (-280)))) (-2128 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-280)) (-5 *1 (-163 *3))))) +(-10 -7 (-15 -2128 ((-585 |#1|) |#1| (-585 |#1|))) (-15 -3680 (|#1| (-585 |#1|) (-585 |#1|))) (-15 -3680 ((-585 |#1|) (-585 (-585 |#1|)) (-585 |#1|))) (-15 -3076 ((-585 |#1|) (-585 |#1|) |#1|))) +((-1720 (((-2 (|:| |start| |#2|) (|:| -3433 (-390 |#2|))) |#2|) 61)) (-3638 ((|#1| |#1|) 54)) (-2821 (((-154 |#1|) |#2|) 83)) (-2607 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-3403 ((|#2| |#2|) 82)) (-3976 (((-390 |#2|) |#2| |#1|) 113) (((-390 |#2|) |#2| |#1| (-108)) 80)) (-3681 ((|#1| |#2|) 112)) (-2845 ((|#2| |#2|) 119)) (-1921 (((-390 |#2|) |#2|) 134) (((-390 |#2|) |#2| |#1|) 32) (((-390 |#2|) |#2| |#1| (-108)) 133)) (-2123 (((-585 (-2 (|:| -3433 (-585 |#2|)) (|:| -3026 |#1|))) |#2| |#2|) 132) (((-585 (-2 (|:| -3433 (-585 |#2|)) (|:| -3026 |#1|))) |#2| |#2| (-108)) 75)) (-3046 (((-585 (-154 |#1|)) |#2| |#1|) 40) (((-585 (-154 |#1|)) |#2|) 41))) +(((-164 |#1| |#2|) (-10 -7 (-15 -3046 ((-585 (-154 |#1|)) |#2|)) (-15 -3046 ((-585 (-154 |#1|)) |#2| |#1|)) (-15 -2123 ((-585 (-2 (|:| -3433 (-585 |#2|)) (|:| -3026 |#1|))) |#2| |#2| (-108))) (-15 -2123 ((-585 (-2 (|:| -3433 (-585 |#2|)) (|:| -3026 |#1|))) |#2| |#2|)) (-15 -1921 ((-390 |#2|) |#2| |#1| (-108))) (-15 -1921 ((-390 |#2|) |#2| |#1|)) (-15 -1921 ((-390 |#2|) |#2|)) (-15 -2845 (|#2| |#2|)) (-15 -3681 (|#1| |#2|)) (-15 -3976 ((-390 |#2|) |#2| |#1| (-108))) (-15 -3976 ((-390 |#2|) |#2| |#1|)) (-15 -3403 (|#2| |#2|)) (-15 -2607 (|#1| |#2| |#1|)) (-15 -2607 (|#1| |#2|)) (-15 -2821 ((-154 |#1|) |#2|)) (-15 -3638 (|#1| |#1|)) (-15 -1720 ((-2 (|:| |start| |#2|) (|:| -3433 (-390 |#2|))) |#2|))) (-13 (-335) (-780)) (-1139 (-154 |#1|))) (T -164)) +((-1720 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-2 (|:| |start| *3) (|:| -3433 (-390 *3)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) (-3638 (*1 *2 *2) (-12 (-4 *2 (-13 (-335) (-780))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1139 (-154 *2))))) (-2821 (*1 *2 *3) (-12 (-5 *2 (-154 *4)) (-5 *1 (-164 *4 *3)) (-4 *4 (-13 (-335) (-780))) (-4 *3 (-1139 *2)))) (-2607 (*1 *2 *3) (-12 (-4 *2 (-13 (-335) (-780))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1139 (-154 *2))))) (-2607 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-335) (-780))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1139 (-154 *2))))) (-3403 (*1 *2 *2) (-12 (-4 *3 (-13 (-335) (-780))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1139 (-154 *3))))) (-3976 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-390 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) (-3976 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-335) (-780))) (-5 *2 (-390 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) (-3681 (*1 *2 *3) (-12 (-4 *2 (-13 (-335) (-780))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1139 (-154 *2))))) (-2845 (*1 *2 *2) (-12 (-4 *3 (-13 (-335) (-780))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1139 (-154 *3))))) (-1921 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-390 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) (-1921 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-390 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) (-1921 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-335) (-780))) (-5 *2 (-390 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) (-2123 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-585 (-2 (|:| -3433 (-585 *3)) (|:| -3026 *4)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) (-2123 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-335) (-780))) (-5 *2 (-585 (-2 (|:| -3433 (-585 *3)) (|:| -3026 *5)))) (-5 *1 (-164 *5 *3)) (-4 *3 (-1139 (-154 *5))))) (-3046 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-585 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) (-3046 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-585 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4)))))) +(-10 -7 (-15 -3046 ((-585 (-154 |#1|)) |#2|)) (-15 -3046 ((-585 (-154 |#1|)) |#2| |#1|)) (-15 -2123 ((-585 (-2 (|:| -3433 (-585 |#2|)) (|:| -3026 |#1|))) |#2| |#2| (-108))) (-15 -2123 ((-585 (-2 (|:| -3433 (-585 |#2|)) (|:| -3026 |#1|))) |#2| |#2|)) (-15 -1921 ((-390 |#2|) |#2| |#1| (-108))) (-15 -1921 ((-390 |#2|) |#2| |#1|)) (-15 -1921 ((-390 |#2|) |#2|)) (-15 -2845 (|#2| |#2|)) (-15 -3681 (|#1| |#2|)) (-15 -3976 ((-390 |#2|) |#2| |#1| (-108))) (-15 -3976 ((-390 |#2|) |#2| |#1|)) (-15 -3403 (|#2| |#2|)) (-15 -2607 (|#1| |#2| |#1|)) (-15 -2607 (|#1| |#2|)) (-15 -2821 ((-154 |#1|) |#2|)) (-15 -3638 (|#1| |#1|)) (-15 -1720 ((-2 (|:| |start| |#2|) (|:| -3433 (-390 |#2|))) |#2|))) +((-2206 (((-3 |#2| "failed") |#2|) 14)) (-1518 (((-705) |#2|) 16)) (-3319 ((|#2| |#2| |#2|) 18))) +(((-165 |#1| |#2|) (-10 -7 (-15 -2206 ((-3 |#2| "failed") |#2|)) (-15 -1518 ((-705) |#2|)) (-15 -3319 (|#2| |#2| |#2|))) (-1117) (-612 |#1|)) (T -165)) +((-3319 (*1 *2 *2 *2) (-12 (-4 *3 (-1117)) (-5 *1 (-165 *3 *2)) (-4 *2 (-612 *3)))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-1117)) (-5 *2 (-705)) (-5 *1 (-165 *4 *3)) (-4 *3 (-612 *4)))) (-2206 (*1 *2 *2) (|partial| -12 (-4 *3 (-1117)) (-5 *1 (-165 *3 *2)) (-4 *2 (-612 *3))))) +(-10 -7 (-15 -2206 ((-3 |#2| "failed") |#2|)) (-15 -1518 ((-705) |#2|)) (-15 -3319 (|#2| |#2| |#2|))) +((-3258 ((|#2| |#2|) 28)) (-2534 (((-108) |#2|) 19)) (-1944 (((-288 |#1|) |#2|) 12)) (-1956 (((-288 |#1|) |#2|) 14)) (-3646 ((|#2| |#2| (-1082)) 68) ((|#2| |#2|) 69)) (-2798 (((-154 (-288 |#1|)) |#2|) 9)) (-1829 ((|#2| |#2| (-1082)) 65) ((|#2| |#2|) 58))) +(((-166 |#1| |#2|) (-10 -7 (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1082))) (-15 -1829 (|#2| |#2|)) (-15 -1829 (|#2| |#2| (-1082))) (-15 -1944 ((-288 |#1|) |#2|)) (-15 -1956 ((-288 |#1|) |#2|)) (-15 -2534 ((-108) |#2|)) (-15 -3258 (|#2| |#2|)) (-15 -2798 ((-154 (-288 |#1|)) |#2|))) (-13 (-511) (-782) (-959 (-519))) (-13 (-27) (-1103) (-402 (-154 |#1|)))) (T -166)) +((-2798 (*1 *2 *3) (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-154 (-288 *4))) (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 (-154 *4)))))) (-3258 (*1 *2 *2) (-12 (-4 *3 (-13 (-511) (-782) (-959 (-519)))) (-5 *1 (-166 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 (-154 *3)))))) (-2534 (*1 *2 *3) (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-108)) (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 (-154 *4)))))) (-1956 (*1 *2 *3) (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-288 *4)) (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 (-154 *4)))))) (-1944 (*1 *2 *3) (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-288 *4)) (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 (-154 *4)))))) (-1829 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-5 *1 (-166 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 (-154 *4)))))) (-1829 (*1 *2 *2) (-12 (-4 *3 (-13 (-511) (-782) (-959 (-519)))) (-5 *1 (-166 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 (-154 *3)))))) (-3646 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-5 *1 (-166 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 (-154 *4)))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-511) (-782) (-959 (-519)))) (-5 *1 (-166 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 (-154 *3))))))) +(-10 -7 (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1082))) (-15 -1829 (|#2| |#2|)) (-15 -1829 (|#2| |#2| (-1082))) (-15 -1944 ((-288 |#1|) |#2|)) (-15 -1956 ((-288 |#1|) |#2|)) (-15 -2534 ((-108) |#2|)) (-15 -3258 (|#2| |#2|)) (-15 -2798 ((-154 (-288 |#1|)) |#2|))) +((-2035 (((-1163 (-625 (-879 |#1|))) (-1163 (-625 |#1|))) 22)) (-2217 (((-1163 (-625 (-379 (-879 |#1|)))) (-1163 (-625 |#1|))) 30))) +(((-167 |#1|) (-10 -7 (-15 -2035 ((-1163 (-625 (-879 |#1|))) (-1163 (-625 |#1|)))) (-15 -2217 ((-1163 (-625 (-379 (-879 |#1|)))) (-1163 (-625 |#1|))))) (-157)) (T -167)) +((-2217 (*1 *2 *3) (-12 (-5 *3 (-1163 (-625 *4))) (-4 *4 (-157)) (-5 *2 (-1163 (-625 (-379 (-879 *4))))) (-5 *1 (-167 *4)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-1163 (-625 *4))) (-4 *4 (-157)) (-5 *2 (-1163 (-625 (-879 *4)))) (-5 *1 (-167 *4))))) +(-10 -7 (-15 -2035 ((-1163 (-625 (-879 |#1|))) (-1163 (-625 |#1|)))) (-15 -2217 ((-1163 (-625 (-379 (-879 |#1|)))) (-1163 (-625 |#1|))))) +((-2985 (((-1084 (-379 (-519))) (-1084 (-379 (-519))) (-1084 (-379 (-519)))) 66)) (-3424 (((-1084 (-379 (-519))) (-585 (-519)) (-585 (-519))) 74)) (-2241 (((-1084 (-379 (-519))) (-519)) 40)) (-1961 (((-1084 (-379 (-519))) (-519)) 52)) (-2324 (((-379 (-519)) (-1084 (-379 (-519)))) 62)) (-2647 (((-1084 (-379 (-519))) (-519)) 32)) (-3522 (((-1084 (-379 (-519))) (-519)) 48)) (-4191 (((-1084 (-379 (-519))) (-519)) 46)) (-2563 (((-1084 (-379 (-519))) (-1084 (-379 (-519))) (-1084 (-379 (-519)))) 60)) (-1508 (((-1084 (-379 (-519))) (-519)) 25)) (-3267 (((-379 (-519)) (-1084 (-379 (-519))) (-1084 (-379 (-519)))) 64)) (-4115 (((-1084 (-379 (-519))) (-519)) 30)) (-2996 (((-1084 (-379 (-519))) (-585 (-519))) 71))) +(((-168) (-10 -7 (-15 -1508 ((-1084 (-379 (-519))) (-519))) (-15 -2241 ((-1084 (-379 (-519))) (-519))) (-15 -2647 ((-1084 (-379 (-519))) (-519))) (-15 -4115 ((-1084 (-379 (-519))) (-519))) (-15 -4191 ((-1084 (-379 (-519))) (-519))) (-15 -3522 ((-1084 (-379 (-519))) (-519))) (-15 -1961 ((-1084 (-379 (-519))) (-519))) (-15 -3267 ((-379 (-519)) (-1084 (-379 (-519))) (-1084 (-379 (-519))))) (-15 -2563 ((-1084 (-379 (-519))) (-1084 (-379 (-519))) (-1084 (-379 (-519))))) (-15 -2324 ((-379 (-519)) (-1084 (-379 (-519))))) (-15 -2985 ((-1084 (-379 (-519))) (-1084 (-379 (-519))) (-1084 (-379 (-519))))) (-15 -2996 ((-1084 (-379 (-519))) (-585 (-519)))) (-15 -3424 ((-1084 (-379 (-519))) (-585 (-519)) (-585 (-519)))))) (T -168)) +((-3424 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)))) (-2985 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-1084 (-379 (-519)))) (-5 *2 (-379 (-519))) (-5 *1 (-168)))) (-2563 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)))) (-3267 (*1 *2 *3 *3) (-12 (-5 *3 (-1084 (-379 (-519)))) (-5 *2 (-379 (-519))) (-5 *1 (-168)))) (-1961 (*1 *2 *3) (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519)))) (-3522 (*1 *2 *3) (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519)))) (-4191 (*1 *2 *3) (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519)))) (-4115 (*1 *2 *3) (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519)))) (-2647 (*1 *2 *3) (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519)))) (-2241 (*1 *2 *3) (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519)))) (-1508 (*1 *2 *3) (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519))))) +(-10 -7 (-15 -1508 ((-1084 (-379 (-519))) (-519))) (-15 -2241 ((-1084 (-379 (-519))) (-519))) (-15 -2647 ((-1084 (-379 (-519))) (-519))) (-15 -4115 ((-1084 (-379 (-519))) (-519))) (-15 -4191 ((-1084 (-379 (-519))) (-519))) (-15 -3522 ((-1084 (-379 (-519))) (-519))) (-15 -1961 ((-1084 (-379 (-519))) (-519))) (-15 -3267 ((-379 (-519)) (-1084 (-379 (-519))) (-1084 (-379 (-519))))) (-15 -2563 ((-1084 (-379 (-519))) (-1084 (-379 (-519))) (-1084 (-379 (-519))))) (-15 -2324 ((-379 (-519)) (-1084 (-379 (-519))))) (-15 -2985 ((-1084 (-379 (-519))) (-1084 (-379 (-519))) (-1084 (-379 (-519))))) (-15 -2996 ((-1084 (-379 (-519))) (-585 (-519)))) (-15 -3424 ((-1084 (-379 (-519))) (-585 (-519)) (-585 (-519))))) +((-3227 (((-390 (-1078 (-519))) (-519)) 28)) (-2717 (((-585 (-1078 (-519))) (-519)) 23)) (-2828 (((-1078 (-519)) (-519)) 21))) +(((-169) (-10 -7 (-15 -2717 ((-585 (-1078 (-519))) (-519))) (-15 -2828 ((-1078 (-519)) (-519))) (-15 -3227 ((-390 (-1078 (-519))) (-519))))) (T -169)) +((-3227 (*1 *2 *3) (-12 (-5 *2 (-390 (-1078 (-519)))) (-5 *1 (-169)) (-5 *3 (-519)))) (-2828 (*1 *2 *3) (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-169)) (-5 *3 (-519)))) (-2717 (*1 *2 *3) (-12 (-5 *2 (-585 (-1078 (-519)))) (-5 *1 (-169)) (-5 *3 (-519))))) +(-10 -7 (-15 -2717 ((-585 (-1078 (-519))) (-519))) (-15 -2828 ((-1078 (-519)) (-519))) (-15 -3227 ((-390 (-1078 (-519))) (-519)))) +((-2458 (((-1063 (-201)) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 101)) (-3058 (((-585 (-1065)) (-1063 (-201))) NIL)) (-2896 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 77)) (-2438 (((-585 (-201)) (-288 (-201)) (-1082) (-1006 (-775 (-201)))) NIL)) (-2086 (((-585 (-1065)) (-585 (-201))) NIL)) (-2967 (((-201) (-1006 (-775 (-201)))) 22)) (-3624 (((-201) (-1006 (-775 (-201)))) 23)) (-1641 (((-351) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 93)) (-2106 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 40)) (-2679 (((-1065) (-201)) NIL)) (-2346 (((-1065) (-585 (-1065))) 19)) (-1206 (((-957) (-1082) (-1082) (-957)) 12))) +(((-170) (-10 -7 (-15 -2896 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2106 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2967 ((-201) (-1006 (-775 (-201))))) (-15 -3624 ((-201) (-1006 (-775 (-201))))) (-15 -1641 ((-351) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2438 ((-585 (-201)) (-288 (-201)) (-1082) (-1006 (-775 (-201))))) (-15 -2458 ((-1063 (-201)) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2679 ((-1065) (-201))) (-15 -2086 ((-585 (-1065)) (-585 (-201)))) (-15 -3058 ((-585 (-1065)) (-1063 (-201)))) (-15 -2346 ((-1065) (-585 (-1065)))) (-15 -1206 ((-957) (-1082) (-1082) (-957))))) (T -170)) +((-1206 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-957)) (-5 *3 (-1082)) (-5 *1 (-170)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-1065)) (-5 *1 (-170)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-1063 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-170)))) (-2086 (*1 *2 *3) (-12 (-5 *3 (-585 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-170)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1065)) (-5 *1 (-170)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-1063 (-201))) (-5 *1 (-170)))) (-2438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 (-201))) (-5 *4 (-1082)) (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-585 (-201))) (-5 *1 (-170)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-351)) (-5 *1 (-170)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-170)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-170)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-170)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-170))))) +(-10 -7 (-15 -2896 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2106 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2967 ((-201) (-1006 (-775 (-201))))) (-15 -3624 ((-201) (-1006 (-775 (-201))))) (-15 -1641 ((-351) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2438 ((-585 (-201)) (-288 (-201)) (-1082) (-1006 (-775 (-201))))) (-15 -2458 ((-1063 (-201)) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2679 ((-1065) (-201))) (-15 -2086 ((-585 (-1065)) (-585 (-201)))) (-15 -3058 ((-585 (-1065)) (-1063 (-201)))) (-15 -2346 ((-1065) (-585 (-1065)))) (-15 -1206 ((-957) (-1082) (-1082) (-957)))) +((-1430 (((-108) $ $) NIL)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 53) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 28) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-171) (-721)) (T -171)) +NIL +(-721) +((-1430 (((-108) $ $) NIL)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 58) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 37) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-172) (-721)) (T -172)) +NIL +(-721) +((-1430 (((-108) $ $) NIL)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 67) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 36) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-173) (-721)) (T -173)) +NIL +(-721) +((-1430 (((-108) $ $) NIL)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 54) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 30) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-174) (-721)) (T -174)) +NIL +(-721) +((-1430 (((-108) $ $) NIL)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 65) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 35) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-175) (-721)) (T -175)) +NIL +(-721) +((-1430 (((-108) $ $) NIL)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 71) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 33) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-176) (-721)) (T -176)) +NIL +(-721) +((-1430 (((-108) $ $) NIL)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 78) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 43) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-177) (-721)) (T -177)) +NIL +(-721) +((-1430 (((-108) $ $) NIL)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 68) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 37) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-178) (-721)) (T -178)) +NIL +(-721) +((-1430 (((-108) $ $) NIL)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) NIL) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 62)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 29)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-179) (-721)) (T -179)) +NIL +(-721) +((-1430 (((-108) $ $) NIL)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) NIL) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 60)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 32)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-180) (-721)) (T -180)) +NIL +(-721) +((-1430 (((-108) $ $) NIL)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 89) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 77) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-181) (-721)) (T -181)) +NIL +(-721) +((-1741 (((-3 (-2 (|:| -1435 (-110)) (|:| |w| (-201))) "failed") (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 81)) (-2603 (((-519) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 39)) (-2944 (((-3 (-585 (-201)) "failed") (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 69))) +(((-182) (-10 -7 (-15 -1741 ((-3 (-2 (|:| -1435 (-110)) (|:| |w| (-201))) "failed") (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2944 ((-3 (-585 (-201)) "failed") (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2603 ((-519) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (T -182)) +((-2603 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-519)) (-5 *1 (-182)))) (-2944 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-585 (-201))) (-5 *1 (-182)))) (-1741 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| -1435 (-110)) (|:| |w| (-201)))) (-5 *1 (-182))))) +(-10 -7 (-15 -1741 ((-3 (-2 (|:| -1435 (-110)) (|:| |w| (-201))) "failed") (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2944 ((-3 (-585 (-201)) "failed") (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2603 ((-519) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) +((-1227 (((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 37)) (-4078 (((-2 (|:| |stiffnessFactor| (-351)) (|:| |stabilityFactor| (-351))) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 128)) (-3897 (((-2 (|:| |stiffnessFactor| (-351)) (|:| |stabilityFactor| (-351))) (-625 (-288 (-201)))) 88)) (-2469 (((-351) (-625 (-288 (-201)))) 111)) (-3294 (((-625 (-288 (-201))) (-1163 (-288 (-201))) (-585 (-1082))) 108)) (-1441 (((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 26)) (-2185 (((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 42)) (-2324 (((-625 (-288 (-201))) (-625 (-288 (-201))) (-585 (-1082)) (-1163 (-288 (-201)))) 100)) (-3836 (((-351) (-351) (-585 (-351))) 105) (((-351) (-351) (-351)) 103)) (-1992 (((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 33))) +(((-183) (-10 -7 (-15 -3836 ((-351) (-351) (-351))) (-15 -3836 ((-351) (-351) (-585 (-351)))) (-15 -2469 ((-351) (-625 (-288 (-201))))) (-15 -3294 ((-625 (-288 (-201))) (-1163 (-288 (-201))) (-585 (-1082)))) (-15 -2324 ((-625 (-288 (-201))) (-625 (-288 (-201))) (-585 (-1082)) (-1163 (-288 (-201))))) (-15 -3897 ((-2 (|:| |stiffnessFactor| (-351)) (|:| |stabilityFactor| (-351))) (-625 (-288 (-201))))) (-15 -4078 ((-2 (|:| |stiffnessFactor| (-351)) (|:| |stabilityFactor| (-351))) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1227 ((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2185 ((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1992 ((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1441 ((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (T -183)) +((-1441 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-351)) (-5 *1 (-183)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-351)) (-5 *1 (-183)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-351)) (-5 *1 (-183)))) (-1227 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-351)) (-5 *1 (-183)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-351)) (|:| |stabilityFactor| (-351)))) (-5 *1 (-183)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-625 (-288 (-201)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-351)) (|:| |stabilityFactor| (-351)))) (-5 *1 (-183)))) (-2324 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-625 (-288 (-201)))) (-5 *3 (-585 (-1082))) (-5 *4 (-1163 (-288 (-201)))) (-5 *1 (-183)))) (-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-1163 (-288 (-201)))) (-5 *4 (-585 (-1082))) (-5 *2 (-625 (-288 (-201)))) (-5 *1 (-183)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-625 (-288 (-201)))) (-5 *2 (-351)) (-5 *1 (-183)))) (-3836 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-351))) (-5 *2 (-351)) (-5 *1 (-183)))) (-3836 (*1 *2 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-183))))) +(-10 -7 (-15 -3836 ((-351) (-351) (-351))) (-15 -3836 ((-351) (-351) (-585 (-351)))) (-15 -2469 ((-351) (-625 (-288 (-201))))) (-15 -3294 ((-625 (-288 (-201))) (-1163 (-288 (-201))) (-585 (-1082)))) (-15 -2324 ((-625 (-288 (-201))) (-625 (-288 (-201))) (-585 (-1082)) (-1163 (-288 (-201))))) (-15 -3897 ((-2 (|:| |stiffnessFactor| (-351)) (|:| |stabilityFactor| (-351))) (-625 (-288 (-201))))) (-15 -4078 ((-2 (|:| |stiffnessFactor| (-351)) (|:| |stabilityFactor| (-351))) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1227 ((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2185 ((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1992 ((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1441 ((-351) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) +((-1430 (((-108) $ $) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 37)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1225 (((-957) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 60)) (-1543 (((-108) $ $) NIL))) +(((-184) (-735)) (T -184)) +NIL +(-735) +((-1430 (((-108) $ $) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 37)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1225 (((-957) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 60)) (-1543 (((-108) $ $) NIL))) +(((-185) (-735)) (T -185)) +NIL +(-735) +((-1430 (((-108) $ $) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 36)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1225 (((-957) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 64)) (-1543 (((-108) $ $) NIL))) +(((-186) (-735)) (T -186)) +NIL +(-735) +((-1430 (((-108) $ $) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 42)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1225 (((-957) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 73)) (-1543 (((-108) $ $) NIL))) +(((-187) (-735)) (T -187)) +NIL +(-735) +((-4096 (((-585 (-1082)) (-1082) (-705)) 22)) (-3445 (((-288 (-201)) (-288 (-201))) 29)) (-4198 (((-108) (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) 67)) (-4103 (((-108) (-201) (-201) (-585 (-288 (-201)))) 43))) +(((-188) (-10 -7 (-15 -4096 ((-585 (-1082)) (-1082) (-705))) (-15 -3445 ((-288 (-201)) (-288 (-201)))) (-15 -4103 ((-108) (-201) (-201) (-585 (-288 (-201))))) (-15 -4198 ((-108) (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201))))))) (T -188)) +((-4198 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) (-5 *2 (-108)) (-5 *1 (-188)))) (-4103 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-585 (-288 (-201)))) (-5 *3 (-201)) (-5 *2 (-108)) (-5 *1 (-188)))) (-3445 (*1 *2 *2) (-12 (-5 *2 (-288 (-201))) (-5 *1 (-188)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *4 (-705)) (-5 *2 (-585 (-1082))) (-5 *1 (-188)) (-5 *3 (-1082))))) +(-10 -7 (-15 -4096 ((-585 (-1082)) (-1082) (-705))) (-15 -3445 ((-288 (-201)) (-288 (-201)))) (-15 -4103 ((-108) (-201) (-201) (-585 (-288 (-201))))) (-15 -4198 ((-108) (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))))) +((-1430 (((-108) $ $) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) 17)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1418 (((-957) (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) 55)) (-1543 (((-108) $ $) NIL))) +(((-189) (-822)) (T -189)) +NIL +(-822) +((-1430 (((-108) $ $) NIL)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) 12)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1418 (((-957) (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) NIL)) (-1543 (((-108) $ $) NIL))) +(((-190) (-822)) (T -190)) +NIL +(-822) +((-1430 (((-108) $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2056 (((-1168) $) 36) (((-1168) $ (-848) (-848)) 38)) (-2598 (($ $ (-913)) 19) (((-221 (-1065)) $ (-1082)) 15)) (-1691 (((-1168) $) 34)) (-2217 (((-790) $) 31) (($ (-585 |#1|)) 8)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $ $) 27)) (-1614 (($ $ $) 22))) +(((-191 |#1|) (-13 (-1011) (-10 -8 (-15 -2598 ($ $ (-913))) (-15 -2598 ((-221 (-1065)) $ (-1082))) (-15 -1614 ($ $ $)) (-15 -1623 ($ $ $)) (-15 -2217 ($ (-585 |#1|))) (-15 -1691 ((-1168) $)) (-15 -2056 ((-1168) $)) (-15 -2056 ((-1168) $ (-848) (-848))))) (-13 (-782) (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 ((-1168) $)) (-15 -2056 ((-1168) $))))) (T -191)) +((-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-913)) (-5 *1 (-191 *3)) (-4 *3 (-13 (-782) (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 ((-1168) $)) (-15 -2056 ((-1168) $))))))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-221 (-1065))) (-5 *1 (-191 *4)) (-4 *4 (-13 (-782) (-10 -8 (-15 -2598 ((-1065) $ *3)) (-15 -1691 ((-1168) $)) (-15 -2056 ((-1168) $))))))) (-1614 (*1 *1 *1 *1) (-12 (-5 *1 (-191 *2)) (-4 *2 (-13 (-782) (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 ((-1168) $)) (-15 -2056 ((-1168) $))))))) (-1623 (*1 *1 *1 *1) (-12 (-5 *1 (-191 *2)) (-4 *2 (-13 (-782) (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 ((-1168) $)) (-15 -2056 ((-1168) $))))))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-13 (-782) (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 ((-1168) $)) (-15 -2056 ((-1168) $))))) (-5 *1 (-191 *3)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-191 *3)) (-4 *3 (-13 (-782) (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 (*2 $)) (-15 -2056 (*2 $))))))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-191 *3)) (-4 *3 (-13 (-782) (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 (*2 $)) (-15 -2056 (*2 $))))))) (-2056 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1168)) (-5 *1 (-191 *4)) (-4 *4 (-13 (-782) (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 (*2 $)) (-15 -2056 (*2 $)))))))) +(-13 (-1011) (-10 -8 (-15 -2598 ($ $ (-913))) (-15 -2598 ((-221 (-1065)) $ (-1082))) (-15 -1614 ($ $ $)) (-15 -1623 ($ $ $)) (-15 -2217 ($ (-585 |#1|))) (-15 -1691 ((-1168) $)) (-15 -2056 ((-1168) $)) (-15 -2056 ((-1168) $ (-848) (-848))))) +((-1893 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-192 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#2| |#4| (-1 |#2| |#2|)))) (-335) (-1139 |#1|) (-1139 (-379 |#2|)) (-314 |#1| |#2| |#3|)) (T -192)) +((-1893 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-335)) (-4 *6 (-1139 (-379 *2))) (-4 *2 (-1139 *5)) (-5 *1 (-192 *5 *2 *6 *3)) (-4 *3 (-314 *5 *2 *6))))) +(-10 -7 (-15 -1893 (|#2| |#4| (-1 |#2| |#2|)))) +((-2591 ((|#2| |#2| (-705) |#2|) 41)) (-3373 ((|#2| |#2| (-705) |#2|) 37)) (-2104 (((-585 |#2|) (-585 (-2 (|:| |deg| (-705)) (|:| -2695 |#2|)))) 57)) (-1815 (((-585 (-2 (|:| |deg| (-705)) (|:| -2695 |#2|))) |#2|) 52)) (-1431 (((-108) |#2|) 49)) (-2496 (((-390 |#2|) |#2|) 76)) (-1921 (((-390 |#2|) |#2|) 75)) (-1707 ((|#2| |#2| (-705) |#2|) 35)) (-2409 (((-2 (|:| |cont| |#1|) (|:| -3433 (-585 (-2 (|:| |irr| |#2|) (|:| -1258 (-519)))))) |#2| (-108)) 68))) +(((-193 |#1| |#2|) (-10 -7 (-15 -1921 ((-390 |#2|) |#2|)) (-15 -2496 ((-390 |#2|) |#2|)) (-15 -2409 ((-2 (|:| |cont| |#1|) (|:| -3433 (-585 (-2 (|:| |irr| |#2|) (|:| -1258 (-519)))))) |#2| (-108))) (-15 -1815 ((-585 (-2 (|:| |deg| (-705)) (|:| -2695 |#2|))) |#2|)) (-15 -2104 ((-585 |#2|) (-585 (-2 (|:| |deg| (-705)) (|:| -2695 |#2|))))) (-15 -1707 (|#2| |#2| (-705) |#2|)) (-15 -3373 (|#2| |#2| (-705) |#2|)) (-15 -2591 (|#2| |#2| (-705) |#2|)) (-15 -1431 ((-108) |#2|))) (-321) (-1139 |#1|)) (T -193)) +((-1431 (*1 *2 *3) (-12 (-4 *4 (-321)) (-5 *2 (-108)) (-5 *1 (-193 *4 *3)) (-4 *3 (-1139 *4)))) (-2591 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-705)) (-4 *4 (-321)) (-5 *1 (-193 *4 *2)) (-4 *2 (-1139 *4)))) (-3373 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-705)) (-4 *4 (-321)) (-5 *1 (-193 *4 *2)) (-4 *2 (-1139 *4)))) (-1707 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-705)) (-4 *4 (-321)) (-5 *1 (-193 *4 *2)) (-4 *2 (-1139 *4)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |deg| (-705)) (|:| -2695 *5)))) (-4 *5 (-1139 *4)) (-4 *4 (-321)) (-5 *2 (-585 *5)) (-5 *1 (-193 *4 *5)))) (-1815 (*1 *2 *3) (-12 (-4 *4 (-321)) (-5 *2 (-585 (-2 (|:| |deg| (-705)) (|:| -2695 *3)))) (-5 *1 (-193 *4 *3)) (-4 *3 (-1139 *4)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-321)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3433 (-585 (-2 (|:| |irr| *3) (|:| -1258 (-519))))))) (-5 *1 (-193 *5 *3)) (-4 *3 (-1139 *5)))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-321)) (-5 *2 (-390 *3)) (-5 *1 (-193 *4 *3)) (-4 *3 (-1139 *4)))) (-1921 (*1 *2 *3) (-12 (-4 *4 (-321)) (-5 *2 (-390 *3)) (-5 *1 (-193 *4 *3)) (-4 *3 (-1139 *4))))) +(-10 -7 (-15 -1921 ((-390 |#2|) |#2|)) (-15 -2496 ((-390 |#2|) |#2|)) (-15 -2409 ((-2 (|:| |cont| |#1|) (|:| -3433 (-585 (-2 (|:| |irr| |#2|) (|:| -1258 (-519)))))) |#2| (-108))) (-15 -1815 ((-585 (-2 (|:| |deg| (-705)) (|:| -2695 |#2|))) |#2|)) (-15 -2104 ((-585 |#2|) (-585 (-2 (|:| |deg| (-705)) (|:| -2695 |#2|))))) (-15 -1707 (|#2| |#2| (-705) |#2|)) (-15 -3373 (|#2| |#2| (-705) |#2|)) (-15 -2591 (|#2| |#2| (-705) |#2|)) (-15 -1431 ((-108) |#2|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2157 (((-519) $) NIL (|has| (-519) (-280)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL (|has| (-519) (-755)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL) (((-3 (-1082) "failed") $) NIL (|has| (-519) (-959 (-1082)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| (-519) (-959 (-519)))) (((-3 (-519) "failed") $) NIL (|has| (-519) (-959 (-519))))) (-1499 (((-519) $) NIL) (((-1082) $) NIL (|has| (-519) (-959 (-1082)))) (((-379 (-519)) $) NIL (|has| (-519) (-959 (-519)))) (((-519) $) NIL (|has| (-519) (-959 (-519))))) (-2311 (($ $ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| (-519) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| (-519) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-625 (-519)) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| (-519) (-504)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3419 (((-108) $) NIL (|has| (-519) (-755)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (|has| (-519) (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (|has| (-519) (-813 (-351))))) (-1568 (((-108) $) NIL)) (-1534 (($ $) NIL)) (-2855 (((-519) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| (-519) (-1058)))) (-2143 (((-108) $) NIL (|has| (-519) (-755)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| (-519) (-782)))) (-1405 (($ (-1 (-519) (-519)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| (-519) (-1058)) CONST)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) NIL (|has| (-519) (-280))) (((-379 (-519)) $) NIL)) (-1525 (((-519) $) NIL (|has| (-519) (-504)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2324 (($ $ (-585 (-519)) (-585 (-519))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-519) (-519)) NIL (|has| (-519) (-282 (-519)))) (($ $ (-267 (-519))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-585 (-267 (-519)))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-585 (-1082)) (-585 (-519))) NIL (|has| (-519) (-480 (-1082) (-519)))) (($ $ (-1082) (-519)) NIL (|has| (-519) (-480 (-1082) (-519))))) (-3129 (((-705) $) NIL)) (-2598 (($ $ (-519)) NIL (|has| (-519) (-260 (-519) (-519))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2181 (($ $) NIL (|has| (-519) (-209))) (($ $ (-705)) NIL (|has| (-519) (-209))) (($ $ (-1082)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1 (-519) (-519)) (-705)) NIL) (($ $ (-1 (-519) (-519))) NIL)) (-2724 (($ $) NIL)) (-2866 (((-519) $) NIL)) (-3361 (($ (-379 (-519))) 8)) (-1446 (((-819 (-519)) $) NIL (|has| (-519) (-560 (-819 (-519))))) (((-819 (-351)) $) NIL (|has| (-519) (-560 (-819 (-351))))) (((-495) $) NIL (|has| (-519) (-560 (-495)))) (((-351) $) NIL (|has| (-519) (-944))) (((-201) $) NIL (|has| (-519) (-944)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| (-519) (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) 7) (($ (-519)) NIL) (($ (-1082)) NIL (|has| (-519) (-959 (-1082)))) (((-379 (-519)) $) NIL) (((-927 10) $) 9)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| (-519) (-836))) (|has| (-519) (-133))))) (-3594 (((-705)) NIL)) (-3617 (((-519) $) NIL (|has| (-519) (-504)))) (-1617 (((-108) $ $) NIL)) (-1478 (($ $) NIL (|has| (-519) (-755)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $) NIL (|has| (-519) (-209))) (($ $ (-705)) NIL (|has| (-519) (-209))) (($ $ (-1082)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1 (-519) (-519)) (-705)) NIL) (($ $ (-1 (-519) (-519))) NIL)) (-1586 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1569 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1561 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1632 (($ $ $) NIL) (($ (-519) (-519)) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ (-519) $) NIL) (($ $ (-519)) NIL))) +(((-194) (-13 (-916 (-519)) (-10 -8 (-15 -2217 ((-379 (-519)) $)) (-15 -2217 ((-927 10) $)) (-15 -3326 ((-379 (-519)) $)) (-15 -3361 ($ (-379 (-519))))))) (T -194)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-194)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-927 10)) (-5 *1 (-194)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-194)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-194))))) +(-13 (-916 (-519)) (-10 -8 (-15 -2217 ((-379 (-519)) $)) (-15 -2217 ((-927 10) $)) (-15 -3326 ((-379 (-519)) $)) (-15 -3361 ($ (-379 (-519)))))) +((-4142 (((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-585 (-775 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1004 (-775 |#2|)) (-1065)) 27) (((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-585 (-775 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1004 (-775 |#2|))) 23)) (-2579 (((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-585 (-775 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082) (-775 |#2|) (-775 |#2|) (-108)) 16))) +(((-195 |#1| |#2|) (-10 -7 (-15 -4142 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-585 (-775 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1004 (-775 |#2|)))) (-15 -4142 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-585 (-775 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1004 (-775 |#2|)) (-1065))) (-15 -2579 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-585 (-775 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082) (-775 |#2|) (-775 |#2|) (-108)))) (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519))) (-13 (-1103) (-885) (-29 |#1|))) (T -195)) +((-2579 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1082)) (-5 *6 (-108)) (-4 *7 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-4 *3 (-13 (-1103) (-885) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-585 (-775 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-195 *7 *3)) (-5 *5 (-775 *3)))) (-4142 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-775 *3))) (-5 *5 (-1065)) (-4 *3 (-13 (-1103) (-885) (-29 *6))) (-4 *6 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-585 (-775 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-195 *6 *3)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-775 *3))) (-4 *3 (-13 (-1103) (-885) (-29 *5))) (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-585 (-775 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-195 *5 *3))))) +(-10 -7 (-15 -4142 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-585 (-775 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1004 (-775 |#2|)))) (-15 -4142 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-585 (-775 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1004 (-775 |#2|)) (-1065))) (-15 -2579 ((-3 (|:| |f1| (-775 |#2|)) (|:| |f2| (-585 (-775 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1082) (-775 |#2|) (-775 |#2|) (-108)))) +((-4142 (((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-379 (-879 |#1|)))) (-1065)) 44) (((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-379 (-879 |#1|))))) 41) (((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-288 |#1|))) (-1065)) 45) (((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-288 |#1|)))) 17))) +(((-196 |#1|) (-10 -7 (-15 -4142 ((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-288 |#1|))))) (-15 -4142 ((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-288 |#1|))) (-1065))) (-15 -4142 ((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-379 (-879 |#1|)))))) (-15 -4142 ((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-379 (-879 |#1|)))) (-1065)))) (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (T -196)) +((-4142 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-775 (-379 (-879 *6))))) (-5 *5 (-1065)) (-5 *3 (-379 (-879 *6))) (-4 *6 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-3 (|:| |f1| (-775 (-288 *6))) (|:| |f2| (-585 (-775 (-288 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *6)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-775 (-379 (-879 *5))))) (-5 *3 (-379 (-879 *5))) (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-3 (|:| |f1| (-775 (-288 *5))) (|:| |f2| (-585 (-775 (-288 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *5)))) (-4142 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-379 (-879 *6))) (-5 *4 (-1004 (-775 (-288 *6)))) (-5 *5 (-1065)) (-4 *6 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-3 (|:| |f1| (-775 (-288 *6))) (|:| |f2| (-585 (-775 (-288 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *6)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1004 (-775 (-288 *5)))) (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-3 (|:| |f1| (-775 (-288 *5))) (|:| |f2| (-585 (-775 (-288 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *5))))) +(-10 -7 (-15 -4142 ((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-288 |#1|))))) (-15 -4142 ((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-288 |#1|))) (-1065))) (-15 -4142 ((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-379 (-879 |#1|)))))) (-15 -4142 ((-3 (|:| |f1| (-775 (-288 |#1|))) (|:| |f2| (-585 (-775 (-288 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-379 (-879 |#1|)) (-1004 (-775 (-379 (-879 |#1|)))) (-1065)))) +((-3874 (((-2 (|:| -2714 (-1078 |#1|)) (|:| |deg| (-848))) (-1078 |#1|)) 21)) (-1616 (((-585 (-288 |#2|)) (-288 |#2|) (-848)) 43))) +(((-197 |#1| |#2|) (-10 -7 (-15 -3874 ((-2 (|:| -2714 (-1078 |#1|)) (|:| |deg| (-848))) (-1078 |#1|))) (-15 -1616 ((-585 (-288 |#2|)) (-288 |#2|) (-848)))) (-968) (-13 (-511) (-782))) (T -197)) +((-1616 (*1 *2 *3 *4) (-12 (-5 *4 (-848)) (-4 *6 (-13 (-511) (-782))) (-5 *2 (-585 (-288 *6))) (-5 *1 (-197 *5 *6)) (-5 *3 (-288 *6)) (-4 *5 (-968)))) (-3874 (*1 *2 *3) (-12 (-4 *4 (-968)) (-5 *2 (-2 (|:| -2714 (-1078 *4)) (|:| |deg| (-848)))) (-5 *1 (-197 *4 *5)) (-5 *3 (-1078 *4)) (-4 *5 (-13 (-511) (-782)))))) +(-10 -7 (-15 -3874 ((-2 (|:| -2714 (-1078 |#1|)) (|:| |deg| (-848))) (-1078 |#1|))) (-15 -1616 ((-585 (-288 |#2|)) (-288 |#2|) (-848)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3655 ((|#1| $) NIL)) (-1365 ((|#1| $) 25)) (-1473 (((-108) $ (-705)) NIL)) (-2249 (($) NIL T CONST)) (-3064 (($ $) NIL)) (-1998 (($ $) 31)) (-2390 ((|#1| |#1| $) NIL)) (-3128 ((|#1| $) NIL)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-2568 (((-705) $) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4152 ((|#1| $) NIL)) (-1331 ((|#1| |#1| $) 28)) (-2965 ((|#1| |#1| $) 30)) (-1846 (($ |#1| $) NIL)) (-4141 (((-705) $) 27)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-3686 ((|#1| $) NIL)) (-3577 ((|#1| $) 26)) (-3016 ((|#1| $) 24)) (-3212 ((|#1| $) NIL)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3087 ((|#1| |#1| $) NIL)) (-3108 (((-108) $) 9)) (-1548 (($) NIL)) (-1348 ((|#1| $) NIL)) (-2007 (($) NIL) (($ (-585 |#1|)) 16)) (-1253 (((-705) $) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-2601 ((|#1| $) 13)) (-3879 (($ (-585 |#1|)) NIL)) (-3365 ((|#1| $) NIL)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-198 |#1|) (-13 (-229 |#1|) (-10 -8 (-15 -2007 ($ (-585 |#1|))))) (-1011)) (T -198)) +((-2007 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-198 *3))))) +(-13 (-229 |#1|) (-10 -8 (-15 -2007 ($ (-585 |#1|))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3024 (($ (-288 |#1|)) 23)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-2465 (((-108) $) NIL)) (-1301 (((-3 (-288 |#1|) "failed") $) NIL)) (-1499 (((-288 |#1|) $) NIL)) (-3218 (($ $) 31)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) NIL)) (-1405 (($ (-1 (-288 |#1|) (-288 |#1|)) $) NIL)) (-3197 (((-288 |#1|) $) NIL)) (-3022 (($ $) 30)) (-1266 (((-1065) $) NIL)) (-3892 (((-108) $) NIL)) (-4139 (((-1029) $) NIL)) (-1397 (($ (-705)) NIL)) (-3121 (($ $) 32)) (-4178 (((-519) $) NIL)) (-2217 (((-790) $) 57) (($ (-519)) NIL) (($ (-288 |#1|)) NIL)) (-1220 (((-288 |#1|) $ $) NIL)) (-3594 (((-705)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 25 T CONST)) (-3611 (($) 50 T CONST)) (-1543 (((-108) $ $) 28)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 19)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 24) (($ (-288 |#1|) $) 18))) +(((-199 |#1| |#2|) (-13 (-563 (-288 |#1|)) (-959 (-288 |#1|)) (-10 -8 (-15 -3197 ((-288 |#1|) $)) (-15 -3022 ($ $)) (-15 -3218 ($ $)) (-15 -1220 ((-288 |#1|) $ $)) (-15 -1397 ($ (-705))) (-15 -3892 ((-108) $)) (-15 -2465 ((-108) $)) (-15 -4178 ((-519) $)) (-15 -1405 ($ (-1 (-288 |#1|) (-288 |#1|)) $)) (-15 -3024 ($ (-288 |#1|))) (-15 -3121 ($ $)))) (-13 (-968) (-782)) (-585 (-1082))) (T -199)) +((-3197 (*1 *2 *1) (-12 (-5 *2 (-288 *3)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-968) (-782))) (-14 *4 (-585 (-1082))))) (-3022 (*1 *1 *1) (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-968) (-782))) (-14 *3 (-585 (-1082))))) (-3218 (*1 *1 *1) (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-968) (-782))) (-14 *3 (-585 (-1082))))) (-1220 (*1 *2 *1 *1) (-12 (-5 *2 (-288 *3)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-968) (-782))) (-14 *4 (-585 (-1082))))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-968) (-782))) (-14 *4 (-585 (-1082))))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-968) (-782))) (-14 *4 (-585 (-1082))))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-968) (-782))) (-14 *4 (-585 (-1082))))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-968) (-782))) (-14 *4 (-585 (-1082))))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-288 *3) (-288 *3))) (-4 *3 (-13 (-968) (-782))) (-5 *1 (-199 *3 *4)) (-14 *4 (-585 (-1082))))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-288 *3)) (-4 *3 (-13 (-968) (-782))) (-5 *1 (-199 *3 *4)) (-14 *4 (-585 (-1082))))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-968) (-782))) (-14 *3 (-585 (-1082)))))) +(-13 (-563 (-288 |#1|)) (-959 (-288 |#1|)) (-10 -8 (-15 -3197 ((-288 |#1|) $)) (-15 -3022 ($ $)) (-15 -3218 ($ $)) (-15 -1220 ((-288 |#1|) $ $)) (-15 -1397 ($ (-705))) (-15 -3892 ((-108) $)) (-15 -2465 ((-108) $)) (-15 -4178 ((-519) $)) (-15 -1405 ($ (-1 (-288 |#1|) (-288 |#1|)) $)) (-15 -3024 ($ (-288 |#1|))) (-15 -3121 ($ $)))) +((-1895 (((-108) (-1065)) 22)) (-1727 (((-3 (-775 |#2|) "failed") (-558 |#2|) |#2| (-775 |#2|) (-775 |#2|) (-108)) 32)) (-1813 (((-3 (-108) "failed") (-1078 |#2|) (-775 |#2|) (-775 |#2|) (-108)) 73) (((-3 (-108) "failed") (-879 |#1|) (-1082) (-775 |#2|) (-775 |#2|) (-108)) 74))) +(((-200 |#1| |#2|) (-10 -7 (-15 -1895 ((-108) (-1065))) (-15 -1727 ((-3 (-775 |#2|) "failed") (-558 |#2|) |#2| (-775 |#2|) (-775 |#2|) (-108))) (-15 -1813 ((-3 (-108) "failed") (-879 |#1|) (-1082) (-775 |#2|) (-775 |#2|) (-108))) (-15 -1813 ((-3 (-108) "failed") (-1078 |#2|) (-775 |#2|) (-775 |#2|) (-108)))) (-13 (-423) (-782) (-959 (-519)) (-581 (-519))) (-13 (-1103) (-29 |#1|))) (T -200)) +((-1813 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1078 *6)) (-5 *4 (-775 *6)) (-4 *6 (-13 (-1103) (-29 *5))) (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-200 *5 *6)))) (-1813 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-879 *6)) (-5 *4 (-1082)) (-5 *5 (-775 *7)) (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-4 *7 (-13 (-1103) (-29 *6))) (-5 *1 (-200 *6 *7)))) (-1727 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-775 *4)) (-5 *3 (-558 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1103) (-29 *6))) (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-200 *6 *4)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-108)) (-5 *1 (-200 *4 *5)) (-4 *5 (-13 (-1103) (-29 *4)))))) +(-10 -7 (-15 -1895 ((-108) (-1065))) (-15 -1727 ((-3 (-775 |#2|) "failed") (-558 |#2|) |#2| (-775 |#2|) (-775 |#2|) (-108))) (-15 -1813 ((-3 (-108) "failed") (-879 |#1|) (-1082) (-775 |#2|) (-775 |#2|) (-108))) (-15 -1813 ((-3 (-108) "failed") (-1078 |#2|) (-775 |#2|) (-775 |#2|) (-108)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 89)) (-2157 (((-519) $) 99)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-4057 (($ $) NIL)) (-2958 (($ $) 77)) (-2823 (($ $) 65)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-1934 (($ $) 56)) (-3409 (((-108) $ $) NIL)) (-2934 (($ $) 75)) (-2800 (($ $) 63)) (-2287 (((-519) $) 116)) (-2981 (($ $) 80)) (-2844 (($ $) 67)) (-2249 (($) NIL T CONST)) (-3925 (($ $) NIL)) (-1301 (((-3 (-519) "failed") $) 115) (((-3 (-379 (-519)) "failed") $) 112)) (-1499 (((-519) $) 113) (((-379 (-519)) $) 110)) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) 92)) (-2483 (((-379 (-519)) $ (-705)) 108) (((-379 (-519)) $ (-705) (-705)) 107)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-2199 (((-848)) 29) (((-848) (-848)) NIL (|has| $ (-6 -4212)))) (-3419 (((-108) $) NIL)) (-2888 (($) 39)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL)) (-3709 (((-519) $) 35)) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL)) (-3681 (($ $) NIL)) (-2143 (((-108) $) 88)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) 53) (($) 34 (-12 (-2445 (|has| $ (-6 -4204))) (-2445 (|has| $ (-6 -4212)))))) (-2489 (($ $ $) 52) (($) 33 (-12 (-2445 (|has| $ (-6 -4204))) (-2445 (|has| $ (-6 -4212)))))) (-3417 (((-519) $) 27)) (-4109 (($ $) 30)) (-3145 (($ $) 57)) (-1254 (($ $) 62)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3747 (((-848) (-519)) NIL (|has| $ (-6 -4212)))) (-4139 (((-1029) $) NIL) (((-519) $) 90)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) NIL)) (-1525 (($ $) NIL)) (-3123 (($ (-519) (-519)) NIL) (($ (-519) (-519) (-848)) 100)) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1690 (((-519) $) 28)) (-2268 (($) 38)) (-3325 (($ $) 61)) (-3129 (((-705) $) NIL)) (-4046 (((-1065) (-1065)) 8)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-3084 (((-848)) NIL) (((-848) (-848)) NIL (|has| $ (-6 -4212)))) (-2181 (($ $ (-705)) NIL) (($ $) 93)) (-4037 (((-848) (-519)) NIL (|has| $ (-6 -4212)))) (-1754 (($ $) 78)) (-2854 (($ $) 68)) (-2969 (($ $) 79)) (-2834 (($ $) 66)) (-2946 (($ $) 76)) (-2812 (($ $) 64)) (-1446 (((-351) $) 104) (((-201) $) 101) (((-819 (-351)) $) NIL) (((-495) $) 45)) (-2217 (((-790) $) 42) (($ (-519)) 60) (($ $) NIL) (($ (-379 (-519))) NIL) (($ (-519)) 60) (($ (-379 (-519))) NIL)) (-3594 (((-705)) NIL)) (-3617 (($ $) NIL)) (-1858 (((-848)) 32) (((-848) (-848)) NIL (|has| $ (-6 -4212)))) (-3414 (((-848)) 25)) (-1774 (($ $) 83)) (-2886 (($ $) 71) (($ $ $) 109)) (-1617 (((-108) $ $) NIL)) (-1761 (($ $) 81)) (-2865 (($ $) 69)) (-1790 (($ $) 86)) (-2910 (($ $) 74)) (-3929 (($ $) 84)) (-2922 (($ $) 72)) (-1783 (($ $) 85)) (-2898 (($ $) 73)) (-1768 (($ $) 82)) (-2875 (($ $) 70)) (-1478 (($ $) 117)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 36 T CONST)) (-3611 (($) 37 T CONST)) (-2761 (((-1065) $) 19) (((-1065) $ (-108)) 21) (((-1168) (-757) $) 22) (((-1168) (-757) $ (-108)) 23)) (-1222 (($ $) 96)) (-2242 (($ $ (-705)) NIL) (($ $) NIL)) (-2144 (($ $ $) 98)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 54)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 46)) (-1632 (($ $ $) 87) (($ $ (-519)) 55)) (-1623 (($ $) 47) (($ $ $) 49)) (-1614 (($ $ $) 48)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) 58) (($ $ (-379 (-519))) 128) (($ $ $) 59)) (* (($ (-848) $) 31) (($ (-705) $) NIL) (($ (-519) $) 51) (($ $ $) 50) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL))) +(((-201) (-13 (-376) (-209) (-763) (-1103) (-560 (-495)) (-10 -8 (-15 -1632 ($ $ (-519))) (-15 ** ($ $ $)) (-15 -2268 ($)) (-15 -4139 ((-519) $)) (-15 -4109 ($ $)) (-15 -3145 ($ $)) (-15 -2886 ($ $ $)) (-15 -1222 ($ $)) (-15 -2144 ($ $ $)) (-15 -4046 ((-1065) (-1065))) (-15 -2483 ((-379 (-519)) $ (-705))) (-15 -2483 ((-379 (-519)) $ (-705) (-705)))))) (T -201)) +((** (*1 *1 *1 *1) (-5 *1 (-201))) (-1632 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-201)))) (-2268 (*1 *1) (-5 *1 (-201))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-201)))) (-4109 (*1 *1 *1) (-5 *1 (-201))) (-3145 (*1 *1 *1) (-5 *1 (-201))) (-2886 (*1 *1 *1 *1) (-5 *1 (-201))) (-1222 (*1 *1 *1) (-5 *1 (-201))) (-2144 (*1 *1 *1 *1) (-5 *1 (-201))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-201)))) (-2483 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *2 (-379 (-519))) (-5 *1 (-201)))) (-2483 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-705)) (-5 *2 (-379 (-519))) (-5 *1 (-201))))) +(-13 (-376) (-209) (-763) (-1103) (-560 (-495)) (-10 -8 (-15 -1632 ($ $ (-519))) (-15 ** ($ $ $)) (-15 -2268 ($)) (-15 -4139 ((-519) $)) (-15 -4109 ($ $)) (-15 -3145 ($ $)) (-15 -2886 ($ $ $)) (-15 -1222 ($ $)) (-15 -2144 ($ $ $)) (-15 -4046 ((-1065) (-1065))) (-15 -2483 ((-379 (-519)) $ (-705))) (-15 -2483 ((-379 (-519)) $ (-705) (-705))))) +((-1831 (((-154 (-201)) (-705) (-154 (-201))) 11) (((-201) (-705) (-201)) 12)) (-1814 (((-154 (-201)) (-154 (-201))) 13) (((-201) (-201)) 14)) (-3561 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 19) (((-201) (-201) (-201)) 22)) (-1989 (((-154 (-201)) (-154 (-201))) 25) (((-201) (-201)) 24)) (-3872 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 43) (((-201) (-201) (-201)) 35)) (-3793 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 48) (((-201) (-201) (-201)) 45)) (-1600 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 15) (((-201) (-201) (-201)) 16)) (-2628 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 17) (((-201) (-201) (-201)) 18)) (-1810 (((-154 (-201)) (-154 (-201))) 60) (((-201) (-201)) 59)) (-2767 (((-201) (-201)) 54) (((-154 (-201)) (-154 (-201))) 58)) (-1222 (((-154 (-201)) (-154 (-201))) 7) (((-201) (-201)) 9)) (-2144 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 30) (((-201) (-201) (-201)) 26))) +(((-202) (-10 -7 (-15 -1222 ((-201) (-201))) (-15 -1222 ((-154 (-201)) (-154 (-201)))) (-15 -2144 ((-201) (-201) (-201))) (-15 -2144 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -1814 ((-201) (-201))) (-15 -1814 ((-154 (-201)) (-154 (-201)))) (-15 -1989 ((-201) (-201))) (-15 -1989 ((-154 (-201)) (-154 (-201)))) (-15 -1831 ((-201) (-705) (-201))) (-15 -1831 ((-154 (-201)) (-705) (-154 (-201)))) (-15 -1600 ((-201) (-201) (-201))) (-15 -1600 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -3872 ((-201) (-201) (-201))) (-15 -3872 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -2628 ((-201) (-201) (-201))) (-15 -2628 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -3793 ((-201) (-201) (-201))) (-15 -3793 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -2767 ((-154 (-201)) (-154 (-201)))) (-15 -2767 ((-201) (-201))) (-15 -1810 ((-201) (-201))) (-15 -1810 ((-154 (-201)) (-154 (-201)))) (-15 -3561 ((-201) (-201) (-201))) (-15 -3561 ((-154 (-201)) (-154 (-201)) (-154 (-201)))))) (T -202)) +((-3561 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-3561 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-3793 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-3793 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-2628 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-2628 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-3872 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-3872 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-1600 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-1600 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-1831 (*1 *2 *3 *2) (-12 (-5 *2 (-154 (-201))) (-5 *3 (-705)) (-5 *1 (-202)))) (-1831 (*1 *2 *3 *2) (-12 (-5 *2 (-201)) (-5 *3 (-705)) (-5 *1 (-202)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-2144 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-2144 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-1222 (*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-1222 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))) +(-10 -7 (-15 -1222 ((-201) (-201))) (-15 -1222 ((-154 (-201)) (-154 (-201)))) (-15 -2144 ((-201) (-201) (-201))) (-15 -2144 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -1814 ((-201) (-201))) (-15 -1814 ((-154 (-201)) (-154 (-201)))) (-15 -1989 ((-201) (-201))) (-15 -1989 ((-154 (-201)) (-154 (-201)))) (-15 -1831 ((-201) (-705) (-201))) (-15 -1831 ((-154 (-201)) (-705) (-154 (-201)))) (-15 -1600 ((-201) (-201) (-201))) (-15 -1600 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -3872 ((-201) (-201) (-201))) (-15 -3872 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -2628 ((-201) (-201) (-201))) (-15 -2628 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -3793 ((-201) (-201) (-201))) (-15 -3793 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -2767 ((-154 (-201)) (-154 (-201)))) (-15 -2767 ((-201) (-201))) (-15 -1810 ((-201) (-201))) (-15 -1810 ((-154 (-201)) (-154 (-201)))) (-15 -3561 ((-201) (-201) (-201))) (-15 -3561 ((-154 (-201)) (-154 (-201)) (-154 (-201))))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3535 (($ (-705) (-705)) NIL)) (-2339 (($ $ $) NIL)) (-3635 (($ (-1163 |#1|)) NIL) (($ $) NIL)) (-2514 (($ |#1| |#1| |#1|) 32)) (-3411 (((-108) $) NIL)) (-3273 (($ $ (-519) (-519)) NIL)) (-3991 (($ $ (-519) (-519)) NIL)) (-3432 (($ $ (-519) (-519) (-519) (-519)) NIL)) (-3166 (($ $) NIL)) (-1413 (((-108) $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-3515 (($ $ (-519) (-519) $) NIL)) (-2421 ((|#1| $ (-519) (-519) |#1|) NIL) (($ $ (-585 (-519)) (-585 (-519)) $) NIL)) (-4054 (($ $ (-519) (-1163 |#1|)) NIL)) (-3281 (($ $ (-519) (-1163 |#1|)) NIL)) (-1422 (($ |#1| |#1| |#1|) 31)) (-1889 (($ (-705) |#1|) NIL)) (-2249 (($) NIL T CONST)) (-3196 (($ $) NIL (|has| |#1| (-280)))) (-4159 (((-1163 |#1|) $ (-519)) NIL)) (-2068 (($ |#1|) 30)) (-1913 (($ |#1|) 29)) (-1887 (($ |#1|) 28)) (-3229 (((-705) $) NIL (|has| |#1| (-511)))) (-3865 ((|#1| $ (-519) (-519) |#1|) NIL)) (-3659 ((|#1| $ (-519) (-519)) NIL)) (-3844 (((-585 |#1|) $) NIL)) (-2518 (((-705) $) NIL (|has| |#1| (-511)))) (-3885 (((-585 (-1163 |#1|)) $) NIL (|has| |#1| (-511)))) (-1426 (((-705) $) NIL)) (-1822 (($ (-705) (-705) |#1|) NIL)) (-1437 (((-705) $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2749 ((|#1| $) NIL (|has| |#1| (-6 (-4223 "*"))))) (-4161 (((-519) $) NIL)) (-2918 (((-519) $) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1238 (((-519) $) NIL)) (-2012 (((-519) $) NIL)) (-1377 (($ (-585 (-585 |#1|))) 10)) (-3850 (($ (-1 |#1| |#1|) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2723 (((-585 (-585 |#1|)) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1452 (((-3 $ "failed") $) NIL (|has| |#1| (-335)))) (-2190 (($) 11)) (-3627 (($ $ $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-3640 (($ $ |#1|) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ (-519) (-519)) NIL) ((|#1| $ (-519) (-519) |#1|) NIL) (($ $ (-585 (-519)) (-585 (-519))) NIL)) (-1757 (($ (-585 |#1|)) NIL) (($ (-585 $)) NIL)) (-2464 (((-108) $) NIL)) (-3406 ((|#1| $) NIL (|has| |#1| (-6 (-4223 "*"))))) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-3067 (((-1163 |#1|) $ (-519)) NIL)) (-2217 (($ (-1163 |#1|)) NIL) (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3238 (((-108) $) NIL)) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $ $) NIL) (($ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-519) $) NIL) (((-1163 |#1|) $ (-1163 |#1|)) 14) (((-1163 |#1|) (-1163 |#1|) $) NIL) (((-870 |#1|) $ (-870 |#1|)) 20)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-203 |#1|) (-13 (-623 |#1| (-1163 |#1|) (-1163 |#1|)) (-10 -8 (-15 * ((-870 |#1|) $ (-870 |#1|))) (-15 -2190 ($)) (-15 -1887 ($ |#1|)) (-15 -1913 ($ |#1|)) (-15 -2068 ($ |#1|)) (-15 -1422 ($ |#1| |#1| |#1|)) (-15 -2514 ($ |#1| |#1| |#1|)))) (-13 (-335) (-1103))) (T -203)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103))) (-5 *1 (-203 *3)))) (-2190 (*1 *1) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103))))) (-1887 (*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103))))) (-1913 (*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103))))) (-2068 (*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103))))) (-1422 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103))))) (-2514 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103)))))) +(-13 (-623 |#1| (-1163 |#1|) (-1163 |#1|)) (-10 -8 (-15 * ((-870 |#1|) $ (-870 |#1|))) (-15 -2190 ($)) (-15 -1887 ($ |#1|)) (-15 -1913 ($ |#1|)) (-15 -2068 ($ |#1|)) (-15 -1422 ($ |#1| |#1| |#1|)) (-15 -2514 ($ |#1| |#1| |#1|)))) +((-2846 (($ (-1 (-108) |#2|) $) 16)) (-2502 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 24)) (-2436 (($) NIL) (($ (-585 |#2|)) 11)) (-1543 (((-108) $ $) 22))) +(((-204 |#1| |#2|) (-10 -8 (-15 -2846 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2502 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2502 (|#1| |#2| |#1|)) (-15 -2436 (|#1| (-585 |#2|))) (-15 -2436 (|#1|)) (-15 -1543 ((-108) |#1| |#1|))) (-205 |#2|) (-1011)) (T -204)) +NIL +(-10 -8 (-15 -2846 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2502 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2502 (|#1| |#2| |#1|)) (-15 -2436 (|#1| (-585 |#2|))) (-15 -2436 (|#1|)) (-15 -1543 ((-108) |#1| |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) 8)) (-2846 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-2366 (($ $) 58 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2502 (($ |#1| $) 47 (|has| $ (-6 -4221))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4221)))) (-1438 (($ |#1| $) 57 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4221)))) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4152 ((|#1| $) 39)) (-1846 (($ |#1| $) 40)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3212 ((|#1| $) 41)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2436 (($) 49) (($ (-585 |#1|)) 48)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 59 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 50)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) 42)) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-205 |#1|) (-1194) (-1011)) (T -205)) +NIL +(-13 (-211 |t#1|)) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-211 |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-2181 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-705)) 11) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082)) 19) (($ $ (-705)) NIL) (($ $) 16)) (-2242 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-705)) 14) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082)) NIL) (($ $ (-705)) NIL) (($ $) NIL))) +(((-206 |#1| |#2|) (-10 -8 (-15 -2181 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2242 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2242 (|#1| |#1| (-1082))) (-15 -2242 (|#1| |#1| (-585 (-1082)))) (-15 -2242 (|#1| |#1| (-1082) (-705))) (-15 -2242 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2242 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|)))) (-207 |#2|) (-968)) (T -206)) +NIL +(-10 -8 (-15 -2181 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2242 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2242 (|#1| |#1| (-1082))) (-15 -2242 (|#1| |#1| (-585 (-1082)))) (-15 -2242 (|#1| |#1| (-1082) (-705))) (-15 -2242 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2242 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2181 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-705)) 51) (($ $ (-585 (-1082)) (-585 (-705))) 44 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 43 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 42 (|has| |#1| (-827 (-1082)))) (($ $ (-1082)) 41 (|has| |#1| (-827 (-1082)))) (($ $ (-705)) 39 (|has| |#1| (-209))) (($ $) 37 (|has| |#1| (-209)))) (-2217 (((-790) $) 11) (($ (-519)) 28)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-705)) 49) (($ $ (-585 (-1082)) (-585 (-705))) 48 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 47 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 46 (|has| |#1| (-827 (-1082)))) (($ $ (-1082)) 45 (|has| |#1| (-827 (-1082)))) (($ $ (-705)) 40 (|has| |#1| (-209))) (($ $) 38 (|has| |#1| (-209)))) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-207 |#1|) (-1194) (-968)) (T -207)) +((-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-207 *3)) (-4 *3 (-968)))) (-2181 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-705)) (-4 *1 (-207 *4)) (-4 *4 (-968)))) (-2242 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-207 *3)) (-4 *3 (-968)))) (-2242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-705)) (-4 *1 (-207 *4)) (-4 *4 (-968))))) +(-13 (-968) (-10 -8 (-15 -2181 ($ $ (-1 |t#1| |t#1|))) (-15 -2181 ($ $ (-1 |t#1| |t#1|) (-705))) (-15 -2242 ($ $ (-1 |t#1| |t#1|))) (-15 -2242 ($ $ (-1 |t#1| |t#1|) (-705))) (IF (|has| |t#1| (-209)) (-6 (-209)) |%noBranch|) (IF (|has| |t#1| (-827 (-1082))) (-6 (-827 (-1082))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-209) |has| |#1| (-209)) ((-587 $) . T) ((-661) . T) ((-827 (-1082)) |has| |#1| (-827 (-1082))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-2181 (($ $) NIL) (($ $ (-705)) 10)) (-2242 (($ $) 8) (($ $ (-705)) 12))) +(((-208 |#1|) (-10 -8 (-15 -2242 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-705))) (-15 -2242 (|#1| |#1|)) (-15 -2181 (|#1| |#1|))) (-209)) (T -208)) +NIL +(-10 -8 (-15 -2242 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-705))) (-15 -2242 (|#1| |#1|)) (-15 -2181 (|#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2181 (($ $) 38) (($ $ (-705)) 36)) (-2217 (((-790) $) 11) (($ (-519)) 28)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $) 37) (($ $ (-705)) 35)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-209) (-1194)) (T -209)) +((-2181 (*1 *1 *1) (-4 *1 (-209))) (-2242 (*1 *1 *1) (-4 *1 (-209))) (-2181 (*1 *1 *1 *2) (-12 (-4 *1 (-209)) (-5 *2 (-705)))) (-2242 (*1 *1 *1 *2) (-12 (-4 *1 (-209)) (-5 *2 (-705))))) +(-13 (-968) (-10 -8 (-15 -2181 ($ $)) (-15 -2242 ($ $)) (-15 -2181 ($ $ (-705))) (-15 -2242 ($ $ (-705))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 $) . T) ((-661) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-2436 (($) 12) (($ (-585 |#2|)) NIL)) (-2449 (($ $) 14)) (-2228 (($ (-585 |#2|)) 10)) (-2217 (((-790) $) 21))) +(((-210 |#1| |#2|) (-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -2436 (|#1| (-585 |#2|))) (-15 -2436 (|#1|)) (-15 -2228 (|#1| (-585 |#2|))) (-15 -2449 (|#1| |#1|))) (-211 |#2|) (-1011)) (T -210)) +NIL +(-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -2436 (|#1| (-585 |#2|))) (-15 -2436 (|#1|)) (-15 -2228 (|#1| (-585 |#2|))) (-15 -2449 (|#1| |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) 8)) (-2846 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-2366 (($ $) 58 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2502 (($ |#1| $) 47 (|has| $ (-6 -4221))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4221)))) (-1438 (($ |#1| $) 57 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4221)))) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4152 ((|#1| $) 39)) (-1846 (($ |#1| $) 40)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3212 ((|#1| $) 41)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2436 (($) 49) (($ (-585 |#1|)) 48)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 59 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 50)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) 42)) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-211 |#1|) (-1194) (-1011)) (T -211)) +((-2436 (*1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1011)))) (-2436 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-4 *1 (-211 *3)))) (-2502 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4221)) (-4 *1 (-211 *2)) (-4 *2 (-1011)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4221)) (-4 *1 (-211 *3)) (-4 *3 (-1011)))) (-2846 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4221)) (-4 *1 (-211 *3)) (-4 *3 (-1011))))) +(-13 (-102 |t#1|) (-139 |t#1|) (-10 -8 (-15 -2436 ($)) (-15 -2436 ($ (-585 |t#1|))) (IF (|has| $ (-6 -4221)) (PROGN (-15 -2502 ($ |t#1| $)) (-15 -2502 ($ (-1 (-108) |t#1|) $)) (-15 -2846 ($ (-1 (-108) |t#1|) $))) |%noBranch|))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-2884 (((-2 (|:| |varOrder| (-585 (-1082))) (|:| |inhom| (-3 (-585 (-1163 (-705))) "failed")) (|:| |hom| (-585 (-1163 (-705))))) (-267 (-879 (-519)))) 25))) +(((-212) (-10 -7 (-15 -2884 ((-2 (|:| |varOrder| (-585 (-1082))) (|:| |inhom| (-3 (-585 (-1163 (-705))) "failed")) (|:| |hom| (-585 (-1163 (-705))))) (-267 (-879 (-519))))))) (T -212)) +((-2884 (*1 *2 *3) (-12 (-5 *3 (-267 (-879 (-519)))) (-5 *2 (-2 (|:| |varOrder| (-585 (-1082))) (|:| |inhom| (-3 (-585 (-1163 (-705))) "failed")) (|:| |hom| (-585 (-1163 (-705)))))) (-5 *1 (-212))))) +(-10 -7 (-15 -2884 ((-2 (|:| |varOrder| (-585 (-1082))) (|:| |inhom| (-3 (-585 (-1163 (-705))) "failed")) (|:| |hom| (-585 (-1163 (-705))))) (-267 (-879 (-519)))))) +((-1642 (((-705)) 51)) (-1562 (((-2 (|:| -2488 (-625 |#3|)) (|:| |vec| (-1163 |#3|))) (-625 $) (-1163 $)) 49) (((-625 |#3|) (-625 $)) 41) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-625 (-519)) (-625 $)) NIL)) (-2914 (((-126)) 57)) (-2181 (($ $ (-1 |#3| |#3|) (-705)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082)) NIL) (($ $ (-705)) NIL) (($ $) NIL)) (-2217 (((-1163 |#3|) $) NIL) (($ |#3|) NIL) (((-790) $) NIL) (($ (-519)) 12) (($ (-379 (-519))) NIL)) (-3594 (((-705)) 15)) (-1632 (($ $ |#3|) 54))) +(((-213 |#1| |#2| |#3|) (-10 -8 (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|)) (-15 -3594 ((-705))) (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -2217 (|#1| |#3|)) (-15 -2181 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2181 (|#1| |#1| (-1 |#3| |#3|) (-705))) (-15 -1562 ((-625 |#3|) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#3|)) (|:| |vec| (-1163 |#3|))) (-625 |#1|) (-1163 |#1|))) (-15 -1642 ((-705))) (-15 -1632 (|#1| |#1| |#3|)) (-15 -2914 ((-126))) (-15 -2217 ((-1163 |#3|) |#1|))) (-214 |#2| |#3|) (-705) (-1117)) (T -213)) +((-2914 (*1 *2) (-12 (-14 *4 (-705)) (-4 *5 (-1117)) (-5 *2 (-126)) (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5)))) (-1642 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1117)) (-5 *2 (-705)) (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5)))) (-3594 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1117)) (-5 *2 (-705)) (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5))))) +(-10 -8 (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|)) (-15 -3594 ((-705))) (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -2217 (|#1| |#3|)) (-15 -2181 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2181 (|#1| |#1| (-1 |#3| |#3|) (-705))) (-15 -1562 ((-625 |#3|) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#3|)) (|:| |vec| (-1163 |#3|))) (-625 |#1|) (-1163 |#1|))) (-15 -1642 ((-705))) (-15 -1632 (|#1| |#1| |#3|)) (-15 -2914 ((-126))) (-15 -2217 ((-1163 |#3|) |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#2| (-1011)))) (-3569 (((-108) $) 72 (|has| |#2| (-124)))) (-2096 (($ (-848)) 127 (|has| |#2| (-968)))) (-1583 (((-1168) $ (-519) (-519)) 40 (|has| $ (-6 -4222)))) (-2494 (($ $ $) 123 (|has| |#2| (-727)))) (-3167 (((-3 $ "failed") $ $) 74 (|has| |#2| (-124)))) (-1473 (((-108) $ (-705)) 8)) (-1642 (((-705)) 109 (|has| |#2| (-340)))) (-2287 (((-519) $) 121 (|has| |#2| (-780)))) (-2421 ((|#2| $ (-519) |#2|) 52 (|has| $ (-6 -4222)))) (-2249 (($) 7 T CONST)) (-1301 (((-3 (-519) "failed") $) 67 (-4012 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011)))) (((-3 (-379 (-519)) "failed") $) 64 (-4012 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1011)))) (-1499 (((-519) $) 68 (-4012 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011)))) (((-379 (-519)) $) 65 (-4012 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) ((|#2| $) 60 (|has| |#2| (-1011)))) (-1562 (((-625 (-519)) (-625 $)) 108 (-4012 (|has| |#2| (-581 (-519))) (|has| |#2| (-968)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 107 (-4012 (|has| |#2| (-581 (-519))) (|has| |#2| (-968)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) 106 (|has| |#2| (-968))) (((-625 |#2|) (-625 $)) 105 (|has| |#2| (-968)))) (-4193 (((-3 $ "failed") $) 99 (|has| |#2| (-968)))) (-3314 (($) 112 (|has| |#2| (-340)))) (-3865 ((|#2| $ (-519) |#2|) 53 (|has| $ (-6 -4222)))) (-3659 ((|#2| $ (-519)) 51)) (-3419 (((-108) $) 119 (|has| |#2| (-780)))) (-3844 (((-585 |#2|) $) 30 (|has| $ (-6 -4221)))) (-1568 (((-108) $) 102 (|has| |#2| (-968)))) (-2143 (((-108) $) 120 (|has| |#2| (-780)))) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 43 (|has| (-519) (-782)))) (-2864 (($ $ $) 118 (-3730 (|has| |#2| (-780)) (|has| |#2| (-727))))) (-3725 (((-585 |#2|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 44 (|has| (-519) (-782)))) (-2489 (($ $ $) 117 (-3730 (|has| |#2| (-780)) (|has| |#2| (-727))))) (-3850 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#2| |#2|) $) 35)) (-3334 (((-848) $) 111 (|has| |#2| (-340)))) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#2| (-1011)))) (-3909 (((-585 (-519)) $) 46)) (-1506 (((-108) (-519) $) 47)) (-2770 (($ (-848)) 110 (|has| |#2| (-340)))) (-4139 (((-1029) $) 21 (|has| |#2| (-1011)))) (-2331 ((|#2| $) 42 (|has| (-519) (-782)))) (-3640 (($ $ |#2|) 41 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#2|))) 26 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) 25 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) 23 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) 48)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#2| $ (-519) |#2|) 50) ((|#2| $ (-519)) 49)) (-1466 ((|#2| $ $) 126 (|has| |#2| (-968)))) (-1963 (($ (-1163 |#2|)) 128)) (-2914 (((-126)) 125 (|has| |#2| (-335)))) (-2181 (($ $) 92 (-4012 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-705)) 90 (-4012 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-1082)) 88 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082))) 87 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1082) (-705)) 86 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082)) (-585 (-705))) 85 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1 |#2| |#2|) (-705)) 78 (|has| |#2| (-968))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-968)))) (-4155 (((-705) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4221))) (((-705) |#2| $) 28 (-12 (|has| |#2| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-2217 (((-1163 |#2|) $) 129) (($ (-519)) 66 (-3730 (-4012 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011))) (|has| |#2| (-968)))) (($ (-379 (-519))) 63 (-4012 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) (($ |#2|) 62 (|has| |#2| (-1011))) (((-790) $) 18 (|has| |#2| (-559 (-790))))) (-3594 (((-705)) 104 (|has| |#2| (-968)))) (-1778 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4221)))) (-1478 (($ $) 122 (|has| |#2| (-780)))) (-3559 (($ $ (-705)) 100 (|has| |#2| (-968))) (($ $ (-848)) 96 (|has| |#2| (-968)))) (-3602 (($) 71 (|has| |#2| (-124)) CONST)) (-3611 (($) 103 (|has| |#2| (-968)) CONST)) (-2242 (($ $) 91 (-4012 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-705)) 89 (-4012 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-1082)) 84 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082))) 83 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1082) (-705)) 82 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082)) (-585 (-705))) 81 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1 |#2| |#2|) (-705)) 80 (|has| |#2| (-968))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-968)))) (-1586 (((-108) $ $) 115 (-3730 (|has| |#2| (-780)) (|has| |#2| (-727))))) (-1569 (((-108) $ $) 114 (-3730 (|has| |#2| (-780)) (|has| |#2| (-727))))) (-1543 (((-108) $ $) 20 (|has| |#2| (-1011)))) (-1578 (((-108) $ $) 116 (-3730 (|has| |#2| (-780)) (|has| |#2| (-727))))) (-1561 (((-108) $ $) 113 (-3730 (|has| |#2| (-780)) (|has| |#2| (-727))))) (-1632 (($ $ |#2|) 124 (|has| |#2| (-335)))) (-1623 (($ $ $) 94 (|has| |#2| (-968))) (($ $) 93 (|has| |#2| (-968)))) (-1614 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-705)) 101 (|has| |#2| (-968))) (($ $ (-848)) 97 (|has| |#2| (-968)))) (* (($ $ $) 98 (|has| |#2| (-968))) (($ (-519) $) 95 (|has| |#2| (-968))) (($ $ |#2|) 76 (|has| |#2| (-661))) (($ |#2| $) 75 (|has| |#2| (-661))) (($ (-705) $) 73 (|has| |#2| (-124))) (($ (-848) $) 70 (|has| |#2| (-25)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-214 |#1| |#2|) (-1194) (-705) (-1117)) (T -214)) +((-1963 (*1 *1 *2) (-12 (-5 *2 (-1163 *4)) (-4 *4 (-1117)) (-4 *1 (-214 *3 *4)))) (-2096 (*1 *1 *2) (-12 (-5 *2 (-848)) (-4 *1 (-214 *3 *4)) (-4 *4 (-968)) (-4 *4 (-1117)))) (-1466 (*1 *2 *1 *1) (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1117)) (-4 *2 (-968)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1117)) (-4 *2 (-661)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1117)) (-4 *2 (-661))))) +(-13 (-552 (-519) |t#2|) (-559 (-1163 |t#2|)) (-10 -8 (-6 -4221) (-15 -1963 ($ (-1163 |t#2|))) (IF (|has| |t#2| (-1011)) (-6 (-383 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-968)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-207 |t#2|)) (-6 (-349 |t#2|)) (-15 -2096 ($ (-848))) (-15 -1466 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-124)) (-6 (-124)) |%noBranch|) (IF (|has| |t#2| (-661)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-340)) (-6 (-340)) |%noBranch|) (IF (|has| |t#2| (-157)) (PROGN (-6 (-37 |t#2|)) (-6 (-157))) |%noBranch|) (IF (|has| |t#2| (-6 -4218)) (-6 -4218) |%noBranch|) (IF (|has| |t#2| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |t#2| (-727)) (-6 (-727)) |%noBranch|) (IF (|has| |t#2| (-335)) (-6 (-1170 |t#2|)) |%noBranch|))) +(((-21) -3730 (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-335)) (|has| |#2| (-157))) ((-23) -3730 (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-727)) (|has| |#2| (-335)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-25) -3730 (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-727)) (|has| |#2| (-335)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) -3730 (|has| |#2| (-1011)) (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-727)) (|has| |#2| (-340)) (|has| |#2| (-335)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3730 (|has| |#2| (-968)) (|has| |#2| (-335)) (|has| |#2| (-157))) ((-107 $ $) |has| |#2| (-157)) ((-124) -3730 (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-727)) (|has| |#2| (-335)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-559 (-790)) -3730 (|has| |#2| (-1011)) (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-727)) (|has| |#2| (-340)) (|has| |#2| (-335)) (|has| |#2| (-157)) (|has| |#2| (-559 (-790))) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-559 (-1163 |#2|)) . T) ((-157) |has| |#2| (-157)) ((-207 |#2|) |has| |#2| (-968)) ((-209) -12 (|has| |#2| (-209)) (|has| |#2| (-968))) ((-260 #0=(-519) |#2|) . T) ((-262 #0# |#2|) . T) ((-282 |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((-340) |has| |#2| (-340)) ((-349 |#2|) |has| |#2| (-968)) ((-383 |#2|) |has| |#2| (-1011)) ((-458 |#2|) . T) ((-552 #0# |#2|) . T) ((-480 |#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((-587 |#2|) -3730 (|has| |#2| (-968)) (|has| |#2| (-335)) (|has| |#2| (-157))) ((-587 $) -3730 (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-157))) ((-581 (-519)) -12 (|has| |#2| (-581 (-519))) (|has| |#2| (-968))) ((-581 |#2|) |has| |#2| (-968)) ((-652 |#2|) -3730 (|has| |#2| (-335)) (|has| |#2| (-157))) ((-661) -3730 (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-157))) ((-725) |has| |#2| (-780)) ((-726) -3730 (|has| |#2| (-780)) (|has| |#2| (-727))) ((-727) |has| |#2| (-727)) ((-728) -3730 (|has| |#2| (-780)) (|has| |#2| (-727))) ((-730) -3730 (|has| |#2| (-780)) (|has| |#2| (-727))) ((-780) |has| |#2| (-780)) ((-782) -3730 (|has| |#2| (-780)) (|has| |#2| (-727))) ((-827 (-1082)) -12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968))) ((-959 (-379 (-519))) -12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011))) ((-959 (-519)) -12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011))) ((-959 |#2|) |has| |#2| (-1011)) ((-974 |#2|) -3730 (|has| |#2| (-968)) (|has| |#2| (-335)) (|has| |#2| (-157))) ((-974 $) |has| |#2| (-157)) ((-968) -3730 (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-157))) ((-975) -3730 (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-157))) ((-1023) -3730 (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-157))) ((-1011) -3730 (|has| |#2| (-1011)) (|has| |#2| (-968)) (|has| |#2| (-780)) (|has| |#2| (-727)) (|has| |#2| (-340)) (|has| |#2| (-335)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-1117) . T) ((-1170 |#2|) |has| |#2| (-335))) +((-1367 (((-216 |#1| |#3|) (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|) 21)) (-3874 ((|#3| (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|) 23)) (-1405 (((-216 |#1| |#3|) (-1 |#3| |#2|) (-216 |#1| |#2|)) 18))) +(((-215 |#1| |#2| |#3|) (-10 -7 (-15 -1367 ((-216 |#1| |#3|) (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|)) (-15 -3874 (|#3| (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|)) (-15 -1405 ((-216 |#1| |#3|) (-1 |#3| |#2|) (-216 |#1| |#2|)))) (-705) (-1117) (-1117)) (T -215)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-216 *5 *6)) (-14 *5 (-705)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-216 *5 *7)) (-5 *1 (-215 *5 *6 *7)))) (-3874 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-216 *5 *6)) (-14 *5 (-705)) (-4 *6 (-1117)) (-4 *2 (-1117)) (-5 *1 (-215 *5 *6 *2)))) (-1367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-216 *6 *7)) (-14 *6 (-705)) (-4 *7 (-1117)) (-4 *5 (-1117)) (-5 *2 (-216 *6 *5)) (-5 *1 (-215 *6 *7 *5))))) +(-10 -7 (-15 -1367 ((-216 |#1| |#3|) (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|)) (-15 -3874 (|#3| (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|)) (-15 -1405 ((-216 |#1| |#3|) (-1 |#3| |#2|) (-216 |#1| |#2|)))) +((-1430 (((-108) $ $) NIL (|has| |#2| (-1011)))) (-3569 (((-108) $) NIL (|has| |#2| (-124)))) (-2096 (($ (-848)) 56 (|has| |#2| (-968)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2494 (($ $ $) 60 (|has| |#2| (-727)))) (-3167 (((-3 $ "failed") $ $) 48 (|has| |#2| (-124)))) (-1473 (((-108) $ (-705)) 17)) (-1642 (((-705)) NIL (|has| |#2| (-340)))) (-2287 (((-519) $) NIL (|has| |#2| (-780)))) (-2421 ((|#2| $ (-519) |#2|) NIL (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (-12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011)))) (((-3 (-379 (-519)) "failed") $) NIL (-12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1011)))) (-1499 (((-519) $) NIL (-12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011)))) (((-379 (-519)) $) NIL (-12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) ((|#2| $) 27 (|has| |#2| (-1011)))) (-1562 (((-625 (-519)) (-625 $)) NIL (-12 (|has| |#2| (-581 (-519))) (|has| |#2| (-968)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (-12 (|has| |#2| (-581 (-519))) (|has| |#2| (-968)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL (|has| |#2| (-968))) (((-625 |#2|) (-625 $)) NIL (|has| |#2| (-968)))) (-4193 (((-3 $ "failed") $) 53 (|has| |#2| (-968)))) (-3314 (($) NIL (|has| |#2| (-340)))) (-3865 ((|#2| $ (-519) |#2|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#2| $ (-519)) 51)) (-3419 (((-108) $) NIL (|has| |#2| (-780)))) (-3844 (((-585 |#2|) $) 15 (|has| $ (-6 -4221)))) (-1568 (((-108) $) NIL (|has| |#2| (-968)))) (-2143 (((-108) $) NIL (|has| |#2| (-780)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) 20 (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-3725 (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-3890 (((-519) $) 50 (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-3850 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#2| |#2|) $) 41)) (-3334 (((-848) $) NIL (|has| |#2| (-340)))) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#2| (-1011)))) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-2770 (($ (-848)) NIL (|has| |#2| (-340)))) (-4139 (((-1029) $) NIL (|has| |#2| (-1011)))) (-2331 ((|#2| $) NIL (|has| (-519) (-782)))) (-3640 (($ $ |#2|) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#2| $ (-519) |#2|) NIL) ((|#2| $ (-519)) 21)) (-1466 ((|#2| $ $) NIL (|has| |#2| (-968)))) (-1963 (($ (-1163 |#2|)) 18)) (-2914 (((-126)) NIL (|has| |#2| (-335)))) (-2181 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1 |#2| |#2|) (-705)) NIL (|has| |#2| (-968))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-968)))) (-4155 (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-1163 |#2|) $) 10) (($ (-519)) NIL (-3730 (-12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011))) (|has| |#2| (-968)))) (($ (-379 (-519))) NIL (-12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) (($ |#2|) 13 (|has| |#2| (-1011))) (((-790) $) NIL (|has| |#2| (-559 (-790))))) (-3594 (((-705)) NIL (|has| |#2| (-968)))) (-1778 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-1478 (($ $) NIL (|has| |#2| (-780)))) (-3559 (($ $ (-705)) NIL (|has| |#2| (-968))) (($ $ (-848)) NIL (|has| |#2| (-968)))) (-3602 (($) 35 (|has| |#2| (-124)) CONST)) (-3611 (($) 38 (|has| |#2| (-968)) CONST)) (-2242 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1 |#2| |#2|) (-705)) NIL (|has| |#2| (-968))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-968)))) (-1586 (((-108) $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1569 (((-108) $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1543 (((-108) $ $) 26 (|has| |#2| (-1011)))) (-1578 (((-108) $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1561 (((-108) $ $) 58 (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1632 (($ $ |#2|) NIL (|has| |#2| (-335)))) (-1623 (($ $ $) NIL (|has| |#2| (-968))) (($ $) NIL (|has| |#2| (-968)))) (-1614 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-705)) NIL (|has| |#2| (-968))) (($ $ (-848)) NIL (|has| |#2| (-968)))) (* (($ $ $) 49 (|has| |#2| (-968))) (($ (-519) $) NIL (|has| |#2| (-968))) (($ $ |#2|) 42 (|has| |#2| (-661))) (($ |#2| $) 43 (|has| |#2| (-661))) (($ (-705) $) NIL (|has| |#2| (-124))) (($ (-848) $) NIL (|has| |#2| (-25)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-216 |#1| |#2|) (-214 |#1| |#2|) (-705) (-1117)) (T -216)) +NIL +(-214 |#1| |#2|) +((-2953 (((-519) (-585 (-1065))) 24) (((-519) (-1065)) 19)) (-2503 (((-1168) (-585 (-1065))) 29) (((-1168) (-1065)) 28)) (-3101 (((-1065)) 14)) (-3936 (((-1065) (-519) (-1065)) 16)) (-1896 (((-585 (-1065)) (-585 (-1065)) (-519) (-1065)) 25) (((-1065) (-1065) (-519) (-1065)) 23)) (-2273 (((-585 (-1065)) (-585 (-1065))) 13) (((-585 (-1065)) (-1065)) 11))) +(((-217) (-10 -7 (-15 -2273 ((-585 (-1065)) (-1065))) (-15 -2273 ((-585 (-1065)) (-585 (-1065)))) (-15 -3101 ((-1065))) (-15 -3936 ((-1065) (-519) (-1065))) (-15 -1896 ((-1065) (-1065) (-519) (-1065))) (-15 -1896 ((-585 (-1065)) (-585 (-1065)) (-519) (-1065))) (-15 -2503 ((-1168) (-1065))) (-15 -2503 ((-1168) (-585 (-1065)))) (-15 -2953 ((-519) (-1065))) (-15 -2953 ((-519) (-585 (-1065)))))) (T -217)) +((-2953 (*1 *2 *3) (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-519)) (-5 *1 (-217)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-519)) (-5 *1 (-217)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-1168)) (-5 *1 (-217)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-217)))) (-1896 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-585 (-1065))) (-5 *3 (-519)) (-5 *4 (-1065)) (-5 *1 (-217)))) (-1896 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-519)) (-5 *1 (-217)))) (-3936 (*1 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-519)) (-5 *1 (-217)))) (-3101 (*1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-217)))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-217)))) (-2273 (*1 *2 *3) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-217)) (-5 *3 (-1065))))) +(-10 -7 (-15 -2273 ((-585 (-1065)) (-1065))) (-15 -2273 ((-585 (-1065)) (-585 (-1065)))) (-15 -3101 ((-1065))) (-15 -3936 ((-1065) (-519) (-1065))) (-15 -1896 ((-1065) (-1065) (-519) (-1065))) (-15 -1896 ((-585 (-1065)) (-585 (-1065)) (-519) (-1065))) (-15 -2503 ((-1168) (-1065))) (-15 -2503 ((-1168) (-585 (-1065)))) (-15 -2953 ((-519) (-1065))) (-15 -2953 ((-519) (-585 (-1065))))) +((-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) 9)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) 18)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ (-379 (-519)) $) 25) (($ $ (-379 (-519))) NIL))) +(((-218 |#1|) (-10 -8 (-15 -3559 (|#1| |#1| (-519))) (-15 ** (|#1| |#1| (-519))) (-15 * (|#1| |#1| (-379 (-519)))) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 ** (|#1| |#1| (-705))) (-15 -3559 (|#1| |#1| (-705))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-848))) (-15 -3559 (|#1| |#1| (-848))) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|))) (-219)) (T -218)) +NIL +(-10 -8 (-15 -3559 (|#1| |#1| (-519))) (-15 ** (|#1| |#1| (-519))) (-15 * (|#1| |#1| (-379 (-519)))) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 ** (|#1| |#1| (-705))) (-15 -3559 (|#1| |#1| (-705))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-848))) (-15 -3559 (|#1| |#1| (-848))) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 39)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ (-379 (-519))) 44)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 40)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 41)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ (-379 (-519)) $) 43) (($ $ (-379 (-519))) 42))) +(((-219) (-1194)) (T -219)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-519)))) (-3559 (*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-519)))) (-3151 (*1 *1 *1) (-4 *1 (-219)))) +(-13 (-264) (-37 (-379 (-519))) (-10 -8 (-15 ** ($ $ (-519))) (-15 -3559 ($ $ (-519))) (-15 -3151 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-264) . T) ((-587 #0#) . T) ((-587 $) . T) ((-652 #0#) . T) ((-661) . T) ((-974 #0#) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3493 ((|#1| $) 48)) (-3847 (($ $) 57)) (-1473 (((-108) $ (-705)) 8)) (-2410 ((|#1| $ |#1|) 39 (|has| $ (-6 -4222)))) (-2416 (($ $ $) 53 (|has| $ (-6 -4222)))) (-1540 (($ $ $) 52 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) 41 (|has| $ (-6 -4222)))) (-2249 (($) 7 T CONST)) (-3518 (($ $) 56)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) 50)) (-3458 (((-108) $ $) 42 (|has| |#1| (-1011)))) (-3650 (($ $) 55)) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1281 (((-585 |#1|) $) 45)) (-1668 (((-108) $) 49)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1457 ((|#1| $) 59)) (-3048 (($ $) 58)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ "value") 47)) (-1763 (((-519) $ $) 44)) (-3096 (((-108) $) 46)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-3954 (($ $ $) 54 (|has| $ (-6 -4222)))) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) 51)) (-2915 (((-108) $ $) 43 (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-220 |#1|) (-1194) (-1117)) (T -220)) +((-1457 (*1 *2 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1117)))) (-3048 (*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1117)))) (-3847 (*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1117)))) (-3518 (*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1117)))) (-3650 (*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1117)))) (-3954 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-220 *2)) (-4 *2 (-1117)))) (-2416 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-220 *2)) (-4 *2 (-1117)))) (-1540 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-220 *2)) (-4 *2 (-1117))))) +(-13 (-933 |t#1|) (-10 -8 (-15 -1457 (|t#1| $)) (-15 -3048 ($ $)) (-15 -3847 ($ $)) (-15 -3518 ($ $)) (-15 -3650 ($ $)) (IF (|has| $ (-6 -4222)) (PROGN (-15 -3954 ($ $ $)) (-15 -2416 ($ $ $)) (-15 -1540 ($ $ $))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-933 |#1|) . T) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3493 ((|#1| $) NIL)) (-2111 ((|#1| $) NIL)) (-3847 (($ $) NIL)) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2258 (($ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) $) NIL (|has| |#1| (-782))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2078 (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| |#1| (-782)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-3276 (($ $) 10 (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-2410 ((|#1| $ |#1|) NIL (|has| $ (-6 -4222)))) (-1440 (($ $ $) NIL (|has| $ (-6 -4222)))) (-1907 ((|#1| $ |#1|) NIL (|has| $ (-6 -4222)))) (-2692 ((|#1| $ |#1|) NIL (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4222))) (($ $ "rest" $) NIL (|has| $ (-6 -4222))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) NIL (|has| $ (-6 -4222)))) (-2846 (($ (-1 (-108) |#1|) $) NIL)) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2098 ((|#1| $) NIL)) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2343 (($ $) NIL) (($ $ (-705)) NIL)) (-1552 (($ $) NIL (|has| |#1| (-1011)))) (-2366 (($ $) 7 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2502 (($ |#1| $) NIL (|has| |#1| (-1011))) (($ (-1 (-108) |#1|) $) NIL)) (-1438 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3865 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) NIL)) (-2303 (((-108) $) NIL)) (-3297 (((-519) |#1| $ (-519)) NIL (|has| |#1| (-1011))) (((-519) |#1| $) NIL (|has| |#1| (-1011))) (((-519) (-1 (-108) |#1|) $) NIL)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) NIL)) (-3458 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1822 (($ (-705) |#1|) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2511 (($ $ $) NIL (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2500 (($ $ $) NIL (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1592 (($ |#1|) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1281 (((-585 |#1|) $) NIL)) (-1668 (((-108) $) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1457 ((|#1| $) NIL) (($ $ (-705)) NIL)) (-1846 (($ $ $ (-519)) NIL) (($ |#1| $ (-519)) NIL)) (-1672 (($ $ $ (-519)) NIL) (($ |#1| $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2331 ((|#1| $) NIL) (($ $ (-705)) NIL)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3640 (($ $ |#1|) NIL (|has| $ (-6 -4222)))) (-3664 (((-108) $) NIL)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1130 (-519))) NIL) ((|#1| $ (-519)) NIL) ((|#1| $ (-519) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-705) $ "count") 16)) (-1763 (((-519) $ $) NIL)) (-2137 (($ $ (-1130 (-519))) NIL) (($ $ (-519)) NIL)) (-3720 (($ $ (-1130 (-519))) NIL) (($ $ (-519)) NIL)) (-3384 (($ (-585 |#1|)) 22)) (-3096 (((-108) $) NIL)) (-1407 (($ $) NIL)) (-2434 (($ $) NIL (|has| $ (-6 -4222)))) (-2067 (((-705) $) NIL)) (-3376 (($ $) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) NIL)) (-3954 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4150 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-585 $)) NIL) (($ $ |#1|) NIL)) (-2217 (($ (-585 |#1|)) 17) (((-585 |#1|) $) 18) (((-790) $) 21 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) NIL)) (-2915 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-3532 (((-705) $) 14 (|has| $ (-6 -4221))))) +(((-221 |#1|) (-13 (-605 |#1|) (-10 -8 (-15 -2217 ($ (-585 |#1|))) (-15 -2217 ((-585 |#1|) $)) (-15 -3384 ($ (-585 |#1|))) (-15 -2598 ($ $ "unique")) (-15 -2598 ($ $ "sort")) (-15 -2598 ((-705) $ "count")))) (-782)) (T -221)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-221 *3)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-221 *3)) (-4 *3 (-782)))) (-3384 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-221 *3)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-221 *3)) (-4 *3 (-782)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-221 *3)) (-4 *3 (-782)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-705)) (-5 *1 (-221 *4)) (-4 *4 (-782))))) +(-13 (-605 |#1|) (-10 -8 (-15 -2217 ($ (-585 |#1|))) (-15 -2217 ((-585 |#1|) $)) (-15 -3384 ($ (-585 |#1|))) (-15 -2598 ($ $ "unique")) (-15 -2598 ($ $ "sort")) (-15 -2598 ((-705) $ "count")))) +((-1386 (((-3 (-705) "failed") |#1| |#1| (-705)) 27))) +(((-222 |#1|) (-10 -7 (-15 -1386 ((-3 (-705) "failed") |#1| |#1| (-705)))) (-13 (-661) (-340) (-10 -7 (-15 ** (|#1| |#1| (-519)))))) (T -222)) +((-1386 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-705)) (-4 *3 (-13 (-661) (-340) (-10 -7 (-15 ** (*3 *3 (-519)))))) (-5 *1 (-222 *3))))) +(-10 -7 (-15 -1386 ((-3 (-705) "failed") |#1| |#1| (-705)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 (-792 |#1|)) $) NIL)) (-1283 (((-1078 $) $ (-792 |#1|)) NIL) (((-1078 |#2|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#2| (-511)))) (-1410 (($ $) NIL (|has| |#2| (-511)))) (-3060 (((-108) $) NIL (|has| |#2| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 (-792 |#1|))) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-4043 (($ $) NIL (|has| |#2| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#2| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#2| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#2| (-959 (-519)))) (((-3 (-792 |#1|) "failed") $) NIL)) (-1499 ((|#2| $) NIL) (((-379 (-519)) $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#2| (-959 (-519)))) (((-792 |#1|) $) NIL)) (-1286 (($ $ $ (-792 |#1|)) NIL (|has| |#2| (-157)))) (-1638 (($ $ (-585 (-519))) NIL)) (-3218 (($ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL) (((-625 |#2|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#2| (-423))) (($ $ (-792 |#1|)) NIL (|has| |#2| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#2| (-836)))) (-4015 (($ $ |#2| (-216 (-3532 |#1|) (-705)) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-792 |#1|) (-813 (-351))) (|has| |#2| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-792 |#1|) (-813 (-519))) (|has| |#2| (-813 (-519)))))) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-4066 (($ (-1078 |#2|) (-792 |#1|)) NIL) (($ (-1078 $) (-792 |#1|)) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#2| (-216 (-3532 |#1|) (-705))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-792 |#1|)) NIL)) (-3695 (((-216 (-3532 |#1|) (-705)) $) NIL) (((-705) $ (-792 |#1|)) NIL) (((-585 (-705)) $ (-585 (-792 |#1|))) NIL)) (-2864 (($ $ $) NIL (|has| |#2| (-782)))) (-2489 (($ $ $) NIL (|has| |#2| (-782)))) (-3737 (($ (-1 (-216 (-3532 |#1|) (-705)) (-216 (-3532 |#1|) (-705))) $) NIL)) (-1405 (($ (-1 |#2| |#2|) $) NIL)) (-2635 (((-3 (-792 |#1|) "failed") $) NIL)) (-3185 (($ $) NIL)) (-3197 ((|#2| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#2| (-423))) (($ $ $) NIL (|has| |#2| (-423)))) (-1266 (((-1065) $) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| (-792 |#1|)) (|:| -1690 (-705))) "failed") $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) NIL)) (-3173 ((|#2| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#2| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#2| (-423))) (($ $ $) NIL (|has| |#2| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#2| (-836)))) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-511))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-511)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-792 |#1|) |#2|) NIL) (($ $ (-585 (-792 |#1|)) (-585 |#2|)) NIL) (($ $ (-792 |#1|) $) NIL) (($ $ (-585 (-792 |#1|)) (-585 $)) NIL)) (-3677 (($ $ (-792 |#1|)) NIL (|has| |#2| (-157)))) (-2181 (($ $ (-792 |#1|)) NIL) (($ $ (-585 (-792 |#1|))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-4178 (((-216 (-3532 |#1|) (-705)) $) NIL) (((-705) $ (-792 |#1|)) NIL) (((-585 (-705)) $ (-585 (-792 |#1|))) NIL)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| (-792 |#1|) (-560 (-819 (-351)))) (|has| |#2| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| (-792 |#1|) (-560 (-819 (-519)))) (|has| |#2| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| (-792 |#1|) (-560 (-495))) (|has| |#2| (-560 (-495)))))) (-3939 ((|#2| $) NIL (|has| |#2| (-423))) (($ $ (-792 |#1|)) NIL (|has| |#2| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#2|) NIL) (($ (-792 |#1|)) NIL) (($ (-379 (-519))) NIL (-3730 (|has| |#2| (-37 (-379 (-519)))) (|has| |#2| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#2| (-511)))) (-2988 (((-585 |#2|) $) NIL)) (-1220 ((|#2| $ (-216 (-3532 |#1|) (-705))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#2| (-836))) (|has| |#2| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#2| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#2| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-792 |#1|)) NIL) (($ $ (-585 (-792 |#1|))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-1586 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1632 (($ $ |#2|) NIL (|has| |#2| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL (|has| |#2| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#2| (-37 (-379 (-519))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-223 |#1| |#2|) (-13 (-876 |#2| (-216 (-3532 |#1|) (-705)) (-792 |#1|)) (-10 -8 (-15 -1638 ($ $ (-585 (-519)))))) (-585 (-1082)) (-968)) (T -223)) +((-1638 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-223 *3 *4)) (-14 *3 (-585 (-1082))) (-4 *4 (-968))))) +(-13 (-876 |#2| (-216 (-3532 |#1|) (-705)) (-792 |#1|)) (-10 -8 (-15 -1638 ($ $ (-585 (-519)))))) +((-1300 (((-1168) $) 13)) (-3455 (((-1087) $) 11)) (-2217 (((-790) $) 7))) +(((-224) (-13 (-559 (-790)) (-10 -8 (-15 -3455 ((-1087) $)) (-15 -1300 ((-1168) $))))) (T -224)) +((-3455 (*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-224)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-224))))) +(-13 (-559 (-790)) (-10 -8 (-15 -3455 ((-1087) $)) (-15 -1300 ((-1168) $)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2096 (($ (-848)) NIL (|has| |#4| (-968)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2494 (($ $ $) NIL (|has| |#4| (-727)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-1642 (((-705)) NIL (|has| |#4| (-340)))) (-2287 (((-519) $) NIL (|has| |#4| (-780)))) (-2421 ((|#4| $ (-519) |#4|) NIL (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1011))) (((-3 (-519) "failed") $) NIL (-12 (|has| |#4| (-959 (-519))) (|has| |#4| (-1011)))) (((-3 (-379 (-519)) "failed") $) NIL (-12 (|has| |#4| (-959 (-379 (-519)))) (|has| |#4| (-1011))))) (-1499 ((|#4| $) NIL (|has| |#4| (-1011))) (((-519) $) NIL (-12 (|has| |#4| (-959 (-519))) (|has| |#4| (-1011)))) (((-379 (-519)) $) NIL (-12 (|has| |#4| (-959 (-379 (-519)))) (|has| |#4| (-1011))))) (-1562 (((-2 (|:| -2488 (-625 |#4|)) (|:| |vec| (-1163 |#4|))) (-625 $) (-1163 $)) NIL (|has| |#4| (-968))) (((-625 |#4|) (-625 $)) NIL (|has| |#4| (-968))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (-12 (|has| |#4| (-581 (-519))) (|has| |#4| (-968)))) (((-625 (-519)) (-625 $)) NIL (-12 (|has| |#4| (-581 (-519))) (|has| |#4| (-968))))) (-4193 (((-3 $ "failed") $) NIL (|has| |#4| (-968)))) (-3314 (($) NIL (|has| |#4| (-340)))) (-3865 ((|#4| $ (-519) |#4|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#4| $ (-519)) NIL)) (-3419 (((-108) $) NIL (|has| |#4| (-780)))) (-3844 (((-585 |#4|) $) NIL (|has| $ (-6 -4221)))) (-1568 (((-108) $) NIL (|has| |#4| (-968)))) (-2143 (((-108) $) NIL (|has| |#4| (-780)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (-3730 (|has| |#4| (-727)) (|has| |#4| (-780))))) (-3725 (((-585 |#4|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (-3730 (|has| |#4| (-727)) (|has| |#4| (-780))))) (-3850 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) NIL)) (-3334 (((-848) $) NIL (|has| |#4| (-340)))) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-2770 (($ (-848)) NIL (|has| |#4| (-340)))) (-4139 (((-1029) $) NIL)) (-2331 ((|#4| $) NIL (|has| (-519) (-782)))) (-3640 (($ $ |#4|) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#4|))) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-2222 (((-585 |#4|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#4| $ (-519) |#4|) NIL) ((|#4| $ (-519)) 12)) (-1466 ((|#4| $ $) NIL (|has| |#4| (-968)))) (-1963 (($ (-1163 |#4|)) NIL)) (-2914 (((-126)) NIL (|has| |#4| (-335)))) (-2181 (($ $ (-1 |#4| |#4|) (-705)) NIL (|has| |#4| (-968))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-968))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#4| (-827 (-1082))) (|has| |#4| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#4| (-827 (-1082))) (|has| |#4| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#4| (-827 (-1082))) (|has| |#4| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#4| (-827 (-1082))) (|has| |#4| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#4| (-209)) (|has| |#4| (-968)))) (($ $) NIL (-12 (|has| |#4| (-209)) (|has| |#4| (-968))))) (-4155 (((-705) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221))) (((-705) |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-1163 |#4|) $) NIL) (((-790) $) NIL) (($ |#4|) NIL (|has| |#4| (-1011))) (($ (-519)) NIL (-3730 (-12 (|has| |#4| (-959 (-519))) (|has| |#4| (-1011))) (|has| |#4| (-968)))) (($ (-379 (-519))) NIL (-12 (|has| |#4| (-959 (-379 (-519)))) (|has| |#4| (-1011))))) (-3594 (((-705)) NIL (|has| |#4| (-968)))) (-1778 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-1478 (($ $) NIL (|has| |#4| (-780)))) (-3559 (($ $ (-705)) NIL (|has| |#4| (-968))) (($ $ (-848)) NIL (|has| |#4| (-968)))) (-3602 (($) NIL T CONST)) (-3611 (($) NIL (|has| |#4| (-968)) CONST)) (-2242 (($ $ (-1 |#4| |#4|) (-705)) NIL (|has| |#4| (-968))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-968))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#4| (-827 (-1082))) (|has| |#4| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#4| (-827 (-1082))) (|has| |#4| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#4| (-827 (-1082))) (|has| |#4| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#4| (-827 (-1082))) (|has| |#4| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#4| (-209)) (|has| |#4| (-968)))) (($ $) NIL (-12 (|has| |#4| (-209)) (|has| |#4| (-968))))) (-1586 (((-108) $ $) NIL (-3730 (|has| |#4| (-727)) (|has| |#4| (-780))))) (-1569 (((-108) $ $) NIL (-3730 (|has| |#4| (-727)) (|has| |#4| (-780))))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (-3730 (|has| |#4| (-727)) (|has| |#4| (-780))))) (-1561 (((-108) $ $) NIL (-3730 (|has| |#4| (-727)) (|has| |#4| (-780))))) (-1632 (($ $ |#4|) NIL (|has| |#4| (-335)))) (-1623 (($ $ $) NIL) (($ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-705)) NIL (|has| |#4| (-968))) (($ $ (-848)) NIL (|has| |#4| (-968)))) (* (($ |#2| $) 14) (($ (-519) $) NIL) (($ (-705) $) NIL) (($ (-848) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-661))) (($ |#4| $) NIL (|has| |#4| (-661))) (($ $ $) NIL (|has| |#4| (-968)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-225 |#1| |#2| |#3| |#4|) (-13 (-214 |#1| |#4|) (-587 |#2|) (-587 |#3|)) (-848) (-968) (-1032 |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) (-587 |#2|)) (T -225)) +NIL +(-13 (-214 |#1| |#4|) (-587 |#2|) (-587 |#3|)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2096 (($ (-848)) NIL (|has| |#3| (-968)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2494 (($ $ $) NIL (|has| |#3| (-727)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-1642 (((-705)) NIL (|has| |#3| (-340)))) (-2287 (((-519) $) NIL (|has| |#3| (-780)))) (-2421 ((|#3| $ (-519) |#3|) NIL (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1011))) (((-3 (-519) "failed") $) NIL (-12 (|has| |#3| (-959 (-519))) (|has| |#3| (-1011)))) (((-3 (-379 (-519)) "failed") $) NIL (-12 (|has| |#3| (-959 (-379 (-519)))) (|has| |#3| (-1011))))) (-1499 ((|#3| $) NIL (|has| |#3| (-1011))) (((-519) $) NIL (-12 (|has| |#3| (-959 (-519))) (|has| |#3| (-1011)))) (((-379 (-519)) $) NIL (-12 (|has| |#3| (-959 (-379 (-519)))) (|has| |#3| (-1011))))) (-1562 (((-2 (|:| -2488 (-625 |#3|)) (|:| |vec| (-1163 |#3|))) (-625 $) (-1163 $)) NIL (|has| |#3| (-968))) (((-625 |#3|) (-625 $)) NIL (|has| |#3| (-968))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (-12 (|has| |#3| (-581 (-519))) (|has| |#3| (-968)))) (((-625 (-519)) (-625 $)) NIL (-12 (|has| |#3| (-581 (-519))) (|has| |#3| (-968))))) (-4193 (((-3 $ "failed") $) NIL (|has| |#3| (-968)))) (-3314 (($) NIL (|has| |#3| (-340)))) (-3865 ((|#3| $ (-519) |#3|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#3| $ (-519)) NIL)) (-3419 (((-108) $) NIL (|has| |#3| (-780)))) (-3844 (((-585 |#3|) $) NIL (|has| $ (-6 -4221)))) (-1568 (((-108) $) NIL (|has| |#3| (-968)))) (-2143 (((-108) $) NIL (|has| |#3| (-780)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-3725 (((-585 |#3|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#3| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-3850 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#3| |#3|) $) NIL)) (-3334 (((-848) $) NIL (|has| |#3| (-340)))) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-2770 (($ (-848)) NIL (|has| |#3| (-340)))) (-4139 (((-1029) $) NIL)) (-2331 ((|#3| $) NIL (|has| (-519) (-782)))) (-3640 (($ $ |#3|) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#3|))) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ (-267 |#3|)) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#3| (-1011))))) (-2222 (((-585 |#3|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#3| $ (-519) |#3|) NIL) ((|#3| $ (-519)) 11)) (-1466 ((|#3| $ $) NIL (|has| |#3| (-968)))) (-1963 (($ (-1163 |#3|)) NIL)) (-2914 (((-126)) NIL (|has| |#3| (-335)))) (-2181 (($ $ (-1 |#3| |#3|) (-705)) NIL (|has| |#3| (-968))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-968))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-968)))) (($ $) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-968))))) (-4155 (((-705) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4221))) (((-705) |#3| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#3| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-1163 |#3|) $) NIL) (((-790) $) NIL) (($ |#3|) NIL (|has| |#3| (-1011))) (($ (-519)) NIL (-3730 (-12 (|has| |#3| (-959 (-519))) (|has| |#3| (-1011))) (|has| |#3| (-968)))) (($ (-379 (-519))) NIL (-12 (|has| |#3| (-959 (-379 (-519)))) (|has| |#3| (-1011))))) (-3594 (((-705)) NIL (|has| |#3| (-968)))) (-1778 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4221)))) (-1478 (($ $) NIL (|has| |#3| (-780)))) (-3559 (($ $ (-705)) NIL (|has| |#3| (-968))) (($ $ (-848)) NIL (|has| |#3| (-968)))) (-3602 (($) NIL T CONST)) (-3611 (($) NIL (|has| |#3| (-968)) CONST)) (-2242 (($ $ (-1 |#3| |#3|) (-705)) NIL (|has| |#3| (-968))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-968))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-968)))) (($ $) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-968))))) (-1586 (((-108) $ $) NIL (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-1569 (((-108) $ $) NIL (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-1561 (((-108) $ $) NIL (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-1632 (($ $ |#3|) NIL (|has| |#3| (-335)))) (-1623 (($ $ $) NIL) (($ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-705)) NIL (|has| |#3| (-968))) (($ $ (-848)) NIL (|has| |#3| (-968)))) (* (($ |#2| $) 13) (($ (-519) $) NIL) (($ (-705) $) NIL) (($ (-848) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-661))) (($ |#3| $) NIL (|has| |#3| (-661))) (($ $ $) NIL (|has| |#3| (-968)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-226 |#1| |#2| |#3|) (-13 (-214 |#1| |#3|) (-587 |#2|)) (-705) (-968) (-587 |#2|)) (T -226)) +NIL +(-13 (-214 |#1| |#3|) (-587 |#2|)) +((-2801 (((-585 (-705)) $) 47) (((-585 (-705)) $ |#3|) 50)) (-3711 (((-705) $) 49) (((-705) $ |#3|) 52)) (-2504 (($ $) 65)) (-1301 (((-3 |#2| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 (-519) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3709 (((-705) $ |#3|) 39) (((-705) $) 36)) (-2243 (((-1 $ (-705)) |#3|) 15) (((-1 $ (-705)) $) 77)) (-1582 ((|#4| $) 58)) (-2799 (((-108) $) 56)) (-1904 (($ $) 64)) (-2324 (($ $ (-585 (-267 $))) 96) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-585 |#4|) (-585 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-585 |#4|) (-585 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-585 |#3|) (-585 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-585 |#3|) (-585 |#2|)) 84)) (-2181 (($ $ |#4|) NIL) (($ $ (-585 |#4|)) NIL) (($ $ |#4| (-705)) NIL) (($ $ (-585 |#4|) (-585 (-705))) NIL) (($ $) NIL) (($ $ (-705)) NIL) (($ $ (-1082)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1938 (((-585 |#3|) $) 75)) (-4178 ((|#5| $) NIL) (((-705) $ |#4|) NIL) (((-585 (-705)) $ (-585 |#4|)) NIL) (((-705) $ |#3|) 44)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-379 (-519))) NIL) (($ $) NIL))) +(((-227 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2324 (|#1| |#1| (-585 |#3|) (-585 |#2|))) (-15 -2324 (|#1| |#1| |#3| |#2|)) (-15 -2324 (|#1| |#1| (-585 |#3|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#3| |#1|)) (-15 -2243 ((-1 |#1| (-705)) |#1|)) (-15 -2504 (|#1| |#1|)) (-15 -1904 (|#1| |#1|)) (-15 -1582 (|#4| |#1|)) (-15 -2799 ((-108) |#1|)) (-15 -3711 ((-705) |#1| |#3|)) (-15 -2801 ((-585 (-705)) |#1| |#3|)) (-15 -3711 ((-705) |#1|)) (-15 -2801 ((-585 (-705)) |#1|)) (-15 -4178 ((-705) |#1| |#3|)) (-15 -3709 ((-705) |#1|)) (-15 -3709 ((-705) |#1| |#3|)) (-15 -1938 ((-585 |#3|) |#1|)) (-15 -2243 ((-1 |#1| (-705)) |#3|)) (-15 -1301 ((-3 |#3| "failed") |#1|)) (-15 -2217 (|#1| |#3|)) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1|)) (-15 -4178 ((-585 (-705)) |#1| (-585 |#4|))) (-15 -4178 ((-705) |#1| |#4|)) (-15 -1301 ((-3 |#4| "failed") |#1|)) (-15 -2217 (|#1| |#4|)) (-15 -2324 (|#1| |#1| (-585 |#4|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#4| |#1|)) (-15 -2324 (|#1| |#1| (-585 |#4|) (-585 |#2|))) (-15 -2324 (|#1| |#1| |#4| |#2|)) (-15 -2324 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| (-267 |#1|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -4178 (|#5| |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2181 (|#1| |#1| (-585 |#4|) (-585 (-705)))) (-15 -2181 (|#1| |#1| |#4| (-705))) (-15 -2181 (|#1| |#1| (-585 |#4|))) (-15 -2181 (|#1| |#1| |#4|)) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) (-228 |#2| |#3| |#4| |#5|) (-968) (-782) (-241 |#3|) (-727)) (T -227)) +NIL +(-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2324 (|#1| |#1| (-585 |#3|) (-585 |#2|))) (-15 -2324 (|#1| |#1| |#3| |#2|)) (-15 -2324 (|#1| |#1| (-585 |#3|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#3| |#1|)) (-15 -2243 ((-1 |#1| (-705)) |#1|)) (-15 -2504 (|#1| |#1|)) (-15 -1904 (|#1| |#1|)) (-15 -1582 (|#4| |#1|)) (-15 -2799 ((-108) |#1|)) (-15 -3711 ((-705) |#1| |#3|)) (-15 -2801 ((-585 (-705)) |#1| |#3|)) (-15 -3711 ((-705) |#1|)) (-15 -2801 ((-585 (-705)) |#1|)) (-15 -4178 ((-705) |#1| |#3|)) (-15 -3709 ((-705) |#1|)) (-15 -3709 ((-705) |#1| |#3|)) (-15 -1938 ((-585 |#3|) |#1|)) (-15 -2243 ((-1 |#1| (-705)) |#3|)) (-15 -1301 ((-3 |#3| "failed") |#1|)) (-15 -2217 (|#1| |#3|)) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1|)) (-15 -4178 ((-585 (-705)) |#1| (-585 |#4|))) (-15 -4178 ((-705) |#1| |#4|)) (-15 -1301 ((-3 |#4| "failed") |#1|)) (-15 -2217 (|#1| |#4|)) (-15 -2324 (|#1| |#1| (-585 |#4|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#4| |#1|)) (-15 -2324 (|#1| |#1| (-585 |#4|) (-585 |#2|))) (-15 -2324 (|#1| |#1| |#4| |#2|)) (-15 -2324 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| (-267 |#1|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -4178 (|#5| |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2181 (|#1| |#1| (-585 |#4|) (-585 (-705)))) (-15 -2181 (|#1| |#1| |#4| (-705))) (-15 -2181 (|#1| |#1| (-585 |#4|))) (-15 -2181 (|#1| |#1| |#4|)) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-2801 (((-585 (-705)) $) 214) (((-585 (-705)) $ |#2|) 212)) (-3711 (((-705) $) 213) (((-705) $ |#2|) 211)) (-4083 (((-585 |#3|) $) 110)) (-1283 (((-1078 $) $ |#3|) 125) (((-1078 |#1|) $) 124)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 87 (|has| |#1| (-511)))) (-1410 (($ $) 88 (|has| |#1| (-511)))) (-3060 (((-108) $) 90 (|has| |#1| (-511)))) (-1976 (((-705) $) 112) (((-705) $ (-585 |#3|)) 111)) (-3167 (((-3 $ "failed") $ $) 19)) (-1958 (((-390 (-1078 $)) (-1078 $)) 100 (|has| |#1| (-836)))) (-4043 (($ $) 98 (|has| |#1| (-423)))) (-3093 (((-390 $) $) 97 (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 103 (|has| |#1| (-836)))) (-2504 (($ $) 207)) (-2249 (($) 17 T CONST)) (-1301 (((-3 |#1| "failed") $) 164) (((-3 (-379 (-519)) "failed") $) 162 (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) 160 (|has| |#1| (-959 (-519)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-1499 ((|#1| $) 165) (((-379 (-519)) $) 161 (|has| |#1| (-959 (-379 (-519))))) (((-519) $) 159 (|has| |#1| (-959 (-519)))) ((|#3| $) 135) ((|#2| $) 220)) (-1286 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3218 (($ $) 154)) (-1562 (((-625 (-519)) (-625 $)) 134 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 133 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 132) (((-625 |#1|) (-625 $)) 131)) (-4193 (((-3 $ "failed") $) 34)) (-2177 (($ $) 176 (|has| |#1| (-423))) (($ $ |#3|) 105 (|has| |#1| (-423)))) (-3208 (((-585 $) $) 109)) (-1320 (((-108) $) 96 (|has| |#1| (-836)))) (-4015 (($ $ |#1| |#4| $) 172)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 84 (-12 (|has| |#3| (-813 (-351))) (|has| |#1| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 83 (-12 (|has| |#3| (-813 (-519))) (|has| |#1| (-813 (-519)))))) (-3709 (((-705) $ |#2|) 217) (((-705) $) 216)) (-1568 (((-108) $) 31)) (-3798 (((-705) $) 169)) (-4066 (($ (-1078 |#1|) |#3|) 117) (($ (-1078 $) |#3|) 116)) (-2089 (((-585 $) $) 126)) (-2642 (((-108) $) 152)) (-4042 (($ |#1| |#4|) 153) (($ $ |#3| (-705)) 119) (($ $ (-585 |#3|) (-585 (-705))) 118)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ |#3|) 120)) (-3695 ((|#4| $) 170) (((-705) $ |#3|) 122) (((-585 (-705)) $ (-585 |#3|)) 121)) (-2864 (($ $ $) 79 (|has| |#1| (-782)))) (-2489 (($ $ $) 78 (|has| |#1| (-782)))) (-3737 (($ (-1 |#4| |#4|) $) 171)) (-1405 (($ (-1 |#1| |#1|) $) 151)) (-2243 (((-1 $ (-705)) |#2|) 219) (((-1 $ (-705)) $) 206 (|has| |#1| (-209)))) (-2635 (((-3 |#3| "failed") $) 123)) (-3185 (($ $) 149)) (-3197 ((|#1| $) 148)) (-1582 ((|#3| $) 209)) (-2254 (($ (-585 $)) 94 (|has| |#1| (-423))) (($ $ $) 93 (|has| |#1| (-423)))) (-1266 (((-1065) $) 9)) (-2799 (((-108) $) 210)) (-3499 (((-3 (-585 $) "failed") $) 114)) (-2100 (((-3 (-585 $) "failed") $) 115)) (-2669 (((-3 (-2 (|:| |var| |#3|) (|:| -1690 (-705))) "failed") $) 113)) (-1904 (($ $) 208)) (-4139 (((-1029) $) 10)) (-3162 (((-108) $) 166)) (-3173 ((|#1| $) 167)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 95 (|has| |#1| (-423)))) (-2292 (($ (-585 $)) 92 (|has| |#1| (-423))) (($ $ $) 91 (|has| |#1| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) 102 (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) 101 (|has| |#1| (-836)))) (-1921 (((-390 $) $) 99 (|has| |#1| (-836)))) (-2261 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-511))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-511)))) (-2324 (($ $ (-585 (-267 $))) 145) (($ $ (-267 $)) 144) (($ $ $ $) 143) (($ $ (-585 $) (-585 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-585 |#3|) (-585 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-585 |#3|) (-585 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-209))) (($ $ (-585 |#2|) (-585 $)) 204 (|has| |#1| (-209))) (($ $ |#2| |#1|) 203 (|has| |#1| (-209))) (($ $ (-585 |#2|) (-585 |#1|)) 202 (|has| |#1| (-209)))) (-3677 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2181 (($ $ |#3|) 42) (($ $ (-585 |#3|)) 41) (($ $ |#3| (-705)) 40) (($ $ (-585 |#3|) (-585 (-705))) 39) (($ $) 238 (|has| |#1| (-209))) (($ $ (-705)) 236 (|has| |#1| (-209))) (($ $ (-1082)) 234 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 233 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 232 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) 231 (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1938 (((-585 |#2|) $) 218)) (-4178 ((|#4| $) 150) (((-705) $ |#3|) 130) (((-585 (-705)) $ (-585 |#3|)) 129) (((-705) $ |#2|) 215)) (-1446 (((-819 (-351)) $) 82 (-12 (|has| |#3| (-560 (-819 (-351)))) (|has| |#1| (-560 (-819 (-351)))))) (((-819 (-519)) $) 81 (-12 (|has| |#3| (-560 (-819 (-519)))) (|has| |#1| (-560 (-819 (-519)))))) (((-495) $) 80 (-12 (|has| |#3| (-560 (-495))) (|has| |#1| (-560 (-495)))))) (-3939 ((|#1| $) 175 (|has| |#1| (-423))) (($ $ |#3|) 106 (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 104 (-4012 (|has| $ (-133)) (|has| |#1| (-836))))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-379 (-519))) 72 (-3730 (|has| |#1| (-959 (-379 (-519)))) (|has| |#1| (-37 (-379 (-519)))))) (($ $) 85 (|has| |#1| (-511)))) (-2988 (((-585 |#1|) $) 168)) (-1220 ((|#1| $ |#4|) 155) (($ $ |#3| (-705)) 128) (($ $ (-585 |#3|) (-585 (-705))) 127)) (-3773 (((-3 $ "failed") $) 73 (-3730 (-4012 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) 29)) (-1487 (($ $ $ (-705)) 173 (|has| |#1| (-157)))) (-1617 (((-108) $ $) 89 (|has| |#1| (-511)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ |#3|) 38) (($ $ (-585 |#3|)) 37) (($ $ |#3| (-705)) 36) (($ $ (-585 |#3|) (-585 (-705))) 35) (($ $) 237 (|has| |#1| (-209))) (($ $ (-705)) 235 (|has| |#1| (-209))) (($ $ (-1082)) 230 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 229 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 228 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) 227 (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1586 (((-108) $ $) 76 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 75 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 77 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 74 (|has| |#1| (-782)))) (-1632 (($ $ |#1|) 156 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 158 (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) 157 (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-228 |#1| |#2| |#3| |#4|) (-1194) (-968) (-782) (-241 |t#2|) (-727)) (T -228)) +((-2243 (*1 *2 *3) (-12 (-4 *4 (-968)) (-4 *3 (-782)) (-4 *5 (-241 *3)) (-4 *6 (-727)) (-5 *2 (-1 *1 (-705))) (-4 *1 (-228 *4 *3 *5 *6)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-241 *4)) (-4 *6 (-727)) (-5 *2 (-585 *4)))) (-3709 (*1 *2 *1 *3) (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-968)) (-4 *3 (-782)) (-4 *5 (-241 *3)) (-4 *6 (-727)) (-5 *2 (-705)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-241 *4)) (-4 *6 (-727)) (-5 *2 (-705)))) (-4178 (*1 *2 *1 *3) (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-968)) (-4 *3 (-782)) (-4 *5 (-241 *3)) (-4 *6 (-727)) (-5 *2 (-705)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-241 *4)) (-4 *6 (-727)) (-5 *2 (-585 (-705))))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-241 *4)) (-4 *6 (-727)) (-5 *2 (-705)))) (-2801 (*1 *2 *1 *3) (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-968)) (-4 *3 (-782)) (-4 *5 (-241 *3)) (-4 *6 (-727)) (-5 *2 (-585 (-705))))) (-3711 (*1 *2 *1 *3) (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-968)) (-4 *3 (-782)) (-4 *5 (-241 *3)) (-4 *6 (-727)) (-5 *2 (-705)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-241 *4)) (-4 *6 (-727)) (-5 *2 (-108)))) (-1582 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *2 *5)) (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-727)) (-4 *2 (-241 *4)))) (-1904 (*1 *1 *1) (-12 (-4 *1 (-228 *2 *3 *4 *5)) (-4 *2 (-968)) (-4 *3 (-782)) (-4 *4 (-241 *3)) (-4 *5 (-727)))) (-2504 (*1 *1 *1) (-12 (-4 *1 (-228 *2 *3 *4 *5)) (-4 *2 (-968)) (-4 *3 (-782)) (-4 *4 (-241 *3)) (-4 *5 (-727)))) (-2243 (*1 *2 *1) (-12 (-4 *3 (-209)) (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-241 *4)) (-4 *6 (-727)) (-5 *2 (-1 *1 (-705))) (-4 *1 (-228 *3 *4 *5 *6))))) +(-13 (-876 |t#1| |t#4| |t#3|) (-207 |t#1|) (-959 |t#2|) (-10 -8 (-15 -2243 ((-1 $ (-705)) |t#2|)) (-15 -1938 ((-585 |t#2|) $)) (-15 -3709 ((-705) $ |t#2|)) (-15 -3709 ((-705) $)) (-15 -4178 ((-705) $ |t#2|)) (-15 -2801 ((-585 (-705)) $)) (-15 -3711 ((-705) $)) (-15 -2801 ((-585 (-705)) $ |t#2|)) (-15 -3711 ((-705) $ |t#2|)) (-15 -2799 ((-108) $)) (-15 -1582 (|t#3| $)) (-15 -1904 ($ $)) (-15 -2504 ($ $)) (IF (|has| |t#1| (-209)) (PROGN (-6 (-480 |t#2| |t#1|)) (-6 (-480 |t#2| $)) (-6 (-282 $)) (-15 -2243 ((-1 $ (-705)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-379 (-519)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-157))) ((-560 (-495)) -12 (|has| |#1| (-560 (-495))) (|has| |#3| (-560 (-495)))) ((-560 (-819 (-351))) -12 (|has| |#1| (-560 (-819 (-351)))) (|has| |#3| (-560 (-819 (-351))))) ((-560 (-819 (-519))) -12 (|has| |#1| (-560 (-819 (-519)))) (|has| |#3| (-560 (-819 (-519))))) ((-207 |#1|) . T) ((-209) |has| |#1| (-209)) ((-264) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-282 $) . T) ((-298 |#1| |#4|) . T) ((-349 |#1|) . T) ((-383 |#1|) . T) ((-423) -3730 (|has| |#1| (-836)) (|has| |#1| (-423))) ((-480 |#2| |#1|) |has| |#1| (-209)) ((-480 |#2| $) |has| |#1| (-209)) ((-480 |#3| |#1|) . T) ((-480 |#3| $) . T) ((-480 $ $) . T) ((-511) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-587 #0#) |has| |#1| (-37 (-379 (-519)))) ((-587 |#1|) . T) ((-587 $) . T) ((-581 (-519)) |has| |#1| (-581 (-519))) ((-581 |#1|) . T) ((-652 #0#) |has| |#1| (-37 (-379 (-519)))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-661) . T) ((-782) |has| |#1| (-782)) ((-827 (-1082)) |has| |#1| (-827 (-1082))) ((-827 |#3|) . T) ((-813 (-351)) -12 (|has| |#1| (-813 (-351))) (|has| |#3| (-813 (-351)))) ((-813 (-519)) -12 (|has| |#1| (-813 (-519))) (|has| |#3| (-813 (-519)))) ((-876 |#1| |#4| |#3|) . T) ((-836) |has| |#1| (-836)) ((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 |#1|) . T) ((-959 |#2|) . T) ((-959 |#3|) . T) ((-974 #0#) |has| |#1| (-37 (-379 (-519)))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1121) |has| |#1| (-836))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3655 ((|#1| $) 54)) (-1365 ((|#1| $) 44)) (-1473 (((-108) $ (-705)) 8)) (-2249 (($) 7 T CONST)) (-3064 (($ $) 60)) (-1998 (($ $) 48)) (-2390 ((|#1| |#1| $) 46)) (-3128 ((|#1| $) 45)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-2568 (((-705) $) 61)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4152 ((|#1| $) 39)) (-1331 ((|#1| |#1| $) 52)) (-2965 ((|#1| |#1| $) 51)) (-1846 (($ |#1| $) 40)) (-4141 (((-705) $) 55)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-3686 ((|#1| $) 62)) (-3577 ((|#1| $) 50)) (-3016 ((|#1| $) 49)) (-3212 ((|#1| $) 41)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3087 ((|#1| |#1| $) 58)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-1348 ((|#1| $) 59)) (-2007 (($) 57) (($ (-585 |#1|)) 56)) (-1253 (((-705) $) 43)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-2601 ((|#1| $) 53)) (-3879 (($ (-585 |#1|)) 42)) (-3365 ((|#1| $) 63)) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-229 |#1|) (-1194) (-1117)) (T -229)) +((-2007 (*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117)))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-4 *1 (-229 *3)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-229 *3)) (-4 *3 (-1117)) (-5 *2 (-705)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117)))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117)))) (-1331 (*1 *2 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117)))) (-2965 (*1 *2 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117)))) (-3577 (*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117)))) (-1998 (*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117))))) +(-13 (-1030 |t#1|) (-918 |t#1|) (-10 -8 (-15 -2007 ($)) (-15 -2007 ($ (-585 |t#1|))) (-15 -4141 ((-705) $)) (-15 -3655 (|t#1| $)) (-15 -2601 (|t#1| $)) (-15 -1331 (|t#1| |t#1| $)) (-15 -2965 (|t#1| |t#1| $)) (-15 -3577 (|t#1| $)) (-15 -3016 (|t#1| $)) (-15 -1998 ($ $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-918 |#1|) . T) ((-1011) |has| |#1| (-1011)) ((-1030 |#1|) . T) ((-1117) . T)) +((-3386 (((-1 (-870 (-201)) (-201) (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201) (-201))) 139)) (-3010 (((-1042 (-201)) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351))) 160) (((-1042 (-201)) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351)) (-585 (-238))) 158) (((-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351))) 163) (((-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238))) 159) (((-1042 (-201)) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351))) 150) (((-1042 (-201)) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238))) 149) (((-1042 (-201)) (-1 (-870 (-201)) (-201)) (-1006 (-351))) 129) (((-1042 (-201)) (-1 (-870 (-201)) (-201)) (-1006 (-351)) (-585 (-238))) 127) (((-1042 (-201)) (-806 (-1 (-201) (-201))) (-1006 (-351))) 128) (((-1042 (-201)) (-806 (-1 (-201) (-201))) (-1006 (-351)) (-585 (-238))) 125)) (-2970 (((-1165) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351))) 162) (((-1165) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351)) (-585 (-238))) 161) (((-1165) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351))) 165) (((-1165) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238))) 164) (((-1165) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351))) 152) (((-1165) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238))) 151) (((-1165) (-1 (-870 (-201)) (-201)) (-1006 (-351))) 135) (((-1165) (-1 (-870 (-201)) (-201)) (-1006 (-351)) (-585 (-238))) 134) (((-1165) (-806 (-1 (-201) (-201))) (-1006 (-351))) 133) (((-1165) (-806 (-1 (-201) (-201))) (-1006 (-351)) (-585 (-238))) 132) (((-1164) (-804 (-1 (-201) (-201))) (-1006 (-351))) 99) (((-1164) (-804 (-1 (-201) (-201))) (-1006 (-351)) (-585 (-238))) 98) (((-1164) (-1 (-201) (-201)) (-1006 (-351))) 95) (((-1164) (-1 (-201) (-201)) (-1006 (-351)) (-585 (-238))) 94))) +(((-230) (-10 -7 (-15 -2970 ((-1164) (-1 (-201) (-201)) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1164) (-1 (-201) (-201)) (-1006 (-351)))) (-15 -2970 ((-1164) (-804 (-1 (-201) (-201))) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1164) (-804 (-1 (-201) (-201))) (-1006 (-351)))) (-15 -2970 ((-1165) (-806 (-1 (-201) (-201))) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-806 (-1 (-201) (-201))) (-1006 (-351)))) (-15 -2970 ((-1165) (-1 (-870 (-201)) (-201)) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-1 (-870 (-201)) (-201)) (-1006 (-351)))) (-15 -3010 ((-1042 (-201)) (-806 (-1 (-201) (-201))) (-1006 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-806 (-1 (-201) (-201))) (-1006 (-351)))) (-15 -3010 ((-1042 (-201)) (-1 (-870 (-201)) (-201)) (-1006 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-1 (-870 (-201)) (-201)) (-1006 (-351)))) (-15 -2970 ((-1165) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351)))) (-15 -3010 ((-1042 (-201)) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351)))) (-15 -2970 ((-1165) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351)))) (-15 -3010 ((-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351)))) (-15 -2970 ((-1165) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351)))) (-15 -3010 ((-1042 (-201)) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351)))) (-15 -3386 ((-1 (-870 (-201)) (-201) (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201) (-201)))))) (T -230)) +((-3386 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-870 (-201)) (-201) (-201))) (-5 *3 (-1 (-201) (-201) (-201) (-201))) (-5 *1 (-230)))) (-3010 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-809 (-1 (-201) (-201) (-201)))) (-5 *4 (-1006 (-351))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) (-3010 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-809 (-1 (-201) (-201) (-201)))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-809 (-1 (-201) (-201) (-201)))) (-5 *4 (-1006 (-351))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-809 (-1 (-201) (-201) (-201)))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-3010 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-870 (-201)) (-201) (-201))) (-5 *4 (-1006 (-351))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) (-3010 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-870 (-201)) (-201) (-201))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-870 (-201)) (-201) (-201))) (-5 *4 (-1006 (-351))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-870 (-201)) (-201) (-201))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-3010 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1006 (-351))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) (-3010 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1006 (-351))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-3010 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-870 (-201)) (-201))) (-5 *4 (-1006 (-351))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) (-3010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-870 (-201)) (-201))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) (-3010 (*1 *2 *3 *4) (-12 (-5 *3 (-806 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) (-3010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-806 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-870 (-201)) (-201))) (-5 *4 (-1006 (-351))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-870 (-201)) (-201))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-806 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-806 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-804 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) (-5 *2 (-1164)) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-804 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1164)) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-201) (-201))) (-5 *4 (-1006 (-351))) (-5 *2 (-1164)) (-5 *1 (-230)))) (-2970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-201) (-201))) (-5 *4 (-1006 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1164)) (-5 *1 (-230))))) +(-10 -7 (-15 -2970 ((-1164) (-1 (-201) (-201)) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1164) (-1 (-201) (-201)) (-1006 (-351)))) (-15 -2970 ((-1164) (-804 (-1 (-201) (-201))) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1164) (-804 (-1 (-201) (-201))) (-1006 (-351)))) (-15 -2970 ((-1165) (-806 (-1 (-201) (-201))) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-806 (-1 (-201) (-201))) (-1006 (-351)))) (-15 -2970 ((-1165) (-1 (-870 (-201)) (-201)) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-1 (-870 (-201)) (-201)) (-1006 (-351)))) (-15 -3010 ((-1042 (-201)) (-806 (-1 (-201) (-201))) (-1006 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-806 (-1 (-201) (-201))) (-1006 (-351)))) (-15 -3010 ((-1042 (-201)) (-1 (-870 (-201)) (-201)) (-1006 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-1 (-870 (-201)) (-201)) (-1006 (-351)))) (-15 -2970 ((-1165) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351)))) (-15 -3010 ((-1042 (-201)) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-1 (-201) (-201) (-201)) (-1006 (-351)) (-1006 (-351)))) (-15 -2970 ((-1165) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351)))) (-15 -3010 ((-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-351)) (-1006 (-351)))) (-15 -2970 ((-1165) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351)))) (-15 -3010 ((-1042 (-201)) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-809 (-1 (-201) (-201) (-201))) (-1006 (-351)) (-1006 (-351)))) (-15 -3386 ((-1 (-870 (-201)) (-201) (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201) (-201))))) +((-2970 (((-1164) (-267 |#2|) (-1082) (-1082) (-585 (-238))) 93))) +(((-231 |#1| |#2|) (-10 -7 (-15 -2970 ((-1164) (-267 |#2|) (-1082) (-1082) (-585 (-238))))) (-13 (-511) (-782) (-959 (-519))) (-402 |#1|)) (T -231)) +((-2970 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-267 *7)) (-5 *4 (-1082)) (-5 *5 (-585 (-238))) (-4 *7 (-402 *6)) (-4 *6 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-1164)) (-5 *1 (-231 *6 *7))))) +(-10 -7 (-15 -2970 ((-1164) (-267 |#2|) (-1082) (-1082) (-585 (-238))))) +((-4036 (((-519) (-519)) 50)) (-4154 (((-519) (-519)) 51)) (-2442 (((-201) (-201)) 52)) (-2979 (((-1165) (-1 (-154 (-201)) (-154 (-201))) (-1006 (-201)) (-1006 (-201))) 49)) (-3383 (((-1165) (-1 (-154 (-201)) (-154 (-201))) (-1006 (-201)) (-1006 (-201)) (-108)) 47))) +(((-232) (-10 -7 (-15 -3383 ((-1165) (-1 (-154 (-201)) (-154 (-201))) (-1006 (-201)) (-1006 (-201)) (-108))) (-15 -2979 ((-1165) (-1 (-154 (-201)) (-154 (-201))) (-1006 (-201)) (-1006 (-201)))) (-15 -4036 ((-519) (-519))) (-15 -4154 ((-519) (-519))) (-15 -2442 ((-201) (-201))))) (T -232)) +((-2442 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-232)))) (-4154 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-232)))) (-4036 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-232)))) (-2979 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-154 (-201)) (-154 (-201)))) (-5 *4 (-1006 (-201))) (-5 *2 (-1165)) (-5 *1 (-232)))) (-3383 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-154 (-201)) (-154 (-201)))) (-5 *4 (-1006 (-201))) (-5 *5 (-108)) (-5 *2 (-1165)) (-5 *1 (-232))))) +(-10 -7 (-15 -3383 ((-1165) (-1 (-154 (-201)) (-154 (-201))) (-1006 (-201)) (-1006 (-201)) (-108))) (-15 -2979 ((-1165) (-1 (-154 (-201)) (-154 (-201))) (-1006 (-201)) (-1006 (-201)))) (-15 -4036 ((-519) (-519))) (-15 -4154 ((-519) (-519))) (-15 -2442 ((-201) (-201)))) +((-2217 (((-1004 (-351)) (-1004 (-288 |#1|))) 16))) +(((-233 |#1|) (-10 -7 (-15 -2217 ((-1004 (-351)) (-1004 (-288 |#1|))))) (-13 (-782) (-511) (-560 (-351)))) (T -233)) +((-2217 (*1 *2 *3) (-12 (-5 *3 (-1004 (-288 *4))) (-4 *4 (-13 (-782) (-511) (-560 (-351)))) (-5 *2 (-1004 (-351))) (-5 *1 (-233 *4))))) +(-10 -7 (-15 -2217 ((-1004 (-351)) (-1004 (-288 |#1|))))) +((-3010 (((-1042 (-201)) (-809 |#1|) (-1004 (-351)) (-1004 (-351))) 69) (((-1042 (-201)) (-809 |#1|) (-1004 (-351)) (-1004 (-351)) (-585 (-238))) 68) (((-1042 (-201)) |#1| (-1004 (-351)) (-1004 (-351))) 59) (((-1042 (-201)) |#1| (-1004 (-351)) (-1004 (-351)) (-585 (-238))) 58) (((-1042 (-201)) (-806 |#1|) (-1004 (-351))) 50) (((-1042 (-201)) (-806 |#1|) (-1004 (-351)) (-585 (-238))) 49)) (-2970 (((-1165) (-809 |#1|) (-1004 (-351)) (-1004 (-351))) 72) (((-1165) (-809 |#1|) (-1004 (-351)) (-1004 (-351)) (-585 (-238))) 71) (((-1165) |#1| (-1004 (-351)) (-1004 (-351))) 62) (((-1165) |#1| (-1004 (-351)) (-1004 (-351)) (-585 (-238))) 61) (((-1165) (-806 |#1|) (-1004 (-351))) 54) (((-1165) (-806 |#1|) (-1004 (-351)) (-585 (-238))) 53) (((-1164) (-804 |#1|) (-1004 (-351))) 41) (((-1164) (-804 |#1|) (-1004 (-351)) (-585 (-238))) 40) (((-1164) |#1| (-1004 (-351))) 33) (((-1164) |#1| (-1004 (-351)) (-585 (-238))) 32))) +(((-234 |#1|) (-10 -7 (-15 -2970 ((-1164) |#1| (-1004 (-351)) (-585 (-238)))) (-15 -2970 ((-1164) |#1| (-1004 (-351)))) (-15 -2970 ((-1164) (-804 |#1|) (-1004 (-351)) (-585 (-238)))) (-15 -2970 ((-1164) (-804 |#1|) (-1004 (-351)))) (-15 -2970 ((-1165) (-806 |#1|) (-1004 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-806 |#1|) (-1004 (-351)))) (-15 -3010 ((-1042 (-201)) (-806 |#1|) (-1004 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-806 |#1|) (-1004 (-351)))) (-15 -2970 ((-1165) |#1| (-1004 (-351)) (-1004 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) |#1| (-1004 (-351)) (-1004 (-351)))) (-15 -3010 ((-1042 (-201)) |#1| (-1004 (-351)) (-1004 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) |#1| (-1004 (-351)) (-1004 (-351)))) (-15 -2970 ((-1165) (-809 |#1|) (-1004 (-351)) (-1004 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-809 |#1|) (-1004 (-351)) (-1004 (-351)))) (-15 -3010 ((-1042 (-201)) (-809 |#1|) (-1004 (-351)) (-1004 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-809 |#1|) (-1004 (-351)) (-1004 (-351))))) (-13 (-560 (-495)) (-1011))) (T -234)) +((-3010 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-809 *5)) (-5 *4 (-1004 (-351))) (-4 *5 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1042 (-201))) (-5 *1 (-234 *5)))) (-3010 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-809 *6)) (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) (-4 *6 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1042 (-201))) (-5 *1 (-234 *6)))) (-2970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-809 *5)) (-5 *4 (-1004 (-351))) (-4 *5 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1165)) (-5 *1 (-234 *5)))) (-2970 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-809 *6)) (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) (-4 *6 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1165)) (-5 *1 (-234 *6)))) (-3010 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-351))) (-5 *2 (-1042 (-201))) (-5 *1 (-234 *3)) (-4 *3 (-13 (-560 (-495)) (-1011))))) (-3010 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-234 *3)) (-4 *3 (-13 (-560 (-495)) (-1011))))) (-2970 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-351))) (-5 *2 (-1165)) (-5 *1 (-234 *3)) (-4 *3 (-13 (-560 (-495)) (-1011))))) (-2970 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-234 *3)) (-4 *3 (-13 (-560 (-495)) (-1011))))) (-3010 (*1 *2 *3 *4) (-12 (-5 *3 (-806 *5)) (-5 *4 (-1004 (-351))) (-4 *5 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1042 (-201))) (-5 *1 (-234 *5)))) (-3010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-806 *6)) (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) (-4 *6 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1042 (-201))) (-5 *1 (-234 *6)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-806 *5)) (-5 *4 (-1004 (-351))) (-4 *5 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1165)) (-5 *1 (-234 *5)))) (-2970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-806 *6)) (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) (-4 *6 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1165)) (-5 *1 (-234 *6)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-1004 (-351))) (-4 *5 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1164)) (-5 *1 (-234 *5)))) (-2970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) (-4 *6 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1164)) (-5 *1 (-234 *6)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-351))) (-5 *2 (-1164)) (-5 *1 (-234 *3)) (-4 *3 (-13 (-560 (-495)) (-1011))))) (-2970 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1164)) (-5 *1 (-234 *3)) (-4 *3 (-13 (-560 (-495)) (-1011)))))) +(-10 -7 (-15 -2970 ((-1164) |#1| (-1004 (-351)) (-585 (-238)))) (-15 -2970 ((-1164) |#1| (-1004 (-351)))) (-15 -2970 ((-1164) (-804 |#1|) (-1004 (-351)) (-585 (-238)))) (-15 -2970 ((-1164) (-804 |#1|) (-1004 (-351)))) (-15 -2970 ((-1165) (-806 |#1|) (-1004 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-806 |#1|) (-1004 (-351)))) (-15 -3010 ((-1042 (-201)) (-806 |#1|) (-1004 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-806 |#1|) (-1004 (-351)))) (-15 -2970 ((-1165) |#1| (-1004 (-351)) (-1004 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) |#1| (-1004 (-351)) (-1004 (-351)))) (-15 -3010 ((-1042 (-201)) |#1| (-1004 (-351)) (-1004 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) |#1| (-1004 (-351)) (-1004 (-351)))) (-15 -2970 ((-1165) (-809 |#1|) (-1004 (-351)) (-1004 (-351)) (-585 (-238)))) (-15 -2970 ((-1165) (-809 |#1|) (-1004 (-351)) (-1004 (-351)))) (-15 -3010 ((-1042 (-201)) (-809 |#1|) (-1004 (-351)) (-1004 (-351)) (-585 (-238)))) (-15 -3010 ((-1042 (-201)) (-809 |#1|) (-1004 (-351)) (-1004 (-351))))) +((-2970 (((-1165) (-585 (-201)) (-585 (-201)) (-585 (-201)) (-585 (-238))) 21) (((-1165) (-585 (-201)) (-585 (-201)) (-585 (-201))) 22) (((-1164) (-585 (-870 (-201))) (-585 (-238))) 13) (((-1164) (-585 (-870 (-201)))) 14) (((-1164) (-585 (-201)) (-585 (-201)) (-585 (-238))) 18) (((-1164) (-585 (-201)) (-585 (-201))) 19))) +(((-235) (-10 -7 (-15 -2970 ((-1164) (-585 (-201)) (-585 (-201)))) (-15 -2970 ((-1164) (-585 (-201)) (-585 (-201)) (-585 (-238)))) (-15 -2970 ((-1164) (-585 (-870 (-201))))) (-15 -2970 ((-1164) (-585 (-870 (-201))) (-585 (-238)))) (-15 -2970 ((-1165) (-585 (-201)) (-585 (-201)) (-585 (-201)))) (-15 -2970 ((-1165) (-585 (-201)) (-585 (-201)) (-585 (-201)) (-585 (-238)))))) (T -235)) +((-2970 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-585 (-201))) (-5 *4 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-235)))) (-2970 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-585 (-201))) (-5 *2 (-1165)) (-5 *1 (-235)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-870 (-201)))) (-5 *4 (-585 (-238))) (-5 *2 (-1164)) (-5 *1 (-235)))) (-2970 (*1 *2 *3) (-12 (-5 *3 (-585 (-870 (-201)))) (-5 *2 (-1164)) (-5 *1 (-235)))) (-2970 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-201))) (-5 *4 (-585 (-238))) (-5 *2 (-1164)) (-5 *1 (-235)))) (-2970 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-201))) (-5 *2 (-1164)) (-5 *1 (-235))))) +(-10 -7 (-15 -2970 ((-1164) (-585 (-201)) (-585 (-201)))) (-15 -2970 ((-1164) (-585 (-201)) (-585 (-201)) (-585 (-238)))) (-15 -2970 ((-1164) (-585 (-870 (-201))))) (-15 -2970 ((-1164) (-585 (-870 (-201))) (-585 (-238)))) (-15 -2970 ((-1165) (-585 (-201)) (-585 (-201)) (-585 (-201)))) (-15 -2970 ((-1165) (-585 (-201)) (-585 (-201)) (-585 (-201)) (-585 (-238))))) +((-3710 (((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) (-585 (-238)) (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) 24)) (-2198 (((-848) (-585 (-238)) (-848)) 49)) (-3922 (((-848) (-585 (-238)) (-848)) 48)) (-1977 (((-585 (-351)) (-585 (-238)) (-585 (-351))) 65)) (-2920 (((-351) (-585 (-238)) (-351)) 55)) (-1775 (((-848) (-585 (-238)) (-848)) 50)) (-1671 (((-108) (-585 (-238)) (-108)) 26)) (-3009 (((-1065) (-585 (-238)) (-1065)) 19)) (-2652 (((-1065) (-585 (-238)) (-1065)) 25)) (-4163 (((-1042 (-201)) (-585 (-238))) 43)) (-3483 (((-585 (-1006 (-351))) (-585 (-238)) (-585 (-1006 (-351)))) 37)) (-2293 (((-801) (-585 (-238)) (-801)) 31)) (-1531 (((-801) (-585 (-238)) (-801)) 32)) (-2941 (((-1 (-870 (-201)) (-870 (-201))) (-585 (-238)) (-1 (-870 (-201)) (-870 (-201)))) 60)) (-1766 (((-108) (-585 (-238)) (-108)) 15)) (-3803 (((-108) (-585 (-238)) (-108)) 14))) +(((-236) (-10 -7 (-15 -3803 ((-108) (-585 (-238)) (-108))) (-15 -1766 ((-108) (-585 (-238)) (-108))) (-15 -3710 ((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) (-585 (-238)) (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -3009 ((-1065) (-585 (-238)) (-1065))) (-15 -2652 ((-1065) (-585 (-238)) (-1065))) (-15 -1671 ((-108) (-585 (-238)) (-108))) (-15 -2293 ((-801) (-585 (-238)) (-801))) (-15 -1531 ((-801) (-585 (-238)) (-801))) (-15 -3483 ((-585 (-1006 (-351))) (-585 (-238)) (-585 (-1006 (-351))))) (-15 -3922 ((-848) (-585 (-238)) (-848))) (-15 -2198 ((-848) (-585 (-238)) (-848))) (-15 -4163 ((-1042 (-201)) (-585 (-238)))) (-15 -1775 ((-848) (-585 (-238)) (-848))) (-15 -2920 ((-351) (-585 (-238)) (-351))) (-15 -2941 ((-1 (-870 (-201)) (-870 (-201))) (-585 (-238)) (-1 (-870 (-201)) (-870 (-201))))) (-15 -1977 ((-585 (-351)) (-585 (-238)) (-585 (-351)))))) (T -236)) +((-1977 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-351))) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-2941 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-870 (-201)) (-870 (-201)))) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-2920 (*1 *2 *3 *2) (-12 (-5 *2 (-351)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-1775 (*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-236)))) (-2198 (*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-3922 (*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-3483 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-1531 (*1 *2 *3 *2) (-12 (-5 *2 (-801)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-2293 (*1 *2 *3 *2) (-12 (-5 *2 (-801)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-1671 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-2652 (*1 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-3009 (*1 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-3710 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-1766 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) (-3803 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-585 (-238))) (-5 *1 (-236))))) +(-10 -7 (-15 -3803 ((-108) (-585 (-238)) (-108))) (-15 -1766 ((-108) (-585 (-238)) (-108))) (-15 -3710 ((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) (-585 (-238)) (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -3009 ((-1065) (-585 (-238)) (-1065))) (-15 -2652 ((-1065) (-585 (-238)) (-1065))) (-15 -1671 ((-108) (-585 (-238)) (-108))) (-15 -2293 ((-801) (-585 (-238)) (-801))) (-15 -1531 ((-801) (-585 (-238)) (-801))) (-15 -3483 ((-585 (-1006 (-351))) (-585 (-238)) (-585 (-1006 (-351))))) (-15 -3922 ((-848) (-585 (-238)) (-848))) (-15 -2198 ((-848) (-585 (-238)) (-848))) (-15 -4163 ((-1042 (-201)) (-585 (-238)))) (-15 -1775 ((-848) (-585 (-238)) (-848))) (-15 -2920 ((-351) (-585 (-238)) (-351))) (-15 -2941 ((-1 (-870 (-201)) (-870 (-201))) (-585 (-238)) (-1 (-870 (-201)) (-870 (-201))))) (-15 -1977 ((-585 (-351)) (-585 (-238)) (-585 (-351))))) +((-3068 (((-3 |#1| "failed") (-585 (-238)) (-1082)) 17))) +(((-237 |#1|) (-10 -7 (-15 -3068 ((-3 |#1| "failed") (-585 (-238)) (-1082)))) (-1117)) (T -237)) +((-3068 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-585 (-238))) (-5 *4 (-1082)) (-5 *1 (-237 *2)) (-4 *2 (-1117))))) +(-10 -7 (-15 -3068 ((-3 |#1| "failed") (-585 (-238)) (-1082)))) +((-1430 (((-108) $ $) NIL)) (-3710 (($ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) 14)) (-2198 (($ (-848)) 70)) (-3922 (($ (-848)) 69)) (-3307 (($ (-585 (-351))) 76)) (-2920 (($ (-351)) 55)) (-1775 (($ (-848)) 71)) (-1671 (($ (-108)) 22)) (-3009 (($ (-1065)) 17)) (-2652 (($ (-1065)) 18)) (-4163 (($ (-1042 (-201))) 65)) (-3483 (($ (-585 (-1006 (-351)))) 61)) (-1710 (($ (-585 (-1006 (-351)))) 56) (($ (-585 (-1006 (-379 (-519))))) 60)) (-1978 (($ (-351)) 28) (($ (-801)) 32)) (-2450 (((-108) (-585 $) (-1082)) 85)) (-3068 (((-3 (-51) "failed") (-585 $) (-1082)) 87)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2299 (($ (-351)) 33) (($ (-801)) 34)) (-3399 (($ (-1 (-870 (-201)) (-870 (-201)))) 54)) (-2941 (($ (-1 (-870 (-201)) (-870 (-201)))) 72)) (-3443 (($ (-1 (-201) (-201))) 38) (($ (-1 (-201) (-201) (-201))) 42) (($ (-1 (-201) (-201) (-201) (-201))) 46)) (-2217 (((-790) $) 81)) (-3283 (($ (-108)) 23) (($ (-585 (-1006 (-351)))) 50)) (-3803 (($ (-108)) 24)) (-1543 (((-108) $ $) 83))) +(((-238) (-13 (-1011) (-10 -8 (-15 -3803 ($ (-108))) (-15 -3283 ($ (-108))) (-15 -3710 ($ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -3009 ($ (-1065))) (-15 -2652 ($ (-1065))) (-15 -1671 ($ (-108))) (-15 -3283 ($ (-585 (-1006 (-351))))) (-15 -3399 ($ (-1 (-870 (-201)) (-870 (-201))))) (-15 -1978 ($ (-351))) (-15 -1978 ($ (-801))) (-15 -2299 ($ (-351))) (-15 -2299 ($ (-801))) (-15 -3443 ($ (-1 (-201) (-201)))) (-15 -3443 ($ (-1 (-201) (-201) (-201)))) (-15 -3443 ($ (-1 (-201) (-201) (-201) (-201)))) (-15 -2920 ($ (-351))) (-15 -1710 ($ (-585 (-1006 (-351))))) (-15 -1710 ($ (-585 (-1006 (-379 (-519)))))) (-15 -3483 ($ (-585 (-1006 (-351))))) (-15 -4163 ($ (-1042 (-201)))) (-15 -3922 ($ (-848))) (-15 -2198 ($ (-848))) (-15 -1775 ($ (-848))) (-15 -2941 ($ (-1 (-870 (-201)) (-870 (-201))))) (-15 -3307 ($ (-585 (-351)))) (-15 -3068 ((-3 (-51) "failed") (-585 $) (-1082))) (-15 -2450 ((-108) (-585 $) (-1082)))))) (T -238)) +((-3803 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238)))) (-3283 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238)))) (-3710 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) (-5 *1 (-238)))) (-3009 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-238)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-238)))) (-1671 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238)))) (-3283 (*1 *1 *2) (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *1 (-238)))) (-3399 (*1 *1 *2) (-12 (-5 *2 (-1 (-870 (-201)) (-870 (-201)))) (-5 *1 (-238)))) (-1978 (*1 *1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-238)))) (-1978 (*1 *1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-238)))) (-2299 (*1 *1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-238)))) (-2299 (*1 *1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-238)))) (-3443 (*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-238)))) (-3443 (*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201) (-201))) (-5 *1 (-238)))) (-3443 (*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201) (-201) (-201))) (-5 *1 (-238)))) (-2920 (*1 *1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-238)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *1 (-238)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-585 (-1006 (-379 (-519))))) (-5 *1 (-238)))) (-3483 (*1 *1 *2) (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *1 (-238)))) (-4163 (*1 *1 *2) (-12 (-5 *2 (-1042 (-201))) (-5 *1 (-238)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-238)))) (-2198 (*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-238)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-238)))) (-2941 (*1 *1 *2) (-12 (-5 *2 (-1 (-870 (-201)) (-870 (-201)))) (-5 *1 (-238)))) (-3307 (*1 *1 *2) (-12 (-5 *2 (-585 (-351))) (-5 *1 (-238)))) (-3068 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-585 (-238))) (-5 *4 (-1082)) (-5 *2 (-51)) (-5 *1 (-238)))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-238))) (-5 *4 (-1082)) (-5 *2 (-108)) (-5 *1 (-238))))) +(-13 (-1011) (-10 -8 (-15 -3803 ($ (-108))) (-15 -3283 ($ (-108))) (-15 -3710 ($ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -3009 ($ (-1065))) (-15 -2652 ($ (-1065))) (-15 -1671 ($ (-108))) (-15 -3283 ($ (-585 (-1006 (-351))))) (-15 -3399 ($ (-1 (-870 (-201)) (-870 (-201))))) (-15 -1978 ($ (-351))) (-15 -1978 ($ (-801))) (-15 -2299 ($ (-351))) (-15 -2299 ($ (-801))) (-15 -3443 ($ (-1 (-201) (-201)))) (-15 -3443 ($ (-1 (-201) (-201) (-201)))) (-15 -3443 ($ (-1 (-201) (-201) (-201) (-201)))) (-15 -2920 ($ (-351))) (-15 -1710 ($ (-585 (-1006 (-351))))) (-15 -1710 ($ (-585 (-1006 (-379 (-519)))))) (-15 -3483 ($ (-585 (-1006 (-351))))) (-15 -4163 ($ (-1042 (-201)))) (-15 -3922 ($ (-848))) (-15 -2198 ($ (-848))) (-15 -1775 ($ (-848))) (-15 -2941 ($ (-1 (-870 (-201)) (-870 (-201))))) (-15 -3307 ($ (-585 (-351)))) (-15 -3068 ((-3 (-51) "failed") (-585 $) (-1082))) (-15 -2450 ((-108) (-585 $) (-1082))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2801 (((-585 (-705)) $) NIL) (((-585 (-705)) $ |#2|) NIL)) (-3711 (((-705) $) NIL) (((-705) $ |#2|) NIL)) (-4083 (((-585 |#3|) $) NIL)) (-1283 (((-1078 $) $ |#3|) NIL) (((-1078 |#1|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 |#3|)) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-4043 (($ $) NIL (|has| |#1| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-2504 (($ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1034 |#1| |#2|) "failed") $) 20)) (-1499 ((|#1| $) NIL) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#1| (-959 (-519)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1034 |#1| |#2|) $) NIL)) (-1286 (($ $ $ |#3|) NIL (|has| |#1| (-157)))) (-3218 (($ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-423))) (($ $ |#3|) NIL (|has| |#1| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#1| (-836)))) (-4015 (($ $ |#1| (-491 |#3|) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| |#1| (-813 (-351))) (|has| |#3| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| |#1| (-813 (-519))) (|has| |#3| (-813 (-519)))))) (-3709 (((-705) $ |#2|) NIL) (((-705) $) 10)) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-4066 (($ (-1078 |#1|) |#3|) NIL) (($ (-1078 $) |#3|) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-491 |#3|)) NIL) (($ $ |#3| (-705)) NIL) (($ $ (-585 |#3|) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ |#3|) NIL)) (-3695 (((-491 |#3|) $) NIL) (((-705) $ |#3|) NIL) (((-585 (-705)) $ (-585 |#3|)) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3737 (($ (-1 (-491 |#3|) (-491 |#3|)) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2243 (((-1 $ (-705)) |#2|) NIL) (((-1 $ (-705)) $) NIL (|has| |#1| (-209)))) (-2635 (((-3 |#3| "failed") $) NIL)) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-1582 ((|#3| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1266 (((-1065) $) NIL)) (-2799 (((-108) $) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| |#3|) (|:| -1690 (-705))) "failed") $) NIL)) (-1904 (($ $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) NIL)) (-3173 ((|#1| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-836)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-585 |#3|) (-585 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-585 |#3|) (-585 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-209))) (($ $ (-585 |#2|) (-585 $)) NIL (|has| |#1| (-209))) (($ $ |#2| |#1|) NIL (|has| |#1| (-209))) (($ $ (-585 |#2|) (-585 |#1|)) NIL (|has| |#1| (-209)))) (-3677 (($ $ |#3|) NIL (|has| |#1| (-157)))) (-2181 (($ $ |#3|) NIL) (($ $ (-585 |#3|)) NIL) (($ $ |#3| (-705)) NIL) (($ $ (-585 |#3|) (-585 (-705))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1938 (((-585 |#2|) $) NIL)) (-4178 (((-491 |#3|) $) NIL) (((-705) $ |#3|) NIL) (((-585 (-705)) $ (-585 |#3|)) NIL) (((-705) $ |#2|) NIL)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| |#1| (-560 (-819 (-351)))) (|has| |#3| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| |#1| (-560 (-819 (-519)))) (|has| |#3| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| |#1| (-560 (-495))) (|has| |#3| (-560 (-495)))))) (-3939 ((|#1| $) NIL (|has| |#1| (-423))) (($ $ |#3|) NIL (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1034 |#1| |#2|)) 28) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#1| (-511)))) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-491 |#3|)) NIL) (($ $ |#3| (-705)) NIL) (($ $ (-585 |#3|) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#1| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ |#3|) NIL) (($ $ (-585 |#3|)) NIL) (($ $ |#3| (-705)) NIL) (($ $ (-585 |#3|) (-585 (-705))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-239 |#1| |#2| |#3|) (-13 (-228 |#1| |#2| |#3| (-491 |#3|)) (-959 (-1034 |#1| |#2|))) (-968) (-782) (-241 |#2|)) (T -239)) +NIL +(-13 (-228 |#1| |#2| |#3| (-491 |#3|)) (-959 (-1034 |#1| |#2|))) +((-3711 (((-705) $) 30)) (-1301 (((-3 |#2| "failed") $) 17)) (-1499 ((|#2| $) 27)) (-2181 (($ $) 12) (($ $ (-705)) 15)) (-2217 (((-790) $) 26) (($ |#2|) 10)) (-1543 (((-108) $ $) 20)) (-1561 (((-108) $ $) 29))) +(((-240 |#1| |#2|) (-10 -8 (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1|)) (-15 -3711 ((-705) |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1561 ((-108) |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) (-241 |#2|) (-782)) (T -240)) +NIL +(-10 -8 (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1|)) (-15 -3711 ((-705) |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1561 ((-108) |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3711 (((-705) $) 22)) (-1622 ((|#1| $) 23)) (-1301 (((-3 |#1| "failed") $) 27)) (-1499 ((|#1| $) 26)) (-3709 (((-705) $) 24)) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-2243 (($ |#1| (-705)) 25)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2181 (($ $) 21) (($ $ (-705)) 20)) (-2217 (((-790) $) 11) (($ |#1|) 28)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18))) +(((-241 |#1|) (-1194) (-782)) (T -241)) +((-2217 (*1 *1 *2) (-12 (-4 *1 (-241 *2)) (-4 *2 (-782)))) (-2243 (*1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-241 *2)) (-4 *2 (-782)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-241 *3)) (-4 *3 (-782)) (-5 *2 (-705)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-782)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-241 *3)) (-4 *3 (-782)) (-5 *2 (-705)))) (-2181 (*1 *1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-782)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-241 *3)) (-4 *3 (-782))))) +(-13 (-782) (-959 |t#1|) (-10 -8 (-15 -2243 ($ |t#1| (-705))) (-15 -3709 ((-705) $)) (-15 -1622 (|t#1| $)) (-15 -3711 ((-705) $)) (-15 -2181 ($ $)) (-15 -2181 ($ $ (-705))) (-15 -2217 ($ |t#1|)))) +(((-97) . T) ((-559 (-790)) . T) ((-782) . T) ((-959 |#1|) . T) ((-1011) . T)) +((-4083 (((-585 (-1082)) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) 40)) (-4096 (((-585 (-1082)) (-288 (-201)) (-705)) 79)) (-3247 (((-3 (-288 (-201)) "failed") (-288 (-201))) 50)) (-3828 (((-288 (-201)) (-288 (-201))) 65)) (-1728 (((-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201))))) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 26)) (-3536 (((-108) (-585 (-288 (-201)))) 83)) (-3775 (((-108) (-288 (-201))) 24)) (-3679 (((-585 (-1065)) (-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))))) 105)) (-2022 (((-585 (-288 (-201))) (-585 (-288 (-201)))) 87)) (-2531 (((-585 (-288 (-201))) (-585 (-288 (-201)))) 85)) (-2345 (((-625 (-201)) (-585 (-288 (-201))) (-705)) 94)) (-1333 (((-108) (-288 (-201))) 20) (((-108) (-585 (-288 (-201)))) 84)) (-2876 (((-585 (-201)) (-585 (-775 (-201))) (-201)) 14)) (-1980 (((-351) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) 100)) (-3776 (((-957) (-1082) (-957)) 33))) +(((-242) (-10 -7 (-15 -2876 ((-585 (-201)) (-585 (-775 (-201))) (-201))) (-15 -1728 ((-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201))))) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201))))))) (-15 -3247 ((-3 (-288 (-201)) "failed") (-288 (-201)))) (-15 -3828 ((-288 (-201)) (-288 (-201)))) (-15 -3536 ((-108) (-585 (-288 (-201))))) (-15 -1333 ((-108) (-585 (-288 (-201))))) (-15 -1333 ((-108) (-288 (-201)))) (-15 -2345 ((-625 (-201)) (-585 (-288 (-201))) (-705))) (-15 -2531 ((-585 (-288 (-201))) (-585 (-288 (-201))))) (-15 -2022 ((-585 (-288 (-201))) (-585 (-288 (-201))))) (-15 -3775 ((-108) (-288 (-201)))) (-15 -4083 ((-585 (-1082)) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))) (-15 -4096 ((-585 (-1082)) (-288 (-201)) (-705))) (-15 -3776 ((-957) (-1082) (-957))) (-15 -1980 ((-351) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))) (-15 -3679 ((-585 (-1065)) (-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))))))) (T -242)) +((-3679 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))))) (-5 *2 (-585 (-1065))) (-5 *1 (-242)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) (-5 *2 (-351)) (-5 *1 (-242)))) (-3776 (*1 *2 *3 *2) (-12 (-5 *2 (-957)) (-5 *3 (-1082)) (-5 *1 (-242)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-201))) (-5 *4 (-705)) (-5 *2 (-585 (-1082))) (-5 *1 (-242)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) (-5 *2 (-585 (-1082))) (-5 *1 (-242)))) (-3775 (*1 *2 *3) (-12 (-5 *3 (-288 (-201))) (-5 *2 (-108)) (-5 *1 (-242)))) (-2022 (*1 *2 *2) (-12 (-5 *2 (-585 (-288 (-201)))) (-5 *1 (-242)))) (-2531 (*1 *2 *2) (-12 (-5 *2 (-585 (-288 (-201)))) (-5 *1 (-242)))) (-2345 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-288 (-201)))) (-5 *4 (-705)) (-5 *2 (-625 (-201))) (-5 *1 (-242)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-288 (-201))) (-5 *2 (-108)) (-5 *1 (-242)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-585 (-288 (-201)))) (-5 *2 (-108)) (-5 *1 (-242)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-585 (-288 (-201)))) (-5 *2 (-108)) (-5 *1 (-242)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-288 (-201))) (-5 *1 (-242)))) (-3247 (*1 *2 *2) (|partial| -12 (-5 *2 (-288 (-201))) (-5 *1 (-242)))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (-5 *1 (-242)))) (-2876 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-775 (-201)))) (-5 *4 (-201)) (-5 *2 (-585 *4)) (-5 *1 (-242))))) +(-10 -7 (-15 -2876 ((-585 (-201)) (-585 (-775 (-201))) (-201))) (-15 -1728 ((-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201))))) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201))))))) (-15 -3247 ((-3 (-288 (-201)) "failed") (-288 (-201)))) (-15 -3828 ((-288 (-201)) (-288 (-201)))) (-15 -3536 ((-108) (-585 (-288 (-201))))) (-15 -1333 ((-108) (-585 (-288 (-201))))) (-15 -1333 ((-108) (-288 (-201)))) (-15 -2345 ((-625 (-201)) (-585 (-288 (-201))) (-705))) (-15 -2531 ((-585 (-288 (-201))) (-585 (-288 (-201))))) (-15 -2022 ((-585 (-288 (-201))) (-585 (-288 (-201))))) (-15 -3775 ((-108) (-288 (-201)))) (-15 -4083 ((-585 (-1082)) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))) (-15 -4096 ((-585 (-1082)) (-288 (-201)) (-705))) (-15 -3776 ((-957) (-1082) (-957))) (-15 -1980 ((-351) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))) (-15 -3679 ((-585 (-1065)) (-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))))))) +((-1430 (((-108) $ $) NIL)) (-2289 (((-957) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) NIL) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 39)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 20) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-243) (-771)) (T -243)) +NIL +(-771) +((-1430 (((-108) $ $) NIL)) (-2289 (((-957) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) 54) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 49)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 29) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) 31)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-244) (-771)) (T -244)) +NIL +(-771) +((-1430 (((-108) $ $) NIL)) (-2289 (((-957) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) 73) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 69)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 40) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) 51)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-245) (-771)) (T -245)) +NIL +(-771) +((-1430 (((-108) $ $) NIL)) (-2289 (((-957) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) NIL) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 48)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 27) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-246) (-771)) (T -246)) +NIL +(-771) +((-1430 (((-108) $ $) NIL)) (-2289 (((-957) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) NIL) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 48)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 23) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-247) (-771)) (T -247)) +NIL +(-771) +((-1430 (((-108) $ $) NIL)) (-2289 (((-957) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) NIL) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 69)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 23) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-248) (-771)) (T -248)) +NIL +(-771) +((-1430 (((-108) $ $) NIL)) (-2289 (((-957) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) NIL) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 73)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 19) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-249) (-771)) (T -249)) +NIL +(-771) +((-1430 (((-108) $ $) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2069 (((-585 (-519)) $) 17)) (-4178 (((-705) $) 15)) (-2217 (((-790) $) 21) (($ (-585 (-519))) 13)) (-1204 (($ (-705)) 18)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 9)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 11))) +(((-250) (-13 (-782) (-10 -8 (-15 -2217 ($ (-585 (-519)))) (-15 -4178 ((-705) $)) (-15 -2069 ((-585 (-519)) $)) (-15 -1204 ($ (-705)))))) (T -250)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-250)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-250)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-250)))) (-1204 (*1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-250))))) +(-13 (-782) (-10 -8 (-15 -2217 ($ (-585 (-519)))) (-15 -4178 ((-705) $)) (-15 -2069 ((-585 (-519)) $)) (-15 -1204 ($ (-705))))) +((-2958 ((|#2| |#2|) 77)) (-2823 ((|#2| |#2|) 65)) (-1735 (((-3 |#2| "failed") |#2| (-585 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-2934 ((|#2| |#2|) 75)) (-2800 ((|#2| |#2|) 63)) (-2981 ((|#2| |#2|) 79)) (-2844 ((|#2| |#2|) 67)) (-2888 ((|#2|) 46)) (-3752 (((-110) (-110)) 95)) (-1254 ((|#2| |#2|) 61)) (-3210 (((-108) |#2|) 134)) (-1544 ((|#2| |#2|) 180)) (-3226 ((|#2| |#2|) 156)) (-2074 ((|#2|) 59)) (-2656 ((|#2|) 58)) (-3119 ((|#2| |#2|) 176)) (-4093 ((|#2| |#2|) 152)) (-3696 ((|#2| |#2|) 184)) (-1245 ((|#2| |#2|) 160)) (-2602 ((|#2| |#2|) 148)) (-2473 ((|#2| |#2|) 150)) (-2605 ((|#2| |#2|) 186)) (-1984 ((|#2| |#2|) 162)) (-2276 ((|#2| |#2|) 182)) (-3726 ((|#2| |#2|) 158)) (-2517 ((|#2| |#2|) 178)) (-3251 ((|#2| |#2|) 154)) (-3595 ((|#2| |#2|) 192)) (-4129 ((|#2| |#2|) 168)) (-3305 ((|#2| |#2|) 188)) (-2255 ((|#2| |#2|) 164)) (-2521 ((|#2| |#2|) 196)) (-2218 ((|#2| |#2|) 172)) (-4056 ((|#2| |#2|) 198)) (-1742 ((|#2| |#2|) 174)) (-1264 ((|#2| |#2|) 194)) (-2385 ((|#2| |#2|) 170)) (-3195 ((|#2| |#2|) 190)) (-4105 ((|#2| |#2|) 166)) (-3325 ((|#2| |#2|) 62)) (-1754 ((|#2| |#2|) 80)) (-2854 ((|#2| |#2|) 68)) (-2969 ((|#2| |#2|) 78)) (-2834 ((|#2| |#2|) 66)) (-2946 ((|#2| |#2|) 76)) (-2812 ((|#2| |#2|) 64)) (-2631 (((-108) (-110)) 93)) (-1774 ((|#2| |#2|) 83)) (-2886 ((|#2| |#2|) 71)) (-1761 ((|#2| |#2|) 81)) (-2865 ((|#2| |#2|) 69)) (-1790 ((|#2| |#2|) 85)) (-2910 ((|#2| |#2|) 73)) (-3929 ((|#2| |#2|) 86)) (-2922 ((|#2| |#2|) 74)) (-1783 ((|#2| |#2|) 84)) (-2898 ((|#2| |#2|) 72)) (-1768 ((|#2| |#2|) 82)) (-2875 ((|#2| |#2|) 70))) +(((-251 |#1| |#2|) (-10 -7 (-15 -3325 (|#2| |#2|)) (-15 -1254 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -2812 (|#2| |#2|)) (-15 -2823 (|#2| |#2|)) (-15 -2834 (|#2| |#2|)) (-15 -2844 (|#2| |#2|)) (-15 -2854 (|#2| |#2|)) (-15 -2865 (|#2| |#2|)) (-15 -2875 (|#2| |#2|)) (-15 -2886 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -2922 (|#2| |#2|)) (-15 -2934 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -2969 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -1761 (|#2| |#2|)) (-15 -1768 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -1783 (|#2| |#2|)) (-15 -1790 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -2888 (|#2|)) (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 -2656 (|#2|)) (-15 -2074 (|#2|)) (-15 -2473 (|#2| |#2|)) (-15 -2602 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -3251 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -3726 (|#2| |#2|)) (-15 -1245 (|#2| |#2|)) (-15 -1984 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4129 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -1742 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -2517 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -2276 (|#2| |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -3305 (|#2| |#2|)) (-15 -3195 (|#2| |#2|)) (-15 -3595 (|#2| |#2|)) (-15 -1264 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -4056 (|#2| |#2|)) (-15 -1735 ((-3 |#2| "failed") |#2| (-585 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -3210 ((-108) |#2|))) (-13 (-782) (-511)) (-13 (-402 |#1|) (-925))) (T -251)) +((-3210 (*1 *2 *3) (-12 (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) (-5 *1 (-251 *4 *3)) (-4 *3 (-13 (-402 *4) (-925))))) (-1735 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-585 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-402 *4) (-925))) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-251 *4 *2)))) (-4056 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1264 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-3595 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-3195 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-3305 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2605 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-3696 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2276 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2517 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1742 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2385 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-4129 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1984 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1245 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-3726 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-3226 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-3251 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2602 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2074 (*1 *2) (-12 (-4 *2 (-13 (-402 *3) (-925))) (-5 *1 (-251 *3 *2)) (-4 *3 (-13 (-782) (-511))))) (-2656 (*1 *2) (-12 (-4 *2 (-13 (-402 *3) (-925))) (-5 *1 (-251 *3 *2)) (-4 *3 (-13 (-782) (-511))))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *4)) (-4 *4 (-13 (-402 *3) (-925))))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) (-5 *1 (-251 *4 *5)) (-4 *5 (-13 (-402 *4) (-925))))) (-2888 (*1 *2) (-12 (-4 *2 (-13 (-402 *3) (-925))) (-5 *1 (-251 *3 *2)) (-4 *3 (-13 (-782) (-511))))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1790 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1783 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1774 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1768 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1761 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2969 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2934 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2922 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2886 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2875 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2865 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2854 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2834 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2823 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2812 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-1254 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925))))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-402 *3) (-925)))))) +(-10 -7 (-15 -3325 (|#2| |#2|)) (-15 -1254 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -2812 (|#2| |#2|)) (-15 -2823 (|#2| |#2|)) (-15 -2834 (|#2| |#2|)) (-15 -2844 (|#2| |#2|)) (-15 -2854 (|#2| |#2|)) (-15 -2865 (|#2| |#2|)) (-15 -2875 (|#2| |#2|)) (-15 -2886 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -2922 (|#2| |#2|)) (-15 -2934 (|#2| |#2|)) (-15 -2946 (|#2| |#2|)) (-15 -2958 (|#2| |#2|)) (-15 -2969 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -1761 (|#2| |#2|)) (-15 -1768 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -1783 (|#2| |#2|)) (-15 -1790 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -2888 (|#2|)) (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 -2656 (|#2|)) (-15 -2074 (|#2|)) (-15 -2473 (|#2| |#2|)) (-15 -2602 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -3251 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -3726 (|#2| |#2|)) (-15 -1245 (|#2| |#2|)) (-15 -1984 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4129 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -1742 (|#2| |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -2517 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -2276 (|#2| |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -3305 (|#2| |#2|)) (-15 -3195 (|#2| |#2|)) (-15 -3595 (|#2| |#2|)) (-15 -1264 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -4056 (|#2| |#2|)) (-15 -1735 ((-3 |#2| "failed") |#2| (-585 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -3210 ((-108) |#2|))) +((-1941 (((-3 |#2| "failed") (-585 (-558 |#2|)) |#2| (-1082)) 133)) (-3837 ((|#2| (-379 (-519)) |#2|) 50)) (-3450 ((|#2| |#2| (-558 |#2|)) 126)) (-1442 (((-2 (|:| |func| |#2|) (|:| |kers| (-585 (-558 |#2|))) (|:| |vals| (-585 |#2|))) |#2| (-1082)) 125)) (-2210 ((|#2| |#2| (-1082)) 19) ((|#2| |#2|) 22)) (-3161 ((|#2| |#2| (-1082)) 139) ((|#2| |#2|) 137))) +(((-252 |#1| |#2|) (-10 -7 (-15 -3161 (|#2| |#2|)) (-15 -3161 (|#2| |#2| (-1082))) (-15 -1442 ((-2 (|:| |func| |#2|) (|:| |kers| (-585 (-558 |#2|))) (|:| |vals| (-585 |#2|))) |#2| (-1082))) (-15 -2210 (|#2| |#2|)) (-15 -2210 (|#2| |#2| (-1082))) (-15 -1941 ((-3 |#2| "failed") (-585 (-558 |#2|)) |#2| (-1082))) (-15 -3450 (|#2| |#2| (-558 |#2|))) (-15 -3837 (|#2| (-379 (-519)) |#2|))) (-13 (-511) (-782) (-959 (-519)) (-581 (-519))) (-13 (-27) (-1103) (-402 |#1|))) (T -252)) +((-3837 (*1 *2 *3 *2) (-12 (-5 *3 (-379 (-519))) (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4))))) (-3450 (*1 *2 *2 *3) (-12 (-5 *3 (-558 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4))) (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-252 *4 *2)))) (-1941 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-585 (-558 *2))) (-5 *4 (-1082)) (-4 *2 (-13 (-27) (-1103) (-402 *5))) (-4 *5 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-252 *5 *2)))) (-2210 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4))))) (-2210 (*1 *2 *2) (-12 (-4 *3 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3))))) (-1442 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-585 (-558 *3))) (|:| |vals| (-585 *3)))) (-5 *1 (-252 *5 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))))) (-3161 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4))))) (-3161 (*1 *2 *2) (-12 (-4 *3 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3)))))) +(-10 -7 (-15 -3161 (|#2| |#2|)) (-15 -3161 (|#2| |#2| (-1082))) (-15 -1442 ((-2 (|:| |func| |#2|) (|:| |kers| (-585 (-558 |#2|))) (|:| |vals| (-585 |#2|))) |#2| (-1082))) (-15 -2210 (|#2| |#2|)) (-15 -2210 (|#2| |#2| (-1082))) (-15 -1941 ((-3 |#2| "failed") (-585 (-558 |#2|)) |#2| (-1082))) (-15 -3450 (|#2| |#2| (-558 |#2|))) (-15 -3837 (|#2| (-379 (-519)) |#2|))) +((-3984 (((-3 |#3| "failed") |#3|) 110)) (-2958 ((|#3| |#3|) 131)) (-3313 (((-3 |#3| "failed") |#3|) 82)) (-2823 ((|#3| |#3|) 121)) (-2138 (((-3 |#3| "failed") |#3|) 58)) (-2934 ((|#3| |#3|) 129)) (-3172 (((-3 |#3| "failed") |#3|) 46)) (-2800 ((|#3| |#3|) 119)) (-3135 (((-3 |#3| "failed") |#3|) 112)) (-2981 ((|#3| |#3|) 133)) (-1996 (((-3 |#3| "failed") |#3|) 84)) (-2844 ((|#3| |#3|) 123)) (-4190 (((-3 |#3| "failed") |#3| (-705)) 36)) (-2364 (((-3 |#3| "failed") |#3|) 74)) (-1254 ((|#3| |#3|) 118)) (-1357 (((-3 |#3| "failed") |#3|) 44)) (-3325 ((|#3| |#3|) 117)) (-1565 (((-3 |#3| "failed") |#3|) 113)) (-1754 ((|#3| |#3|) 134)) (-1545 (((-3 |#3| "failed") |#3|) 85)) (-2854 ((|#3| |#3|) 124)) (-2454 (((-3 |#3| "failed") |#3|) 111)) (-2969 ((|#3| |#3|) 132)) (-3349 (((-3 |#3| "failed") |#3|) 83)) (-2834 ((|#3| |#3|) 122)) (-3690 (((-3 |#3| "failed") |#3|) 60)) (-2946 ((|#3| |#3|) 130)) (-2831 (((-3 |#3| "failed") |#3|) 48)) (-2812 ((|#3| |#3|) 120)) (-2193 (((-3 |#3| "failed") |#3|) 66)) (-1774 ((|#3| |#3|) 137)) (-2671 (((-3 |#3| "failed") |#3|) 104)) (-2886 ((|#3| |#3|) 142)) (-2484 (((-3 |#3| "failed") |#3|) 62)) (-1761 ((|#3| |#3|) 135)) (-2170 (((-3 |#3| "failed") |#3|) 50)) (-2865 ((|#3| |#3|) 125)) (-3205 (((-3 |#3| "failed") |#3|) 70)) (-1790 ((|#3| |#3|) 139)) (-2472 (((-3 |#3| "failed") |#3|) 54)) (-2910 ((|#3| |#3|) 127)) (-1516 (((-3 |#3| "failed") |#3|) 72)) (-3929 ((|#3| |#3|) 140)) (-1434 (((-3 |#3| "failed") |#3|) 56)) (-2922 ((|#3| |#3|) 128)) (-4153 (((-3 |#3| "failed") |#3|) 68)) (-1783 ((|#3| |#3|) 138)) (-3799 (((-3 |#3| "failed") |#3|) 107)) (-2898 ((|#3| |#3|) 143)) (-4114 (((-3 |#3| "failed") |#3|) 64)) (-1768 ((|#3| |#3|) 136)) (-2726 (((-3 |#3| "failed") |#3|) 52)) (-2875 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-379 (-519))) 40 (|has| |#1| (-335))))) +(((-253 |#1| |#2| |#3|) (-13 (-907 |#3|) (-10 -7 (IF (|has| |#1| (-335)) (-15 ** (|#3| |#3| (-379 (-519)))) |%noBranch|) (-15 -3325 (|#3| |#3|)) (-15 -1254 (|#3| |#3|)) (-15 -2800 (|#3| |#3|)) (-15 -2812 (|#3| |#3|)) (-15 -2823 (|#3| |#3|)) (-15 -2834 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2854 (|#3| |#3|)) (-15 -2865 (|#3| |#3|)) (-15 -2875 (|#3| |#3|)) (-15 -2886 (|#3| |#3|)) (-15 -2898 (|#3| |#3|)) (-15 -2910 (|#3| |#3|)) (-15 -2922 (|#3| |#3|)) (-15 -2934 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1761 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1774 (|#3| |#3|)) (-15 -1783 (|#3| |#3|)) (-15 -1790 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)))) (-37 (-379 (-519))) (-1154 |#1|) (-1125 |#1| |#2|)) (T -253)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-379 (-519))) (-4 *4 (-335)) (-4 *4 (-37 *3)) (-4 *5 (-1154 *4)) (-5 *1 (-253 *4 *5 *2)) (-4 *2 (-1125 *4 *5)))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-1254 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2812 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2823 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2834 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2854 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2865 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2875 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2886 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2922 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2934 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2969 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-1761 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-1768 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-1774 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-1783 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-1790 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4))))) +(-13 (-907 |#3|) (-10 -7 (IF (|has| |#1| (-335)) (-15 ** (|#3| |#3| (-379 (-519)))) |%noBranch|) (-15 -3325 (|#3| |#3|)) (-15 -1254 (|#3| |#3|)) (-15 -2800 (|#3| |#3|)) (-15 -2812 (|#3| |#3|)) (-15 -2823 (|#3| |#3|)) (-15 -2834 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2854 (|#3| |#3|)) (-15 -2865 (|#3| |#3|)) (-15 -2875 (|#3| |#3|)) (-15 -2886 (|#3| |#3|)) (-15 -2898 (|#3| |#3|)) (-15 -2910 (|#3| |#3|)) (-15 -2922 (|#3| |#3|)) (-15 -2934 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1761 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1774 (|#3| |#3|)) (-15 -1783 (|#3| |#3|)) (-15 -1790 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)))) +((-3984 (((-3 |#3| "failed") |#3|) 66)) (-2958 ((|#3| |#3|) 133)) (-3313 (((-3 |#3| "failed") |#3|) 50)) (-2823 ((|#3| |#3|) 121)) (-2138 (((-3 |#3| "failed") |#3|) 62)) (-2934 ((|#3| |#3|) 131)) (-3172 (((-3 |#3| "failed") |#3|) 46)) (-2800 ((|#3| |#3|) 119)) (-3135 (((-3 |#3| "failed") |#3|) 70)) (-2981 ((|#3| |#3|) 135)) (-1996 (((-3 |#3| "failed") |#3|) 54)) (-2844 ((|#3| |#3|) 123)) (-4190 (((-3 |#3| "failed") |#3| (-705)) 35)) (-2364 (((-3 |#3| "failed") |#3|) 44)) (-1254 ((|#3| |#3|) 112)) (-1357 (((-3 |#3| "failed") |#3|) 42)) (-3325 ((|#3| |#3|) 118)) (-1565 (((-3 |#3| "failed") |#3|) 72)) (-1754 ((|#3| |#3|) 136)) (-1545 (((-3 |#3| "failed") |#3|) 56)) (-2854 ((|#3| |#3|) 124)) (-2454 (((-3 |#3| "failed") |#3|) 68)) (-2969 ((|#3| |#3|) 134)) (-3349 (((-3 |#3| "failed") |#3|) 52)) (-2834 ((|#3| |#3|) 122)) (-3690 (((-3 |#3| "failed") |#3|) 64)) (-2946 ((|#3| |#3|) 132)) (-2831 (((-3 |#3| "failed") |#3|) 48)) (-2812 ((|#3| |#3|) 120)) (-2193 (((-3 |#3| "failed") |#3|) 78)) (-1774 ((|#3| |#3|) 139)) (-2671 (((-3 |#3| "failed") |#3|) 58)) (-2886 ((|#3| |#3|) 127)) (-2484 (((-3 |#3| "failed") |#3|) 74)) (-1761 ((|#3| |#3|) 137)) (-2170 (((-3 |#3| "failed") |#3|) 102)) (-2865 ((|#3| |#3|) 125)) (-3205 (((-3 |#3| "failed") |#3|) 82)) (-1790 ((|#3| |#3|) 141)) (-2472 (((-3 |#3| "failed") |#3|) 109)) (-2910 ((|#3| |#3|) 129)) (-1516 (((-3 |#3| "failed") |#3|) 84)) (-3929 ((|#3| |#3|) 142)) (-1434 (((-3 |#3| "failed") |#3|) 111)) (-2922 ((|#3| |#3|) 130)) (-4153 (((-3 |#3| "failed") |#3|) 80)) (-1783 ((|#3| |#3|) 140)) (-3799 (((-3 |#3| "failed") |#3|) 60)) (-2898 ((|#3| |#3|) 128)) (-4114 (((-3 |#3| "failed") |#3|) 76)) (-1768 ((|#3| |#3|) 138)) (-2726 (((-3 |#3| "failed") |#3|) 105)) (-2875 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-379 (-519))) 40 (|has| |#1| (-335))))) +(((-254 |#1| |#2| |#3| |#4|) (-13 (-907 |#3|) (-10 -7 (IF (|has| |#1| (-335)) (-15 ** (|#3| |#3| (-379 (-519)))) |%noBranch|) (-15 -3325 (|#3| |#3|)) (-15 -1254 (|#3| |#3|)) (-15 -2800 (|#3| |#3|)) (-15 -2812 (|#3| |#3|)) (-15 -2823 (|#3| |#3|)) (-15 -2834 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2854 (|#3| |#3|)) (-15 -2865 (|#3| |#3|)) (-15 -2875 (|#3| |#3|)) (-15 -2886 (|#3| |#3|)) (-15 -2898 (|#3| |#3|)) (-15 -2910 (|#3| |#3|)) (-15 -2922 (|#3| |#3|)) (-15 -2934 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1761 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1774 (|#3| |#3|)) (-15 -1783 (|#3| |#3|)) (-15 -1790 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)))) (-37 (-379 (-519))) (-1123 |#1|) (-1146 |#1| |#2|) (-907 |#2|)) (T -254)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-379 (-519))) (-4 *4 (-335)) (-4 *4 (-37 *3)) (-4 *5 (-1123 *4)) (-5 *1 (-254 *4 *5 *2 *6)) (-4 *2 (-1146 *4 *5)) (-4 *6 (-907 *5)))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-1254 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2812 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2823 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2834 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2854 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2865 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2875 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2886 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2922 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2934 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2946 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2958 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2969 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-1761 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-1768 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-1774 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-1783 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-1790 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4))))) +(-13 (-907 |#3|) (-10 -7 (IF (|has| |#1| (-335)) (-15 ** (|#3| |#3| (-379 (-519)))) |%noBranch|) (-15 -3325 (|#3| |#3|)) (-15 -1254 (|#3| |#3|)) (-15 -2800 (|#3| |#3|)) (-15 -2812 (|#3| |#3|)) (-15 -2823 (|#3| |#3|)) (-15 -2834 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2854 (|#3| |#3|)) (-15 -2865 (|#3| |#3|)) (-15 -2875 (|#3| |#3|)) (-15 -2886 (|#3| |#3|)) (-15 -2898 (|#3| |#3|)) (-15 -2910 (|#3| |#3|)) (-15 -2922 (|#3| |#3|)) (-15 -2934 (|#3| |#3|)) (-15 -2946 (|#3| |#3|)) (-15 -2958 (|#3| |#3|)) (-15 -2969 (|#3| |#3|)) (-15 -2981 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1761 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1774 (|#3| |#3|)) (-15 -1783 (|#3| |#3|)) (-15 -1790 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)))) +((-1640 (($ (-1 (-108) |#2|) $) 23)) (-2366 (($ $) 36)) (-2502 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-1438 (($ |#2| $) 31) (($ (-1 (-108) |#2|) $) 17)) (-2511 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1672 (($ |#2| $ (-519)) 19) (($ $ $ (-519)) 21)) (-3720 (($ $ (-519)) 11) (($ $ (-1130 (-519))) 14)) (-3954 (($ $ |#2|) 29) (($ $ $) NIL)) (-4150 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-585 $)) NIL))) +(((-255 |#1| |#2|) (-10 -8 (-15 -2511 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#2| |#1|)) (-15 -2511 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2502 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3954 (|#1| |#1| |#1|)) (-15 -3954 (|#1| |#1| |#2|)) (-15 -1672 (|#1| |#1| |#1| (-519))) (-15 -1672 (|#1| |#2| |#1| (-519))) (-15 -3720 (|#1| |#1| (-1130 (-519)))) (-15 -3720 (|#1| |#1| (-519))) (-15 -4150 (|#1| (-585 |#1|))) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4150 (|#1| |#2| |#1|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -1438 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1640 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1438 (|#1| |#2| |#1|)) (-15 -2366 (|#1| |#1|))) (-256 |#2|) (-1117)) (T -255)) +NIL +(-10 -8 (-15 -2511 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#2| |#1|)) (-15 -2511 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2502 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3954 (|#1| |#1| |#1|)) (-15 -3954 (|#1| |#1| |#2|)) (-15 -1672 (|#1| |#1| |#1| (-519))) (-15 -1672 (|#1| |#2| |#1| (-519))) (-15 -3720 (|#1| |#1| (-1130 (-519)))) (-15 -3720 (|#1| |#1| (-519))) (-15 -4150 (|#1| (-585 |#1|))) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4150 (|#1| |#2| |#1|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -1438 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1640 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1438 (|#1| |#2| |#1|)) (-15 -2366 (|#1| |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1583 (((-1168) $ (-519) (-519)) 40 (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) 8)) (-2421 ((|#1| $ (-519) |#1|) 52 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) 58 (|has| $ (-6 -4222)))) (-2846 (($ (-1 (-108) |#1|) $) 85)) (-1640 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-1552 (($ $) 83 (|has| |#1| (-1011)))) (-2366 (($ $) 78 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2502 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1011)))) (-1438 (($ |#1| $) 77 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) 53 (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) 51)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-1822 (($ (-705) |#1|) 69)) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 43 (|has| (-519) (-782)))) (-2511 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 44 (|has| (-519) (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1846 (($ |#1| $ (-519)) 88) (($ $ $ (-519)) 87)) (-1672 (($ |#1| $ (-519)) 60) (($ $ $ (-519)) 59)) (-3909 (((-585 (-519)) $) 46)) (-1506 (((-108) (-519) $) 47)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2331 ((|#1| $) 42 (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3640 (($ $ |#1|) 41 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) 48)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ (-519) |#1|) 50) ((|#1| $ (-519)) 49) (($ $ (-1130 (-519))) 63)) (-2137 (($ $ (-519)) 91) (($ $ (-1130 (-519))) 90)) (-3720 (($ $ (-519)) 62) (($ $ (-1130 (-519))) 61)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 79 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 70)) (-3954 (($ $ |#1|) 93) (($ $ $) 92)) (-4150 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-585 $)) 65)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-256 |#1|) (-1194) (-1117)) (T -256)) +((-3954 (*1 *1 *1 *2) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1117)))) (-3954 (*1 *1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1117)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-256 *3)) (-4 *3 (-1117)))) (-2137 (*1 *1 *1 *2) (-12 (-5 *2 (-1130 (-519))) (-4 *1 (-256 *3)) (-4 *3 (-1117)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-256 *3)) (-4 *3 (-1117)))) (-1846 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *1 (-256 *2)) (-4 *2 (-1117)))) (-1846 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-256 *3)) (-4 *3 (-1117)))) (-2511 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-256 *3)) (-4 *3 (-1117)))) (-2846 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-256 *3)) (-4 *3 (-1117)))) (-2502 (*1 *1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1117)) (-4 *2 (-1011)))) (-1552 (*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1117)) (-4 *2 (-1011)))) (-2511 (*1 *1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1117)) (-4 *2 (-782))))) +(-13 (-590 |t#1|) (-10 -8 (-6 -4222) (-15 -3954 ($ $ |t#1|)) (-15 -3954 ($ $ $)) (-15 -2137 ($ $ (-519))) (-15 -2137 ($ $ (-1130 (-519)))) (-15 -2502 ($ (-1 (-108) |t#1|) $)) (-15 -1846 ($ |t#1| $ (-519))) (-15 -1846 ($ $ $ (-519))) (-15 -2511 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -2846 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1011)) (PROGN (-15 -2502 ($ |t#1| $)) (-15 -1552 ($ $))) |%noBranch|) (IF (|has| |t#1| (-782)) (-15 -2511 ($ $ $)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-260 #0=(-519) |#1|) . T) ((-262 #0# |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-552 #0# |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-590 |#1|) . T) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) ((** (($ $ $) 10))) -(((-255 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-256)) (T -255)) +(((-257 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-258)) (T -257)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-1232 (($ $) 6)) (-3898 (($ $) 7)) (** (($ $ $) 8))) -(((-256) (-1189)) (T -256)) -((** (*1 *1 *1 *1) (-4 *1 (-256))) (-3898 (*1 *1 *1) (-4 *1 (-256))) (-1232 (*1 *1 *1) (-4 *1 (-256)))) -(-13 (-10 -8 (-15 -1232 ($ $)) (-15 -3898 ($ $)) (-15 ** ($ $ $)))) -((-2068 (((-583 (-1058 |#1|)) (-1058 |#1|) |#1|) 35)) (-2233 ((|#2| |#2| |#1|) 38)) (-2652 ((|#2| |#2| |#1|) 40)) (-3677 ((|#2| |#2| |#1|) 39))) -(((-257 |#1| |#2|) (-10 -7 (-15 -2233 (|#2| |#2| |#1|)) (-15 -3677 (|#2| |#2| |#1|)) (-15 -2652 (|#2| |#2| |#1|)) (-15 -2068 ((-583 (-1058 |#1|)) (-1058 |#1|) |#1|))) (-333) (-1149 |#1|)) (T -257)) -((-2068 (*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1058 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1058 *4)) (-4 *5 (-1149 *4)))) (-2652 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3)))) (-3677 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3)))) (-2233 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3))))) -(-10 -7 (-15 -2233 (|#2| |#2| |#1|)) (-15 -3677 (|#2| |#2| |#1|)) (-15 -2652 (|#2| |#2| |#1|)) (-15 -2068 ((-583 (-1058 |#1|)) (-1058 |#1|) |#1|))) -((-2612 ((|#2| $ |#1|) 6))) -(((-258 |#1| |#2|) (-1189) (-1006) (-1112)) (T -258)) -((-2612 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112))))) -(-13 (-10 -8 (-15 -2612 (|t#2| $ |t#1|)))) -((-2750 ((|#3| $ |#2| |#3|) 12)) (-2557 ((|#3| $ |#2|) 10))) -(((-259 |#1| |#2| |#3|) (-10 -8 (-15 -2750 (|#3| |#1| |#2| |#3|)) (-15 -2557 (|#3| |#1| |#2|))) (-260 |#2| |#3|) (-1006) (-1112)) (T -259)) -NIL -(-10 -8 (-15 -2750 (|#3| |#1| |#2| |#3|)) (-15 -2557 (|#3| |#1| |#2|))) -((-2436 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4196)))) (-2750 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) 11)) (-2612 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-260 |#1| |#2|) (-1189) (-1006) (-1112)) (T -260)) -((-2612 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))) (-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))) (-2436 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))) (-2750 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112))))) -(-13 (-258 |t#1| |t#2|) (-10 -8 (-15 -2612 (|t#2| $ |t#1| |t#2|)) (-15 -2557 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4196)) (PROGN (-15 -2436 (|t#2| $ |t#1| |t#2|)) (-15 -2750 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-258 |#1| |#2|) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 35)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 40)) (-2491 (($ $) 38)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) 33)) (-1510 (($ |#2| |#3|) 19)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2263 ((|#3| $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 20)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1503 (((-3 $ "failed") $ $) NIL)) (-3388 (((-703) $) 34)) (-2612 ((|#2| $ |#2|) 42)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 24)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 29 T CONST)) (-3675 (($) 36 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 37))) -(((-261 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-278) (-10 -8 (-15 -2263 (|#3| $)) (-15 -2262 (|#2| $)) (-15 -1510 ($ |#2| |#3|)) (-15 -1503 ((-3 $ "failed") $ $)) (-15 -3550 ((-3 $ "failed") $)) (-15 -2291 ($ $)) (-15 -2612 (|#2| $ |#2|)))) (-156) (-1134 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -261)) -((-3550 (*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2263 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1134 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2262 (*1 *2 *1) (-12 (-4 *2 (-1134 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1510 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1134 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1503 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2291 (*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2612 (*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1134 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-278) (-10 -8 (-15 -2263 (|#3| $)) (-15 -2262 (|#2| $)) (-15 -1510 ($ |#2| |#3|)) (-15 -1503 ((-3 $ "failed") $ $)) (-15 -3550 ((-3 $ "failed") $)) (-15 -2291 ($ $)) (-15 -2612 (|#2| $ |#2|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-262) (-1189)) (T -262)) -NIL -(-13 (-964) (-106 $ $) (-10 -7 (-6 -4188))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2816 (((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|)))) 84)) (-2550 (((-583 (-623 (-377 (-876 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|)))))) (-623 (-377 (-876 |#1|)))) 79) (((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|))) (-703) (-703)) 37)) (-2869 (((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|)))) 81)) (-3597 (((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|)))) 61)) (-3357 (((-583 (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (-623 (-377 (-876 |#1|)))) 60)) (-3848 (((-876 |#1|) (-623 (-377 (-876 |#1|)))) 48) (((-876 |#1|) (-623 (-377 (-876 |#1|))) (-1077)) 49))) -(((-263 |#1|) (-10 -7 (-15 -3848 ((-876 |#1|) (-623 (-377 (-876 |#1|))) (-1077))) (-15 -3848 ((-876 |#1|) (-623 (-377 (-876 |#1|))))) (-15 -3357 ((-583 (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (-623 (-377 (-876 |#1|))))) (-15 -3597 ((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|))))) (-15 -2550 ((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|))) (-703) (-703))) (-15 -2550 ((-583 (-623 (-377 (-876 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|)))))) (-623 (-377 (-876 |#1|))))) (-15 -2816 ((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|))))) (-15 -2869 ((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|)))))) (-421)) (T -263)) -((-2869 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-876 *4)))))) (-2816 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-876 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-876 *4)))))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-876 *5)) (-1067 (-1077) (-876 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-876 *5)))))) (-2550 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-876 *6)) (-1067 (-1077) (-876 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-876 *6)))))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-876 *5)) (-1067 (-1077) (-876 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-876 *5)))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-876 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4))))) (-5 *1 (-263 *4)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-876 *4)))) (-5 *2 (-876 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-876 *5)))) (-5 *4 (-1077)) (-5 *2 (-876 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421))))) -(-10 -7 (-15 -3848 ((-876 |#1|) (-623 (-377 (-876 |#1|))) (-1077))) (-15 -3848 ((-876 |#1|) (-623 (-377 (-876 |#1|))))) (-15 -3357 ((-583 (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (-623 (-377 (-876 |#1|))))) (-15 -3597 ((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|))))) (-15 -2550 ((-583 (-623 (-377 (-876 |#1|)))) (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|))) (-623 (-377 (-876 |#1|))) (-703) (-703))) (-15 -2550 ((-583 (-623 (-377 (-876 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|)))))) (-623 (-377 (-876 |#1|))))) (-15 -2816 ((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|))))) (-15 -2869 ((-583 (-2 (|:| |eigval| (-3 (-377 (-876 |#1|)) (-1067 (-1077) (-876 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-876 |#1|))))))) (-623 (-377 (-876 |#1|)))))) -((-3312 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 14))) -(((-264 |#1| |#2|) (-10 -7 (-15 -3312 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1112) (-1112)) (T -264)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6))))) -(-10 -7 (-15 -3312 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1992 (((-107) $) NIL (|has| |#1| (-21)))) (-3326 (($ $) 22)) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3939 (($ $ $) 93 (|has| |#1| (-273)))) (-3038 (($) NIL (-3786 (|has| |#1| (-21)) (|has| |#1| (-659))) CONST)) (-3080 (($ $) 8 (|has| |#1| (-21)))) (-3699 (((-3 $ "failed") $) 68 (|has| |#1| (-659)))) (-2506 ((|#1| $) 21)) (-3550 (((-3 $ "failed") $) 66 (|has| |#1| (-659)))) (-1690 (((-107) $) NIL (|has| |#1| (-659)))) (-3312 (($ (-1 |#1| |#1|) $) 24)) (-2499 ((|#1| $) 9)) (-3613 (($ $) 57 (|has| |#1| (-21)))) (-4167 (((-3 $ "failed") $) 67 (|has| |#1| (-659)))) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2291 (($ $) 70 (-3786 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1755 (((-583 $) $) 19 (|has| |#1| (-509)))) (-3552 (($ $ $) 34 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 $)) 37 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-1077) |#1|) 27 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 31 (|has| |#1| (-478 (-1077) |#1|)))) (-2960 (($ |#1| |#1|) 17)) (-1470 (((-125)) 88 (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) 85 (|has| |#1| (-824 (-1077))))) (-1853 (($ $ $) NIL (|has| |#1| (-442)))) (-1970 (($ $ $) NIL (|has| |#1| (-442)))) (-2262 (($ (-517)) NIL (|has| |#1| (-964))) (((-107) $) 45 (|has| |#1| (-1006))) (((-787) $) 44 (|has| |#1| (-1006)))) (-1818 (((-703)) 73 (|has| |#1| (-964)))) (-2806 (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-845)) NIL (|has| |#1| (-1018)))) (-3663 (($) 55 (|has| |#1| (-21)) CONST)) (-3675 (($) 63 (|has| |#1| (-659)) CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077))))) (-1572 (($ |#1| |#1|) 20) (((-107) $ $) 40 (|has| |#1| (-1006)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 90 (-3786 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-1680 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1666 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-845)) NIL (|has| |#1| (-1018)))) (* (($ $ |#1|) 61 (|has| |#1| (-1018))) (($ |#1| $) 60 (|has| |#1| (-1018))) (($ $ $) 59 (|has| |#1| (-1018))) (($ (-517) $) 76 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-845) $) NIL (|has| |#1| (-25))))) -(((-265 |#1|) (-13 (-1112) (-10 -8 (-15 -1572 ($ |#1| |#1|)) (-15 -2960 ($ |#1| |#1|)) (-15 -3326 ($ $)) (-15 -2499 (|#1| $)) (-15 -2506 (|#1| $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1077) |#1|)) (-6 (-478 (-1077) |#1|)) |%noBranch|) (IF (|has| |#1| (-1006)) (PROGN (-6 (-1006)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -3552 ($ $ $)) (-15 -3552 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1666 ($ |#1| $)) (-15 -1666 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3613 ($ $)) (-15 -3080 ($ $)) (-15 -1680 ($ |#1| $)) (-15 -1680 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -4167 ((-3 $ "failed") $)) (-15 -3699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -4167 ((-3 $ "failed") $)) (-15 -3699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-6 (-964)) (-6 (-106 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|) (IF (|has| |#1| (-509)) (-15 -1755 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-824 (-1077))) (-6 (-824 (-1077))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1165 |#1|)) (-15 -1692 ($ $ $)) (-15 -2291 ($ $))) |%noBranch|) (IF (|has| |#1| (-273)) (-15 -3939 ($ $ $)) |%noBranch|))) (-1112)) (T -265)) -((-1572 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) (-2960 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) (-3326 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) (-2499 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) (-2506 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-265 *3)))) (-3552 (*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1006)) (-4 *2 (-1112)) (-5 *1 (-265 *2)))) (-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1006)) (-4 *3 (-1112)) (-5 *1 (-265 *3)))) (-1666 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1112)))) (-1666 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1112)))) (-3613 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))) (-3080 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))) (-1680 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))) (-1680 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))) (-4167 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1112)))) (-3699 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1112)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1112)))) (-3939 (*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1112)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1018)) (-4 *2 (-1112)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1018)) (-4 *2 (-1112)))) (-1692 (*1 *1 *1 *1) (-3786 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1112))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1112))))) (-2291 (*1 *1 *1) (-3786 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1112))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1112)))))) -(-13 (-1112) (-10 -8 (-15 -1572 ($ |#1| |#1|)) (-15 -2960 ($ |#1| |#1|)) (-15 -3326 ($ $)) (-15 -2499 (|#1| $)) (-15 -2506 (|#1| $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1077) |#1|)) (-6 (-478 (-1077) |#1|)) |%noBranch|) (IF (|has| |#1| (-1006)) (PROGN (-6 (-1006)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -3552 ($ $ $)) (-15 -3552 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1666 ($ |#1| $)) (-15 -1666 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3613 ($ $)) (-15 -3080 ($ $)) (-15 -1680 ($ |#1| $)) (-15 -1680 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1018)) (PROGN (-6 (-1018)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -4167 ((-3 $ "failed") $)) (-15 -3699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -4167 ((-3 $ "failed") $)) (-15 -3699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-6 (-964)) (-6 (-106 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|) (IF (|has| |#1| (-509)) (-15 -1755 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-824 (-1077))) (-6 (-824 (-1077))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1165 |#1|)) (-15 -1692 ($ $ $)) (-15 -2291 ($ $))) |%noBranch|) (IF (|has| |#1| (-273)) (-15 -3939 ($ $ $)) |%noBranch|))) -((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) NIL)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-266 |#1| |#2|) (-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) (-1006) (-1006)) (T -266)) -NIL -(-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) -((-3113 (((-282) (-1060) (-583 (-1060))) 16) (((-282) (-1060) (-1060)) 15) (((-282) (-583 (-1060))) 14) (((-282) (-1060)) 12))) -(((-267) (-10 -7 (-15 -3113 ((-282) (-1060))) (-15 -3113 ((-282) (-583 (-1060)))) (-15 -3113 ((-282) (-1060) (-1060))) (-15 -3113 ((-282) (-1060) (-583 (-1060)))))) (T -267)) -((-3113 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1060))) (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-267)))) (-3113 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-267)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-282)) (-5 *1 (-267)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-267))))) -(-10 -7 (-15 -3113 ((-282) (-1060))) (-15 -3113 ((-282) (-583 (-1060)))) (-15 -3113 ((-282) (-1060) (-1060))) (-15 -3113 ((-282) (-1060) (-583 (-1060))))) -((-3312 ((|#2| (-1 |#2| |#1|) (-1060) (-556 |#1|)) 17))) -(((-268 |#1| |#2|) (-10 -7 (-15 -3312 (|#2| (-1 |#2| |#1|) (-1060) (-556 |#1|)))) (-273) (-1112)) (T -268)) -((-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1060)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1112)) (-5 *1 (-268 *6 *2))))) -(-10 -7 (-15 -3312 (|#2| (-1 |#2| |#1|) (-1060) (-556 |#1|)))) -((-3312 ((|#2| (-1 |#2| |#1|) (-556 |#1|)) 17))) -(((-269 |#1| |#2|) (-10 -7 (-15 -3312 (|#2| (-1 |#2| |#1|) (-556 |#1|)))) (-273) (-273)) (T -269)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2))))) -(-10 -7 (-15 -3312 (|#2| (-1 |#2| |#1|) (-556 |#1|)))) -((-3558 (((-107) (-199)) 10))) -(((-270 |#1| |#2|) (-10 -7 (-15 -3558 ((-107) (-199)))) (-199) (-199)) (T -270)) -((-3558 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -3558 ((-107) (-199)))) -((-2454 (((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199)))) 88)) (-1493 (((-1058 (-199)) (-1158 (-286 (-199))) (-583 (-1077)) (-1001 (-772 (-199)))) 103) (((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199)))) 58)) (-2595 (((-583 (-1060)) (-1058 (-199))) NIL)) (-2676 (((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199)))) 55)) (-3680 (((-583 (-199)) (-876 (-377 (-517))) (-1077) (-1001 (-772 (-199)))) 47)) (-2093 (((-583 (-1060)) (-583 (-199))) NIL)) (-1356 (((-199) (-1001 (-772 (-199)))) 23)) (-1817 (((-199) (-1001 (-772 (-199)))) 24)) (-1362 (((-107) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 51)) (-3884 (((-1060) (-199)) NIL))) -(((-271) (-10 -7 (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -1362 ((-107) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2676 ((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199))))) (-15 -2454 ((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-1158 (-286 (-199))) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -3680 ((-583 (-199)) (-876 (-377 (-517))) (-1077) (-1001 (-772 (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199)))))) (T -271)) -((-2595 (*1 *2 *3) (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-271)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-271)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-271)))) (-3680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *4 (-1077)) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *4 (-583 (-1077))) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271)))) (-1493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1077))) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271)))) (-2454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1077))) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271)))) (-2676 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1077)) (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271))))) -(-10 -7 (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -1362 ((-107) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2676 ((-583 (-199)) (-286 (-199)) (-1077) (-1001 (-772 (-199))))) (-15 -2454 ((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-286 (-199)) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -1493 ((-1058 (-199)) (-1158 (-286 (-199))) (-583 (-1077)) (-1001 (-772 (-199))))) (-15 -3680 ((-583 (-199)) (-876 (-377 (-517))) (-1077) (-1001 (-772 (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199))))) -((-3864 (((-583 (-556 $)) $) 28)) (-3939 (($ $ (-265 $)) 81) (($ $ (-583 (-265 $))) 121) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3220 (((-3 (-556 $) "failed") $) 111)) (-3402 (((-556 $) $) 110)) (-3314 (($ $) 19) (($ (-583 $)) 55)) (-3854 (((-583 (-109)) $) 37)) (-1325 (((-109) (-109)) 91)) (-3448 (((-107) $) 129)) (-3312 (($ (-1 $ $) (-556 $)) 89)) (-1858 (((-3 (-556 $) "failed") $) 93)) (-1385 (($ (-109) $) 61) (($ (-109) (-583 $)) 99)) (-3731 (((-107) $ (-109)) 115) (((-107) $ (-1077)) 114)) (-1795 (((-703) $) 45)) (-4060 (((-107) $ $) 59) (((-107) $ (-1077)) 50)) (-2278 (((-107) $) 127)) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) 119) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) 84) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1077) (-1 $ (-583 $))) 69) (($ $ (-1077) (-1 $ $)) 75) (($ $ (-583 (-109)) (-583 (-1 $ $))) 83) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 85) (($ $ (-109) (-1 $ (-583 $))) 71) (($ $ (-109) (-1 $ $)) 77)) (-2612 (($ (-109) $) 62) (($ (-109) $ $) 63) (($ (-109) $ $ $) 64) (($ (-109) $ $ $ $) 65) (($ (-109) (-583 $)) 107)) (-1816 (($ $) 52) (($ $ $) 117)) (-3488 (($ $) 17) (($ (-583 $)) 54)) (-4116 (((-107) (-109)) 22))) -(((-272 |#1|) (-10 -8 (-15 -3448 ((-107) |#1|)) (-15 -2278 ((-107) |#1|)) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| |#1|)))) (-15 -4060 ((-107) |#1| (-1077))) (-15 -4060 ((-107) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1385 (|#1| (-109) (-583 |#1|))) (-15 -1385 (|#1| (-109) |#1|)) (-15 -3731 ((-107) |#1| (-1077))) (-15 -3731 ((-107) |#1| (-109))) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -3854 ((-583 (-109)) |#1|)) (-15 -3864 ((-583 (-556 |#1|)) |#1|)) (-15 -1858 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1795 ((-703) |#1|)) (-15 -1816 (|#1| |#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -3314 (|#1| (-583 |#1|))) (-15 -3314 (|#1| |#1|)) (-15 -3488 (|#1| (-583 |#1|))) (-15 -3488 (|#1| |#1|)) (-15 -3939 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3939 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3939 (|#1| |#1| (-265 |#1|))) (-15 -2612 (|#1| (-109) (-583 |#1|))) (-15 -2612 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3402 ((-556 |#1|) |#1|)) (-15 -3220 ((-3 (-556 |#1|) "failed") |#1|))) (-273)) (T -272)) -((-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273))))) -(-10 -8 (-15 -3448 ((-107) |#1|)) (-15 -2278 ((-107) |#1|)) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| |#1|)))) (-15 -4060 ((-107) |#1| (-1077))) (-15 -4060 ((-107) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1385 (|#1| (-109) (-583 |#1|))) (-15 -1385 (|#1| (-109) |#1|)) (-15 -3731 ((-107) |#1| (-1077))) (-15 -3731 ((-107) |#1| (-109))) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -3854 ((-583 (-109)) |#1|)) (-15 -3864 ((-583 (-556 |#1|)) |#1|)) (-15 -1858 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1795 ((-703) |#1|)) (-15 -1816 (|#1| |#1| |#1|)) (-15 -1816 (|#1| |#1|)) (-15 -3314 (|#1| (-583 |#1|))) (-15 -3314 (|#1| |#1|)) (-15 -3488 (|#1| (-583 |#1|))) (-15 -3488 (|#1| |#1|)) (-15 -3939 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3939 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3939 (|#1| |#1| (-265 |#1|))) (-15 -2612 (|#1| (-109) (-583 |#1|))) (-15 -2612 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3402 ((-556 |#1|) |#1|)) (-15 -3220 ((-3 (-556 |#1|) "failed") |#1|))) -((-2105 (((-107) $ $) 7)) (-3864 (((-583 (-556 $)) $) 44)) (-3939 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-3220 (((-3 (-556 $) "failed") $) 69)) (-3402 (((-556 $) $) 68)) (-3314 (($ $) 51) (($ (-583 $)) 50)) (-3854 (((-583 (-109)) $) 43)) (-1325 (((-109) (-109)) 42)) (-3448 (((-107) $) 22 (|has| $ (-955 (-517))))) (-3419 (((-1073 $) (-556 $)) 25 (|has| $ (-964)))) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3312 (($ (-1 $ $) (-556 $)) 36)) (-1858 (((-3 (-556 $) "failed") $) 46)) (-3232 (((-1060) $) 9)) (-1412 (((-583 (-556 $)) $) 45)) (-1385 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-3731 (((-107) $ (-109)) 40) (((-107) $ (-1077)) 39)) (-1795 (((-703) $) 47)) (-4130 (((-1024) $) 10)) (-4060 (((-107) $ $) 35) (((-107) $ (-1077)) 34)) (-2278 (((-107) $) 23 (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1077)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1077) (-1 $ (-583 $))) 31) (($ $ (-1077) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26)) (-2612 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1816 (($ $) 49) (($ $ $) 48)) (-2819 (($ $) 24 (|has| $ (-964)))) (-2262 (((-787) $) 11) (($ (-556 $)) 70)) (-3488 (($ $) 53) (($ (-583 $)) 52)) (-4116 (((-107) (-109)) 41)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18))) -(((-273) (-1189)) (T -273)) -((-2612 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2612 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2612 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2612 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-2612 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) (-3939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3488 (*1 *1 *1) (-4 *1 (-273))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-3314 (*1 *1 *1) (-4 *1 (-273))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-1816 (*1 *1 *1) (-4 *1 (-273))) (-1816 (*1 *1 *1 *1) (-4 *1 (-273))) (-1795 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) (-1858 (*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))) (-1325 (*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-4116 (*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-3731 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-3731 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1077)) (-5 *2 (-107)))) (-1385 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1385 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-3312 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) (-4060 (*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))) (-4060 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1077)) (-5 *2 (-107)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-964)) (-4 *1 (-273)) (-5 *2 (-1073 *1)))) (-2819 (*1 *1 *1) (-12 (-4 *1 (-964)) (-4 *1 (-273)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-955 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-955 (-517))) (-4 *1 (-273)) (-5 *2 (-107))))) -(-13 (-779) (-955 (-556 $)) (-478 (-556 $) $) (-280 $) (-10 -8 (-15 -2612 ($ (-109) $)) (-15 -2612 ($ (-109) $ $)) (-15 -2612 ($ (-109) $ $ $)) (-15 -2612 ($ (-109) $ $ $ $)) (-15 -2612 ($ (-109) (-583 $))) (-15 -3939 ($ $ (-265 $))) (-15 -3939 ($ $ (-583 (-265 $)))) (-15 -3939 ($ $ (-583 (-556 $)) (-583 $))) (-15 -3488 ($ $)) (-15 -3488 ($ (-583 $))) (-15 -3314 ($ $)) (-15 -3314 ($ (-583 $))) (-15 -1816 ($ $)) (-15 -1816 ($ $ $)) (-15 -1795 ((-703) $)) (-15 -1858 ((-3 (-556 $) "failed") $)) (-15 -1412 ((-583 (-556 $)) $)) (-15 -3864 ((-583 (-556 $)) $)) (-15 -3854 ((-583 (-109)) $)) (-15 -1325 ((-109) (-109))) (-15 -4116 ((-107) (-109))) (-15 -3731 ((-107) $ (-109))) (-15 -3731 ((-107) $ (-1077))) (-15 -1385 ($ (-109) $)) (-15 -1385 ($ (-109) (-583 $))) (-15 -3312 ($ (-1 $ $) (-556 $))) (-15 -4060 ((-107) $ $)) (-15 -4060 ((-107) $ (-1077))) (-15 -3552 ($ $ (-583 (-1077)) (-583 (-1 $ $)))) (-15 -3552 ($ $ (-583 (-1077)) (-583 (-1 $ (-583 $))))) (-15 -3552 ($ $ (-1077) (-1 $ (-583 $)))) (-15 -3552 ($ $ (-1077) (-1 $ $))) (-15 -3552 ($ $ (-583 (-109)) (-583 (-1 $ $)))) (-15 -3552 ($ $ (-583 (-109)) (-583 (-1 $ (-583 $))))) (-15 -3552 ($ $ (-109) (-1 $ (-583 $)))) (-15 -3552 ($ $ (-109) (-1 $ $))) (IF (|has| $ (-964)) (PROGN (-15 -3419 ((-1073 $) (-556 $))) (-15 -2819 ($ $))) |%noBranch|) (IF (|has| $ (-955 (-517))) (PROGN (-15 -2278 ((-107) $)) (-15 -3448 ((-107) $))) |%noBranch|))) -(((-97) . T) ((-557 (-787)) . T) ((-280 $) . T) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-779) . T) ((-955 (-556 $)) . T) ((-1006) . T)) -((-4101 (((-583 |#1|) (-583 |#1|)) 10))) -(((-274 |#1|) (-10 -7 (-15 -4101 ((-583 |#1|) (-583 |#1|)))) (-777)) (T -274)) -((-4101 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3))))) -(-10 -7 (-15 -4101 ((-583 |#1|) (-583 |#1|)))) -((-3312 (((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)) 15))) -(((-275 |#1| |#2|) (-10 -7 (-15 -3312 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) (-964) (-964)) (T -275)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6))))) -(-10 -7 (-15 -3312 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) -((-3045 (((-1158 (-286 (-349))) (-1158 (-286 (-199)))) 105)) (-4106 (((-1001 (-772 (-199))) (-1001 (-772 (-349)))) 39)) (-2595 (((-583 (-1060)) (-1058 (-199))) 87)) (-3203 (((-286 (-349)) (-876 (-199))) 49)) (-1371 (((-199) (-876 (-199))) 45)) (-3681 (((-1060) (-349)) 167)) (-2050 (((-772 (-199)) (-772 (-349))) 33)) (-3423 (((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1158 (-286 (-199)))) 142)) (-2770 (((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953)))) 180) (((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) 178)) (-3725 (((-623 (-199)) (-583 (-199)) (-703)) 13)) (-1303 (((-1158 (-632)) (-583 (-199))) 94)) (-2093 (((-583 (-1060)) (-583 (-199))) 74)) (-1742 (((-3 (-286 (-199)) "failed") (-286 (-199))) 120)) (-3558 (((-107) (-199) (-1001 (-772 (-199)))) 109)) (-2139 (((-953) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) 198)) (-1356 (((-199) (-1001 (-772 (-199)))) 107)) (-1817 (((-199) (-1001 (-772 (-199)))) 108)) (-3209 (((-199) (-377 (-517))) 26)) (-2437 (((-1060) (-349)) 72)) (-4000 (((-199) (-349)) 17)) (-1237 (((-349) (-1158 (-286 (-199)))) 153)) (-3180 (((-286 (-199)) (-286 (-349))) 23)) (-1199 (((-377 (-517)) (-286 (-199))) 52)) (-3694 (((-286 (-377 (-517))) (-286 (-199))) 68)) (-3536 (((-286 (-349)) (-286 (-199))) 98)) (-4071 (((-199) (-286 (-199))) 53)) (-1509 (((-583 (-199)) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) 63)) (-1417 (((-1001 (-772 (-199))) (-1001 (-772 (-199)))) 60)) (-3884 (((-1060) (-199)) 71)) (-2878 (((-632) (-199)) 90)) (-2252 (((-377 (-517)) (-199)) 54)) (-2239 (((-286 (-349)) (-199)) 48)) (-3367 (((-583 (-1001 (-772 (-199)))) (-583 (-1001 (-772 (-349))))) 42)) (-4117 (((-953) (-583 (-953))) 163) (((-953) (-953) (-953)) 160)) (-3440 (((-953) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194))) -(((-276) (-10 -7 (-15 -4000 ((-199) (-349))) (-15 -3180 ((-286 (-199)) (-286 (-349)))) (-15 -2050 ((-772 (-199)) (-772 (-349)))) (-15 -4106 ((-1001 (-772 (-199))) (-1001 (-772 (-349))))) (-15 -3367 ((-583 (-1001 (-772 (-199)))) (-583 (-1001 (-772 (-349)))))) (-15 -2252 ((-377 (-517)) (-199))) (-15 -1199 ((-377 (-517)) (-286 (-199)))) (-15 -4071 ((-199) (-286 (-199)))) (-15 -1742 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -1237 ((-349) (-1158 (-286 (-199))))) (-15 -3423 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1158 (-286 (-199))))) (-15 -3694 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -1417 ((-1001 (-772 (-199))) (-1001 (-772 (-199))))) (-15 -1509 ((-583 (-199)) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) (-15 -2878 ((-632) (-199))) (-15 -1303 ((-1158 (-632)) (-583 (-199)))) (-15 -3536 ((-286 (-349)) (-286 (-199)))) (-15 -3045 ((-1158 (-286 (-349))) (-1158 (-286 (-199))))) (-15 -3558 ((-107) (-199) (-1001 (-772 (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2437 ((-1060) (-349))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199)))) (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -4117 ((-953) (-953) (-953))) (-15 -4117 ((-953) (-583 (-953)))) (-15 -3681 ((-1060) (-349))) (-15 -2770 ((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))))) (-15 -2770 ((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))))) (-15 -3440 ((-953) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2139 ((-953) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -3203 ((-286 (-349)) (-876 (-199)))) (-15 -1371 ((-199) (-876 (-199)))) (-15 -2239 ((-286 (-349)) (-199))) (-15 -3209 ((-199) (-377 (-517)))) (-15 -3725 ((-623 (-199)) (-583 (-199)) (-703))))) (T -276)) -((-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-876 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-876 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-953)) (-5 *1 (-276)))) (-3440 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-953)) (-5 *1 (-276)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953)))) (-5 *2 (-953)) (-5 *1 (-276)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *2 (-953)) (-5 *1 (-276)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1060)) (-5 *1 (-276)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-583 (-953))) (-5 *2 (-953)) (-5 *1 (-276)))) (-4117 (*1 *2 *2 *2) (-12 (-5 *2 (-953)) (-5 *1 (-276)))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-276)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-276)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1060)) (-5 *1 (-276)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-276)))) (-3558 (*1 *2 *3 *4) (-12 (-5 *4 (-1001 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *2 (-1158 (-286 (-349)))) (-5 *1 (-276)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-1303 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1158 (-632))) (-5 *1 (-276)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))) (-1417 (*1 *2 *2) (-12 (-5 *2 (-1001 (-772 (-199)))) (-5 *1 (-276)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))) (-1237 (*1 *2 *3) (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))) (-1742 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-1199 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-583 (-1001 (-772 (-349))))) (-5 *2 (-583 (-1001 (-772 (-199))))) (-5 *1 (-276)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1001 (-772 (-349)))) (-5 *2 (-1001 (-772 (-199)))) (-5 *1 (-276)))) (-2050 (*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276))))) -(-10 -7 (-15 -4000 ((-199) (-349))) (-15 -3180 ((-286 (-199)) (-286 (-349)))) (-15 -2050 ((-772 (-199)) (-772 (-349)))) (-15 -4106 ((-1001 (-772 (-199))) (-1001 (-772 (-349))))) (-15 -3367 ((-583 (-1001 (-772 (-199)))) (-583 (-1001 (-772 (-349)))))) (-15 -2252 ((-377 (-517)) (-199))) (-15 -1199 ((-377 (-517)) (-286 (-199)))) (-15 -4071 ((-199) (-286 (-199)))) (-15 -1742 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -1237 ((-349) (-1158 (-286 (-199))))) (-15 -3423 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1158 (-286 (-199))))) (-15 -3694 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -1417 ((-1001 (-772 (-199))) (-1001 (-772 (-199))))) (-15 -1509 ((-583 (-199)) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) (-15 -2878 ((-632) (-199))) (-15 -1303 ((-1158 (-632)) (-583 (-199)))) (-15 -3536 ((-286 (-349)) (-286 (-199)))) (-15 -3045 ((-1158 (-286 (-349))) (-1158 (-286 (-199))))) (-15 -3558 ((-107) (-199) (-1001 (-772 (-199))))) (-15 -3884 ((-1060) (-199))) (-15 -2437 ((-1060) (-349))) (-15 -2093 ((-583 (-1060)) (-583 (-199)))) (-15 -2595 ((-583 (-1060)) (-1058 (-199)))) (-15 -1356 ((-199) (-1001 (-772 (-199))))) (-15 -1817 ((-199) (-1001 (-772 (-199))))) (-15 -4117 ((-953) (-953) (-953))) (-15 -4117 ((-953) (-583 (-953)))) (-15 -3681 ((-1060) (-349))) (-15 -2770 ((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))))) (-15 -2770 ((-953) (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))))) (-15 -3440 ((-953) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2139 ((-953) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -3203 ((-286 (-349)) (-876 (-199)))) (-15 -1371 ((-199) (-876 (-199)))) (-15 -2239 ((-286 (-349)) (-199))) (-15 -3209 ((-199) (-377 (-517)))) (-15 -3725 ((-623 (-199)) (-583 (-199)) (-703)))) -((-1765 (((-107) $ $) 11)) (-2383 (($ $ $) 15)) (-2356 (($ $ $) 14)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 44)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 53)) (-2361 (($ $ $) 21) (($ (-583 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2333 (((-3 $ "failed") $ $) 17)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 46))) -(((-277 |#1|) (-10 -8 (-15 -1731 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2501 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2501 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -1765 ((-107) |#1| |#1|)) (-15 -2677 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -3106 ((-2 (|:| -1570 (-583 |#1|)) (|:| -1306 |#1|)) (-583 |#1|))) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|))) (-278)) (T -277)) -NIL -(-10 -8 (-15 -1731 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2501 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2501 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -1765 ((-107) |#1| |#1|)) (-15 -2677 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -3106 ((-2 (|:| -1570 (-583 |#1|)) (|:| -1306 |#1|)) (-583 |#1|))) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-1690 (((-107) $) 31)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-278) (-1189)) (T -278)) -((-1765 (*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))) (-2018 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-278)))) (-2356 (*1 *1 *1 *1) (-4 *1 (-278))) (-2383 (*1 *1 *1 *1) (-4 *1 (-278))) (-2501 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1))) (-4 *1 (-278)))) (-2501 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) (-1731 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278))))) -(-13 (-844) (-10 -8 (-15 -1765 ((-107) $ $)) (-15 -3388 ((-703) $)) (-15 -2018 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2356 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2501 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $)) (-15 -2501 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1731 ((-3 (-583 $) "failed") (-583 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-3552 (($ $ (-583 |#2|) (-583 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-265 |#2|)) 11) (($ $ (-583 (-265 |#2|))) NIL))) -(((-279 |#1| |#2|) (-10 -8 (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-280 |#2|) (-1006)) (T -279)) -NIL -(-10 -8 (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) -((-3552 (($ $ (-583 |#1|) (-583 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-265 |#1|)) 11) (($ $ (-583 (-265 |#1|))) 10))) -(((-280 |#1|) (-1189) (-1006)) (T -280)) -((-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1006)))) (-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1006))))) -(-13 (-478 |t#1| |t#1|) (-10 -8 (-15 -3552 ($ $ (-265 |t#1|))) (-15 -3552 ($ $ (-583 (-265 |t#1|)))))) -(((-478 |#1| |#1|) . T)) -((-3552 ((|#1| (-1 |#1| (-517)) (-1079 (-377 (-517)))) 24))) -(((-281 |#1|) (-10 -7 (-15 -3552 (|#1| (-1 |#1| (-517)) (-1079 (-377 (-517)))))) (-37 (-377 (-517)))) (T -281)) -((-3552 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1079 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517))))))) -(-10 -7 (-15 -3552 (|#1| (-1 |#1| (-517)) (-1079 (-377 (-517)))))) -((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 7)) (-1572 (((-107) $ $) 9))) -(((-282) (-1006)) (T -282)) -NIL -(-1006) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 62)) (-2964 (((-1144 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-1144 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-517)))) (((-3 (-1143 |#2| |#3| |#4|) "failed") $) 24)) (-3402 (((-1144 |#1| |#2| |#3| |#4|) $) NIL) (((-1077) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-517)))) (((-517) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-517)))) (((-1143 |#2| |#3| |#4|) $) NIL)) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-1144 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1158 (-1144 |#1| |#2| |#3| |#4|)))) (-623 $) (-1158 $)) NIL) (((-623 (-1144 |#1| |#2| |#3| |#4|)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-1144 |#1| |#2| |#3| |#4|) $) 21)) (-1639 (((-3 $ "failed") $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-1053)))) (-2321 (((-107) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-4095 (($ $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-3312 (($ (-1 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|)) $) NIL)) (-3588 (((-3 (-772 |#2|) "failed") $) 76)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-278)))) (-2713 (((-1144 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-1144 |#1| |#2| |#3| |#4|)) (-583 (-1144 |#1| |#2| |#3| |#4|))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-280 (-1144 |#1| |#2| |#3| |#4|)))) (($ $ (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-280 (-1144 |#1| |#2| |#3| |#4|)))) (($ $ (-265 (-1144 |#1| |#2| |#3| |#4|))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-280 (-1144 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-265 (-1144 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-280 (-1144 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-1077)) (-583 (-1144 |#1| |#2| |#3| |#4|))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-478 (-1077) (-1144 |#1| |#2| |#3| |#4|)))) (($ $ (-1077) (-1144 |#1| |#2| |#3| |#4|)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-478 (-1077) (-1144 |#1| |#2| |#3| |#4|))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-1144 |#1| |#2| |#3| |#4|)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-258 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1077)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-1 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-1144 |#1| |#2| |#3| |#4|) $) 17)) (-3367 (((-816 (-517)) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-558 (-493)))) (((-349) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-940))) (((-199) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1144 |#1| |#2| |#3| |#4|) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-1144 |#1| |#2| |#3| |#4|)) 28) (($ (-1077)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-955 (-1077)))) (($ (-1143 |#2| |#3| |#4|)) 36)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-1144 |#1| |#2| |#3| |#4|) (-833))) (|has| (-1144 |#1| |#2| |#3| |#4|) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-1144 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-502)))) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 41 T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1077)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-824 (-1077)))) (($ $ (-1 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-1144 |#1| |#2| |#3| |#4|) (-779)))) (-1692 (($ $ $) 33) (($ (-1144 |#1| |#2| |#3| |#4|) (-1144 |#1| |#2| |#3| |#4|)) 30)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-1144 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1144 |#1| |#2| |#3| |#4|)) NIL))) -(((-283 |#1| |#2| |#3| |#4|) (-13 (-912 (-1144 |#1| |#2| |#3| |#4|)) (-955 (-1143 |#2| |#3| |#4|)) (-10 -8 (-15 -3588 ((-3 (-772 |#2|) "failed") $)) (-15 -2262 ($ (-1143 |#2| |#3| |#4|))))) (-13 (-779) (-955 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1098) (-400 |#1|)) (-1077) |#2|) (T -283)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1143 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077)) (-14 *6 *4) (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) (-3588 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077)) (-14 *6 *4)))) -(-13 (-912 (-1144 |#1| |#2| |#3| |#4|)) (-955 (-1143 |#2| |#3| |#4|)) (-10 -8 (-15 -3588 ((-3 (-772 |#2|) "failed") $)) (-15 -2262 ($ (-1143 |#2| |#3| |#4|))))) -((-3312 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 13))) -(((-284 |#1| |#2|) (-10 -7 (-15 -3312 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-779) (-779)) (T -284)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6))))) -(-10 -7 (-15 -3312 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) -((-2131 (((-51) |#2| (-265 |#2|) (-703)) 33) (((-51) |#2| (-265 |#2|)) 24) (((-51) |#2| (-703)) 28) (((-51) |#2|) 25) (((-51) (-1077)) 21)) (-3452 (((-51) |#2| (-265 |#2|) (-377 (-517))) 51) (((-51) |#2| (-265 |#2|)) 48) (((-51) |#2| (-377 (-517))) 50) (((-51) |#2|) 49) (((-51) (-1077)) 47)) (-2151 (((-51) |#2| (-265 |#2|) (-377 (-517))) 46) (((-51) |#2| (-265 |#2|)) 43) (((-51) |#2| (-377 (-517))) 45) (((-51) |#2|) 44) (((-51) (-1077)) 42)) (-2140 (((-51) |#2| (-265 |#2|) (-517)) 39) (((-51) |#2| (-265 |#2|)) 35) (((-51) |#2| (-517)) 38) (((-51) |#2|) 36) (((-51) (-1077)) 34))) -(((-285 |#1| |#2|) (-10 -7 (-15 -2131 ((-51) (-1077))) (-15 -2131 ((-51) |#2|)) (-15 -2131 ((-51) |#2| (-703))) (-15 -2131 ((-51) |#2| (-265 |#2|))) (-15 -2131 ((-51) |#2| (-265 |#2|) (-703))) (-15 -2140 ((-51) (-1077))) (-15 -2140 ((-51) |#2|)) (-15 -2140 ((-51) |#2| (-517))) (-15 -2140 ((-51) |#2| (-265 |#2|))) (-15 -2140 ((-51) |#2| (-265 |#2|) (-517))) (-15 -2151 ((-51) (-1077))) (-15 -2151 ((-51) |#2|)) (-15 -2151 ((-51) |#2| (-377 (-517)))) (-15 -2151 ((-51) |#2| (-265 |#2|))) (-15 -2151 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -3452 ((-51) (-1077))) (-15 -3452 ((-51) |#2|)) (-15 -3452 ((-51) |#2| (-377 (-517)))) (-15 -3452 ((-51) |#2| (-265 |#2|))) (-15 -3452 ((-51) |#2| (-265 |#2|) (-377 (-517))))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -285)) -((-3452 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-3452 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1098) (-400 *4))))) (-2151 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-2151 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1098) (-400 *4))))) (-2140 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-955 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-955 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-2140 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1098) (-400 *4))))) (-2131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-2131 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1098) (-400 *4)))))) -(-10 -7 (-15 -2131 ((-51) (-1077))) (-15 -2131 ((-51) |#2|)) (-15 -2131 ((-51) |#2| (-703))) (-15 -2131 ((-51) |#2| (-265 |#2|))) (-15 -2131 ((-51) |#2| (-265 |#2|) (-703))) (-15 -2140 ((-51) (-1077))) (-15 -2140 ((-51) |#2|)) (-15 -2140 ((-51) |#2| (-517))) (-15 -2140 ((-51) |#2| (-265 |#2|))) (-15 -2140 ((-51) |#2| (-265 |#2|) (-517))) (-15 -2151 ((-51) (-1077))) (-15 -2151 ((-51) |#2|)) (-15 -2151 ((-51) |#2| (-377 (-517)))) (-15 -2151 ((-51) |#2| (-265 |#2|))) (-15 -2151 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -3452 ((-51) (-1077))) (-15 -3452 ((-51) |#2|)) (-15 -3452 ((-51) |#2| (-377 (-517)))) (-15 -3452 ((-51) |#2| (-265 |#2|))) (-15 -3452 ((-51) |#2| (-265 |#2|) (-377 (-517))))) -((-2105 (((-107) $ $) NIL)) (-2454 (((-583 $) $ (-1077)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1073 $) (-1077)) NIL (|has| |#1| (-509))) (((-583 $) (-1073 $)) NIL (|has| |#1| (-509))) (((-583 $) (-876 $)) NIL (|has| |#1| (-509)))) (-1480 (($ $ (-1077)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1073 $) (-1077)) NIL (|has| |#1| (-509))) (($ (-1073 $)) NIL (|has| |#1| (-509))) (($ (-876 $)) NIL (|has| |#1| (-509)))) (-1992 (((-107) $) 27 (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))))) (-2080 (((-583 (-1077)) $) 345)) (-1428 (((-377 (-1073 $)) $ (-556 $)) NIL (|has| |#1| (-509)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-3864 (((-583 (-556 $)) $) NIL)) (-1636 (($ $) 154 (|has| |#1| (-509)))) (-1482 (($ $) 130 (|has| |#1| (-509)))) (-2755 (($ $ (-999 $)) 215 (|has| |#1| (-509))) (($ $ (-1077)) 211 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) NIL (-3786 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))))) (-3939 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) 361) (($ $ (-583 (-556 $)) (-583 $)) 404)) (-1453 (((-388 (-1073 $)) (-1073 $)) 289 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-1322 (($ $) NIL (|has| |#1| (-509)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-509)))) (-3908 (($ $) NIL (|has| |#1| (-509)))) (-1765 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1612 (($ $) 150 (|has| |#1| (-509)))) (-1459 (($ $) 126 (|has| |#1| (-509)))) (-3696 (($ $ (-517)) 64 (|has| |#1| (-509)))) (-1659 (($ $) 158 (|has| |#1| (-509)))) (-1508 (($ $) 134 (|has| |#1| (-509)))) (-3038 (($) NIL (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))) CONST)) (-2726 (((-583 $) $ (-1077)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1073 $) (-1077)) NIL (|has| |#1| (-509))) (((-583 $) (-1073 $)) NIL (|has| |#1| (-509))) (((-583 $) (-876 $)) NIL (|has| |#1| (-509)))) (-1454 (($ $ (-1077)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1073 $) (-1077)) 117 (|has| |#1| (-509))) (($ (-1073 $)) NIL (|has| |#1| (-509))) (($ (-876 $)) NIL (|has| |#1| (-509)))) (-3220 (((-3 (-556 $) "failed") $) 17) (((-3 (-1077) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-876 |#1|)) "failed") $) NIL (|has| |#1| (-509))) (((-3 (-876 |#1|) "failed") $) NIL (|has| |#1| (-964))) (((-3 (-377 (-517)) "failed") $) 45 (-3786 (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3402 (((-556 $) $) 11) (((-1077) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-876 |#1|)) $) NIL (|has| |#1| (-509))) (((-876 |#1|) $) NIL (|has| |#1| (-964))) (((-377 (-517)) $) 302 (-3786 (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-2383 (($ $ $) NIL (|has| |#1| (-509)))) (-2947 (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 110 (|has| |#1| (-964))) (((-623 |#1|) (-623 $)) 102 (|has| |#1| (-964))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))) (-1510 (($ $) 84 (|has| |#1| (-509)))) (-3550 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))))) (-2356 (($ $ $) NIL (|has| |#1| (-509)))) (-1983 (($ $ (-999 $)) 219 (|has| |#1| (-509))) (($ $ (-1077)) 217 (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-509)))) (-2022 (((-107) $) NIL (|has| |#1| (-509)))) (-2922 (($ $ $) 185 (|has| |#1| (-509)))) (-2102 (($) 120 (|has| |#1| (-509)))) (-3624 (($ $ $) 205 (|has| |#1| (-509)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 367 (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 373 (|has| |#1| (-810 (-349))))) (-3314 (($ $) NIL) (($ (-583 $)) NIL)) (-3854 (((-583 (-109)) $) NIL)) (-1325 (((-109) (-109)) 260)) (-1690 (((-107) $) 25 (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))))) (-3448 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3662 (($ $) 66 (|has| |#1| (-964)))) (-3858 (((-1029 |#1| (-556 $)) $) 79 (|has| |#1| (-964)))) (-3168 (((-107) $) 46 (|has| |#1| (-509)))) (-2940 (($ $ (-517)) NIL (|has| |#1| (-509)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-3419 (((-1073 $) (-556 $)) 261 (|has| $ (-964)))) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 $ $) (-556 $)) 400)) (-1858 (((-3 (-556 $) "failed") $) NIL)) (-1232 (($ $) 124 (|has| |#1| (-509)))) (-2168 (($ $) 230 (|has| |#1| (-509)))) (-2323 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3232 (((-1060) $) NIL)) (-1412 (((-583 (-556 $)) $) 48)) (-1385 (($ (-109) $) NIL) (($ (-109) (-583 $)) 405)) (-1743 (((-3 (-583 $) "failed") $) NIL (|has| |#1| (-1018)))) (-1481 (((-3 (-2 (|:| |val| $) (|:| -1725 (-517))) "failed") $) NIL (|has| |#1| (-964)))) (-1442 (((-3 (-583 $) "failed") $) 408 (|has| |#1| (-25)))) (-3102 (((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 $))) "failed") $) 412 (|has| |#1| (-25)))) (-3044 (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $) NIL (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-109)) NIL (|has| |#1| (-964))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-1077)) NIL (|has| |#1| (-964)))) (-3731 (((-107) $ (-109)) NIL) (((-107) $ (-1077)) 52)) (-2291 (($ $) NIL (-3786 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1329 (($ $ (-1077)) 234 (|has| |#1| (-509))) (($ $ (-999 $)) 236 (|has| |#1| (-509)))) (-1795 (((-703) $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) 43)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 282 (|has| |#1| (-509)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-4060 (((-107) $ $) NIL) (((-107) $ (-1077)) NIL)) (-2995 (($ $ (-1077)) 209 (|has| |#1| (-509))) (($ $) 207 (|has| |#1| (-509)))) (-2038 (($ $) 201 (|has| |#1| (-509)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 287 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-3896 (((-388 $) $) NIL (|has| |#1| (-509)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-509)))) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-3898 (($ $) 122 (|has| |#1| (-509)))) (-2278 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 399) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1077) (-1 $ (-583 $))) NIL) (($ $ (-1077) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) 355) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1077)) NIL (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-558 (-493)))) (($ $) NIL (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1077)) 343 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1077)) 342 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ $))) NIL (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-964))) (($ $ (-1077) (-703) (-1 $ (-583 $))) NIL (|has| |#1| (-964))) (($ $ (-1077) (-703) (-1 $ $)) NIL (|has| |#1| (-964)))) (-3388 (((-703) $) NIL (|has| |#1| (-509)))) (-1410 (($ $) 222 (|has| |#1| (-509)))) (-2612 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-1816 (($ $) NIL) (($ $ $) NIL)) (-1446 (($ $) 232 (|has| |#1| (-509)))) (-2581 (($ $) 183 (|has| |#1| (-509)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-964))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-964))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-964))) (($ $ (-1077)) NIL (|has| |#1| (-964)))) (-1463 (($ $) 67 (|has| |#1| (-509)))) (-2082 (((-1029 |#1| (-556 $)) $) 81 (|has| |#1| (-509)))) (-2819 (($ $) 300 (|has| $ (-964)))) (-1670 (($ $) 160 (|has| |#1| (-509)))) (-1521 (($ $) 136 (|has| |#1| (-509)))) (-1647 (($ $) 156 (|has| |#1| (-509)))) (-1495 (($ $) 132 (|has| |#1| (-509)))) (-1622 (($ $) 152 (|has| |#1| (-509)))) (-1471 (($ $) 128 (|has| |#1| (-509)))) (-3367 (((-816 (-517)) $) NIL (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| |#1| (-558 (-816 (-349))))) (($ (-388 $)) NIL (|has| |#1| (-509))) (((-493) $) 340 (|has| |#1| (-558 (-493))))) (-1853 (($ $ $) NIL (|has| |#1| (-442)))) (-1970 (($ $ $) NIL (|has| |#1| (-442)))) (-2262 (((-787) $) 398) (($ (-556 $)) 389) (($ (-1077)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-509))) (($ (-47)) 294 (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517))))) (($ (-1029 |#1| (-556 $))) 83 (|has| |#1| (-964))) (($ (-377 |#1|)) NIL (|has| |#1| (-509))) (($ (-876 (-377 |#1|))) NIL (|has| |#1| (-509))) (($ (-377 (-876 (-377 |#1|)))) NIL (|has| |#1| (-509))) (($ (-377 (-876 |#1|))) NIL (|has| |#1| (-509))) (($ (-876 |#1|)) NIL (|has| |#1| (-964))) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-509)) (|has| |#1| (-955 (-377 (-517)))))) (($ (-517)) 34 (-3786 (|has| |#1| (-955 (-517))) (|has| |#1| (-964))))) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL (|has| |#1| (-964)))) (-3488 (($ $) NIL) (($ (-583 $)) NIL)) (-1462 (($ $ $) 203 (|has| |#1| (-509)))) (-3746 (($ $ $) 189 (|has| |#1| (-509)))) (-3518 (($ $ $) 193 (|has| |#1| (-509)))) (-2672 (($ $ $) 187 (|has| |#1| (-509)))) (-2747 (($ $ $) 191 (|has| |#1| (-509)))) (-4116 (((-107) (-109)) 9)) (-1706 (($ $) 166 (|has| |#1| (-509)))) (-1564 (($ $) 142 (|has| |#1| (-509)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) 162 (|has| |#1| (-509)))) (-1536 (($ $) 138 (|has| |#1| (-509)))) (-3517 (($ $) 170 (|has| |#1| (-509)))) (-1588 (($ $) 146 (|has| |#1| (-509)))) (-3540 (($ (-1077) $) NIL) (($ (-1077) $ $) NIL) (($ (-1077) $ $ $) NIL) (($ (-1077) $ $ $ $) NIL) (($ (-1077) (-583 $)) NIL)) (-4113 (($ $) 197 (|has| |#1| (-509)))) (-4084 (($ $) 195 (|has| |#1| (-509)))) (-2815 (($ $) 172 (|has| |#1| (-509)))) (-1601 (($ $) 148 (|has| |#1| (-509)))) (-1722 (($ $) 168 (|has| |#1| (-509)))) (-1577 (($ $) 144 (|has| |#1| (-509)))) (-1698 (($ $) 164 (|has| |#1| (-509)))) (-1550 (($ $) 140 (|has| |#1| (-509)))) (-2829 (($ $) 175 (|has| |#1| (-509)))) (-2806 (($ $ (-517)) NIL (-3786 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018)))) (($ $ (-845)) NIL (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))))) (-3663 (($) 20 (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))) CONST)) (-2641 (($ $) 226 (|has| |#1| (-509)))) (-3675 (($) 22 (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))) CONST)) (-4097 (($ $) 177 (|has| |#1| (-509))) (($ $ $) 179 (|has| |#1| (-509)))) (-1418 (($ $) 224 (|has| |#1| (-509)))) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-964))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-964))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-964))) (($ $ (-1077)) NIL (|has| |#1| (-964)))) (-1717 (($ $) 228 (|has| |#1| (-509)))) (-3466 (($ $ $) 181 (|has| |#1| (-509)))) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 76)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 75)) (-1692 (($ (-1029 |#1| (-556 $)) (-1029 |#1| (-556 $))) 93 (|has| |#1| (-509))) (($ $ $) 42 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1680 (($ $ $) 40 (-3786 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))) (($ $) 29 (-3786 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))))) (-1666 (($ $ $) 38 (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))))) (** (($ $ $) 61 (|has| |#1| (-509))) (($ $ (-377 (-517))) 297 (|has| |#1| (-509))) (($ $ (-517)) 71 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 68 (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018)))) (($ $ (-845)) 73 (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018))))) (* (($ (-377 (-517)) $) NIL (|has| |#1| (-509))) (($ $ (-377 (-517))) NIL (|has| |#1| (-509))) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))) (($ $ $) 36 (-3786 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) (|has| |#1| (-1018)))) (($ (-517) $) 32 (-3786 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))) (($ (-703) $) NIL (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))) (($ (-845) $) NIL (-3786 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))))))) -(((-286 |#1|) (-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1098)) (-6 (-145)) (-6 (-569)) (-6 (-1041)) (-15 -1510 ($ $)) (-15 -3168 ((-107) $)) (-15 -3696 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -1195 ((-388 (-1073 $)) (-1073 $))) (-15 -1453 ((-388 (-1073 $)) (-1073 $)))) |%noBranch|) (IF (|has| |#1| (-955 (-517))) (-6 (-955 (-47))) |%noBranch|)) |%noBranch|))) (-779)) (T -286)) -((-1510 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-3696 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-1195 (*1 *2 *3) (-12 (-5 *2 (-388 (-1073 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1073 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) (-1453 (*1 *2 *3) (-12 (-5 *2 (-388 (-1073 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1073 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779))))) -(-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1098)) (-6 (-145)) (-6 (-569)) (-6 (-1041)) (-15 -1510 ($ $)) (-15 -3168 ((-107) $)) (-15 -3696 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -1195 ((-388 (-1073 $)) (-1073 $))) (-15 -1453 ((-388 (-1073 $)) (-1073 $)))) |%noBranch|) (IF (|has| |#1| (-955 (-517))) (-6 (-955 (-47))) |%noBranch|)) |%noBranch|))) -((-3722 (((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)) 86) (((-51) |#2| (-109) (-265 |#2|) (-265 |#2|)) 82) (((-51) |#2| (-109) (-265 |#2|) |#2|) 84) (((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|) 85) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 78) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 80) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 81) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 79) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 87) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|)) 83))) -(((-287 |#1| |#2|) (-10 -7 (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3722 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-509) (-558 (-493))) (-400 |#1|)) (T -287)) -((-3722 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))) (-3722 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3722 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3722 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) (-3722 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3722 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3722 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3722 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3722 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3722 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6))))) -(-10 -7 (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3722 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3722 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3722 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3722 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)))) -((-4033 (((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517) (-1060)) 46) (((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517)) 47) (((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517) (-1060)) 43) (((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517)) 44)) (-3352 (((-1 (-199) (-199)) (-199)) 45))) -(((-288) (-10 -7 (-15 -3352 ((-1 (-199) (-199)) (-199))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517) (-1060))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517) (-1060))))) (T -288)) -((-4033 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1001 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1060)) (-5 *2 (-1108 (-850))) (-5 *1 (-288)))) (-4033 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1001 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1108 (-850))) (-5 *1 (-288)))) (-4033 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1001 (-199))) (-5 *6 (-517)) (-5 *7 (-1060)) (-5 *2 (-1108 (-850))) (-5 *1 (-288)))) (-4033 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1001 (-199))) (-5 *6 (-517)) (-5 *2 (-1108 (-850))) (-5 *1 (-288)))) (-3352 (*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199))))) -(-10 -7 (-15 -3352 ((-1 (-199) (-199)) (-199))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-1 (-199) (-199)) (-517) (-1060))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517))) (-15 -4033 ((-1108 (-850)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-199) (-517) (-1060)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 24)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 19)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) 31)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) 15)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) NIL) (($ $ (-377 (-517))) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-377 (-517))) NIL) (($ $ (-992) (-377 (-517))) NIL) (($ $ (-583 (-992)) (-583 (-377 (-517)))) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098)))))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2351 (((-377 (-517)) $) 16)) (-3054 (($ (-1143 |#1| |#2| |#3|)) 11)) (-1725 (((-1143 |#1| |#2| |#3|) $) 12)) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1191 (((-377 (-517)) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 10)) (-2262 (((-787) $) 37) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) 29)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) NIL)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 26)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 32)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-289 |#1| |#2| |#3|) (-13 (-1139 |#1|) (-724) (-10 -8 (-15 -3054 ($ (-1143 |#1| |#2| |#3|))) (-15 -1725 ((-1143 |#1| |#2| |#3|) $)) (-15 -2351 ((-377 (-517)) $)))) (-13 (-333) (-779)) (-1077) |#1|) (T -289)) -((-3054 (*1 *1 *2) (-12 (-5 *2 (-1143 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1077)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-1143 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1077)) (-14 *5 *3))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1077)) (-14 *5 *3)))) -(-13 (-1139 |#1|) (-724) (-10 -8 (-15 -3054 ($ (-1143 |#1| |#2| |#3|))) (-15 -1725 ((-1143 |#1| |#2| |#3|) $)) (-15 -2351 ((-377 (-517)) $)))) -((-2940 (((-2 (|:| -1725 (-703)) (|:| -1570 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703)) 24)) (-1232 (((-583 (-2 (|:| -1570 (-703)) (|:| |logand| |#1|))) (-388 |#1|)) 28))) -(((-290 |#1|) (-10 -7 (-15 -2940 ((-2 (|:| -1725 (-703)) (|:| -1570 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1232 ((-583 (-2 (|:| -1570 (-703)) (|:| |logand| |#1|))) (-388 |#1|)))) (-509)) (T -290)) -((-1232 (*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1570 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703))))) -(-10 -7 (-15 -2940 ((-2 (|:| -1725 (-703)) (|:| -1570 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1232 ((-583 (-2 (|:| -1570 (-703)) (|:| |logand| |#1|))) (-388 |#1|)))) -((-2080 (((-583 |#2|) (-1073 |#4|)) 43)) (-3683 ((|#3| (-517)) 46)) (-1344 (((-1073 |#4|) (-1073 |#3|)) 30)) (-1640 (((-1073 |#4|) (-1073 |#4|) (-517)) 56)) (-2929 (((-1073 |#3|) (-1073 |#4|)) 21)) (-1191 (((-583 (-703)) (-1073 |#4|) (-583 |#2|)) 40)) (-1560 (((-1073 |#3|) (-1073 |#4|) (-583 |#2|) (-583 |#3|)) 35))) -(((-291 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1560 ((-1073 |#3|) (-1073 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -1191 ((-583 (-703)) (-1073 |#4|) (-583 |#2|))) (-15 -2080 ((-583 |#2|) (-1073 |#4|))) (-15 -2929 ((-1073 |#3|) (-1073 |#4|))) (-15 -1344 ((-1073 |#4|) (-1073 |#3|))) (-15 -1640 ((-1073 |#4|) (-1073 |#4|) (-517))) (-15 -3683 (|#3| (-517)))) (-725) (-779) (-964) (-873 |#3| |#1| |#2|)) (T -291)) -((-3683 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-964)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-873 *2 *4 *5)))) (-1640 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 *7)) (-5 *3 (-517)) (-4 *7 (-873 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-1073 *6)) (-4 *6 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1073 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1073 *7)) (-4 *7 (-873 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-5 *2 (-1073 *6)) (-5 *1 (-291 *4 *5 *6 *7)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-1073 *7)) (-4 *7 (-873 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1191 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-873 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-964)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) (-1560 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-964)) (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1073 *8)) (-5 *1 (-291 *6 *7 *8 *9))))) -(-10 -7 (-15 -1560 ((-1073 |#3|) (-1073 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -1191 ((-583 (-703)) (-1073 |#4|) (-583 |#2|))) (-15 -2080 ((-583 |#2|) (-1073 |#4|))) (-15 -2929 ((-1073 |#3|) (-1073 |#4|))) (-15 -1344 ((-1073 |#4|) (-1073 |#3|))) (-15 -1640 ((-1073 |#4|) (-1073 |#4|) (-517))) (-15 -3683 (|#3| (-517)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 14)) (-3747 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-517)))) $) 18)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703) $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-2115 ((|#1| $ (-517)) NIL)) (-2013 (((-517) $ (-517)) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3027 (($ (-1 |#1| |#1|) $) NIL)) (-2198 (($ (-1 (-517) (-517)) $) 10)) (-3232 (((-1060) $) NIL)) (-3041 (($ $ $) NIL (|has| (-517) (-724)))) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL) (($ |#1|) NIL)) (-1939 (((-517) |#1| $) NIL)) (-3663 (($) 15 T CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) 21 (|has| |#1| (-779)))) (-1680 (($ $) 11) (($ $ $) 20)) (-1666 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL) (($ (-517) |#1|) 19))) -(((-292 |#1|) (-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) (-1006)) (T -292)) -NIL -(-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3747 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))) $) 27)) (-1783 (((-3 $ "failed") $ $) 19)) (-2390 (((-703) $) 28)) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 32)) (-3402 ((|#1| $) 31)) (-2115 ((|#1| $ (-517)) 25)) (-2013 ((|#2| $ (-517)) 26)) (-3027 (($ (-1 |#1| |#1|) $) 22)) (-2198 (($ (-1 |#2| |#2|) $) 23)) (-3232 (((-1060) $) 9)) (-3041 (($ $ $) 21 (|has| |#2| (-724)))) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ |#1|) 33)) (-1939 ((|#2| |#1| $) 24)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1666 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ |#2| |#1|) 29))) -(((-293 |#1| |#2|) (-1189) (-1006) (-123)) (T -293)) -((-1666 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-123)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-123)))) (-2390 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123)) (-5 *2 (-703)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4)))))) (-2013 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1006)) (-4 *2 (-123)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1006)))) (-1939 (*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-123)))) (-2198 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123)))) (-3027 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123)))) (-3041 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-123)) (-4 *3 (-724))))) -(-13 (-123) (-955 |t#1|) (-10 -8 (-15 -1666 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2390 ((-703) $)) (-15 -3747 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3898 |t#2|))) $)) (-15 -2013 (|t#2| $ (-517))) (-15 -2115 (|t#1| $ (-517))) (-15 -1939 (|t#2| |t#1| $)) (-15 -2198 ($ (-1 |t#2| |t#2|) $)) (-15 -3027 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-724)) (-15 -3041 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-955 |#1|) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3747 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703) $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-2115 ((|#1| $ (-517)) NIL)) (-2013 (((-703) $ (-517)) NIL)) (-3027 (($ (-1 |#1| |#1|) $) NIL)) (-2198 (($ (-1 (-703) (-703)) $) NIL)) (-3232 (((-1060) $) NIL)) (-3041 (($ $ $) NIL (|has| (-703) (-724)))) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL) (($ |#1|) NIL)) (-1939 (((-703) |#1| $) NIL)) (-3663 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1666 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-703) |#1|) NIL))) -(((-294 |#1|) (-293 |#1| (-703)) (-1006)) (T -294)) -NIL -(-293 |#1| (-703)) -((-4172 (($ $) 53)) (-1760 (($ $ |#2| |#3| $) 14)) (-1542 (($ (-1 |#3| |#3|) $) 35)) (-2301 (((-107) $) 27)) (-2311 ((|#2| $) 29)) (-2333 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-4094 ((|#2| $) 49)) (-3186 (((-583 |#2|) $) 38)) (-2308 (($ $ $ (-703)) 23)) (-1692 (($ $ |#2|) 42))) -(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -4172 (|#1| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2308 (|#1| |#1| |#1| (-703))) (-15 -1760 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1542 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3186 ((-583 |#2|) |#1|)) (-15 -2311 (|#2| |#1|)) (-15 -2301 ((-107) |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1692 (|#1| |#1| |#2|))) (-296 |#2| |#3|) (-964) (-724)) (T -295)) -NIL -(-10 -8 (-15 -4172 (|#1| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2308 (|#1| |#1| |#1| (-703))) (-15 -1760 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1542 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3186 ((-583 |#2|) |#1|)) (-15 -2311 (|#2| |#1|)) (-15 -2301 ((-107) |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1692 (|#1| |#1| |#2|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 90 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 88 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 87)) (-3402 (((-517) $) 91 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 89 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 86)) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-4172 (($ $) 75 (|has| |#1| (-421)))) (-1760 (($ $ |#1| |#2| $) 79)) (-1690 (((-107) $) 31)) (-2516 (((-703) $) 82)) (-3022 (((-107) $) 62)) (-2059 (($ |#1| |#2|) 61)) (-3942 ((|#2| $) 81)) (-1542 (($ (-1 |#2| |#2|) $) 80)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 85)) (-2311 ((|#1| $) 84)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-509)))) (-1191 ((|#2| $) 64)) (-4094 ((|#1| $) 76 (|has| |#1| (-421)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47) (($ (-377 (-517))) 57 (-3786 (|has| |#1| (-955 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-3186 (((-583 |#1|) $) 83)) (-1939 ((|#1| $ |#2|) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2308 (($ $ $ (-703)) 78 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) -(((-296 |#1| |#2|) (-1189) (-964) (-724)) (T -296)) -((-2301 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-107)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-703)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-1542 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)))) (-1760 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))) (-2308 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-4 *3 (-156)))) (-2333 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)) (-4 *2 (-509)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)) (-4 *2 (-421)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)) (-4 *2 (-421))))) -(-13 (-46 |t#1| |t#2|) (-381 |t#1|) (-10 -8 (-15 -2301 ((-107) $)) (-15 -2311 (|t#1| $)) (-15 -3186 ((-583 |t#1|) $)) (-15 -2516 ((-703) $)) (-15 -3942 (|t#2| $)) (-15 -1542 ($ (-1 |t#2| |t#2|) $)) (-15 -1760 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-156)) (-15 -2308 ($ $ $ (-703))) |%noBranch|) (IF (|has| |t#1| (-509)) (-15 -2333 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -4094 (|t#1| $)) (-15 -4172 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-381 |#1|) . T) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2404 (((-107) (-107)) NIL)) (-2436 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-3081 (($ $) NIL (|has| |#1| (-1006)))) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) NIL (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-3528 (($ $ (-517)) NIL)) (-4157 (((-703) $) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2785 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-3439 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2900 (($ (-583 |#1|)) NIL)) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-1921 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-3495 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-297 |#1|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2900 ($ (-583 |#1|))) (-15 -4157 ((-703) $)) (-15 -3528 ($ $ (-517))) (-15 -2404 ((-107) (-107))))) (-1112)) (T -297)) -((-2900 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-297 *3)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1112)))) (-3528 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1112)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1112))))) -(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2900 ($ (-583 |#1|))) (-15 -4157 ((-703) $)) (-15 -3528 ($ $ (-517))) (-15 -2404 ((-107) (-107))))) -((-2090 (((-107) $) 42)) (-3578 (((-703)) 22)) (-1991 ((|#2| $) 46) (($ $ (-845)) 103)) (-2390 (((-703)) 97)) (-3539 (($ (-1158 |#2|)) 20)) (-3715 (((-107) $) 115)) (-3522 ((|#2| $) 48) (($ $ (-845)) 101)) (-1914 (((-1073 |#2|) $) NIL) (((-1073 $) $ (-845)) 94)) (-3905 (((-1073 |#2|) $) 83)) (-3211 (((-1073 |#2|) $) 80) (((-3 (-1073 |#2|) "failed") $ $) 77)) (-3063 (($ $ (-1073 |#2|)) 53)) (-2177 (((-765 (-845))) 28) (((-845)) 43)) (-1470 (((-125)) 25)) (-1191 (((-765 (-845)) $) 30) (((-845) $) 116)) (-3297 (($) 109)) (-1372 (((-1158 |#2|) $) NIL) (((-623 |#2|) (-1158 $)) 39)) (-3385 (($ $) NIL) (((-3 $ "failed") $) 86)) (-3275 (((-107) $) 41))) -(((-298 |#1| |#2|) (-10 -8 (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -2390 ((-703))) (-15 -3385 (|#1| |#1|)) (-15 -3211 ((-3 (-1073 |#2|) "failed") |#1| |#1|)) (-15 -3211 ((-1073 |#2|) |#1|)) (-15 -3905 ((-1073 |#2|) |#1|)) (-15 -3063 (|#1| |#1| (-1073 |#2|))) (-15 -3715 ((-107) |#1|)) (-15 -3297 (|#1|)) (-15 -1991 (|#1| |#1| (-845))) (-15 -3522 (|#1| |#1| (-845))) (-15 -1914 ((-1073 |#1|) |#1| (-845))) (-15 -1991 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1191 ((-845) |#1|)) (-15 -2177 ((-845))) (-15 -1914 ((-1073 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -3578 ((-703))) (-15 -2177 ((-765 (-845)))) (-15 -1191 ((-765 (-845)) |#1|)) (-15 -2090 ((-107) |#1|)) (-15 -3275 ((-107) |#1|)) (-15 -1470 ((-125)))) (-299 |#2|) (-333)) (T -298)) -((-1470 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2177 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-845))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3578 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2177 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-845)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-2390 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4))))) -(-10 -8 (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -2390 ((-703))) (-15 -3385 (|#1| |#1|)) (-15 -3211 ((-3 (-1073 |#2|) "failed") |#1| |#1|)) (-15 -3211 ((-1073 |#2|) |#1|)) (-15 -3905 ((-1073 |#2|) |#1|)) (-15 -3063 (|#1| |#1| (-1073 |#2|))) (-15 -3715 ((-107) |#1|)) (-15 -3297 (|#1|)) (-15 -1991 (|#1| |#1| (-845))) (-15 -3522 (|#1| |#1| (-845))) (-15 -1914 ((-1073 |#1|) |#1| (-845))) (-15 -1991 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1191 ((-845) |#1|)) (-15 -2177 ((-845))) (-15 -1914 ((-1073 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -3578 ((-703))) (-15 -2177 ((-765 (-845)))) (-15 -1191 ((-765 (-845)) |#1|)) (-15 -2090 ((-107) |#1|)) (-15 -3275 ((-107) |#1|)) (-15 -1470 ((-125)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2090 (((-107) $) 94)) (-3578 (((-703)) 90)) (-1991 ((|#1| $) 140) (($ $ (-845)) 137 (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) 122 (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-1765 (((-107) $ $) 59)) (-2390 (((-703)) 112 (|has| |#1| (-338)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 101)) (-3402 ((|#1| $) 100)) (-3539 (($ (-1158 |#1|)) 146)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-338)))) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2192 (($) 109 (|has| |#1| (-338)))) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-4169 (($) 124 (|has| |#1| (-338)))) (-2634 (((-107) $) 125 (|has| |#1| (-338)))) (-2627 (($ $ (-703)) 87 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) 71)) (-3250 (((-845) $) 127 (|has| |#1| (-338))) (((-765 (-845)) $) 84 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) 31)) (-1222 (($) 135 (|has| |#1| (-338)))) (-3715 (((-107) $) 134 (|has| |#1| (-338)))) (-3522 ((|#1| $) 141) (($ $ (-845)) 138 (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) 113 (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1914 (((-1073 |#1|) $) 145) (((-1073 $) $ (-845)) 139 (|has| |#1| (-338)))) (-4161 (((-845) $) 110 (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) 131 (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) 130 (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) 129 (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) 132 (|has| |#1| (-338)))) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-2578 (($) 114 (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) 111 (|has| |#1| (-338)))) (-1333 (((-107) $) 93)) (-4130 (((-1024) $) 10)) (-1306 (($) 133 (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 121 (|has| |#1| (-338)))) (-3896 (((-388 $) $) 74)) (-2177 (((-765 (-845))) 91) (((-845)) 143)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3667 (((-703) $) 126 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 85 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) 99)) (-2042 (($ $) 118 (|has| |#1| (-338))) (($ $ (-703)) 116 (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) 92) (((-845) $) 142)) (-2819 (((-1073 |#1|)) 144)) (-3718 (($) 123 (|has| |#1| (-338)))) (-3297 (($) 136 (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) 148) (((-623 |#1|) (-1158 $)) 147)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 120 (|has| |#1| (-338)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-3385 (($ $) 119 (|has| |#1| (-338))) (((-3 $ "failed") $) 83 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) 29)) (-3700 (((-1158 $)) 150) (((-1158 $) (-845)) 149)) (-2944 (((-107) $ $) 39)) (-3275 (((-107) $) 95)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-4115 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-3348 (($ $) 117 (|has| |#1| (-338))) (($ $ (-703)) 115 (|has| |#1| (-338)))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64) (($ $ |#1|) 98)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) -(((-299 |#1|) (-1189) (-333)) (T -299)) -((-3700 (*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1158 *1)) (-4 *1 (-299 *3)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-845)) (-4 *4 (-333)) (-5 *2 (-1158 *1)) (-4 *1 (-299 *4)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1158 *3)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1073 *3)))) (-2819 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1073 *3)))) (-2177 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-845)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-845)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-1914 (*1 *2 *1 *3) (-12 (-5 *3 (-845)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1073 *1)) (-4 *1 (-299 *4)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-1991 (*1 *1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-3297 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-1222 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) (-1306 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1073 *3)))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1073 *3)))) (-3211 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1073 *3))))) -(-13 (-1175 |t#1|) (-955 |t#1|) (-10 -8 (-15 -3700 ((-1158 $))) (-15 -3700 ((-1158 $) (-845))) (-15 -1372 ((-1158 |t#1|) $)) (-15 -1372 ((-623 |t#1|) (-1158 $))) (-15 -3539 ($ (-1158 |t#1|))) (-15 -1914 ((-1073 |t#1|) $)) (-15 -2819 ((-1073 |t#1|))) (-15 -2177 ((-845))) (-15 -1191 ((-845) $)) (-15 -3522 (|t#1| $)) (-15 -1991 (|t#1| $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-319)) (-15 -1914 ((-1073 $) $ (-845))) (-15 -3522 ($ $ (-845))) (-15 -1991 ($ $ (-845))) (-15 -3297 ($)) (-15 -1222 ($)) (-15 -3715 ((-107) $)) (-15 -1306 ($)) (-15 -3063 ($ $ (-1073 |t#1|))) (-15 -3905 ((-1073 |t#1|) $)) (-15 -3211 ((-1073 |t#1|) $)) (-15 -3211 ((-3 (-1073 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3786 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-207) |has| |#1| (-338)) ((-217) . T) ((-262) . T) ((-278) . T) ((-1175 |#1|) . T) ((-333) . T) ((-372) -3786 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-338) |has| |#1| (-338)) ((-319) |has| |#1| (-338)) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-955 |#1|) . T) ((-970 #0#) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| |#1| (-338)) ((-1116) . T) ((-1165 |#1|) . T)) -((-2105 (((-107) $ $) NIL)) (-4082 (($ (-1076) $) 88)) (-1460 (($) 76)) (-3503 (((-1024) (-1024)) 11)) (-1673 (($) 77)) (-1257 (($) 90) (($ (-286 (-632))) 96) (($ (-286 (-634))) 93) (($ (-286 (-627))) 99) (($ (-286 (-349))) 105) (($ (-286 (-517))) 102) (($ (-286 (-153 (-349)))) 108)) (-3880 (($ (-1076) $) 89)) (-2150 (($ (-583 (-787))) 79)) (-3783 (((-1163) $) 73)) (-3387 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1523 (($ (-1024)) 45)) (-1270 (((-1010) $) 25)) (-3260 (($ (-999 (-876 (-517))) $) 85) (($ (-999 (-876 (-517))) (-876 (-517)) $) 86)) (-2552 (($ (-1024)) 87)) (-1873 (($ (-1076) $) 110) (($ (-1076) $ $) 111)) (-3355 (($ (-1077) (-583 (-1077))) 75)) (-4056 (($ (-1060)) 82) (($ (-583 (-1060))) 80)) (-2262 (((-787) $) 113)) (-2507 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1077)) (|:| |arrayIndex| (-583 (-876 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1077)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1076)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1754 (-107)) (|:| -3112 (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1060))) (|:| |callBranch| (-1060)) (|:| |forBranch| (-2 (|:| -3177 (-999 (-876 (-517)))) (|:| |span| (-876 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1024)) (|:| |loopBranch| (-2 (|:| |switch| (-1076)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2981 (-1077)) (|:| |contents| (-583 (-1077))))) (|:| |printBranch| (-583 (-787)))) $) 37)) (-2564 (($ (-1060)) 182)) (-2881 (($ (-583 $)) 109)) (-1587 (($ (-1077) (-1060)) 115) (($ (-1077) (-286 (-634))) 155) (($ (-1077) (-286 (-632))) 156) (($ (-1077) (-286 (-627))) 157) (($ (-1077) (-623 (-634))) 118) (($ (-1077) (-623 (-632))) 121) (($ (-1077) (-623 (-627))) 124) (($ (-1077) (-1158 (-634))) 127) (($ (-1077) (-1158 (-632))) 130) (($ (-1077) (-1158 (-627))) 133) (($ (-1077) (-623 (-286 (-634)))) 136) (($ (-1077) (-623 (-286 (-632)))) 139) (($ (-1077) (-623 (-286 (-627)))) 142) (($ (-1077) (-1158 (-286 (-634)))) 145) (($ (-1077) (-1158 (-286 (-632)))) 148) (($ (-1077) (-1158 (-286 (-627)))) 151) (($ (-1077) (-583 (-876 (-517))) (-286 (-634))) 152) (($ (-1077) (-583 (-876 (-517))) (-286 (-632))) 153) (($ (-1077) (-583 (-876 (-517))) (-286 (-627))) 154) (($ (-1077) (-286 (-517))) 179) (($ (-1077) (-286 (-349))) 180) (($ (-1077) (-286 (-153 (-349)))) 181) (($ (-1077) (-623 (-286 (-517)))) 160) (($ (-1077) (-623 (-286 (-349)))) 163) (($ (-1077) (-623 (-286 (-153 (-349))))) 166) (($ (-1077) (-1158 (-286 (-517)))) 169) (($ (-1077) (-1158 (-286 (-349)))) 172) (($ (-1077) (-1158 (-286 (-153 (-349))))) 175) (($ (-1077) (-583 (-876 (-517))) (-286 (-517))) 176) (($ (-1077) (-583 (-876 (-517))) (-286 (-349))) 177) (($ (-1077) (-583 (-876 (-517))) (-286 (-153 (-349)))) 178)) (-1572 (((-107) $ $) NIL))) -(((-300) (-13 (-1006) (-10 -8 (-15 -2262 ((-787) $)) (-15 -3260 ($ (-999 (-876 (-517))) $)) (-15 -3260 ($ (-999 (-876 (-517))) (-876 (-517)) $)) (-15 -4082 ($ (-1076) $)) (-15 -3880 ($ (-1076) $)) (-15 -1523 ($ (-1024))) (-15 -2552 ($ (-1024))) (-15 -4056 ($ (-1060))) (-15 -4056 ($ (-583 (-1060)))) (-15 -2564 ($ (-1060))) (-15 -1257 ($)) (-15 -1257 ($ (-286 (-632)))) (-15 -1257 ($ (-286 (-634)))) (-15 -1257 ($ (-286 (-627)))) (-15 -1257 ($ (-286 (-349)))) (-15 -1257 ($ (-286 (-517)))) (-15 -1257 ($ (-286 (-153 (-349))))) (-15 -1873 ($ (-1076) $)) (-15 -1873 ($ (-1076) $ $)) (-15 -1587 ($ (-1077) (-1060))) (-15 -1587 ($ (-1077) (-286 (-634)))) (-15 -1587 ($ (-1077) (-286 (-632)))) (-15 -1587 ($ (-1077) (-286 (-627)))) (-15 -1587 ($ (-1077) (-623 (-634)))) (-15 -1587 ($ (-1077) (-623 (-632)))) (-15 -1587 ($ (-1077) (-623 (-627)))) (-15 -1587 ($ (-1077) (-1158 (-634)))) (-15 -1587 ($ (-1077) (-1158 (-632)))) (-15 -1587 ($ (-1077) (-1158 (-627)))) (-15 -1587 ($ (-1077) (-623 (-286 (-634))))) (-15 -1587 ($ (-1077) (-623 (-286 (-632))))) (-15 -1587 ($ (-1077) (-623 (-286 (-627))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-634))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-632))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-627))))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-634)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-632)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-627)))) (-15 -1587 ($ (-1077) (-286 (-517)))) (-15 -1587 ($ (-1077) (-286 (-349)))) (-15 -1587 ($ (-1077) (-286 (-153 (-349))))) (-15 -1587 ($ (-1077) (-623 (-286 (-517))))) (-15 -1587 ($ (-1077) (-623 (-286 (-349))))) (-15 -1587 ($ (-1077) (-623 (-286 (-153 (-349)))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-517))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-349))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-153 (-349)))))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-517)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-349)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-153 (-349))))) (-15 -2881 ($ (-583 $))) (-15 -1460 ($)) (-15 -1673 ($)) (-15 -2150 ($ (-583 (-787)))) (-15 -3355 ($ (-1077) (-583 (-1077)))) (-15 -3387 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2507 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1077)) (|:| |arrayIndex| (-583 (-876 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1077)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1076)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1754 (-107)) (|:| -3112 (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1060))) (|:| |callBranch| (-1060)) (|:| |forBranch| (-2 (|:| -3177 (-999 (-876 (-517)))) (|:| |span| (-876 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1024)) (|:| |loopBranch| (-2 (|:| |switch| (-1076)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2981 (-1077)) (|:| |contents| (-583 (-1077))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3783 ((-1163) $)) (-15 -1270 ((-1010) $)) (-15 -3503 ((-1024) (-1024)))))) (T -300)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) (-3260 (*1 *1 *2 *1) (-12 (-5 *2 (-999 (-876 (-517)))) (-5 *1 (-300)))) (-3260 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-999 (-876 (-517)))) (-5 *3 (-876 (-517))) (-5 *1 (-300)))) (-4082 (*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300)))) (-2552 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-300)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-300)))) (-2564 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-300)))) (-1257 (*1 *1) (-5 *1 (-300))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) (-1257 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-1873 (*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))) (-1873 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1060)) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-634))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-632))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-627))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-634)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-632)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-627)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-517)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-349)))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) (-1587 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))) (-1460 (*1 *1) (-5 *1 (-300))) (-1673 (*1 *1) (-5 *1 (-300))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))) (-3355 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1077)) (-5 *1 (-300)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1077)) (|:| |arrayIndex| (-583 (-876 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1077)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1076)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -1754 (-107)) (|:| -3112 (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1060))) (|:| |callBranch| (-1060)) (|:| |forBranch| (-2 (|:| -3177 (-999 (-876 (-517)))) (|:| |span| (-876 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1024)) (|:| |loopBranch| (-2 (|:| |switch| (-1076)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -2981 (-1077)) (|:| |contents| (-583 (-1077))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-300)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-300)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300))))) -(-13 (-1006) (-10 -8 (-15 -2262 ((-787) $)) (-15 -3260 ($ (-999 (-876 (-517))) $)) (-15 -3260 ($ (-999 (-876 (-517))) (-876 (-517)) $)) (-15 -4082 ($ (-1076) $)) (-15 -3880 ($ (-1076) $)) (-15 -1523 ($ (-1024))) (-15 -2552 ($ (-1024))) (-15 -4056 ($ (-1060))) (-15 -4056 ($ (-583 (-1060)))) (-15 -2564 ($ (-1060))) (-15 -1257 ($)) (-15 -1257 ($ (-286 (-632)))) (-15 -1257 ($ (-286 (-634)))) (-15 -1257 ($ (-286 (-627)))) (-15 -1257 ($ (-286 (-349)))) (-15 -1257 ($ (-286 (-517)))) (-15 -1257 ($ (-286 (-153 (-349))))) (-15 -1873 ($ (-1076) $)) (-15 -1873 ($ (-1076) $ $)) (-15 -1587 ($ (-1077) (-1060))) (-15 -1587 ($ (-1077) (-286 (-634)))) (-15 -1587 ($ (-1077) (-286 (-632)))) (-15 -1587 ($ (-1077) (-286 (-627)))) (-15 -1587 ($ (-1077) (-623 (-634)))) (-15 -1587 ($ (-1077) (-623 (-632)))) (-15 -1587 ($ (-1077) (-623 (-627)))) (-15 -1587 ($ (-1077) (-1158 (-634)))) (-15 -1587 ($ (-1077) (-1158 (-632)))) (-15 -1587 ($ (-1077) (-1158 (-627)))) (-15 -1587 ($ (-1077) (-623 (-286 (-634))))) (-15 -1587 ($ (-1077) (-623 (-286 (-632))))) (-15 -1587 ($ (-1077) (-623 (-286 (-627))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-634))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-632))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-627))))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-634)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-632)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-627)))) (-15 -1587 ($ (-1077) (-286 (-517)))) (-15 -1587 ($ (-1077) (-286 (-349)))) (-15 -1587 ($ (-1077) (-286 (-153 (-349))))) (-15 -1587 ($ (-1077) (-623 (-286 (-517))))) (-15 -1587 ($ (-1077) (-623 (-286 (-349))))) (-15 -1587 ($ (-1077) (-623 (-286 (-153 (-349)))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-517))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-349))))) (-15 -1587 ($ (-1077) (-1158 (-286 (-153 (-349)))))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-517)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-349)))) (-15 -1587 ($ (-1077) (-583 (-876 (-517))) (-286 (-153 (-349))))) (-15 -2881 ($ (-583 $))) (-15 -1460 ($)) (-15 -1673 ($)) (-15 -2150 ($ (-583 (-787)))) (-15 -3355 ($ (-1077) (-583 (-1077)))) (-15 -3387 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2507 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1077)) (|:| |arrayIndex| (-583 (-876 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1077)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1076)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1754 (-107)) (|:| -3112 (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1060))) (|:| |callBranch| (-1060)) (|:| |forBranch| (-2 (|:| -3177 (-999 (-876 (-517)))) (|:| |span| (-876 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1024)) (|:| |loopBranch| (-2 (|:| |switch| (-1076)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2981 (-1077)) (|:| |contents| (-583 (-1077))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3783 ((-1163) $)) (-15 -1270 ((-1010) $)) (-15 -3503 ((-1024) (-1024))))) -((-2105 (((-107) $ $) NIL)) (-1597 (((-107) $) 11)) (-1459 (($ |#1|) 8)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1471 (($ |#1|) 9)) (-2262 (((-787) $) 17)) (-2842 ((|#1| $) 12)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 19))) -(((-301 |#1|) (-13 (-779) (-10 -8 (-15 -1459 ($ |#1|)) (-15 -1471 ($ |#1|)) (-15 -1597 ((-107) $)) (-15 -2842 (|#1| $)))) (-779)) (T -301)) -((-1459 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1471 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))) (-2842 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779))))) -(-13 (-779) (-10 -8 (-15 -1459 ($ |#1|)) (-15 -1471 ($ |#1|)) (-15 -1597 ((-107) $)) (-15 -2842 (|#1| $)))) -((-1633 (((-300) (-1077) (-876 (-517))) 22)) (-1231 (((-300) (-1077) (-876 (-517))) 26)) (-1196 (((-300) (-1077) (-999 (-876 (-517))) (-999 (-876 (-517)))) 25) (((-300) (-1077) (-876 (-517)) (-876 (-517))) 23)) (-2156 (((-300) (-1077) (-876 (-517))) 30))) -(((-302) (-10 -7 (-15 -1633 ((-300) (-1077) (-876 (-517)))) (-15 -1196 ((-300) (-1077) (-876 (-517)) (-876 (-517)))) (-15 -1196 ((-300) (-1077) (-999 (-876 (-517))) (-999 (-876 (-517))))) (-15 -1231 ((-300) (-1077) (-876 (-517)))) (-15 -2156 ((-300) (-1077) (-876 (-517)))))) (T -302)) -((-2156 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-1231 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-1196 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-999 (-876 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) (-1196 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) (-5 *1 (-302))))) -(-10 -7 (-15 -1633 ((-300) (-1077) (-876 (-517)))) (-15 -1196 ((-300) (-1077) (-876 (-517)) (-876 (-517)))) (-15 -1196 ((-300) (-1077) (-999 (-876 (-517))) (-999 (-876 (-517))))) (-15 -1231 ((-300) (-1077) (-876 (-517)))) (-15 -2156 ((-300) (-1077) (-876 (-517))))) -((-3312 (((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)) 31))) -(((-303 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3312 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-333) (-1134 |#5|) (-1134 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -303)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1134 *9)) (-4 *11 (-1134 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11))))) -(-10 -7 (-15 -3312 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)))) -((-3615 (((-107) $) 14))) -(((-304 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3615 ((-107) |#1|))) (-305 |#2| |#3| |#4| |#5|) (-333) (-1134 |#2|) (-1134 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -304)) -NIL -(-10 -8 (-15 -3615 ((-107) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-1510 (($ $) 26)) (-3615 (((-107) $) 25)) (-3232 (((-1060) $) 9)) (-4162 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 32)) (-4130 (((-1024) $) 10)) (-1306 (((-3 |#4| "failed") $) 24)) (-2227 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-517)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1784 (((-2 (|:| -3179 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20))) -(((-305 |#1| |#2| |#3| |#4|) (-1189) (-333) (-1134 |t#1|) (-1134 (-377 |t#2|)) (-312 |t#1| |t#2| |t#3|)) (T -305)) -((-4162 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))) (-2227 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) (-2227 (*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1134 *2)) (-4 *4 (-1134 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) (-2227 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1134 *2)) (-4 *5 (-1134 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3179 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) (-1510 (*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1134 *2)) (-4 *4 (-1134 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))) (-1306 (*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) (-2227 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -4162 ((-383 |t#2| (-377 |t#2|) |t#3| |t#4|) $)) (-15 -2227 ($ (-383 |t#2| (-377 |t#2|) |t#3| |t#4|))) (-15 -2227 ($ |t#4|)) (-15 -2227 ($ |t#1| |t#1|)) (-15 -2227 ($ |t#1| |t#1| (-517))) (-15 -1784 ((-2 (|:| -3179 (-383 |t#2| (-377 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1510 ($ $)) (-15 -3615 ((-107) $)) (-15 -1306 ((-3 |t#4| "failed") $)) (-15 -2227 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1510 (($ $) 32)) (-3615 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-3335 (((-1158 |#4|) $) 124)) (-4162 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 30)) (-4130 (((-1024) $) NIL)) (-1306 (((-3 |#4| "failed") $) 35)) (-1864 (((-1158 |#4|) $) 117)) (-2227 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-517)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-1784 (((-2 (|:| -3179 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2262 (((-787) $) 17)) (-3663 (($) 14 T CONST)) (-1572 (((-107) $ $) 20)) (-1680 (($ $) 27) (($ $ $) NIL)) (-1666 (($ $ $) 25)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 23))) -(((-306 |#1| |#2| |#3| |#4|) (-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1864 ((-1158 |#4|) $)) (-15 -3335 ((-1158 |#4|) $)))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -306)) -((-1864 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-1158 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))) (-3335 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-1158 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5))))) -(-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1864 ((-1158 |#4|) $)) (-15 -3335 ((-1158 |#4|) $)))) -((-3552 (($ $ (-1077) |#2|) NIL) (($ $ (-583 (-1077)) (-583 |#2|)) 18) (($ $ (-583 (-265 |#2|))) 14) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-2612 (($ $ |#2|) 11))) -(((-307 |#1| |#2|) (-10 -8 (-15 -2612 (|#1| |#1| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 |#2|))) (-15 -3552 (|#1| |#1| (-1077) |#2|))) (-308 |#2|) (-1006)) (T -307)) -NIL -(-10 -8 (-15 -2612 (|#1| |#1| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 |#2|))) (-15 -3552 (|#1| |#1| (-1077) |#2|))) -((-3312 (($ (-1 |#1| |#1|) $) 6)) (-3552 (($ $ (-1077) |#1|) 17 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 16 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-583 (-265 |#1|))) 15 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 14 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-280 |#1|))) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-280 |#1|)))) (-2612 (($ $ |#1|) 11 (|has| |#1| (-258 |#1| |#1|))))) -(((-308 |#1|) (-1189) (-1006)) (T -308)) -((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1006))))) -(-13 (-10 -8 (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-258 |t#1| |t#1|)) (-6 (-258 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-478 (-1077) |t#1|)) (-6 (-478 (-1077) |t#1|)) |%noBranch|))) -(((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-478 (-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-1077)) $) NIL)) (-1573 (((-107)) 88) (((-107) (-107)) 89)) (-3864 (((-583 (-556 $)) $) NIL)) (-1636 (($ $) NIL)) (-1482 (($ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3939 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3908 (($ $) NIL)) (-1612 (($ $) NIL)) (-1459 (($ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-556 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-286 |#3|)) 70) (((-3 $ "failed") (-1077)) 94) (((-3 $ "failed") (-286 (-517))) 57 (|has| |#3| (-955 (-517)))) (((-3 $ "failed") (-377 (-876 (-517)))) 63 (|has| |#3| (-955 (-517)))) (((-3 $ "failed") (-876 (-517))) 58 (|has| |#3| (-955 (-517)))) (((-3 $ "failed") (-286 (-349))) 75 (|has| |#3| (-955 (-349)))) (((-3 $ "failed") (-377 (-876 (-349)))) 81 (|has| |#3| (-955 (-349)))) (((-3 $ "failed") (-876 (-349))) 76 (|has| |#3| (-955 (-349))))) (-3402 (((-556 $) $) NIL) ((|#3| $) NIL) (($ (-286 |#3|)) 71) (($ (-1077)) 95) (($ (-286 (-517))) 59 (|has| |#3| (-955 (-517)))) (($ (-377 (-876 (-517)))) 64 (|has| |#3| (-955 (-517)))) (($ (-876 (-517))) 60 (|has| |#3| (-955 (-517)))) (($ (-286 (-349))) 77 (|has| |#3| (-955 (-349)))) (($ (-377 (-876 (-349)))) 82 (|has| |#3| (-955 (-349)))) (($ (-876 (-349))) 78 (|has| |#3| (-955 (-349))))) (-3550 (((-3 $ "failed") $) NIL)) (-2102 (($) 10)) (-3314 (($ $) NIL) (($ (-583 $)) NIL)) (-3854 (((-583 (-109)) $) NIL)) (-1325 (((-109) (-109)) NIL)) (-1690 (((-107) $) NIL)) (-3448 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3419 (((-1073 $) (-556 $)) NIL (|has| $ (-964)))) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 $ $) (-556 $)) NIL)) (-1858 (((-3 (-556 $) "failed") $) NIL)) (-3281 (($ $) 91)) (-1232 (($ $) NIL)) (-3232 (((-1060) $) NIL)) (-1412 (((-583 (-556 $)) $) NIL)) (-1385 (($ (-109) $) 90) (($ (-109) (-583 $)) NIL)) (-3731 (((-107) $ (-109)) NIL) (((-107) $ (-1077)) NIL)) (-1795 (((-703) $) NIL)) (-4130 (((-1024) $) NIL)) (-4060 (((-107) $ $) NIL) (((-107) $ (-1077)) NIL)) (-3898 (($ $) NIL)) (-2278 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1077) (-1 $ (-583 $))) NIL) (($ $ (-1077) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-2612 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1816 (($ $) NIL) (($ $ $) NIL)) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL)) (-2819 (($ $) NIL (|has| $ (-964)))) (-1622 (($ $) NIL)) (-1471 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-556 $)) NIL) (($ |#3|) NIL) (($ (-517)) NIL) (((-286 |#3|) $) 93)) (-1818 (((-703)) NIL)) (-3488 (($ $) NIL) (($ (-583 $)) NIL)) (-4116 (((-107) (-109)) NIL)) (-1564 (($ $) NIL)) (-1536 (($ $) NIL)) (-1550 (($ $) NIL)) (-2829 (($ $) NIL)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) 92 T CONST)) (-3675 (($) 22 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL))) -(((-309 |#1| |#2| |#3|) (-13 (-273) (-37 |#3|) (-955 |#3|) (-824 (-1077)) (-10 -8 (-15 -3402 ($ (-286 |#3|))) (-15 -3220 ((-3 $ "failed") (-286 |#3|))) (-15 -3402 ($ (-1077))) (-15 -3220 ((-3 $ "failed") (-1077))) (-15 -2262 ((-286 |#3|) $)) (IF (|has| |#3| (-955 (-517))) (PROGN (-15 -3402 ($ (-286 (-517)))) (-15 -3220 ((-3 $ "failed") (-286 (-517)))) (-15 -3402 ($ (-377 (-876 (-517))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-517))))) (-15 -3402 ($ (-876 (-517)))) (-15 -3220 ((-3 $ "failed") (-876 (-517))))) |%noBranch|) (IF (|has| |#3| (-955 (-349))) (PROGN (-15 -3402 ($ (-286 (-349)))) (-15 -3220 ((-3 $ "failed") (-286 (-349)))) (-15 -3402 ($ (-377 (-876 (-349))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-349))))) (-15 -3402 ($ (-876 (-349)))) (-15 -3220 ((-3 $ "failed") (-876 (-349))))) |%noBranch|) (-15 -2829 ($ $)) (-15 -3908 ($ $)) (-15 -3898 ($ $)) (-15 -1232 ($ $)) (-15 -3281 ($ $)) (-15 -1459 ($ $)) (-15 -1471 ($ $)) (-15 -1482 ($ $)) (-15 -1536 ($ $)) (-15 -1550 ($ $)) (-15 -1564 ($ $)) (-15 -1612 ($ $)) (-15 -1622 ($ $)) (-15 -1636 ($ $)) (-15 -2102 ($)) (-15 -2080 ((-583 (-1077)) $)) (-15 -1573 ((-107))) (-15 -1573 ((-107) (-107))))) (-583 (-1077)) (-583 (-1077)) (-357)) (T -309)) -((-3402 (*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-876 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-876 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-876 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-876 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-2829 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-3908 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-3898 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1232 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-3281 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1459 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1471 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1482 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1536 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1550 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1564 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1612 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1622 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-1636 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-2102 (*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) (-1573 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) (-1573 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357))))) -(-13 (-273) (-37 |#3|) (-955 |#3|) (-824 (-1077)) (-10 -8 (-15 -3402 ($ (-286 |#3|))) (-15 -3220 ((-3 $ "failed") (-286 |#3|))) (-15 -3402 ($ (-1077))) (-15 -3220 ((-3 $ "failed") (-1077))) (-15 -2262 ((-286 |#3|) $)) (IF (|has| |#3| (-955 (-517))) (PROGN (-15 -3402 ($ (-286 (-517)))) (-15 -3220 ((-3 $ "failed") (-286 (-517)))) (-15 -3402 ($ (-377 (-876 (-517))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-517))))) (-15 -3402 ($ (-876 (-517)))) (-15 -3220 ((-3 $ "failed") (-876 (-517))))) |%noBranch|) (IF (|has| |#3| (-955 (-349))) (PROGN (-15 -3402 ($ (-286 (-349)))) (-15 -3220 ((-3 $ "failed") (-286 (-349)))) (-15 -3402 ($ (-377 (-876 (-349))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-349))))) (-15 -3402 ($ (-876 (-349)))) (-15 -3220 ((-3 $ "failed") (-876 (-349))))) |%noBranch|) (-15 -2829 ($ $)) (-15 -3908 ($ $)) (-15 -3898 ($ $)) (-15 -1232 ($ $)) (-15 -3281 ($ $)) (-15 -1459 ($ $)) (-15 -1471 ($ $)) (-15 -1482 ($ $)) (-15 -1536 ($ $)) (-15 -1550 ($ $)) (-15 -1564 ($ $)) (-15 -1612 ($ $)) (-15 -1622 ($ $)) (-15 -1636 ($ $)) (-15 -2102 ($)) (-15 -2080 ((-583 (-1077)) $)) (-15 -1573 ((-107))) (-15 -1573 ((-107) (-107))))) -((-3312 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-310 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3312 (|#8| (-1 |#5| |#1|) |#4|))) (-1116) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-1116) (-1134 |#5|) (-1134 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -310)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1116)) (-4 *8 (-1116)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *9 (-1134 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1134 (-377 *9)))))) -(-10 -7 (-15 -3312 (|#8| (-1 |#5| |#1|) |#4|))) -((-2861 (((-2 (|:| |num| (-1158 |#3|)) (|:| |den| |#3|)) $) 38)) (-3539 (($ (-1158 (-377 |#3|)) (-1158 $)) NIL) (($ (-1158 (-377 |#3|))) NIL) (($ (-1158 |#3|) |#3|) 159)) (-1852 (((-1158 $) (-1158 $)) 143)) (-3810 (((-583 (-583 |#2|))) 116)) (-3881 (((-107) |#2| |#2|) 72)) (-4172 (($ $) 137)) (-3128 (((-703)) 31)) (-3947 (((-1158 $) (-1158 $)) 196)) (-2784 (((-583 (-876 |#2|)) (-1077)) 109)) (-3093 (((-107) $) 156)) (-3138 (((-107) $) 24) (((-107) $ |#2|) 29) (((-107) $ |#3|) 200)) (-2645 (((-3 |#3| "failed")) 49)) (-2224 (((-703)) 168)) (-2612 ((|#2| $ |#2| |#2|) 130)) (-2178 (((-3 |#3| "failed")) 67)) (-2042 (($ $ (-1 (-377 |#3|) (-377 |#3|)) (-703)) NIL) (($ $ (-1 (-377 |#3|) (-377 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-1697 (((-1158 $) (-1158 $)) 149)) (-2159 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-1288 (((-107)) 33))) -(((-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3810 ((-583 (-583 |#2|)))) (-15 -2784 ((-583 (-876 |#2|)) (-1077))) (-15 -2159 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2645 ((-3 |#3| "failed"))) (-15 -2178 ((-3 |#3| "failed"))) (-15 -2612 (|#2| |#1| |#2| |#2|)) (-15 -4172 (|#1| |#1|)) (-15 -3539 (|#1| (-1158 |#3|) |#3|)) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3138 ((-107) |#1| |#3|)) (-15 -3138 ((-107) |#1| |#2|)) (-15 -2861 ((-2 (|:| |num| (-1158 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1852 ((-1158 |#1|) (-1158 |#1|))) (-15 -3947 ((-1158 |#1|) (-1158 |#1|))) (-15 -1697 ((-1158 |#1|) (-1158 |#1|))) (-15 -3138 ((-107) |#1|)) (-15 -3093 ((-107) |#1|)) (-15 -3881 ((-107) |#2| |#2|)) (-15 -1288 ((-107))) (-15 -2224 ((-703))) (-15 -3128 ((-703))) (-15 -2042 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -2042 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -3539 (|#1| (-1158 (-377 |#3|)))) (-15 -3539 (|#1| (-1158 (-377 |#3|)) (-1158 |#1|)))) (-312 |#2| |#3| |#4|) (-1116) (-1134 |#2|) (-1134 (-377 |#3|))) (T -311)) -((-3128 (*1 *2) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-2224 (*1 *2) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-1288 (*1 *2) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-3881 (*1 *2 *3 *3) (-12 (-4 *3 (-1116)) (-4 *5 (-1134 *3)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) (-2178 (*1 *2) (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 (-377 *2))) (-4 *2 (-1134 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-2645 (*1 *2) (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 (-377 *2))) (-4 *2 (-1134 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *5 (-1116)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-5 *2 (-583 (-876 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) (-3810 (*1 *2) (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6))))) -(-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -3810 ((-583 (-583 |#2|)))) (-15 -2784 ((-583 (-876 |#2|)) (-1077))) (-15 -2159 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2645 ((-3 |#3| "failed"))) (-15 -2178 ((-3 |#3| "failed"))) (-15 -2612 (|#2| |#1| |#2| |#2|)) (-15 -4172 (|#1| |#1|)) (-15 -3539 (|#1| (-1158 |#3|) |#3|)) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3138 ((-107) |#1| |#3|)) (-15 -3138 ((-107) |#1| |#2|)) (-15 -2861 ((-2 (|:| |num| (-1158 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1852 ((-1158 |#1|) (-1158 |#1|))) (-15 -3947 ((-1158 |#1|) (-1158 |#1|))) (-15 -1697 ((-1158 |#1|) (-1158 |#1|))) (-15 -3138 ((-107) |#1|)) (-15 -3093 ((-107) |#1|)) (-15 -3881 ((-107) |#2| |#2|)) (-15 -1288 ((-107))) (-15 -2224 ((-703))) (-15 -3128 ((-703))) (-15 -2042 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -2042 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -3539 (|#1| (-1158 (-377 |#3|)))) (-15 -3539 (|#1| (-1158 (-377 |#3|)) (-1158 |#1|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2861 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) 196)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 93 (|has| (-377 |#2|) (-333)))) (-2491 (($ $) 94 (|has| (-377 |#2|) (-333)))) (-2025 (((-107) $) 96 (|has| (-377 |#2|) (-333)))) (-1278 (((-623 (-377 |#2|)) (-1158 $)) 46) (((-623 (-377 |#2|))) 61)) (-1991 (((-377 |#2|) $) 52)) (-2461 (((-1086 (-845) (-703)) (-517)) 147 (|has| (-377 |#2|) (-319)))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 113 (|has| (-377 |#2|) (-333)))) (-3306 (((-388 $) $) 114 (|has| (-377 |#2|) (-333)))) (-1765 (((-107) $ $) 104 (|has| (-377 |#2|) (-333)))) (-2390 (((-703)) 87 (|has| (-377 |#2|) (-338)))) (-2401 (((-107)) 213)) (-1369 (((-107) |#1|) 212) (((-107) |#2|) 211)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 169 (|has| (-377 |#2|) (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) 166)) (-3402 (((-517) $) 170 (|has| (-377 |#2|) (-955 (-517)))) (((-377 (-517)) $) 168 (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-377 |#2|) $) 165)) (-3539 (($ (-1158 (-377 |#2|)) (-1158 $)) 48) (($ (-1158 (-377 |#2|))) 64) (($ (-1158 |#2|) |#2|) 189)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-377 |#2|) (-319)))) (-2383 (($ $ $) 108 (|has| (-377 |#2|) (-333)))) (-4028 (((-623 (-377 |#2|)) $ (-1158 $)) 53) (((-623 (-377 |#2|)) $) 59)) (-2947 (((-623 (-517)) (-623 $)) 164 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 163 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-377 |#2|))) (|:| |vec| (-1158 (-377 |#2|)))) (-623 $) (-1158 $)) 162) (((-623 (-377 |#2|)) (-623 $)) 161)) (-1852 (((-1158 $) (-1158 $)) 201)) (-1510 (($ |#3|) 158) (((-3 $ "failed") (-377 |#3|)) 155 (|has| (-377 |#2|) (-333)))) (-3550 (((-3 $ "failed") $) 34)) (-3810 (((-583 (-583 |#1|))) 182 (|has| |#1| (-338)))) (-3881 (((-107) |#1| |#1|) 217)) (-3778 (((-845)) 54)) (-2192 (($) 90 (|has| (-377 |#2|) (-338)))) (-2897 (((-107)) 210)) (-1607 (((-107) |#1|) 209) (((-107) |#2|) 208)) (-2356 (($ $ $) 107 (|has| (-377 |#2|) (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 102 (|has| (-377 |#2|) (-333)))) (-4172 (($ $) 188)) (-4169 (($) 149 (|has| (-377 |#2|) (-319)))) (-2634 (((-107) $) 150 (|has| (-377 |#2|) (-319)))) (-2627 (($ $ (-703)) 141 (|has| (-377 |#2|) (-319))) (($ $) 140 (|has| (-377 |#2|) (-319)))) (-2022 (((-107) $) 115 (|has| (-377 |#2|) (-333)))) (-3250 (((-845) $) 152 (|has| (-377 |#2|) (-319))) (((-765 (-845)) $) 138 (|has| (-377 |#2|) (-319)))) (-1690 (((-107) $) 31)) (-3128 (((-703)) 220)) (-3947 (((-1158 $) (-1158 $)) 202)) (-3522 (((-377 |#2|) $) 51)) (-2784 (((-583 (-876 |#1|)) (-1077)) 183 (|has| |#1| (-333)))) (-1639 (((-3 $ "failed") $) 142 (|has| (-377 |#2|) (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| (-377 |#2|) (-333)))) (-1914 ((|#3| $) 44 (|has| (-377 |#2|) (-333)))) (-4161 (((-845) $) 89 (|has| (-377 |#2|) (-338)))) (-1497 ((|#3| $) 156)) (-2323 (($ (-583 $)) 100 (|has| (-377 |#2|) (-333))) (($ $ $) 99 (|has| (-377 |#2|) (-333)))) (-3232 (((-1060) $) 9)) (-2765 (((-623 (-377 |#2|))) 197)) (-2160 (((-623 (-377 |#2|))) 199)) (-2291 (($ $) 116 (|has| (-377 |#2|) (-333)))) (-1792 (($ (-1158 |#2|) |#2|) 194)) (-3444 (((-623 (-377 |#2|))) 198)) (-3564 (((-623 (-377 |#2|))) 200)) (-2303 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-2067 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) 195)) (-2474 (((-1158 $)) 206)) (-2734 (((-1158 $)) 207)) (-3093 (((-107) $) 205)) (-3138 (((-107) $) 204) (((-107) $ |#1|) 192) (((-107) $ |#2|) 191)) (-2578 (($) 143 (|has| (-377 |#2|) (-319)) CONST)) (-2803 (($ (-845)) 88 (|has| (-377 |#2|) (-338)))) (-2645 (((-3 |#2| "failed")) 185)) (-4130 (((-1024) $) 10)) (-2224 (((-703)) 219)) (-1306 (($) 160)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 101 (|has| (-377 |#2|) (-333)))) (-2361 (($ (-583 $)) 98 (|has| (-377 |#2|) (-333))) (($ $ $) 97 (|has| (-377 |#2|) (-333)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 146 (|has| (-377 |#2|) (-319)))) (-3896 (((-388 $) $) 112 (|has| (-377 |#2|) (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 109 (|has| (-377 |#2|) (-333)))) (-2333 (((-3 $ "failed") $ $) 92 (|has| (-377 |#2|) (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| (-377 |#2|) (-333)))) (-3388 (((-703) $) 105 (|has| (-377 |#2|) (-333)))) (-2612 ((|#1| $ |#1| |#1|) 187)) (-2178 (((-3 |#2| "failed")) 186)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 106 (|has| (-377 |#2|) (-333)))) (-3115 (((-377 |#2|) (-1158 $)) 47) (((-377 |#2|)) 60)) (-3667 (((-703) $) 151 (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) 139 (|has| (-377 |#2|) (-319)))) (-2042 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 123 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 122 (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-583 (-1077)) (-583 (-703))) 130 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-1077) (-703)) 131 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1077))) 132 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-1077)) 133 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 135 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4024 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 137 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4024 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3248 (((-623 (-377 |#2|)) (-1158 $) (-1 (-377 |#2|) (-377 |#2|))) 154 (|has| (-377 |#2|) (-333)))) (-2819 ((|#3|) 159)) (-3718 (($) 148 (|has| (-377 |#2|) (-319)))) (-1372 (((-1158 (-377 |#2|)) $ (-1158 $)) 50) (((-623 (-377 |#2|)) (-1158 $) (-1158 $)) 49) (((-1158 (-377 |#2|)) $) 66) (((-623 (-377 |#2|)) (-1158 $)) 65)) (-3367 (((-1158 (-377 |#2|)) $) 63) (($ (-1158 (-377 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 145 (|has| (-377 |#2|) (-319)))) (-1697 (((-1158 $) (-1158 $)) 203)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 |#2|)) 37) (($ (-377 (-517))) 86 (-3786 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-955 (-377 (-517)))))) (($ $) 91 (|has| (-377 |#2|) (-333)))) (-3385 (($ $) 144 (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) 43 (|has| (-377 |#2|) (-132)))) (-3848 ((|#3| $) 45)) (-1818 (((-703)) 29)) (-3471 (((-107)) 216)) (-3788 (((-107) |#1|) 215) (((-107) |#2|) 214)) (-3700 (((-1158 $)) 67)) (-2944 (((-107) $ $) 95 (|has| (-377 |#2|) (-333)))) (-2159 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-1288 (((-107)) 218)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| (-377 |#2|) (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 125 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 124 (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1077)) (-583 (-703))) 126 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-1077) (-703)) 127 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1077))) 128 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-1077)) 129 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) (-4024 (|has| (-377 |#2|) (-824 (-1077))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 134 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4024 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 136 (-3786 (-4024 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4024 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 121 (|has| (-377 |#2|) (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| (-377 |#2|) (-333)))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 |#2|)) 39) (($ (-377 |#2|) $) 38) (($ (-377 (-517)) $) 120 (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) 119 (|has| (-377 |#2|) (-333))))) -(((-312 |#1| |#2| |#3|) (-1189) (-1116) (-1134 |t#1|) (-1134 (-377 |t#2|))) (T -312)) -((-3128 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-703)))) (-2224 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-703)))) (-1288 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3881 (*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3471 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3788 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3788 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) (-2401 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-1369 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-1369 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) (-2897 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-1607 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-1607 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) (-2734 (*1 *2) (-12 (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)))) (-2474 (*1 *2) (-12 (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-1697 (*1 *2 *2) (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))) (-3564 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2160 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-3444 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2765 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2861 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1158 *4)) (|:| |den| *4))))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1158 *4)) (|:| |den| *4))))) (-1792 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1134 *4)) (-4 *4 (-1116)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1134 (-377 *3))))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))) (-3138 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) (-3138 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))) (-3539 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1134 *4)) (-4 *4 (-1116)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1134 (-377 *3))))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-1134 *2)) (-4 *4 (-1134 (-377 *3))))) (-2612 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-1134 *2)) (-4 *4 (-1134 (-377 *3))))) (-2178 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1116)) (-4 *4 (-1134 (-377 *2))) (-4 *2 (-1134 *3)))) (-2645 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1116)) (-4 *4 (-1134 (-377 *2))) (-4 *2 (-1134 *3)))) (-2159 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-1116)) (-4 *6 (-1134 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-876 *4))))) (-3810 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3)))))) -(-13 (-657 (-377 |t#2|) |t#3|) (-10 -8 (-15 -3128 ((-703))) (-15 -2224 ((-703))) (-15 -1288 ((-107))) (-15 -3881 ((-107) |t#1| |t#1|)) (-15 -3471 ((-107))) (-15 -3788 ((-107) |t#1|)) (-15 -3788 ((-107) |t#2|)) (-15 -2401 ((-107))) (-15 -1369 ((-107) |t#1|)) (-15 -1369 ((-107) |t#2|)) (-15 -2897 ((-107))) (-15 -1607 ((-107) |t#1|)) (-15 -1607 ((-107) |t#2|)) (-15 -2734 ((-1158 $))) (-15 -2474 ((-1158 $))) (-15 -3093 ((-107) $)) (-15 -3138 ((-107) $)) (-15 -1697 ((-1158 $) (-1158 $))) (-15 -3947 ((-1158 $) (-1158 $))) (-15 -1852 ((-1158 $) (-1158 $))) (-15 -3564 ((-623 (-377 |t#2|)))) (-15 -2160 ((-623 (-377 |t#2|)))) (-15 -3444 ((-623 (-377 |t#2|)))) (-15 -2765 ((-623 (-377 |t#2|)))) (-15 -2861 ((-2 (|:| |num| (-1158 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3539 ($ (-1158 |t#2|) |t#2|)) (-15 -2067 ((-2 (|:| |num| (-1158 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1792 ($ (-1158 |t#2|) |t#2|)) (-15 -2303 ((-2 (|:| |num| (-623 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3138 ((-107) $ |t#1|)) (-15 -3138 ((-107) $ |t#2|)) (-15 -2042 ($ $ (-1 |t#2| |t#2|))) (-15 -3539 ($ (-1158 |t#2|) |t#2|)) (-15 -4172 ($ $)) (-15 -2612 (|t#1| $ |t#1| |t#1|)) (-15 -2178 ((-3 |t#2| "failed"))) (-15 -2645 ((-3 |t#2| "failed"))) (-15 -2159 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-333)) (-15 -2784 ((-583 (-876 |t#1|)) (-1077))) |%noBranch|) (IF (|has| |t#1| (-338)) (-15 -3810 ((-583 (-583 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-37 #1=(-377 |#2|)) . T) ((-37 $) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-97) . T) ((-106 #0# #0#) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-106 #1# #1#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-132))) ((-134) |has| (-377 |#2|) (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#3|) . T) ((-205 #1#) |has| (-377 |#2|) (-333)) ((-207) -3786 (|has| (-377 |#2|) (-319)) (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333)))) ((-217) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-262) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-278) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-333) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-372) |has| (-377 |#2|) (-319)) ((-338) -3786 (|has| (-377 |#2|) (-338)) (|has| (-377 |#2|) (-319))) ((-319) |has| (-377 |#2|) (-319)) ((-340 #1# |#3|) . T) ((-379 #1# |#3|) . T) ((-347 #1#) . T) ((-381 #1#) . T) ((-421) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-509) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 #0#) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 #1#) . T) ((-585 $) . T) ((-579 #1#) . T) ((-579 (-517)) |has| (-377 |#2|) (-579 (-517))) ((-650 #0#) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-650 #1#) . T) ((-650 $) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-657 #1# |#3|) . T) ((-659) . T) ((-824 (-1077)) -12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077)))) ((-844) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-955 (-377 (-517))) |has| (-377 |#2|) (-955 (-377 (-517)))) ((-955 #1#) . T) ((-955 (-517)) |has| (-377 |#2|) (-955 (-517))) ((-970 #0#) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-970 #1#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| (-377 |#2|) (-319)) ((-1116) -3786 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-834 |#1|) (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| (-834 |#1|) (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-834 |#1|) "failed") $) NIL)) (-3402 (((-834 |#1|) $) NIL)) (-3539 (($ (-1158 (-834 |#1|))) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-834 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-834 |#1|) (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| (-834 |#1|) (-338)))) (-2634 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338)))) (($ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| (-834 |#1|) (-338))) (((-765 (-845)) $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| (-834 |#1|) (-338)))) (-3715 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-3522 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-834 |#1|) (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 (-834 |#1|)) $) NIL) (((-1073 $) $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-4161 (((-845) $) NIL (|has| (-834 |#1|) (-338)))) (-3905 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338)))) (-3211 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-1073 (-834 |#1|)) "failed") $ $) NIL (|has| (-834 |#1|) (-338)))) (-3063 (($ $ (-1073 (-834 |#1|))) NIL (|has| (-834 |#1|) (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-834 |#1|) (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-2288 (((-881 (-1024))) NIL)) (-1306 (($) NIL (|has| (-834 |#1|) (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-834 |#1|) (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 (-834 |#1|))) NIL)) (-3718 (($) NIL (|has| (-834 |#1|) (-338)))) (-3297 (($) NIL (|has| (-834 |#1|) (-338)))) (-1372 (((-1158 (-834 |#1|)) $) NIL) (((-623 (-834 |#1|)) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-834 |#1|) (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-834 |#1|)) NIL)) (-3385 (($ $) NIL (|has| (-834 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-3348 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ (-834 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-834 |#1|)) NIL) (($ (-834 |#1|) $) NIL))) -(((-313 |#1| |#2|) (-13 (-299 (-834 |#1|)) (-10 -7 (-15 -2288 ((-881 (-1024)))))) (-845) (-845)) (T -313)) -((-2288 (*1 *2) (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-313 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845))))) -(-13 (-299 (-834 |#1|)) (-10 -7 (-15 -2288 ((-881 (-1024)))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 46)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) 43 (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 114)) (-3402 ((|#1| $) 85)) (-3539 (($ (-1158 |#1|)) 103)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) 97 (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) 129 (|has| |#1| (-338)))) (-2634 (((-107) $) 49 (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) 47 (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) 131 (|has| |#1| (-338)))) (-3715 (((-107) $) NIL (|has| |#1| (-338)))) (-3522 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) 89) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) 139 (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) NIL (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) NIL (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 146)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) 70 (|has| |#1| (-338)))) (-1333 (((-107) $) 117)) (-4130 (((-1024) $) NIL)) (-2288 (((-881 (-1024))) 44)) (-1306 (($) 127 (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 92 (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) 67) (((-845)) 68)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) 130 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 124 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 |#1|)) 95)) (-3718 (($) 128 (|has| |#1| (-338)))) (-3297 (($) 136 (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) 59) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) 142) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 74)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) 138)) (-3700 (((-1158 $)) 116) (((-1158 $) (-845)) 72)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 32 T CONST)) (-3675 (($) 19 T CONST)) (-4115 (($ $) 80 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) 48)) (-1692 (($ $ $) 144) (($ $ |#1|) 145)) (-1680 (($ $) 126) (($ $ $) NIL)) (-1666 (($ $ $) 61)) (** (($ $ (-845)) 148) (($ $ (-703)) 149) (($ $ (-517)) 147)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 75) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) -(((-314 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -2288 ((-881 (-1024)))))) (-319) (-1073 |#1|)) (T -314)) -((-2288 (*1 *2) (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1073 *3))))) -(-13 (-299 |#1|) (-10 -7 (-15 -2288 ((-881 (-1024)))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3539 (($ (-1158 |#1|)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| |#1| (-338)))) (-2634 (((-107) $) NIL (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| |#1| (-338)))) (-3715 (((-107) $) NIL (|has| |#1| (-338)))) (-3522 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) NIL) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) NIL (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) NIL (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-2288 (((-881 (-1024))) NIL)) (-1306 (($) NIL (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 |#1|)) NIL)) (-3718 (($) NIL (|has| |#1| (-338)))) (-3297 (($) NIL (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) NIL) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-315 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -2288 ((-881 (-1024)))))) (-319) (-845)) (T -315)) -((-2288 (*1 *2) (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-845))))) -(-13 (-299 |#1|) (-10 -7 (-15 -2288 ((-881 (-1024)))))) -((-1266 (((-703) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) 40)) (-3477 (((-881 (-1024)) (-1073 |#1|)) 85)) (-2992 (((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) (-1073 |#1|)) 78)) (-2911 (((-623 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) 86)) (-2126 (((-3 (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) "failed") (-845)) 10)) (-3161 (((-3 (-1073 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) (-845)) 15))) -(((-316 |#1|) (-10 -7 (-15 -3477 ((-881 (-1024)) (-1073 |#1|))) (-15 -2992 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) (-1073 |#1|))) (-15 -2911 ((-623 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -1266 ((-703) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -2126 ((-3 (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) "failed") (-845))) (-15 -3161 ((-3 (-1073 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) (-845)))) (-319)) (T -316)) -((-3161 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-3 (-1073 *4) (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-2126 (*1 *2 *3) (|partial| -12 (-5 *3 (-845)) (-5 *2 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-1266 (*1 *2 *3) (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) (-5 *1 (-316 *4)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-881 (-1024))) (-5 *1 (-316 *4))))) -(-10 -7 (-15 -3477 ((-881 (-1024)) (-1073 |#1|))) (-15 -2992 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) (-1073 |#1|))) (-15 -2911 ((-623 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -1266 ((-703) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -2126 ((-3 (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) "failed") (-845))) (-15 -3161 ((-3 (-1073 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) (-845)))) -((-2262 ((|#1| |#3|) 84) ((|#3| |#1|) 68))) -(((-317 |#1| |#2| |#3|) (-10 -7 (-15 -2262 (|#3| |#1|)) (-15 -2262 (|#1| |#3|))) (-299 |#2|) (-319) (-299 |#2|)) (T -317)) -((-2262 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) (-2262 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4))))) -(-10 -7 (-15 -2262 (|#3| |#1|)) (-15 -2262 (|#1| |#3|))) -((-2634 (((-107) $) 51)) (-3250 (((-765 (-845)) $) 21) (((-845) $) 52)) (-1639 (((-3 $ "failed") $) 16)) (-2578 (($) 9)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 92)) (-3667 (((-3 (-703) "failed") $ $) 71) (((-703) $) 60)) (-2042 (($ $ (-703)) NIL) (($ $) 8)) (-3718 (($) 45)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 33)) (-3385 (((-3 $ "failed") $) 39) (($ $) 38))) -(((-318 |#1|) (-10 -8 (-15 -3250 ((-845) |#1|)) (-15 -3667 ((-703) |#1|)) (-15 -2634 ((-107) |#1|)) (-15 -3718 (|#1|)) (-15 -2767 ((-3 (-1158 |#1|) "failed") (-623 |#1|))) (-15 -3385 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3667 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3250 ((-765 (-845)) |#1|)) (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)))) (-319)) (T -318)) -NIL -(-10 -8 (-15 -3250 ((-845) |#1|)) (-15 -3667 ((-703) |#1|)) (-15 -2634 ((-107) |#1|)) (-15 -3718 (|#1|)) (-15 -2767 ((-3 (-1158 |#1|) "failed") (-623 |#1|))) (-15 -3385 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3667 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3250 ((-765 (-845)) |#1|)) (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2461 (((-1086 (-845) (-703)) (-517)) 93)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-1765 (((-107) $ $) 59)) (-2390 (((-703)) 103)) (-3038 (($) 17 T CONST)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2192 (($) 106)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-4169 (($) 91)) (-2634 (((-107) $) 90)) (-2627 (($ $) 79) (($ $ (-703)) 78)) (-2022 (((-107) $) 71)) (-3250 (((-765 (-845)) $) 81) (((-845) $) 88)) (-1690 (((-107) $) 31)) (-1639 (((-3 $ "failed") $) 102)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-4161 (((-845) $) 105)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-2578 (($) 101 T CONST)) (-2803 (($ (-845)) 104)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 94)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3667 (((-3 (-703) "failed") $ $) 80) (((-703) $) 89)) (-2042 (($ $ (-703)) 99) (($ $) 97)) (-3718 (($) 92)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 95)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-3385 (((-3 $ "failed") $) 82) (($ $) 96)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-703)) 100) (($ $) 98)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) -(((-319) (-1189)) (T -319)) -((-3385 (*1 *1 *1) (-4 *1 (-319))) (-2767 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1158 *1)))) (-2445 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))))) (-2461 (*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1086 (-845) (-703))))) (-3718 (*1 *1) (-4 *1 (-319))) (-4169 (*1 *1) (-4 *1 (-319))) (-2634 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-845)))) (-3735 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-372) (-338) (-1053) (-207) (-10 -8 (-15 -3385 ($ $)) (-15 -2767 ((-3 (-1158 $) "failed") (-623 $))) (-15 -2445 ((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517)))))) (-15 -2461 ((-1086 (-845) (-703)) (-517))) (-15 -3718 ($)) (-15 -4169 ($)) (-15 -2634 ((-107) $)) (-15 -3667 ((-703) $)) (-15 -3250 ((-845) $)) (-15 -3735 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-207) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) . T) ((-338) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) . T) ((-1116) . T)) -((-1486 (((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|) 51)) (-2734 (((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 49))) -(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|))) (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))) (-1134 |#1|) (-379 |#1| |#2|)) (T -320)) -((-1486 (*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2734 (*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4))))) -(-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-834 |#1|) (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1266 (((-703)) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| (-834 |#1|) (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-834 |#1|) "failed") $) NIL)) (-3402 (((-834 |#1|) $) NIL)) (-3539 (($ (-1158 (-834 |#1|))) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-834 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-834 |#1|) (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| (-834 |#1|) (-338)))) (-2634 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338)))) (($ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| (-834 |#1|) (-338))) (((-765 (-845)) $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| (-834 |#1|) (-338)))) (-3715 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-3522 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-834 |#1|) (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 (-834 |#1|)) $) NIL) (((-1073 $) $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-4161 (((-845) $) NIL (|has| (-834 |#1|) (-338)))) (-3905 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338)))) (-3211 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-1073 (-834 |#1|)) "failed") $ $) NIL (|has| (-834 |#1|) (-338)))) (-3063 (($ $ (-1073 (-834 |#1|))) NIL (|has| (-834 |#1|) (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-834 |#1|) (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-3155 (((-1158 (-583 (-2 (|:| -3112 (-834 |#1|)) (|:| -2803 (-1024)))))) NIL)) (-3009 (((-623 (-834 |#1|))) NIL)) (-1306 (($) NIL (|has| (-834 |#1|) (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-834 |#1|) (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 (-834 |#1|))) NIL)) (-3718 (($) NIL (|has| (-834 |#1|) (-338)))) (-3297 (($) NIL (|has| (-834 |#1|) (-338)))) (-1372 (((-1158 (-834 |#1|)) $) NIL) (((-623 (-834 |#1|)) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-834 |#1|) (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-834 |#1|)) NIL)) (-3385 (($ $) NIL (|has| (-834 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-3348 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ (-834 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-834 |#1|)) NIL) (($ (-834 |#1|) $) NIL))) -(((-321 |#1| |#2|) (-13 (-299 (-834 |#1|)) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 (-834 |#1|)) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 (-834 |#1|)))) (-15 -1266 ((-703))))) (-845) (-845)) (T -321)) -((-3155 (*1 *2) (-12 (-5 *2 (-1158 (-583 (-2 (|:| -3112 (-834 *3)) (|:| -2803 (-1024)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))) (-3009 (*1 *2) (-12 (-5 *2 (-623 (-834 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))) (-1266 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845))))) -(-13 (-299 (-834 |#1|)) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 (-834 |#1|)) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 (-834 |#1|)))) (-15 -1266 ((-703))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 75)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) 93) (($ $ (-845)) 91 (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) 149 (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1266 (((-703)) 90)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) 163 (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 112)) (-3402 ((|#1| $) 92)) (-3539 (($ (-1158 |#1|)) 56)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) 159 (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) 150 (|has| |#1| (-338)))) (-2634 (((-107) $) NIL (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) 98 (|has| |#1| (-338)))) (-3715 (((-107) $) 176 (|has| |#1| (-338)))) (-3522 ((|#1| $) 95) (($ $ (-845)) 94 (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) 188) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) 134 (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) 74 (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) 71 (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) 83 (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) 70 (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 191)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) 137 (|has| |#1| (-338)))) (-1333 (((-107) $) 108)) (-4130 (((-1024) $) NIL)) (-3155 (((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) 84)) (-3009 (((-623 |#1|)) 88)) (-1306 (($) 97 (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 151 (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) 152)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) 63)) (-2819 (((-1073 |#1|)) 153)) (-3718 (($) 133 (|has| |#1| (-338)))) (-3297 (($) NIL (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) 106) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) 124) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 55)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) 157)) (-3700 (((-1158 $)) 173) (((-1158 $) (-845)) 101)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 29 T CONST)) (-3675 (($) 22 T CONST)) (-4115 (($ $) 107 (|has| |#1| (-338))) (($ $ (-703)) 99 (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) 59)) (-1692 (($ $ $) 104) (($ $ |#1|) 105)) (-1680 (($ $) 178) (($ $ $) 182)) (-1666 (($ $ $) 180)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 138)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 185) (($ $ $) 143) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-322 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 |#1|))) (-15 -1266 ((-703))))) (-319) (-3 (-1073 |#1|) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (T -322)) -((-3155 (*1 *2) (-12 (-5 *2 (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1073 *3) *2)))) (-3009 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1073 *3) (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024))))))))) (-1266 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1073 *3) (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024)))))))))) -(-13 (-299 |#1|) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 |#1|))) (-15 -1266 ((-703))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1266 (((-703)) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3539 (($ (-1158 |#1|)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| |#1| (-338)))) (-2634 (((-107) $) NIL (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| |#1| (-338)))) (-3715 (((-107) $) NIL (|has| |#1| (-338)))) (-3522 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) NIL) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) NIL (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) NIL (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-3155 (((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024)))))) NIL)) (-3009 (((-623 |#1|)) NIL)) (-1306 (($) NIL (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 |#1|)) NIL)) (-3718 (($) NIL (|has| |#1| (-338)))) (-3297 (($) NIL (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) NIL) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-323 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 |#1|))) (-15 -1266 ((-703))))) (-319) (-845)) (T -323)) -((-3155 (*1 *2) (-12 (-5 *2 (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-845)))) (-3009 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-845)))) (-1266 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-845))))) -(-13 (-299 |#1|) (-10 -7 (-15 -3155 ((-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))))) (-15 -3009 ((-623 |#1|))) (-15 -1266 ((-703))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-834 |#1|) (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| (-834 |#1|) (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-834 |#1|) "failed") $) NIL)) (-3402 (((-834 |#1|) $) NIL)) (-3539 (($ (-1158 (-834 |#1|))) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-834 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-834 |#1|) (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| (-834 |#1|) (-338)))) (-2634 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338)))) (($ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| (-834 |#1|) (-338))) (((-765 (-845)) $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| (-834 |#1|) (-338)))) (-3715 (((-107) $) NIL (|has| (-834 |#1|) (-338)))) (-3522 (((-834 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-834 |#1|) (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 (-834 |#1|)) $) NIL) (((-1073 $) $ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-4161 (((-845) $) NIL (|has| (-834 |#1|) (-338)))) (-3905 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338)))) (-3211 (((-1073 (-834 |#1|)) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-1073 (-834 |#1|)) "failed") $ $) NIL (|has| (-834 |#1|) (-338)))) (-3063 (($ $ (-1073 (-834 |#1|))) NIL (|has| (-834 |#1|) (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-834 |#1|) (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| (-834 |#1|) (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL (|has| (-834 |#1|) (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-834 |#1|) (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| (-834 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 (-834 |#1|))) NIL)) (-3718 (($) NIL (|has| (-834 |#1|) (-338)))) (-3297 (($) NIL (|has| (-834 |#1|) (-338)))) (-1372 (((-1158 (-834 |#1|)) $) NIL) (((-623 (-834 |#1|)) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-834 |#1|) (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-834 |#1|)) NIL)) (-3385 (($ $) NIL (|has| (-834 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| (-834 |#1|) (-132)) (|has| (-834 |#1|) (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-3348 (($ $) NIL (|has| (-834 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-834 |#1|) (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ (-834 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-834 |#1|)) NIL) (($ (-834 |#1|) $) NIL))) -(((-324 |#1| |#2|) (-299 (-834 |#1|)) (-845) (-845)) (T -324)) -NIL -(-299 (-834 |#1|)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) 119 (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) 139 (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 91)) (-3402 ((|#1| $) 88)) (-3539 (($ (-1158 |#1|)) 83)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) 80 (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) 39 (|has| |#1| (-338)))) (-2634 (((-107) $) NIL (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) 120 (|has| |#1| (-338)))) (-3715 (((-107) $) 72 (|has| |#1| (-338)))) (-3522 ((|#1| $) 38) (($ $ (-845)) 40 (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) 62) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) 95 (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) NIL (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) NIL (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) 93 (|has| |#1| (-338)))) (-1333 (((-107) $) 141)) (-4130 (((-1024) $) NIL)) (-1306 (($) 35 (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 113 (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) 138)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) 56)) (-2819 (((-1073 |#1|)) 86)) (-3718 (($) 125 (|has| |#1| (-338)))) (-3297 (($) NIL (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) 50) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) 137) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 85)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) 143)) (-3700 (((-1158 $)) 107) (((-1158 $) (-845)) 46)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 109 T CONST)) (-3675 (($) 31 T CONST)) (-4115 (($ $) 65 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) 105)) (-1692 (($ $ $) 97) (($ $ |#1|) 98)) (-1680 (($ $) 78) (($ $ $) 103)) (-1666 (($ $ $) 101)) (** (($ $ (-845)) NIL) (($ $ (-703)) 41) (($ $ (-517)) 129)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 53) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74))) -(((-325 |#1| |#2|) (-299 |#1|) (-319) (-1073 |#1|)) (T -325)) -NIL -(-299 |#1|) -((-3902 ((|#1| (-1073 |#2|)) 51))) -(((-326 |#1| |#2|) (-10 -7 (-15 -3902 (|#1| (-1073 |#2|)))) (-13 (-372) (-10 -7 (-15 -2262 (|#1| |#2|)) (-15 -4161 ((-845) |#1|)) (-15 -3700 ((-1158 |#1|) (-845))) (-15 -4115 (|#1| |#1|)))) (-319)) (T -326)) -((-3902 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2262 (*2 *4)) (-15 -4161 ((-845) *2)) (-15 -3700 ((-1158 *2) (-845))) (-15 -4115 (*2 *2))))) (-5 *1 (-326 *2 *4))))) -(-10 -7 (-15 -3902 (|#1| (-1073 |#2|)))) -((-3855 (((-881 (-1073 |#1|)) (-1073 |#1|)) 37)) (-2192 (((-1073 |#1|) (-845) (-845)) 110) (((-1073 |#1|) (-845)) 109)) (-2634 (((-107) (-1073 |#1|)) 82)) (-3368 (((-845) (-845)) 72)) (-1441 (((-845) (-845)) 74)) (-1900 (((-845) (-845)) 70)) (-3715 (((-107) (-1073 |#1|)) 86)) (-1865 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 98)) (-3226 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 101)) (-1340 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 100)) (-1578 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 99)) (-2537 (((-3 (-1073 |#1|) "failed") (-1073 |#1|)) 95)) (-1665 (((-1073 |#1|) (-1073 |#1|)) 63)) (-3865 (((-1073 |#1|) (-845)) 104)) (-3719 (((-1073 |#1|) (-845)) 107)) (-2465 (((-1073 |#1|) (-845)) 106)) (-4163 (((-1073 |#1|) (-845)) 105)) (-2893 (((-1073 |#1|) (-845)) 102))) -(((-327 |#1|) (-10 -7 (-15 -2634 ((-107) (-1073 |#1|))) (-15 -3715 ((-107) (-1073 |#1|))) (-15 -1900 ((-845) (-845))) (-15 -3368 ((-845) (-845))) (-15 -1441 ((-845) (-845))) (-15 -2893 ((-1073 |#1|) (-845))) (-15 -3865 ((-1073 |#1|) (-845))) (-15 -4163 ((-1073 |#1|) (-845))) (-15 -2465 ((-1073 |#1|) (-845))) (-15 -3719 ((-1073 |#1|) (-845))) (-15 -2537 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1865 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1578 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1340 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -3226 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -2192 ((-1073 |#1|) (-845))) (-15 -2192 ((-1073 |#1|) (-845) (-845))) (-15 -1665 ((-1073 |#1|) (-1073 |#1|))) (-15 -3855 ((-881 (-1073 |#1|)) (-1073 |#1|)))) (-319)) (T -327)) -((-3855 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-881 (-1073 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1073 *4)))) (-1665 (*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2192 (*1 *2 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3226 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1340 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1578 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1865 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2537 (*1 *2 *2) (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-3368 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-1900 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) (-2634 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4))))) -(-10 -7 (-15 -2634 ((-107) (-1073 |#1|))) (-15 -3715 ((-107) (-1073 |#1|))) (-15 -1900 ((-845) (-845))) (-15 -3368 ((-845) (-845))) (-15 -1441 ((-845) (-845))) (-15 -2893 ((-1073 |#1|) (-845))) (-15 -3865 ((-1073 |#1|) (-845))) (-15 -4163 ((-1073 |#1|) (-845))) (-15 -2465 ((-1073 |#1|) (-845))) (-15 -3719 ((-1073 |#1|) (-845))) (-15 -2537 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1865 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1578 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -1340 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -3226 ((-3 (-1073 |#1|) "failed") (-1073 |#1|))) (-15 -2192 ((-1073 |#1|) (-845))) (-15 -2192 ((-1073 |#1|) (-845) (-845))) (-15 -1665 ((-1073 |#1|) (-1073 |#1|))) (-15 -3855 ((-881 (-1073 |#1|)) (-1073 |#1|)))) -((-3862 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 34))) -(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -3862 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-319) (-1134 |#1|) (-1134 |#2|)) (T -328)) -((-3862 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3))))) -(-10 -7 (-15 -3862 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3539 (($ (-1158 |#1|)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| |#1| (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| |#1| (-338)))) (-2634 (((-107) $) NIL (|has| |#1| (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| |#1| (-338))) (((-765 (-845)) $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| |#1| (-338)))) (-3715 (((-107) $) NIL (|has| |#1| (-338)))) (-3522 ((|#1| $) NIL) (($ $ (-845)) NIL (|has| |#1| (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 |#1|) $) NIL) (((-1073 $) $ (-845)) NIL (|has| |#1| (-338)))) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-3905 (((-1073 |#1|) $) NIL (|has| |#1| (-338)))) (-3211 (((-1073 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1073 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3063 (($ $ (-1073 |#1|)) NIL (|has| |#1| (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| |#1| (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL (|has| |#1| (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| |#1| (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 |#1|)) NIL)) (-3718 (($) NIL (|has| |#1| (-338)))) (-3297 (($) NIL (|has| |#1| (-338)))) (-1372 (((-1158 |#1|) $) NIL) (((-623 |#1|) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-3385 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3348 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-329 |#1| |#2|) (-299 |#1|) (-319) (-845)) (T -329)) -NIL -(-299 |#1|) -((-3210 (((-107) (-583 (-876 |#1|))) 32)) (-1582 (((-583 (-876 |#1|)) (-583 (-876 |#1|))) 43)) (-4002 (((-3 (-583 (-876 |#1|)) "failed") (-583 (-876 |#1|))) 39))) -(((-330 |#1| |#2|) (-10 -7 (-15 -3210 ((-107) (-583 (-876 |#1|)))) (-15 -4002 ((-3 (-583 (-876 |#1|)) "failed") (-583 (-876 |#1|)))) (-15 -1582 ((-583 (-876 |#1|)) (-583 (-876 |#1|))))) (-421) (-583 (-1077))) (T -330)) -((-1582 (*1 *2 *2) (-12 (-5 *2 (-583 (-876 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1077))))) (-4002 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-876 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1077))))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1077)))))) -(-10 -7 (-15 -3210 ((-107) (-583 (-876 |#1|)))) (-15 -4002 ((-3 (-583 (-876 |#1|)) "failed") (-583 (-876 |#1|)))) (-15 -1582 ((-583 (-876 |#1|)) (-583 (-876 |#1|))))) -((-2105 (((-107) $ $) NIL)) (-2390 (((-703) $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) 14)) (-2115 ((|#1| $ (-517)) NIL)) (-2395 (((-517) $ (-517)) NIL)) (-3027 (($ (-1 |#1| |#1|) $) 32)) (-1838 (($ (-1 (-517) (-517)) $) 24)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 26)) (-4130 (((-1024) $) NIL)) (-2283 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-517)))) $) 28)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) 38) (($ |#1|) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 9 T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ |#1| (-517)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-331 |#1|) (-13 (-442) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -2390 ((-703) $)) (-15 -2395 ((-517) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1838 ($ (-1 (-517) (-517)) $)) (-15 -3027 ($ (-1 |#1| |#1|) $)) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-517)))) $)))) (-1006)) (T -331)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1006)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1006)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1006)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1006)))) (-2395 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1006)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1006)))) (-1838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1006)))) (-3027 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-331 *3)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1006))))) -(-13 (-442) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -2390 ((-703) $)) (-15 -2395 ((-517) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1838 ($ (-1 (-517) (-517)) $)) (-15 -3027 ($ (-1 |#1| |#1|) $)) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-517)))) $)))) -((-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 13)) (-2491 (($ $) 14)) (-3306 (((-388 $) $) 30)) (-2022 (((-107) $) 26)) (-2291 (($ $) 19)) (-2361 (($ $ $) 23) (($ (-583 $)) NIL)) (-3896 (((-388 $) $) 31)) (-2333 (((-3 $ "failed") $ $) 22)) (-3388 (((-703) $) 25)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 35)) (-2944 (((-107) $ $) 16)) (-1692 (($ $ $) 33))) -(((-332 |#1|) (-10 -8 (-15 -1692 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2022 ((-107) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3388 ((-703) |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2944 ((-107) |#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|))) (-333)) (T -332)) -NIL -(-10 -8 (-15 -1692 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -2022 ((-107) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3388 ((-703) |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2944 ((-107) |#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-1690 (((-107) $) 31)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) -(((-333) (-1189)) (T -333)) -((-1692 (*1 *1 *1 *1) (-4 *1 (-333)))) -(-13 (-278) (-1116) (-217) (-10 -8 (-15 -1692 ($ $ $)) (-6 -4193) (-6 -4187))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T)) -((-2105 (((-107) $ $) 7)) (-3188 ((|#2| $ |#2|) 13)) (-3010 (($ $ (-1060)) 18)) (-2872 ((|#2| $) 14)) (-3723 (($ |#1|) 20) (($ |#1| (-1060)) 19)) (-2981 ((|#1| $) 16)) (-3232 (((-1060) $) 9)) (-3048 (((-1060) $) 15)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3604 (($ $) 17)) (-1572 (((-107) $ $) 6))) -(((-334 |#1| |#2|) (-1189) (-1006) (-1006)) (T -334)) -((-3723 (*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-3723 (*1 *1 *2 *3) (-12 (-5 *3 (-1060)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1006)) (-4 *4 (-1006)))) (-3010 (*1 *1 *1 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-3604 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-1060)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-3188 (*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) -(-13 (-1006) (-10 -8 (-15 -3723 ($ |t#1|)) (-15 -3723 ($ |t#1| (-1060))) (-15 -3010 ($ $ (-1060))) (-15 -3604 ($ $)) (-15 -2981 (|t#1| $)) (-15 -3048 ((-1060) $)) (-15 -2872 (|t#2| $)) (-15 -3188 (|t#2| $ |t#2|)))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-3188 ((|#1| $ |#1|) 29)) (-3010 (($ $ (-1060)) 22)) (-1774 (((-3 |#1| "failed") $) 28)) (-2872 ((|#1| $) 26)) (-3723 (($ (-358)) 21) (($ (-358) (-1060)) 20)) (-2981 (((-358) $) 24)) (-3232 (((-1060) $) NIL)) (-3048 (((-1060) $) 25)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 19)) (-3604 (($ $) 23)) (-1572 (((-107) $ $) 18))) -(((-335 |#1|) (-13 (-334 (-358) |#1|) (-10 -8 (-15 -1774 ((-3 |#1| "failed") $)))) (-1006)) (T -335)) -((-1774 (*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1006))))) -(-13 (-334 (-358) |#1|) (-10 -8 (-15 -1774 ((-3 |#1| "failed") $)))) -((-3449 (((-1158 (-623 |#2|)) (-1158 $)) 61)) (-2998 (((-623 |#2|) (-1158 $)) 119)) (-2496 ((|#2| $) 32)) (-1793 (((-623 |#2|) $ (-1158 $)) 123)) (-3071 (((-3 $ "failed") $) 75)) (-4132 ((|#2| $) 35)) (-1363 (((-1073 |#2|) $) 83)) (-3708 ((|#2| (-1158 $)) 106)) (-2740 (((-1073 |#2|) $) 28)) (-2889 (((-107)) 100)) (-3539 (($ (-1158 |#2|) (-1158 $)) 113)) (-3550 (((-3 $ "failed") $) 79)) (-3544 (((-107)) 95)) (-4016 (((-107)) 90)) (-1627 (((-107)) 53)) (-1830 (((-623 |#2|) (-1158 $)) 117)) (-2002 ((|#2| $) 31)) (-4044 (((-623 |#2|) $ (-1158 $)) 122)) (-2680 (((-3 $ "failed") $) 73)) (-1249 ((|#2| $) 34)) (-3556 (((-1073 |#2|) $) 82)) (-1274 ((|#2| (-1158 $)) 104)) (-3570 (((-1073 |#2|) $) 26)) (-1878 (((-107)) 99)) (-2455 (((-107)) 92)) (-4102 (((-107)) 51)) (-2032 (((-107)) 87)) (-3377 (((-107)) 101)) (-1372 (((-1158 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) (-1158 $) (-1158 $)) 111)) (-1293 (((-107)) 97)) (-3741 (((-583 (-1158 |#2|))) 86)) (-3450 (((-107)) 98)) (-3014 (((-107)) 96)) (-1901 (((-107)) 46)) (-1555 (((-107)) 102))) -(((-336 |#1| |#2|) (-10 -8 (-15 -1363 ((-1073 |#2|) |#1|)) (-15 -3556 ((-1073 |#2|) |#1|)) (-15 -3741 ((-583 (-1158 |#2|)))) (-15 -3071 ((-3 |#1| "failed") |#1|)) (-15 -2680 ((-3 |#1| "failed") |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -4016 ((-107))) (-15 -2455 ((-107))) (-15 -3544 ((-107))) (-15 -4102 ((-107))) (-15 -1627 ((-107))) (-15 -2032 ((-107))) (-15 -1555 ((-107))) (-15 -3377 ((-107))) (-15 -2889 ((-107))) (-15 -1878 ((-107))) (-15 -1901 ((-107))) (-15 -3450 ((-107))) (-15 -3014 ((-107))) (-15 -1293 ((-107))) (-15 -2740 ((-1073 |#2|) |#1|)) (-15 -3570 ((-1073 |#2|) |#1|)) (-15 -2998 ((-623 |#2|) (-1158 |#1|))) (-15 -1830 ((-623 |#2|) (-1158 |#1|))) (-15 -3708 (|#2| (-1158 |#1|))) (-15 -1274 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4132 (|#2| |#1|)) (-15 -1249 (|#2| |#1|)) (-15 -2496 (|#2| |#1|)) (-15 -2002 (|#2| |#1|)) (-15 -1793 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -4044 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -3449 ((-1158 (-623 |#2|)) (-1158 |#1|)))) (-337 |#2|) (-156)) (T -336)) -((-1293 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3014 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3450 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1901 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1878 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2889 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3377 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1555 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2032 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1627 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4102 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3544 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2455 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4016 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3741 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1158 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4))))) -(-10 -8 (-15 -1363 ((-1073 |#2|) |#1|)) (-15 -3556 ((-1073 |#2|) |#1|)) (-15 -3741 ((-583 (-1158 |#2|)))) (-15 -3071 ((-3 |#1| "failed") |#1|)) (-15 -2680 ((-3 |#1| "failed") |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -4016 ((-107))) (-15 -2455 ((-107))) (-15 -3544 ((-107))) (-15 -4102 ((-107))) (-15 -1627 ((-107))) (-15 -2032 ((-107))) (-15 -1555 ((-107))) (-15 -3377 ((-107))) (-15 -2889 ((-107))) (-15 -1878 ((-107))) (-15 -1901 ((-107))) (-15 -3450 ((-107))) (-15 -3014 ((-107))) (-15 -1293 ((-107))) (-15 -2740 ((-1073 |#2|) |#1|)) (-15 -3570 ((-1073 |#2|) |#1|)) (-15 -2998 ((-623 |#2|) (-1158 |#1|))) (-15 -1830 ((-623 |#2|) (-1158 |#1|))) (-15 -3708 (|#2| (-1158 |#1|))) (-15 -1274 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4132 (|#2| |#1|)) (-15 -1249 (|#2| |#1|)) (-15 -2496 (|#2| |#1|)) (-15 -2002 (|#2| |#1|)) (-15 -1793 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -4044 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -3449 ((-1158 (-623 |#2|)) (-1158 |#1|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1966 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3449 (((-1158 (-623 |#1|)) (-1158 $)) 78)) (-4026 (((-1158 $)) 81)) (-3038 (($) 17 T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1745 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2998 (((-623 |#1|) (-1158 $)) 65)) (-2496 ((|#1| $) 74)) (-1793 (((-623 |#1|) $ (-1158 $)) 76)) (-3071 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-2823 (($ $ (-845)) 28)) (-4132 ((|#1| $) 72)) (-1363 (((-1073 |#1|) $) 42 (|has| |#1| (-509)))) (-3708 ((|#1| (-1158 $)) 67)) (-2740 (((-1073 |#1|) $) 63)) (-2889 (((-107)) 57)) (-3539 (($ (-1158 |#1|) (-1158 $)) 69)) (-3550 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3778 (((-845)) 80)) (-3874 (((-107)) 54)) (-1768 (($ $ (-845)) 33)) (-3544 (((-107)) 50)) (-4016 (((-107)) 48)) (-1627 (((-107)) 52)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-3277 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-1830 (((-623 |#1|) (-1158 $)) 66)) (-2002 ((|#1| $) 75)) (-4044 (((-623 |#1|) $ (-1158 $)) 77)) (-2680 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-4119 (($ $ (-845)) 29)) (-1249 ((|#1| $) 73)) (-3556 (((-1073 |#1|) $) 43 (|has| |#1| (-509)))) (-1274 ((|#1| (-1158 $)) 68)) (-3570 (((-1073 |#1|) $) 64)) (-1878 (((-107)) 58)) (-3232 (((-1060) $) 9)) (-2455 (((-107)) 49)) (-4102 (((-107)) 51)) (-2032 (((-107)) 53)) (-4130 (((-1024) $) 10)) (-3377 (((-107)) 56)) (-1372 (((-1158 |#1|) $ (-1158 $)) 71) (((-623 |#1|) (-1158 $) (-1158 $)) 70)) (-3861 (((-583 (-876 |#1|)) (-1158 $)) 79)) (-1970 (($ $ $) 25)) (-1293 (((-107)) 62)) (-2262 (((-787) $) 11)) (-3741 (((-583 (-1158 |#1|))) 44 (|has| |#1| (-509)))) (-2182 (($ $ $ $) 26)) (-3450 (((-107)) 60)) (-2742 (($ $ $) 24)) (-3014 (((-107)) 61)) (-1901 (((-107)) 59)) (-1555 (((-107)) 55)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 30)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-337 |#1|) (-1189) (-156)) (T -337)) -((-4026 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1158 *1)) (-4 *1 (-337 *3)))) (-3778 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-845)))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-876 *4))))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1158 (-623 *4))))) (-4044 (*1 *2 *1 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1793 (*1 *2 *1 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2496 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-1249 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-1372 (*1 *2 *1 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1158 *4)))) (-1372 (*1 *2 *3 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3539 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1158 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1073 *3)))) (-2740 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1073 *3)))) (-1293 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3014 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3450 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1901 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1878 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2889 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3377 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1555 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3874 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2032 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1627 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-4102 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3544 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2455 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-4016 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3550 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2680 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-3071 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-3741 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1158 *3))))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1073 *3)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1073 *3)))) (-3742 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3700 (-583 *1)))) (-4 *1 (-337 *3)))) (-1963 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3700 (-583 *1)))) (-4 *1 (-337 *3)))) (-3277 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1745 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1966 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156))))) -(-13 (-677 |t#1|) (-10 -8 (-15 -4026 ((-1158 $))) (-15 -3778 ((-845))) (-15 -3861 ((-583 (-876 |t#1|)) (-1158 $))) (-15 -3449 ((-1158 (-623 |t#1|)) (-1158 $))) (-15 -4044 ((-623 |t#1|) $ (-1158 $))) (-15 -1793 ((-623 |t#1|) $ (-1158 $))) (-15 -2002 (|t#1| $)) (-15 -2496 (|t#1| $)) (-15 -1249 (|t#1| $)) (-15 -4132 (|t#1| $)) (-15 -1372 ((-1158 |t#1|) $ (-1158 $))) (-15 -1372 ((-623 |t#1|) (-1158 $) (-1158 $))) (-15 -3539 ($ (-1158 |t#1|) (-1158 $))) (-15 -1274 (|t#1| (-1158 $))) (-15 -3708 (|t#1| (-1158 $))) (-15 -1830 ((-623 |t#1|) (-1158 $))) (-15 -2998 ((-623 |t#1|) (-1158 $))) (-15 -3570 ((-1073 |t#1|) $)) (-15 -2740 ((-1073 |t#1|) $)) (-15 -1293 ((-107))) (-15 -3014 ((-107))) (-15 -3450 ((-107))) (-15 -1901 ((-107))) (-15 -1878 ((-107))) (-15 -2889 ((-107))) (-15 -3377 ((-107))) (-15 -1555 ((-107))) (-15 -3874 ((-107))) (-15 -2032 ((-107))) (-15 -1627 ((-107))) (-15 -4102 ((-107))) (-15 -3544 ((-107))) (-15 -2455 ((-107))) (-15 -4016 ((-107))) (IF (|has| |t#1| (-509)) (PROGN (-15 -3550 ((-3 $ "failed") $)) (-15 -2680 ((-3 $ "failed") $)) (-15 -3071 ((-3 $ "failed") $)) (-15 -3741 ((-583 (-1158 |t#1|)))) (-15 -3556 ((-1073 |t#1|) $)) (-15 -1363 ((-1073 |t#1|) $)) (-15 -3742 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -1963 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -3277 ((-3 $ "failed"))) (-15 -1745 ((-3 $ "failed"))) (-15 -1966 ((-3 $ "failed"))) (-6 -4192)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-970 |#1|) . T) ((-1006) . T)) -((-2105 (((-107) $ $) 7)) (-2390 (((-703)) 16)) (-2192 (($) 13)) (-4161 (((-845) $) 14)) (-3232 (((-1060) $) 9)) (-2803 (($ (-845)) 15)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6))) -(((-338) (-1189)) (T -338)) -((-2390 (*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) (-2803 (*1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-338)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-845)))) (-2192 (*1 *1) (-4 *1 (-338)))) -(-13 (-1006) (-10 -8 (-15 -2390 ((-703))) (-15 -2803 ($ (-845))) (-15 -4161 ((-845) $)) (-15 -2192 ($)))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-1278 (((-623 |#2|) (-1158 $)) 40)) (-3539 (($ (-1158 |#2|) (-1158 $)) 35)) (-4028 (((-623 |#2|) $ (-1158 $)) 43)) (-3115 ((|#2| (-1158 $)) 13)) (-1372 (((-1158 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) (-1158 $) (-1158 $)) 25))) -(((-339 |#1| |#2| |#3|) (-10 -8 (-15 -1278 ((-623 |#2|) (-1158 |#1|))) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4028 ((-623 |#2|) |#1| (-1158 |#1|)))) (-340 |#2| |#3|) (-156) (-1134 |#2|)) (T -339)) -NIL -(-10 -8 (-15 -1278 ((-623 |#2|) (-1158 |#1|))) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4028 ((-623 |#2|) |#1| (-1158 |#1|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1278 (((-623 |#1|) (-1158 $)) 46)) (-1991 ((|#1| $) 52)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3539 (($ (-1158 |#1|) (-1158 $)) 48)) (-4028 (((-623 |#1|) $ (-1158 $)) 53)) (-3550 (((-3 $ "failed") $) 34)) (-3778 (((-845)) 54)) (-1690 (((-107) $) 31)) (-3522 ((|#1| $) 51)) (-1914 ((|#2| $) 44 (|has| |#1| (-333)))) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-3115 ((|#1| (-1158 $)) 47)) (-1372 (((-1158 |#1|) $ (-1158 $)) 50) (((-623 |#1|) (-1158 $) (-1158 $)) 49)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-3385 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3848 ((|#2| $) 45)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-340 |#1| |#2|) (-1189) (-156) (-1134 |t#1|)) (T -340)) -((-3778 (*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-845)))) (-4028 (*1 *2 *1 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156)))) (-1372 (*1 *2 *1 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-1158 *4)))) (-1372 (*1 *2 *3 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) (-3539 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1158 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1134 *4)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1134 *2)) (-4 *2 (-156)))) (-1278 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1134 *3))))) -(-13 (-37 |t#1|) (-10 -8 (-15 -3778 ((-845))) (-15 -4028 ((-623 |t#1|) $ (-1158 $))) (-15 -1991 (|t#1| $)) (-15 -3522 (|t#1| $)) (-15 -1372 ((-1158 |t#1|) $ (-1158 $))) (-15 -1372 ((-623 |t#1|) (-1158 $) (-1158 $))) (-15 -3539 ($ (-1158 |t#1|) (-1158 $))) (-15 -3115 (|t#1| (-1158 $))) (-15 -1278 ((-623 |t#1|) (-1158 $))) (-15 -3848 (|t#2| $)) (IF (|has| |t#1| (-333)) (-15 -1914 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-1250 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-1510 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3312 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1510 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1250 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1112) (-343 |#1|) (-1112) (-343 |#3|)) (T -341)) -((-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5))))) -(-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1510 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1250 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2508 (((-107) (-1 (-107) |#2| |#2|) $) NIL) (((-107) $) 18)) (-4109 (($ (-1 (-107) |#2| |#2|) $) NIL) (($ $) 28)) (-2149 (($ (-1 (-107) |#2| |#2|) $) 27) (($ $) 22)) (-1894 (($ $) 25)) (-1210 (((-517) (-1 (-107) |#2|) $) NIL) (((-517) |#2| $) 11) (((-517) |#2| $ (-517)) NIL)) (-3824 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-342 |#1| |#2|) (-10 -8 (-15 -4109 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2508 ((-107) |#1|)) (-15 -2149 (|#1| |#1|)) (-15 -3824 (|#1| |#1| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2149 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1894 (|#1| |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) (-343 |#2|) (-1112)) (T -342)) -NIL -(-10 -8 (-15 -4109 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2508 ((-107) |#1|)) (-15 -2149 (|#1| |#1|)) (-15 -3824 (|#1| |#1| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2149 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1894 (|#1| |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1210 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 70)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 82 (|has| |#1| (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-343 |#1|) (-1189) (-1112)) (T -343)) -((-3824 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1112)))) (-1894 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112)))) (-2149 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1112)))) (-2508 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1112)) (-5 *2 (-107)))) (-1210 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1112)) (-5 *2 (-517)))) (-1210 (*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-517)))) (-1210 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)))) (-3824 (*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112)) (-4 *2 (-779)))) (-2149 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112)) (-4 *2 (-779)))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1112)) (-4 *3 (-779)) (-5 *2 (-107)))) (-1704 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4196)) (-4 *1 (-343 *3)) (-4 *3 (-1112)))) (-3797 (*1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-343 *2)) (-4 *2 (-1112)))) (-4109 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4196)) (-4 *1 (-343 *3)) (-4 *3 (-1112)))) (-4109 (*1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-343 *2)) (-4 *2 (-1112)) (-4 *2 (-779))))) -(-13 (-588 |t#1|) (-10 -8 (-6 -4195) (-15 -3824 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -1894 ($ $)) (-15 -2149 ($ (-1 (-107) |t#1| |t#1|) $)) (-15 -2508 ((-107) (-1 (-107) |t#1| |t#1|) $)) (-15 -1210 ((-517) (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -1210 ((-517) |t#1| $)) (-15 -1210 ((-517) |t#1| $ (-517)))) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-6 (-779)) (-15 -3824 ($ $ $)) (-15 -2149 ($ $)) (-15 -2508 ((-107) $))) |%noBranch|) (IF (|has| $ (-6 -4196)) (PROGN (-15 -1704 ($ $ $ (-517))) (-15 -3797 ($ $)) (-15 -4109 ($ (-1 (-107) |t#1| |t#1|) $)) (IF (|has| |t#1| (-779)) (-15 -4109 ($ $)) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-97) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1006) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-1112) . T)) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3375 (((-583 |#1|) $) 32)) (-1855 (($ $ (-703)) 33)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-1586 (((-1180 |#1| |#2|) (-1180 |#1| |#2|) $) 36)) (-2833 (($ $) 34)) (-2388 (((-1180 |#1| |#2|) (-1180 |#1| |#2|) $) 37)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-3552 (($ $ |#1| $) 31) (($ $ (-583 |#1|) (-583 $)) 30)) (-1191 (((-703) $) 38)) (-2279 (($ $ $) 29)) (-2262 (((-787) $) 11) (($ |#1|) 41) (((-1171 |#1| |#2|) $) 40) (((-1180 |#1| |#2|) $) 39)) (-1570 ((|#2| (-1180 |#1| |#2|) $) 42)) (-3663 (($) 18 T CONST)) (-1590 (($ (-608 |#1|)) 35)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#2|) 28 (|has| |#2| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-344 |#1| |#2|) (-1189) (-779) (-156)) (T -344)) -((-1570 (*1 *2 *3 *1) (-12 (-5 *3 (-1180 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) (-2262 (*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1171 *3 *4)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1180 *3 *4)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) (-2388 (*1 *2 *2 *1) (-12 (-5 *2 (-1180 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1586 (*1 *2 *2 *1) (-12 (-5 *2 (-1180 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))) (-2833 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-1855 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) (-3552 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156))))) -(-13 (-574 |t#2|) (-10 -8 (-15 -1570 (|t#2| (-1180 |t#1| |t#2|) $)) (-15 -2262 ($ |t#1|)) (-15 -2262 ((-1171 |t#1| |t#2|) $)) (-15 -2262 ((-1180 |t#1| |t#2|) $)) (-15 -1191 ((-703) $)) (-15 -2388 ((-1180 |t#1| |t#2|) (-1180 |t#1| |t#2|) $)) (-15 -1586 ((-1180 |t#1| |t#2|) (-1180 |t#1| |t#2|) $)) (-15 -1590 ($ (-608 |t#1|))) (-15 -2833 ($ $)) (-15 -1855 ($ $ (-703))) (-15 -3375 ((-583 |t#1|) $)) (-15 -3552 ($ $ |t#1| $)) (-15 -3552 ($ $ (-583 |t#1|) (-583 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-574 |#2|) . T) ((-650 |#2|) . T) ((-970 |#2|) . T) ((-1006) . T)) -((-1399 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 24)) (-2853 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 12)) (-1625 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 21))) -(((-345 |#1| |#2|) (-10 -7 (-15 -2853 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1625 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1399 (|#2| (-1 (-107) |#1| |#1|) |#2|))) (-1112) (-13 (-343 |#1|) (-10 -7 (-6 -4196)))) (T -345)) -((-1399 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196)))))) (-1625 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196)))))) (-2853 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196))))))) -(-10 -7 (-15 -2853 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1625 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1399 (|#2| (-1 (-107) |#1| |#1|) |#2|))) -((-2947 (((-623 |#2|) (-623 $)) NIL) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 19) (((-623 (-517)) (-623 $)) 13))) -(((-346 |#1| |#2|) (-10 -8 (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 |#2|) (-623 |#1|)))) (-347 |#2|) (-964)) (T -346)) -NIL -(-10 -8 (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 |#2|) (-623 |#1|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2947 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 35) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 43 (|has| |#1| (-579 (-517)))) (((-623 (-517)) (-623 $)) 42 (|has| |#1| (-579 (-517))))) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-347 |#1|) (-1189) (-964)) (T -347)) -NIL -(-13 (-579 |t#1|) (-10 -7 (IF (|has| |t#1| (-579 (-517))) (-6 (-579 (-517))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-1354 (((-583 (-265 (-876 (-153 |#1|)))) (-265 (-377 (-876 (-153 (-517))))) |#1|) 50) (((-583 (-265 (-876 (-153 |#1|)))) (-377 (-876 (-153 (-517)))) |#1|) 49) (((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-265 (-377 (-876 (-153 (-517)))))) |#1|) 45) (((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-377 (-876 (-153 (-517))))) |#1|) 39)) (-2914 (((-583 (-583 (-153 |#1|))) (-583 (-377 (-876 (-153 (-517))))) (-583 (-1077)) |#1|) 27) (((-583 (-153 |#1|)) (-377 (-876 (-153 (-517)))) |#1|) 15))) -(((-348 |#1|) (-10 -7 (-15 -1354 ((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-377 (-876 (-153 (-517))))) |#1|)) (-15 -1354 ((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-265 (-377 (-876 (-153 (-517)))))) |#1|)) (-15 -1354 ((-583 (-265 (-876 (-153 |#1|)))) (-377 (-876 (-153 (-517)))) |#1|)) (-15 -1354 ((-583 (-265 (-876 (-153 |#1|)))) (-265 (-377 (-876 (-153 (-517))))) |#1|)) (-15 -2914 ((-583 (-153 |#1|)) (-377 (-876 (-153 (-517)))) |#1|)) (-15 -2914 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-876 (-153 (-517))))) (-583 (-1077)) |#1|))) (-13 (-333) (-777))) (T -348)) -((-2914 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-876 (-153 (-517)))))) (-5 *4 (-583 (-1077))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))) (-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1354 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-876 (-153 (-517)))))) (-5 *2 (-583 (-265 (-876 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1354 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 (-153 (-517))))) (-5 *2 (-583 (-265 (-876 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1354 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-876 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-876 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-1354 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-876 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777)))))) -(-10 -7 (-15 -1354 ((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-377 (-876 (-153 (-517))))) |#1|)) (-15 -1354 ((-583 (-583 (-265 (-876 (-153 |#1|))))) (-583 (-265 (-377 (-876 (-153 (-517)))))) |#1|)) (-15 -1354 ((-583 (-265 (-876 (-153 |#1|)))) (-377 (-876 (-153 (-517)))) |#1|)) (-15 -1354 ((-583 (-265 (-876 (-153 |#1|)))) (-265 (-377 (-876 (-153 (-517))))) |#1|)) (-15 -2914 ((-583 (-153 |#1|)) (-377 (-876 (-153 (-517)))) |#1|)) (-15 -2914 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-876 (-153 (-517))))) (-583 (-1077)) |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 33)) (-2964 (((-517) $) 55)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2147 (($ $) 110)) (-1636 (($ $) 82)) (-1482 (($ $) 71)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) 44)) (-1765 (((-107) $ $) NIL)) (-1612 (($ $) 80)) (-1459 (($ $) 69)) (-3502 (((-517) $) 64)) (-2127 (($ $ (-517)) 62)) (-1659 (($ $) NIL)) (-1508 (($ $) NIL)) (-3038 (($) NIL T CONST)) (-3164 (($ $) 112)) (-3220 (((-3 (-517) "failed") $) 188) (((-3 (-377 (-517)) "failed") $) 184)) (-3402 (((-517) $) 186) (((-377 (-517)) $) 182)) (-2383 (($ $ $) NIL)) (-1933 (((-517) $ $) 102)) (-3550 (((-3 $ "failed") $) 114)) (-1524 (((-377 (-517)) $ (-703)) 189) (((-377 (-517)) $ (-703) (-703)) 181)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3456 (((-845)) 73) (((-845) (-845)) 98 (|has| $ (-6 -4186)))) (-2671 (((-107) $) 106)) (-2102 (($) 40)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL)) (-2921 (((-1163) (-703)) 151)) (-1348 (((-1163)) 156) (((-1163) (-703)) 157)) (-3229 (((-1163)) 158) (((-1163) (-703)) 159)) (-2396 (((-1163)) 154) (((-1163) (-703)) 155)) (-3250 (((-517) $) 58)) (-1690 (((-107) $) 104)) (-2940 (($ $ (-517)) NIL)) (-1450 (($ $) 48)) (-3522 (($ $) NIL)) (-2321 (((-107) $) 35)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL) (($) NIL (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-4095 (($ $ $) NIL) (($) 99 (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-3743 (((-517) $) 17)) (-3815 (($) 87) (($ $) 92)) (-3281 (($) 91) (($ $) 93)) (-1232 (($ $) 83)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 116)) (-2848 (((-845) (-517)) 43 (|has| $ (-6 -4186)))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) 53)) (-2713 (($ $) 109)) (-3202 (($ (-517) (-517)) 107) (($ (-517) (-517) (-845)) 108)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1725 (((-517) $) 19)) (-2999 (($) 94)) (-3898 (($ $) 79)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3685 (((-845)) 100) (((-845) (-845)) 101 (|has| $ (-6 -4186)))) (-2042 (($ $ (-703)) NIL) (($ $) 115)) (-1753 (((-845) (-517)) 47 (|has| $ (-6 -4186)))) (-1670 (($ $) NIL)) (-1521 (($ $) NIL)) (-1647 (($ $) NIL)) (-1495 (($ $) NIL)) (-1622 (($ $) 81)) (-1471 (($ $) 70)) (-3367 (((-349) $) 174) (((-199) $) 176) (((-816 (-349)) $) NIL) (((-1060) $) 161) (((-493) $) 172) (($ (-199)) 180)) (-2262 (((-787) $) 163) (($ (-517)) 185) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 185) (($ (-377 (-517))) NIL) (((-199) $) 177)) (-1818 (((-703)) NIL)) (-3126 (($ $) 111)) (-2076 (((-845)) 54) (((-845) (-845)) 66 (|has| $ (-6 -4186)))) (-4003 (((-845)) 103)) (-1706 (($ $) 86)) (-1564 (($ $) 46) (($ $ $) 52)) (-2944 (((-107) $ $) NIL)) (-1685 (($ $) 84)) (-1536 (($ $) 37)) (-3517 (($ $) NIL)) (-1588 (($ $) NIL)) (-2815 (($ $) NIL)) (-1601 (($ $) NIL)) (-1722 (($ $) NIL)) (-1577 (($ $) NIL)) (-1698 (($ $) 85)) (-1550 (($ $) 49)) (-2829 (($ $) 51)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 34 T CONST)) (-3675 (($) 38 T CONST)) (-2514 (((-1060) $) 27) (((-1060) $ (-107)) 29) (((-1163) (-754) $) 30) (((-1163) (-754) $ (-107)) 31)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 39)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 42)) (-1692 (($ $ $) 45) (($ $ (-517)) 41)) (-1680 (($ $) 36) (($ $ $) 50)) (-1666 (($ $ $) 61)) (** (($ $ (-845)) 67) (($ $ (-703)) NIL) (($ $ (-517)) 88) (($ $ (-377 (-517))) 125) (($ $ $) 117)) (* (($ (-845) $) 65) (($ (-703) $) NIL) (($ (-517) $) 68) (($ $ $) 60) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) -(((-349) (-13 (-374) (-207) (-558 (-1060)) (-760) (-557 (-199)) (-1098) (-558 (-493)) (-10 -8 (-15 -1692 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -1450 ($ $)) (-15 -1933 ((-517) $ $)) (-15 -2127 ($ $ (-517))) (-15 -1524 ((-377 (-517)) $ (-703))) (-15 -1524 ((-377 (-517)) $ (-703) (-703))) (-15 -3815 ($)) (-15 -3281 ($)) (-15 -2999 ($)) (-15 -1564 ($ $ $)) (-15 -3815 ($ $)) (-15 -3281 ($ $)) (-15 -3367 ($ (-199))) (-15 -3229 ((-1163))) (-15 -3229 ((-1163) (-703))) (-15 -2396 ((-1163))) (-15 -2396 ((-1163) (-703))) (-15 -1348 ((-1163))) (-15 -1348 ((-1163) (-703))) (-15 -2921 ((-1163) (-703))) (-6 -4186) (-6 -4178)))) (T -349)) -((** (*1 *1 *1 *1) (-5 *1 (-349))) (-1692 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1450 (*1 *1 *1) (-5 *1 (-349))) (-1933 (*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1524 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-1524 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-3815 (*1 *1) (-5 *1 (-349))) (-3281 (*1 *1) (-5 *1 (-349))) (-2999 (*1 *1) (-5 *1 (-349))) (-1564 (*1 *1 *1 *1) (-5 *1 (-349))) (-3815 (*1 *1 *1) (-5 *1 (-349))) (-3281 (*1 *1 *1) (-5 *1 (-349))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) (-3229 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349)))) (-2396 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349)))) (-1348 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349))))) -(-13 (-374) (-207) (-558 (-1060)) (-760) (-557 (-199)) (-1098) (-558 (-493)) (-10 -8 (-15 -1692 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -1450 ($ $)) (-15 -1933 ((-517) $ $)) (-15 -2127 ($ $ (-517))) (-15 -1524 ((-377 (-517)) $ (-703))) (-15 -1524 ((-377 (-517)) $ (-703) (-703))) (-15 -3815 ($)) (-15 -3281 ($)) (-15 -2999 ($)) (-15 -1564 ($ $ $)) (-15 -3815 ($ $)) (-15 -3281 ($ $)) (-15 -3367 ($ (-199))) (-15 -3229 ((-1163))) (-15 -3229 ((-1163) (-703))) (-15 -2396 ((-1163))) (-15 -2396 ((-1163) (-703))) (-15 -1348 ((-1163))) (-15 -1348 ((-1163) (-703))) (-15 -2921 ((-1163) (-703))) (-6 -4186) (-6 -4178))) -((-1993 (((-583 (-265 (-876 |#1|))) (-265 (-377 (-876 (-517)))) |#1|) 46) (((-583 (-265 (-876 |#1|))) (-377 (-876 (-517))) |#1|) 45) (((-583 (-583 (-265 (-876 |#1|)))) (-583 (-265 (-377 (-876 (-517))))) |#1|) 41) (((-583 (-583 (-265 (-876 |#1|)))) (-583 (-377 (-876 (-517)))) |#1|) 35)) (-2817 (((-583 |#1|) (-377 (-876 (-517))) |#1|) 19) (((-583 (-583 |#1|)) (-583 (-377 (-876 (-517)))) (-583 (-1077)) |#1|) 30))) -(((-350 |#1|) (-10 -7 (-15 -1993 ((-583 (-583 (-265 (-876 |#1|)))) (-583 (-377 (-876 (-517)))) |#1|)) (-15 -1993 ((-583 (-583 (-265 (-876 |#1|)))) (-583 (-265 (-377 (-876 (-517))))) |#1|)) (-15 -1993 ((-583 (-265 (-876 |#1|))) (-377 (-876 (-517))) |#1|)) (-15 -1993 ((-583 (-265 (-876 |#1|))) (-265 (-377 (-876 (-517)))) |#1|)) (-15 -2817 ((-583 (-583 |#1|)) (-583 (-377 (-876 (-517)))) (-583 (-1077)) |#1|)) (-15 -2817 ((-583 |#1|) (-377 (-876 (-517))) |#1|))) (-13 (-777) (-333))) (T -350)) -((-2817 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-2817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-876 (-517))))) (-5 *4 (-583 (-1077))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-876 (-517))))) (-5 *2 (-583 (-265 (-876 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 (-517)))) (-5 *2 (-583 (-265 (-876 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-876 (-517)))))) (-5 *2 (-583 (-583 (-265 (-876 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 (-517))))) (-5 *2 (-583 (-583 (-265 (-876 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333)))))) -(-10 -7 (-15 -1993 ((-583 (-583 (-265 (-876 |#1|)))) (-583 (-377 (-876 (-517)))) |#1|)) (-15 -1993 ((-583 (-583 (-265 (-876 |#1|)))) (-583 (-265 (-377 (-876 (-517))))) |#1|)) (-15 -1993 ((-583 (-265 (-876 |#1|))) (-377 (-876 (-517))) |#1|)) (-15 -1993 ((-583 (-265 (-876 |#1|))) (-265 (-377 (-876 (-517)))) |#1|)) (-15 -2817 ((-583 (-583 |#1|)) (-583 (-377 (-876 (-517)))) (-583 (-1077)) |#1|)) (-15 -2817 ((-583 |#1|) (-377 (-876 (-517))) |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) 25)) (-3402 ((|#2| $) 27)) (-2364 (($ $) NIL)) (-2516 (((-703) $) 10)) (-1300 (((-583 $) $) 20)) (-3022 (((-107) $) NIL)) (-2416 (($ |#2| |#1|) 18)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3758 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2325 ((|#2| $) 15)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 44) (($ |#2|) 26)) (-3186 (((-583 |#1|) $) 17)) (-1939 ((|#1| $ |#2|) 46)) (-3663 (($) 28 T CONST)) (-1226 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35))) -(((-351 |#1| |#2|) (-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-964) (-779)) (T -351)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-964)) (-4 *2 (-779))))) -(-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#2| "failed") $) 44)) (-3402 ((|#2| $) 43)) (-2364 (($ $) 30)) (-2516 (((-703) $) 34)) (-1300 (((-583 $) $) 35)) (-3022 (((-107) $) 38)) (-2416 (($ |#2| |#1|) 39)) (-3312 (($ (-1 |#1| |#1|) $) 40)) (-3758 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2325 ((|#2| $) 33)) (-2336 ((|#1| $) 32)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ |#2|) 45)) (-3186 (((-583 |#1|) $) 36)) (-1939 ((|#1| $ |#2|) 41)) (-3663 (($) 18 T CONST)) (-1226 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-352 |#1| |#2|) (-1189) (-964) (-1006)) (T -352)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1006)))) (-1939 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-964)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)))) (-2416 (*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1006)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-107)))) (-1226 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-583 *3)))) (-1300 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-703)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1006)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-964)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1006))))) -(-13 (-106 |t#1| |t#1|) (-955 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1939 (|t#1| $ |t#2|)) (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (-15 -2416 ($ |t#2| |t#1|)) (-15 -3022 ((-107) $)) (-15 -1226 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3186 ((-583 |t#1|) $)) (-15 -1300 ((-583 $) $)) (-15 -2516 ((-703) $)) (-15 -2325 (|t#2| $)) (-15 -2336 (|t#1| $)) (-15 -3758 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2364 ($ $)) (IF (|has| |t#1| (-156)) (-6 (-650 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) |has| |#1| (-156)) ((-955 |#2|) . T) ((-970 |#1|) . T) ((-1006) . T)) -((-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8) (($ (-623 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 11))) -(((-353) (-1189)) (T -353)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-4 *1 (-353))))) -(-13 (-365) (-10 -8 (-15 -2262 ($ (-623 (-632)))) (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-300))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))))) -(((-557 (-787)) . T) ((-365) . T) ((-1112) . T)) -((-3220 (((-3 $ "failed") (-623 (-286 (-349)))) 21) (((-3 $ "failed") (-623 (-286 (-517)))) 19) (((-3 $ "failed") (-623 (-876 (-349)))) 17) (((-3 $ "failed") (-623 (-876 (-517)))) 15) (((-3 $ "failed") (-623 (-377 (-876 (-349))))) 13) (((-3 $ "failed") (-623 (-377 (-876 (-517))))) 11)) (-3402 (($ (-623 (-286 (-349)))) 22) (($ (-623 (-286 (-517)))) 20) (($ (-623 (-876 (-349)))) 18) (($ (-623 (-876 (-517)))) 16) (($ (-623 (-377 (-876 (-349))))) 14) (($ (-623 (-377 (-876 (-517))))) 12)) (-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 23))) -(((-354) (-1189)) (T -354)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-876 (-349)))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-876 (-349)))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-876 (-517)))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-876 (-517)))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-876 (-349))))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-876 (-349))))) (-4 *1 (-354)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-876 (-517))))) (-4 *1 (-354)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-876 (-517))))) (-4 *1 (-354))))) -(-13 (-365) (-10 -8 (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-300))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))) (-15 -3402 ($ (-623 (-286 (-349))))) (-15 -3220 ((-3 $ "failed") (-623 (-286 (-349))))) (-15 -3402 ($ (-623 (-286 (-517))))) (-15 -3220 ((-3 $ "failed") (-623 (-286 (-517))))) (-15 -3402 ($ (-623 (-876 (-349))))) (-15 -3220 ((-3 $ "failed") (-623 (-876 (-349))))) (-15 -3402 ($ (-623 (-876 (-517))))) (-15 -3220 ((-3 $ "failed") (-623 (-876 (-517))))) (-15 -3402 ($ (-623 (-377 (-876 (-349)))))) (-15 -3220 ((-3 $ "failed") (-623 (-377 (-876 (-349)))))) (-15 -3402 ($ (-623 (-377 (-876 (-517)))))) (-15 -3220 ((-3 $ "failed") (-623 (-377 (-876 (-517)))))))) -(((-557 (-787)) . T) ((-365) . T) ((-1112) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-2059 (($ |#1| |#2|) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 28)) (-3663 (($) 12 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-355 |#1| |#2|) (-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|))) (-964) (-779)) (T -355)) -NIL -(-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |%noBranch|))) -((-2105 (((-107) $ $) NIL)) (-2390 (((-703) $) 57)) (-3038 (($) NIL T CONST)) (-1586 (((-3 $ "failed") $ $) 59)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3997 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-1690 (((-107) $) 14)) (-2115 ((|#1| $ (-517)) NIL)) (-2395 (((-703) $ (-517)) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3027 (($ (-1 |#1| |#1|) $) 37)) (-1838 (($ (-1 (-703) (-703)) $) 34)) (-2388 (((-3 $ "failed") $ $) 50)) (-3232 (((-1060) $) NIL)) (-4045 (($ $ $) 25)) (-3759 (($ $ $) 23)) (-4130 (((-1024) $) NIL)) (-2283 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $) 31)) (-2018 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2262 (((-787) $) 21) (($ |#1|) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3675 (($) 9 T CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 41)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) 61 (|has| |#1| (-779)))) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ |#1| (-703)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27))) -(((-356 |#1|) (-13 (-659) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -3759 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -2388 ((-3 $ "failed") $ $)) (-15 -1586 ((-3 $ "failed") $ $)) (-15 -2018 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3997 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2390 ((-703) $)) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $)) (-15 -2395 ((-703) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1838 ($ (-1 (-703) (-703)) $)) (-15 -3027 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) (-1006)) (T -356)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-3759 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-4045 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-2388 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-1586 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-2018 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) (-3997 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) (-2395 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1006)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1006)))) (-1838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) (-3027 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-356 *3))))) -(-13 (-659) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -3759 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -2388 ((-3 $ "failed") $ $)) (-15 -1586 ((-3 $ "failed") $ $)) (-15 -2018 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3997 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2390 ((-703) $)) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $)) (-15 -2395 ((-703) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1838 ($ (-1 (-703) (-703)) $)) (-15 -3027 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |%noBranch|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 47)) (-3402 (((-517) $) 46)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3480 (($ $ $) 54)) (-4095 (($ $ $) 53)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ $) 42)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 48)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 51)) (-1606 (((-107) $ $) 50)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 52)) (-1596 (((-107) $ $) 49)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-357) (-1189)) (T -357)) -NIL -(-13 (-509) (-779) (-955 (-517))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-955 (-517)) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-2023 (((-107) $) 20)) (-1994 (((-107) $) 19)) (-3204 (($ (-1060) (-1060) (-1060)) 21)) (-2981 (((-1060) $) 16)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2600 (($ (-1060) (-1060) (-1060)) 14)) (-3630 (((-1060) $) 17)) (-2075 (((-107) $) 18)) (-1314 (((-1060) $) 15)) (-2262 (((-787) $) 12) (($ (-1060)) 13) (((-1060) $) 9)) (-1572 (((-107) $ $) 7))) -(((-358) (-359)) (T -358)) -NIL -(-359) -((-2105 (((-107) $ $) 7)) (-2023 (((-107) $) 14)) (-1994 (((-107) $) 15)) (-3204 (($ (-1060) (-1060) (-1060)) 13)) (-2981 (((-1060) $) 18)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2600 (($ (-1060) (-1060) (-1060)) 20)) (-3630 (((-1060) $) 17)) (-2075 (((-107) $) 16)) (-1314 (((-1060) $) 19)) (-2262 (((-787) $) 11) (($ (-1060)) 22) (((-1060) $) 21)) (-1572 (((-107) $ $) 6))) -(((-359) (-1189)) (T -359)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))) (-2600 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359)))) (-1314 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))) (-2075 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3204 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359))))) -(-13 (-1006) (-10 -8 (-15 -2262 ($ (-1060))) (-15 -2262 ((-1060) $)) (-15 -2600 ($ (-1060) (-1060) (-1060))) (-15 -1314 ((-1060) $)) (-15 -2981 ((-1060) $)) (-15 -3630 ((-1060) $)) (-15 -2075 ((-107) $)) (-15 -1994 ((-107) $)) (-15 -2023 ((-107) $)) (-15 -3204 ($ (-1060) (-1060) (-1060))))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2348 (((-787) $) 50)) (-3038 (($) NIL T CONST)) (-2823 (($ $ (-845)) NIL)) (-1768 (($ $ (-845)) NIL)) (-4119 (($ $ (-845)) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($ (-703)) 26)) (-1470 (((-703)) 15)) (-3255 (((-787) $) 52)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) NIL)) (-2182 (($ $ $ $) NIL)) (-2742 (($ $ $) NIL)) (-3663 (($) 20 T CONST)) (-1572 (((-107) $ $) 28)) (-1680 (($ $) 34) (($ $ $) 36)) (-1666 (($ $ $) 37)) (** (($ $ (-845)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-360 |#1| |#2| |#3|) (-13 (-677 |#3|) (-10 -8 (-15 -1470 ((-703))) (-15 -3255 ((-787) $)) (-15 -2348 ((-787) $)) (-15 -1306 ($ (-703))))) (-703) (-703) (-156)) (T -360)) -((-1470 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156))))) -(-13 (-677 |#3|) (-10 -8 (-15 -1470 ((-703))) (-15 -3255 ((-787) $)) (-15 -2348 ((-787) $)) (-15 -1306 ($ (-703))))) -((-1366 (((-1060)) 10)) (-4092 (((-1049 (-1060))) 28)) (-1856 (((-1163) (-1060)) 25) (((-1163) (-358)) 24)) (-1870 (((-1163)) 26)) (-3775 (((-1049 (-1060))) 27))) -(((-361) (-10 -7 (-15 -3775 ((-1049 (-1060)))) (-15 -4092 ((-1049 (-1060)))) (-15 -1870 ((-1163))) (-15 -1856 ((-1163) (-358))) (-15 -1856 ((-1163) (-1060))) (-15 -1366 ((-1060))))) (T -361)) -((-1366 (*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-361)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-361)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1163)) (-5 *1 (-361)))) (-1870 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-361)))) (-4092 (*1 *2) (-12 (-5 *2 (-1049 (-1060))) (-5 *1 (-361)))) (-3775 (*1 *2) (-12 (-5 *2 (-1049 (-1060))) (-5 *1 (-361))))) -(-10 -7 (-15 -3775 ((-1049 (-1060)))) (-15 -4092 ((-1049 (-1060)))) (-15 -1870 ((-1163))) (-15 -1856 ((-1163) (-358))) (-15 -1856 ((-1163) (-1060))) (-15 -1366 ((-1060)))) -((-3250 (((-703) (-306 |#1| |#2| |#3| |#4|)) 16))) -(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3250 ((-703) (-306 |#1| |#2| |#3| |#4|)))) (-13 (-338) (-333)) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -362)) -((-3250 (*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7))))) -(-10 -7 (-15 -3250 ((-703) (-306 |#1| |#2| |#3| |#4|)))) -((-2262 (((-364) |#1|) 11))) -(((-363 |#1|) (-10 -7 (-15 -2262 ((-364) |#1|))) (-1006)) (T -363)) -((-2262 (*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1006))))) -(-10 -7 (-15 -2262 ((-364) |#1|))) -((-2105 (((-107) $ $) NIL)) (-3999 (((-583 (-1060)) $ (-583 (-1060))) 37)) (-1490 (((-583 (-1060)) $ (-583 (-1060))) 38)) (-4128 (((-583 (-1060)) $ (-583 (-1060))) 39)) (-2969 (((-583 (-1060)) $) 34)) (-3204 (($) 23)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1358 (((-583 (-1060)) $) 35)) (-3504 (((-583 (-1060)) $) 36)) (-1744 (((-1163) $ (-517)) 32) (((-1163) $) 33)) (-3367 (($ (-787) (-517)) 29)) (-2262 (((-787) $) 41) (($ (-787)) 25)) (-1572 (((-107) $ $) NIL))) -(((-364) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-787))) (-15 -3367 ($ (-787) (-517))) (-15 -1744 ((-1163) $ (-517))) (-15 -1744 ((-1163) $)) (-15 -3504 ((-583 (-1060)) $)) (-15 -1358 ((-583 (-1060)) $)) (-15 -3204 ($)) (-15 -2969 ((-583 (-1060)) $)) (-15 -4128 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -1490 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -3999 ((-583 (-1060)) $ (-583 (-1060))))))) (T -364)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) (-3367 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) (-1744 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-364)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-364)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) (-3204 (*1 *1) (-5 *1 (-364))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) (-4128 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) (-1490 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) (-3999 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364))))) -(-13 (-1006) (-10 -8 (-15 -2262 ($ (-787))) (-15 -3367 ($ (-787) (-517))) (-15 -1744 ((-1163) $ (-517))) (-15 -1744 ((-1163) $)) (-15 -3504 ((-583 (-1060)) $)) (-15 -1358 ((-583 (-1060)) $)) (-15 -3204 ($)) (-15 -2969 ((-583 (-1060)) $)) (-15 -4128 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -1490 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -3999 ((-583 (-1060)) $ (-583 (-1060)))))) -((-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8))) -(((-365) (-1189)) (T -365)) -((-1885 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1163))))) -(-13 (-1112) (-557 (-787)) (-10 -8 (-15 -1885 ((-1163) $)))) -(((-557 (-787)) . T) ((-1112) . T)) -((-3220 (((-3 $ "failed") (-286 (-349))) 21) (((-3 $ "failed") (-286 (-517))) 19) (((-3 $ "failed") (-876 (-349))) 17) (((-3 $ "failed") (-876 (-517))) 15) (((-3 $ "failed") (-377 (-876 (-349)))) 13) (((-3 $ "failed") (-377 (-876 (-517)))) 11)) (-3402 (($ (-286 (-349))) 22) (($ (-286 (-517))) 20) (($ (-876 (-349))) 18) (($ (-876 (-517))) 16) (($ (-377 (-876 (-349)))) 14) (($ (-377 (-876 (-517)))) 12)) (-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 23))) -(((-366) (-1189)) (T -366)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-876 (-349))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-349))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-876 (-517))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-517))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-349)))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-876 (-349)))) (-4 *1 (-366)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-517)))) (-4 *1 (-366)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-876 (-517)))) (-4 *1 (-366))))) -(-13 (-365) (-10 -8 (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-300))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))) (-15 -3402 ($ (-286 (-349)))) (-15 -3220 ((-3 $ "failed") (-286 (-349)))) (-15 -3402 ($ (-286 (-517)))) (-15 -3220 ((-3 $ "failed") (-286 (-517)))) (-15 -3402 ($ (-876 (-349)))) (-15 -3220 ((-3 $ "failed") (-876 (-349)))) (-15 -3402 ($ (-876 (-517)))) (-15 -3220 ((-3 $ "failed") (-876 (-517)))) (-15 -3402 ($ (-377 (-876 (-349))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-349))))) (-15 -3402 ($ (-377 (-876 (-517))))) (-15 -3220 ((-3 $ "failed") (-377 (-876 (-517))))))) -(((-557 (-787)) . T) ((-365) . T) ((-1112) . T)) -((-3121 (((-583 (-1060)) (-583 (-1060))) 8)) (-1885 (((-1163) (-358)) 27)) (-2789 (((-1010) (-1077) (-583 (-1077)) (-1080) (-583 (-1077))) 59) (((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077)) (-1077)) 35) (((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077))) 34))) -(((-367) (-10 -7 (-15 -2789 ((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077)))) (-15 -2789 ((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077)) (-1077))) (-15 -2789 ((-1010) (-1077) (-583 (-1077)) (-1080) (-583 (-1077)))) (-15 -1885 ((-1163) (-358))) (-15 -3121 ((-583 (-1060)) (-583 (-1060)))))) (T -367)) -((-3121 (*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-367)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1163)) (-5 *1 (-367)))) (-2789 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1077))) (-5 *5 (-1080)) (-5 *3 (-1077)) (-5 *2 (-1010)) (-5 *1 (-367)))) (-2789 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1077))))) (-5 *6 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1010)) (-5 *1 (-367)))) (-2789 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1077))))) (-5 *6 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1010)) (-5 *1 (-367))))) -(-10 -7 (-15 -2789 ((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077)))) (-15 -2789 ((-1010) (-1077) (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077)))) (-583 (-583 (-3 (|:| |array| (-583 (-1077))) (|:| |scalar| (-1077))))) (-583 (-1077)) (-1077))) (-15 -2789 ((-1010) (-1077) (-583 (-1077)) (-1080) (-583 (-1077)))) (-15 -1885 ((-1163) (-358))) (-15 -3121 ((-583 (-1060)) (-583 (-1060))))) -((-1885 (((-1163) $) 37)) (-2262 (((-787) $) 89) (($ (-300)) 92) (($ (-583 (-300))) 91) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 88) (($ (-286 (-634))) 52) (($ (-286 (-632))) 66) (($ (-286 (-627))) 78) (($ (-265 (-286 (-634)))) 62) (($ (-265 (-286 (-632)))) 74) (($ (-265 (-286 (-627)))) 86) (($ (-286 (-517))) 96) (($ (-286 (-349))) 108) (($ (-286 (-153 (-349)))) 120) (($ (-265 (-286 (-517)))) 104) (($ (-265 (-286 (-349)))) 116) (($ (-265 (-286 (-153 (-349))))) 128))) -(((-368 |#1| |#2| |#3| |#4|) (-13 (-365) (-10 -8 (-15 -2262 ($ (-300))) (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))) (-15 -2262 ($ (-286 (-634)))) (-15 -2262 ($ (-286 (-632)))) (-15 -2262 ($ (-286 (-627)))) (-15 -2262 ($ (-265 (-286 (-634))))) (-15 -2262 ($ (-265 (-286 (-632))))) (-15 -2262 ($ (-265 (-286 (-627))))) (-15 -2262 ($ (-286 (-517)))) (-15 -2262 ($ (-286 (-349)))) (-15 -2262 ($ (-286 (-153 (-349))))) (-15 -2262 ($ (-265 (-286 (-517))))) (-15 -2262 ($ (-265 (-286 (-349))))) (-15 -2262 ($ (-265 (-286 (-153 (-349)))))))) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-1077)) (-1081)) (T -368)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-14 *5 (-583 (-1077))) (-14 *6 (-1081))))) -(-13 (-365) (-10 -8 (-15 -2262 ($ (-300))) (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))) (-15 -2262 ($ (-286 (-634)))) (-15 -2262 ($ (-286 (-632)))) (-15 -2262 ($ (-286 (-627)))) (-15 -2262 ($ (-265 (-286 (-634))))) (-15 -2262 ($ (-265 (-286 (-632))))) (-15 -2262 ($ (-265 (-286 (-627))))) (-15 -2262 ($ (-286 (-517)))) (-15 -2262 ($ (-286 (-349)))) (-15 -2262 ($ (-286 (-153 (-349))))) (-15 -2262 ($ (-265 (-286 (-517))))) (-15 -2262 ($ (-265 (-286 (-349))))) (-15 -2262 ($ (-265 (-286 (-153 (-349)))))))) -((-2105 (((-107) $ $) NIL)) (-3191 ((|#2| $) 36)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3774 (($ (-377 |#2|)) 84)) (-3119 (((-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|))) $) 37)) (-2042 (($ $) 32) (($ $ (-703)) 34)) (-3367 (((-377 |#2|) $) 46)) (-2279 (($ (-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|)))) 31)) (-2262 (((-787) $) 120)) (-3348 (($ $) 33) (($ $ (-703)) 35)) (-1572 (((-107) $ $) NIL)) (-1666 (($ |#2| $) 39))) -(((-369 |#1| |#2|) (-13 (-1006) (-558 (-377 |#2|)) (-10 -8 (-15 -1666 ($ |#2| $)) (-15 -3774 ($ (-377 |#2|))) (-15 -3191 (|#2| $)) (-15 -3119 ((-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|))) $)) (-15 -2279 ($ (-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|))))) (-15 -2042 ($ $)) (-15 -3348 ($ $)) (-15 -2042 ($ $ (-703))) (-15 -3348 ($ $ (-703))))) (-13 (-333) (-134)) (-1134 |#1|)) (T -369)) -((-1666 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1134 *3)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-3191 (*1 *2 *1) (-12 (-4 *2 (-1134 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))) (-3119 (*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -1725 (-703)) (|:| -3605 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1134 *3)))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1725 (-703)) (|:| -3605 *4) (|:| |num| *4)))) (-4 *4 (-1134 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-2042 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1134 *2)))) (-3348 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1134 *2)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1134 *3)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1134 *3))))) -(-13 (-1006) (-558 (-377 |#2|)) (-10 -8 (-15 -1666 ($ |#2| $)) (-15 -3774 ($ (-377 |#2|))) (-15 -3191 (|#2| $)) (-15 -3119 ((-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|))) $)) (-15 -2279 ($ (-583 (-2 (|:| -1725 (-703)) (|:| -3605 |#2|) (|:| |num| |#2|))))) (-15 -2042 ($ $)) (-15 -3348 ($ $)) (-15 -2042 ($ $ (-703))) (-15 -3348 ($ $ (-703))))) -((-2105 (((-107) $ $) 9 (-3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))))) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 15 (|has| |#1| (-810 (-349)))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 14 (|has| |#1| (-810 (-517))))) (-3232 (((-1060) $) 13 (-3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))))) (-4130 (((-1024) $) 12 (-3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))))) (-2262 (((-787) $) 11 (-3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))))) (-1572 (((-107) $ $) 10 (-3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349))))))) -(((-370 |#1|) (-1189) (-1112)) (T -370)) -NIL -(-13 (-1112) (-10 -7 (IF (|has| |t#1| (-810 (-517))) (-6 (-810 (-517))) |%noBranch|) (IF (|has| |t#1| (-810 (-349))) (-6 (-810 (-349))) |%noBranch|))) -(((-97) -3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))) ((-557 (-787)) -3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))) ((-810 (-349)) |has| |#1| (-810 (-349))) ((-810 (-517)) |has| |#1| (-810 (-517))) ((-1006) -3786 (|has| |#1| (-810 (-517))) (|has| |#1| (-810 (-349)))) ((-1112) . T)) -((-2627 (($ $) 10) (($ $ (-703)) 11))) -(((-371 |#1|) (-10 -8 (-15 -2627 (|#1| |#1| (-703))) (-15 -2627 (|#1| |#1|))) (-372)) (T -371)) -NIL -(-10 -8 (-15 -2627 (|#1| |#1| (-703))) (-15 -2627 (|#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2627 (($ $) 79) (($ $ (-703)) 78)) (-2022 (((-107) $) 71)) (-3250 (((-765 (-845)) $) 81)) (-1690 (((-107) $) 31)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3667 (((-3 (-703) "failed") $ $) 80)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-3385 (((-3 $ "failed") $) 82)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) -(((-372) (-1189)) (T -372)) -((-3250 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-845))))) (-3667 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))) (-2627 (*1 *1 *1) (-4 *1 (-372))) (-2627 (*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703))))) -(-13 (-333) (-132) (-10 -8 (-15 -3250 ((-765 (-845)) $)) (-15 -3667 ((-3 (-703) "failed") $ $)) (-15 -2627 ($ $)) (-15 -2627 ($ $ (-703))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T)) -((-3202 (($ (-517) (-517)) 11) (($ (-517) (-517) (-845)) NIL)) (-3685 (((-845)) 16) (((-845) (-845)) NIL))) -(((-373 |#1|) (-10 -8 (-15 -3685 ((-845) (-845))) (-15 -3685 ((-845))) (-15 -3202 (|#1| (-517) (-517) (-845))) (-15 -3202 (|#1| (-517) (-517)))) (-374)) (T -373)) -((-3685 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) (-3685 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-373 *3)) (-4 *3 (-374))))) -(-10 -8 (-15 -3685 ((-845) (-845))) (-15 -3685 ((-845))) (-15 -3202 (|#1| (-517) (-517) (-845))) (-15 -3202 (|#1| (-517) (-517)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2964 (((-517) $) 89)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2147 (($ $) 87)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-3908 (($ $) 97)) (-1765 (((-107) $ $) 59)) (-3502 (((-517) $) 114)) (-3038 (($) 17 T CONST)) (-3164 (($ $) 86)) (-3220 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3402 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-3456 (((-845)) 130) (((-845) (-845)) 127 (|has| $ (-6 -4186)))) (-2671 (((-107) $) 112)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 93)) (-3250 (((-517) $) 136)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 96)) (-3522 (($ $) 92)) (-2321 (((-107) $) 113)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3480 (($ $ $) 111) (($) 124 (-12 (-2479 (|has| $ (-6 -4186))) (-2479 (|has| $ (-6 -4178)))))) (-4095 (($ $ $) 110) (($) 123 (-12 (-2479 (|has| $ (-6 -4186))) (-2479 (|has| $ (-6 -4178)))))) (-3743 (((-517) $) 133)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-2848 (((-845) (-517)) 126 (|has| $ (-6 -4186)))) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2590 (($ $) 88)) (-2713 (($ $) 90)) (-3202 (($ (-517) (-517)) 138) (($ (-517) (-517) (-845)) 137)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-1725 (((-517) $) 134)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3685 (((-845)) 131) (((-845) (-845)) 128 (|has| $ (-6 -4186)))) (-1753 (((-845) (-517)) 125 (|has| $ (-6 -4186)))) (-3367 (((-349) $) 105) (((-199) $) 104) (((-816 (-349)) $) 94)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-1818 (((-703)) 29)) (-3126 (($ $) 91)) (-2076 (((-845)) 132) (((-845) (-845)) 129 (|has| $ (-6 -4186)))) (-4003 (((-845)) 135)) (-2944 (((-107) $ $) 39)) (-2829 (($ $) 115)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 108)) (-1606 (((-107) $ $) 107)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 109)) (-1596 (((-107) $ $) 106)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) -(((-374) (-1189)) (T -374)) -((-3202 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) (-3202 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-845)) (-4 *1 (-374)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-4003 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-2076 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) (-3685 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) (-3456 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374)))) (-3685 (*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4186)) (-4 *1 (-374)) (-5 *2 (-845)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4186)) (-4 *1 (-374)) (-5 *2 (-845)))) (-3480 (*1 *1) (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4186))) (-2479 (|has| *1 (-6 -4178))))) (-4095 (*1 *1) (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4186))) (-2479 (|has| *1 (-6 -4178)))))) -(-13 (-973) (-10 -8 (-6 -2194) (-15 -3202 ($ (-517) (-517))) (-15 -3202 ($ (-517) (-517) (-845))) (-15 -3250 ((-517) $)) (-15 -4003 ((-845))) (-15 -1725 ((-517) $)) (-15 -3743 ((-517) $)) (-15 -2076 ((-845))) (-15 -3685 ((-845))) (-15 -3456 ((-845))) (IF (|has| $ (-6 -4186)) (PROGN (-15 -2076 ((-845) (-845))) (-15 -3685 ((-845) (-845))) (-15 -3456 ((-845) (-845))) (-15 -2848 ((-845) (-517))) (-15 -1753 ((-845) (-517)))) |%noBranch|) (IF (|has| $ (-6 -4178)) |%noBranch| (IF (|has| $ (-6 -4186)) |%noBranch| (PROGN (-15 -3480 ($)) (-15 -4095 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-816 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-810 (-349)) . T) ((-844) . T) ((-921) . T) ((-940) . T) ((-973) . T) ((-955 (-377 (-517))) . T) ((-955 (-517)) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T)) -((-3312 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 20))) -(((-375 |#1| |#2|) (-10 -7 (-15 -3312 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-509) (-509)) (T -375)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6))))) -(-10 -7 (-15 -3312 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) -((-3312 (((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)) 13))) -(((-376 |#1| |#2|) (-10 -7 (-15 -3312 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)))) (-509) (-509)) (T -376)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6))))) -(-10 -7 (-15 -3312 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 13)) (-2964 ((|#1| $) 21 (|has| |#1| (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| |#1| (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 17) (((-3 (-1077) "failed") $) NIL (|has| |#1| (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) 70 (|has| |#1| (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517))))) (-3402 ((|#1| $) 15) (((-1077) $) NIL (|has| |#1| (-955 (-1077)))) (((-377 (-517)) $) 67 (|has| |#1| (-955 (-517)))) (((-517) $) NIL (|has| |#1| (-955 (-517))))) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) 50)) (-2192 (($) NIL (|has| |#1| (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| |#1| (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| |#1| (-810 (-349))))) (-1690 (((-107) $) 64)) (-3662 (($ $) NIL)) (-3858 ((|#1| $) 71)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-1053)))) (-2321 (((-107) $) NIL (|has| |#1| (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| |#1| (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 97)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| |#1| (-278)))) (-2713 ((|#1| $) 28 (|has| |#1| (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 133 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 129 (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-478 (-1077) |#1|)))) (-3388 (((-703) $) NIL)) (-2612 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1463 (($ $) NIL)) (-2082 ((|#1| $) 73)) (-3367 (((-816 (-517)) $) NIL (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| |#1| (-558 (-816 (-349))))) (((-493) $) NIL (|has| |#1| (-558 (-493)))) (((-349) $) NIL (|has| |#1| (-940))) (((-199) $) NIL (|has| |#1| (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 113 (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 10) (($ (-1077)) NIL (|has| |#1| (-955 (-1077))))) (-3385 (((-3 $ "failed") $) 99 (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 100)) (-3126 ((|#1| $) 26 (|has| |#1| (-502)))) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| |#1| (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 22 T CONST)) (-3675 (($) 8 T CONST)) (-2514 (((-1060) $) 43 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1060) $ (-107)) 44 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1163) (-754) $) 45 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1163) (-754) $ (-107)) 46 (-12 (|has| |#1| (-502)) (|has| |#1| (-760))))) (-3348 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 56)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) 24 (|has| |#1| (-779)))) (-1692 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1680 (($ $) 25) (($ $ $) 55)) (-1666 (($ $ $) 53)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 123)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 60) (($ $ $) 57) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-377 |#1|) (-13 (-912 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4182)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4193)) (-6 -4182) |%noBranch|) |%noBranch|) |%noBranch|))) (-509)) (T -377)) -NIL -(-13 (-912 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4182)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4193)) (-6 -4182) |%noBranch|) |%noBranch|) |%noBranch|))) -((-1278 (((-623 |#2|) (-1158 $)) NIL) (((-623 |#2|)) 18)) (-3539 (($ (-1158 |#2|) (-1158 $)) NIL) (($ (-1158 |#2|)) 26)) (-4028 (((-623 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) $) 22)) (-1914 ((|#3| $) 59)) (-3115 ((|#2| (-1158 $)) NIL) ((|#2|) 20)) (-1372 (((-1158 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) (-1158 $) (-1158 $)) NIL) (((-1158 |#2|) $) NIL) (((-623 |#2|) (-1158 $)) 24)) (-3367 (((-1158 |#2|) $) 11) (($ (-1158 |#2|)) 13)) (-3848 ((|#3| $) 51))) -(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -4028 ((-623 |#2|) |#1|)) (-15 -3115 (|#2|)) (-15 -1278 ((-623 |#2|))) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1914 (|#3| |#1|)) (-15 -3848 (|#3| |#1|)) (-15 -1278 ((-623 |#2|) (-1158 |#1|))) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4028 ((-623 |#2|) |#1| (-1158 |#1|)))) (-379 |#2| |#3|) (-156) (-1134 |#2|)) (T -378)) -((-1278 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) (-3115 (*1 *2) (-12 (-4 *4 (-1134 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4))))) -(-10 -8 (-15 -4028 ((-623 |#2|) |#1|)) (-15 -3115 (|#2|)) (-15 -1278 ((-623 |#2|))) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1914 (|#3| |#1|)) (-15 -3848 (|#3| |#1|)) (-15 -1278 ((-623 |#2|) (-1158 |#1|))) (-15 -3115 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -4028 ((-623 |#2|) |#1| (-1158 |#1|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1278 (((-623 |#1|) (-1158 $)) 46) (((-623 |#1|)) 61)) (-1991 ((|#1| $) 52)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3539 (($ (-1158 |#1|) (-1158 $)) 48) (($ (-1158 |#1|)) 64)) (-4028 (((-623 |#1|) $ (-1158 $)) 53) (((-623 |#1|) $) 59)) (-3550 (((-3 $ "failed") $) 34)) (-3778 (((-845)) 54)) (-1690 (((-107) $) 31)) (-3522 ((|#1| $) 51)) (-1914 ((|#2| $) 44 (|has| |#1| (-333)))) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-3115 ((|#1| (-1158 $)) 47) ((|#1|) 60)) (-1372 (((-1158 |#1|) $ (-1158 $)) 50) (((-623 |#1|) (-1158 $) (-1158 $)) 49) (((-1158 |#1|) $) 66) (((-623 |#1|) (-1158 $)) 65)) (-3367 (((-1158 |#1|) $) 63) (($ (-1158 |#1|)) 62)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-3385 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3848 ((|#2| $) 45)) (-1818 (((-703)) 29)) (-3700 (((-1158 $)) 67)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-379 |#1| |#2|) (-1189) (-156) (-1134 |t#1|)) (T -379)) -((-3700 (*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-1158 *1)) (-4 *1 (-379 *3 *4)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-1158 *3)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1134 *3)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-1158 *3)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1134 *3)))) (-1278 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-623 *3)))) (-3115 (*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156)))) (-4028 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-623 *3))))) -(-13 (-340 |t#1| |t#2|) (-10 -8 (-15 -3700 ((-1158 $))) (-15 -1372 ((-1158 |t#1|) $)) (-15 -1372 ((-623 |t#1|) (-1158 $))) (-15 -3539 ($ (-1158 |t#1|))) (-15 -3367 ((-1158 |t#1|) $)) (-15 -3367 ($ (-1158 |t#1|))) (-15 -1278 ((-623 |t#1|))) (-15 -3115 (|t#1|)) (-15 -4028 ((-623 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-340 |#1| |#2|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) 27) (((-3 (-517) "failed") $) 19)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) 24) (((-517) $) 14)) (-2262 (($ |#2|) NIL) (($ (-377 (-517))) 22) (($ (-517)) 11))) -(((-380 |#1| |#2|) (-10 -8 (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -2262 (|#1| (-517))) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|))) (-381 |#2|) (-1112)) (T -380)) -NIL -(-10 -8 (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -2262 (|#1| (-517))) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|))) -((-3220 (((-3 |#1| "failed") $) 7) (((-3 (-377 (-517)) "failed") $) 16 (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) 13 (|has| |#1| (-955 (-517))))) (-3402 ((|#1| $) 8) (((-377 (-517)) $) 15 (|has| |#1| (-955 (-377 (-517))))) (((-517) $) 12 (|has| |#1| (-955 (-517))))) (-2262 (($ |#1|) 6) (($ (-377 (-517))) 17 (|has| |#1| (-955 (-377 (-517))))) (($ (-517)) 14 (|has| |#1| (-955 (-517)))))) -(((-381 |#1|) (-1189) (-1112)) (T -381)) -NIL -(-13 (-955 |t#1|) (-10 -7 (IF (|has| |t#1| (-955 (-517))) (-6 (-955 (-517))) |%noBranch|) (IF (|has| |t#1| (-955 (-377 (-517)))) (-6 (-955 (-377 (-517)))) |%noBranch|))) -(((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T)) -((-3312 (((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)) 33))) -(((-382 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3312 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)))) (-278) (-912 |#1|) (-1134 |#2|) (-13 (-379 |#2| |#3|) (-955 |#2|)) (-278) (-912 |#5|) (-1134 |#6|) (-13 (-379 |#6| |#7|) (-955 |#6|))) (T -382)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-912 *5)) (-4 *7 (-1134 *6)) (-4 *8 (-13 (-379 *6 *7) (-955 *6))) (-4 *9 (-278)) (-4 *10 (-912 *9)) (-4 *11 (-1134 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-955 *10)))))) -(-10 -7 (-15 -3312 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)))) -((-2105 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1956 ((|#4| (-703) (-1158 |#4|)) 55)) (-1690 (((-107) $) NIL)) (-3858 (((-1158 |#4|) $) 17)) (-3522 ((|#2| $) 53)) (-1980 (($ $) 136)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 98)) (-4162 (($ (-1158 |#4|)) 97)) (-4130 (((-1024) $) NIL)) (-2082 ((|#1| $) 18)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) 131)) (-3700 (((-1158 |#4|) $) 126)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 11 T CONST)) (-1572 (((-107) $ $) 39)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 119)) (* (($ $ $) 118))) -(((-383 |#1| |#2| |#3| |#4|) (-13 (-442) (-10 -8 (-15 -4162 ($ (-1158 |#4|))) (-15 -3700 ((-1158 |#4|) $)) (-15 -3522 (|#2| $)) (-15 -3858 ((-1158 |#4|) $)) (-15 -2082 (|#1| $)) (-15 -1980 ($ $)) (-15 -1956 (|#4| (-703) (-1158 |#4|))))) (-278) (-912 |#1|) (-1134 |#2|) (-13 (-379 |#2| |#3|) (-955 |#2|))) (T -383)) -((-4162 (*1 *1 *2) (-12 (-5 *2 (-1158 *6)) (-4 *6 (-13 (-379 *4 *5) (-955 *4))) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) (-3700 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-5 *2 (-1158 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-955 *4))))) (-3522 (*1 *2 *1) (-12 (-4 *4 (-1134 *2)) (-4 *2 (-912 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-955 *2))))) (-3858 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-5 *2 (-1158 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-955 *4))))) (-2082 (*1 *2 *1) (-12 (-4 *3 (-912 *2)) (-4 *4 (-1134 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-955 *3))))) (-1980 (*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-912 *2)) (-4 *4 (-1134 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-955 *3))))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1158 *2)) (-4 *5 (-278)) (-4 *6 (-912 *5)) (-4 *2 (-13 (-379 *6 *7) (-955 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1134 *6))))) -(-13 (-442) (-10 -8 (-15 -4162 ($ (-1158 |#4|))) (-15 -3700 ((-1158 |#4|) $)) (-15 -3522 (|#2| $)) (-15 -3858 ((-1158 |#4|) $)) (-15 -2082 (|#1| $)) (-15 -1980 ($ $)) (-15 -1956 (|#4| (-703) (-1158 |#4|))))) -((-2105 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3522 ((|#2| $) 60)) (-3344 (($ (-1158 |#4|)) 25) (($ (-383 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-955 |#2|)))) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 34)) (-3700 (((-1158 |#4|) $) 26)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3675 (($) 23 T CONST)) (-1572 (((-107) $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ $ $) 72))) -(((-384 |#1| |#2| |#3| |#4| |#5|) (-13 (-659) (-10 -8 (-15 -3700 ((-1158 |#4|) $)) (-15 -3522 (|#2| $)) (-15 -3344 ($ (-1158 |#4|))) (IF (|has| |#4| (-955 |#2|)) (-15 -3344 ($ (-383 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-278) (-912 |#1|) (-1134 |#2|) (-379 |#2| |#3|) (-1158 |#4|)) (T -384)) -((-3700 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-5 *2 (-1158 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) (-3522 (*1 *2 *1) (-12 (-4 *4 (-1134 *2)) (-4 *2 (-912 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1158 *5)))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-1158 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-955 *4)) (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1158 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7))))) -(-13 (-659) (-10 -8 (-15 -3700 ((-1158 |#4|) $)) (-15 -3522 (|#2| $)) (-15 -3344 ($ (-1158 |#4|))) (IF (|has| |#4| (-955 |#2|)) (-15 -3344 ($ (-383 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-3312 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|))) (-387 |#2|) (-156) (-387 |#4|) (-156)) (T -385)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5))))) -(-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|))) -((-1966 (((-3 $ "failed")) 85)) (-3449 (((-1158 (-623 |#2|)) (-1158 $)) NIL) (((-1158 (-623 |#2|))) 90)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 84)) (-1745 (((-3 $ "failed")) 83)) (-2998 (((-623 |#2|) (-1158 $)) NIL) (((-623 |#2|)) 101)) (-1793 (((-623 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) $) 109)) (-3928 (((-1073 (-876 |#2|))) 54)) (-3708 ((|#2| (-1158 $)) NIL) ((|#2|) 105)) (-3539 (($ (-1158 |#2|) (-1158 $)) NIL) (($ (-1158 |#2|)) 112)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 82)) (-3277 (((-3 $ "failed")) 74)) (-1830 (((-623 |#2|) (-1158 $)) NIL) (((-623 |#2|)) 99)) (-4044 (((-623 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) $) 107)) (-3221 (((-1073 (-876 |#2|))) 53)) (-1274 ((|#2| (-1158 $)) NIL) ((|#2|) 103)) (-1372 (((-1158 |#2|) $ (-1158 $)) NIL) (((-623 |#2|) (-1158 $) (-1158 $)) NIL) (((-1158 |#2|) $) NIL) (((-623 |#2|) (-1158 $)) 111)) (-3367 (((-1158 |#2|) $) 95) (($ (-1158 |#2|)) 97)) (-3861 (((-583 (-876 |#2|)) (-1158 $)) NIL) (((-583 (-876 |#2|))) 93)) (-2365 (($ (-623 |#2|) $) 89))) -(((-386 |#1| |#2|) (-10 -8 (-15 -2365 (|#1| (-623 |#2|) |#1|)) (-15 -3928 ((-1073 (-876 |#2|)))) (-15 -3221 ((-1073 (-876 |#2|)))) (-15 -1793 ((-623 |#2|) |#1|)) (-15 -4044 ((-623 |#2|) |#1|)) (-15 -2998 ((-623 |#2|))) (-15 -1830 ((-623 |#2|))) (-15 -3708 (|#2|)) (-15 -1274 (|#2|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -3861 ((-583 (-876 |#2|)))) (-15 -3449 ((-1158 (-623 |#2|)))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1966 ((-3 |#1| "failed"))) (-15 -1745 ((-3 |#1| "failed"))) (-15 -3277 ((-3 |#1| "failed"))) (-15 -1963 ((-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed"))) (-15 -3742 ((-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed"))) (-15 -2998 ((-623 |#2|) (-1158 |#1|))) (-15 -1830 ((-623 |#2|) (-1158 |#1|))) (-15 -3708 (|#2| (-1158 |#1|))) (-15 -1274 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -1793 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -4044 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -3449 ((-1158 (-623 |#2|)) (-1158 |#1|))) (-15 -3861 ((-583 (-876 |#2|)) (-1158 |#1|)))) (-387 |#2|) (-156)) (T -386)) -((-3449 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1158 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3861 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-876 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1274 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-3708 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-1830 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2998 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3221 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1073 (-876 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-3928 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1073 (-876 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4))))) -(-10 -8 (-15 -2365 (|#1| (-623 |#2|) |#1|)) (-15 -3928 ((-1073 (-876 |#2|)))) (-15 -3221 ((-1073 (-876 |#2|)))) (-15 -1793 ((-623 |#2|) |#1|)) (-15 -4044 ((-623 |#2|) |#1|)) (-15 -2998 ((-623 |#2|))) (-15 -1830 ((-623 |#2|))) (-15 -3708 (|#2|)) (-15 -1274 (|#2|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3539 (|#1| (-1158 |#2|))) (-15 -3861 ((-583 (-876 |#2|)))) (-15 -3449 ((-1158 (-623 |#2|)))) (-15 -1372 ((-623 |#2|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1|)) (-15 -1966 ((-3 |#1| "failed"))) (-15 -1745 ((-3 |#1| "failed"))) (-15 -3277 ((-3 |#1| "failed"))) (-15 -1963 ((-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed"))) (-15 -3742 ((-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed"))) (-15 -2998 ((-623 |#2|) (-1158 |#1|))) (-15 -1830 ((-623 |#2|) (-1158 |#1|))) (-15 -3708 (|#2| (-1158 |#1|))) (-15 -1274 (|#2| (-1158 |#1|))) (-15 -3539 (|#1| (-1158 |#2|) (-1158 |#1|))) (-15 -1372 ((-623 |#2|) (-1158 |#1|) (-1158 |#1|))) (-15 -1372 ((-1158 |#2|) |#1| (-1158 |#1|))) (-15 -1793 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -4044 ((-623 |#2|) |#1| (-1158 |#1|))) (-15 -3449 ((-1158 (-623 |#2|)) (-1158 |#1|))) (-15 -3861 ((-583 (-876 |#2|)) (-1158 |#1|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1966 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3449 (((-1158 (-623 |#1|)) (-1158 $)) 78) (((-1158 (-623 |#1|))) 100)) (-4026 (((-1158 $)) 81)) (-3038 (($) 17 T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1745 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2998 (((-623 |#1|) (-1158 $)) 65) (((-623 |#1|)) 92)) (-2496 ((|#1| $) 74)) (-1793 (((-623 |#1|) $ (-1158 $)) 76) (((-623 |#1|) $) 90)) (-3071 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-3928 (((-1073 (-876 |#1|))) 88 (|has| |#1| (-333)))) (-2823 (($ $ (-845)) 28)) (-4132 ((|#1| $) 72)) (-1363 (((-1073 |#1|) $) 42 (|has| |#1| (-509)))) (-3708 ((|#1| (-1158 $)) 67) ((|#1|) 94)) (-2740 (((-1073 |#1|) $) 63)) (-2889 (((-107)) 57)) (-3539 (($ (-1158 |#1|) (-1158 $)) 69) (($ (-1158 |#1|)) 98)) (-3550 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-3778 (((-845)) 80)) (-3874 (((-107)) 54)) (-1768 (($ $ (-845)) 33)) (-3544 (((-107)) 50)) (-4016 (((-107)) 48)) (-1627 (((-107)) 52)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-3277 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-1830 (((-623 |#1|) (-1158 $)) 66) (((-623 |#1|)) 93)) (-2002 ((|#1| $) 75)) (-4044 (((-623 |#1|) $ (-1158 $)) 77) (((-623 |#1|) $) 91)) (-2680 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-3221 (((-1073 (-876 |#1|))) 89 (|has| |#1| (-333)))) (-4119 (($ $ (-845)) 29)) (-1249 ((|#1| $) 73)) (-3556 (((-1073 |#1|) $) 43 (|has| |#1| (-509)))) (-1274 ((|#1| (-1158 $)) 68) ((|#1|) 95)) (-3570 (((-1073 |#1|) $) 64)) (-1878 (((-107)) 58)) (-3232 (((-1060) $) 9)) (-2455 (((-107)) 49)) (-4102 (((-107)) 51)) (-2032 (((-107)) 53)) (-4130 (((-1024) $) 10)) (-3377 (((-107)) 56)) (-2612 ((|#1| $ (-517)) 101)) (-1372 (((-1158 |#1|) $ (-1158 $)) 71) (((-623 |#1|) (-1158 $) (-1158 $)) 70) (((-1158 |#1|) $) 103) (((-623 |#1|) (-1158 $)) 102)) (-3367 (((-1158 |#1|) $) 97) (($ (-1158 |#1|)) 96)) (-3861 (((-583 (-876 |#1|)) (-1158 $)) 79) (((-583 (-876 |#1|))) 99)) (-1970 (($ $ $) 25)) (-1293 (((-107)) 62)) (-2262 (((-787) $) 11)) (-3700 (((-1158 $)) 104)) (-3741 (((-583 (-1158 |#1|))) 44 (|has| |#1| (-509)))) (-2182 (($ $ $ $) 26)) (-3450 (((-107)) 60)) (-2365 (($ (-623 |#1|) $) 87)) (-2742 (($ $ $) 24)) (-3014 (((-107)) 61)) (-1901 (((-107)) 59)) (-1555 (((-107)) 55)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 30)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-387 |#1|) (-1189) (-156)) (T -387)) -((-3700 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1158 *1)) (-4 *1 (-387 *3)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 *3)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-3449 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 (-623 *3))))) (-3861 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-876 *3))))) (-3539 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 *3)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-1274 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-3708 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-1830 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2998 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3221 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1073 (-876 *3))))) (-3928 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1073 (-876 *3))))) (-2365 (*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156))))) -(-13 (-337 |t#1|) (-10 -8 (-15 -3700 ((-1158 $))) (-15 -1372 ((-1158 |t#1|) $)) (-15 -1372 ((-623 |t#1|) (-1158 $))) (-15 -2612 (|t#1| $ (-517))) (-15 -3449 ((-1158 (-623 |t#1|)))) (-15 -3861 ((-583 (-876 |t#1|)))) (-15 -3539 ($ (-1158 |t#1|))) (-15 -3367 ((-1158 |t#1|) $)) (-15 -3367 ($ (-1158 |t#1|))) (-15 -1274 (|t#1|)) (-15 -3708 (|t#1|)) (-15 -1830 ((-623 |t#1|))) (-15 -2998 ((-623 |t#1|))) (-15 -4044 ((-623 |t#1|) $)) (-15 -1793 ((-623 |t#1|) $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -3221 ((-1073 (-876 |t#1|)))) (-15 -3928 ((-1073 (-876 |t#1|))))) |%noBranch|) (-15 -2365 ($ (-623 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-337 |#1|) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-970 |#1|) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 41)) (-2739 (($ $) 56)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 143)) (-2491 (($ $) NIL)) (-2025 (((-107) $) 35)) (-1966 ((|#1| $) 12)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-1116)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-1116)))) (-3283 (($ |#1| (-517)) 30)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 113)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 54)) (-3550 (((-3 $ "failed") $) 128)) (-3389 (((-3 (-377 (-517)) "failed") $) 62 (|has| |#1| (-502)))) (-3748 (((-107) $) 58 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 60 (|has| |#1| (-502)))) (-2293 (($ |#1| (-517)) 32)) (-2022 (((-107) $) 149 (|has| |#1| (-1116)))) (-1690 (((-107) $) 42)) (-2865 (((-703) $) 37)) (-4063 (((-3 "nil" "sqfr" "irred" "prime") $ (-517)) 134)) (-2115 ((|#1| $ (-517)) 133)) (-1337 (((-517) $ (-517)) 132)) (-1600 (($ |#1| (-517)) 29)) (-3312 (($ (-1 |#1| |#1|) $) 140)) (-3878 (($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517))))) 57)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-3217 (($ |#1| (-517)) 31)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 144 (|has| |#1| (-421)))) (-3055 (($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-2283 (((-583 (-2 (|:| -3896 |#1|) (|:| -1725 (-517)))) $) 53)) (-2780 (((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $) 11)) (-3896 (((-388 $) $) NIL (|has| |#1| (-1116)))) (-2333 (((-3 $ "failed") $ $) 135)) (-1725 (((-517) $) 129)) (-2287 ((|#1| $) 55)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 77 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 82 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) $) NIL (|has| |#1| (-478 (-1077) $))) (($ $ (-583 (-1077)) (-583 $)) 83 (|has| |#1| (-478 (-1077) $))) (($ $ (-583 (-265 $))) 79 (|has| |#1| (-280 $))) (($ $ (-265 $)) NIL (|has| |#1| (-280 $))) (($ $ $ $) NIL (|has| |#1| (-280 $))) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-280 $)))) (-2612 (($ $ |#1|) 69 (|has| |#1| (-258 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-258 $ $)))) (-2042 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3367 (((-493) $) 26 (|has| |#1| (-558 (-493)))) (((-349) $) 89 (|has| |#1| (-940))) (((-199) $) 92 (|has| |#1| (-940)))) (-2262 (((-787) $) 111) (($ (-517)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517)))))) (-1818 (((-703)) 47)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 39 T CONST)) (-3675 (($) 38 T CONST)) (-3348 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1572 (((-107) $ $) 93)) (-1680 (($ $) 125) (($ $ $) NIL)) (-1666 (($ $ $) 137)) (** (($ $ (-845)) NIL) (($ $ (-703)) 99)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL))) -(((-388 |#1|) (-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -2287 (|#1| $)) (-15 -1725 ((-517) $)) (-15 -3878 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -2780 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1600 ($ |#1| (-517))) (-15 -2283 ((-583 (-2 (|:| -3896 |#1|) (|:| -1725 (-517)))) $)) (-15 -3217 ($ |#1| (-517))) (-15 -1337 ((-517) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -4063 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2865 ((-703) $)) (-15 -2293 ($ |#1| (-517))) (-15 -3283 ($ |#1| (-517))) (-15 -3055 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1966 (|#1| $)) (-15 -2739 ($ $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |%noBranch|) (IF (|has| |#1| (-940)) (-6 (-940)) |%noBranch|) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |%noBranch|) (IF (|has| |#1| (-478 (-1077) $)) (-6 (-478 (-1077) $)) |%noBranch|))) (-509)) (T -388)) -((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) (-2287 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3878 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1600 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3896 *3) (|:| -1725 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3217 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1337 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-4063 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2293 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3283 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3055 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1966 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2739 (*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-3389 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509))))) -(-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -2287 (|#1| $)) (-15 -1725 ((-517) $)) (-15 -3878 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -2780 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1600 ($ |#1| (-517))) (-15 -2283 ((-583 (-2 (|:| -3896 |#1|) (|:| -1725 (-517)))) $)) (-15 -3217 ($ |#1| (-517))) (-15 -1337 ((-517) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -4063 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2865 ((-703) $)) (-15 -2293 ($ |#1| (-517))) (-15 -3283 ($ |#1| (-517))) (-15 -3055 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1966 (|#1| $)) (-15 -2739 ($ $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |%noBranch|) (IF (|has| |#1| (-940)) (-6 (-940)) |%noBranch|) (IF (|has| |#1| (-1116)) (-6 (-1116)) |%noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |%noBranch|) (IF (|has| |#1| (-478 (-1077) $)) (-6 (-478 (-1077) $)) |%noBranch|))) -((-2104 (((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|)) 20)) (-2694 (((-388 |#1|) (-388 |#1|) (-388 |#1|)) 15))) -(((-389 |#1|) (-10 -7 (-15 -2104 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2694 ((-388 |#1|) (-388 |#1|) (-388 |#1|)))) (-509)) (T -389)) -((-2694 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))) (-2104 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4))))) -(-10 -7 (-15 -2104 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2694 ((-388 |#1|) (-388 |#1|) (-388 |#1|)))) -((-2744 ((|#2| |#2|) 161)) (-2037 (((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107)) 55))) -(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2037 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107))) (-15 -2744 (|#2| |#2|))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|)) (-1077) |#2|) (T -390)) -((-2744 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1098) (-400 *3))) (-14 *4 (-1077)) (-14 *5 *2))) (-2037 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-14 *6 (-1077)) (-14 *7 *3)))) -(-10 -7 (-15 -2037 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107))) (-15 -2744 (|#2| |#2|))) -((-3312 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-964) (-779)) (-400 |#1|) (-13 (-964) (-779)) (-400 |#3|)) (T -391)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-964) (-779))) (-4 *6 (-13 (-964) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5))))) -(-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|))) -((-2744 ((|#2| |#2|) 88)) (-3098 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060)) 46)) (-2270 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060)) 153))) -(((-392 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3098 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060))) (-15 -2270 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060))) (-15 -2744 (|#2| |#2|))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|) (-10 -8 (-15 -2262 ($ |#3|)))) (-777) (-13 (-1136 |#2| |#3|) (-333) (-1098) (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $)))) (-903 |#4|) (-1077)) (T -392)) -((-2744 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1098) (-400 *3) (-10 -8 (-15 -2262 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1136 *2 *4) (-333) (-1098) (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-903 *5)) (-14 *7 (-1077)))) (-2270 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1098) (-400 *6) (-10 -8 (-15 -2262 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1136 *3 *7) (-333) (-1098) (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1060)) (-4 *9 (-903 *8)) (-14 *10 (-1077)))) (-3098 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1098) (-400 *6) (-10 -8 (-15 -2262 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1136 *3 *7) (-333) (-1098) (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1060)) (-4 *9 (-903 *8)) (-14 *10 (-1077))))) -(-10 -7 (-15 -3098 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060))) (-15 -2270 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060))))) |#2| (-107) (-1060))) (-15 -2744 (|#2| |#2|))) -((-1250 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1510 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3312 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1510 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1250 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1006) (-395 |#1|) (-1006) (-395 |#3|)) (T -393)) -((-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1006)) (-4 *5 (-1006)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1006)) (-4 *2 (-1006)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5))))) -(-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1510 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1250 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3963 (($) 44)) (-2374 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-4020 (($ $ $) 39)) (-3873 (((-107) $ $) 28)) (-2390 (((-703)) 47)) (-1871 (($ (-583 |#2|)) 20) (($) NIL)) (-2192 (($) 53)) (-3480 ((|#2| $) 61)) (-4095 ((|#2| $) 59)) (-4161 (((-845) $) 55)) (-2187 (($ $ $) 35)) (-2803 (($ (-845)) 50)) (-1201 (($ $ |#2|) NIL) (($ $ $) 38)) (-4140 (((-703) (-1 (-107) |#2|) $) NIL) (((-703) |#2| $) 26)) (-2279 (($ (-583 |#2|)) 24)) (-2332 (($ $) 46)) (-2262 (((-787) $) 33)) (-3515 (((-703) $) 21)) (-3066 (($ (-583 |#2|)) 19) (($) NIL)) (-1572 (((-107) $ $) 16)) (-1596 (((-107) $ $) 13))) -(((-394 |#1| |#2|) (-10 -8 (-15 -2390 ((-703))) (-15 -2803 (|#1| (-845))) (-15 -4161 ((-845) |#1|)) (-15 -2192 (|#1|)) (-15 -3480 (|#2| |#1|)) (-15 -4095 (|#2| |#1|)) (-15 -3963 (|#1|)) (-15 -2332 (|#1| |#1|)) (-15 -3515 ((-703) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3066 (|#1|)) (-15 -3066 (|#1| (-583 |#2|))) (-15 -1871 (|#1|)) (-15 -1871 (|#1| (-583 |#2|))) (-15 -2187 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#2|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -3873 ((-107) |#1| |#1|)) (-15 -2374 (|#1| |#1| |#1|)) (-15 -2374 (|#1| |#1| |#2|)) (-15 -2374 (|#1| |#2| |#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|))) (-395 |#2|) (-1006)) (T -394)) -((-2390 (*1 *2) (-12 (-4 *4 (-1006)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4))))) -(-10 -8 (-15 -2390 ((-703))) (-15 -2803 (|#1| (-845))) (-15 -4161 ((-845) |#1|)) (-15 -2192 (|#1|)) (-15 -3480 (|#2| |#1|)) (-15 -4095 (|#2| |#1|)) (-15 -3963 (|#1|)) (-15 -2332 (|#1| |#1|)) (-15 -3515 ((-703) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3066 (|#1|)) (-15 -3066 (|#1| (-583 |#2|))) (-15 -1871 (|#1|)) (-15 -1871 (|#1| (-583 |#2|))) (-15 -2187 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#2|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -3873 ((-107) |#1| |#1|)) (-15 -2374 (|#1| |#1| |#1|)) (-15 -2374 (|#1| |#1| |#2|)) (-15 -2374 (|#1| |#2| |#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -4140 ((-703) |#2| |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|))) -((-2105 (((-107) $ $) 19)) (-3963 (($) 67 (|has| |#1| (-338)))) (-2374 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-4020 (($ $ $) 78)) (-3873 (((-107) $ $) 79)) (-3443 (((-107) $ (-703)) 8)) (-2390 (((-703)) 61 (|has| |#1| (-338)))) (-1871 (($ (-583 |#1|)) 74) (($) 73)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-2192 (($) 64 (|has| |#1| (-338)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3480 ((|#1| $) 65 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-4095 ((|#1| $) 66 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-4161 (((-845) $) 63 (|has| |#1| (-338)))) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22)) (-2187 (($ $ $) 75)) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-2803 (($ (-845)) 62 (|has| |#1| (-338)))) (-4130 (((-1024) $) 21)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1201 (($ $ |#1|) 77) (($ $ $) 76)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2332 (($ $) 68 (|has| |#1| (-338)))) (-2262 (((-787) $) 18)) (-3515 (((-703) $) 69)) (-3066 (($ (-583 |#1|)) 72) (($) 71)) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20)) (-1596 (((-107) $ $) 70)) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-395 |#1|) (-1189) (-1006)) (T -395)) -((-3515 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1006)) (-5 *2 (-703)))) (-2332 (*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-338)))) (-3963 (*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1006)))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-779)))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-779))))) -(-13 (-203 |t#1|) (-1004 |t#1|) (-10 -8 (-6 -4195) (-15 -3515 ((-703) $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-338)) (-15 -2332 ($ $)) (-15 -3963 ($))) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -4095 (|t#1| $)) (-15 -3480 (|t#1| $))) |%noBranch|))) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-203 |#1|) . T) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-338) |has| |#1| (-338)) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1004 |#1|) . T) ((-1006) . T) ((-1112) . T)) -((-2892 (((-534 |#2|) |#2| (-1077)) 35)) (-1513 (((-534 |#2|) |#2| (-1077)) 19)) (-2984 ((|#2| |#2| (-1077)) 24))) -(((-396 |#1| |#2|) (-10 -7 (-15 -1513 ((-534 |#2|) |#2| (-1077))) (-15 -2892 ((-534 |#2|) |#2| (-1077))) (-15 -2984 (|#2| |#2| (-1077)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-29 |#1|))) (T -396)) -((-2984 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1098) (-29 *4))))) (-2892 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1098) (-29 *5))))) (-1513 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1098) (-29 *5)))))) -(-10 -7 (-15 -1513 ((-534 |#2|) |#2| (-1077))) (-15 -2892 ((-534 |#2|) |#2| (-1077))) (-15 -2984 (|#2| |#2| (-1077)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-1286 (($ |#2| |#1|) 35)) (-3239 (($ |#2| |#1|) 33)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-301 |#2|)) 25)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 10 T CONST)) (-3675 (($) 16 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 34)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-397 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4182)) (IF (|has| |#1| (-6 -4182)) (-6 -4182) |%noBranch|) |%noBranch|) (-15 -2262 ($ |#1|)) (-15 -2262 ($ (-301 |#2|))) (-15 -1286 ($ |#2| |#1|)) (-15 -3239 ($ |#2| |#1|)))) (-13 (-156) (-37 (-377 (-517)))) (-13 (-779) (-21))) (T -397)) -((-2262 (*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) (-1286 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))) (-3239 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21)))))) -(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4182)) (IF (|has| |#1| (-6 -4182)) (-6 -4182) |%noBranch|) |%noBranch|) (-15 -2262 ($ |#1|)) (-15 -2262 ($ (-301 |#2|))) (-15 -1286 ($ |#2| |#1|)) (-15 -3239 ($ |#2| |#1|)))) -((-3296 (((-3 |#2| (-583 |#2|)) |#2| (-1077)) 105))) -(((-398 |#1| |#2|) (-10 -7 (-15 -3296 ((-3 |#2| (-583 |#2|)) |#2| (-1077)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-882) (-29 |#1|))) (T -398)) -((-3296 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1098) (-882) (-29 *5)))))) -(-10 -7 (-15 -3296 ((-3 |#2| (-583 |#2|)) |#2| (-1077)))) -((-2080 (((-583 (-1077)) $) 72)) (-1428 (((-377 (-1073 $)) $ (-556 $)) 269)) (-3939 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) 234)) (-3220 (((-3 (-556 $) "failed") $) NIL) (((-3 (-1077) "failed") $) 75) (((-3 (-517) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-377 (-876 |#2|)) "failed") $) 320) (((-3 (-876 |#2|) "failed") $) 232) (((-3 (-377 (-517)) "failed") $) NIL)) (-3402 (((-556 $) $) NIL) (((-1077) $) 30) (((-517) $) NIL) ((|#2| $) 228) (((-377 (-876 |#2|)) $) 301) (((-876 |#2|) $) 229) (((-377 (-517)) $) NIL)) (-1325 (((-109) (-109)) 47)) (-3662 (($ $) 87)) (-1858 (((-3 (-556 $) "failed") $) 225)) (-1412 (((-583 (-556 $)) $) 226)) (-1743 (((-3 (-583 $) "failed") $) 244)) (-1481 (((-3 (-2 (|:| |val| $) (|:| -1725 (-517))) "failed") $) 251)) (-1442 (((-3 (-583 $) "failed") $) 242)) (-3102 (((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 $))) "failed") $) 260)) (-3044 (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $) 248) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-109)) 215) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-1077)) 217)) (-2301 (((-107) $) 19)) (-2311 ((|#2| $) 21)) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 233) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) 96) (($ $ (-1077) (-1 $ (-583 $))) NIL) (($ $ (-1077) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1077)) 57) (($ $ (-583 (-1077))) 237) (($ $) 238) (($ $ (-109) $ (-1077)) 60) (($ $ (-583 (-109)) (-583 $) (-1077)) 67) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ $))) 107) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 239) (($ $ (-1077) (-703) (-1 $ (-583 $))) 94) (($ $ (-1077) (-703) (-1 $ $)) 93)) (-2612 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) 106)) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) 235)) (-1463 (($ $) 280)) (-3367 (((-816 (-517)) $) 254) (((-816 (-349)) $) 257) (($ (-388 $)) 316) (((-493) $) NIL)) (-2262 (((-787) $) 236) (($ (-556 $)) 84) (($ (-1077)) 26) (($ |#2|) NIL) (($ (-1029 |#2| (-556 $))) NIL) (($ (-377 |#2|)) 285) (($ (-876 (-377 |#2|))) 325) (($ (-377 (-876 (-377 |#2|)))) 297) (($ (-377 (-876 |#2|))) 291) (($ $) NIL) (($ (-876 |#2|)) 184) (($ (-377 (-517))) 330) (($ (-517)) NIL)) (-1818 (((-703)) 79)) (-4116 (((-107) (-109)) 41)) (-3540 (($ (-1077) $) 33) (($ (-1077) $ $) 34) (($ (-1077) $ $ $) 35) (($ (-1077) $ $ $ $) 36) (($ (-1077) (-583 $)) 39)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL))) -(((-399 |#1| |#2|) (-10 -8 (-15 * (|#1| (-845) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1818 ((-703))) (-15 -2262 (|#1| (-517))) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-876 |#2|) |#1|)) (-15 -3220 ((-3 (-876 |#2|) "failed") |#1|)) (-15 -2262 (|#1| (-876 |#2|))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3402 ((-377 (-876 |#2|)) |#1|)) (-15 -3220 ((-3 (-377 (-876 |#2|)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-876 |#2|)))) (-15 -1428 ((-377 (-1073 |#1|)) |#1| (-556 |#1|))) (-15 -2262 (|#1| (-377 (-876 (-377 |#2|))))) (-15 -2262 (|#1| (-876 (-377 |#2|)))) (-15 -2262 (|#1| (-377 |#2|))) (-15 -1463 (|#1| |#1|)) (-15 -3367 (|#1| (-388 |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-703) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-703) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1481 ((-3 (-2 (|:| |val| |#1|) (|:| -1725 (-517))) "failed") |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1| (-1077))) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1| (-109))) (-15 -3662 (|#1| |#1|)) (-15 -2262 (|#1| (-1029 |#2| (-556 |#1|)))) (-15 -3102 ((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -1442 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1|)) (-15 -1743 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1077))) (-15 -3552 (|#1| |#1| (-109) |#1| (-1077))) (-15 -3552 (|#1| |#1|)) (-15 -3552 (|#1| |#1| (-583 (-1077)))) (-15 -3552 (|#1| |#1| (-1077))) (-15 -3540 (|#1| (-1077) (-583 |#1|))) (-15 -3540 (|#1| (-1077) |#1| |#1| |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1| |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1|)) (-15 -2080 ((-583 (-1077)) |#1|)) (-15 -2311 (|#2| |#1|)) (-15 -2301 ((-107) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -2262 (|#1| (-1077))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| |#1|)))) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1412 ((-583 (-556 |#1|)) |#1|)) (-15 -1858 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -3939 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3939 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3939 (|#1| |#1| (-265 |#1|))) (-15 -2612 (|#1| (-109) (-583 |#1|))) (-15 -2612 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3402 ((-556 |#1|) |#1|)) (-15 -3220 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2262 (|#1| (-556 |#1|))) (-15 -2262 ((-787) |#1|))) (-400 |#2|) (-779)) (T -399)) -((-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) (-1818 (*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4))))) -(-10 -8 (-15 * (|#1| (-845) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1818 ((-703))) (-15 -2262 (|#1| (-517))) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-876 |#2|) |#1|)) (-15 -3220 ((-3 (-876 |#2|) "failed") |#1|)) (-15 -2262 (|#1| (-876 |#2|))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3402 ((-377 (-876 |#2|)) |#1|)) (-15 -3220 ((-3 (-377 (-876 |#2|)) "failed") |#1|)) (-15 -2262 (|#1| (-377 (-876 |#2|)))) (-15 -1428 ((-377 (-1073 |#1|)) |#1| (-556 |#1|))) (-15 -2262 (|#1| (-377 (-876 (-377 |#2|))))) (-15 -2262 (|#1| (-876 (-377 |#2|)))) (-15 -2262 (|#1| (-377 |#2|))) (-15 -1463 (|#1| |#1|)) (-15 -3367 (|#1| (-388 |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-703) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-703) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1481 ((-3 (-2 (|:| |val| |#1|) (|:| -1725 (-517))) "failed") |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1| (-1077))) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1| (-109))) (-15 -3662 (|#1| |#1|)) (-15 -2262 (|#1| (-1029 |#2| (-556 |#1|)))) (-15 -3102 ((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -1442 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -1725 (-517))) "failed") |#1|)) (-15 -1743 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1077))) (-15 -3552 (|#1| |#1| (-109) |#1| (-1077))) (-15 -3552 (|#1| |#1|)) (-15 -3552 (|#1| |#1| (-583 (-1077)))) (-15 -3552 (|#1| |#1| (-1077))) (-15 -3540 (|#1| (-1077) (-583 |#1|))) (-15 -3540 (|#1| (-1077) |#1| |#1| |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1| |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1| |#1|)) (-15 -3540 (|#1| (-1077) |#1|)) (-15 -2080 ((-583 (-1077)) |#1|)) (-15 -2311 (|#2| |#1|)) (-15 -2301 ((-107) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -2262 (|#1| (-1077))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| |#1|))) (-15 -3552 (|#1| |#1| (-1077) (-1 |#1| (-583 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3552 (|#1| |#1| (-583 (-1077)) (-583 (-1 |#1| |#1|)))) (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1412 ((-583 (-556 |#1|)) |#1|)) (-15 -1858 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -3939 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3939 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3939 (|#1| |#1| (-265 |#1|))) (-15 -2612 (|#1| (-109) (-583 |#1|))) (-15 -2612 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1| |#1|)) (-15 -2612 (|#1| (-109) |#1|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3552 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3402 ((-556 |#1|) |#1|)) (-15 -3220 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2262 (|#1| (-556 |#1|))) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 116 (|has| |#1| (-25)))) (-2080 (((-583 (-1077)) $) 203)) (-1428 (((-377 (-1073 $)) $ (-556 $)) 171 (|has| |#1| (-509)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 143 (|has| |#1| (-509)))) (-2491 (($ $) 144 (|has| |#1| (-509)))) (-2025 (((-107) $) 146 (|has| |#1| (-509)))) (-3864 (((-583 (-556 $)) $) 44)) (-1783 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3939 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-1322 (($ $) 163 (|has| |#1| (-509)))) (-3306 (((-388 $) $) 164 (|has| |#1| (-509)))) (-1765 (((-107) $ $) 154 (|has| |#1| (-509)))) (-3038 (($) 102 (-3786 (|has| |#1| (-1018)) (|has| |#1| (-25))) CONST)) (-3220 (((-3 (-556 $) "failed") $) 69) (((-3 (-1077) "failed") $) 216) (((-3 (-517) "failed") $) 209 (|has| |#1| (-955 (-517)))) (((-3 |#1| "failed") $) 207) (((-3 (-377 (-876 |#1|)) "failed") $) 169 (|has| |#1| (-509))) (((-3 (-876 |#1|) "failed") $) 123 (|has| |#1| (-964))) (((-3 (-377 (-517)) "failed") $) 95 (-3786 (-12 (|has| |#1| (-955 (-517))) (|has| |#1| (-509))) (|has| |#1| (-955 (-377 (-517))))))) (-3402 (((-556 $) $) 68) (((-1077) $) 215) (((-517) $) 210 (|has| |#1| (-955 (-517)))) ((|#1| $) 206) (((-377 (-876 |#1|)) $) 168 (|has| |#1| (-509))) (((-876 |#1|) $) 122 (|has| |#1| (-964))) (((-377 (-517)) $) 94 (-3786 (-12 (|has| |#1| (-955 (-517))) (|has| |#1| (-509))) (|has| |#1| (-955 (-377 (-517))))))) (-2383 (($ $ $) 158 (|has| |#1| (-509)))) (-2947 (((-623 (-517)) (-623 $)) 137 (-4024 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 136 (-4024 (|has| |#1| (-579 (-517))) (|has| |#1| (-964)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 135 (|has| |#1| (-964))) (((-623 |#1|) (-623 $)) 134 (|has| |#1| (-964)))) (-3550 (((-3 $ "failed") $) 105 (|has| |#1| (-1018)))) (-2356 (($ $ $) 157 (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 152 (|has| |#1| (-509)))) (-2022 (((-107) $) 165 (|has| |#1| (-509)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 212 (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 211 (|has| |#1| (-810 (-349))))) (-3314 (($ $) 51) (($ (-583 $)) 50)) (-3854 (((-583 (-109)) $) 43)) (-1325 (((-109) (-109)) 42)) (-1690 (((-107) $) 103 (|has| |#1| (-1018)))) (-3448 (((-107) $) 22 (|has| $ (-955 (-517))))) (-3662 (($ $) 186 (|has| |#1| (-964)))) (-3858 (((-1029 |#1| (-556 $)) $) 187 (|has| |#1| (-964)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 161 (|has| |#1| (-509)))) (-3419 (((-1073 $) (-556 $)) 25 (|has| $ (-964)))) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3312 (($ (-1 $ $) (-556 $)) 36)) (-1858 (((-3 (-556 $) "failed") $) 46)) (-2323 (($ (-583 $)) 150 (|has| |#1| (-509))) (($ $ $) 149 (|has| |#1| (-509)))) (-3232 (((-1060) $) 9)) (-1412 (((-583 (-556 $)) $) 45)) (-1385 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-1743 (((-3 (-583 $) "failed") $) 192 (|has| |#1| (-1018)))) (-1481 (((-3 (-2 (|:| |val| $) (|:| -1725 (-517))) "failed") $) 183 (|has| |#1| (-964)))) (-1442 (((-3 (-583 $) "failed") $) 190 (|has| |#1| (-25)))) (-3102 (((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3044 (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $) 191 (|has| |#1| (-1018))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-109)) 185 (|has| |#1| (-964))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-1077)) 184 (|has| |#1| (-964)))) (-3731 (((-107) $ (-109)) 40) (((-107) $ (-1077)) 39)) (-2291 (($ $) 107 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1795 (((-703) $) 47)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 205)) (-2311 ((|#1| $) 204)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 151 (|has| |#1| (-509)))) (-2361 (($ (-583 $)) 148 (|has| |#1| (-509))) (($ $ $) 147 (|has| |#1| (-509)))) (-4060 (((-107) $ $) 35) (((-107) $ (-1077)) 34)) (-3896 (((-388 $) $) 162 (|has| |#1| (-509)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 159 (|has| |#1| (-509)))) (-2333 (((-3 $ "failed") $ $) 142 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 153 (|has| |#1| (-509)))) (-2278 (((-107) $) 23 (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1077)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1077) (-1 $ (-583 $))) 31) (($ $ (-1077) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26) (($ $ (-1077)) 197 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1077))) 196 (|has| |#1| (-558 (-493)))) (($ $) 195 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1077)) 194 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1077)) 193 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ $))) 182 (|has| |#1| (-964))) (($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 181 (|has| |#1| (-964))) (($ $ (-1077) (-703) (-1 $ (-583 $))) 180 (|has| |#1| (-964))) (($ $ (-1077) (-703) (-1 $ $)) 179 (|has| |#1| (-964)))) (-3388 (((-703) $) 155 (|has| |#1| (-509)))) (-2612 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 156 (|has| |#1| (-509)))) (-1816 (($ $) 49) (($ $ $) 48)) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 128 (|has| |#1| (-964))) (($ $ (-1077) (-703)) 127 (|has| |#1| (-964))) (($ $ (-583 (-1077))) 126 (|has| |#1| (-964))) (($ $ (-1077)) 125 (|has| |#1| (-964)))) (-1463 (($ $) 176 (|has| |#1| (-509)))) (-2082 (((-1029 |#1| (-556 $)) $) 177 (|has| |#1| (-509)))) (-2819 (($ $) 24 (|has| $ (-964)))) (-3367 (((-816 (-517)) $) 214 (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) 213 (|has| |#1| (-558 (-816 (-349))))) (($ (-388 $)) 178 (|has| |#1| (-509))) (((-493) $) 97 (|has| |#1| (-558 (-493))))) (-1853 (($ $ $) 111 (|has| |#1| (-442)))) (-1970 (($ $ $) 112 (|has| |#1| (-442)))) (-2262 (((-787) $) 11) (($ (-556 $)) 70) (($ (-1077)) 217) (($ |#1|) 208) (($ (-1029 |#1| (-556 $))) 188 (|has| |#1| (-964))) (($ (-377 |#1|)) 174 (|has| |#1| (-509))) (($ (-876 (-377 |#1|))) 173 (|has| |#1| (-509))) (($ (-377 (-876 (-377 |#1|)))) 172 (|has| |#1| (-509))) (($ (-377 (-876 |#1|))) 170 (|has| |#1| (-509))) (($ $) 141 (|has| |#1| (-509))) (($ (-876 |#1|)) 124 (|has| |#1| (-964))) (($ (-377 (-517))) 96 (-3786 (|has| |#1| (-509)) (-12 (|has| |#1| (-955 (-517))) (|has| |#1| (-509))) (|has| |#1| (-955 (-377 (-517)))))) (($ (-517)) 93 (-3786 (|has| |#1| (-964)) (|has| |#1| (-955 (-517)))))) (-3385 (((-3 $ "failed") $) 138 (|has| |#1| (-132)))) (-1818 (((-703)) 133 (|has| |#1| (-964)))) (-3488 (($ $) 53) (($ (-583 $)) 52)) (-4116 (((-107) (-109)) 41)) (-2944 (((-107) $ $) 145 (|has| |#1| (-509)))) (-3540 (($ (-1077) $) 202) (($ (-1077) $ $) 201) (($ (-1077) $ $ $) 200) (($ (-1077) $ $ $ $) 199) (($ (-1077) (-583 $)) 198)) (-2806 (($ $ (-517)) 110 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 104 (|has| |#1| (-1018))) (($ $ (-845)) 100 (|has| |#1| (-1018)))) (-3663 (($) 115 (|has| |#1| (-25)) CONST)) (-3675 (($) 101 (|has| |#1| (-1018)) CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 132 (|has| |#1| (-964))) (($ $ (-1077) (-703)) 131 (|has| |#1| (-964))) (($ $ (-583 (-1077))) 130 (|has| |#1| (-964))) (($ $ (-1077)) 129 (|has| |#1| (-964)))) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1692 (($ (-1029 |#1| (-556 $)) (-1029 |#1| (-556 $))) 175 (|has| |#1| (-509))) (($ $ $) 108 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1680 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1666 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-517)) 109 (-3786 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 106 (|has| |#1| (-1018))) (($ $ (-845)) 99 (|has| |#1| (-1018)))) (* (($ (-377 (-517)) $) 167 (|has| |#1| (-509))) (($ $ (-377 (-517))) 166 (|has| |#1| (-509))) (($ |#1| $) 140 (|has| |#1| (-156))) (($ $ |#1|) 139 (|has| |#1| (-156))) (($ (-517) $) 121 (|has| |#1| (-21))) (($ (-703) $) 117 (|has| |#1| (-25))) (($ (-845) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1018))))) -(((-400 |#1|) (-1189) (-779)) (T -400)) -((-2301 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1077))))) (-3540 (*1 *1 *2 *1) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3540 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3540 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3540 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3540 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) (-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1077))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-3552 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) (-3552 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1077)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) (-3552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1077)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) (-1743 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-3044 (*1 *2 *1) (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517)))) (-4 *1 (-400 *3)))) (-1442 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-3102 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1570 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1029 *3 (-556 *1))) (-4 *3 (-964)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-3858 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *3 (-779)) (-5 *2 (-1029 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-3662 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-964)))) (-3044 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-964)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517)))) (-4 *1 (-400 *4)))) (-3044 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1077)) (-4 *4 (-964)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517)))) (-4 *1 (-400 *4)))) (-1481 (*1 *2 *1) (|partial| -12 (-4 *3 (-964)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -1725 (-517)))) (-4 *1 (-400 *3)))) (-3552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964)))) (-3552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964)))) (-3552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964)))) (-3552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-2082 (*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1029 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-1463 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) (-1692 (*1 *1 *2 *2) (-12 (-5 *2 (-1029 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-876 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-1428 (*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1073 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1018))))) -(-13 (-273) (-955 (-1077)) (-808 |t#1|) (-370 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2301 ((-107) $)) (-15 -2311 (|t#1| $)) (-15 -2080 ((-583 (-1077)) $)) (-15 -3540 ($ (-1077) $)) (-15 -3540 ($ (-1077) $ $)) (-15 -3540 ($ (-1077) $ $ $)) (-15 -3540 ($ (-1077) $ $ $ $)) (-15 -3540 ($ (-1077) (-583 $))) (IF (|has| |t#1| (-558 (-493))) (PROGN (-6 (-558 (-493))) (-15 -3552 ($ $ (-1077))) (-15 -3552 ($ $ (-583 (-1077)))) (-15 -3552 ($ $)) (-15 -3552 ($ $ (-109) $ (-1077))) (-15 -3552 ($ $ (-583 (-109)) (-583 $) (-1077)))) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-6 (-659)) (-15 ** ($ $ (-703))) (-15 -1743 ((-3 (-583 $) "failed") $)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-442)) (-6 (-442)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1442 ((-3 (-583 $) "failed") $)) (-15 -3102 ((-3 (-2 (|:| -1570 (-517)) (|:| |var| (-556 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-964)) (PROGN (-6 (-964)) (-6 (-955 (-876 |t#1|))) (-6 (-824 (-1077))) (-6 (-347 |t#1|)) (-15 -2262 ($ (-1029 |t#1| (-556 $)))) (-15 -3858 ((-1029 |t#1| (-556 $)) $)) (-15 -3662 ($ $)) (-15 -3044 ((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-109))) (-15 -3044 ((-3 (-2 (|:| |var| (-556 $)) (|:| -1725 (-517))) "failed") $ (-1077))) (-15 -1481 ((-3 (-2 (|:| |val| $) (|:| -1725 (-517))) "failed") $)) (-15 -3552 ($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ $)))) (-15 -3552 ($ $ (-583 (-1077)) (-583 (-703)) (-583 (-1 $ (-583 $))))) (-15 -3552 ($ $ (-1077) (-703) (-1 $ (-583 $)))) (-15 -3552 ($ $ (-1077) (-703) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-333)) (-6 (-955 (-377 (-876 |t#1|)))) (-15 -3367 ($ (-388 $))) (-15 -2082 ((-1029 |t#1| (-556 $)) $)) (-15 -1463 ($ $)) (-15 -1692 ($ (-1029 |t#1| (-556 $)) (-1029 |t#1| (-556 $)))) (-15 -2262 ($ (-377 |t#1|))) (-15 -2262 ($ (-876 (-377 |t#1|)))) (-15 -2262 ($ (-377 (-876 (-377 |t#1|))))) (-15 -1428 ((-377 (-1073 $)) $ (-556 $))) (IF (|has| |t#1| (-955 (-517))) (-6 (-955 (-377 (-517)))) |%noBranch|)) |%noBranch|))) -(((-21) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-23) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-377 (-517))) |has| |#1| (-509)) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-509)) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) |has| |#1| (-509)) ((-123) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) |has| |#1| (-509)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-816 (-349))) |has| |#1| (-558 (-816 (-349)))) ((-558 (-816 (-517))) |has| |#1| (-558 (-816 (-517)))) ((-217) |has| |#1| (-509)) ((-262) |has| |#1| (-509)) ((-278) |has| |#1| (-509)) ((-280 $) . T) ((-273) . T) ((-333) |has| |#1| (-509)) ((-347 |#1|) |has| |#1| (-964)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) |has| |#1| (-509)) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-509)) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-964))) ((-579 |#1|) |has| |#1| (-964)) ((-650 #0#) |has| |#1| (-509)) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) -3786 (|has| |#1| (-1018)) (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-779) . T) ((-824 (-1077)) |has| |#1| (-964)) ((-810 (-349)) |has| |#1| (-810 (-349))) ((-810 (-517)) |has| |#1| (-810 (-517))) ((-808 |#1|) . T) ((-844) |has| |#1| (-509)) ((-955 (-377 (-517))) -3786 (|has| |#1| (-955 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-955 (-517))))) ((-955 (-377 (-876 |#1|))) |has| |#1| (-509)) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 (-556 $)) . T) ((-955 (-876 |#1|)) |has| |#1| (-964)) ((-955 (-1077)) . T) ((-955 |#1|) . T) ((-970 #0#) |has| |#1| (-509)) ((-970 |#1|) |has| |#1| (-156)) ((-970 $) |has| |#1| (-509)) ((-964) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-971) -3786 (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1018) -3786 (|has| |#1| (-1018)) (|has| |#1| (-964)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1006) . T) ((-1112) . T) ((-1116) |has| |#1| (-509))) -((-2922 ((|#2| |#2| |#2|) 33)) (-1325 (((-109) (-109)) 44)) (-3668 ((|#2| |#2|) 66)) (-3554 ((|#2| |#2|) 69)) (-2581 ((|#2| |#2|) 32)) (-3746 ((|#2| |#2| |#2|) 35)) (-3518 ((|#2| |#2| |#2|) 37)) (-2672 ((|#2| |#2| |#2|) 34)) (-2747 ((|#2| |#2| |#2|) 36)) (-4116 (((-107) (-109)) 42)) (-4113 ((|#2| |#2|) 39)) (-4084 ((|#2| |#2|) 38)) (-2829 ((|#2| |#2|) 27)) (-4097 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3466 ((|#2| |#2| |#2|) 31))) -(((-401 |#1| |#2|) (-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -2829 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4097 (|#2| |#2| |#2|)) (-15 -3466 (|#2| |#2| |#2|)) (-15 -2581 (|#2| |#2|)) (-15 -2922 (|#2| |#2| |#2|)) (-15 -2672 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -2747 (|#2| |#2| |#2|)) (-15 -3518 (|#2| |#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4113 (|#2| |#2|)) (-15 -3554 (|#2| |#2|)) (-15 -3668 (|#2| |#2|))) (-13 (-779) (-509)) (-400 |#1|)) (T -401)) -((-3668 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3554 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-4113 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3518 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2747 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3746 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2672 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2922 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2581 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3466 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-4097 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2829 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4))))) -(-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -2829 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4097 (|#2| |#2| |#2|)) (-15 -3466 (|#2| |#2| |#2|)) (-15 -2581 (|#2| |#2|)) (-15 -2922 (|#2| |#2| |#2|)) (-15 -2672 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -2747 (|#2| |#2| |#2|)) (-15 -3518 (|#2| |#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4113 (|#2| |#2|)) (-15 -3554 (|#2| |#2|)) (-15 -3668 (|#2| |#2|))) -((-4169 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1073 |#2|)) (|:| |pol2| (-1073 |#2|)) (|:| |prim| (-1073 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1073 |#2|))) (|:| |prim| (-1073 |#2|))) (-583 |#2|)) 58))) -(((-402 |#1| |#2|) (-10 -7 (-15 -4169 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1073 |#2|))) (|:| |prim| (-1073 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -4169 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1073 |#2|)) (|:| |pol2| (-1073 |#2|)) (|:| |prim| (-1073 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-509) (-779) (-134)) (-400 |#1|)) (T -402)) -((-4169 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1073 *3)) (|:| |pol2| (-1073 *3)) (|:| |prim| (-1073 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1073 *5))) (|:| |prim| (-1073 *5)))) (-5 *1 (-402 *4 *5))))) -(-10 -7 (-15 -4169 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1073 |#2|))) (|:| |prim| (-1073 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -4169 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1073 |#2|)) (|:| |pol2| (-1073 |#2|)) (|:| |prim| (-1073 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1472 (((-1163)) 18)) (-3914 (((-1073 (-377 (-517))) |#2| (-556 |#2|)) 40) (((-377 (-517)) |#2|) 23))) -(((-403 |#1| |#2|) (-10 -7 (-15 -3914 ((-377 (-517)) |#2|)) (-15 -3914 ((-1073 (-377 (-517))) |#2| (-556 |#2|))) (-15 -1472 ((-1163)))) (-13 (-779) (-509) (-955 (-517))) (-400 |#1|)) (T -403)) -((-1472 (*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-1163)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))) (-3914 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-403 *5 *3)))) (-3914 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4))))) -(-10 -7 (-15 -3914 ((-377 (-517)) |#2|)) (-15 -3914 ((-1073 (-377 (-517))) |#2| (-556 |#2|))) (-15 -1472 ((-1163)))) -((-3511 (((-107) $) 28)) (-2219 (((-107) $) 30)) (-3744 (((-107) $) 31)) (-3143 (((-107) $) 34)) (-3043 (((-107) $) 29)) (-1988 (((-107) $) 33)) (-2262 (((-787) $) 18) (($ (-1060)) 27) (($ (-1077)) 23) (((-1077) $) 22) (((-1010) $) 21)) (-2801 (((-107) $) 32)) (-1572 (((-107) $ $) 15))) -(((-404) (-13 (-557 (-787)) (-10 -8 (-15 -2262 ($ (-1060))) (-15 -2262 ($ (-1077))) (-15 -2262 ((-1077) $)) (-15 -2262 ((-1010) $)) (-15 -3511 ((-107) $)) (-15 -3043 ((-107) $)) (-15 -3744 ((-107) $)) (-15 -1988 ((-107) $)) (-15 -3143 ((-107) $)) (-15 -2801 ((-107) $)) (-15 -2219 ((-107) $)) (-15 -1572 ((-107) $ $))))) (T -404)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-404)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-404)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-404)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-404)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2219 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1572 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) -(-13 (-557 (-787)) (-10 -8 (-15 -2262 ($ (-1060))) (-15 -2262 ($ (-1077))) (-15 -2262 ((-1077) $)) (-15 -2262 ((-1010) $)) (-15 -3511 ((-107) $)) (-15 -3043 ((-107) $)) (-15 -3744 ((-107) $)) (-15 -1988 ((-107) $)) (-15 -3143 ((-107) $)) (-15 -2801 ((-107) $)) (-15 -2219 ((-107) $)) (-15 -1572 ((-107) $ $)))) -((-1239 (((-3 (-388 (-1073 (-377 (-517)))) "failed") |#3|) 69)) (-2748 (((-388 |#3|) |#3|) 33)) (-1810 (((-3 (-388 (-1073 (-47))) "failed") |#3|) 27 (|has| |#2| (-955 (-47))))) (-3706 (((-3 (|:| |overq| (-1073 (-377 (-517)))) (|:| |overan| (-1073 (-47))) (|:| -3212 (-107))) |#3|) 35))) -(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -2748 ((-388 |#3|) |#3|)) (-15 -1239 ((-3 (-388 (-1073 (-377 (-517)))) "failed") |#3|)) (-15 -3706 ((-3 (|:| |overq| (-1073 (-377 (-517)))) (|:| |overan| (-1073 (-47))) (|:| -3212 (-107))) |#3|)) (IF (|has| |#2| (-955 (-47))) (-15 -1810 ((-3 (-388 (-1073 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-509) (-779) (-955 (-517))) (-400 |#1|) (-1134 |#2|)) (T -405)) -((-1810 (*1 *2 *3) (|partial| -12 (-4 *5 (-955 (-47))) (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1073 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5)))) (-3706 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1073 (-377 (-517)))) (|:| |overan| (-1073 (-47))) (|:| -3212 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5)))) (-1239 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1073 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5)))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5))))) -(-10 -7 (-15 -2748 ((-388 |#3|) |#3|)) (-15 -1239 ((-3 (-388 (-1073 (-377 (-517)))) "failed") |#3|)) (-15 -3706 ((-3 (|:| |overq| (-1073 (-377 (-517)))) (|:| |overan| (-1073 (-47))) (|:| -3212 (-107))) |#3|)) (IF (|has| |#2| (-955 (-47))) (-15 -1810 ((-3 (-388 (-1073 (-47))) "failed") |#3|)) |%noBranch|)) -((-2105 (((-107) $ $) NIL)) (-3188 (((-1060) $ (-1060)) NIL)) (-3010 (($ $ (-1060)) NIL)) (-2872 (((-1060) $) NIL)) (-3664 (((-358) (-358) (-358)) 17) (((-358) (-358)) 15)) (-3723 (($ (-358)) NIL) (($ (-358) (-1060)) NIL)) (-2981 (((-358) $) NIL)) (-3232 (((-1060) $) NIL)) (-3048 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2234 (((-1163) (-1060)) 9)) (-2215 (((-1163) (-1060)) 10)) (-2475 (((-1163)) 11)) (-2262 (((-787) $) NIL)) (-3604 (($ $) 35)) (-1572 (((-107) $ $) NIL))) -(((-406) (-13 (-334 (-358) (-1060)) (-10 -7 (-15 -3664 ((-358) (-358) (-358))) (-15 -3664 ((-358) (-358))) (-15 -2234 ((-1163) (-1060))) (-15 -2215 ((-1163) (-1060))) (-15 -2475 ((-1163)))))) (T -406)) -((-3664 (*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-3664 (*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-406)))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-406)))) (-2475 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-406))))) -(-13 (-334 (-358) (-1060)) (-10 -7 (-15 -3664 ((-358) (-358) (-358))) (-15 -3664 ((-358) (-358))) (-15 -2234 ((-1163) (-1060))) (-15 -2215 ((-1163) (-1060))) (-15 -2475 ((-1163))))) -((-2105 (((-107) $ $) NIL)) (-3324 (((-3 (|:| |fst| (-404)) (|:| -2026 "void")) $) 10)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1404 (($) 31)) (-3123 (($) 37)) (-1918 (($) 33)) (-1945 (($) 35)) (-1511 (($) 32)) (-3794 (($) 34)) (-1827 (($) 36)) (-2049 (((-107) $) 8)) (-2705 (((-583 (-876 (-517))) $) 16)) (-2279 (($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-1077)) (-107)) 25) (($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-876 (-517))) (-107)) 26)) (-2262 (((-787) $) 21) (($ (-404)) 28)) (-1572 (((-107) $ $) NIL))) -(((-407) (-13 (-1006) (-10 -8 (-15 -2262 ((-787) $)) (-15 -2262 ($ (-404))) (-15 -3324 ((-3 (|:| |fst| (-404)) (|:| -2026 "void")) $)) (-15 -2705 ((-583 (-876 (-517))) $)) (-15 -2049 ((-107) $)) (-15 -2279 ($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-1077)) (-107))) (-15 -2279 ($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-876 (-517))) (-107))) (-15 -1404 ($)) (-15 -1511 ($)) (-15 -1918 ($)) (-15 -3123 ($)) (-15 -3794 ($)) (-15 -1945 ($)) (-15 -1827 ($))))) (T -407)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *1 (-407)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-583 (-876 (-517)))) (-5 *1 (-407)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))) (-2279 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *3 (-583 (-1077))) (-5 *4 (-107)) (-5 *1 (-407)))) (-2279 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) (-1404 (*1 *1) (-5 *1 (-407))) (-1511 (*1 *1) (-5 *1 (-407))) (-1918 (*1 *1) (-5 *1 (-407))) (-3123 (*1 *1) (-5 *1 (-407))) (-3794 (*1 *1) (-5 *1 (-407))) (-1945 (*1 *1) (-5 *1 (-407))) (-1827 (*1 *1) (-5 *1 (-407)))) -(-13 (-1006) (-10 -8 (-15 -2262 ((-787) $)) (-15 -2262 ($ (-404))) (-15 -3324 ((-3 (|:| |fst| (-404)) (|:| -2026 "void")) $)) (-15 -2705 ((-583 (-876 (-517))) $)) (-15 -2049 ((-107) $)) (-15 -2279 ($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-1077)) (-107))) (-15 -2279 ($ (-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-583 (-876 (-517))) (-107))) (-15 -1404 ($)) (-15 -1511 ($)) (-15 -1918 ($)) (-15 -3123 ($)) (-15 -3794 ($)) (-15 -1945 ($)) (-15 -1827 ($)))) -((-2105 (((-107) $ $) NIL)) (-2981 (((-1077) $) 8)) (-3232 (((-1060) $) 16)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 13))) -(((-408 |#1|) (-13 (-1006) (-10 -8 (-15 -2981 ((-1077) $)))) (-1077)) (T -408)) -((-2981 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-408 *3)) (-14 *3 *2)))) -(-13 (-1006) (-10 -8 (-15 -2981 ((-1077) $)))) -((-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8) (($ (-1158 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 11))) -(((-409) (-1189)) (T -409)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-632))) (-4 *1 (-409)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-4 *1 (-409))))) -(-13 (-365) (-10 -8 (-15 -2262 ($ (-1158 (-632)))) (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-300))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))))) -(((-557 (-787)) . T) ((-365) . T) ((-1112) . T)) -((-3220 (((-3 $ "failed") (-1158 (-286 (-349)))) 21) (((-3 $ "failed") (-1158 (-286 (-517)))) 19) (((-3 $ "failed") (-1158 (-876 (-349)))) 17) (((-3 $ "failed") (-1158 (-876 (-517)))) 15) (((-3 $ "failed") (-1158 (-377 (-876 (-349))))) 13) (((-3 $ "failed") (-1158 (-377 (-876 (-517))))) 11)) (-3402 (($ (-1158 (-286 (-349)))) 22) (($ (-1158 (-286 (-517)))) 20) (($ (-1158 (-876 (-349)))) 18) (($ (-1158 (-876 (-517)))) 16) (($ (-1158 (-377 (-876 (-349))))) 14) (($ (-1158 (-377 (-876 (-517))))) 12)) (-1885 (((-1163) $) 7)) (-2262 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) 23))) -(((-410) (-1189)) (T -410)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-286 (-349)))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-286 (-349)))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-286 (-517)))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-286 (-517)))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-876 (-349)))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-876 (-349)))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-876 (-517)))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-876 (-517)))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-377 (-876 (-349))))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-377 (-876 (-349))))) (-4 *1 (-410)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-1158 (-377 (-876 (-517))))) (-4 *1 (-410)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-1158 (-377 (-876 (-517))))) (-4 *1 (-410))))) -(-13 (-365) (-10 -8 (-15 -2262 ($ (-583 (-300)))) (-15 -2262 ($ (-300))) (-15 -2262 ($ (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300)))))) (-15 -3402 ($ (-1158 (-286 (-349))))) (-15 -3220 ((-3 $ "failed") (-1158 (-286 (-349))))) (-15 -3402 ($ (-1158 (-286 (-517))))) (-15 -3220 ((-3 $ "failed") (-1158 (-286 (-517))))) (-15 -3402 ($ (-1158 (-876 (-349))))) (-15 -3220 ((-3 $ "failed") (-1158 (-876 (-349))))) (-15 -3402 ($ (-1158 (-876 (-517))))) (-15 -3220 ((-3 $ "failed") (-1158 (-876 (-517))))) (-15 -3402 ($ (-1158 (-377 (-876 (-349)))))) (-15 -3220 ((-3 $ "failed") (-1158 (-377 (-876 (-349)))))) (-15 -3402 ($ (-1158 (-377 (-876 (-517)))))) (-15 -3220 ((-3 $ "failed") (-1158 (-377 (-876 (-517)))))))) -(((-557 (-787)) . T) ((-365) . T) ((-1112) . T)) -((-2426 (((-107)) 17)) (-1516 (((-107) (-107)) 18)) (-3166 (((-107)) 13)) (-1689 (((-107) (-107)) 14)) (-2134 (((-107)) 15)) (-1801 (((-107) (-107)) 16)) (-2633 (((-845) (-845)) 21) (((-845)) 20)) (-2865 (((-703) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517))))) 42)) (-3826 (((-845) (-845)) 23) (((-845)) 22)) (-2247 (((-2 (|:| -3374 (-517)) (|:| -2283 (-583 |#1|))) |#1|) 62)) (-3878 (((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517))))))) 124)) (-3185 (((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107)) 150)) (-2470 (((-388 |#1|) |#1| (-703) (-703)) 163) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 160) (((-388 |#1|) |#1| (-583 (-703))) 162) (((-388 |#1|) |#1| (-703)) 161) (((-388 |#1|) |#1|) 159)) (-2684 (((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703) (-107)) 165) (((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703)) 166) (((-3 |#1| "failed") (-845) |#1| (-583 (-703))) 168) (((-3 |#1| "failed") (-845) |#1| (-703)) 167) (((-3 |#1| "failed") (-845) |#1|) 169)) (-3896 (((-388 |#1|) |#1| (-703) (-703)) 158) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 154) (((-388 |#1|) |#1| (-583 (-703))) 156) (((-388 |#1|) |#1| (-703)) 155) (((-388 |#1|) |#1|) 153)) (-3478 (((-107) |#1|) 37)) (-4048 (((-670 (-703)) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517))))) 67)) (-4029 (((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107) (-1008 (-703)) (-703)) 152))) -(((-411 |#1|) (-10 -7 (-15 -3878 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))))) (-15 -4048 ((-670 (-703)) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))))) (-15 -3826 ((-845))) (-15 -3826 ((-845) (-845))) (-15 -2633 ((-845))) (-15 -2633 ((-845) (-845))) (-15 -2865 ((-703) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))))) (-15 -2247 ((-2 (|:| -3374 (-517)) (|:| -2283 (-583 |#1|))) |#1|)) (-15 -2426 ((-107))) (-15 -1516 ((-107) (-107))) (-15 -3166 ((-107))) (-15 -1689 ((-107) (-107))) (-15 -3478 ((-107) |#1|)) (-15 -2134 ((-107))) (-15 -1801 ((-107) (-107))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3896 ((-388 |#1|) |#1| (-703))) (-15 -3896 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3896 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3896 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2470 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1| (-703))) (-15 -2470 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -2470 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -2470 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1|)) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703) (-107))) (-15 -3185 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107))) (-15 -4029 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107) (-1008 (-703)) (-703)))) (-1134 (-517))) (T -411)) -((-4029 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1008 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3185 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2684 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) (-2684 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) (-2684 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) (-2684 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-845)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) (-2684 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-845)) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) (-2470 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2470 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2470 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2470 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2470 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-1801 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2134 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3478 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3166 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-1516 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2426 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2247 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3374 (-517)) (|:| -2283 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3896 *4) (|:| -1191 (-517))))) (-4 *4 (-1134 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))) (-2633 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-2633 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-3826 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3896 *4) (|:| -1191 (-517))))) (-4 *4 (-1134 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| *4) (|:| -1332 (-517))))))) (-4 *4 (-1134 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4))))) -(-10 -7 (-15 -3878 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))))) (-15 -4048 ((-670 (-703)) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))))) (-15 -3826 ((-845))) (-15 -3826 ((-845) (-845))) (-15 -2633 ((-845))) (-15 -2633 ((-845) (-845))) (-15 -2865 ((-703) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))))) (-15 -2247 ((-2 (|:| -3374 (-517)) (|:| -2283 (-583 |#1|))) |#1|)) (-15 -2426 ((-107))) (-15 -1516 ((-107) (-107))) (-15 -3166 ((-107))) (-15 -1689 ((-107) (-107))) (-15 -3478 ((-107) |#1|)) (-15 -2134 ((-107))) (-15 -1801 ((-107) (-107))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3896 ((-388 |#1|) |#1| (-703))) (-15 -3896 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3896 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3896 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2470 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1| (-703))) (-15 -2470 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -2470 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -2470 ((-388 |#1|) |#1| (-703) (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1|)) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703))) (-15 -2684 ((-3 |#1| "failed") (-845) |#1| (-583 (-703)) (-703) (-107))) (-15 -3185 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107))) (-15 -4029 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107) (-1008 (-703)) (-703)))) -((-4073 (((-517) |#2|) 48) (((-517) |#2| (-703)) 47)) (-3153 (((-517) |#2|) 55)) (-2574 ((|#3| |#2|) 25)) (-3522 ((|#3| |#2| (-845)) 14)) (-3728 ((|#3| |#2|) 15)) (-1984 ((|#3| |#2|) 9)) (-1795 ((|#3| |#2|) 10)) (-1260 ((|#3| |#2| (-845)) 62) ((|#3| |#2|) 30)) (-3170 (((-517) |#2|) 57))) -(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -3170 ((-517) |#2|)) (-15 -1260 (|#3| |#2|)) (-15 -1260 (|#3| |#2| (-845))) (-15 -3153 ((-517) |#2|)) (-15 -4073 ((-517) |#2| (-703))) (-15 -4073 ((-517) |#2|)) (-15 -3522 (|#3| |#2| (-845))) (-15 -2574 (|#3| |#2|)) (-15 -1984 (|#3| |#2|)) (-15 -1795 (|#3| |#2|)) (-15 -3728 (|#3| |#2|))) (-964) (-1134 |#1|) (-13 (-374) (-955 |#1|) (-333) (-1098) (-256))) (T -412)) -((-3728 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) (-1795 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) (-1984 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) (-2574 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) (-3522 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-4 *5 (-964)) (-4 *2 (-13 (-374) (-955 *5) (-333) (-1098) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1134 *5)))) (-4073 (*1 *2 *3) (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1134 *4)) (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256))))) (-4073 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1134 *5)) (-4 *6 (-13 (-374) (-955 *5) (-333) (-1098) (-256))))) (-3153 (*1 *2 *3) (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1134 *4)) (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256))))) (-1260 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-4 *5 (-964)) (-4 *2 (-13 (-374) (-955 *5) (-333) (-1098) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1134 *5)))) (-1260 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) (-3170 (*1 *2 *3) (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1134 *4)) (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256)))))) -(-10 -7 (-15 -3170 ((-517) |#2|)) (-15 -1260 (|#3| |#2|)) (-15 -1260 (|#3| |#2| (-845))) (-15 -3153 ((-517) |#2|)) (-15 -4073 ((-517) |#2| (-703))) (-15 -4073 ((-517) |#2|)) (-15 -3522 (|#3| |#2| (-845))) (-15 -2574 (|#3| |#2|)) (-15 -1984 (|#3| |#2|)) (-15 -1795 (|#3| |#2|)) (-15 -3728 (|#3| |#2|))) -((-3365 ((|#2| (-1158 |#1|)) 36)) (-2619 ((|#2| |#2| |#1|) 49)) (-3777 ((|#2| |#2| |#1|) 41)) (-1894 ((|#2| |#2|) 38)) (-1837 (((-107) |#2|) 30)) (-2432 (((-583 |#2|) (-845) (-388 |#2|)) 16)) (-2684 ((|#2| (-845) (-388 |#2|)) 21)) (-4048 (((-670 (-703)) (-388 |#2|)) 25))) -(((-413 |#1| |#2|) (-10 -7 (-15 -1837 ((-107) |#2|)) (-15 -3365 (|#2| (-1158 |#1|))) (-15 -1894 (|#2| |#2|)) (-15 -3777 (|#2| |#2| |#1|)) (-15 -2619 (|#2| |#2| |#1|)) (-15 -4048 ((-670 (-703)) (-388 |#2|))) (-15 -2684 (|#2| (-845) (-388 |#2|))) (-15 -2432 ((-583 |#2|) (-845) (-388 |#2|)))) (-964) (-1134 |#1|)) (T -413)) -((-2432 (*1 *2 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-388 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-964)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))) (-2684 (*1 *2 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-388 *2)) (-4 *2 (-1134 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-964)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-964)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))) (-2619 (*1 *2 *2 *3) (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3)))) (-3777 (*1 *2 *2 *3) (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3)))) (-1894 (*1 *2 *2) (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-964)) (-4 *2 (-1134 *4)) (-5 *1 (-413 *4 *2)))) (-1837 (*1 *2 *3) (-12 (-4 *4 (-964)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1134 *4))))) -(-10 -7 (-15 -1837 ((-107) |#2|)) (-15 -3365 (|#2| (-1158 |#1|))) (-15 -1894 (|#2| |#2|)) (-15 -3777 (|#2| |#2| |#1|)) (-15 -2619 (|#2| |#2| |#1|)) (-15 -4048 ((-670 (-703)) (-388 |#2|))) (-15 -2684 (|#2| (-845) (-388 |#2|))) (-15 -2432 ((-583 |#2|) (-845) (-388 |#2|)))) -((-1374 (((-703)) 41)) (-4159 (((-703)) 23 (|has| |#1| (-374))) (((-703) (-703)) 22 (|has| |#1| (-374)))) (-3548 (((-517) |#1|) 18 (|has| |#1| (-374)))) (-1531 (((-517) |#1|) 20 (|has| |#1| (-374)))) (-1396 (((-703)) 40) (((-703) (-703)) 39)) (-3401 ((|#1| (-703) (-517)) 29)) (-1758 (((-1163)) 43))) -(((-414 |#1|) (-10 -7 (-15 -3401 (|#1| (-703) (-517))) (-15 -1396 ((-703) (-703))) (-15 -1396 ((-703))) (-15 -1374 ((-703))) (-15 -1758 ((-1163))) (IF (|has| |#1| (-374)) (PROGN (-15 -1531 ((-517) |#1|)) (-15 -3548 ((-517) |#1|)) (-15 -4159 ((-703) (-703))) (-15 -4159 ((-703)))) |%noBranch|)) (-964)) (T -414)) -((-4159 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))) (-3548 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))) (-1531 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))) (-1758 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-414 *3)) (-4 *3 (-964)))) (-1374 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964)))) (-1396 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-964))))) -(-10 -7 (-15 -3401 (|#1| (-703) (-517))) (-15 -1396 ((-703) (-703))) (-15 -1396 ((-703))) (-15 -1374 ((-703))) (-15 -1758 ((-1163))) (IF (|has| |#1| (-374)) (PROGN (-15 -1531 ((-517) |#1|)) (-15 -3548 ((-517) |#1|)) (-15 -4159 ((-703) (-703))) (-15 -4159 ((-703)))) |%noBranch|)) -((-3971 (((-583 (-517)) (-517)) 59)) (-2022 (((-107) (-153 (-517))) 63)) (-3896 (((-388 (-153 (-517))) (-153 (-517))) 58))) -(((-415) (-10 -7 (-15 -3896 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -3971 ((-583 (-517)) (-517))) (-15 -2022 ((-107) (-153 (-517)))))) (T -415)) -((-2022 (*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) (-3971 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517)))))) -(-10 -7 (-15 -3896 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -3971 ((-583 (-517)) (-517))) (-15 -2022 ((-107) (-153 (-517))))) -((-1440 ((|#4| |#4| (-583 |#4|)) 59)) (-4072 (((-583 |#4|) (-583 |#4|) (-1060) (-1060)) 17) (((-583 |#4|) (-583 |#4|) (-1060)) 16) (((-583 |#4|) (-583 |#4|)) 11))) -(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1440 (|#4| |#4| (-583 |#4|))) (-15 -4072 ((-583 |#4|) (-583 |#4|))) (-15 -4072 ((-583 |#4|) (-583 |#4|) (-1060))) (-15 -4072 ((-583 |#4|) (-583 |#4|) (-1060) (-1060)))) (-278) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -416)) -((-4072 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-4072 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) (-1440 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2))))) -(-10 -7 (-15 -1440 (|#4| |#4| (-583 |#4|))) (-15 -4072 ((-583 |#4|) (-583 |#4|))) (-15 -4072 ((-583 |#4|) (-583 |#4|) (-1060))) (-15 -4072 ((-583 |#4|) (-583 |#4|) (-1060) (-1060)))) -((-3394 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 71) (((-583 (-583 |#4|)) (-583 |#4|)) 70) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107)) 64) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 65)) (-3771 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 41) (((-583 (-583 |#4|)) (-583 |#4|)) 61))) -(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3771 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3771 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-107)))) (-13 (-278) (-134)) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -417)) -((-3394 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3394 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3394 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3394 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3771 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3771 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) -(-10 -7 (-15 -3771 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3771 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3394 ((-583 (-583 |#4|)) (-583 |#4|) (-107)))) -((-1833 (((-703) |#4|) 12)) (-4152 (((-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|)))) 31)) (-2268 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3321 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-3740 ((|#4| |#4| (-583 |#4|)) 40)) (-3655 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 69)) (-2510 (((-1163) |#4|) 42)) (-2238 (((-1163) (-583 |#4|)) 51)) (-2447 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517)) 48)) (-1626 (((-1163) (-517)) 77)) (-1617 (((-583 |#4|) (-583 |#4|)) 75)) (-1663 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|)) |#4| (-703)) 25)) (-2583 (((-517) |#4|) 76)) (-3428 ((|#4| |#4|) 29)) (-2766 (((-583 |#4|) (-583 |#4|) (-517) (-517)) 55)) (-4118 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517)) 87)) (-3766 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1953 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-2715 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-1477 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3988 (((-107) |#2| |#2|) 56)) (-3813 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2685 (((-107) |#2| |#2| |#2| |#2|) 59)) (-3489 ((|#4| |#4| (-583 |#4|)) 70))) -(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3489 (|#4| |#4| (-583 |#4|))) (-15 -3740 (|#4| |#4| (-583 |#4|))) (-15 -2766 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -1953 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3988 ((-107) |#2| |#2|)) (-15 -2685 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3813 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1477 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2715 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3655 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3428 (|#4| |#4|)) (-15 -4152 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|))))) (-15 -3321 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2268 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1617 ((-583 |#4|) (-583 |#4|))) (-15 -2583 ((-517) |#4|)) (-15 -2510 ((-1163) |#4|)) (-15 -2447 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -4118 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -2238 ((-1163) (-583 |#4|))) (-15 -1626 ((-1163) (-517))) (-15 -3766 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1663 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|)) |#4| (-703))) (-15 -1833 ((-703) |#4|))) (-421) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -418)) -((-1833 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -2242 *4))) (-5 *5 (-703)) (-4 *4 (-873 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))) (-3766 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1163)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))) (-2238 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1163)) (-5 *1 (-418 *4 *5 *6 *7)))) (-4118 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-2447 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1163)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))) (-2583 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))) (-1617 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-2268 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-873 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))) (-4152 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 *3)))) (-5 *4 (-703)) (-4 *3 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5)))) (-3655 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))) (-2715 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-873 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))) (-1477 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3813 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))) (-2685 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-873 *4 *3 *5)))) (-3988 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-873 *4 *3 *5)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2766 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3740 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))) (-3489 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2))))) -(-10 -7 (-15 -3489 (|#4| |#4| (-583 |#4|))) (-15 -3740 (|#4| |#4| (-583 |#4|))) (-15 -2766 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -1953 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3988 ((-107) |#2| |#2|)) (-15 -2685 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3813 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1477 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2715 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3655 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3428 (|#4| |#4|)) (-15 -4152 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|))))) (-15 -3321 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2268 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1617 ((-583 |#4|) (-583 |#4|))) (-15 -2583 ((-517) |#4|)) (-15 -2510 ((-1163) |#4|)) (-15 -2447 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -4118 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -2238 ((-1163) (-583 |#4|))) (-15 -1626 ((-1163) (-517))) (-15 -3766 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1663 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -2242 |#4|)) |#4| (-703))) (-15 -1833 ((-703) |#4|))) -((-2223 ((|#4| |#4| (-583 |#4|)) 22 (|has| |#1| (-333)))) (-1582 (((-583 |#4|) (-583 |#4|) (-1060) (-1060)) 42) (((-583 |#4|) (-583 |#4|) (-1060)) 41) (((-583 |#4|) (-583 |#4|)) 36))) -(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1582 ((-583 |#4|) (-583 |#4|))) (-15 -1582 ((-583 |#4|) (-583 |#4|) (-1060))) (-15 -1582 ((-583 |#4|) (-583 |#4|) (-1060) (-1060))) (IF (|has| |#1| (-333)) (-15 -2223 (|#4| |#4| (-583 |#4|))) |%noBranch|)) (-421) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -419)) -((-2223 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) (-1582 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1582 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1582 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6))))) -(-10 -7 (-15 -1582 ((-583 |#4|) (-583 |#4|))) (-15 -1582 ((-583 |#4|) (-583 |#4|) (-1060))) (-15 -1582 ((-583 |#4|) (-583 |#4|) (-1060) (-1060))) (IF (|has| |#1| (-333)) (-15 -2223 (|#4| |#4| (-583 |#4|))) |%noBranch|)) -((-2323 (($ $ $) 14) (($ (-583 $)) 21)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 41)) (-2361 (($ $ $) NIL) (($ (-583 $)) 22))) -(((-420 |#1|) (-10 -8 (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2323 (|#1| (-583 |#1|))) (-15 -2323 (|#1| |#1| |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|))) (-421)) (T -420)) -NIL -(-10 -8 (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -2323 (|#1| (-583 |#1|))) (-15 -2323 (|#1| |#1| |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2361 (|#1| |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2333 (((-3 $ "failed") $ $) 42)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-421) (-1189)) (T -421)) -((-2361 (*1 *1 *1 *1) (-4 *1 (-421))) (-2361 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-2323 (*1 *1 *1 *1) (-4 *1 (-421))) (-2323 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-2664 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-421))))) -(-13 (-509) (-10 -8 (-15 -2361 ($ $ $)) (-15 -2361 ($ (-583 $))) (-15 -2323 ($ $ $)) (-15 -2323 ($ (-583 $))) (-15 -2664 ((-1073 $) (-1073 $) (-1073 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1966 (((-3 $ "failed")) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1158 (-623 (-377 (-876 |#1|)))) (-1158 $)) NIL) (((-1158 (-623 (-377 (-876 |#1|))))) NIL)) (-4026 (((-1158 $)) NIL)) (-3038 (($) NIL T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL)) (-1745 (((-3 $ "failed")) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-2998 (((-623 (-377 (-876 |#1|))) (-1158 $)) NIL) (((-623 (-377 (-876 |#1|)))) NIL)) (-2496 (((-377 (-876 |#1|)) $) NIL)) (-1793 (((-623 (-377 (-876 |#1|))) $ (-1158 $)) NIL) (((-623 (-377 (-876 |#1|))) $) NIL)) (-3071 (((-3 $ "failed") $) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-3928 (((-1073 (-876 (-377 (-876 |#1|))))) NIL (|has| (-377 (-876 |#1|)) (-333))) (((-1073 (-377 (-876 |#1|)))) 79 (|has| |#1| (-509)))) (-2823 (($ $ (-845)) NIL)) (-4132 (((-377 (-876 |#1|)) $) NIL)) (-1363 (((-1073 (-377 (-876 |#1|))) $) 77 (|has| (-377 (-876 |#1|)) (-509)))) (-3708 (((-377 (-876 |#1|)) (-1158 $)) NIL) (((-377 (-876 |#1|))) NIL)) (-2740 (((-1073 (-377 (-876 |#1|))) $) NIL)) (-2889 (((-107)) NIL)) (-3539 (($ (-1158 (-377 (-876 |#1|))) (-1158 $)) 97) (($ (-1158 (-377 (-876 |#1|)))) NIL)) (-3550 (((-3 $ "failed") $) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-3778 (((-845)) NIL)) (-3874 (((-107)) NIL)) (-1768 (($ $ (-845)) NIL)) (-3544 (((-107)) NIL)) (-4016 (((-107)) NIL)) (-1627 (((-107)) NIL)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL)) (-3277 (((-3 $ "failed")) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-1830 (((-623 (-377 (-876 |#1|))) (-1158 $)) NIL) (((-623 (-377 (-876 |#1|)))) NIL)) (-2002 (((-377 (-876 |#1|)) $) NIL)) (-4044 (((-623 (-377 (-876 |#1|))) $ (-1158 $)) NIL) (((-623 (-377 (-876 |#1|))) $) NIL)) (-2680 (((-3 $ "failed") $) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-3221 (((-1073 (-876 (-377 (-876 |#1|))))) NIL (|has| (-377 (-876 |#1|)) (-333))) (((-1073 (-377 (-876 |#1|)))) 78 (|has| |#1| (-509)))) (-4119 (($ $ (-845)) NIL)) (-1249 (((-377 (-876 |#1|)) $) NIL)) (-3556 (((-1073 (-377 (-876 |#1|))) $) 72 (|has| (-377 (-876 |#1|)) (-509)))) (-1274 (((-377 (-876 |#1|)) (-1158 $)) NIL) (((-377 (-876 |#1|))) NIL)) (-3570 (((-1073 (-377 (-876 |#1|))) $) NIL)) (-1878 (((-107)) NIL)) (-3232 (((-1060) $) NIL)) (-2455 (((-107)) NIL)) (-4102 (((-107)) NIL)) (-2032 (((-107)) NIL)) (-4130 (((-1024) $) NIL)) (-3628 (((-377 (-876 |#1|)) $ $) 66 (|has| |#1| (-509)))) (-4137 (((-377 (-876 |#1|)) $) 65 (|has| |#1| (-509)))) (-2033 (((-377 (-876 |#1|)) $) 89 (|has| |#1| (-509)))) (-3809 (((-1073 (-377 (-876 |#1|))) $) 83 (|has| |#1| (-509)))) (-2735 (((-377 (-876 |#1|))) 67 (|has| |#1| (-509)))) (-4153 (((-377 (-876 |#1|)) $ $) 54 (|has| |#1| (-509)))) (-2235 (((-377 (-876 |#1|)) $) 53 (|has| |#1| (-509)))) (-2206 (((-377 (-876 |#1|)) $) 88 (|has| |#1| (-509)))) (-2106 (((-1073 (-377 (-876 |#1|))) $) 82 (|has| |#1| (-509)))) (-2836 (((-377 (-876 |#1|))) 64 (|has| |#1| (-509)))) (-2609 (($) 95) (($ (-1077)) 101) (($ (-1158 (-1077))) 100) (($ (-1158 $)) 90) (($ (-1077) (-1158 $)) 99) (($ (-1158 (-1077)) (-1158 $)) 98)) (-3377 (((-107)) NIL)) (-2612 (((-377 (-876 |#1|)) $ (-517)) NIL)) (-1372 (((-1158 (-377 (-876 |#1|))) $ (-1158 $)) 92) (((-623 (-377 (-876 |#1|))) (-1158 $) (-1158 $)) NIL) (((-1158 (-377 (-876 |#1|))) $) 37) (((-623 (-377 (-876 |#1|))) (-1158 $)) NIL)) (-3367 (((-1158 (-377 (-876 |#1|))) $) NIL) (($ (-1158 (-377 (-876 |#1|)))) 34)) (-3861 (((-583 (-876 (-377 (-876 |#1|)))) (-1158 $)) NIL) (((-583 (-876 (-377 (-876 |#1|))))) NIL) (((-583 (-876 |#1|)) (-1158 $)) 93 (|has| |#1| (-509))) (((-583 (-876 |#1|))) 94 (|has| |#1| (-509)))) (-1970 (($ $ $) NIL)) (-1293 (((-107)) NIL)) (-2262 (((-787) $) NIL) (($ (-1158 (-377 (-876 |#1|)))) NIL)) (-3700 (((-1158 $)) 56)) (-3741 (((-583 (-1158 (-377 (-876 |#1|))))) NIL (|has| (-377 (-876 |#1|)) (-509)))) (-2182 (($ $ $ $) NIL)) (-3450 (((-107)) NIL)) (-2365 (($ (-623 (-377 (-876 |#1|))) $) NIL)) (-2742 (($ $ $) NIL)) (-3014 (((-107)) NIL)) (-1901 (((-107)) NIL)) (-1555 (((-107)) NIL)) (-3663 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) 91)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 52) (($ $ (-377 (-876 |#1|))) NIL) (($ (-377 (-876 |#1|)) $) NIL) (($ (-1044 |#2| (-377 (-876 |#1|))) $) NIL))) -(((-422 |#1| |#2| |#3| |#4|) (-13 (-387 (-377 (-876 |#1|))) (-585 (-1044 |#2| (-377 (-876 |#1|)))) (-10 -8 (-15 -2262 ($ (-1158 (-377 (-876 |#1|))))) (-15 -3742 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -1963 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -2609 ($)) (-15 -2609 ($ (-1077))) (-15 -2609 ($ (-1158 (-1077)))) (-15 -2609 ($ (-1158 $))) (-15 -2609 ($ (-1077) (-1158 $))) (-15 -2609 ($ (-1158 (-1077)) (-1158 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -3221 ((-1073 (-377 (-876 |#1|))))) (-15 -2106 ((-1073 (-377 (-876 |#1|))) $)) (-15 -2235 ((-377 (-876 |#1|)) $)) (-15 -2206 ((-377 (-876 |#1|)) $)) (-15 -3928 ((-1073 (-377 (-876 |#1|))))) (-15 -3809 ((-1073 (-377 (-876 |#1|))) $)) (-15 -4137 ((-377 (-876 |#1|)) $)) (-15 -2033 ((-377 (-876 |#1|)) $)) (-15 -4153 ((-377 (-876 |#1|)) $ $)) (-15 -2836 ((-377 (-876 |#1|)))) (-15 -3628 ((-377 (-876 |#1|)) $ $)) (-15 -2735 ((-377 (-876 |#1|)))) (-15 -3861 ((-583 (-876 |#1|)) (-1158 $))) (-15 -3861 ((-583 (-876 |#1|))))) |%noBranch|))) (-156) (-845) (-583 (-1077)) (-1158 (-623 |#1|))) (T -422)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1158 (-377 (-876 *3)))) (-4 *3 (-156)) (-14 *6 (-1158 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))))) (-3742 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -3700 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-1963 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -3700 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2609 (*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-845)) (-14 *4 (-583 (-1077))) (-14 *5 (-1158 (-623 *2))))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 *2)) (-14 *6 (-1158 (-623 *3))))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-1158 (-1077))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-1158 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2609 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-845)) (-14 *6 (-583 *2)) (-14 *7 (-1158 (-623 *4))))) (-2609 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 (-1077))) (-5 *3 (-1158 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-845)) (-14 *6 (-583 (-1077))) (-14 *7 (-1158 (-623 *4))))) (-3221 (*1 *2) (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-3928 (*1 *2) (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-4153 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2836 (*1 *2) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-3628 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-2735 (*1 *2) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) (-3861 (*1 *2 *3) (-12 (-5 *3 (-1158 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-876 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-845)) (-14 *6 (-583 (-1077))) (-14 *7 (-1158 (-623 *4))))) (-3861 (*1 *2) (-12 (-5 *2 (-583 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) -(-13 (-387 (-377 (-876 |#1|))) (-585 (-1044 |#2| (-377 (-876 |#1|)))) (-10 -8 (-15 -2262 ($ (-1158 (-377 (-876 |#1|))))) (-15 -3742 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -1963 ((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed"))) (-15 -2609 ($)) (-15 -2609 ($ (-1077))) (-15 -2609 ($ (-1158 (-1077)))) (-15 -2609 ($ (-1158 $))) (-15 -2609 ($ (-1077) (-1158 $))) (-15 -2609 ($ (-1158 (-1077)) (-1158 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -3221 ((-1073 (-377 (-876 |#1|))))) (-15 -2106 ((-1073 (-377 (-876 |#1|))) $)) (-15 -2235 ((-377 (-876 |#1|)) $)) (-15 -2206 ((-377 (-876 |#1|)) $)) (-15 -3928 ((-1073 (-377 (-876 |#1|))))) (-15 -3809 ((-1073 (-377 (-876 |#1|))) $)) (-15 -4137 ((-377 (-876 |#1|)) $)) (-15 -2033 ((-377 (-876 |#1|)) $)) (-15 -4153 ((-377 (-876 |#1|)) $ $)) (-15 -2836 ((-377 (-876 |#1|)))) (-15 -3628 ((-377 (-876 |#1|)) $ $)) (-15 -2735 ((-377 (-876 |#1|)))) (-15 -3861 ((-583 (-876 |#1|)) (-1158 $))) (-15 -3861 ((-583 (-876 |#1|))))) |%noBranch|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 13)) (-2080 (((-583 (-789 |#1|)) $) 74)) (-1428 (((-1073 $) $ (-789 |#1|)) 46) (((-1073 |#2|) $) 116)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2491 (($ $) NIL (|has| |#2| (-509)))) (-2025 (((-107) $) NIL (|has| |#2| (-509)))) (-2675 (((-703) $) 21) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL (|has| |#2| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) 44) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3402 ((|#2| $) 42) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-789 |#1|) $) NIL)) (-2133 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3069 (($ $ (-583 (-517))) 79)) (-2364 (($ $) 68)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#2| (-833)))) (-1760 (($ $ |#2| |#3| $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) 58)) (-2069 (($ (-1073 |#2|) (-789 |#1|)) 121) (($ (-1073 $) (-789 |#1|)) 52)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) 59)) (-2059 (($ |#2| |#3|) 28) (($ $ (-789 |#1|) (-703)) 30) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-789 |#1|)) NIL)) (-3942 ((|#3| $) NIL) (((-703) $ (-789 |#1|)) 50) (((-583 (-703)) $ (-583 (-789 |#1|))) 57)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-1542 (($ (-1 |#3| |#3|) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-1958 (((-3 (-789 |#1|) "failed") $) 39)) (-2325 (($ $) NIL)) (-2336 ((|#2| $) 41)) (-2323 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -1725 (-703))) "failed") $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) 40)) (-2311 ((|#2| $) 114)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) 126 (|has| |#2| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-833)))) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) 86) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) 89) (($ $ (-789 |#1|) $) 84) (($ $ (-583 (-789 |#1|)) (-583 $)) 105)) (-3115 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2042 (($ $ (-789 |#1|)) 53) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1191 ((|#3| $) 67) (((-703) $ (-789 |#1|)) 37) (((-583 (-703)) $ (-583 (-789 |#1|))) 56)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#2| $) 123 (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-2262 (((-787) $) 142) (($ (-517)) NIL) (($ |#2|) 85) (($ (-789 |#1|)) 31) (($ (-377 (-517))) NIL (-3786 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ |#3|) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 16 T CONST)) (-3675 (($) 25 T CONST)) (-3348 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ |#2|) 64 (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 110)) (** (($ $ (-845)) NIL) (($ $ (-703)) 108)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 29) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-423 |#1| |#2| |#3|) (-13 (-873 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517)))))) (-583 (-1077)) (-964) (-212 (-3573 |#1|) (-703))) (T -423)) -((-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1077))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-964)) (-4 *5 (-212 (-3573 *3) (-703)))))) -(-13 (-873 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517)))))) -((-3284 (((-107) |#1| (-583 |#2|)) 66)) (-1338 (((-3 (-1158 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|)) 75)) (-2443 (((-3 (-583 |#2|) "failed") |#2| |#1| (-1158 (-583 |#2|))) 77)) (-2563 ((|#2| |#2| |#1|) 28)) (-1642 (((-703) |#2| (-583 |#2|)) 20))) -(((-424 |#1| |#2|) (-10 -7 (-15 -2563 (|#2| |#2| |#1|)) (-15 -1642 ((-703) |#2| (-583 |#2|))) (-15 -1338 ((-3 (-1158 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -2443 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1158 (-583 |#2|)))) (-15 -3284 ((-107) |#1| (-583 |#2|)))) (-278) (-1134 |#1|)) (T -424)) -((-3284 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1134 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))) (-2443 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1158 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1134 *4)))) (-1338 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1134 *4)) (-5 *2 (-1158 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))) (-1642 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))) (-2563 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1134 *3))))) -(-10 -7 (-15 -2563 (|#2| |#2| |#1|)) (-15 -1642 ((-703) |#2| (-583 |#2|))) (-15 -1338 ((-3 (-1158 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -2443 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1158 (-583 |#2|)))) (-15 -3284 ((-107) |#1| (-583 |#2|)))) -((-3896 (((-388 |#5|) |#5|) 24))) -(((-425 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3896 ((-388 |#5|) |#5|))) (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077))))) (-725) (-509) (-509) (-873 |#4| |#2| |#1|)) (T -425)) -((-3896 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-873 *7 *5 *4))))) -(-10 -7 (-15 -3896 ((-388 |#5|) |#5|))) -((-3526 ((|#3|) 36)) (-2664 (((-1073 |#4|) (-1073 |#4|) (-1073 |#4|)) 32))) -(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2664 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -3526 (|#3|))) (-725) (-779) (-833) (-873 |#3| |#1| |#2|)) (T -426)) -((-3526 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-833)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-873 *2 *3 *4)))) (-2664 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-426 *3 *4 *5 *6))))) -(-10 -7 (-15 -2664 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -3526 (|#3|))) -((-3896 (((-388 (-1073 |#1|)) (-1073 |#1|)) 41))) -(((-427 |#1|) (-10 -7 (-15 -3896 ((-388 (-1073 |#1|)) (-1073 |#1|)))) (-278)) (T -427)) -((-3896 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1073 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1073 *4))))) -(-10 -7 (-15 -3896 ((-388 (-1073 |#1|)) (-1073 |#1|)))) -((-2131 (((-51) |#2| (-1077) (-265 |#2|) (-1125 (-703))) 42) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-703))) 41) (((-51) |#2| (-1077) (-265 |#2|)) 35) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 27)) (-3452 (((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517))) 80) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517))) 79) (((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517))) 78) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517))) 77) (((-51) |#2| (-1077) (-265 |#2|)) 72) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 71)) (-2151 (((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517))) 66) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517))) 64)) (-2140 (((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517))) 48) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517))) 47))) -(((-428 |#1| |#2|) (-10 -7 (-15 -2131 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2131 ((-51) |#2| (-1077) (-265 |#2|))) (-15 -2131 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-703)))) (-15 -2131 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-703)))) (-15 -2140 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517)))) (-15 -2140 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517)))) (-15 -2151 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -2151 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -3452 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|))) (-15 -3452 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517)))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517)))) (-15 -3452 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517))))) (-13 (-509) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -428)) -((-3452 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-3452 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1125 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-3452 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-3452 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-517))) (-4 *7 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-3452 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) (-2151 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-2151 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1125 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-2140 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-2140 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-517))) (-4 *7 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-2131 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-703))) (-4 *3 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-2131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-703))) (-4 *7 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-2131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6))))) -(-10 -7 (-15 -2131 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2131 ((-51) |#2| (-1077) (-265 |#2|))) (-15 -2131 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-703)))) (-15 -2131 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-703)))) (-15 -2140 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517)))) (-15 -2140 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517)))) (-15 -2151 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -2151 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -3452 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|))) (-15 -3452 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1125 (-517)))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-517)))) (-15 -3452 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517)))) (-15 -3452 ((-51) |#2| (-1077) (-265 |#2|) (-1125 (-377 (-517))) (-377 (-517))))) -((-2563 ((|#2| |#2| |#1|) 15)) (-2466 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-845)) 69)) (-1653 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-845)) 60))) -(((-429 |#1| |#2|) (-10 -7 (-15 -1653 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-845))) (-15 -2466 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-845))) (-15 -2563 (|#2| |#2| |#1|))) (-278) (-1134 |#1|)) (T -429)) -((-2563 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1134 *3)))) (-2466 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-845)) (-4 *3 (-1134 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))) (-1653 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-845)) (-4 *5 (-278)) (-4 *3 (-1134 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3))))) -(-10 -7 (-15 -1653 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-845))) (-15 -2466 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-845))) (-15 -2563 (|#2| |#2| |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 28)) (-3622 (($ |#3|) 25)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) 32)) (-1299 (($ |#2| |#4| $) 33)) (-2059 (($ |#2| (-646 |#3| |#4| |#5|)) 24)) (-2325 (((-646 |#3| |#4| |#5|) $) 15)) (-3657 ((|#3| $) 19)) (-2569 ((|#4| $) 17)) (-2336 ((|#2| $) 29)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-4055 (($ |#2| |#3| |#4|) 26)) (-3663 (($) 36 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 34)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-430 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -2336 (|#2| $)) (-15 -2325 ((-646 |#3| |#4| |#5|) $)) (-15 -2569 (|#4| $)) (-15 -3657 (|#3| $)) (-15 -2364 ($ $)) (-15 -2059 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -3622 ($ |#3|)) (-15 -4055 ($ |#2| |#3| |#4|)) (-15 -1299 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1077)) (-156) (-779) (-212 (-3573 |#1|) (-703)) (-1 (-107) (-2 (|:| -2803 |#3|) (|:| -1725 |#4|)) (-2 (|:| -2803 |#3|) (|:| -1725 |#4|))) (-873 |#2| |#4| (-789 |#1|))) (T -430)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) (-4 *6 (-212 (-3573 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6)) (-2 (|:| -2803 *5) (|:| -1725 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-873 *4 *6 (-789 *3))))) (-2336 (*1 *2 *1) (-12 (-14 *3 (-583 (-1077))) (-4 *5 (-212 (-3573 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *4) (|:| -1725 *5)) (-2 (|:| -2803 *4) (|:| -1725 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-873 *2 *5 (-789 *3))))) (-2325 (*1 *2 *1) (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) (-4 *6 (-212 (-3573 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6)) (-2 (|:| -2803 *5) (|:| -1725 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-873 *4 *6 (-789 *3))))) (-2569 (*1 *2 *1) (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *2)) (-2 (|:| -2803 *5) (|:| -1725 *2)))) (-4 *2 (-212 (-3573 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-873 *4 *2 (-789 *3))))) (-3657 (*1 *2 *1) (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) (-4 *5 (-212 (-3573 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *5)) (-2 (|:| -2803 *2) (|:| -1725 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-873 *4 *5 (-789 *3))))) (-2364 (*1 *1 *1) (-12 (-14 *2 (-583 (-1077))) (-4 *3 (-156)) (-4 *5 (-212 (-3573 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *4) (|:| -1725 *5)) (-2 (|:| -2803 *4) (|:| -1725 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-873 *3 *5 (-789 *2))))) (-2059 (*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-3573 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6)) (-2 (|:| -2803 *5) (|:| -1725 *6)))) (-14 *4 (-583 (-1077))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-873 *2 *6 (-789 *4))))) (-3622 (*1 *1 *2) (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) (-4 *5 (-212 (-3573 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *5)) (-2 (|:| -2803 *2) (|:| -1725 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-873 *4 *5 (-789 *3))))) (-4055 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1077))) (-4 *2 (-156)) (-4 *4 (-212 (-3573 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *3) (|:| -1725 *4)) (-2 (|:| -2803 *3) (|:| -1725 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-873 *2 *4 (-789 *5))))) (-1299 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1077))) (-4 *2 (-156)) (-4 *3 (-212 (-3573 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *3)) (-2 (|:| -2803 *5) (|:| -1725 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-873 *2 *3 (-789 *4)))))) -(-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -2336 (|#2| $)) (-15 -2325 ((-646 |#3| |#4| |#5|) $)) (-15 -2569 (|#4| $)) (-15 -3657 (|#3| $)) (-15 -2364 ($ $)) (-15 -2059 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -3622 ($ |#3|)) (-15 -4055 ($ |#2| |#3| |#4|)) (-15 -1299 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-3366 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35))) -(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3366 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-725) (-779) (-509) (-873 |#3| |#1| |#2|) (-13 (-955 (-377 (-517))) (-333) (-10 -8 (-15 -2262 ($ |#4|)) (-15 -3858 (|#4| $)) (-15 -2082 (|#4| $))))) (T -431)) -((-3366 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-873 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-955 (-377 (-517))) (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $)))))))) -(-10 -7 (-15 -3366 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2105 (((-107) $ $) NIL)) (-2080 (((-583 |#3|) $) 41)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) NIL (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2774 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 47)) (-3402 (($ (-583 |#4|)) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4195)))) (-1525 (((-583 |#4|) $) 18 (|has| $ (-6 -4195)))) (-2772 ((|#3| $) 45)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#4|) $) 14 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 26 (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2737 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 21)) (-1425 (((-583 |#3|) $) NIL)) (-1808 (((-107) |#3| $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-4130 (((-1024) $) NIL)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 39)) (-2679 (($) 17)) (-4140 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) 16)) (-3367 (((-493) $) NIL (|has| |#4| (-558 (-493)))) (($ (-583 |#4|)) 49)) (-2279 (($ (-583 |#4|)) 13)) (-3231 (($ $ |#3|) NIL)) (-2316 (($ $ |#3|) NIL)) (-3127 (($ $ |#3|) NIL)) (-2262 (((-787) $) 38) (((-583 |#4|) $) 48)) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 30)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-432 |#1| |#2| |#3| |#4|) (-13 (-896 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3367 ($ (-583 |#4|))) (-6 -4195) (-6 -4196))) (-964) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -432)) -((-3367 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6))))) -(-13 (-896 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3367 ($ (-583 |#4|))) (-6 -4195) (-6 -4196))) -((-3663 (($) 11)) (-3675 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-433 |#1| |#2| |#3|) (-10 -8 (-15 -3675 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3663 (|#1|))) (-434 |#2| |#3|) (-156) (-23)) (T -433)) -NIL -(-10 -8 (-15 -3675 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3663 (|#1|))) -((-2105 (((-107) $ $) 7)) (-3220 (((-3 |#1| "failed") $) 26)) (-3402 ((|#1| $) 25)) (-1983 (($ $ $) 23)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1191 ((|#2| $) 19)) (-2262 (((-787) $) 11) (($ |#1|) 27)) (-3663 (($) 18 T CONST)) (-3675 (($) 24 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 15) (($ $ $) 13)) (-1666 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-434 |#1| |#2|) (-1189) (-156) (-23)) (T -434)) -((-3675 (*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1983 (*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))) -(-13 (-439 |t#1| |t#2|) (-955 |t#1|) (-10 -8 (-15 (-3675) ($) -1373) (-15 -1983 ($ $ $)))) -(((-97) . T) ((-557 (-787)) . T) ((-439 |#1| |#2|) . T) ((-955 |#1|) . T) ((-1006) . T)) -((-2674 (((-1158 (-1158 (-517))) (-1158 (-1158 (-517))) (-845)) 18)) (-1656 (((-1158 (-1158 (-517))) (-845)) 16))) -(((-435) (-10 -7 (-15 -2674 ((-1158 (-1158 (-517))) (-1158 (-1158 (-517))) (-845))) (-15 -1656 ((-1158 (-1158 (-517))) (-845))))) (T -435)) -((-1656 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1158 (-1158 (-517)))) (-5 *1 (-435)))) (-2674 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 (-1158 (-517)))) (-5 *3 (-845)) (-5 *1 (-435))))) -(-10 -7 (-15 -2674 ((-1158 (-1158 (-517))) (-1158 (-1158 (-517))) (-845))) (-15 -1656 ((-1158 (-1158 (-517))) (-845)))) -((-2305 (((-517) (-517)) 30) (((-517)) 22)) (-1931 (((-517) (-517)) 26) (((-517)) 18)) (-2876 (((-517) (-517)) 28) (((-517)) 20)) (-3057 (((-107) (-107)) 12) (((-107)) 10)) (-3463 (((-107) (-107)) 11) (((-107)) 9)) (-3941 (((-107) (-107)) 24) (((-107)) 15))) -(((-436) (-10 -7 (-15 -3463 ((-107))) (-15 -3057 ((-107))) (-15 -3463 ((-107) (-107))) (-15 -3057 ((-107) (-107))) (-15 -3941 ((-107))) (-15 -2876 ((-517))) (-15 -1931 ((-517))) (-15 -2305 ((-517))) (-15 -3941 ((-107) (-107))) (-15 -2876 ((-517) (-517))) (-15 -1931 ((-517) (-517))) (-15 -2305 ((-517) (-517))))) (T -436)) -((-2305 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2876 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-2305 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-1931 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2876 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-3941 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3057 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3463 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))) -(-10 -7 (-15 -3463 ((-107))) (-15 -3057 ((-107))) (-15 -3463 ((-107) (-107))) (-15 -3057 ((-107) (-107))) (-15 -3941 ((-107))) (-15 -2876 ((-517))) (-15 -1931 ((-517))) (-15 -2305 ((-517))) (-15 -3941 ((-107) (-107))) (-15 -2876 ((-517) (-517))) (-15 -1931 ((-517) (-517))) (-15 -2305 ((-517) (-517)))) -((-2105 (((-107) $ $) NIL)) (-2464 (((-583 (-349)) $) 27) (((-583 (-349)) $ (-583 (-349))) 91)) (-1781 (((-583 (-1001 (-349))) $) 14) (((-583 (-1001 (-349))) $ (-583 (-1001 (-349)))) 88)) (-1613 (((-583 (-583 (-867 (-199)))) (-583 (-583 (-867 (-199)))) (-583 (-798))) 42)) (-1402 (((-583 (-583 (-867 (-199)))) $) 84)) (-3432 (((-1163) $ (-867 (-199)) (-798)) 104)) (-1728 (($ $) 83) (($ (-583 (-583 (-867 (-199))))) 94) (($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845))) 93) (($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845)) (-583 (-236))) 95)) (-3232 (((-1060) $) NIL)) (-2576 (((-517) $) 66)) (-4130 (((-1024) $) NIL)) (-1936 (($) 92)) (-2079 (((-583 (-199)) (-583 (-583 (-867 (-199))))) 52)) (-1662 (((-1163) $ (-583 (-867 (-199))) (-798) (-798) (-845)) 98) (((-1163) $ (-867 (-199))) 100) (((-1163) $ (-867 (-199)) (-798) (-798) (-845)) 99)) (-2262 (((-787) $) 110) (($ (-583 (-583 (-867 (-199))))) 105)) (-3665 (((-1163) $ (-867 (-199))) 103)) (-1572 (((-107) $ $) NIL))) -(((-437) (-13 (-1006) (-10 -8 (-15 -1936 ($)) (-15 -1728 ($ $)) (-15 -1728 ($ (-583 (-583 (-867 (-199)))))) (-15 -1728 ($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845)))) (-15 -1728 ($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845)) (-583 (-236)))) (-15 -1402 ((-583 (-583 (-867 (-199)))) $)) (-15 -2576 ((-517) $)) (-15 -1781 ((-583 (-1001 (-349))) $)) (-15 -1781 ((-583 (-1001 (-349))) $ (-583 (-1001 (-349))))) (-15 -2464 ((-583 (-349)) $)) (-15 -2464 ((-583 (-349)) $ (-583 (-349)))) (-15 -1662 ((-1163) $ (-583 (-867 (-199))) (-798) (-798) (-845))) (-15 -1662 ((-1163) $ (-867 (-199)))) (-15 -1662 ((-1163) $ (-867 (-199)) (-798) (-798) (-845))) (-15 -3665 ((-1163) $ (-867 (-199)))) (-15 -3432 ((-1163) $ (-867 (-199)) (-798))) (-15 -2262 ($ (-583 (-583 (-867 (-199)))))) (-15 -2262 ((-787) $)) (-15 -1613 ((-583 (-583 (-867 (-199)))) (-583 (-583 (-867 (-199)))) (-583 (-798)))) (-15 -2079 ((-583 (-199)) (-583 (-583 (-867 (-199))))))))) (T -437)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) (-1936 (*1 *1) (-5 *1 (-437))) (-1728 (*1 *1 *1) (-5 *1 (-437))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437)))) (-1728 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798))) (-5 *4 (-583 (-845))) (-5 *1 (-437)))) (-1728 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798))) (-5 *4 (-583 (-845))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-437)))) (-1781 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-437)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-2464 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-1662 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *4 (-798)) (-5 *5 (-845)) (-5 *2 (-1163)) (-5 *1 (-437)))) (-1662 (*1 *2 *1 *3) (-12 (-5 *3 (-867 (-199))) (-5 *2 (-1163)) (-5 *1 (-437)))) (-1662 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-867 (-199))) (-5 *4 (-798)) (-5 *5 (-845)) (-5 *2 (-1163)) (-5 *1 (-437)))) (-3665 (*1 *2 *1 *3) (-12 (-5 *3 (-867 (-199))) (-5 *2 (-1163)) (-5 *1 (-437)))) (-3432 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-867 (-199))) (-5 *4 (-798)) (-5 *2 (-1163)) (-5 *1 (-437)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437)))) (-1613 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798))) (-5 *1 (-437)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437))))) -(-13 (-1006) (-10 -8 (-15 -1936 ($)) (-15 -1728 ($ $)) (-15 -1728 ($ (-583 (-583 (-867 (-199)))))) (-15 -1728 ($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845)))) (-15 -1728 ($ (-583 (-583 (-867 (-199)))) (-583 (-798)) (-583 (-798)) (-583 (-845)) (-583 (-236)))) (-15 -1402 ((-583 (-583 (-867 (-199)))) $)) (-15 -2576 ((-517) $)) (-15 -1781 ((-583 (-1001 (-349))) $)) (-15 -1781 ((-583 (-1001 (-349))) $ (-583 (-1001 (-349))))) (-15 -2464 ((-583 (-349)) $)) (-15 -2464 ((-583 (-349)) $ (-583 (-349)))) (-15 -1662 ((-1163) $ (-583 (-867 (-199))) (-798) (-798) (-845))) (-15 -1662 ((-1163) $ (-867 (-199)))) (-15 -1662 ((-1163) $ (-867 (-199)) (-798) (-798) (-845))) (-15 -3665 ((-1163) $ (-867 (-199)))) (-15 -3432 ((-1163) $ (-867 (-199)) (-798))) (-15 -2262 ($ (-583 (-583 (-867 (-199)))))) (-15 -2262 ((-787) $)) (-15 -1613 ((-583 (-583 (-867 (-199)))) (-583 (-583 (-867 (-199)))) (-583 (-798)))) (-15 -2079 ((-583 (-199)) (-583 (-583 (-867 (-199)))))))) -((-1680 (($ $) NIL) (($ $ $) 11))) -(((-438 |#1| |#2| |#3|) (-10 -8 (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|))) (-439 |#2| |#3|) (-156) (-23)) (T -438)) -NIL -(-10 -8 (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1191 ((|#2| $) 19)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 15) (($ $ $) 13)) (-1666 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-439 |#1| |#2|) (-1189) (-156) (-23)) (T -439)) -((-1191 (*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) (-3663 (*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1680 (*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1666 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1680 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23))))) -(-13 (-1006) (-10 -8 (-15 -1191 (|t#2| $)) (-15 (-3663) ($) -1373) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1680 ($ $)) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $)))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2796 (((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|))) 90)) (-3972 (((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 88)) (-2161 (((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 58))) -(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2796 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2161 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))))) (-583 (-1077)) (-421) (-421)) (T -440)) -((-2161 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1077))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))) (-2796 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))) (-3972 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1077))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421))))) -(-10 -7 (-15 -3972 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2796 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2161 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))))) -((-3550 (((-3 $ "failed") $) 11)) (-1853 (($ $ $) 20)) (-1970 (($ $ $) 21)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 14)) (-1692 (($ $ $) 9)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 19))) -(((-441 |#1|) (-10 -8 (-15 -1970 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1692 (|#1| |#1| |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -2806 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845)))) (-442)) (T -441)) -NIL -(-10 -8 (-15 -1970 (|#1| |#1| |#1|)) (-15 -1853 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1692 (|#1| |#1| |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -2806 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845)))) -((-2105 (((-107) $ $) 7)) (-3038 (($) 20 T CONST)) (-3550 (((-3 $ "failed") $) 16)) (-1690 (((-107) $) 19)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 27)) (-4130 (((-1024) $) 10)) (-1853 (($ $ $) 23)) (-1970 (($ $ $) 22)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-845)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-3675 (($) 21 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 26)) (** (($ $ (-845)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15))) -(((-442) (-1189)) (T -442)) -((-2291 (*1 *1 *1) (-4 *1 (-442))) (-1692 (*1 *1 *1 *1) (-4 *1 (-442))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-2806 (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-1853 (*1 *1 *1 *1) (-4 *1 (-442))) (-1970 (*1 *1 *1 *1) (-4 *1 (-442)))) -(-13 (-659) (-10 -8 (-15 -2291 ($ $)) (-15 -1692 ($ $ $)) (-15 ** ($ $ (-517))) (-15 -2806 ($ $ (-517))) (-6 -4192) (-15 -1853 ($ $ $)) (-15 -1970 ($ $ $)))) -(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 17)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) NIL) (($ $ (-377 (-517))) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-377 (-517))) NIL) (($ $ (-992) (-377 (-517))) NIL) (($ $ (-583 (-992)) (-583 (-377 (-517)))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) 22)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) 26 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 33 (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 27 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) 25 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1154 |#2|)) 15)) (-1191 (((-377 (-517)) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1154 |#2|)) NIL) (($ (-1143 |#1| |#2| |#3|)) 9) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 18)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) 24)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-443 |#1| |#2| |#3|) (-13 (-1139 |#1|) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2262 ($ (-1143 |#1| |#2| |#3|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -443)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1143 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))) -(-13 (-1139 |#1|) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2262 ($ (-1143 |#1| |#2| |#3|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) -((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) 18)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) 19)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 16)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) NIL)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-444 |#1| |#2| |#3| |#4|) (-1089 |#1| |#2|) (-1006) (-1006) (-1089 |#1| |#2|) |#2|) (T -444)) -NIL -(-1089 |#1| |#2|) -((-2105 (((-107) $ $) NIL)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3246 (((-583 $) (-583 |#4|)) NIL)) (-2080 (((-583 |#3|) $) NIL)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3710 ((|#4| |#4| $) NIL)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) 26 (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2774 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3402 (($ (-583 |#4|)) NIL)) (-2429 (((-3 $ "failed") $) 39)) (-2195 ((|#4| |#4| $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4142 ((|#4| |#4| $) NIL)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) NIL)) (-1525 (((-583 |#4|) $) 16 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2772 ((|#3| $) 33)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#4|) $) 17 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2737 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 21)) (-1425 (((-583 |#3|) $) NIL)) (-1808 (((-107) |#3| $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1447 (((-3 |#4| "failed") $) 37)) (-3846 (((-583 |#4|) $) NIL)) (-1568 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2930 ((|#4| |#4| $) NIL)) (-1579 (((-107) $ $) NIL)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3877 ((|#4| |#4| $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-3 |#4| "failed") $) 35)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-4059 (((-3 $ "failed") $ |#4|) 47)) (-3175 (($ $ |#4|) NIL)) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 15)) (-2679 (($) 13)) (-1191 (((-703) $) NIL)) (-4140 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) 12)) (-3367 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-2316 (($ $ |#3|) 44)) (-4158 (($ $) NIL)) (-3127 (($ $ |#3|) NIL)) (-2262 (((-787) $) 31) (((-583 |#4|) $) 40)) (-3192 (((-703) $) NIL (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) NIL)) (-3275 (((-107) |#3| $) NIL)) (-1572 (((-107) $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-445 |#1| |#2| |#3| |#4|) (-1106 |#1| |#2| |#3| |#4|) (-509) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -445)) -NIL -(-1106 |#1| |#2| |#3| |#4|) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2102 (($) 18)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3367 (((-349) $) 22) (((-199) $) 25) (((-377 (-1073 (-517))) $) 19) (((-493) $) 53)) (-2262 (((-787) $) 51) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (((-199) $) 24) (((-349) $) 21)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 36 T CONST)) (-3675 (($) 11 T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) -(((-446) (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))) (-940) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1073 (-517)))) (-558 (-493)) (-10 -8 (-15 -2102 ($))))) (T -446)) -((-2102 (*1 *1) (-5 *1 (-446)))) -(-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))) (-940) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1073 (-517)))) (-558 (-493)) (-10 -8 (-15 -2102 ($)))) -((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) 16)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) 20)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 18)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) 13)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 19)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 11 (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) 15 (|has| $ (-6 -4195))))) -(((-447 |#1| |#2| |#3|) (-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) (-1006) (-1006) (-1060)) (T -447)) -NIL -(-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) -((-1608 (((-517) (-517) (-517)) 7)) (-3576 (((-107) (-517) (-517) (-517) (-517)) 11)) (-2257 (((-1158 (-583 (-517))) (-703) (-703)) 23))) -(((-448) (-10 -7 (-15 -1608 ((-517) (-517) (-517))) (-15 -3576 ((-107) (-517) (-517) (-517) (-517))) (-15 -2257 ((-1158 (-583 (-517))) (-703) (-703))))) (T -448)) -((-2257 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158 (-583 (-517)))) (-5 *1 (-448)))) (-3576 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))) (-1608 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448))))) -(-10 -7 (-15 -1608 ((-517) (-517) (-517))) (-15 -3576 ((-107) (-517) (-517) (-517) (-517))) (-15 -2257 ((-1158 (-583 (-517))) (-703) (-703)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-789 |#1|)) $) NIL)) (-1428 (((-1073 $) $ (-789 |#1|)) NIL) (((-1073 |#2|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2491 (($ $) NIL (|has| |#2| (-509)))) (-2025 (((-107) $) NIL (|has| |#2| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL (|has| |#2| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-789 |#1|) $) NIL)) (-2133 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3069 (($ $ (-583 (-517))) NIL)) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#2| (-833)))) (-1760 (($ $ |#2| (-450 (-3573 |#1|) (-703)) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#2|) (-789 |#1|)) NIL) (($ (-1073 $) (-789 |#1|)) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#2| (-450 (-3573 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-789 |#1|)) NIL)) (-3942 (((-450 (-3573 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-1542 (($ (-1 (-450 (-3573 |#1|) (-703)) (-450 (-3573 |#1|) (-703))) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-1958 (((-3 (-789 |#1|) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#2| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -1725 (-703))) "failed") $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#2| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-833)))) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3115 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2042 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1191 (((-450 (-3573 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-450 (-3573 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-449 |#1| |#2|) (-13 (-873 |#2| (-450 (-3573 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517)))))) (-583 (-1077)) (-964)) (T -449)) -((-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1077))) (-4 *4 (-964))))) -(-13 (-873 |#2| (-450 (-3573 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3069 ($ $ (-583 (-517)))))) -((-2105 (((-107) $ $) NIL (|has| |#2| (-1006)))) (-1992 (((-107) $) NIL (|has| |#2| (-123)))) (-3622 (($ (-845)) NIL (|has| |#2| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) NIL (|has| |#2| (-725)))) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#2| (-338)))) (-3502 (((-517) $) NIL (|has| |#2| (-777)))) (-2436 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1006)))) (-3402 (((-517) $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) ((|#2| $) NIL (|has| |#2| (-1006)))) (-2947 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL (|has| |#2| (-964))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-964)))) (-3550 (((-3 $ "failed") $) NIL (|has| |#2| (-964)))) (-2192 (($) NIL (|has| |#2| (-338)))) (-2750 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ (-517)) 11)) (-2671 (((-107) $) NIL (|has| |#2| (-777)))) (-1525 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#2| (-964)))) (-2321 (((-107) $) NIL (|has| |#2| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-3687 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2737 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#2| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#2| (-1006)))) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#2| (-338)))) (-4130 (((-1024) $) NIL (|has| |#2| (-1006)))) (-2420 ((|#2| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3912 ((|#2| $ $) NIL (|has| |#2| (-964)))) (-3935 (($ (-1158 |#2|)) NIL)) (-1470 (((-125)) NIL (|has| |#2| (-333)))) (-2042 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-4140 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#2|) $) NIL) (($ (-517)) NIL (-3786 (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (|has| |#2| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (($ |#2|) NIL (|has| |#2| (-1006))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-1818 (((-703)) NIL (|has| |#2| (-964)))) (-1272 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#2| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (-3663 (($) NIL (|has| |#2| (-123)) CONST)) (-3675 (($) NIL (|has| |#2| (-964)) CONST)) (-3348 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) NIL (|has| |#2| (-1006)))) (-1618 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1596 (((-107) $ $) 15 (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $ $) NIL (|has| |#2| (-964))) (($ $) NIL (|has| |#2| (-964)))) (-1666 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (* (($ $ $) NIL (|has| |#2| (-964))) (($ (-517) $) NIL (|has| |#2| (-964))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-845) $) NIL (|has| |#2| (-25)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-450 |#1| |#2|) (-212 |#1| |#2|) (-703) (-725)) (T -450)) -NIL -(-212 |#1| |#2|) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-2785 (($ $ $) 32)) (-3824 (($ $ $) 31)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-4095 ((|#1| $) 26)) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) 27)) (-3439 (($ |#1| $) 10)) (-1802 (($ (-583 |#1|)) 12)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1551 ((|#1| $) 23)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 9)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 29)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) 21 (|has| $ (-6 -4195))))) -(((-451 |#1|) (-13 (-889 |#1|) (-10 -8 (-15 -1802 ($ (-583 |#1|))))) (-779)) (T -451)) -((-1802 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3))))) -(-13 (-889 |#1|) (-10 -8 (-15 -1802 ($ (-583 |#1|))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1510 (($ $) 69)) (-3615 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-4162 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 43)) (-4130 (((-1024) $) NIL)) (-1306 (((-3 |#4| "failed") $) 105)) (-2227 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-517)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-1784 (((-2 (|:| -3179 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2262 (((-787) $) 100)) (-3663 (($) 33 T CONST)) (-1572 (((-107) $ $) 107)) (-1680 (($ $) 72) (($ $ $) NIL)) (-1666 (($ $ $) 70)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 73))) -(((-452 |#1| |#2| |#3| |#4|) (-305 |#1| |#2| |#3| |#4|) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -452)) -NIL -(-305 |#1| |#2| |#3| |#4|) -((-3679 (((-517) (-583 (-517))) 30)) (-2659 ((|#1| (-583 |#1|)) 56)) (-2624 (((-583 |#1|) (-583 |#1|)) 57)) (-2107 (((-583 |#1|) (-583 |#1|)) 59)) (-2361 ((|#1| (-583 |#1|)) 58)) (-4094 (((-583 (-517)) (-583 |#1|)) 33))) -(((-453 |#1|) (-10 -7 (-15 -2361 (|#1| (-583 |#1|))) (-15 -2659 (|#1| (-583 |#1|))) (-15 -2107 ((-583 |#1|) (-583 |#1|))) (-15 -2624 ((-583 |#1|) (-583 |#1|))) (-15 -4094 ((-583 (-517)) (-583 |#1|))) (-15 -3679 ((-517) (-583 (-517))))) (-1134 (-517))) (T -453)) -((-3679 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1134 *2)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1134 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1134 (-517))) (-5 *1 (-453 *3)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1134 (-517))) (-5 *1 (-453 *3)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1134 (-517))))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1134 (-517)))))) -(-10 -7 (-15 -2361 (|#1| (-583 |#1|))) (-15 -2659 (|#1| (-583 |#1|))) (-15 -2107 ((-583 |#1|) (-583 |#1|))) (-15 -2624 ((-583 |#1|) (-583 |#1|))) (-15 -4094 ((-583 (-517)) (-583 |#1|))) (-15 -3679 ((-517) (-583 (-517))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-517) $) NIL (|has| (-517) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-517) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-517) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-955 (-517))))) (-3402 (((-517) $) NIL) (((-1077) $) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-517) (-955 (-517)))) (((-517) $) NIL (|has| (-517) (-955 (-517))))) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-517) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-517) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-517) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-517) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-517) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-517) (-1053)))) (-2321 (((-107) $) NIL (|has| (-517) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-517) (-779)))) (-3312 (($ (-1 (-517) (-517)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-517) (-1053)) CONST)) (-2931 (($ (-377 (-517))) 8)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2713 (((-517) $) NIL (|has| (-517) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1077)) (-583 (-517))) NIL (|has| (-517) (-478 (-1077) (-517)))) (($ $ (-1077) (-517)) NIL (|has| (-517) (-478 (-1077) (-517))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-517) $) NIL)) (-3367 (((-816 (-517)) $) NIL (|has| (-517) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-517) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-940))) (((-199) $) NIL (|has| (-517) (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1077)) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL) (((-923 16) $) 9)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-517) (-833))) (|has| (-517) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-517) $) NIL (|has| (-517) (-502)))) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| (-517) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1692 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL))) -(((-454) (-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 16) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -2931 ($ (-377 (-517))))))) (T -454)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-923 16)) (-5 *1 (-454)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2931 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454))))) -(-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2262 ((-923 16) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -2931 ($ (-377 (-517)))))) -((-3687 (((-583 |#2|) $) 22)) (-1949 (((-107) |#2| $) 27)) (-3843 (((-107) (-1 (-107) |#2|) $) 20)) (-3552 (($ $ (-583 (-265 |#2|))) 12) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-4140 (((-703) (-1 (-107) |#2|) $) 21) (((-703) |#2| $) 25)) (-2262 (((-787) $) 36)) (-1272 (((-107) (-1 (-107) |#2|) $) 19)) (-1572 (((-107) $ $) 30)) (-3573 (((-703) $) 16))) -(((-455 |#1| |#2|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -1949 ((-107) |#2| |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -3687 ((-583 |#2|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|))) (-456 |#2|) (-1112)) (T -455)) -NIL -(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#2| |#2|)) (-15 -3552 (|#1| |#1| (-265 |#2|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -1949 ((-107) |#2| |#1|)) (-15 -4140 ((-703) |#2| |#1|)) (-15 -3687 ((-583 |#2|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-456 |#1|) (-1189) (-1112)) (T -456)) -((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1112)))) (-2737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4196)) (-4 *1 (-456 *3)) (-4 *3 (-1112)))) (-1272 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4)) (-4 *4 (-1112)) (-5 *2 (-107)))) (-3843 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4)) (-4 *4 (-1112)) (-5 *2 (-107)))) (-4140 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4)) (-4 *4 (-1112)) (-5 *2 (-703)))) (-1525 (*1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) (-5 *2 (-583 *3)))) (-3687 (*1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) (-5 *2 (-583 *3)))) (-4140 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-703)))) (-1949 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-107))))) -(-13 (-33) (-10 -8 (IF (|has| |t#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |t#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |t#1| (-1006)) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4196)) (-15 -2737 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4195)) (PROGN (-15 -1272 ((-107) (-1 (-107) |t#1|) $)) (-15 -3843 ((-107) (-1 (-107) |t#1|) $)) (-15 -4140 ((-703) (-1 (-107) |t#1|) $)) (-15 -1525 ((-583 |t#1|) $)) (-15 -3687 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -4140 ((-703) |t#1| $)) (-15 -1949 ((-107) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-1636 (($ $) 15)) (-1612 (($ $) 24)) (-1659 (($ $) 12)) (-1670 (($ $) 10)) (-1647 (($ $) 17)) (-1622 (($ $) 22))) -(((-457 |#1|) (-10 -8 (-15 -1622 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|))) (-458)) (T -457)) -NIL -(-10 -8 (-15 -1622 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|))) -((-1636 (($ $) 11)) (-1612 (($ $) 10)) (-1659 (($ $) 9)) (-1670 (($ $) 8)) (-1647 (($ $) 7)) (-1622 (($ $) 6))) -(((-458) (-1189)) (T -458)) -((-1636 (*1 *1 *1) (-4 *1 (-458))) (-1612 (*1 *1 *1) (-4 *1 (-458))) (-1659 (*1 *1 *1) (-4 *1 (-458))) (-1670 (*1 *1 *1) (-4 *1 (-458))) (-1647 (*1 *1 *1) (-4 *1 (-458))) (-1622 (*1 *1 *1) (-4 *1 (-458)))) -(-13 (-10 -8 (-15 -1622 ($ $)) (-15 -1647 ($ $)) (-15 -1670 ($ $)) (-15 -1659 ($ $)) (-15 -1612 ($ $)) (-15 -1636 ($ $)))) -((-3896 (((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)) 42))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)))) (-333) (-1134 |#1|) (-13 (-333) (-134) (-657 |#1| |#2|)) (-1134 |#3|)) (T -459)) -((-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1134 *7))))) -(-10 -7 (-15 -3896 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)))) -((-2105 (((-107) $ $) NIL)) (-2454 (((-583 $) (-1073 $) (-1077)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-876 $)) NIL)) (-1480 (($ (-1073 $) (-1077)) NIL) (($ (-1073 $)) NIL) (($ (-876 $)) NIL)) (-1992 (((-107) $) 37)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-3749 (((-107) $ $) 63)) (-3864 (((-583 (-556 $)) $) 47)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3939 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2726 (((-583 $) (-1073 $) (-1077)) NIL) (((-583 $) (-1073 $)) NIL) (((-583 $) (-876 $)) NIL)) (-1454 (($ (-1073 $) (-1077)) NIL) (($ (-1073 $)) NIL) (($ (-876 $)) NIL)) (-3220 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3402 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) 49)) (-2383 (($ $ $) NIL)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-377 (-517)))) (|:| |vec| (-1158 (-377 (-517))))) (-623 $) (-1158 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-1510 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3314 (($ $) NIL) (($ (-583 $)) NIL)) (-3854 (((-583 (-109)) $) NIL)) (-1325 (((-109) (-109)) NIL)) (-1690 (((-107) $) 40)) (-3448 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3858 (((-1029 (-517) (-556 $)) $) 35)) (-2940 (($ $ (-517)) NIL)) (-3522 (((-1073 $) (-1073 $) (-556 $)) 78) (((-1073 $) (-1073 $) (-583 (-556 $))) 54) (($ $ (-556 $)) 67) (($ $ (-583 (-556 $))) 68)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3419 (((-1073 $) (-556 $)) 65 (|has| $ (-964)))) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 $ $) (-556 $)) NIL)) (-1858 (((-3 (-556 $) "failed") $) NIL)) (-2323 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-1412 (((-583 (-556 $)) $) NIL)) (-1385 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-3731 (((-107) $ (-109)) NIL) (((-107) $ (-1077)) NIL)) (-2291 (($ $) NIL)) (-1795 (((-703) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ (-583 $)) NIL) (($ $ $) NIL)) (-4060 (((-107) $ $) NIL) (((-107) $ (-1077)) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL (|has| $ (-955 (-517))))) (-3552 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1077)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1077) (-1 $ (-583 $))) NIL) (($ $ (-1077) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3388 (((-703) $) NIL)) (-2612 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-1816 (($ $) NIL) (($ $ $) NIL)) (-2042 (($ $ (-703)) NIL) (($ $) 34)) (-2082 (((-1029 (-517) (-556 $)) $) 18)) (-2819 (($ $) NIL (|has| $ (-964)))) (-3367 (((-349) $) 92) (((-199) $) 100) (((-153 (-349)) $) 108)) (-2262 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1029 (-517) (-556 $))) 19)) (-1818 (((-703)) NIL)) (-3488 (($ $) NIL) (($ (-583 $)) NIL)) (-4116 (((-107) (-109)) 84)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) 9 T CONST)) (-3675 (($) 20 T CONST)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 22)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1692 (($ $ $) 42)) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) 45) (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) 25) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-845) $) NIL))) -(((-460) (-13 (-273) (-27) (-955 (-517)) (-955 (-377 (-517))) (-579 (-517)) (-940) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2262 ($ (-1029 (-517) (-556 $)))) (-15 -3858 ((-1029 (-517) (-556 $)) $)) (-15 -2082 ((-1029 (-517) (-556 $)) $)) (-15 -1510 ($ $)) (-15 -3749 ((-107) $ $)) (-15 -3522 ((-1073 $) (-1073 $) (-556 $))) (-15 -3522 ((-1073 $) (-1073 $) (-583 (-556 $)))) (-15 -3522 ($ $ (-556 $))) (-15 -3522 ($ $ (-583 (-556 $))))))) (T -460)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1510 (*1 *1 *1) (-5 *1 (-460))) (-3749 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460))))) -(-13 (-273) (-27) (-955 (-517)) (-955 (-377 (-517))) (-579 (-517)) (-940) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2262 ($ (-1029 (-517) (-556 $)))) (-15 -3858 ((-1029 (-517) (-556 $)) $)) (-15 -2082 ((-1029 (-517) (-556 $)) $)) (-15 -1510 ($ $)) (-15 -3749 ((-107) $ $)) (-15 -3522 ((-1073 $) (-1073 $) (-556 $))) (-15 -3522 ((-1073 $) (-1073 $) (-583 (-556 $)))) (-15 -3522 ($ $ (-556 $))) (-15 -3522 ($ $ (-583 (-556 $)))))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) 25 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 22 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 21)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 14)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 12 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) 23 (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) 10 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 13)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 24) (($ $ (-1125 (-517))) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) 9 (|has| $ (-6 -4195))))) -(((-461 |#1| |#2|) (-19 |#1|) (-1112) (-517)) (T -461)) +((-1254 (($ $) 6)) (-3325 (($ $) 7)) (** (($ $ $) 8))) +(((-258) (-1194)) (T -258)) +((** (*1 *1 *1 *1) (-4 *1 (-258))) (-3325 (*1 *1 *1) (-4 *1 (-258))) (-1254 (*1 *1 *1) (-4 *1 (-258)))) +(-13 (-10 -8 (-15 -1254 ($ $)) (-15 -3325 ($ $)) (-15 ** ($ $ $)))) +((-2596 (((-585 (-1063 |#1|)) (-1063 |#1|) |#1|) 35)) (-2731 ((|#2| |#2| |#1|) 38)) (-1559 ((|#2| |#2| |#1|) 40)) (-2649 ((|#2| |#2| |#1|) 39))) +(((-259 |#1| |#2|) (-10 -7 (-15 -2731 (|#2| |#2| |#1|)) (-15 -2649 (|#2| |#2| |#1|)) (-15 -1559 (|#2| |#2| |#1|)) (-15 -2596 ((-585 (-1063 |#1|)) (-1063 |#1|) |#1|))) (-335) (-1154 |#1|)) (T -259)) +((-2596 (*1 *2 *3 *4) (-12 (-4 *4 (-335)) (-5 *2 (-585 (-1063 *4))) (-5 *1 (-259 *4 *5)) (-5 *3 (-1063 *4)) (-4 *5 (-1154 *4)))) (-1559 (*1 *2 *2 *3) (-12 (-4 *3 (-335)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1154 *3)))) (-2649 (*1 *2 *2 *3) (-12 (-4 *3 (-335)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1154 *3)))) (-2731 (*1 *2 *2 *3) (-12 (-4 *3 (-335)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1154 *3))))) +(-10 -7 (-15 -2731 (|#2| |#2| |#1|)) (-15 -2649 (|#2| |#2| |#1|)) (-15 -1559 (|#2| |#2| |#1|)) (-15 -2596 ((-585 (-1063 |#1|)) (-1063 |#1|) |#1|))) +((-2598 ((|#2| $ |#1|) 6))) +(((-260 |#1| |#2|) (-1194) (-1011) (-1117)) (T -260)) +((-2598 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1117))))) +(-13 (-10 -8 (-15 -2598 (|t#2| $ |t#1|)))) +((-3865 ((|#3| $ |#2| |#3|) 12)) (-3659 ((|#3| $ |#2|) 10))) +(((-261 |#1| |#2| |#3|) (-10 -8 (-15 -3865 (|#3| |#1| |#2| |#3|)) (-15 -3659 (|#3| |#1| |#2|))) (-262 |#2| |#3|) (-1011) (-1117)) (T -261)) +NIL +(-10 -8 (-15 -3865 (|#3| |#1| |#2| |#3|)) (-15 -3659 (|#3| |#1| |#2|))) +((-2421 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4222)))) (-3865 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4222)))) (-3659 ((|#2| $ |#1|) 11)) (-2598 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-262 |#1| |#2|) (-1194) (-1011) (-1117)) (T -262)) +((-2598 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1117)))) (-3659 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1117)))) (-2421 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-262 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1117)))) (-3865 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-262 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1117))))) +(-13 (-260 |t#1| |t#2|) (-10 -8 (-15 -2598 (|t#2| $ |t#1| |t#2|)) (-15 -3659 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4222)) (PROGN (-15 -2421 (|t#2| $ |t#1| |t#2|)) (-15 -3865 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-260 |#1| |#2|) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 35)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 40)) (-1410 (($ $) 38)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-3409 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-2311 (($ $ $) 33)) (-3874 (($ |#2| |#3|) 19)) (-4193 (((-3 $ "failed") $) NIL)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1568 (((-108) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2205 ((|#3| $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 20)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-3129 (((-705) $) 34)) (-2598 ((|#2| $ |#2|) 42)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 24)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3594 (((-705)) NIL)) (-1617 (((-108) $ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 29 T CONST)) (-3611 (($) 36 T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 37))) +(((-263 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-280) (-10 -8 (-15 -2205 (|#3| $)) (-15 -2217 (|#2| $)) (-15 -3874 ($ |#2| |#3|)) (-15 -3551 ((-3 $ "failed") $ $)) (-15 -4193 ((-3 $ "failed") $)) (-15 -3151 ($ $)) (-15 -2598 (|#2| $ |#2|)))) (-157) (-1139 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -263)) +((-4193 (*1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1139 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2205 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-263 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1139 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2217 (*1 *2 *1) (-12 (-4 *2 (-1139 *3)) (-5 *1 (-263 *3 *2 *4 *5 *6 *7)) (-4 *3 (-157)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3874 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-263 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1139 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3551 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1139 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3151 (*1 *1 *1) (-12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1139 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2598 (*1 *2 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-263 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1139 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-280) (-10 -8 (-15 -2205 (|#3| $)) (-15 -2217 (|#2| $)) (-15 -3874 ($ |#2| |#3|)) (-15 -3551 ((-3 $ "failed") $ $)) (-15 -4193 ((-3 $ "failed") $)) (-15 -3151 ($ $)) (-15 -2598 (|#2| $ |#2|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 28)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-264) (-1194)) (T -264)) +NIL +(-13 (-968) (-107 $ $) (-10 -7 (-6 -4214))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 $) . T) ((-661) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-4116 (((-585 (-2 (|:| |eigval| (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (|:| |geneigvec| (-585 (-625 (-379 (-879 |#1|))))))) (-625 (-379 (-879 |#1|)))) 84)) (-1215 (((-585 (-625 (-379 (-879 |#1|)))) (-2 (|:| |eigval| (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (|:| |eigmult| (-705)) (|:| |eigvec| (-585 (-625 (-379 (-879 |#1|)))))) (-625 (-379 (-879 |#1|)))) 79) (((-585 (-625 (-379 (-879 |#1|)))) (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|))) (-625 (-379 (-879 |#1|))) (-705) (-705)) 37)) (-3177 (((-585 (-2 (|:| |eigval| (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (|:| |eigmult| (-705)) (|:| |eigvec| (-585 (-625 (-379 (-879 |#1|))))))) (-625 (-379 (-879 |#1|)))) 81)) (-1541 (((-585 (-625 (-379 (-879 |#1|)))) (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|))) (-625 (-379 (-879 |#1|)))) 61)) (-3863 (((-585 (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (-625 (-379 (-879 |#1|)))) 60)) (-2165 (((-879 |#1|) (-625 (-379 (-879 |#1|)))) 48) (((-879 |#1|) (-625 (-379 (-879 |#1|))) (-1082)) 49))) +(((-265 |#1|) (-10 -7 (-15 -2165 ((-879 |#1|) (-625 (-379 (-879 |#1|))) (-1082))) (-15 -2165 ((-879 |#1|) (-625 (-379 (-879 |#1|))))) (-15 -3863 ((-585 (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (-625 (-379 (-879 |#1|))))) (-15 -1541 ((-585 (-625 (-379 (-879 |#1|)))) (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|))) (-625 (-379 (-879 |#1|))))) (-15 -1215 ((-585 (-625 (-379 (-879 |#1|)))) (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|))) (-625 (-379 (-879 |#1|))) (-705) (-705))) (-15 -1215 ((-585 (-625 (-379 (-879 |#1|)))) (-2 (|:| |eigval| (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (|:| |eigmult| (-705)) (|:| |eigvec| (-585 (-625 (-379 (-879 |#1|)))))) (-625 (-379 (-879 |#1|))))) (-15 -4116 ((-585 (-2 (|:| |eigval| (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (|:| |geneigvec| (-585 (-625 (-379 (-879 |#1|))))))) (-625 (-379 (-879 |#1|))))) (-15 -3177 ((-585 (-2 (|:| |eigval| (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (|:| |eigmult| (-705)) (|:| |eigvec| (-585 (-625 (-379 (-879 |#1|))))))) (-625 (-379 (-879 |#1|)))))) (-423)) (T -265)) +((-3177 (*1 *2 *3) (-12 (-4 *4 (-423)) (-5 *2 (-585 (-2 (|:| |eigval| (-3 (-379 (-879 *4)) (-1072 (-1082) (-879 *4)))) (|:| |eigmult| (-705)) (|:| |eigvec| (-585 (-625 (-379 (-879 *4)))))))) (-5 *1 (-265 *4)) (-5 *3 (-625 (-379 (-879 *4)))))) (-4116 (*1 *2 *3) (-12 (-4 *4 (-423)) (-5 *2 (-585 (-2 (|:| |eigval| (-3 (-379 (-879 *4)) (-1072 (-1082) (-879 *4)))) (|:| |geneigvec| (-585 (-625 (-379 (-879 *4)))))))) (-5 *1 (-265 *4)) (-5 *3 (-625 (-379 (-879 *4)))))) (-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-379 (-879 *5)) (-1072 (-1082) (-879 *5)))) (|:| |eigmult| (-705)) (|:| |eigvec| (-585 *4)))) (-4 *5 (-423)) (-5 *2 (-585 (-625 (-379 (-879 *5))))) (-5 *1 (-265 *5)) (-5 *4 (-625 (-379 (-879 *5)))))) (-1215 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-379 (-879 *6)) (-1072 (-1082) (-879 *6)))) (-5 *5 (-705)) (-4 *6 (-423)) (-5 *2 (-585 (-625 (-379 (-879 *6))))) (-5 *1 (-265 *6)) (-5 *4 (-625 (-379 (-879 *6)))))) (-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-379 (-879 *5)) (-1072 (-1082) (-879 *5)))) (-4 *5 (-423)) (-5 *2 (-585 (-625 (-379 (-879 *5))))) (-5 *1 (-265 *5)) (-5 *4 (-625 (-379 (-879 *5)))))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-625 (-379 (-879 *4)))) (-4 *4 (-423)) (-5 *2 (-585 (-3 (-379 (-879 *4)) (-1072 (-1082) (-879 *4))))) (-5 *1 (-265 *4)))) (-2165 (*1 *2 *3) (-12 (-5 *3 (-625 (-379 (-879 *4)))) (-5 *2 (-879 *4)) (-5 *1 (-265 *4)) (-4 *4 (-423)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-379 (-879 *5)))) (-5 *4 (-1082)) (-5 *2 (-879 *5)) (-5 *1 (-265 *5)) (-4 *5 (-423))))) +(-10 -7 (-15 -2165 ((-879 |#1|) (-625 (-379 (-879 |#1|))) (-1082))) (-15 -2165 ((-879 |#1|) (-625 (-379 (-879 |#1|))))) (-15 -3863 ((-585 (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (-625 (-379 (-879 |#1|))))) (-15 -1541 ((-585 (-625 (-379 (-879 |#1|)))) (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|))) (-625 (-379 (-879 |#1|))))) (-15 -1215 ((-585 (-625 (-379 (-879 |#1|)))) (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|))) (-625 (-379 (-879 |#1|))) (-705) (-705))) (-15 -1215 ((-585 (-625 (-379 (-879 |#1|)))) (-2 (|:| |eigval| (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (|:| |eigmult| (-705)) (|:| |eigvec| (-585 (-625 (-379 (-879 |#1|)))))) (-625 (-379 (-879 |#1|))))) (-15 -4116 ((-585 (-2 (|:| |eigval| (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (|:| |geneigvec| (-585 (-625 (-379 (-879 |#1|))))))) (-625 (-379 (-879 |#1|))))) (-15 -3177 ((-585 (-2 (|:| |eigval| (-3 (-379 (-879 |#1|)) (-1072 (-1082) (-879 |#1|)))) (|:| |eigmult| (-705)) (|:| |eigvec| (-585 (-625 (-379 (-879 |#1|))))))) (-625 (-379 (-879 |#1|)))))) +((-1405 (((-267 |#2|) (-1 |#2| |#1|) (-267 |#1|)) 14))) +(((-266 |#1| |#2|) (-10 -7 (-15 -1405 ((-267 |#2|) (-1 |#2| |#1|) (-267 |#1|)))) (-1117) (-1117)) (T -266)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-267 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-267 *6)) (-5 *1 (-266 *5 *6))))) +(-10 -7 (-15 -1405 ((-267 |#2|) (-1 |#2| |#1|) (-267 |#1|)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3569 (((-108) $) NIL (|has| |#1| (-21)))) (-3090 (($ $) 22)) (-3167 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3364 (($ $ $) 93 (|has| |#1| (-275)))) (-2249 (($) NIL (-3730 (|has| |#1| (-21)) (|has| |#1| (-661))) CONST)) (-1791 (($ $) 8 (|has| |#1| (-21)))) (-1670 (((-3 $ "failed") $) 68 (|has| |#1| (-661)))) (-3634 ((|#1| $) 21)) (-4193 (((-3 $ "failed") $) 66 (|has| |#1| (-661)))) (-1568 (((-108) $) NIL (|has| |#1| (-661)))) (-1405 (($ (-1 |#1| |#1|) $) 24)) (-3625 ((|#1| $) 9)) (-3078 (($ $) 57 (|has| |#1| (-21)))) (-1970 (((-3 $ "failed") $) 67 (|has| |#1| (-661)))) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-3151 (($ $) 70 (-3730 (|has| |#1| (-335)) (|has| |#1| (-444))))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-1202 (((-585 $) $) 19 (|has| |#1| (-511)))) (-2324 (($ $ $) 34 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 $)) 37 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-1082) |#1|) 27 (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-585 (-1082)) (-585 |#1|)) 31 (|has| |#1| (-480 (-1082) |#1|)))) (-1620 (($ |#1| |#1|) 17)) (-2914 (((-126)) 88 (|has| |#1| (-335)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082)) 85 (|has| |#1| (-827 (-1082))))) (-3333 (($ $ $) NIL (|has| |#1| (-444)))) (-3190 (($ $ $) NIL (|has| |#1| (-444)))) (-2217 (($ (-519)) NIL (|has| |#1| (-968))) (((-108) $) 45 (|has| |#1| (-1011))) (((-790) $) 44 (|has| |#1| (-1011)))) (-3594 (((-705)) 73 (|has| |#1| (-968)))) (-3559 (($ $ (-519)) NIL (|has| |#1| (-444))) (($ $ (-705)) NIL (|has| |#1| (-661))) (($ $ (-848)) NIL (|has| |#1| (-1023)))) (-3602 (($) 55 (|has| |#1| (-21)) CONST)) (-3611 (($) 63 (|has| |#1| (-661)) CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082))))) (-1543 (($ |#1| |#1|) 20) (((-108) $ $) 40 (|has| |#1| (-1011)))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335))) (($ $ $) 90 (-3730 (|has| |#1| (-335)) (|has| |#1| (-444))))) (-1623 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1614 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-519)) NIL (|has| |#1| (-444))) (($ $ (-705)) NIL (|has| |#1| (-661))) (($ $ (-848)) NIL (|has| |#1| (-1023)))) (* (($ $ |#1|) 61 (|has| |#1| (-1023))) (($ |#1| $) 60 (|has| |#1| (-1023))) (($ $ $) 59 (|has| |#1| (-1023))) (($ (-519) $) 76 (|has| |#1| (-21))) (($ (-705) $) NIL (|has| |#1| (-21))) (($ (-848) $) NIL (|has| |#1| (-25))))) +(((-267 |#1|) (-13 (-1117) (-10 -8 (-15 -1543 ($ |#1| |#1|)) (-15 -1620 ($ |#1| |#1|)) (-15 -3090 ($ $)) (-15 -3625 (|#1| $)) (-15 -3634 (|#1| $)) (-15 -1405 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-480 (-1082) |#1|)) (-6 (-480 (-1082) |#1|)) |%noBranch|) (IF (|has| |#1| (-1011)) (PROGN (-6 (-1011)) (-6 (-559 (-108))) (IF (|has| |#1| (-282 |#1|)) (PROGN (-15 -2324 ($ $ $)) (-15 -2324 ($ $ (-585 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1614 ($ |#1| $)) (-15 -1614 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3078 ($ $)) (-15 -1791 ($ $)) (-15 -1623 ($ |#1| $)) (-15 -1623 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-6 (-1023)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-661)) (PROGN (-6 (-661)) (-15 -1970 ((-3 $ "failed") $)) (-15 -1670 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-444)) (PROGN (-6 (-444)) (-15 -1970 ((-3 $ "failed") $)) (-15 -1670 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-968)) (PROGN (-6 (-968)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-652 |#1|)) |%noBranch|) (IF (|has| |#1| (-511)) (-15 -1202 ((-585 $) $)) |%noBranch|) (IF (|has| |#1| (-827 (-1082))) (-6 (-827 (-1082))) |%noBranch|) (IF (|has| |#1| (-335)) (PROGN (-6 (-1170 |#1|)) (-15 -1632 ($ $ $)) (-15 -3151 ($ $))) |%noBranch|) (IF (|has| |#1| (-275)) (-15 -3364 ($ $ $)) |%noBranch|))) (-1117)) (T -267)) +((-1543 (*1 *1 *2 *2) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1117)))) (-1620 (*1 *1 *2 *2) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1117)))) (-3090 (*1 *1 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1117)))) (-3625 (*1 *2 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1117)))) (-3634 (*1 *2 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1117)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-267 *3)))) (-2324 (*1 *1 *1 *1) (-12 (-4 *2 (-282 *2)) (-4 *2 (-1011)) (-4 *2 (-1117)) (-5 *1 (-267 *2)))) (-2324 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-267 *3))) (-4 *3 (-282 *3)) (-4 *3 (-1011)) (-4 *3 (-1117)) (-5 *1 (-267 *3)))) (-1614 (*1 *1 *2 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-25)) (-4 *2 (-1117)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *1 (-267 *2)) (-4 *2 (-25)) (-4 *2 (-1117)))) (-3078 (*1 *1 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-21)) (-4 *2 (-1117)))) (-1791 (*1 *1 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-21)) (-4 *2 (-1117)))) (-1623 (*1 *1 *2 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-21)) (-4 *2 (-1117)))) (-1623 (*1 *1 *1 *2) (-12 (-5 *1 (-267 *2)) (-4 *2 (-21)) (-4 *2 (-1117)))) (-1970 (*1 *1 *1) (|partial| -12 (-5 *1 (-267 *2)) (-4 *2 (-661)) (-4 *2 (-1117)))) (-1670 (*1 *1 *1) (|partial| -12 (-5 *1 (-267 *2)) (-4 *2 (-661)) (-4 *2 (-1117)))) (-1202 (*1 *2 *1) (-12 (-5 *2 (-585 (-267 *3))) (-5 *1 (-267 *3)) (-4 *3 (-511)) (-4 *3 (-1117)))) (-3364 (*1 *1 *1 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-275)) (-4 *2 (-1117)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1023)) (-4 *2 (-1117)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1023)) (-4 *2 (-1117)))) (-1632 (*1 *1 *1 *1) (-3730 (-12 (-5 *1 (-267 *2)) (-4 *2 (-335)) (-4 *2 (-1117))) (-12 (-5 *1 (-267 *2)) (-4 *2 (-444)) (-4 *2 (-1117))))) (-3151 (*1 *1 *1) (-3730 (-12 (-5 *1 (-267 *2)) (-4 *2 (-335)) (-4 *2 (-1117))) (-12 (-5 *1 (-267 *2)) (-4 *2 (-444)) (-4 *2 (-1117)))))) +(-13 (-1117) (-10 -8 (-15 -1543 ($ |#1| |#1|)) (-15 -1620 ($ |#1| |#1|)) (-15 -3090 ($ $)) (-15 -3625 (|#1| $)) (-15 -3634 (|#1| $)) (-15 -1405 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-480 (-1082) |#1|)) (-6 (-480 (-1082) |#1|)) |%noBranch|) (IF (|has| |#1| (-1011)) (PROGN (-6 (-1011)) (-6 (-559 (-108))) (IF (|has| |#1| (-282 |#1|)) (PROGN (-15 -2324 ($ $ $)) (-15 -2324 ($ $ (-585 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1614 ($ |#1| $)) (-15 -1614 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3078 ($ $)) (-15 -1791 ($ $)) (-15 -1623 ($ |#1| $)) (-15 -1623 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-6 (-1023)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-661)) (PROGN (-6 (-661)) (-15 -1970 ((-3 $ "failed") $)) (-15 -1670 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-444)) (PROGN (-6 (-444)) (-15 -1970 ((-3 $ "failed") $)) (-15 -1670 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-968)) (PROGN (-6 (-968)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-652 |#1|)) |%noBranch|) (IF (|has| |#1| (-511)) (-15 -1202 ((-585 $) $)) |%noBranch|) (IF (|has| |#1| (-827 (-1082))) (-6 (-827 (-1082))) |%noBranch|) (IF (|has| |#1| (-335)) (PROGN (-6 (-1170 |#1|)) (-15 -1632 ($ $ $)) (-15 -3151 ($ $))) |%noBranch|) (IF (|has| |#1| (-275)) (-15 -3364 ($ $ $)) |%noBranch|))) +((-1430 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-1812 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1583 (((-1168) $ |#1| |#1|) NIL (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#2| $ |#1| |#2|) NIL)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-2802 (((-3 |#2| "failed") |#1| $) NIL)) (-2249 (($) NIL T CONST)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-2502 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-3 |#2| "failed") |#1| $) NIL)) (-1438 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#2| $ |#1|) NIL)) (-3844 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 ((|#1| $) NIL (|has| |#1| (-782)))) (-3725 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-3890 ((|#1| $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4222))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3019 (((-585 |#1|) $) NIL)) (-4194 (((-108) |#1| $) NIL)) (-4152 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-1846 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-3909 (((-585 |#1|) $) NIL)) (-1506 (((-108) |#1| $) NIL)) (-4139 (((-1029) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-2331 ((|#2| $) NIL (|has| |#1| (-782)))) (-2395 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL)) (-3640 (($ $ |#2|) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2436 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011)))) (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-2217 (((-790) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790))) (|has| |#2| (-559 (-790)))))) (-3879 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-268 |#1| |#2|) (-13 (-1094 |#1| |#2|) (-10 -7 (-6 -4221))) (-1011) (-1011)) (T -268)) +NIL +(-13 (-1094 |#1| |#2|) (-10 -7 (-6 -4221))) +((-3026 (((-284) (-1065) (-585 (-1065))) 16) (((-284) (-1065) (-1065)) 15) (((-284) (-585 (-1065))) 14) (((-284) (-1065)) 12))) +(((-269) (-10 -7 (-15 -3026 ((-284) (-1065))) (-15 -3026 ((-284) (-585 (-1065)))) (-15 -3026 ((-284) (-1065) (-1065))) (-15 -3026 ((-284) (-1065) (-585 (-1065)))))) (T -269)) +((-3026 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1065))) (-5 *3 (-1065)) (-5 *2 (-284)) (-5 *1 (-269)))) (-3026 (*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-284)) (-5 *1 (-269)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-284)) (-5 *1 (-269)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-284)) (-5 *1 (-269))))) +(-10 -7 (-15 -3026 ((-284) (-1065))) (-15 -3026 ((-284) (-585 (-1065)))) (-15 -3026 ((-284) (-1065) (-1065))) (-15 -3026 ((-284) (-1065) (-585 (-1065))))) +((-1405 ((|#2| (-1 |#2| |#1|) (-1065) (-558 |#1|)) 17))) +(((-270 |#1| |#2|) (-10 -7 (-15 -1405 (|#2| (-1 |#2| |#1|) (-1065) (-558 |#1|)))) (-275) (-1117)) (T -270)) +((-1405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1065)) (-5 *5 (-558 *6)) (-4 *6 (-275)) (-4 *2 (-1117)) (-5 *1 (-270 *6 *2))))) +(-10 -7 (-15 -1405 (|#2| (-1 |#2| |#1|) (-1065) (-558 |#1|)))) +((-1405 ((|#2| (-1 |#2| |#1|) (-558 |#1|)) 17))) +(((-271 |#1| |#2|) (-10 -7 (-15 -1405 (|#2| (-1 |#2| |#1|) (-558 |#1|)))) (-275) (-275)) (T -271)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-558 *5)) (-4 *5 (-275)) (-4 *2 (-275)) (-5 *1 (-271 *5 *2))))) +(-10 -7 (-15 -1405 (|#2| (-1 |#2| |#1|) (-558 |#1|)))) +((-3952 (((-108) (-201)) 10))) +(((-272 |#1| |#2|) (-10 -7 (-15 -3952 ((-108) (-201)))) (-201) (-201)) (T -272)) +((-3952 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-108)) (-5 *1 (-272 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3952 ((-108) (-201)))) +((-1211 (((-1063 (-201)) (-288 (-201)) (-585 (-1082)) (-1006 (-775 (-201)))) 88)) (-2458 (((-1063 (-201)) (-1163 (-288 (-201))) (-585 (-1082)) (-1006 (-775 (-201)))) 103) (((-1063 (-201)) (-288 (-201)) (-585 (-1082)) (-1006 (-775 (-201)))) 58)) (-3058 (((-585 (-1065)) (-1063 (-201))) NIL)) (-2438 (((-585 (-201)) (-288 (-201)) (-1082) (-1006 (-775 (-201)))) 55)) (-1577 (((-585 (-201)) (-879 (-379 (-519))) (-1082) (-1006 (-775 (-201)))) 47)) (-2086 (((-585 (-1065)) (-585 (-201))) NIL)) (-2967 (((-201) (-1006 (-775 (-201)))) 23)) (-3624 (((-201) (-1006 (-775 (-201)))) 24)) (-2686 (((-108) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 51)) (-2679 (((-1065) (-201)) NIL))) +(((-273) (-10 -7 (-15 -2967 ((-201) (-1006 (-775 (-201))))) (-15 -3624 ((-201) (-1006 (-775 (-201))))) (-15 -2686 ((-108) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2438 ((-585 (-201)) (-288 (-201)) (-1082) (-1006 (-775 (-201))))) (-15 -1211 ((-1063 (-201)) (-288 (-201)) (-585 (-1082)) (-1006 (-775 (-201))))) (-15 -2458 ((-1063 (-201)) (-288 (-201)) (-585 (-1082)) (-1006 (-775 (-201))))) (-15 -2458 ((-1063 (-201)) (-1163 (-288 (-201))) (-585 (-1082)) (-1006 (-775 (-201))))) (-15 -1577 ((-585 (-201)) (-879 (-379 (-519))) (-1082) (-1006 (-775 (-201))))) (-15 -2679 ((-1065) (-201))) (-15 -2086 ((-585 (-1065)) (-585 (-201)))) (-15 -3058 ((-585 (-1065)) (-1063 (-201)))))) (T -273)) +((-3058 (*1 *2 *3) (-12 (-5 *3 (-1063 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-273)))) (-2086 (*1 *2 *3) (-12 (-5 *3 (-585 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-273)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1065)) (-5 *1 (-273)))) (-1577 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-379 (-519)))) (-5 *4 (-1082)) (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-585 (-201))) (-5 *1 (-273)))) (-2458 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1163 (-288 (-201)))) (-5 *4 (-585 (-1082))) (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-1063 (-201))) (-5 *1 (-273)))) (-2458 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 (-201))) (-5 *4 (-585 (-1082))) (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-1063 (-201))) (-5 *1 (-273)))) (-1211 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 (-201))) (-5 *4 (-585 (-1082))) (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-1063 (-201))) (-5 *1 (-273)))) (-2438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 (-201))) (-5 *4 (-1082)) (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-585 (-201))) (-5 *1 (-273)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-108)) (-5 *1 (-273)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-273)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-273))))) +(-10 -7 (-15 -2967 ((-201) (-1006 (-775 (-201))))) (-15 -3624 ((-201) (-1006 (-775 (-201))))) (-15 -2686 ((-108) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2438 ((-585 (-201)) (-288 (-201)) (-1082) (-1006 (-775 (-201))))) (-15 -1211 ((-1063 (-201)) (-288 (-201)) (-585 (-1082)) (-1006 (-775 (-201))))) (-15 -2458 ((-1063 (-201)) (-288 (-201)) (-585 (-1082)) (-1006 (-775 (-201))))) (-15 -2458 ((-1063 (-201)) (-1163 (-288 (-201))) (-585 (-1082)) (-1006 (-775 (-201))))) (-15 -1577 ((-585 (-201)) (-879 (-379 (-519))) (-1082) (-1006 (-775 (-201))))) (-15 -2679 ((-1065) (-201))) (-15 -2086 ((-585 (-1065)) (-585 (-201)))) (-15 -3058 ((-585 (-1065)) (-1063 (-201))))) +((-1890 (((-585 (-558 $)) $) 28)) (-3364 (($ $ (-267 $)) 81) (($ $ (-585 (-267 $))) 121) (($ $ (-585 (-558 $)) (-585 $)) NIL)) (-1301 (((-3 (-558 $) "failed") $) 111)) (-1499 (((-558 $) $) 110)) (-1340 (($ $) 19) (($ (-585 $)) 55)) (-3866 (((-585 (-110)) $) 37)) (-3752 (((-110) (-110)) 91)) (-3164 (((-108) $) 129)) (-1405 (($ (-1 $ $) (-558 $)) 89)) (-3029 (((-3 (-558 $) "failed") $) 93)) (-2959 (($ (-110) $) 61) (($ (-110) (-585 $)) 99)) (-2917 (((-108) $ (-110)) 115) (((-108) $ (-1082)) 114)) (-4141 (((-705) $) 45)) (-4040 (((-108) $ $) 59) (((-108) $ (-1082)) 50)) (-1295 (((-108) $) 127)) (-2324 (($ $ (-558 $) $) NIL) (($ $ (-585 (-558 $)) (-585 $)) NIL) (($ $ (-585 (-267 $))) 119) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-585 (-1082)) (-585 (-1 $ $))) 84) (($ $ (-585 (-1082)) (-585 (-1 $ (-585 $)))) NIL) (($ $ (-1082) (-1 $ (-585 $))) 69) (($ $ (-1082) (-1 $ $)) 75) (($ $ (-585 (-110)) (-585 (-1 $ $))) 83) (($ $ (-585 (-110)) (-585 (-1 $ (-585 $)))) 85) (($ $ (-110) (-1 $ (-585 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-2598 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-585 $)) 107)) (-1802 (($ $) 52) (($ $ $) 117)) (-1647 (($ $) 17) (($ (-585 $)) 54)) (-2631 (((-108) (-110)) 22))) +(((-274 |#1|) (-10 -8 (-15 -3164 ((-108) |#1|)) (-15 -1295 ((-108) |#1|)) (-15 -2324 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2324 (|#1| |#1| (-110) (-1 |#1| (-585 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-110)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -2324 (|#1| |#1| (-585 (-110)) (-585 (-1 |#1| |#1|)))) (-15 -2324 (|#1| |#1| (-1082) (-1 |#1| |#1|))) (-15 -2324 (|#1| |#1| (-1082) (-1 |#1| (-585 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-1 |#1| |#1|)))) (-15 -4040 ((-108) |#1| (-1082))) (-15 -4040 ((-108) |#1| |#1|)) (-15 -1405 (|#1| (-1 |#1| |#1|) (-558 |#1|))) (-15 -2959 (|#1| (-110) (-585 |#1|))) (-15 -2959 (|#1| (-110) |#1|)) (-15 -2917 ((-108) |#1| (-1082))) (-15 -2917 ((-108) |#1| (-110))) (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 -3866 ((-585 (-110)) |#1|)) (-15 -1890 ((-585 (-558 |#1|)) |#1|)) (-15 -3029 ((-3 (-558 |#1|) "failed") |#1|)) (-15 -4141 ((-705) |#1|)) (-15 -1802 (|#1| |#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1340 (|#1| (-585 |#1|))) (-15 -1340 (|#1| |#1|)) (-15 -1647 (|#1| (-585 |#1|))) (-15 -1647 (|#1| |#1|)) (-15 -3364 (|#1| |#1| (-585 (-558 |#1|)) (-585 |#1|))) (-15 -3364 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -3364 (|#1| |#1| (-267 |#1|))) (-15 -2598 (|#1| (-110) (-585 |#1|))) (-15 -2598 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1|)) (-15 -2324 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| (-267 |#1|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-558 |#1|)) (-585 |#1|))) (-15 -2324 (|#1| |#1| (-558 |#1|) |#1|)) (-15 -1499 ((-558 |#1|) |#1|)) (-15 -1301 ((-3 (-558 |#1|) "failed") |#1|))) (-275)) (T -274)) +((-3752 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-274 *3)) (-4 *3 (-275)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-274 *4)) (-4 *4 (-275))))) +(-10 -8 (-15 -3164 ((-108) |#1|)) (-15 -1295 ((-108) |#1|)) (-15 -2324 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2324 (|#1| |#1| (-110) (-1 |#1| (-585 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-110)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -2324 (|#1| |#1| (-585 (-110)) (-585 (-1 |#1| |#1|)))) (-15 -2324 (|#1| |#1| (-1082) (-1 |#1| |#1|))) (-15 -2324 (|#1| |#1| (-1082) (-1 |#1| (-585 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-1 |#1| |#1|)))) (-15 -4040 ((-108) |#1| (-1082))) (-15 -4040 ((-108) |#1| |#1|)) (-15 -1405 (|#1| (-1 |#1| |#1|) (-558 |#1|))) (-15 -2959 (|#1| (-110) (-585 |#1|))) (-15 -2959 (|#1| (-110) |#1|)) (-15 -2917 ((-108) |#1| (-1082))) (-15 -2917 ((-108) |#1| (-110))) (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 -3866 ((-585 (-110)) |#1|)) (-15 -1890 ((-585 (-558 |#1|)) |#1|)) (-15 -3029 ((-3 (-558 |#1|) "failed") |#1|)) (-15 -4141 ((-705) |#1|)) (-15 -1802 (|#1| |#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1340 (|#1| (-585 |#1|))) (-15 -1340 (|#1| |#1|)) (-15 -1647 (|#1| (-585 |#1|))) (-15 -1647 (|#1| |#1|)) (-15 -3364 (|#1| |#1| (-585 (-558 |#1|)) (-585 |#1|))) (-15 -3364 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -3364 (|#1| |#1| (-267 |#1|))) (-15 -2598 (|#1| (-110) (-585 |#1|))) (-15 -2598 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1|)) (-15 -2324 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| (-267 |#1|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-558 |#1|)) (-585 |#1|))) (-15 -2324 (|#1| |#1| (-558 |#1|) |#1|)) (-15 -1499 ((-558 |#1|) |#1|)) (-15 -1301 ((-3 (-558 |#1|) "failed") |#1|))) +((-1430 (((-108) $ $) 7)) (-1890 (((-585 (-558 $)) $) 44)) (-3364 (($ $ (-267 $)) 56) (($ $ (-585 (-267 $))) 55) (($ $ (-585 (-558 $)) (-585 $)) 54)) (-1301 (((-3 (-558 $) "failed") $) 69)) (-1499 (((-558 $) $) 68)) (-1340 (($ $) 51) (($ (-585 $)) 50)) (-3866 (((-585 (-110)) $) 43)) (-3752 (((-110) (-110)) 42)) (-3164 (((-108) $) 22 (|has| $ (-959 (-519))))) (-2042 (((-1078 $) (-558 $)) 25 (|has| $ (-968)))) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-1405 (($ (-1 $ $) (-558 $)) 36)) (-3029 (((-3 (-558 $) "failed") $) 46)) (-1266 (((-1065) $) 9)) (-1268 (((-585 (-558 $)) $) 45)) (-2959 (($ (-110) $) 38) (($ (-110) (-585 $)) 37)) (-2917 (((-108) $ (-110)) 40) (((-108) $ (-1082)) 39)) (-4141 (((-705) $) 47)) (-4139 (((-1029) $) 10)) (-4040 (((-108) $ $) 35) (((-108) $ (-1082)) 34)) (-1295 (((-108) $) 23 (|has| $ (-959 (-519))))) (-2324 (($ $ (-558 $) $) 67) (($ $ (-585 (-558 $)) (-585 $)) 66) (($ $ (-585 (-267 $))) 65) (($ $ (-267 $)) 64) (($ $ $ $) 63) (($ $ (-585 $) (-585 $)) 62) (($ $ (-585 (-1082)) (-585 (-1 $ $))) 33) (($ $ (-585 (-1082)) (-585 (-1 $ (-585 $)))) 32) (($ $ (-1082) (-1 $ (-585 $))) 31) (($ $ (-1082) (-1 $ $)) 30) (($ $ (-585 (-110)) (-585 (-1 $ $))) 29) (($ $ (-585 (-110)) (-585 (-1 $ (-585 $)))) 28) (($ $ (-110) (-1 $ (-585 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-2598 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-585 $)) 57)) (-1802 (($ $) 49) (($ $ $) 48)) (-1462 (($ $) 24 (|has| $ (-968)))) (-2217 (((-790) $) 11) (($ (-558 $)) 70)) (-1647 (($ $) 53) (($ (-585 $)) 52)) (-2631 (((-108) (-110)) 41)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18))) +(((-275) (-1194)) (T -275)) +((-2598 (*1 *1 *2 *1) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) (-2598 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) (-2598 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) (-2598 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) (-2598 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-585 *1)) (-4 *1 (-275)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-267 *1)) (-4 *1 (-275)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-267 *1))) (-4 *1 (-275)))) (-3364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-558 *1))) (-5 *3 (-585 *1)) (-4 *1 (-275)))) (-1647 (*1 *1 *1) (-4 *1 (-275))) (-1647 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-275)))) (-1340 (*1 *1 *1) (-4 *1 (-275))) (-1340 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-275)))) (-1802 (*1 *1 *1) (-4 *1 (-275))) (-1802 (*1 *1 *1 *1) (-4 *1 (-275))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-275)) (-5 *2 (-705)))) (-3029 (*1 *2 *1) (|partial| -12 (-5 *2 (-558 *1)) (-4 *1 (-275)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-585 (-558 *1))) (-4 *1 (-275)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-585 (-558 *1))) (-4 *1 (-275)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-275)) (-5 *2 (-585 (-110))))) (-3752 (*1 *2 *2) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) (-2631 (*1 *2 *3) (-12 (-4 *1 (-275)) (-5 *3 (-110)) (-5 *2 (-108)))) (-2917 (*1 *2 *1 *3) (-12 (-4 *1 (-275)) (-5 *3 (-110)) (-5 *2 (-108)))) (-2917 (*1 *2 *1 *3) (-12 (-4 *1 (-275)) (-5 *3 (-1082)) (-5 *2 (-108)))) (-2959 (*1 *1 *2 *1) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) (-2959 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-585 *1)) (-4 *1 (-275)))) (-1405 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-558 *1)) (-4 *1 (-275)))) (-4040 (*1 *2 *1 *1) (-12 (-4 *1 (-275)) (-5 *2 (-108)))) (-4040 (*1 *2 *1 *3) (-12 (-4 *1 (-275)) (-5 *3 (-1082)) (-5 *2 (-108)))) (-2324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-275)))) (-2324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-275)))) (-2324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-275)))) (-2324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1 *1 *1)) (-4 *1 (-275)))) (-2324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-110))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-275)))) (-2324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-110))) (-5 *3 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-275)))) (-2324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-275)))) (-2324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-275)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-558 *1)) (-4 *1 (-968)) (-4 *1 (-275)) (-5 *2 (-1078 *1)))) (-1462 (*1 *1 *1) (-12 (-4 *1 (-968)) (-4 *1 (-275)))) (-1295 (*1 *2 *1) (-12 (-4 *1 (-959 (-519))) (-4 *1 (-275)) (-5 *2 (-108)))) (-3164 (*1 *2 *1) (-12 (-4 *1 (-959 (-519))) (-4 *1 (-275)) (-5 *2 (-108))))) +(-13 (-782) (-959 (-558 $)) (-480 (-558 $) $) (-282 $) (-10 -8 (-15 -2598 ($ (-110) $)) (-15 -2598 ($ (-110) $ $)) (-15 -2598 ($ (-110) $ $ $)) (-15 -2598 ($ (-110) $ $ $ $)) (-15 -2598 ($ (-110) (-585 $))) (-15 -3364 ($ $ (-267 $))) (-15 -3364 ($ $ (-585 (-267 $)))) (-15 -3364 ($ $ (-585 (-558 $)) (-585 $))) (-15 -1647 ($ $)) (-15 -1647 ($ (-585 $))) (-15 -1340 ($ $)) (-15 -1340 ($ (-585 $))) (-15 -1802 ($ $)) (-15 -1802 ($ $ $)) (-15 -4141 ((-705) $)) (-15 -3029 ((-3 (-558 $) "failed") $)) (-15 -1268 ((-585 (-558 $)) $)) (-15 -1890 ((-585 (-558 $)) $)) (-15 -3866 ((-585 (-110)) $)) (-15 -3752 ((-110) (-110))) (-15 -2631 ((-108) (-110))) (-15 -2917 ((-108) $ (-110))) (-15 -2917 ((-108) $ (-1082))) (-15 -2959 ($ (-110) $)) (-15 -2959 ($ (-110) (-585 $))) (-15 -1405 ($ (-1 $ $) (-558 $))) (-15 -4040 ((-108) $ $)) (-15 -4040 ((-108) $ (-1082))) (-15 -2324 ($ $ (-585 (-1082)) (-585 (-1 $ $)))) (-15 -2324 ($ $ (-585 (-1082)) (-585 (-1 $ (-585 $))))) (-15 -2324 ($ $ (-1082) (-1 $ (-585 $)))) (-15 -2324 ($ $ (-1082) (-1 $ $))) (-15 -2324 ($ $ (-585 (-110)) (-585 (-1 $ $)))) (-15 -2324 ($ $ (-585 (-110)) (-585 (-1 $ (-585 $))))) (-15 -2324 ($ $ (-110) (-1 $ (-585 $)))) (-15 -2324 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-968)) (PROGN (-15 -2042 ((-1078 $) (-558 $))) (-15 -1462 ($ $))) |%noBranch|) (IF (|has| $ (-959 (-519))) (PROGN (-15 -1295 ((-108) $)) (-15 -3164 ((-108) $))) |%noBranch|))) +(((-97) . T) ((-559 (-790)) . T) ((-282 $) . T) ((-480 (-558 $) $) . T) ((-480 $ $) . T) ((-782) . T) ((-959 (-558 $)) . T) ((-1011) . T)) +((-2192 (((-585 |#1|) (-585 |#1|)) 10))) +(((-276 |#1|) (-10 -7 (-15 -2192 ((-585 |#1|) (-585 |#1|)))) (-780)) (T -276)) +((-2192 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-780)) (-5 *1 (-276 *3))))) +(-10 -7 (-15 -2192 ((-585 |#1|) (-585 |#1|)))) +((-1405 (((-625 |#2|) (-1 |#2| |#1|) (-625 |#1|)) 15))) +(((-277 |#1| |#2|) (-10 -7 (-15 -1405 ((-625 |#2|) (-1 |#2| |#1|) (-625 |#1|)))) (-968) (-968)) (T -277)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-625 *5)) (-4 *5 (-968)) (-4 *6 (-968)) (-5 *2 (-625 *6)) (-5 *1 (-277 *5 *6))))) +(-10 -7 (-15 -1405 ((-625 |#2|) (-1 |#2| |#1|) (-625 |#1|)))) +((-2815 (((-1163 (-288 (-351))) (-1163 (-288 (-201)))) 105)) (-3974 (((-1006 (-775 (-201))) (-1006 (-775 (-351)))) 39)) (-3058 (((-585 (-1065)) (-1063 (-201))) 87)) (-3913 (((-288 (-351)) (-879 (-201))) 49)) (-1347 (((-201) (-879 (-201))) 45)) (-3758 (((-1065) (-351)) 167)) (-2305 (((-775 (-201)) (-775 (-351))) 33)) (-2814 (((-2 (|:| |additions| (-519)) (|:| |multiplications| (-519)) (|:| |exponentiations| (-519)) (|:| |functionCalls| (-519))) (-1163 (-288 (-201)))) 142)) (-4072 (((-957) (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957)))) 180) (((-957) (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))))) 178)) (-2488 (((-625 (-201)) (-585 (-201)) (-705)) 13)) (-1579 (((-1163 (-634)) (-585 (-201))) 94)) (-2086 (((-585 (-1065)) (-585 (-201))) 74)) (-4067 (((-3 (-288 (-201)) "failed") (-288 (-201))) 120)) (-3952 (((-108) (-201) (-1006 (-775 (-201)))) 109)) (-3914 (((-957) (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351)))) 198)) (-2967 (((-201) (-1006 (-775 (-201)))) 107)) (-3624 (((-201) (-1006 (-775 (-201)))) 108)) (-3886 (((-201) (-379 (-519))) 26)) (-3040 (((-1065) (-351)) 72)) (-1716 (((-201) (-351)) 17)) (-1980 (((-351) (-1163 (-288 (-201)))) 153)) (-2119 (((-288 (-201)) (-288 (-351))) 23)) (-2036 (((-379 (-519)) (-288 (-201))) 52)) (-3311 (((-288 (-379 (-519))) (-288 (-201))) 68)) (-1832 (((-288 (-351)) (-288 (-201))) 98)) (-3917 (((-201) (-288 (-201))) 53)) (-3864 (((-585 (-201)) (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) 63)) (-2515 (((-1006 (-775 (-201))) (-1006 (-775 (-201)))) 60)) (-2679 (((-1065) (-201)) 71)) (-1416 (((-634) (-201)) 90)) (-3990 (((-379 (-519)) (-201)) 54)) (-3476 (((-288 (-351)) (-201)) 48)) (-1446 (((-585 (-1006 (-775 (-201)))) (-585 (-1006 (-775 (-351))))) 42)) (-4150 (((-957) (-585 (-957))) 163) (((-957) (-957) (-957)) 160)) (-3372 (((-957) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194))) +(((-278) (-10 -7 (-15 -1716 ((-201) (-351))) (-15 -2119 ((-288 (-201)) (-288 (-351)))) (-15 -2305 ((-775 (-201)) (-775 (-351)))) (-15 -3974 ((-1006 (-775 (-201))) (-1006 (-775 (-351))))) (-15 -1446 ((-585 (-1006 (-775 (-201)))) (-585 (-1006 (-775 (-351)))))) (-15 -3990 ((-379 (-519)) (-201))) (-15 -2036 ((-379 (-519)) (-288 (-201)))) (-15 -3917 ((-201) (-288 (-201)))) (-15 -4067 ((-3 (-288 (-201)) "failed") (-288 (-201)))) (-15 -1980 ((-351) (-1163 (-288 (-201))))) (-15 -2814 ((-2 (|:| |additions| (-519)) (|:| |multiplications| (-519)) (|:| |exponentiations| (-519)) (|:| |functionCalls| (-519))) (-1163 (-288 (-201))))) (-15 -3311 ((-288 (-379 (-519))) (-288 (-201)))) (-15 -2515 ((-1006 (-775 (-201))) (-1006 (-775 (-201))))) (-15 -3864 ((-585 (-201)) (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))))) (-15 -1416 ((-634) (-201))) (-15 -1579 ((-1163 (-634)) (-585 (-201)))) (-15 -1832 ((-288 (-351)) (-288 (-201)))) (-15 -2815 ((-1163 (-288 (-351))) (-1163 (-288 (-201))))) (-15 -3952 ((-108) (-201) (-1006 (-775 (-201))))) (-15 -2679 ((-1065) (-201))) (-15 -3040 ((-1065) (-351))) (-15 -2086 ((-585 (-1065)) (-585 (-201)))) (-15 -3058 ((-585 (-1065)) (-1063 (-201)))) (-15 -2967 ((-201) (-1006 (-775 (-201))))) (-15 -3624 ((-201) (-1006 (-775 (-201))))) (-15 -4150 ((-957) (-957) (-957))) (-15 -4150 ((-957) (-585 (-957)))) (-15 -3758 ((-1065) (-351))) (-15 -4072 ((-957) (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))))) (-15 -4072 ((-957) (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957))))) (-15 -3372 ((-957) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3914 ((-957) (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351))))) (-15 -3913 ((-288 (-351)) (-879 (-201)))) (-15 -1347 ((-201) (-879 (-201)))) (-15 -3476 ((-288 (-351)) (-201))) (-15 -3886 ((-201) (-379 (-519)))) (-15 -2488 ((-625 (-201)) (-585 (-201)) (-705))))) (T -278)) +((-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-201))) (-5 *4 (-705)) (-5 *2 (-625 (-201))) (-5 *1 (-278)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-379 (-519))) (-5 *2 (-201)) (-5 *1 (-278)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-288 (-351))) (-5 *1 (-278)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-879 (-201))) (-5 *2 (-201)) (-5 *1 (-278)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-879 (-201))) (-5 *2 (-288 (-351))) (-5 *1 (-278)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351)))) (-5 *2 (-957)) (-5 *1 (-278)))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-957)) (-5 *1 (-278)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957)))) (-5 *2 (-957)) (-5 *1 (-278)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))))) (-5 *2 (-957)) (-5 *1 (-278)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1065)) (-5 *1 (-278)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-585 (-957))) (-5 *2 (-957)) (-5 *1 (-278)))) (-4150 (*1 *2 *2 *2) (-12 (-5 *2 (-957)) (-5 *1 (-278)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-278)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-278)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-1063 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-278)))) (-2086 (*1 *2 *3) (-12 (-5 *3 (-585 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-278)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1065)) (-5 *1 (-278)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1065)) (-5 *1 (-278)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-775 (-201)))) (-5 *3 (-201)) (-5 *2 (-108)) (-5 *1 (-278)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-1163 (-288 (-201)))) (-5 *2 (-1163 (-288 (-351)))) (-5 *1 (-278)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-288 (-201))) (-5 *2 (-288 (-351))) (-5 *1 (-278)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-585 (-201))) (-5 *2 (-1163 (-634))) (-5 *1 (-278)))) (-1416 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-634)) (-5 *1 (-278)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-5 *2 (-585 (-201))) (-5 *1 (-278)))) (-2515 (*1 *2 *2) (-12 (-5 *2 (-1006 (-775 (-201)))) (-5 *1 (-278)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-288 (-201))) (-5 *2 (-288 (-379 (-519)))) (-5 *1 (-278)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-1163 (-288 (-201)))) (-5 *2 (-2 (|:| |additions| (-519)) (|:| |multiplications| (-519)) (|:| |exponentiations| (-519)) (|:| |functionCalls| (-519)))) (-5 *1 (-278)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-1163 (-288 (-201)))) (-5 *2 (-351)) (-5 *1 (-278)))) (-4067 (*1 *2 *2) (|partial| -12 (-5 *2 (-288 (-201))) (-5 *1 (-278)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-288 (-201))) (-5 *2 (-201)) (-5 *1 (-278)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-288 (-201))) (-5 *2 (-379 (-519))) (-5 *1 (-278)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-379 (-519))) (-5 *1 (-278)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-585 (-1006 (-775 (-351))))) (-5 *2 (-585 (-1006 (-775 (-201))))) (-5 *1 (-278)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-1006 (-775 (-351)))) (-5 *2 (-1006 (-775 (-201)))) (-5 *1 (-278)))) (-2305 (*1 *2 *3) (-12 (-5 *3 (-775 (-351))) (-5 *2 (-775 (-201))) (-5 *1 (-278)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-288 (-351))) (-5 *2 (-288 (-201))) (-5 *1 (-278)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-351)) (-5 *2 (-201)) (-5 *1 (-278))))) +(-10 -7 (-15 -1716 ((-201) (-351))) (-15 -2119 ((-288 (-201)) (-288 (-351)))) (-15 -2305 ((-775 (-201)) (-775 (-351)))) (-15 -3974 ((-1006 (-775 (-201))) (-1006 (-775 (-351))))) (-15 -1446 ((-585 (-1006 (-775 (-201)))) (-585 (-1006 (-775 (-351)))))) (-15 -3990 ((-379 (-519)) (-201))) (-15 -2036 ((-379 (-519)) (-288 (-201)))) (-15 -3917 ((-201) (-288 (-201)))) (-15 -4067 ((-3 (-288 (-201)) "failed") (-288 (-201)))) (-15 -1980 ((-351) (-1163 (-288 (-201))))) (-15 -2814 ((-2 (|:| |additions| (-519)) (|:| |multiplications| (-519)) (|:| |exponentiations| (-519)) (|:| |functionCalls| (-519))) (-1163 (-288 (-201))))) (-15 -3311 ((-288 (-379 (-519))) (-288 (-201)))) (-15 -2515 ((-1006 (-775 (-201))) (-1006 (-775 (-201))))) (-15 -3864 ((-585 (-201)) (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))))) (-15 -1416 ((-634) (-201))) (-15 -1579 ((-1163 (-634)) (-585 (-201)))) (-15 -1832 ((-288 (-351)) (-288 (-201)))) (-15 -2815 ((-1163 (-288 (-351))) (-1163 (-288 (-201))))) (-15 -3952 ((-108) (-201) (-1006 (-775 (-201))))) (-15 -2679 ((-1065) (-201))) (-15 -3040 ((-1065) (-351))) (-15 -2086 ((-585 (-1065)) (-585 (-201)))) (-15 -3058 ((-585 (-1065)) (-1063 (-201)))) (-15 -2967 ((-201) (-1006 (-775 (-201))))) (-15 -3624 ((-201) (-1006 (-775 (-201))))) (-15 -4150 ((-957) (-957) (-957))) (-15 -4150 ((-957) (-585 (-957)))) (-15 -3758 ((-1065) (-351))) (-15 -4072 ((-957) (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))))) (-15 -4072 ((-957) (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957))))) (-15 -3372 ((-957) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3914 ((-957) (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351))))) (-15 -3913 ((-288 (-351)) (-879 (-201)))) (-15 -1347 ((-201) (-879 (-201)))) (-15 -3476 ((-288 (-351)) (-201))) (-15 -3886 ((-201) (-379 (-519)))) (-15 -2488 ((-625 (-201)) (-585 (-201)) (-705)))) +((-3409 (((-108) $ $) 11)) (-2311 (($ $ $) 15)) (-2286 (($ $ $) 14)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 44)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 53)) (-2292 (($ $ $) 21) (($ (-585 $)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2261 (((-3 $ "failed") $ $) 17)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 46))) +(((-279 |#1|) (-10 -8 (-15 -1580 ((-3 (-585 |#1|) "failed") (-585 |#1|) |#1|)) (-15 -1817 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1817 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1397 |#1|)) |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -3409 ((-108) |#1| |#1|)) (-15 -2661 ((-3 (-585 |#1|) "failed") (-585 |#1|) |#1|)) (-15 -3036 ((-2 (|:| -3031 (-585 |#1|)) (|:| -1397 |#1|)) (-585 |#1|))) (-15 -2292 (|#1| (-585 |#1|))) (-15 -2292 (|#1| |#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|))) (-280)) (T -279)) +NIL +(-10 -8 (-15 -1580 ((-3 (-585 |#1|) "failed") (-585 |#1|) |#1|)) (-15 -1817 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1817 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1397 |#1|)) |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -3409 ((-108) |#1| |#1|)) (-15 -2661 ((-3 (-585 |#1|) "failed") (-585 |#1|) |#1|)) (-15 -3036 ((-2 (|:| -3031 (-585 |#1|)) (|:| -1397 |#1|)) (-585 |#1|))) (-15 -2292 (|#1| (-585 |#1|))) (-15 -2292 (|#1| |#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-3409 (((-108) $ $) 59)) (-2249 (($) 17 T CONST)) (-2311 (($ $ $) 55)) (-4193 (((-3 $ "failed") $) 34)) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-1568 (((-108) $) 31)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-3129 (((-705) $) 58)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-280) (-1194)) (T -280)) +((-3409 (*1 *2 *1 *1) (-12 (-4 *1 (-280)) (-5 *2 (-108)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-280)) (-5 *2 (-705)))) (-1745 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-280)))) (-2286 (*1 *1 *1 *1) (-4 *1 (-280))) (-2311 (*1 *1 *1 *1) (-4 *1 (-280))) (-1817 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1397 *1))) (-4 *1 (-280)))) (-1817 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-280)))) (-1580 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-585 *1)) (-4 *1 (-280))))) +(-13 (-847) (-10 -8 (-15 -3409 ((-108) $ $)) (-15 -3129 ((-705) $)) (-15 -1745 ((-2 (|:| -3573 $) (|:| -1354 $)) $ $)) (-15 -2286 ($ $ $)) (-15 -2311 ($ $ $)) (-15 -1817 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $)) (-15 -1817 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1580 ((-3 (-585 $) "failed") (-585 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-157) . T) ((-264) . T) ((-423) . T) ((-511) . T) ((-587 $) . T) ((-652 $) . T) ((-661) . T) ((-847) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-2324 (($ $ (-585 |#2|) (-585 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-267 |#2|)) 11) (($ $ (-585 (-267 |#2|))) NIL))) +(((-281 |#1| |#2|) (-10 -8 (-15 -2324 (|#1| |#1| (-585 (-267 |#2|)))) (-15 -2324 (|#1| |#1| (-267 |#2|))) (-15 -2324 (|#1| |#1| |#2| |#2|)) (-15 -2324 (|#1| |#1| (-585 |#2|) (-585 |#2|)))) (-282 |#2|) (-1011)) (T -281)) +NIL +(-10 -8 (-15 -2324 (|#1| |#1| (-585 (-267 |#2|)))) (-15 -2324 (|#1| |#1| (-267 |#2|))) (-15 -2324 (|#1| |#1| |#2| |#2|)) (-15 -2324 (|#1| |#1| (-585 |#2|) (-585 |#2|)))) +((-2324 (($ $ (-585 |#1|) (-585 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-267 |#1|)) 11) (($ $ (-585 (-267 |#1|))) 10))) +(((-282 |#1|) (-1194) (-1011)) (T -282)) +((-2324 (*1 *1 *1 *2) (-12 (-5 *2 (-267 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1011)))) (-2324 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-267 *3))) (-4 *1 (-282 *3)) (-4 *3 (-1011))))) +(-13 (-480 |t#1| |t#1|) (-10 -8 (-15 -2324 ($ $ (-267 |t#1|))) (-15 -2324 ($ $ (-585 (-267 |t#1|)))))) +(((-480 |#1| |#1|) . T)) +((-2324 ((|#1| (-1 |#1| (-519)) (-1084 (-379 (-519)))) 24))) +(((-283 |#1|) (-10 -7 (-15 -2324 (|#1| (-1 |#1| (-519)) (-1084 (-379 (-519)))))) (-37 (-379 (-519)))) (T -283)) +((-2324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-519))) (-5 *4 (-1084 (-379 (-519)))) (-5 *1 (-283 *2)) (-4 *2 (-37 (-379 (-519))))))) +(-10 -7 (-15 -2324 (|#1| (-1 |#1| (-519)) (-1084 (-379 (-519)))))) +((-1430 (((-108) $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 7)) (-1543 (((-108) $ $) 9))) +(((-284) (-1011)) (T -284)) +NIL +(-1011) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 62)) (-2157 (((-1149 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-280)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-836)))) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-836)))) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-755)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-1149 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1082) "failed") $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-959 (-1082)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-959 (-519)))) (((-3 (-519) "failed") $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-959 (-519)))) (((-3 (-1148 |#2| |#3| |#4|) "failed") $) 24)) (-1499 (((-1149 |#1| |#2| |#3| |#4|) $) NIL) (((-1082) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-959 (-1082)))) (((-379 (-519)) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-959 (-519)))) (((-519) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-959 (-519)))) (((-1148 |#2| |#3| |#4|) $) NIL)) (-2311 (($ $ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-1149 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1163 (-1149 |#1| |#2| |#3| |#4|)))) (-625 $) (-1163 $)) NIL) (((-625 (-1149 |#1| |#2| |#3| |#4|)) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-504)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3419 (((-108) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-755)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-813 (-351))))) (-1568 (((-108) $) NIL)) (-1534 (($ $) NIL)) (-2855 (((-1149 |#1| |#2| |#3| |#4|) $) 21)) (-1675 (((-3 $ "failed") $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-1058)))) (-2143 (((-108) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-755)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-782)))) (-2489 (($ $ $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-782)))) (-1405 (($ (-1 (-1149 |#1| |#2| |#3| |#4|) (-1149 |#1| |#2| |#3| |#4|)) $) NIL)) (-2811 (((-3 (-775 |#2|) "failed") $) 76)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-1058)) CONST)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-280)))) (-1525 (((-1149 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-504)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-836)))) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2324 (($ $ (-585 (-1149 |#1| |#2| |#3| |#4|)) (-585 (-1149 |#1| |#2| |#3| |#4|))) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-282 (-1149 |#1| |#2| |#3| |#4|)))) (($ $ (-1149 |#1| |#2| |#3| |#4|) (-1149 |#1| |#2| |#3| |#4|)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-282 (-1149 |#1| |#2| |#3| |#4|)))) (($ $ (-267 (-1149 |#1| |#2| |#3| |#4|))) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-282 (-1149 |#1| |#2| |#3| |#4|)))) (($ $ (-585 (-267 (-1149 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-282 (-1149 |#1| |#2| |#3| |#4|)))) (($ $ (-585 (-1082)) (-585 (-1149 |#1| |#2| |#3| |#4|))) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-480 (-1082) (-1149 |#1| |#2| |#3| |#4|)))) (($ $ (-1082) (-1149 |#1| |#2| |#3| |#4|)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-480 (-1082) (-1149 |#1| |#2| |#3| |#4|))))) (-3129 (((-705) $) NIL)) (-2598 (($ $ (-1149 |#1| |#2| |#3| |#4|)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-260 (-1149 |#1| |#2| |#3| |#4|) (-1149 |#1| |#2| |#3| |#4|))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2181 (($ $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-209))) (($ $ (-705)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-209))) (($ $ (-1082)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-827 (-1082)))) (($ $ (-1 (-1149 |#1| |#2| |#3| |#4|) (-1149 |#1| |#2| |#3| |#4|)) (-705)) NIL) (($ $ (-1 (-1149 |#1| |#2| |#3| |#4|) (-1149 |#1| |#2| |#3| |#4|))) NIL)) (-2724 (($ $) NIL)) (-2866 (((-1149 |#1| |#2| |#3| |#4|) $) 17)) (-1446 (((-819 (-519)) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-560 (-819 (-519))))) (((-819 (-351)) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-560 (-819 (-351))))) (((-495) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-560 (-495)))) (((-351) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-944))) (((-201) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-944)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| (-1149 |#1| |#2| |#3| |#4|) (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ (-1149 |#1| |#2| |#3| |#4|)) 28) (($ (-1082)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-959 (-1082)))) (($ (-1148 |#2| |#3| |#4|)) 36)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| (-1149 |#1| |#2| |#3| |#4|) (-836))) (|has| (-1149 |#1| |#2| |#3| |#4|) (-133))))) (-3594 (((-705)) NIL)) (-3617 (((-1149 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-504)))) (-1617 (((-108) $ $) NIL)) (-1478 (($ $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-755)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 41 T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-209))) (($ $ (-705)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-209))) (($ $ (-1082)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-827 (-1082)))) (($ $ (-1 (-1149 |#1| |#2| |#3| |#4|) (-1149 |#1| |#2| |#3| |#4|)) (-705)) NIL) (($ $ (-1 (-1149 |#1| |#2| |#3| |#4|) (-1149 |#1| |#2| |#3| |#4|))) NIL)) (-1586 (((-108) $ $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-782)))) (-1569 (((-108) $ $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-782)))) (-1561 (((-108) $ $) NIL (|has| (-1149 |#1| |#2| |#3| |#4|) (-782)))) (-1632 (($ $ $) 33) (($ (-1149 |#1| |#2| |#3| |#4|) (-1149 |#1| |#2| |#3| |#4|)) 30)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ (-1149 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1149 |#1| |#2| |#3| |#4|)) NIL))) +(((-285 |#1| |#2| |#3| |#4|) (-13 (-916 (-1149 |#1| |#2| |#3| |#4|)) (-959 (-1148 |#2| |#3| |#4|)) (-10 -8 (-15 -2811 ((-3 (-775 |#2|) "failed") $)) (-15 -2217 ($ (-1148 |#2| |#3| |#4|))))) (-13 (-782) (-959 (-519)) (-581 (-519)) (-423)) (-13 (-27) (-1103) (-402 |#1|)) (-1082) |#2|) (T -285)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *5 *6)) (-4 *4 (-13 (-27) (-1103) (-402 *3))) (-14 *5 (-1082)) (-14 *6 *4) (-4 *3 (-13 (-782) (-959 (-519)) (-581 (-519)) (-423))) (-5 *1 (-285 *3 *4 *5 *6)))) (-2811 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-782) (-959 (-519)) (-581 (-519)) (-423))) (-5 *2 (-775 *4)) (-5 *1 (-285 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1103) (-402 *3))) (-14 *5 (-1082)) (-14 *6 *4)))) +(-13 (-916 (-1149 |#1| |#2| |#3| |#4|)) (-959 (-1148 |#2| |#3| |#4|)) (-10 -8 (-15 -2811 ((-3 (-775 |#2|) "failed") $)) (-15 -2217 ($ (-1148 |#2| |#3| |#4|))))) +((-1405 (((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)) 13))) +(((-286 |#1| |#2|) (-10 -7 (-15 -1405 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) (-782) (-782)) (T -286)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-782)) (-4 *6 (-782)) (-5 *2 (-288 *6)) (-5 *1 (-286 *5 *6))))) +(-10 -7 (-15 -1405 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) +((-3110 (((-51) |#2| (-267 |#2|) (-705)) 33) (((-51) |#2| (-267 |#2|)) 24) (((-51) |#2| (-705)) 28) (((-51) |#2|) 25) (((-51) (-1082)) 21)) (-2824 (((-51) |#2| (-267 |#2|) (-379 (-519))) 51) (((-51) |#2| (-267 |#2|)) 48) (((-51) |#2| (-379 (-519))) 50) (((-51) |#2|) 49) (((-51) (-1082)) 47)) (-3131 (((-51) |#2| (-267 |#2|) (-379 (-519))) 46) (((-51) |#2| (-267 |#2|)) 43) (((-51) |#2| (-379 (-519))) 45) (((-51) |#2|) 44) (((-51) (-1082)) 42)) (-3120 (((-51) |#2| (-267 |#2|) (-519)) 39) (((-51) |#2| (-267 |#2|)) 35) (((-51) |#2| (-519)) 38) (((-51) |#2|) 36) (((-51) (-1082)) 34))) +(((-287 |#1| |#2|) (-10 -7 (-15 -3110 ((-51) (-1082))) (-15 -3110 ((-51) |#2|)) (-15 -3110 ((-51) |#2| (-705))) (-15 -3110 ((-51) |#2| (-267 |#2|))) (-15 -3110 ((-51) |#2| (-267 |#2|) (-705))) (-15 -3120 ((-51) (-1082))) (-15 -3120 ((-51) |#2|)) (-15 -3120 ((-51) |#2| (-519))) (-15 -3120 ((-51) |#2| (-267 |#2|))) (-15 -3120 ((-51) |#2| (-267 |#2|) (-519))) (-15 -3131 ((-51) (-1082))) (-15 -3131 ((-51) |#2|)) (-15 -3131 ((-51) |#2| (-379 (-519)))) (-15 -3131 ((-51) |#2| (-267 |#2|))) (-15 -3131 ((-51) |#2| (-267 |#2|) (-379 (-519)))) (-15 -2824 ((-51) (-1082))) (-15 -2824 ((-51) |#2|)) (-15 -2824 ((-51) |#2| (-379 (-519)))) (-15 -2824 ((-51) |#2| (-267 |#2|))) (-15 -2824 ((-51) |#2| (-267 |#2|) (-379 (-519))))) (-13 (-423) (-782) (-959 (-519)) (-581 (-519))) (-13 (-27) (-1103) (-402 |#1|))) (T -287)) +((-2824 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-267 *3)) (-5 *5 (-379 (-519))) (-4 *3 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-2824 (*1 *2 *3 *4) (-12 (-5 *4 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))) (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *3)))) (-2824 (*1 *2 *3 *4) (-12 (-5 *4 (-379 (-519))) (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))))) (-2824 (*1 *2 *3) (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *4))))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-27) (-1103) (-402 *4))))) (-3131 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-267 *3)) (-5 *5 (-379 (-519))) (-4 *3 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3131 (*1 *2 *3 *4) (-12 (-5 *4 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))) (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *3)))) (-3131 (*1 *2 *3 *4) (-12 (-5 *4 (-379 (-519))) (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))))) (-3131 (*1 *2 *3) (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *4))))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-27) (-1103) (-402 *4))))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-423) (-782) (-959 *5) (-581 *5))) (-5 *5 (-519)) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3120 (*1 *2 *3 *4) (-12 (-5 *4 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))) (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *3)))) (-3120 (*1 *2 *3 *4) (-12 (-5 *4 (-519)) (-4 *5 (-13 (-423) (-782) (-959 *4) (-581 *4))) (-5 *2 (-51)) (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))))) (-3120 (*1 *2 *3) (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *4))))) (-3120 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-27) (-1103) (-402 *4))))) (-3110 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-267 *3)) (-5 *5 (-705)) (-4 *3 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3110 (*1 *2 *3 *4) (-12 (-5 *4 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))) (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *3)))) (-3110 (*1 *2 *3 *4) (-12 (-5 *4 (-705)) (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *4))))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-27) (-1103) (-402 *4)))))) +(-10 -7 (-15 -3110 ((-51) (-1082))) (-15 -3110 ((-51) |#2|)) (-15 -3110 ((-51) |#2| (-705))) (-15 -3110 ((-51) |#2| (-267 |#2|))) (-15 -3110 ((-51) |#2| (-267 |#2|) (-705))) (-15 -3120 ((-51) (-1082))) (-15 -3120 ((-51) |#2|)) (-15 -3120 ((-51) |#2| (-519))) (-15 -3120 ((-51) |#2| (-267 |#2|))) (-15 -3120 ((-51) |#2| (-267 |#2|) (-519))) (-15 -3131 ((-51) (-1082))) (-15 -3131 ((-51) |#2|)) (-15 -3131 ((-51) |#2| (-379 (-519)))) (-15 -3131 ((-51) |#2| (-267 |#2|))) (-15 -3131 ((-51) |#2| (-267 |#2|) (-379 (-519)))) (-15 -2824 ((-51) (-1082))) (-15 -2824 ((-51) |#2|)) (-15 -2824 ((-51) |#2| (-379 (-519)))) (-15 -2824 ((-51) |#2| (-267 |#2|))) (-15 -2824 ((-51) |#2| (-267 |#2|) (-379 (-519))))) +((-1430 (((-108) $ $) NIL)) (-1211 (((-585 $) $ (-1082)) NIL (|has| |#1| (-511))) (((-585 $) $) NIL (|has| |#1| (-511))) (((-585 $) (-1078 $) (-1082)) NIL (|has| |#1| (-511))) (((-585 $) (-1078 $)) NIL (|has| |#1| (-511))) (((-585 $) (-879 $)) NIL (|has| |#1| (-511)))) (-2977 (($ $ (-1082)) NIL (|has| |#1| (-511))) (($ $) NIL (|has| |#1| (-511))) (($ (-1078 $) (-1082)) NIL (|has| |#1| (-511))) (($ (-1078 $)) NIL (|has| |#1| (-511))) (($ (-879 $)) NIL (|has| |#1| (-511)))) (-3569 (((-108) $) 27 (-3730 (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968)))))) (-4083 (((-585 (-1082)) $) 345)) (-1283 (((-379 (-1078 $)) $ (-558 $)) NIL (|has| |#1| (-511)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-1890 (((-585 (-558 $)) $) NIL)) (-2958 (($ $) 154 (|has| |#1| (-511)))) (-2823 (($ $) 130 (|has| |#1| (-511)))) (-3986 (($ $ (-1004 $)) 215 (|has| |#1| (-511))) (($ $ (-1082)) 211 (|has| |#1| (-511)))) (-3167 (((-3 $ "failed") $ $) NIL (-3730 (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968)))))) (-3364 (($ $ (-267 $)) NIL) (($ $ (-585 (-267 $))) 361) (($ $ (-585 (-558 $)) (-585 $)) 404)) (-1958 (((-390 (-1078 $)) (-1078 $)) 289 (-12 (|has| |#1| (-423)) (|has| |#1| (-511))))) (-4043 (($ $) NIL (|has| |#1| (-511)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-511)))) (-1934 (($ $) NIL (|has| |#1| (-511)))) (-3409 (((-108) $ $) NIL (|has| |#1| (-511)))) (-2934 (($ $) 150 (|has| |#1| (-511)))) (-2800 (($ $) 126 (|has| |#1| (-511)))) (-2175 (($ $ (-519)) 64 (|has| |#1| (-511)))) (-2981 (($ $) 158 (|has| |#1| (-511)))) (-2844 (($ $) 134 (|has| |#1| (-511)))) (-2249 (($) NIL (-3730 (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))) (|has| |#1| (-1023))) CONST)) (-2825 (((-585 $) $ (-1082)) NIL (|has| |#1| (-511))) (((-585 $) $) NIL (|has| |#1| (-511))) (((-585 $) (-1078 $) (-1082)) NIL (|has| |#1| (-511))) (((-585 $) (-1078 $)) NIL (|has| |#1| (-511))) (((-585 $) (-879 $)) NIL (|has| |#1| (-511)))) (-4027 (($ $ (-1082)) NIL (|has| |#1| (-511))) (($ $) NIL (|has| |#1| (-511))) (($ (-1078 $) (-1082)) 117 (|has| |#1| (-511))) (($ (-1078 $)) NIL (|has| |#1| (-511))) (($ (-879 $)) NIL (|has| |#1| (-511)))) (-1301 (((-3 (-558 $) "failed") $) 17) (((-3 (-1082) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-511)) (|has| |#1| (-959 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-879 |#1|)) "failed") $) NIL (|has| |#1| (-511))) (((-3 (-879 |#1|) "failed") $) NIL (|has| |#1| (-968))) (((-3 (-379 (-519)) "failed") $) 45 (-3730 (-12 (|has| |#1| (-511)) (|has| |#1| (-959 (-519)))) (|has| |#1| (-959 (-379 (-519))))))) (-1499 (((-558 $) $) 11) (((-1082) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-511)) (|has| |#1| (-959 (-519))))) (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-879 |#1|)) $) NIL (|has| |#1| (-511))) (((-879 |#1|) $) NIL (|has| |#1| (-968))) (((-379 (-519)) $) 302 (-3730 (-12 (|has| |#1| (-511)) (|has| |#1| (-959 (-519)))) (|has| |#1| (-959 (-379 (-519))))))) (-2311 (($ $ $) NIL (|has| |#1| (-511)))) (-1562 (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 110 (|has| |#1| (-968))) (((-625 |#1|) (-625 $)) 102 (|has| |#1| (-968))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968)))) (((-625 (-519)) (-625 $)) NIL (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))))) (-3874 (($ $) 84 (|has| |#1| (-511)))) (-4193 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))) (|has| |#1| (-1023))))) (-2286 (($ $ $) NIL (|has| |#1| (-511)))) (-2792 (($ $ (-1004 $)) 219 (|has| |#1| (-511))) (($ $ (-1082)) 217 (|has| |#1| (-511)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-511)))) (-1320 (((-108) $) NIL (|has| |#1| (-511)))) (-1831 (($ $ $) 185 (|has| |#1| (-511)))) (-2888 (($) 120 (|has| |#1| (-511)))) (-3449 (($ $ $) 205 (|has| |#1| (-511)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 367 (|has| |#1| (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 373 (|has| |#1| (-813 (-351))))) (-1340 (($ $) NIL) (($ (-585 $)) NIL)) (-3866 (((-585 (-110)) $) NIL)) (-3752 (((-110) (-110)) 260)) (-1568 (((-108) $) 25 (-3730 (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))) (|has| |#1| (-1023))))) (-3164 (((-108) $) NIL (|has| $ (-959 (-519))))) (-1534 (($ $) 66 (|has| |#1| (-968)))) (-2855 (((-1034 |#1| (-558 $)) $) 79 (|has| |#1| (-968)))) (-4131 (((-108) $) 46 (|has| |#1| (-511)))) (-1517 (($ $ (-519)) NIL (|has| |#1| (-511)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-511)))) (-2042 (((-1078 $) (-558 $)) 261 (|has| $ (-968)))) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1405 (($ (-1 $ $) (-558 $)) 400)) (-3029 (((-3 (-558 $) "failed") $) NIL)) (-1254 (($ $) 124 (|has| |#1| (-511)))) (-3306 (($ $) 230 (|has| |#1| (-511)))) (-2254 (($ (-585 $)) NIL (|has| |#1| (-511))) (($ $ $) NIL (|has| |#1| (-511)))) (-1266 (((-1065) $) NIL)) (-1268 (((-585 (-558 $)) $) 48)) (-2959 (($ (-110) $) NIL) (($ (-110) (-585 $)) 405)) (-3499 (((-3 (-585 $) "failed") $) NIL (|has| |#1| (-1023)))) (-3785 (((-3 (-2 (|:| |val| $) (|:| -1690 (-519))) "failed") $) NIL (|has| |#1| (-968)))) (-2100 (((-3 (-585 $) "failed") $) 408 (|has| |#1| (-25)))) (-3672 (((-3 (-2 (|:| -3031 (-519)) (|:| |var| (-558 $))) "failed") $) 412 (|has| |#1| (-25)))) (-2669 (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $) NIL (|has| |#1| (-1023))) (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $ (-110)) NIL (|has| |#1| (-968))) (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $ (-1082)) NIL (|has| |#1| (-968)))) (-2917 (((-108) $ (-110)) NIL) (((-108) $ (-1082)) 52)) (-3151 (($ $) NIL (-3730 (|has| |#1| (-444)) (|has| |#1| (-511))))) (-3647 (($ $ (-1082)) 234 (|has| |#1| (-511))) (($ $ (-1004 $)) 236 (|has| |#1| (-511)))) (-4141 (((-705) $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) 43)) (-3173 ((|#1| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 282 (|has| |#1| (-511)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-511))) (($ $ $) NIL (|has| |#1| (-511)))) (-4040 (((-108) $ $) NIL) (((-108) $ (-1082)) NIL)) (-3938 (($ $ (-1082)) 209 (|has| |#1| (-511))) (($ $) 207 (|has| |#1| (-511)))) (-1314 (($ $) 201 (|has| |#1| (-511)))) (-3966 (((-390 (-1078 $)) (-1078 $)) 287 (-12 (|has| |#1| (-423)) (|has| |#1| (-511))))) (-1921 (((-390 $) $) NIL (|has| |#1| (-511)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-511))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-511)))) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-511)))) (-3325 (($ $) 122 (|has| |#1| (-511)))) (-1295 (((-108) $) NIL (|has| $ (-959 (-519))))) (-2324 (($ $ (-558 $) $) NIL) (($ $ (-585 (-558 $)) (-585 $)) 399) (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-585 (-1082)) (-585 (-1 $ $))) NIL) (($ $ (-585 (-1082)) (-585 (-1 $ (-585 $)))) NIL) (($ $ (-1082) (-1 $ (-585 $))) NIL) (($ $ (-1082) (-1 $ $)) NIL) (($ $ (-585 (-110)) (-585 (-1 $ $))) 355) (($ $ (-585 (-110)) (-585 (-1 $ (-585 $)))) NIL) (($ $ (-110) (-1 $ (-585 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1082)) NIL (|has| |#1| (-560 (-495)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-560 (-495)))) (($ $) NIL (|has| |#1| (-560 (-495)))) (($ $ (-110) $ (-1082)) 343 (|has| |#1| (-560 (-495)))) (($ $ (-585 (-110)) (-585 $) (-1082)) 342 (|has| |#1| (-560 (-495)))) (($ $ (-585 (-1082)) (-585 (-705)) (-585 (-1 $ $))) NIL (|has| |#1| (-968))) (($ $ (-585 (-1082)) (-585 (-705)) (-585 (-1 $ (-585 $)))) NIL (|has| |#1| (-968))) (($ $ (-1082) (-705) (-1 $ (-585 $))) NIL (|has| |#1| (-968))) (($ $ (-1082) (-705) (-1 $ $)) NIL (|has| |#1| (-968)))) (-3129 (((-705) $) NIL (|has| |#1| (-511)))) (-2759 (($ $) 222 (|has| |#1| (-511)))) (-2598 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-585 $)) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-511)))) (-1802 (($ $) NIL) (($ $ $) NIL)) (-2788 (($ $) 232 (|has| |#1| (-511)))) (-1989 (($ $) 183 (|has| |#1| (-511)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-968))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-968))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-968))) (($ $ (-1082)) NIL (|has| |#1| (-968)))) (-2724 (($ $) 67 (|has| |#1| (-511)))) (-2866 (((-1034 |#1| (-558 $)) $) 81 (|has| |#1| (-511)))) (-1462 (($ $) 300 (|has| $ (-968)))) (-1754 (($ $) 160 (|has| |#1| (-511)))) (-2854 (($ $) 136 (|has| |#1| (-511)))) (-2969 (($ $) 156 (|has| |#1| (-511)))) (-2834 (($ $) 132 (|has| |#1| (-511)))) (-2946 (($ $) 152 (|has| |#1| (-511)))) (-2812 (($ $) 128 (|has| |#1| (-511)))) (-1446 (((-819 (-519)) $) NIL (|has| |#1| (-560 (-819 (-519))))) (((-819 (-351)) $) NIL (|has| |#1| (-560 (-819 (-351))))) (($ (-390 $)) NIL (|has| |#1| (-511))) (((-495) $) 340 (|has| |#1| (-560 (-495))))) (-3333 (($ $ $) NIL (|has| |#1| (-444)))) (-3190 (($ $ $) NIL (|has| |#1| (-444)))) (-2217 (((-790) $) 398) (($ (-558 $)) 389) (($ (-1082)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-511))) (($ (-47)) 294 (-12 (|has| |#1| (-511)) (|has| |#1| (-959 (-519))))) (($ (-1034 |#1| (-558 $))) 83 (|has| |#1| (-968))) (($ (-379 |#1|)) NIL (|has| |#1| (-511))) (($ (-879 (-379 |#1|))) NIL (|has| |#1| (-511))) (($ (-379 (-879 (-379 |#1|)))) NIL (|has| |#1| (-511))) (($ (-379 (-879 |#1|))) NIL (|has| |#1| (-511))) (($ (-879 |#1|)) NIL (|has| |#1| (-968))) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-511)) (|has| |#1| (-959 (-379 (-519)))))) (($ (-519)) 34 (-3730 (|has| |#1| (-959 (-519))) (|has| |#1| (-968))))) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL (|has| |#1| (-968)))) (-1647 (($ $) NIL) (($ (-585 $)) NIL)) (-3563 (($ $ $) 203 (|has| |#1| (-511)))) (-3872 (($ $ $) 189 (|has| |#1| (-511)))) (-3793 (($ $ $) 193 (|has| |#1| (-511)))) (-1600 (($ $ $) 187 (|has| |#1| (-511)))) (-2628 (($ $ $) 191 (|has| |#1| (-511)))) (-2631 (((-108) (-110)) 9)) (-1774 (($ $) 166 (|has| |#1| (-511)))) (-2886 (($ $) 142 (|has| |#1| (-511)))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1761 (($ $) 162 (|has| |#1| (-511)))) (-2865 (($ $) 138 (|has| |#1| (-511)))) (-1790 (($ $) 170 (|has| |#1| (-511)))) (-2910 (($ $) 146 (|has| |#1| (-511)))) (-1816 (($ (-1082) $) NIL) (($ (-1082) $ $) NIL) (($ (-1082) $ $ $) NIL) (($ (-1082) $ $ $ $) NIL) (($ (-1082) (-585 $)) NIL)) (-1810 (($ $) 197 (|has| |#1| (-511)))) (-2767 (($ $) 195 (|has| |#1| (-511)))) (-3929 (($ $) 172 (|has| |#1| (-511)))) (-2922 (($ $) 148 (|has| |#1| (-511)))) (-1783 (($ $) 168 (|has| |#1| (-511)))) (-2898 (($ $) 144 (|has| |#1| (-511)))) (-1768 (($ $) 164 (|has| |#1| (-511)))) (-2875 (($ $) 140 (|has| |#1| (-511)))) (-1478 (($ $) 175 (|has| |#1| (-511)))) (-3559 (($ $ (-519)) NIL (-3730 (|has| |#1| (-444)) (|has| |#1| (-511)))) (($ $ (-705)) NIL (-3730 (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))) (|has| |#1| (-1023)))) (($ $ (-848)) NIL (-3730 (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))) (|has| |#1| (-1023))))) (-3602 (($) 20 (-3730 (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968)))) CONST)) (-3336 (($ $) 226 (|has| |#1| (-511)))) (-3611 (($) 22 (-3730 (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))) (|has| |#1| (-1023))) CONST)) (-1222 (($ $) 177 (|has| |#1| (-511))) (($ $ $) 179 (|has| |#1| (-511)))) (-3981 (($ $) 224 (|has| |#1| (-511)))) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-968))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-968))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-968))) (($ $ (-1082)) NIL (|has| |#1| (-968)))) (-1949 (($ $) 228 (|has| |#1| (-511)))) (-2144 (($ $ $) 181 (|has| |#1| (-511)))) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 76)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 75)) (-1632 (($ (-1034 |#1| (-558 $)) (-1034 |#1| (-558 $))) 93 (|has| |#1| (-511))) (($ $ $) 42 (-3730 (|has| |#1| (-444)) (|has| |#1| (-511))))) (-1623 (($ $ $) 40 (-3730 (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))))) (($ $) 29 (-3730 (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968)))))) (-1614 (($ $ $) 38 (-3730 (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968)))))) (** (($ $ $) 61 (|has| |#1| (-511))) (($ $ (-379 (-519))) 297 (|has| |#1| (-511))) (($ $ (-519)) 71 (-3730 (|has| |#1| (-444)) (|has| |#1| (-511)))) (($ $ (-705)) 68 (-3730 (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))) (|has| |#1| (-1023)))) (($ $ (-848)) 73 (-3730 (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))) (|has| |#1| (-1023))))) (* (($ (-379 (-519)) $) NIL (|has| |#1| (-511))) (($ $ (-379 (-519))) NIL (|has| |#1| (-511))) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))) (($ $ $) 36 (-3730 (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))) (|has| |#1| (-1023)))) (($ (-519) $) 32 (-3730 (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))))) (($ (-705) $) NIL (-3730 (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))))) (($ (-848) $) NIL (-3730 (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))))))) +(((-288 |#1|) (-13 (-402 |#1|) (-10 -8 (IF (|has| |#1| (-511)) (PROGN (-6 (-29 |#1|)) (-6 (-1103)) (-6 (-146)) (-6 (-571)) (-6 (-1046)) (-15 -3874 ($ $)) (-15 -4131 ((-108) $)) (-15 -2175 ($ $ (-519))) (IF (|has| |#1| (-423)) (PROGN (-15 -3966 ((-390 (-1078 $)) (-1078 $))) (-15 -1958 ((-390 (-1078 $)) (-1078 $)))) |%noBranch|) (IF (|has| |#1| (-959 (-519))) (-6 (-959 (-47))) |%noBranch|)) |%noBranch|))) (-782)) (T -288)) +((-3874 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-511)) (-4 *2 (-782)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-288 *3)) (-4 *3 (-511)) (-4 *3 (-782)))) (-2175 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-288 *3)) (-4 *3 (-511)) (-4 *3 (-782)))) (-3966 (*1 *2 *3) (-12 (-5 *2 (-390 (-1078 *1))) (-5 *1 (-288 *4)) (-5 *3 (-1078 *1)) (-4 *4 (-423)) (-4 *4 (-511)) (-4 *4 (-782)))) (-1958 (*1 *2 *3) (-12 (-5 *2 (-390 (-1078 *1))) (-5 *1 (-288 *4)) (-5 *3 (-1078 *1)) (-4 *4 (-423)) (-4 *4 (-511)) (-4 *4 (-782))))) +(-13 (-402 |#1|) (-10 -8 (IF (|has| |#1| (-511)) (PROGN (-6 (-29 |#1|)) (-6 (-1103)) (-6 (-146)) (-6 (-571)) (-6 (-1046)) (-15 -3874 ($ $)) (-15 -4131 ((-108) $)) (-15 -2175 ($ $ (-519))) (IF (|has| |#1| (-423)) (PROGN (-15 -3966 ((-390 (-1078 $)) (-1078 $))) (-15 -1958 ((-390 (-1078 $)) (-1078 $)))) |%noBranch|) (IF (|has| |#1| (-959 (-519))) (-6 (-959 (-47))) |%noBranch|)) |%noBranch|))) +((-2060 (((-51) |#2| (-110) (-267 |#2|) (-585 |#2|)) 86) (((-51) |#2| (-110) (-267 |#2|) (-267 |#2|)) 82) (((-51) |#2| (-110) (-267 |#2|) |#2|) 84) (((-51) (-267 |#2|) (-110) (-267 |#2|) |#2|) 85) (((-51) (-585 |#2|) (-585 (-110)) (-267 |#2|) (-585 (-267 |#2|))) 78) (((-51) (-585 |#2|) (-585 (-110)) (-267 |#2|) (-585 |#2|)) 80) (((-51) (-585 (-267 |#2|)) (-585 (-110)) (-267 |#2|) (-585 |#2|)) 81) (((-51) (-585 (-267 |#2|)) (-585 (-110)) (-267 |#2|) (-585 (-267 |#2|))) 79) (((-51) (-267 |#2|) (-110) (-267 |#2|) (-585 |#2|)) 87) (((-51) (-267 |#2|) (-110) (-267 |#2|) (-267 |#2|)) 83))) +(((-289 |#1| |#2|) (-10 -7 (-15 -2060 ((-51) (-267 |#2|) (-110) (-267 |#2|) (-267 |#2|))) (-15 -2060 ((-51) (-267 |#2|) (-110) (-267 |#2|) (-585 |#2|))) (-15 -2060 ((-51) (-585 (-267 |#2|)) (-585 (-110)) (-267 |#2|) (-585 (-267 |#2|)))) (-15 -2060 ((-51) (-585 (-267 |#2|)) (-585 (-110)) (-267 |#2|) (-585 |#2|))) (-15 -2060 ((-51) (-585 |#2|) (-585 (-110)) (-267 |#2|) (-585 |#2|))) (-15 -2060 ((-51) (-585 |#2|) (-585 (-110)) (-267 |#2|) (-585 (-267 |#2|)))) (-15 -2060 ((-51) (-267 |#2|) (-110) (-267 |#2|) |#2|)) (-15 -2060 ((-51) |#2| (-110) (-267 |#2|) |#2|)) (-15 -2060 ((-51) |#2| (-110) (-267 |#2|) (-267 |#2|))) (-15 -2060 ((-51) |#2| (-110) (-267 |#2|) (-585 |#2|)))) (-13 (-782) (-511) (-560 (-495))) (-402 |#1|)) (T -289)) +((-2060 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-267 *3)) (-5 *6 (-585 *3)) (-4 *3 (-402 *7)) (-4 *7 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) (-5 *1 (-289 *7 *3)))) (-2060 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-267 *3)) (-4 *3 (-402 *6)) (-4 *6 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *3)))) (-2060 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-267 *3)) (-4 *3 (-402 *6)) (-4 *6 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *3)))) (-2060 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-267 *5)) (-5 *4 (-110)) (-4 *5 (-402 *6)) (-4 *6 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *5)))) (-2060 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-110))) (-5 *6 (-585 (-267 *8))) (-4 *8 (-402 *7)) (-5 *5 (-267 *8)) (-4 *7 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) (-5 *1 (-289 *7 *8)))) (-2060 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-110))) (-5 *5 (-267 *7)) (-4 *7 (-402 *6)) (-4 *6 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *7)))) (-2060 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 (-267 *8))) (-5 *4 (-585 (-110))) (-5 *5 (-267 *8)) (-5 *6 (-585 *8)) (-4 *8 (-402 *7)) (-4 *7 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) (-5 *1 (-289 *7 *8)))) (-2060 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-585 (-267 *7))) (-5 *4 (-585 (-110))) (-5 *5 (-267 *7)) (-4 *7 (-402 *6)) (-4 *6 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *7)))) (-2060 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-267 *7)) (-5 *4 (-110)) (-5 *5 (-585 *7)) (-4 *7 (-402 *6)) (-4 *6 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *7)))) (-2060 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-267 *6)) (-5 *4 (-110)) (-4 *6 (-402 *5)) (-4 *5 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *6))))) +(-10 -7 (-15 -2060 ((-51) (-267 |#2|) (-110) (-267 |#2|) (-267 |#2|))) (-15 -2060 ((-51) (-267 |#2|) (-110) (-267 |#2|) (-585 |#2|))) (-15 -2060 ((-51) (-585 (-267 |#2|)) (-585 (-110)) (-267 |#2|) (-585 (-267 |#2|)))) (-15 -2060 ((-51) (-585 (-267 |#2|)) (-585 (-110)) (-267 |#2|) (-585 |#2|))) (-15 -2060 ((-51) (-585 |#2|) (-585 (-110)) (-267 |#2|) (-585 |#2|))) (-15 -2060 ((-51) (-585 |#2|) (-585 (-110)) (-267 |#2|) (-585 (-267 |#2|)))) (-15 -2060 ((-51) (-267 |#2|) (-110) (-267 |#2|) |#2|)) (-15 -2060 ((-51) |#2| (-110) (-267 |#2|) |#2|)) (-15 -2060 ((-51) |#2| (-110) (-267 |#2|) (-267 |#2|))) (-15 -2060 ((-51) |#2| (-110) (-267 |#2|) (-585 |#2|)))) +((-3513 (((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-201) (-519) (-1065)) 46) (((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-201) (-519)) 47) (((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-1 (-201) (-201)) (-519) (-1065)) 43) (((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-1 (-201) (-201)) (-519)) 44)) (-1248 (((-1 (-201) (-201)) (-201)) 45))) +(((-290) (-10 -7 (-15 -1248 ((-1 (-201) (-201)) (-201))) (-15 -3513 ((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-1 (-201) (-201)) (-519))) (-15 -3513 ((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-1 (-201) (-201)) (-519) (-1065))) (-15 -3513 ((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-201) (-519))) (-15 -3513 ((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-201) (-519) (-1065))))) (T -290)) +((-3513 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-288 (-519))) (-5 *4 (-1 (-201) (-201))) (-5 *5 (-1006 (-201))) (-5 *6 (-201)) (-5 *7 (-519)) (-5 *8 (-1065)) (-5 *2 (-1113 (-853))) (-5 *1 (-290)))) (-3513 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-288 (-519))) (-5 *4 (-1 (-201) (-201))) (-5 *5 (-1006 (-201))) (-5 *6 (-201)) (-5 *7 (-519)) (-5 *2 (-1113 (-853))) (-5 *1 (-290)))) (-3513 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-288 (-519))) (-5 *4 (-1 (-201) (-201))) (-5 *5 (-1006 (-201))) (-5 *6 (-519)) (-5 *7 (-1065)) (-5 *2 (-1113 (-853))) (-5 *1 (-290)))) (-3513 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-288 (-519))) (-5 *4 (-1 (-201) (-201))) (-5 *5 (-1006 (-201))) (-5 *6 (-519)) (-5 *2 (-1113 (-853))) (-5 *1 (-290)))) (-1248 (*1 *2 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-290)) (-5 *3 (-201))))) +(-10 -7 (-15 -1248 ((-1 (-201) (-201)) (-201))) (-15 -3513 ((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-1 (-201) (-201)) (-519))) (-15 -3513 ((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-1 (-201) (-201)) (-519) (-1065))) (-15 -3513 ((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-201) (-519))) (-15 -3513 ((-1113 (-853)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-201) (-519) (-1065)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 24)) (-4083 (((-585 (-996)) $) NIL)) (-1622 (((-1082) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-4057 (($ $ (-379 (-519))) NIL) (($ $ (-379 (-519)) (-379 (-519))) NIL)) (-3088 (((-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|))) $) 19)) (-2958 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL (|has| |#1| (-335)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-2934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2824 (($ (-705) (-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|)))) NIL)) (-2981 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) 31)) (-4193 (((-3 $ "failed") $) NIL)) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-1320 (((-108) $) NIL (|has| |#1| (-335)))) (-3943 (((-108) $) NIL)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-379 (-519)) $) NIL) (((-379 (-519)) $ (-379 (-519))) 15)) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1855 (($ $ (-848)) NIL) (($ $ (-379 (-519))) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-379 (-519))) NIL) (($ $ (-996) (-379 (-519))) NIL) (($ $ (-585 (-996)) (-585 (-379 (-519)))) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL (|has| |#1| (-335)))) (-4142 (($ $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) NIL (-3730 (-12 (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-885)) (|has| |#1| (-1103)))))) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-335)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-3881 (($ $ (-379 (-519))) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-1718 (((-379 (-519)) $) 16)) (-3807 (($ (-1148 |#1| |#2| |#3|)) 11)) (-1690 (((-1148 |#1| |#2| |#3|) $) 12)) (-3325 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))))) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-2598 ((|#1| $ (-379 (-519))) NIL) (($ $ $) NIL (|has| (-379 (-519)) (-1023)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (-4178 (((-379 (-519)) $) NIL)) (-1754 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) 10)) (-2217 (((-790) $) 37) (($ (-519)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $) NIL (|has| |#1| (-511)))) (-1220 ((|#1| $ (-379 (-519))) 29)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-1896 ((|#1| $) NIL)) (-1774 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1761 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-379 (-519))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 26)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 32)) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-291 |#1| |#2| |#3|) (-13 (-1144 |#1|) (-726) (-10 -8 (-15 -3807 ($ (-1148 |#1| |#2| |#3|))) (-15 -1690 ((-1148 |#1| |#2| |#3|) $)) (-15 -1718 ((-379 (-519)) $)))) (-13 (-335) (-782)) (-1082) |#1|) (T -291)) +((-3807 (*1 *1 *2) (-12 (-5 *2 (-1148 *3 *4 *5)) (-4 *3 (-13 (-335) (-782))) (-14 *4 (-1082)) (-14 *5 *3) (-5 *1 (-291 *3 *4 *5)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-1148 *3 *4 *5)) (-5 *1 (-291 *3 *4 *5)) (-4 *3 (-13 (-335) (-782))) (-14 *4 (-1082)) (-14 *5 *3))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-291 *3 *4 *5)) (-4 *3 (-13 (-335) (-782))) (-14 *4 (-1082)) (-14 *5 *3)))) +(-13 (-1144 |#1|) (-726) (-10 -8 (-15 -3807 ($ (-1148 |#1| |#2| |#3|))) (-15 -1690 ((-1148 |#1| |#2| |#3|) $)) (-15 -1718 ((-379 (-519)) $)))) +((-1517 (((-2 (|:| -1690 (-705)) (|:| -3031 |#1|) (|:| |radicand| (-585 |#1|))) (-390 |#1|) (-705)) 24)) (-1254 (((-585 (-2 (|:| -3031 (-705)) (|:| |logand| |#1|))) (-390 |#1|)) 28))) +(((-292 |#1|) (-10 -7 (-15 -1517 ((-2 (|:| -1690 (-705)) (|:| -3031 |#1|) (|:| |radicand| (-585 |#1|))) (-390 |#1|) (-705))) (-15 -1254 ((-585 (-2 (|:| -3031 (-705)) (|:| |logand| |#1|))) (-390 |#1|)))) (-511)) (T -292)) +((-1254 (*1 *2 *3) (-12 (-5 *3 (-390 *4)) (-4 *4 (-511)) (-5 *2 (-585 (-2 (|:| -3031 (-705)) (|:| |logand| *4)))) (-5 *1 (-292 *4)))) (-1517 (*1 *2 *3 *4) (-12 (-5 *3 (-390 *5)) (-4 *5 (-511)) (-5 *2 (-2 (|:| -1690 (-705)) (|:| -3031 *5) (|:| |radicand| (-585 *5)))) (-5 *1 (-292 *5)) (-5 *4 (-705))))) +(-10 -7 (-15 -1517 ((-2 (|:| -1690 (-705)) (|:| -3031 |#1|) (|:| |radicand| (-585 |#1|))) (-390 |#1|) (-705))) (-15 -1254 ((-585 (-2 (|:| -3031 (-705)) (|:| |logand| |#1|))) (-390 |#1|)))) +((-4083 (((-585 |#2|) (-1078 |#4|)) 43)) (-3787 ((|#3| (-519)) 46)) (-2280 (((-1078 |#4|) (-1078 |#3|)) 30)) (-3456 (((-1078 |#4|) (-1078 |#4|) (-519)) 56)) (-3346 (((-1078 |#3|) (-1078 |#4|)) 21)) (-4178 (((-585 (-705)) (-1078 |#4|) (-585 |#2|)) 40)) (-2407 (((-1078 |#3|) (-1078 |#4|) (-585 |#2|) (-585 |#3|)) 35))) +(((-293 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2407 ((-1078 |#3|) (-1078 |#4|) (-585 |#2|) (-585 |#3|))) (-15 -4178 ((-585 (-705)) (-1078 |#4|) (-585 |#2|))) (-15 -4083 ((-585 |#2|) (-1078 |#4|))) (-15 -3346 ((-1078 |#3|) (-1078 |#4|))) (-15 -2280 ((-1078 |#4|) (-1078 |#3|))) (-15 -3456 ((-1078 |#4|) (-1078 |#4|) (-519))) (-15 -3787 (|#3| (-519)))) (-727) (-782) (-968) (-876 |#3| |#1| |#2|)) (T -293)) +((-3787 (*1 *2 *3) (-12 (-5 *3 (-519)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-968)) (-5 *1 (-293 *4 *5 *2 *6)) (-4 *6 (-876 *2 *4 *5)))) (-3456 (*1 *2 *2 *3) (-12 (-5 *2 (-1078 *7)) (-5 *3 (-519)) (-4 *7 (-876 *6 *4 *5)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) (-5 *1 (-293 *4 *5 *6 *7)))) (-2280 (*1 *2 *3) (-12 (-5 *3 (-1078 *6)) (-4 *6 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-1078 *7)) (-5 *1 (-293 *4 *5 *6 *7)) (-4 *7 (-876 *6 *4 *5)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-1078 *7)) (-4 *7 (-876 *6 *4 *5)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) (-5 *2 (-1078 *6)) (-5 *1 (-293 *4 *5 *6 *7)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-1078 *7)) (-4 *7 (-876 *6 *4 *5)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) (-5 *2 (-585 *5)) (-5 *1 (-293 *4 *5 *6 *7)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-1078 *8)) (-5 *4 (-585 *6)) (-4 *6 (-782)) (-4 *8 (-876 *7 *5 *6)) (-4 *5 (-727)) (-4 *7 (-968)) (-5 *2 (-585 (-705))) (-5 *1 (-293 *5 *6 *7 *8)))) (-2407 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1078 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 *8)) (-4 *7 (-782)) (-4 *8 (-968)) (-4 *9 (-876 *8 *6 *7)) (-4 *6 (-727)) (-5 *2 (-1078 *8)) (-5 *1 (-293 *6 *7 *8 *9))))) +(-10 -7 (-15 -2407 ((-1078 |#3|) (-1078 |#4|) (-585 |#2|) (-585 |#3|))) (-15 -4178 ((-585 (-705)) (-1078 |#4|) (-585 |#2|))) (-15 -4083 ((-585 |#2|) (-1078 |#4|))) (-15 -3346 ((-1078 |#3|) (-1078 |#4|))) (-15 -2280 ((-1078 |#4|) (-1078 |#3|))) (-15 -3456 ((-1078 |#4|) (-1078 |#4|) (-519))) (-15 -3787 (|#3| (-519)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 14)) (-3088 (((-585 (-2 (|:| |gen| |#1|) (|:| -3325 (-519)))) $) 18)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1642 (((-705) $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-4059 ((|#1| $ (-519)) NIL)) (-2058 (((-519) $ (-519)) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3902 (($ (-1 |#1| |#1|) $) NIL)) (-2665 (($ (-1 (-519) (-519)) $) 10)) (-1266 (((-1065) $) NIL)) (-1899 (($ $ $) NIL (|has| (-519) (-726)))) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL) (($ |#1|) NIL)) (-1220 (((-519) |#1| $) NIL)) (-3602 (($) 15 T CONST)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) 21 (|has| |#1| (-782)))) (-1623 (($ $) 11) (($ $ $) 20)) (-1614 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ (-519)) NIL) (($ (-519) |#1|) 19))) +(((-294 |#1|) (-13 (-21) (-652 (-519)) (-295 |#1| (-519)) (-10 -7 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|))) (-1011)) (T -294)) +NIL +(-13 (-21) (-652 (-519)) (-295 |#1| (-519)) (-10 -7 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3088 (((-585 (-2 (|:| |gen| |#1|) (|:| -3325 |#2|))) $) 27)) (-3167 (((-3 $ "failed") $ $) 19)) (-1642 (((-705) $) 28)) (-2249 (($) 17 T CONST)) (-1301 (((-3 |#1| "failed") $) 32)) (-1499 ((|#1| $) 31)) (-4059 ((|#1| $ (-519)) 25)) (-2058 ((|#2| $ (-519)) 26)) (-3902 (($ (-1 |#1| |#1|) $) 22)) (-2665 (($ (-1 |#2| |#2|) $) 23)) (-1266 (((-1065) $) 9)) (-1899 (($ $ $) 21 (|has| |#2| (-726)))) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ |#1|) 33)) (-1220 ((|#2| |#1| $) 24)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1614 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ |#2| |#1|) 29))) +(((-295 |#1| |#2|) (-1194) (-1011) (-124)) (T -295)) +((-1614 (*1 *1 *2 *1) (-12 (-4 *1 (-295 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-124)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-124)))) (-1642 (*1 *2 *1) (-12 (-4 *1 (-295 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-124)) (-5 *2 (-705)))) (-3088 (*1 *2 *1) (-12 (-4 *1 (-295 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-124)) (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 *4)))))) (-2058 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *1 (-295 *4 *2)) (-4 *4 (-1011)) (-4 *2 (-124)))) (-4059 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *1 (-295 *2 *4)) (-4 *4 (-124)) (-4 *2 (-1011)))) (-1220 (*1 *2 *3 *1) (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-124)))) (-2665 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-295 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-124)))) (-3902 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-295 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-124)))) (-1899 (*1 *1 *1 *1) (-12 (-4 *1 (-295 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-124)) (-4 *3 (-726))))) +(-13 (-124) (-959 |t#1|) (-10 -8 (-15 -1614 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1642 ((-705) $)) (-15 -3088 ((-585 (-2 (|:| |gen| |t#1|) (|:| -3325 |t#2|))) $)) (-15 -2058 (|t#2| $ (-519))) (-15 -4059 (|t#1| $ (-519))) (-15 -1220 (|t#2| |t#1| $)) (-15 -2665 ($ (-1 |t#2| |t#2|) $)) (-15 -3902 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-726)) (-15 -1899 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-959 |#1|) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3088 (((-585 (-2 (|:| |gen| |#1|) (|:| -3325 (-705)))) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1642 (((-705) $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-4059 ((|#1| $ (-519)) NIL)) (-2058 (((-705) $ (-519)) NIL)) (-3902 (($ (-1 |#1| |#1|) $) NIL)) (-2665 (($ (-1 (-705) (-705)) $) NIL)) (-1266 (((-1065) $) NIL)) (-1899 (($ $ $) NIL (|has| (-705) (-726)))) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL) (($ |#1|) NIL)) (-1220 (((-705) |#1| $) NIL)) (-3602 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1614 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-705) |#1|) NIL))) +(((-296 |#1|) (-295 |#1| (-705)) (-1011)) (T -296)) +NIL +(-295 |#1| (-705)) +((-2177 (($ $) 53)) (-4015 (($ $ |#2| |#3| $) 14)) (-3737 (($ (-1 |#3| |#3|) $) 35)) (-3162 (((-108) $) 27)) (-3173 ((|#2| $) 29)) (-2261 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-3939 ((|#2| $) 49)) (-2988 (((-585 |#2|) $) 38)) (-1487 (($ $ $ (-705)) 23)) (-1632 (($ $ |#2|) 42))) +(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -2177 (|#1| |#1|)) (-15 -3939 (|#2| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1487 (|#1| |#1| |#1| (-705))) (-15 -4015 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3737 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2988 ((-585 |#2|) |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -3162 ((-108) |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1632 (|#1| |#1| |#2|))) (-298 |#2| |#3|) (-968) (-726)) (T -297)) +NIL +(-10 -8 (-15 -2177 (|#1| |#1|)) (-15 -3939 (|#2| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1487 (|#1| |#1| |#1| (-705))) (-15 -4015 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3737 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2988 ((-585 |#2|) |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -3162 ((-108) |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1632 (|#1| |#1| |#2|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 51 (|has| |#1| (-511)))) (-1410 (($ $) 52 (|has| |#1| (-511)))) (-3060 (((-108) $) 54 (|has| |#1| (-511)))) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1301 (((-3 (-519) "failed") $) 90 (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) 88 (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 87)) (-1499 (((-519) $) 91 (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) 89 (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) 86)) (-3218 (($ $) 60)) (-4193 (((-3 $ "failed") $) 34)) (-2177 (($ $) 75 (|has| |#1| (-423)))) (-4015 (($ $ |#1| |#2| $) 79)) (-1568 (((-108) $) 31)) (-3798 (((-705) $) 82)) (-2642 (((-108) $) 62)) (-4042 (($ |#1| |#2|) 61)) (-3695 ((|#2| $) 81)) (-3737 (($ (-1 |#2| |#2|) $) 80)) (-1405 (($ (-1 |#1| |#1|) $) 63)) (-3185 (($ $) 65)) (-3197 ((|#1| $) 66)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-3162 (((-108) $) 85)) (-3173 ((|#1| $) 84)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-511))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-511)))) (-4178 ((|#2| $) 64)) (-3939 ((|#1| $) 76 (|has| |#1| (-423)))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 49 (|has| |#1| (-511))) (($ |#1|) 47) (($ (-379 (-519))) 57 (-3730 (|has| |#1| (-959 (-379 (-519)))) (|has| |#1| (-37 (-379 (-519))))))) (-2988 (((-585 |#1|) $) 83)) (-1220 ((|#1| $ |#2|) 59)) (-3773 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1487 (($ $ $ (-705)) 78 (|has| |#1| (-157)))) (-1617 (((-108) $ $) 53 (|has| |#1| (-511)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#1|) 58 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-379 (-519)) $) 56 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 55 (|has| |#1| (-37 (-379 (-519))))))) +(((-298 |#1| |#2|) (-1194) (-968) (-726)) (T -298)) +((-3162 (*1 *2 *1) (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) (-5 *2 (-108)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-298 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) (-5 *2 (-585 *3)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) (-5 *2 (-705)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726)))) (-3737 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-298 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)))) (-4015 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)))) (-1487 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-298 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) (-4 *3 (-157)))) (-2261 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-298 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)) (-4 *2 (-511)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-298 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968)) (-4 *2 (-423)))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)) (-4 *2 (-423))))) +(-13 (-46 |t#1| |t#2|) (-383 |t#1|) (-10 -8 (-15 -3162 ((-108) $)) (-15 -3173 (|t#1| $)) (-15 -2988 ((-585 |t#1|) $)) (-15 -3798 ((-705) $)) (-15 -3695 (|t#2| $)) (-15 -3737 ($ (-1 |t#2| |t#2|) $)) (-15 -4015 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-157)) (-15 -1487 ($ $ $ (-705))) |%noBranch|) (IF (|has| |t#1| (-511)) (-15 -2261 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-423)) (PROGN (-15 -3939 (|t#1| $)) (-15 -2177 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-511)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-379 (-519)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-264) |has| |#1| (-511)) ((-383 |#1|) . T) ((-511) |has| |#1| (-511)) ((-587 #0#) |has| |#1| (-37 (-379 (-519)))) ((-587 |#1|) . T) ((-587 $) . T) ((-652 #0#) |has| |#1| (-37 (-379 (-519)))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) |has| |#1| (-511)) ((-661) . T) ((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 |#1|) . T) ((-974 #0#) |has| |#1| (-37 (-379 (-519)))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4222))) (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| |#1| (-782))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) NIL)) (-3351 (((-108) (-108)) NIL)) (-2421 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) NIL (|has| $ (-6 -4222)))) (-2846 (($ (-1 (-108) |#1|) $) NIL)) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-1552 (($ $) NIL (|has| |#1| (-1011)))) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2502 (($ |#1| $) NIL (|has| |#1| (-1011))) (($ (-1 (-108) |#1|) $) NIL)) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) NIL)) (-3297 (((-519) (-1 (-108) |#1|) $) NIL) (((-519) |#1| $) NIL (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) NIL (|has| |#1| (-1011)))) (-1747 (($ $ (-519)) NIL)) (-3684 (((-705) $) NIL)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1822 (($ (-705) |#1|) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2511 (($ $ $) NIL (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1846 (($ $ $ (-519)) NIL) (($ |#1| $ (-519)) NIL)) (-1672 (($ |#1| $ (-519)) NIL) (($ $ $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-1453 (($ (-585 |#1|)) NIL)) (-2331 ((|#1| $) NIL (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3640 (($ $ |#1|) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ (-519) |#1|) NIL) ((|#1| $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-2137 (($ $ (-1130 (-519))) NIL) (($ $ (-519)) NIL)) (-3720 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) NIL)) (-3954 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4150 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-585 $)) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-299 |#1|) (-13 (-19 |#1|) (-256 |#1|) (-10 -8 (-15 -1453 ($ (-585 |#1|))) (-15 -3684 ((-705) $)) (-15 -1747 ($ $ (-519))) (-15 -3351 ((-108) (-108))))) (-1117)) (T -299)) +((-1453 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-299 *3)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-299 *3)) (-4 *3 (-1117)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-299 *3)) (-4 *3 (-1117)))) (-3351 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-299 *3)) (-4 *3 (-1117))))) +(-13 (-19 |#1|) (-256 |#1|) (-10 -8 (-15 -1453 ($ (-585 |#1|))) (-15 -3684 ((-705) $)) (-15 -1747 ($ $ (-519))) (-15 -3351 ((-108) (-108))))) +((-3839 (((-108) $) 42)) (-1922 (((-705)) 22)) (-1871 ((|#2| $) 46) (($ $ (-848)) 103)) (-1642 (((-705)) 97)) (-2528 (($ (-1163 |#2|)) 20)) (-2877 (((-108) $) 115)) (-3681 ((|#2| $) 48) (($ $ (-848)) 101)) (-3437 (((-1078 |#2|) $) NIL) (((-1078 $) $ (-848)) 94)) (-1955 (((-1078 |#2|) $) 83)) (-3270 (((-1078 |#2|) $) 80) (((-3 (-1078 |#2|) "failed") $ $) 77)) (-3904 (($ $ (-1078 |#2|)) 53)) (-1445 (((-768 (-848))) 28) (((-848)) 43)) (-2914 (((-126)) 25)) (-4178 (((-768 (-848)) $) 30) (((-848) $) 116)) (-3670 (($) 109)) (-3399 (((-1163 |#2|) $) NIL) (((-625 |#2|) (-1163 $)) 39)) (-3773 (($ $) NIL) (((-3 $ "failed") $) 86)) (-3980 (((-108) $) 41))) +(((-300 |#1| |#2|) (-10 -8 (-15 -3773 ((-3 |#1| "failed") |#1|)) (-15 -1642 ((-705))) (-15 -3773 (|#1| |#1|)) (-15 -3270 ((-3 (-1078 |#2|) "failed") |#1| |#1|)) (-15 -3270 ((-1078 |#2|) |#1|)) (-15 -1955 ((-1078 |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1078 |#2|))) (-15 -2877 ((-108) |#1|)) (-15 -3670 (|#1|)) (-15 -1871 (|#1| |#1| (-848))) (-15 -3681 (|#1| |#1| (-848))) (-15 -3437 ((-1078 |#1|) |#1| (-848))) (-15 -1871 (|#2| |#1|)) (-15 -3681 (|#2| |#1|)) (-15 -4178 ((-848) |#1|)) (-15 -1445 ((-848))) (-15 -3437 ((-1078 |#2|) |#1|)) (-15 -2528 (|#1| (-1163 |#2|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1|)) (-15 -1922 ((-705))) (-15 -1445 ((-768 (-848)))) (-15 -4178 ((-768 (-848)) |#1|)) (-15 -3839 ((-108) |#1|)) (-15 -3980 ((-108) |#1|)) (-15 -2914 ((-126)))) (-301 |#2|) (-335)) (T -300)) +((-2914 (*1 *2) (-12 (-4 *4 (-335)) (-5 *2 (-126)) (-5 *1 (-300 *3 *4)) (-4 *3 (-301 *4)))) (-1445 (*1 *2) (-12 (-4 *4 (-335)) (-5 *2 (-768 (-848))) (-5 *1 (-300 *3 *4)) (-4 *3 (-301 *4)))) (-1922 (*1 *2) (-12 (-4 *4 (-335)) (-5 *2 (-705)) (-5 *1 (-300 *3 *4)) (-4 *3 (-301 *4)))) (-1445 (*1 *2) (-12 (-4 *4 (-335)) (-5 *2 (-848)) (-5 *1 (-300 *3 *4)) (-4 *3 (-301 *4)))) (-1642 (*1 *2) (-12 (-4 *4 (-335)) (-5 *2 (-705)) (-5 *1 (-300 *3 *4)) (-4 *3 (-301 *4))))) +(-10 -8 (-15 -3773 ((-3 |#1| "failed") |#1|)) (-15 -1642 ((-705))) (-15 -3773 (|#1| |#1|)) (-15 -3270 ((-3 (-1078 |#2|) "failed") |#1| |#1|)) (-15 -3270 ((-1078 |#2|) |#1|)) (-15 -1955 ((-1078 |#2|) |#1|)) (-15 -3904 (|#1| |#1| (-1078 |#2|))) (-15 -2877 ((-108) |#1|)) (-15 -3670 (|#1|)) (-15 -1871 (|#1| |#1| (-848))) (-15 -3681 (|#1| |#1| (-848))) (-15 -3437 ((-1078 |#1|) |#1| (-848))) (-15 -1871 (|#2| |#1|)) (-15 -3681 (|#2| |#1|)) (-15 -4178 ((-848) |#1|)) (-15 -1445 ((-848))) (-15 -3437 ((-1078 |#2|) |#1|)) (-15 -2528 (|#1| (-1163 |#2|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1|)) (-15 -1922 ((-705))) (-15 -1445 ((-768 (-848)))) (-15 -4178 ((-768 (-848)) |#1|)) (-15 -3839 ((-108) |#1|)) (-15 -3980 ((-108) |#1|)) (-15 -2914 ((-126)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3839 (((-108) $) 94)) (-1922 (((-705)) 90)) (-1871 ((|#1| $) 140) (($ $ (-848)) 137 (|has| |#1| (-340)))) (-3263 (((-1091 (-848) (-705)) (-519)) 122 (|has| |#1| (-340)))) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 73)) (-3093 (((-390 $) $) 72)) (-3409 (((-108) $ $) 59)) (-1642 (((-705)) 112 (|has| |#1| (-340)))) (-2249 (($) 17 T CONST)) (-1301 (((-3 |#1| "failed") $) 101)) (-1499 ((|#1| $) 100)) (-2528 (($ (-1163 |#1|)) 146)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-340)))) (-2311 (($ $ $) 55)) (-4193 (((-3 $ "failed") $) 34)) (-3314 (($) 109 (|has| |#1| (-340)))) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-1625 (($) 124 (|has| |#1| (-340)))) (-4156 (((-108) $) 125 (|has| |#1| (-340)))) (-3824 (($ $ (-705)) 87 (-3730 (|has| |#1| (-133)) (|has| |#1| (-340)))) (($ $) 86 (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1320 (((-108) $) 71)) (-3709 (((-848) $) 127 (|has| |#1| (-340))) (((-768 (-848)) $) 84 (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1568 (((-108) $) 31)) (-3637 (($) 135 (|has| |#1| (-340)))) (-2877 (((-108) $) 134 (|has| |#1| (-340)))) (-3681 ((|#1| $) 141) (($ $ (-848)) 138 (|has| |#1| (-340)))) (-1675 (((-3 $ "failed") $) 113 (|has| |#1| (-340)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-3437 (((-1078 |#1|) $) 145) (((-1078 $) $ (-848)) 139 (|has| |#1| (-340)))) (-3334 (((-848) $) 110 (|has| |#1| (-340)))) (-1955 (((-1078 |#1|) $) 131 (|has| |#1| (-340)))) (-3270 (((-1078 |#1|) $) 130 (|has| |#1| (-340))) (((-3 (-1078 |#1|) "failed") $ $) 129 (|has| |#1| (-340)))) (-3904 (($ $ (-1078 |#1|)) 132 (|has| |#1| (-340)))) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 70)) (-3816 (($) 114 (|has| |#1| (-340)) CONST)) (-2770 (($ (-848)) 111 (|has| |#1| (-340)))) (-2141 (((-108) $) 93)) (-4139 (((-1029) $) 10)) (-1397 (($) 133 (|has| |#1| (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) 121 (|has| |#1| (-340)))) (-1921 (((-390 $) $) 74)) (-1445 (((-768 (-848))) 91) (((-848)) 143)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-3129 (((-705) $) 58)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-2867 (((-705) $) 126 (|has| |#1| (-340))) (((-3 (-705) "failed") $ $) 85 (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-2914 (((-126)) 99)) (-2181 (($ $) 118 (|has| |#1| (-340))) (($ $ (-705)) 116 (|has| |#1| (-340)))) (-4178 (((-768 (-848)) $) 92) (((-848) $) 142)) (-1462 (((-1078 |#1|)) 144)) (-3132 (($) 123 (|has| |#1| (-340)))) (-3670 (($) 136 (|has| |#1| (-340)))) (-3399 (((-1163 |#1|) $) 148) (((-625 |#1|) (-1163 $)) 147)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 120 (|has| |#1| (-340)))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-379 (-519))) 65) (($ |#1|) 102)) (-3773 (($ $) 119 (|has| |#1| (-340))) (((-3 $ "failed") $) 83 (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-3594 (((-705)) 29)) (-2070 (((-1163 $)) 150) (((-1163 $) (-848)) 149)) (-1617 (((-108) $ $) 39)) (-3980 (((-108) $) 95)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 69)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-3706 (($ $) 89 (|has| |#1| (-340))) (($ $ (-705)) 88 (|has| |#1| (-340)))) (-2242 (($ $) 117 (|has| |#1| (-340))) (($ $ (-705)) 115 (|has| |#1| (-340)))) (-1543 (((-108) $ $) 6)) (-1632 (($ $ $) 64) (($ $ |#1|) 98)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 68)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 67) (($ (-379 (-519)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) +(((-301 |#1|) (-1194) (-335)) (T -301)) +((-2070 (*1 *2) (-12 (-4 *3 (-335)) (-5 *2 (-1163 *1)) (-4 *1 (-301 *3)))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-848)) (-4 *4 (-335)) (-5 *2 (-1163 *1)) (-4 *1 (-301 *4)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-5 *2 (-1163 *3)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-301 *4)) (-4 *4 (-335)) (-5 *2 (-625 *4)))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-335)) (-4 *1 (-301 *3)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-5 *2 (-1078 *3)))) (-1462 (*1 *2) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-5 *2 (-1078 *3)))) (-1445 (*1 *2) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-5 *2 (-848)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-5 *2 (-848)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-301 *2)) (-4 *2 (-335)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-301 *2)) (-4 *2 (-335)))) (-3437 (*1 *2 *1 *3) (-12 (-5 *3 (-848)) (-4 *4 (-340)) (-4 *4 (-335)) (-5 *2 (-1078 *1)) (-4 *1 (-301 *4)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-848)) (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)))) (-1871 (*1 *1 *1 *2) (-12 (-5 *2 (-848)) (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)))) (-3670 (*1 *1) (-12 (-4 *1 (-301 *2)) (-4 *2 (-340)) (-4 *2 (-335)))) (-3637 (*1 *1) (-12 (-4 *1 (-301 *2)) (-4 *2 (-340)) (-4 *2 (-335)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)) (-5 *2 (-108)))) (-1397 (*1 *1) (-12 (-4 *1 (-301 *2)) (-4 *2 (-340)) (-4 *2 (-335)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-1078 *3)) (-4 *3 (-340)) (-4 *1 (-301 *3)) (-4 *3 (-335)))) (-1955 (*1 *2 *1) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)) (-5 *2 (-1078 *3)))) (-3270 (*1 *2 *1) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)) (-5 *2 (-1078 *3)))) (-3270 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)) (-5 *2 (-1078 *3))))) +(-13 (-1180 |t#1|) (-959 |t#1|) (-10 -8 (-15 -2070 ((-1163 $))) (-15 -2070 ((-1163 $) (-848))) (-15 -3399 ((-1163 |t#1|) $)) (-15 -3399 ((-625 |t#1|) (-1163 $))) (-15 -2528 ($ (-1163 |t#1|))) (-15 -3437 ((-1078 |t#1|) $)) (-15 -1462 ((-1078 |t#1|))) (-15 -1445 ((-848))) (-15 -4178 ((-848) $)) (-15 -3681 (|t#1| $)) (-15 -1871 (|t#1| $)) (IF (|has| |t#1| (-340)) (PROGN (-6 (-321)) (-15 -3437 ((-1078 $) $ (-848))) (-15 -3681 ($ $ (-848))) (-15 -1871 ($ $ (-848))) (-15 -3670 ($)) (-15 -3637 ($)) (-15 -2877 ((-108) $)) (-15 -1397 ($)) (-15 -3904 ($ $ (-1078 |t#1|))) (-15 -1955 ((-1078 |t#1|) $)) (-15 -3270 ((-1078 |t#1|) $)) (-15 -3270 ((-3 (-1078 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3730 (|has| |#1| (-340)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) . T) ((-209) |has| |#1| (-340)) ((-219) . T) ((-264) . T) ((-280) . T) ((-1180 |#1|) . T) ((-335) . T) ((-374) -3730 (|has| |#1| (-340)) (|has| |#1| (-133))) ((-340) |has| |#1| (-340)) ((-321) |has| |#1| (-340)) ((-423) . T) ((-511) . T) ((-587 #0#) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-661) . T) ((-847) . T) ((-959 |#1|) . T) ((-974 #0#) . T) ((-974 |#1|) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1058) |has| |#1| (-340)) ((-1121) . T) ((-1170 |#1|) . T)) +((-1430 (((-108) $ $) NIL)) (-1564 (($ (-1081) $) 88)) (-2807 (($) 76)) (-4184 (((-1029) (-1029)) 11)) (-3977 (($) 77)) (-1492 (($) 90) (($ (-288 (-634))) 96) (($ (-288 (-636))) 93) (($ (-288 (-629))) 99) (($ (-288 (-351))) 105) (($ (-288 (-519))) 102) (($ (-288 (-154 (-351)))) 108)) (-2688 (($ (-1081) $) 89)) (-1756 (($ (-585 (-790))) 79)) (-3940 (((-1168) $) 73)) (-4164 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-3252 (($ (-1029)) 45)) (-3155 (((-1015) $) 25)) (-3441 (($ (-1004 (-879 (-519))) $) 85) (($ (-1004 (-879 (-519))) (-879 (-519)) $) 86)) (-1375 (($ (-1029)) 87)) (-2640 (($ (-1081) $) 110) (($ (-1081) $ $) 111)) (-2593 (($ (-1082) (-585 (-1082))) 75)) (-1273 (($ (-1065)) 82) (($ (-585 (-1065))) 80)) (-2217 (((-790) $) 113)) (-2046 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1082)) (|:| |arrayIndex| (-585 (-879 (-519)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1587 (-790)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1082)) (|:| |rand| (-790)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1081)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3108 (-108)) (|:| -3493 (-2 (|:| |ints2Floats?| (-108)) (|:| -1587 (-790)))))) (|:| |blockBranch| (-585 $)) (|:| |commentBranch| (-585 (-1065))) (|:| |callBranch| (-1065)) (|:| |forBranch| (-2 (|:| -1710 (-1004 (-879 (-519)))) (|:| |span| (-879 (-519))) (|:| |body| $))) (|:| |labelBranch| (-1029)) (|:| |loopBranch| (-2 (|:| |switch| (-1081)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2938 (-1082)) (|:| |contents| (-585 (-1082))))) (|:| |printBranch| (-585 (-790)))) $) 37)) (-1840 (($ (-1065)) 182)) (-1914 (($ (-585 $)) 109)) (-1381 (($ (-1082) (-1065)) 115) (($ (-1082) (-288 (-636))) 155) (($ (-1082) (-288 (-634))) 156) (($ (-1082) (-288 (-629))) 157) (($ (-1082) (-625 (-636))) 118) (($ (-1082) (-625 (-634))) 121) (($ (-1082) (-625 (-629))) 124) (($ (-1082) (-1163 (-636))) 127) (($ (-1082) (-1163 (-634))) 130) (($ (-1082) (-1163 (-629))) 133) (($ (-1082) (-625 (-288 (-636)))) 136) (($ (-1082) (-625 (-288 (-634)))) 139) (($ (-1082) (-625 (-288 (-629)))) 142) (($ (-1082) (-1163 (-288 (-636)))) 145) (($ (-1082) (-1163 (-288 (-634)))) 148) (($ (-1082) (-1163 (-288 (-629)))) 151) (($ (-1082) (-585 (-879 (-519))) (-288 (-636))) 152) (($ (-1082) (-585 (-879 (-519))) (-288 (-634))) 153) (($ (-1082) (-585 (-879 (-519))) (-288 (-629))) 154) (($ (-1082) (-288 (-519))) 179) (($ (-1082) (-288 (-351))) 180) (($ (-1082) (-288 (-154 (-351)))) 181) (($ (-1082) (-625 (-288 (-519)))) 160) (($ (-1082) (-625 (-288 (-351)))) 163) (($ (-1082) (-625 (-288 (-154 (-351))))) 166) (($ (-1082) (-1163 (-288 (-519)))) 169) (($ (-1082) (-1163 (-288 (-351)))) 172) (($ (-1082) (-1163 (-288 (-154 (-351))))) 175) (($ (-1082) (-585 (-879 (-519))) (-288 (-519))) 176) (($ (-1082) (-585 (-879 (-519))) (-288 (-351))) 177) (($ (-1082) (-585 (-879 (-519))) (-288 (-154 (-351)))) 178)) (-1543 (((-108) $ $) NIL))) +(((-302) (-13 (-1011) (-10 -8 (-15 -2217 ((-790) $)) (-15 -3441 ($ (-1004 (-879 (-519))) $)) (-15 -3441 ($ (-1004 (-879 (-519))) (-879 (-519)) $)) (-15 -1564 ($ (-1081) $)) (-15 -2688 ($ (-1081) $)) (-15 -3252 ($ (-1029))) (-15 -1375 ($ (-1029))) (-15 -1273 ($ (-1065))) (-15 -1273 ($ (-585 (-1065)))) (-15 -1840 ($ (-1065))) (-15 -1492 ($)) (-15 -1492 ($ (-288 (-634)))) (-15 -1492 ($ (-288 (-636)))) (-15 -1492 ($ (-288 (-629)))) (-15 -1492 ($ (-288 (-351)))) (-15 -1492 ($ (-288 (-519)))) (-15 -1492 ($ (-288 (-154 (-351))))) (-15 -2640 ($ (-1081) $)) (-15 -2640 ($ (-1081) $ $)) (-15 -1381 ($ (-1082) (-1065))) (-15 -1381 ($ (-1082) (-288 (-636)))) (-15 -1381 ($ (-1082) (-288 (-634)))) (-15 -1381 ($ (-1082) (-288 (-629)))) (-15 -1381 ($ (-1082) (-625 (-636)))) (-15 -1381 ($ (-1082) (-625 (-634)))) (-15 -1381 ($ (-1082) (-625 (-629)))) (-15 -1381 ($ (-1082) (-1163 (-636)))) (-15 -1381 ($ (-1082) (-1163 (-634)))) (-15 -1381 ($ (-1082) (-1163 (-629)))) (-15 -1381 ($ (-1082) (-625 (-288 (-636))))) (-15 -1381 ($ (-1082) (-625 (-288 (-634))))) (-15 -1381 ($ (-1082) (-625 (-288 (-629))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-636))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-634))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-629))))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-636)))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-634)))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-629)))) (-15 -1381 ($ (-1082) (-288 (-519)))) (-15 -1381 ($ (-1082) (-288 (-351)))) (-15 -1381 ($ (-1082) (-288 (-154 (-351))))) (-15 -1381 ($ (-1082) (-625 (-288 (-519))))) (-15 -1381 ($ (-1082) (-625 (-288 (-351))))) (-15 -1381 ($ (-1082) (-625 (-288 (-154 (-351)))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-519))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-351))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-154 (-351)))))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-519)))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-351)))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-154 (-351))))) (-15 -1914 ($ (-585 $))) (-15 -2807 ($)) (-15 -3977 ($)) (-15 -1756 ($ (-585 (-790)))) (-15 -2593 ($ (-1082) (-585 (-1082)))) (-15 -4164 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2046 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1082)) (|:| |arrayIndex| (-585 (-879 (-519)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1587 (-790)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1082)) (|:| |rand| (-790)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1081)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3108 (-108)) (|:| -3493 (-2 (|:| |ints2Floats?| (-108)) (|:| -1587 (-790)))))) (|:| |blockBranch| (-585 $)) (|:| |commentBranch| (-585 (-1065))) (|:| |callBranch| (-1065)) (|:| |forBranch| (-2 (|:| -1710 (-1004 (-879 (-519)))) (|:| |span| (-879 (-519))) (|:| |body| $))) (|:| |labelBranch| (-1029)) (|:| |loopBranch| (-2 (|:| |switch| (-1081)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2938 (-1082)) (|:| |contents| (-585 (-1082))))) (|:| |printBranch| (-585 (-790)))) $)) (-15 -3940 ((-1168) $)) (-15 -3155 ((-1015) $)) (-15 -4184 ((-1029) (-1029)))))) (T -302)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-302)))) (-3441 (*1 *1 *2 *1) (-12 (-5 *2 (-1004 (-879 (-519)))) (-5 *1 (-302)))) (-3441 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1004 (-879 (-519)))) (-5 *3 (-879 (-519))) (-5 *1 (-302)))) (-1564 (*1 *1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-302)))) (-2688 (*1 *1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-302)))) (-3252 (*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-302)))) (-1375 (*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-302)))) (-1273 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-302)))) (-1273 (*1 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-302)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-302)))) (-1492 (*1 *1) (-5 *1 (-302))) (-1492 (*1 *1 *2) (-12 (-5 *2 (-288 (-634))) (-5 *1 (-302)))) (-1492 (*1 *1 *2) (-12 (-5 *2 (-288 (-636))) (-5 *1 (-302)))) (-1492 (*1 *1 *2) (-12 (-5 *2 (-288 (-629))) (-5 *1 (-302)))) (-1492 (*1 *1 *2) (-12 (-5 *2 (-288 (-351))) (-5 *1 (-302)))) (-1492 (*1 *1 *2) (-12 (-5 *2 (-288 (-519))) (-5 *1 (-302)))) (-1492 (*1 *1 *2) (-12 (-5 *2 (-288 (-154 (-351)))) (-5 *1 (-302)))) (-2640 (*1 *1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-302)))) (-2640 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1065)) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-636))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-634))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-629))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-636))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-634))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-629))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-636))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-634))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-629))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-636)))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-634)))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-629)))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-636)))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-634)))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-629)))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) (-5 *4 (-288 (-636))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) (-5 *4 (-288 (-634))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) (-5 *4 (-288 (-629))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-519))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-351))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-154 (-351)))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-519)))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-351)))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-154 (-351))))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-519)))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-351)))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-154 (-351))))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) (-5 *4 (-288 (-519))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) (-5 *4 (-288 (-351))) (-5 *1 (-302)))) (-1381 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) (-5 *4 (-288 (-154 (-351)))) (-5 *1 (-302)))) (-1914 (*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-5 *1 (-302)))) (-2807 (*1 *1) (-5 *1 (-302))) (-3977 (*1 *1) (-5 *1 (-302))) (-1756 (*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-302)))) (-2593 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-1082))) (-5 *2 (-1082)) (-5 *1 (-302)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-302)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1082)) (|:| |arrayIndex| (-585 (-879 (-519)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1587 (-790)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1082)) (|:| |rand| (-790)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1081)) (|:| |thenClause| (-302)) (|:| |elseClause| (-302)))) (|:| |returnBranch| (-2 (|:| -3108 (-108)) (|:| -3493 (-2 (|:| |ints2Floats?| (-108)) (|:| -1587 (-790)))))) (|:| |blockBranch| (-585 (-302))) (|:| |commentBranch| (-585 (-1065))) (|:| |callBranch| (-1065)) (|:| |forBranch| (-2 (|:| -1710 (-1004 (-879 (-519)))) (|:| |span| (-879 (-519))) (|:| |body| (-302)))) (|:| |labelBranch| (-1029)) (|:| |loopBranch| (-2 (|:| |switch| (-1081)) (|:| |body| (-302)))) (|:| |commonBranch| (-2 (|:| -2938 (-1082)) (|:| |contents| (-585 (-1082))))) (|:| |printBranch| (-585 (-790))))) (-5 *1 (-302)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-302)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-302)))) (-4184 (*1 *2 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-302))))) +(-13 (-1011) (-10 -8 (-15 -2217 ((-790) $)) (-15 -3441 ($ (-1004 (-879 (-519))) $)) (-15 -3441 ($ (-1004 (-879 (-519))) (-879 (-519)) $)) (-15 -1564 ($ (-1081) $)) (-15 -2688 ($ (-1081) $)) (-15 -3252 ($ (-1029))) (-15 -1375 ($ (-1029))) (-15 -1273 ($ (-1065))) (-15 -1273 ($ (-585 (-1065)))) (-15 -1840 ($ (-1065))) (-15 -1492 ($)) (-15 -1492 ($ (-288 (-634)))) (-15 -1492 ($ (-288 (-636)))) (-15 -1492 ($ (-288 (-629)))) (-15 -1492 ($ (-288 (-351)))) (-15 -1492 ($ (-288 (-519)))) (-15 -1492 ($ (-288 (-154 (-351))))) (-15 -2640 ($ (-1081) $)) (-15 -2640 ($ (-1081) $ $)) (-15 -1381 ($ (-1082) (-1065))) (-15 -1381 ($ (-1082) (-288 (-636)))) (-15 -1381 ($ (-1082) (-288 (-634)))) (-15 -1381 ($ (-1082) (-288 (-629)))) (-15 -1381 ($ (-1082) (-625 (-636)))) (-15 -1381 ($ (-1082) (-625 (-634)))) (-15 -1381 ($ (-1082) (-625 (-629)))) (-15 -1381 ($ (-1082) (-1163 (-636)))) (-15 -1381 ($ (-1082) (-1163 (-634)))) (-15 -1381 ($ (-1082) (-1163 (-629)))) (-15 -1381 ($ (-1082) (-625 (-288 (-636))))) (-15 -1381 ($ (-1082) (-625 (-288 (-634))))) (-15 -1381 ($ (-1082) (-625 (-288 (-629))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-636))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-634))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-629))))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-636)))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-634)))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-629)))) (-15 -1381 ($ (-1082) (-288 (-519)))) (-15 -1381 ($ (-1082) (-288 (-351)))) (-15 -1381 ($ (-1082) (-288 (-154 (-351))))) (-15 -1381 ($ (-1082) (-625 (-288 (-519))))) (-15 -1381 ($ (-1082) (-625 (-288 (-351))))) (-15 -1381 ($ (-1082) (-625 (-288 (-154 (-351)))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-519))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-351))))) (-15 -1381 ($ (-1082) (-1163 (-288 (-154 (-351)))))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-519)))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-351)))) (-15 -1381 ($ (-1082) (-585 (-879 (-519))) (-288 (-154 (-351))))) (-15 -1914 ($ (-585 $))) (-15 -2807 ($)) (-15 -3977 ($)) (-15 -1756 ($ (-585 (-790)))) (-15 -2593 ($ (-1082) (-585 (-1082)))) (-15 -4164 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2046 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1082)) (|:| |arrayIndex| (-585 (-879 (-519)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1587 (-790)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1082)) (|:| |rand| (-790)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1081)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3108 (-108)) (|:| -3493 (-2 (|:| |ints2Floats?| (-108)) (|:| -1587 (-790)))))) (|:| |blockBranch| (-585 $)) (|:| |commentBranch| (-585 (-1065))) (|:| |callBranch| (-1065)) (|:| |forBranch| (-2 (|:| -1710 (-1004 (-879 (-519)))) (|:| |span| (-879 (-519))) (|:| |body| $))) (|:| |labelBranch| (-1029)) (|:| |loopBranch| (-2 (|:| |switch| (-1081)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2938 (-1082)) (|:| |contents| (-585 (-1082))))) (|:| |printBranch| (-585 (-790)))) $)) (-15 -3940 ((-1168) $)) (-15 -3155 ((-1015) $)) (-15 -4184 ((-1029) (-1029))))) +((-1430 (((-108) $ $) NIL)) (-3732 (((-108) $) 11)) (-2800 (($ |#1|) 8)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2812 (($ |#1|) 9)) (-2217 (((-790) $) 17)) (-3867 ((|#1| $) 12)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 19))) +(((-303 |#1|) (-13 (-782) (-10 -8 (-15 -2800 ($ |#1|)) (-15 -2812 ($ |#1|)) (-15 -3732 ((-108) $)) (-15 -3867 (|#1| $)))) (-782)) (T -303)) +((-2800 (*1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-782)))) (-2812 (*1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-782)))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-303 *3)) (-4 *3 (-782)))) (-3867 (*1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-782))))) +(-13 (-782) (-10 -8 (-15 -2800 ($ |#1|)) (-15 -2812 ($ |#1|)) (-15 -3732 ((-108) $)) (-15 -3867 (|#1| $)))) +((-2204 (((-302) (-1082) (-879 (-519))) 22)) (-2110 (((-302) (-1082) (-879 (-519))) 26)) (-1549 (((-302) (-1082) (-1004 (-879 (-519))) (-1004 (-879 (-519)))) 25) (((-302) (-1082) (-879 (-519)) (-879 (-519))) 23)) (-3354 (((-302) (-1082) (-879 (-519))) 30))) +(((-304) (-10 -7 (-15 -2204 ((-302) (-1082) (-879 (-519)))) (-15 -1549 ((-302) (-1082) (-879 (-519)) (-879 (-519)))) (-15 -1549 ((-302) (-1082) (-1004 (-879 (-519))) (-1004 (-879 (-519))))) (-15 -2110 ((-302) (-1082) (-879 (-519)))) (-15 -3354 ((-302) (-1082) (-879 (-519)))))) (T -304)) +((-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-879 (-519))) (-5 *2 (-302)) (-5 *1 (-304)))) (-2110 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-879 (-519))) (-5 *2 (-302)) (-5 *1 (-304)))) (-1549 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-1004 (-879 (-519)))) (-5 *2 (-302)) (-5 *1 (-304)))) (-1549 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-879 (-519))) (-5 *2 (-302)) (-5 *1 (-304)))) (-2204 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-879 (-519))) (-5 *2 (-302)) (-5 *1 (-304))))) +(-10 -7 (-15 -2204 ((-302) (-1082) (-879 (-519)))) (-15 -1549 ((-302) (-1082) (-879 (-519)) (-879 (-519)))) (-15 -1549 ((-302) (-1082) (-1004 (-879 (-519))) (-1004 (-879 (-519))))) (-15 -2110 ((-302) (-1082) (-879 (-519)))) (-15 -3354 ((-302) (-1082) (-879 (-519))))) +((-1405 (((-308 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-308 |#1| |#2| |#3| |#4|)) 31))) +(((-305 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1405 ((-308 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-308 |#1| |#2| |#3| |#4|)))) (-335) (-1139 |#1|) (-1139 (-379 |#2|)) (-314 |#1| |#2| |#3|) (-335) (-1139 |#5|) (-1139 (-379 |#6|)) (-314 |#5| |#6| |#7|)) (T -305)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-308 *5 *6 *7 *8)) (-4 *5 (-335)) (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) (-4 *8 (-314 *5 *6 *7)) (-4 *9 (-335)) (-4 *10 (-1139 *9)) (-4 *11 (-1139 (-379 *10))) (-5 *2 (-308 *9 *10 *11 *12)) (-5 *1 (-305 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-314 *9 *10 *11))))) +(-10 -7 (-15 -1405 ((-308 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-308 |#1| |#2| |#3| |#4|)))) +((-3454 (((-108) $) 14))) +(((-306 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3454 ((-108) |#1|))) (-307 |#2| |#3| |#4| |#5|) (-335) (-1139 |#2|) (-1139 (-379 |#3|)) (-314 |#2| |#3| |#4|)) (T -306)) +NIL +(-10 -8 (-15 -3454 ((-108) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-3874 (($ $) 26)) (-3454 (((-108) $) 25)) (-1266 (((-1065) $) 9)) (-2903 (((-385 |#2| (-379 |#2|) |#3| |#4|) $) 32)) (-4139 (((-1029) $) 10)) (-1397 (((-3 |#4| "failed") $) 24)) (-2755 (($ (-385 |#2| (-379 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-519)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2285 (((-2 (|:| -1794 (-385 |#2| (-379 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2217 (((-790) $) 11)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20))) +(((-307 |#1| |#2| |#3| |#4|) (-1194) (-335) (-1139 |t#1|) (-1139 (-379 |t#2|)) (-314 |t#1| |t#2| |t#3|)) (T -307)) +((-2903 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4 *5 *6)) (-4 *3 (-335)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-4 *6 (-314 *3 *4 *5)) (-5 *2 (-385 *4 (-379 *4) *5 *6)))) (-2755 (*1 *1 *2) (-12 (-5 *2 (-385 *4 (-379 *4) *5 *6)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-4 *6 (-314 *3 *4 *5)) (-4 *3 (-335)) (-4 *1 (-307 *3 *4 *5 *6)))) (-2755 (*1 *1 *2) (-12 (-4 *3 (-335)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-4 *1 (-307 *3 *4 *5 *2)) (-4 *2 (-314 *3 *4 *5)))) (-2755 (*1 *1 *2 *2) (-12 (-4 *2 (-335)) (-4 *3 (-1139 *2)) (-4 *4 (-1139 (-379 *3))) (-4 *1 (-307 *2 *3 *4 *5)) (-4 *5 (-314 *2 *3 *4)))) (-2755 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-519)) (-4 *2 (-335)) (-4 *4 (-1139 *2)) (-4 *5 (-1139 (-379 *4))) (-4 *1 (-307 *2 *4 *5 *6)) (-4 *6 (-314 *2 *4 *5)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4 *5 *6)) (-4 *3 (-335)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-4 *6 (-314 *3 *4 *5)) (-5 *2 (-2 (|:| -1794 (-385 *4 (-379 *4) *5 *6)) (|:| |principalPart| *6))))) (-3874 (*1 *1 *1) (-12 (-4 *1 (-307 *2 *3 *4 *5)) (-4 *2 (-335)) (-4 *3 (-1139 *2)) (-4 *4 (-1139 (-379 *3))) (-4 *5 (-314 *2 *3 *4)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4 *5 *6)) (-4 *3 (-335)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-4 *6 (-314 *3 *4 *5)) (-5 *2 (-108)))) (-1397 (*1 *2 *1) (|partial| -12 (-4 *1 (-307 *3 *4 *5 *2)) (-4 *3 (-335)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-4 *2 (-314 *3 *4 *5)))) (-2755 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-335)) (-4 *3 (-1139 *4)) (-4 *5 (-1139 (-379 *3))) (-4 *1 (-307 *4 *3 *5 *2)) (-4 *2 (-314 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2903 ((-385 |t#2| (-379 |t#2|) |t#3| |t#4|) $)) (-15 -2755 ($ (-385 |t#2| (-379 |t#2|) |t#3| |t#4|))) (-15 -2755 ($ |t#4|)) (-15 -2755 ($ |t#1| |t#1|)) (-15 -2755 ($ |t#1| |t#1| (-519))) (-15 -2285 ((-2 (|:| -1794 (-385 |t#2| (-379 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3874 ($ $)) (-15 -3454 ((-108) $)) (-15 -1397 ((-3 |t#4| "failed") $)) (-15 -2755 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-3874 (($ $) 32)) (-3454 (((-108) $) NIL)) (-1266 (((-1065) $) NIL)) (-3079 (((-1163 |#4|) $) 124)) (-2903 (((-385 |#2| (-379 |#2|) |#3| |#4|) $) 30)) (-4139 (((-1029) $) NIL)) (-1397 (((-3 |#4| "failed") $) 35)) (-1371 (((-1163 |#4|) $) 117)) (-2755 (($ (-385 |#2| (-379 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-519)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2285 (((-2 (|:| -1794 (-385 |#2| (-379 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2217 (((-790) $) 17)) (-3602 (($) 14 T CONST)) (-1543 (((-108) $ $) 20)) (-1623 (($ $) 27) (($ $ $) NIL)) (-1614 (($ $ $) 25)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 23))) +(((-308 |#1| |#2| |#3| |#4|) (-13 (-307 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1371 ((-1163 |#4|) $)) (-15 -3079 ((-1163 |#4|) $)))) (-335) (-1139 |#1|) (-1139 (-379 |#2|)) (-314 |#1| |#2| |#3|)) (T -308)) +((-1371 (*1 *2 *1) (-12 (-4 *3 (-335)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-1163 *6)) (-5 *1 (-308 *3 *4 *5 *6)) (-4 *6 (-314 *3 *4 *5)))) (-3079 (*1 *2 *1) (-12 (-4 *3 (-335)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-1163 *6)) (-5 *1 (-308 *3 *4 *5 *6)) (-4 *6 (-314 *3 *4 *5))))) +(-13 (-307 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1371 ((-1163 |#4|) $)) (-15 -3079 ((-1163 |#4|) $)))) +((-2324 (($ $ (-1082) |#2|) NIL) (($ $ (-585 (-1082)) (-585 |#2|)) 18) (($ $ (-585 (-267 |#2|))) 14) (($ $ (-267 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-585 |#2|) (-585 |#2|)) NIL)) (-2598 (($ $ |#2|) 11))) +(((-309 |#1| |#2|) (-10 -8 (-15 -2598 (|#1| |#1| |#2|)) (-15 -2324 (|#1| |#1| (-585 |#2|) (-585 |#2|))) (-15 -2324 (|#1| |#1| |#2| |#2|)) (-15 -2324 (|#1| |#1| (-267 |#2|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#2|)))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 |#2|))) (-15 -2324 (|#1| |#1| (-1082) |#2|))) (-310 |#2|) (-1011)) (T -309)) +NIL +(-10 -8 (-15 -2598 (|#1| |#1| |#2|)) (-15 -2324 (|#1| |#1| (-585 |#2|) (-585 |#2|))) (-15 -2324 (|#1| |#1| |#2| |#2|)) (-15 -2324 (|#1| |#1| (-267 |#2|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#2|)))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 |#2|))) (-15 -2324 (|#1| |#1| (-1082) |#2|))) +((-1405 (($ (-1 |#1| |#1|) $) 6)) (-2324 (($ $ (-1082) |#1|) 17 (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-585 (-1082)) (-585 |#1|)) 16 (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-585 (-267 |#1|))) 15 (|has| |#1| (-282 |#1|))) (($ $ (-267 |#1|)) 14 (|has| |#1| (-282 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-282 |#1|))) (($ $ (-585 |#1|) (-585 |#1|)) 12 (|has| |#1| (-282 |#1|)))) (-2598 (($ $ |#1|) 11 (|has| |#1| (-260 |#1| |#1|))))) +(((-310 |#1|) (-1194) (-1011)) (T -310)) +((-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1011))))) +(-13 (-10 -8 (-15 -1405 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-260 |t#1| |t#1|)) (-6 (-260 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-282 |t#1|)) (-6 (-282 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-480 (-1082) |t#1|)) (-6 (-480 (-1082) |t#1|)) |%noBranch|))) +(((-260 |#1| $) |has| |#1| (-260 |#1| |#1|)) ((-282 |#1|) |has| |#1| (-282 |#1|)) ((-480 (-1082) |#1|) |has| |#1| (-480 (-1082) |#1|)) ((-480 |#1| |#1|) |has| |#1| (-282 |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 (-1082)) $) NIL)) (-3743 (((-108)) 88) (((-108) (-108)) 89)) (-1890 (((-585 (-558 $)) $) NIL)) (-2958 (($ $) NIL)) (-2823 (($ $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-3364 (($ $ (-267 $)) NIL) (($ $ (-585 (-267 $))) NIL) (($ $ (-585 (-558 $)) (-585 $)) NIL)) (-1934 (($ $) NIL)) (-2934 (($ $) NIL)) (-2800 (($ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-558 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-288 |#3|)) 70) (((-3 $ "failed") (-1082)) 94) (((-3 $ "failed") (-288 (-519))) 57 (|has| |#3| (-959 (-519)))) (((-3 $ "failed") (-379 (-879 (-519)))) 63 (|has| |#3| (-959 (-519)))) (((-3 $ "failed") (-879 (-519))) 58 (|has| |#3| (-959 (-519)))) (((-3 $ "failed") (-288 (-351))) 75 (|has| |#3| (-959 (-351)))) (((-3 $ "failed") (-379 (-879 (-351)))) 81 (|has| |#3| (-959 (-351)))) (((-3 $ "failed") (-879 (-351))) 76 (|has| |#3| (-959 (-351))))) (-1499 (((-558 $) $) NIL) ((|#3| $) NIL) (($ (-288 |#3|)) 71) (($ (-1082)) 95) (($ (-288 (-519))) 59 (|has| |#3| (-959 (-519)))) (($ (-379 (-879 (-519)))) 64 (|has| |#3| (-959 (-519)))) (($ (-879 (-519))) 60 (|has| |#3| (-959 (-519)))) (($ (-288 (-351))) 77 (|has| |#3| (-959 (-351)))) (($ (-379 (-879 (-351)))) 82 (|has| |#3| (-959 (-351)))) (($ (-879 (-351))) 78 (|has| |#3| (-959 (-351))))) (-4193 (((-3 $ "failed") $) NIL)) (-2888 (($) 10)) (-1340 (($ $) NIL) (($ (-585 $)) NIL)) (-3866 (((-585 (-110)) $) NIL)) (-3752 (((-110) (-110)) NIL)) (-1568 (((-108) $) NIL)) (-3164 (((-108) $) NIL (|has| $ (-959 (-519))))) (-2042 (((-1078 $) (-558 $)) NIL (|has| $ (-968)))) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1405 (($ (-1 $ $) (-558 $)) NIL)) (-3029 (((-3 (-558 $) "failed") $) NIL)) (-3145 (($ $) 91)) (-1254 (($ $) NIL)) (-1266 (((-1065) $) NIL)) (-1268 (((-585 (-558 $)) $) NIL)) (-2959 (($ (-110) $) 90) (($ (-110) (-585 $)) NIL)) (-2917 (((-108) $ (-110)) NIL) (((-108) $ (-1082)) NIL)) (-4141 (((-705) $) NIL)) (-4139 (((-1029) $) NIL)) (-4040 (((-108) $ $) NIL) (((-108) $ (-1082)) NIL)) (-3325 (($ $) NIL)) (-1295 (((-108) $) NIL (|has| $ (-959 (-519))))) (-2324 (($ $ (-558 $) $) NIL) (($ $ (-585 (-558 $)) (-585 $)) NIL) (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-585 (-1082)) (-585 (-1 $ $))) NIL) (($ $ (-585 (-1082)) (-585 (-1 $ (-585 $)))) NIL) (($ $ (-1082) (-1 $ (-585 $))) NIL) (($ $ (-1082) (-1 $ $)) NIL) (($ $ (-585 (-110)) (-585 (-1 $ $))) NIL) (($ $ (-585 (-110)) (-585 (-1 $ (-585 $)))) NIL) (($ $ (-110) (-1 $ (-585 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-2598 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-585 $)) NIL)) (-1802 (($ $) NIL) (($ $ $) NIL)) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082)) NIL)) (-1462 (($ $) NIL (|has| $ (-968)))) (-2946 (($ $) NIL)) (-2812 (($ $) NIL)) (-2217 (((-790) $) NIL) (($ (-558 $)) NIL) (($ |#3|) NIL) (($ (-519)) NIL) (((-288 |#3|) $) 93)) (-3594 (((-705)) NIL)) (-1647 (($ $) NIL) (($ (-585 $)) NIL)) (-2631 (((-108) (-110)) NIL)) (-2886 (($ $) NIL)) (-2865 (($ $) NIL)) (-2875 (($ $) NIL)) (-1478 (($ $) NIL)) (-3559 (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (-3602 (($) 92 T CONST)) (-3611 (($) 22 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082)) NIL)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL)) (-1623 (($ $ $) NIL) (($ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-519) $) NIL) (($ (-705) $) NIL) (($ (-848) $) NIL))) +(((-311 |#1| |#2| |#3|) (-13 (-275) (-37 |#3|) (-959 |#3|) (-827 (-1082)) (-10 -8 (-15 -1499 ($ (-288 |#3|))) (-15 -1301 ((-3 $ "failed") (-288 |#3|))) (-15 -1499 ($ (-1082))) (-15 -1301 ((-3 $ "failed") (-1082))) (-15 -2217 ((-288 |#3|) $)) (IF (|has| |#3| (-959 (-519))) (PROGN (-15 -1499 ($ (-288 (-519)))) (-15 -1301 ((-3 $ "failed") (-288 (-519)))) (-15 -1499 ($ (-379 (-879 (-519))))) (-15 -1301 ((-3 $ "failed") (-379 (-879 (-519))))) (-15 -1499 ($ (-879 (-519)))) (-15 -1301 ((-3 $ "failed") (-879 (-519))))) |%noBranch|) (IF (|has| |#3| (-959 (-351))) (PROGN (-15 -1499 ($ (-288 (-351)))) (-15 -1301 ((-3 $ "failed") (-288 (-351)))) (-15 -1499 ($ (-379 (-879 (-351))))) (-15 -1301 ((-3 $ "failed") (-379 (-879 (-351))))) (-15 -1499 ($ (-879 (-351)))) (-15 -1301 ((-3 $ "failed") (-879 (-351))))) |%noBranch|) (-15 -1478 ($ $)) (-15 -1934 ($ $)) (-15 -3325 ($ $)) (-15 -1254 ($ $)) (-15 -3145 ($ $)) (-15 -2800 ($ $)) (-15 -2812 ($ $)) (-15 -2823 ($ $)) (-15 -2865 ($ $)) (-15 -2875 ($ $)) (-15 -2886 ($ $)) (-15 -2934 ($ $)) (-15 -2946 ($ $)) (-15 -2958 ($ $)) (-15 -2888 ($)) (-15 -4083 ((-585 (-1082)) $)) (-15 -3743 ((-108))) (-15 -3743 ((-108) (-108))))) (-585 (-1082)) (-585 (-1082)) (-359)) (T -311)) +((-1499 (*1 *1 *2) (-12 (-5 *2 (-288 *5)) (-4 *5 (-359)) (-5 *1 (-311 *3 *4 *5)) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-288 *5)) (-4 *5 (-359)) (-5 *1 (-311 *3 *4 *5)) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311 *3 *4 *5)) (-14 *3 (-585 *2)) (-14 *4 (-585 *2)) (-4 *5 (-359)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-311 *3 *4 *5)) (-14 *3 (-585 *2)) (-14 *4 (-585 *2)) (-4 *5 (-359)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-288 *5)) (-5 *1 (-311 *3 *4 *5)) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-288 (-519))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-288 (-519))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-379 (-879 (-519)))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-379 (-879 (-519)))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-879 (-519))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-879 (-519))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-288 (-351))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-288 (-351))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-379 (-879 (-351)))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-379 (-879 (-351)))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-879 (-351))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-879 (-351))) (-5 *1 (-311 *3 *4 *5)) (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-1478 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-1934 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-3325 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-1254 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-3145 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-2800 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-2812 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-2823 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-2865 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-2875 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-2886 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-2934 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-2946 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-2958 (*1 *1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-2888 (*1 *1) (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-311 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-359)))) (-3743 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-311 *3 *4 *5)) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-311 *3 *4 *5)) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359))))) +(-13 (-275) (-37 |#3|) (-959 |#3|) (-827 (-1082)) (-10 -8 (-15 -1499 ($ (-288 |#3|))) (-15 -1301 ((-3 $ "failed") (-288 |#3|))) (-15 -1499 ($ (-1082))) (-15 -1301 ((-3 $ "failed") (-1082))) (-15 -2217 ((-288 |#3|) $)) (IF (|has| |#3| (-959 (-519))) (PROGN (-15 -1499 ($ (-288 (-519)))) (-15 -1301 ((-3 $ "failed") (-288 (-519)))) (-15 -1499 ($ (-379 (-879 (-519))))) (-15 -1301 ((-3 $ "failed") (-379 (-879 (-519))))) (-15 -1499 ($ (-879 (-519)))) (-15 -1301 ((-3 $ "failed") (-879 (-519))))) |%noBranch|) (IF (|has| |#3| (-959 (-351))) (PROGN (-15 -1499 ($ (-288 (-351)))) (-15 -1301 ((-3 $ "failed") (-288 (-351)))) (-15 -1499 ($ (-379 (-879 (-351))))) (-15 -1301 ((-3 $ "failed") (-379 (-879 (-351))))) (-15 -1499 ($ (-879 (-351)))) (-15 -1301 ((-3 $ "failed") (-879 (-351))))) |%noBranch|) (-15 -1478 ($ $)) (-15 -1934 ($ $)) (-15 -3325 ($ $)) (-15 -1254 ($ $)) (-15 -3145 ($ $)) (-15 -2800 ($ $)) (-15 -2812 ($ $)) (-15 -2823 ($ $)) (-15 -2865 ($ $)) (-15 -2875 ($ $)) (-15 -2886 ($ $)) (-15 -2934 ($ $)) (-15 -2946 ($ $)) (-15 -2958 ($ $)) (-15 -2888 ($)) (-15 -4083 ((-585 (-1082)) $)) (-15 -3743 ((-108))) (-15 -3743 ((-108) (-108))))) +((-1405 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-312 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1405 (|#8| (-1 |#5| |#1|) |#4|))) (-1121) (-1139 |#1|) (-1139 (-379 |#2|)) (-314 |#1| |#2| |#3|) (-1121) (-1139 |#5|) (-1139 (-379 |#6|)) (-314 |#5| |#6| |#7|)) (T -312)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1121)) (-4 *8 (-1121)) (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) (-4 *9 (-1139 *8)) (-4 *2 (-314 *8 *9 *10)) (-5 *1 (-312 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-314 *5 *6 *7)) (-4 *10 (-1139 (-379 *9)))))) +(-10 -7 (-15 -1405 (|#8| (-1 |#5| |#1|) |#4|))) +((-4108 (((-2 (|:| |num| (-1163 |#3|)) (|:| |den| |#3|)) $) 38)) (-2528 (($ (-1163 (-379 |#3|)) (-1163 $)) NIL) (($ (-1163 (-379 |#3|))) NIL) (($ (-1163 |#3|) |#3|) 159)) (-1971 (((-1163 $) (-1163 $)) 143)) (-1279 (((-585 (-585 |#2|))) 116)) (-2325 (((-108) |#2| |#2|) 72)) (-2177 (($ $) 137)) (-1323 (((-705)) 31)) (-3430 (((-1163 $) (-1163 $)) 196)) (-3567 (((-585 (-879 |#2|)) (-1082)) 109)) (-3760 (((-108) $) 156)) (-2760 (((-108) $) 24) (((-108) $ |#2|) 29) (((-108) $ |#3|) 200)) (-3413 (((-3 |#3| "failed")) 49)) (-3794 (((-705)) 168)) (-2598 ((|#2| $ |#2| |#2|) 130)) (-2391 (((-3 |#3| "failed")) 67)) (-2181 (($ $ (-1 (-379 |#3|) (-379 |#3|)) (-705)) NIL) (($ $ (-1 (-379 |#3|) (-379 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082)) NIL) (($ $ (-705)) NIL) (($ $) NIL)) (-1477 (((-1163 $) (-1163 $)) 149)) (-3260 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-3588 (((-108)) 33))) +(((-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -1279 ((-585 (-585 |#2|)))) (-15 -3567 ((-585 (-879 |#2|)) (-1082))) (-15 -3260 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3413 ((-3 |#3| "failed"))) (-15 -2391 ((-3 |#3| "failed"))) (-15 -2598 (|#2| |#1| |#2| |#2|)) (-15 -2177 (|#1| |#1|)) (-15 -2528 (|#1| (-1163 |#3|) |#3|)) (-15 -2181 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2760 ((-108) |#1| |#3|)) (-15 -2760 ((-108) |#1| |#2|)) (-15 -4108 ((-2 (|:| |num| (-1163 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1971 ((-1163 |#1|) (-1163 |#1|))) (-15 -3430 ((-1163 |#1|) (-1163 |#1|))) (-15 -1477 ((-1163 |#1|) (-1163 |#1|))) (-15 -2760 ((-108) |#1|)) (-15 -3760 ((-108) |#1|)) (-15 -2325 ((-108) |#2| |#2|)) (-15 -3588 ((-108))) (-15 -3794 ((-705))) (-15 -1323 ((-705))) (-15 -2181 (|#1| |#1| (-1 (-379 |#3|) (-379 |#3|)))) (-15 -2181 (|#1| |#1| (-1 (-379 |#3|) (-379 |#3|)) (-705))) (-15 -2528 (|#1| (-1163 (-379 |#3|)))) (-15 -2528 (|#1| (-1163 (-379 |#3|)) (-1163 |#1|)))) (-314 |#2| |#3| |#4|) (-1121) (-1139 |#2|) (-1139 (-379 |#3|))) (T -313)) +((-1323 (*1 *2) (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) (-5 *2 (-705)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-314 *4 *5 *6)))) (-3794 (*1 *2) (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) (-5 *2 (-705)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-314 *4 *5 *6)))) (-3588 (*1 *2) (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) (-5 *2 (-108)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-314 *4 *5 *6)))) (-2325 (*1 *2 *3 *3) (-12 (-4 *3 (-1121)) (-4 *5 (-1139 *3)) (-4 *6 (-1139 (-379 *5))) (-5 *2 (-108)) (-5 *1 (-313 *4 *3 *5 *6)) (-4 *4 (-314 *3 *5 *6)))) (-2391 (*1 *2) (|partial| -12 (-4 *4 (-1121)) (-4 *5 (-1139 (-379 *2))) (-4 *2 (-1139 *4)) (-5 *1 (-313 *3 *4 *2 *5)) (-4 *3 (-314 *4 *2 *5)))) (-3413 (*1 *2) (|partial| -12 (-4 *4 (-1121)) (-4 *5 (-1139 (-379 *2))) (-4 *2 (-1139 *4)) (-5 *1 (-313 *3 *4 *2 *5)) (-4 *3 (-314 *4 *2 *5)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *5 (-1121)) (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) (-5 *2 (-585 (-879 *5))) (-5 *1 (-313 *4 *5 *6 *7)) (-4 *4 (-314 *5 *6 *7)))) (-1279 (*1 *2) (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) (-5 *2 (-585 (-585 *4))) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-314 *4 *5 *6))))) +(-10 -8 (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -1279 ((-585 (-585 |#2|)))) (-15 -3567 ((-585 (-879 |#2|)) (-1082))) (-15 -3260 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3413 ((-3 |#3| "failed"))) (-15 -2391 ((-3 |#3| "failed"))) (-15 -2598 (|#2| |#1| |#2| |#2|)) (-15 -2177 (|#1| |#1|)) (-15 -2528 (|#1| (-1163 |#3|) |#3|)) (-15 -2181 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2760 ((-108) |#1| |#3|)) (-15 -2760 ((-108) |#1| |#2|)) (-15 -4108 ((-2 (|:| |num| (-1163 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1971 ((-1163 |#1|) (-1163 |#1|))) (-15 -3430 ((-1163 |#1|) (-1163 |#1|))) (-15 -1477 ((-1163 |#1|) (-1163 |#1|))) (-15 -2760 ((-108) |#1|)) (-15 -3760 ((-108) |#1|)) (-15 -2325 ((-108) |#2| |#2|)) (-15 -3588 ((-108))) (-15 -3794 ((-705))) (-15 -1323 ((-705))) (-15 -2181 (|#1| |#1| (-1 (-379 |#3|) (-379 |#3|)))) (-15 -2181 (|#1| |#1| (-1 (-379 |#3|) (-379 |#3|)) (-705))) (-15 -2528 (|#1| (-1163 (-379 |#3|)))) (-15 -2528 (|#1| (-1163 (-379 |#3|)) (-1163 |#1|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4108 (((-2 (|:| |num| (-1163 |#2|)) (|:| |den| |#2|)) $) 196)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 93 (|has| (-379 |#2|) (-335)))) (-1410 (($ $) 94 (|has| (-379 |#2|) (-335)))) (-3060 (((-108) $) 96 (|has| (-379 |#2|) (-335)))) (-2935 (((-625 (-379 |#2|)) (-1163 $)) 46) (((-625 (-379 |#2|))) 61)) (-1871 (((-379 |#2|) $) 52)) (-3263 (((-1091 (-848) (-705)) (-519)) 147 (|has| (-379 |#2|) (-321)))) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 113 (|has| (-379 |#2|) (-335)))) (-3093 (((-390 $) $) 114 (|has| (-379 |#2|) (-335)))) (-3409 (((-108) $ $) 104 (|has| (-379 |#2|) (-335)))) (-1642 (((-705)) 87 (|has| (-379 |#2|) (-340)))) (-3222 (((-108)) 213)) (-1654 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-2249 (($) 17 T CONST)) (-1301 (((-3 (-519) "failed") $) 169 (|has| (-379 |#2|) (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) 167 (|has| (-379 |#2|) (-959 (-379 (-519))))) (((-3 (-379 |#2|) "failed") $) 166)) (-1499 (((-519) $) 170 (|has| (-379 |#2|) (-959 (-519)))) (((-379 (-519)) $) 168 (|has| (-379 |#2|) (-959 (-379 (-519))))) (((-379 |#2|) $) 165)) (-2528 (($ (-1163 (-379 |#2|)) (-1163 $)) 48) (($ (-1163 (-379 |#2|))) 64) (($ (-1163 |#2|) |#2|) 189)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-379 |#2|) (-321)))) (-2311 (($ $ $) 108 (|has| (-379 |#2|) (-335)))) (-3771 (((-625 (-379 |#2|)) $ (-1163 $)) 53) (((-625 (-379 |#2|)) $) 59)) (-1562 (((-625 (-519)) (-625 $)) 164 (|has| (-379 |#2|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 163 (|has| (-379 |#2|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-379 |#2|))) (|:| |vec| (-1163 (-379 |#2|)))) (-625 $) (-1163 $)) 162) (((-625 (-379 |#2|)) (-625 $)) 161)) (-1971 (((-1163 $) (-1163 $)) 201)) (-3874 (($ |#3|) 158) (((-3 $ "failed") (-379 |#3|)) 155 (|has| (-379 |#2|) (-335)))) (-4193 (((-3 $ "failed") $) 34)) (-1279 (((-585 (-585 |#1|))) 182 (|has| |#1| (-340)))) (-2325 (((-108) |#1| |#1|) 217)) (-3229 (((-848)) 54)) (-3314 (($) 90 (|has| (-379 |#2|) (-340)))) (-2295 (((-108)) 210)) (-2987 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-2286 (($ $ $) 107 (|has| (-379 |#2|) (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 102 (|has| (-379 |#2|) (-335)))) (-2177 (($ $) 188)) (-1625 (($) 149 (|has| (-379 |#2|) (-321)))) (-4156 (((-108) $) 150 (|has| (-379 |#2|) (-321)))) (-3824 (($ $ (-705)) 141 (|has| (-379 |#2|) (-321))) (($ $) 140 (|has| (-379 |#2|) (-321)))) (-1320 (((-108) $) 115 (|has| (-379 |#2|) (-335)))) (-3709 (((-848) $) 152 (|has| (-379 |#2|) (-321))) (((-768 (-848)) $) 138 (|has| (-379 |#2|) (-321)))) (-1568 (((-108) $) 31)) (-1323 (((-705)) 220)) (-3430 (((-1163 $) (-1163 $)) 202)) (-3681 (((-379 |#2|) $) 51)) (-3567 (((-585 (-879 |#1|)) (-1082)) 183 (|has| |#1| (-335)))) (-1675 (((-3 $ "failed") $) 142 (|has| (-379 |#2|) (-321)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 111 (|has| (-379 |#2|) (-335)))) (-3437 ((|#3| $) 44 (|has| (-379 |#2|) (-335)))) (-3334 (((-848) $) 89 (|has| (-379 |#2|) (-340)))) (-3860 ((|#3| $) 156)) (-2254 (($ (-585 $)) 100 (|has| (-379 |#2|) (-335))) (($ $ $) 99 (|has| (-379 |#2|) (-335)))) (-1266 (((-1065) $) 9)) (-1269 (((-625 (-379 |#2|))) 197)) (-3158 (((-625 (-379 |#2|))) 199)) (-3151 (($ $) 116 (|has| (-379 |#2|) (-335)))) (-3923 (($ (-1163 |#2|) |#2|) 194)) (-3206 (((-625 (-379 |#2|))) 198)) (-2973 (((-625 (-379 |#2|))) 200)) (-2274 (((-2 (|:| |num| (-625 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-1683 (((-2 (|:| |num| (-1163 |#2|)) (|:| |den| |#2|)) $) 195)) (-3534 (((-1163 $)) 206)) (-3668 (((-1163 $)) 207)) (-3760 (((-108) $) 205)) (-2760 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-3816 (($) 143 (|has| (-379 |#2|) (-321)) CONST)) (-2770 (($ (-848)) 88 (|has| (-379 |#2|) (-340)))) (-3413 (((-3 |#2| "failed")) 185)) (-4139 (((-1029) $) 10)) (-3794 (((-705)) 219)) (-1397 (($) 160)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 101 (|has| (-379 |#2|) (-335)))) (-2292 (($ (-585 $)) 98 (|has| (-379 |#2|) (-335))) (($ $ $) 97 (|has| (-379 |#2|) (-335)))) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) 146 (|has| (-379 |#2|) (-321)))) (-1921 (((-390 $) $) 112 (|has| (-379 |#2|) (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-379 |#2|) (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 109 (|has| (-379 |#2|) (-335)))) (-2261 (((-3 $ "failed") $ $) 92 (|has| (-379 |#2|) (-335)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 103 (|has| (-379 |#2|) (-335)))) (-3129 (((-705) $) 105 (|has| (-379 |#2|) (-335)))) (-2598 ((|#1| $ |#1| |#1|) 187)) (-2391 (((-3 |#2| "failed")) 186)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 106 (|has| (-379 |#2|) (-335)))) (-3677 (((-379 |#2|) (-1163 $)) 47) (((-379 |#2|)) 60)) (-2867 (((-705) $) 151 (|has| (-379 |#2|) (-321))) (((-3 (-705) "failed") $ $) 139 (|has| (-379 |#2|) (-321)))) (-2181 (($ $ (-1 (-379 |#2|) (-379 |#2|)) (-705)) 123 (|has| (-379 |#2|) (-335))) (($ $ (-1 (-379 |#2|) (-379 |#2|))) 122 (|has| (-379 |#2|) (-335))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-585 (-1082)) (-585 (-705))) 130 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082)))) (-4012 (|has| (-379 |#2|) (-827 (-1082))) (|has| (-379 |#2|) (-335))))) (($ $ (-1082) (-705)) 131 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082)))) (-4012 (|has| (-379 |#2|) (-827 (-1082))) (|has| (-379 |#2|) (-335))))) (($ $ (-585 (-1082))) 132 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082)))) (-4012 (|has| (-379 |#2|) (-827 (-1082))) (|has| (-379 |#2|) (-335))))) (($ $ (-1082)) 133 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082)))) (-4012 (|has| (-379 |#2|) (-827 (-1082))) (|has| (-379 |#2|) (-335))))) (($ $ (-705)) 135 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-209))) (-4012 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321)))) (($ $) 137 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-209))) (-4012 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321))))) (-1611 (((-625 (-379 |#2|)) (-1163 $) (-1 (-379 |#2|) (-379 |#2|))) 154 (|has| (-379 |#2|) (-335)))) (-1462 ((|#3|) 159)) (-3132 (($) 148 (|has| (-379 |#2|) (-321)))) (-3399 (((-1163 (-379 |#2|)) $ (-1163 $)) 50) (((-625 (-379 |#2|)) (-1163 $) (-1163 $)) 49) (((-1163 (-379 |#2|)) $) 66) (((-625 (-379 |#2|)) (-1163 $)) 65)) (-1446 (((-1163 (-379 |#2|)) $) 63) (($ (-1163 (-379 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 145 (|has| (-379 |#2|) (-321)))) (-1477 (((-1163 $) (-1163 $)) 203)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ (-379 |#2|)) 37) (($ (-379 (-519))) 86 (-3730 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-959 (-379 (-519)))))) (($ $) 91 (|has| (-379 |#2|) (-335)))) (-3773 (($ $) 144 (|has| (-379 |#2|) (-321))) (((-3 $ "failed") $) 43 (|has| (-379 |#2|) (-133)))) (-2165 ((|#3| $) 45)) (-3594 (((-705)) 29)) (-4171 (((-108)) 216)) (-3122 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-2070 (((-1163 $)) 67)) (-1617 (((-108) $ $) 95 (|has| (-379 |#2|) (-335)))) (-3260 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-3588 (((-108)) 218)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 117 (|has| (-379 |#2|) (-335)))) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-1 (-379 |#2|) (-379 |#2|)) (-705)) 125 (|has| (-379 |#2|) (-335))) (($ $ (-1 (-379 |#2|) (-379 |#2|))) 124 (|has| (-379 |#2|) (-335))) (($ $ (-585 (-1082)) (-585 (-705))) 126 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082)))) (-4012 (|has| (-379 |#2|) (-827 (-1082))) (|has| (-379 |#2|) (-335))))) (($ $ (-1082) (-705)) 127 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082)))) (-4012 (|has| (-379 |#2|) (-827 (-1082))) (|has| (-379 |#2|) (-335))))) (($ $ (-585 (-1082))) 128 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082)))) (-4012 (|has| (-379 |#2|) (-827 (-1082))) (|has| (-379 |#2|) (-335))))) (($ $ (-1082)) 129 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082)))) (-4012 (|has| (-379 |#2|) (-827 (-1082))) (|has| (-379 |#2|) (-335))))) (($ $ (-705)) 134 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-209))) (-4012 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321)))) (($ $) 136 (-3730 (-4012 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-209))) (-4012 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321))))) (-1543 (((-108) $ $) 6)) (-1632 (($ $ $) 121 (|has| (-379 |#2|) (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 118 (|has| (-379 |#2|) (-335)))) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 |#2|)) 39) (($ (-379 |#2|) $) 38) (($ (-379 (-519)) $) 120 (|has| (-379 |#2|) (-335))) (($ $ (-379 (-519))) 119 (|has| (-379 |#2|) (-335))))) +(((-314 |#1| |#2| |#3|) (-1194) (-1121) (-1139 |t#1|) (-1139 (-379 |t#2|))) (T -314)) +((-1323 (*1 *2) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-705)))) (-3794 (*1 *2) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-705)))) (-3588 (*1 *2) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) (-2325 (*1 *2 *3 *3) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) (-4171 (*1 *2) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) (-3122 (*1 *2 *3) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) (-3122 (*1 *2 *3) (-12 (-4 *1 (-314 *4 *3 *5)) (-4 *4 (-1121)) (-4 *3 (-1139 *4)) (-4 *5 (-1139 (-379 *3))) (-5 *2 (-108)))) (-3222 (*1 *2) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) (-1654 (*1 *2 *3) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) (-1654 (*1 *2 *3) (-12 (-4 *1 (-314 *4 *3 *5)) (-4 *4 (-1121)) (-4 *3 (-1139 *4)) (-4 *5 (-1139 (-379 *3))) (-5 *2 (-108)))) (-2295 (*1 *2) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) (-2987 (*1 *2 *3) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) (-2987 (*1 *2 *3) (-12 (-4 *1 (-314 *4 *3 *5)) (-4 *4 (-1121)) (-4 *3 (-1139 *4)) (-4 *5 (-1139 (-379 *3))) (-5 *2 (-108)))) (-3668 (*1 *2) (-12 (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-1163 *1)) (-4 *1 (-314 *3 *4 *5)))) (-3534 (*1 *2) (-12 (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-1163 *1)) (-4 *1 (-314 *3 *4 *5)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) (-2760 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) (-1477 (*1 *2 *2) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))))) (-1971 (*1 *2 *2) (-12 (-5 *2 (-1163 *1)) (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))))) (-2973 (*1 *2) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-625 (-379 *4))))) (-3158 (*1 *2) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-625 (-379 *4))))) (-3206 (*1 *2) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-625 (-379 *4))))) (-1269 (*1 *2) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-625 (-379 *4))))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-2 (|:| |num| (-1163 *4)) (|:| |den| *4))))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-2 (|:| |num| (-1163 *4)) (|:| |den| *4))))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1139 *4)) (-4 *4 (-1121)) (-4 *1 (-314 *4 *3 *5)) (-4 *5 (-1139 (-379 *3))))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-314 *4 *5 *6)) (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) (-5 *2 (-2 (|:| |num| (-625 *5)) (|:| |den| *5))))) (-2760 (*1 *2 *1 *3) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) (-2760 (*1 *2 *1 *3) (-12 (-4 *1 (-314 *4 *3 *5)) (-4 *4 (-1121)) (-4 *3 (-1139 *4)) (-4 *5 (-1139 (-379 *3))) (-5 *2 (-108)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))))) (-2528 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1139 *4)) (-4 *4 (-1121)) (-4 *1 (-314 *4 *3 *5)) (-4 *5 (-1139 (-379 *3))))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-1139 *2)) (-4 *4 (-1139 (-379 *3))))) (-2598 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-314 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-1139 *2)) (-4 *4 (-1139 (-379 *3))))) (-2391 (*1 *2) (|partial| -12 (-4 *1 (-314 *3 *2 *4)) (-4 *3 (-1121)) (-4 *4 (-1139 (-379 *2))) (-4 *2 (-1139 *3)))) (-3413 (*1 *2) (|partial| -12 (-4 *1 (-314 *3 *2 *4)) (-4 *3 (-1121)) (-4 *4 (-1139 (-379 *2))) (-4 *2 (-1139 *3)))) (-3260 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1139 *4)) (-4 *4 (-1121)) (-4 *6 (-1139 (-379 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-314 *4 *5 *6)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *1 (-314 *4 *5 *6)) (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) (-4 *4 (-335)) (-5 *2 (-585 (-879 *4))))) (-1279 (*1 *2) (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) (-4 *3 (-340)) (-5 *2 (-585 (-585 *3)))))) +(-13 (-659 (-379 |t#2|) |t#3|) (-10 -8 (-15 -1323 ((-705))) (-15 -3794 ((-705))) (-15 -3588 ((-108))) (-15 -2325 ((-108) |t#1| |t#1|)) (-15 -4171 ((-108))) (-15 -3122 ((-108) |t#1|)) (-15 -3122 ((-108) |t#2|)) (-15 -3222 ((-108))) (-15 -1654 ((-108) |t#1|)) (-15 -1654 ((-108) |t#2|)) (-15 -2295 ((-108))) (-15 -2987 ((-108) |t#1|)) (-15 -2987 ((-108) |t#2|)) (-15 -3668 ((-1163 $))) (-15 -3534 ((-1163 $))) (-15 -3760 ((-108) $)) (-15 -2760 ((-108) $)) (-15 -1477 ((-1163 $) (-1163 $))) (-15 -3430 ((-1163 $) (-1163 $))) (-15 -1971 ((-1163 $) (-1163 $))) (-15 -2973 ((-625 (-379 |t#2|)))) (-15 -3158 ((-625 (-379 |t#2|)))) (-15 -3206 ((-625 (-379 |t#2|)))) (-15 -1269 ((-625 (-379 |t#2|)))) (-15 -4108 ((-2 (|:| |num| (-1163 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2528 ($ (-1163 |t#2|) |t#2|)) (-15 -1683 ((-2 (|:| |num| (-1163 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3923 ($ (-1163 |t#2|) |t#2|)) (-15 -2274 ((-2 (|:| |num| (-625 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2760 ((-108) $ |t#1|)) (-15 -2760 ((-108) $ |t#2|)) (-15 -2181 ($ $ (-1 |t#2| |t#2|))) (-15 -2528 ($ (-1163 |t#2|) |t#2|)) (-15 -2177 ($ $)) (-15 -2598 (|t#1| $ |t#1| |t#1|)) (-15 -2391 ((-3 |t#2| "failed"))) (-15 -3413 ((-3 |t#2| "failed"))) (-15 -3260 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-335)) (-15 -3567 ((-585 (-879 |t#1|)) (-1082))) |%noBranch|) (IF (|has| |t#1| (-340)) (-15 -1279 ((-585 (-585 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-37 #1=(-379 |#2|)) . T) ((-37 $) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-97) . T) ((-107 #0# #0#) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-133))) ((-135) |has| (-379 |#2|) (-135)) ((-559 (-790)) . T) ((-157) . T) ((-560 |#3|) . T) ((-207 #1#) |has| (-379 |#2|) (-335)) ((-209) -3730 (|has| (-379 |#2|) (-321)) (-12 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335)))) ((-219) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-264) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-280) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-335) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-374) |has| (-379 |#2|) (-321)) ((-340) -3730 (|has| (-379 |#2|) (-340)) (|has| (-379 |#2|) (-321))) ((-321) |has| (-379 |#2|) (-321)) ((-342 #1# |#3|) . T) ((-381 #1# |#3|) . T) ((-349 #1#) . T) ((-383 #1#) . T) ((-423) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-511) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-587 #0#) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-587 #1#) . T) ((-587 $) . T) ((-581 #1#) . T) ((-581 (-519)) |has| (-379 |#2|) (-581 (-519))) ((-652 #0#) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-652 #1#) . T) ((-652 $) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-659 #1# |#3|) . T) ((-661) . T) ((-827 (-1082)) -12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082)))) ((-847) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-959 (-379 (-519))) |has| (-379 |#2|) (-959 (-379 (-519)))) ((-959 #1#) . T) ((-959 (-519)) |has| (-379 |#2|) (-959 (-519))) ((-974 #0#) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335))) ((-974 #1#) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1058) |has| (-379 |#2|) (-321)) ((-1121) -3730 (|has| (-379 |#2|) (-321)) (|has| (-379 |#2|) (-335)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 (((-837 |#1|) $) NIL) (($ $ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| (-837 |#1|) (-340)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) NIL (|has| (-837 |#1|) (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-837 |#1|) "failed") $) NIL)) (-1499 (((-837 |#1|) $) NIL)) (-2528 (($ (-1163 (-837 |#1|))) NIL)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-837 |#1|) (-340)))) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| (-837 |#1|) (-340)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) NIL (|has| (-837 |#1|) (-340)))) (-4156 (((-108) $) NIL (|has| (-837 |#1|) (-340)))) (-3824 (($ $ (-705)) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340)))) (($ $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-1320 (((-108) $) NIL)) (-3709 (((-848) $) NIL (|has| (-837 |#1|) (-340))) (((-768 (-848)) $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-1568 (((-108) $) NIL)) (-3637 (($) NIL (|has| (-837 |#1|) (-340)))) (-2877 (((-108) $) NIL (|has| (-837 |#1|) (-340)))) (-3681 (((-837 |#1|) $) NIL) (($ $ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-1675 (((-3 $ "failed") $) NIL (|has| (-837 |#1|) (-340)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 (-837 |#1|)) $) NIL) (((-1078 $) $ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-3334 (((-848) $) NIL (|has| (-837 |#1|) (-340)))) (-1955 (((-1078 (-837 |#1|)) $) NIL (|has| (-837 |#1|) (-340)))) (-3270 (((-1078 (-837 |#1|)) $) NIL (|has| (-837 |#1|) (-340))) (((-3 (-1078 (-837 |#1|)) "failed") $ $) NIL (|has| (-837 |#1|) (-340)))) (-3904 (($ $ (-1078 (-837 |#1|))) NIL (|has| (-837 |#1|) (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| (-837 |#1|) (-340)) CONST)) (-2770 (($ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-2141 (((-108) $) NIL)) (-4139 (((-1029) $) NIL)) (-1916 (((-884 (-1029))) NIL)) (-1397 (($) NIL (|has| (-837 |#1|) (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| (-837 |#1|) (-340)))) (-1921 (((-390 $) $) NIL)) (-1445 (((-768 (-848))) NIL) (((-848)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-705) $) NIL (|has| (-837 |#1|) (-340))) (((-3 (-705) "failed") $ $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-2914 (((-126)) NIL)) (-2181 (($ $) NIL (|has| (-837 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-837 |#1|) (-340)))) (-4178 (((-768 (-848)) $) NIL) (((-848) $) NIL)) (-1462 (((-1078 (-837 |#1|))) NIL)) (-3132 (($) NIL (|has| (-837 |#1|) (-340)))) (-3670 (($) NIL (|has| (-837 |#1|) (-340)))) (-3399 (((-1163 (-837 |#1|)) $) NIL) (((-625 (-837 |#1|)) (-1163 $)) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| (-837 |#1|) (-340)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ (-837 |#1|)) NIL)) (-3773 (($ $) NIL (|has| (-837 |#1|) (-340))) (((-3 $ "failed") $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-3594 (((-705)) NIL)) (-2070 (((-1163 $)) NIL) (((-1163 $) (-848)) NIL)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-3706 (($ $) NIL (|has| (-837 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-837 |#1|) (-340)))) (-2242 (($ $) NIL (|has| (-837 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-837 |#1|) (-340)))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL) (($ $ (-837 |#1|)) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ $ (-837 |#1|)) NIL) (($ (-837 |#1|) $) NIL))) +(((-315 |#1| |#2|) (-13 (-301 (-837 |#1|)) (-10 -7 (-15 -1916 ((-884 (-1029)))))) (-848) (-848)) (T -315)) +((-1916 (*1 *2) (-12 (-5 *2 (-884 (-1029))) (-5 *1 (-315 *3 *4)) (-14 *3 (-848)) (-14 *4 (-848))))) +(-13 (-301 (-837 |#1|)) (-10 -7 (-15 -1916 ((-884 (-1029)))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 46)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 ((|#1| $) NIL) (($ $ (-848)) NIL (|has| |#1| (-340)))) (-3263 (((-1091 (-848) (-705)) (-519)) 43 (|has| |#1| (-340)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) NIL (|has| |#1| (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) 114)) (-1499 ((|#1| $) 85)) (-2528 (($ (-1163 |#1|)) 103)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-340)))) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) 97 (|has| |#1| (-340)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) 129 (|has| |#1| (-340)))) (-4156 (((-108) $) 49 (|has| |#1| (-340)))) (-3824 (($ $ (-705)) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340)))) (($ $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1320 (((-108) $) NIL)) (-3709 (((-848) $) 47 (|has| |#1| (-340))) (((-768 (-848)) $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1568 (((-108) $) NIL)) (-3637 (($) 131 (|has| |#1| (-340)))) (-2877 (((-108) $) NIL (|has| |#1| (-340)))) (-3681 ((|#1| $) NIL) (($ $ (-848)) NIL (|has| |#1| (-340)))) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-340)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 |#1|) $) 89) (((-1078 $) $ (-848)) NIL (|has| |#1| (-340)))) (-3334 (((-848) $) 139 (|has| |#1| (-340)))) (-1955 (((-1078 |#1|) $) NIL (|has| |#1| (-340)))) (-3270 (((-1078 |#1|) $) NIL (|has| |#1| (-340))) (((-3 (-1078 |#1|) "failed") $ $) NIL (|has| |#1| (-340)))) (-3904 (($ $ (-1078 |#1|)) NIL (|has| |#1| (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 146)) (-3816 (($) NIL (|has| |#1| (-340)) CONST)) (-2770 (($ (-848)) 70 (|has| |#1| (-340)))) (-2141 (((-108) $) 117)) (-4139 (((-1029) $) NIL)) (-1916 (((-884 (-1029))) 44)) (-1397 (($) 127 (|has| |#1| (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) 92 (|has| |#1| (-340)))) (-1921 (((-390 $) $) NIL)) (-1445 (((-768 (-848))) 67) (((-848)) 68)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-705) $) 130 (|has| |#1| (-340))) (((-3 (-705) "failed") $ $) 124 (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-2914 (((-126)) NIL)) (-2181 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-4178 (((-768 (-848)) $) NIL) (((-848) $) NIL)) (-1462 (((-1078 |#1|)) 95)) (-3132 (($) 128 (|has| |#1| (-340)))) (-3670 (($) 136 (|has| |#1| (-340)))) (-3399 (((-1163 |#1|) $) 59) (((-625 |#1|) (-1163 $)) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| |#1| (-340)))) (-2217 (((-790) $) 142) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ |#1|) 74)) (-3773 (($ $) NIL (|has| |#1| (-340))) (((-3 $ "failed") $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-3594 (((-705)) 138)) (-2070 (((-1163 $)) 116) (((-1163 $) (-848)) 72)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 32 T CONST)) (-3611 (($) 19 T CONST)) (-3706 (($ $) 80 (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-2242 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-1543 (((-108) $ $) 48)) (-1632 (($ $ $) 144) (($ $ |#1|) 145)) (-1623 (($ $) 126) (($ $ $) NIL)) (-1614 (($ $ $) 61)) (** (($ $ (-848)) 148) (($ $ (-705)) 149) (($ $ (-519)) 147)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 76) (($ $ $) 75) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) +(((-316 |#1| |#2|) (-13 (-301 |#1|) (-10 -7 (-15 -1916 ((-884 (-1029)))))) (-321) (-1078 |#1|)) (T -316)) +((-1916 (*1 *2) (-12 (-5 *2 (-884 (-1029))) (-5 *1 (-316 *3 *4)) (-4 *3 (-321)) (-14 *4 (-1078 *3))))) +(-13 (-301 |#1|) (-10 -7 (-15 -1916 ((-884 (-1029)))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 ((|#1| $) NIL) (($ $ (-848)) NIL (|has| |#1| (-340)))) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| |#1| (-340)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) NIL (|has| |#1| (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-2528 (($ (-1163 |#1|)) NIL)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-340)))) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| |#1| (-340)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) NIL (|has| |#1| (-340)))) (-4156 (((-108) $) NIL (|has| |#1| (-340)))) (-3824 (($ $ (-705)) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340)))) (($ $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1320 (((-108) $) NIL)) (-3709 (((-848) $) NIL (|has| |#1| (-340))) (((-768 (-848)) $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1568 (((-108) $) NIL)) (-3637 (($) NIL (|has| |#1| (-340)))) (-2877 (((-108) $) NIL (|has| |#1| (-340)))) (-3681 ((|#1| $) NIL) (($ $ (-848)) NIL (|has| |#1| (-340)))) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-340)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 |#1|) $) NIL) (((-1078 $) $ (-848)) NIL (|has| |#1| (-340)))) (-3334 (((-848) $) NIL (|has| |#1| (-340)))) (-1955 (((-1078 |#1|) $) NIL (|has| |#1| (-340)))) (-3270 (((-1078 |#1|) $) NIL (|has| |#1| (-340))) (((-3 (-1078 |#1|) "failed") $ $) NIL (|has| |#1| (-340)))) (-3904 (($ $ (-1078 |#1|)) NIL (|has| |#1| (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-340)) CONST)) (-2770 (($ (-848)) NIL (|has| |#1| (-340)))) (-2141 (((-108) $) NIL)) (-4139 (((-1029) $) NIL)) (-1916 (((-884 (-1029))) NIL)) (-1397 (($) NIL (|has| |#1| (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| |#1| (-340)))) (-1921 (((-390 $) $) NIL)) (-1445 (((-768 (-848))) NIL) (((-848)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-705) $) NIL (|has| |#1| (-340))) (((-3 (-705) "failed") $ $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-2914 (((-126)) NIL)) (-2181 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-4178 (((-768 (-848)) $) NIL) (((-848) $) NIL)) (-1462 (((-1078 |#1|)) NIL)) (-3132 (($) NIL (|has| |#1| (-340)))) (-3670 (($) NIL (|has| |#1| (-340)))) (-3399 (((-1163 |#1|) $) NIL) (((-625 |#1|) (-1163 $)) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| |#1| (-340)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ |#1|) NIL)) (-3773 (($ $) NIL (|has| |#1| (-340))) (((-3 $ "failed") $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-3594 (((-705)) NIL)) (-2070 (((-1163 $)) NIL) (((-1163 $) (-848)) NIL)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-3706 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-2242 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-317 |#1| |#2|) (-13 (-301 |#1|) (-10 -7 (-15 -1916 ((-884 (-1029)))))) (-321) (-848)) (T -317)) +((-1916 (*1 *2) (-12 (-5 *2 (-884 (-1029))) (-5 *1 (-317 *3 *4)) (-4 *3 (-321)) (-14 *4 (-848))))) +(-13 (-301 |#1|) (-10 -7 (-15 -1916 ((-884 (-1029)))))) +((-2328 (((-705) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029)))))) 40)) (-3713 (((-884 (-1029)) (-1078 |#1|)) 85)) (-1708 (((-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))) (-1078 |#1|)) 78)) (-1428 (((-625 |#1|) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029)))))) 86)) (-3302 (((-3 (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))) "failed") (-848)) 10)) (-2126 (((-3 (-1078 |#1|) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029)))))) (-848)) 15))) +(((-318 |#1|) (-10 -7 (-15 -3713 ((-884 (-1029)) (-1078 |#1|))) (-15 -1708 ((-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))) (-1078 |#1|))) (-15 -1428 ((-625 |#1|) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))))) (-15 -2328 ((-705) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))))) (-15 -3302 ((-3 (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))) "failed") (-848))) (-15 -2126 ((-3 (-1078 |#1|) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029)))))) (-848)))) (-321)) (T -318)) +((-2126 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-3 (-1078 *4) (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029))))))) (-5 *1 (-318 *4)) (-4 *4 (-321)))) (-3302 (*1 *2 *3) (|partial| -12 (-5 *3 (-848)) (-5 *2 (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029)))))) (-5 *1 (-318 *4)) (-4 *4 (-321)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029)))))) (-4 *4 (-321)) (-5 *2 (-705)) (-5 *1 (-318 *4)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029)))))) (-4 *4 (-321)) (-5 *2 (-625 *4)) (-5 *1 (-318 *4)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-1078 *4)) (-4 *4 (-321)) (-5 *2 (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029)))))) (-5 *1 (-318 *4)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-1078 *4)) (-4 *4 (-321)) (-5 *2 (-884 (-1029))) (-5 *1 (-318 *4))))) +(-10 -7 (-15 -3713 ((-884 (-1029)) (-1078 |#1|))) (-15 -1708 ((-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))) (-1078 |#1|))) (-15 -1428 ((-625 |#1|) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))))) (-15 -2328 ((-705) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))))) (-15 -3302 ((-3 (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))) "failed") (-848))) (-15 -2126 ((-3 (-1078 |#1|) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029)))))) (-848)))) +((-2217 ((|#1| |#3|) 84) ((|#3| |#1|) 68))) +(((-319 |#1| |#2| |#3|) (-10 -7 (-15 -2217 (|#3| |#1|)) (-15 -2217 (|#1| |#3|))) (-301 |#2|) (-321) (-301 |#2|)) (T -319)) +((-2217 (*1 *2 *3) (-12 (-4 *4 (-321)) (-4 *2 (-301 *4)) (-5 *1 (-319 *2 *4 *3)) (-4 *3 (-301 *4)))) (-2217 (*1 *2 *3) (-12 (-4 *4 (-321)) (-4 *2 (-301 *4)) (-5 *1 (-319 *3 *4 *2)) (-4 *3 (-301 *4))))) +(-10 -7 (-15 -2217 (|#3| |#1|)) (-15 -2217 (|#1| |#3|))) +((-4156 (((-108) $) 51)) (-3709 (((-768 (-848)) $) 21) (((-848) $) 52)) (-1675 (((-3 $ "failed") $) 16)) (-3816 (($) 9)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 92)) (-2867 (((-3 (-705) "failed") $ $) 71) (((-705) $) 60)) (-2181 (($ $ (-705)) NIL) (($ $) 8)) (-3132 (($) 45)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 33)) (-3773 (((-3 $ "failed") $) 39) (($ $) 38))) +(((-320 |#1|) (-10 -8 (-15 -3709 ((-848) |#1|)) (-15 -2867 ((-705) |#1|)) (-15 -4156 ((-108) |#1|)) (-15 -3132 (|#1|)) (-15 -1376 ((-3 (-1163 |#1|) "failed") (-625 |#1|))) (-15 -3773 (|#1| |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -3816 (|#1|)) (-15 -1675 ((-3 |#1| "failed") |#1|)) (-15 -2867 ((-3 (-705) "failed") |#1| |#1|)) (-15 -3709 ((-768 (-848)) |#1|)) (-15 -3773 ((-3 |#1| "failed") |#1|)) (-15 -1715 ((-1078 |#1|) (-1078 |#1|) (-1078 |#1|)))) (-321)) (T -320)) +NIL +(-10 -8 (-15 -3709 ((-848) |#1|)) (-15 -2867 ((-705) |#1|)) (-15 -4156 ((-108) |#1|)) (-15 -3132 (|#1|)) (-15 -1376 ((-3 (-1163 |#1|) "failed") (-625 |#1|))) (-15 -3773 (|#1| |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -3816 (|#1|)) (-15 -1675 ((-3 |#1| "failed") |#1|)) (-15 -2867 ((-3 (-705) "failed") |#1| |#1|)) (-15 -3709 ((-768 (-848)) |#1|)) (-15 -3773 ((-3 |#1| "failed") |#1|)) (-15 -1715 ((-1078 |#1|) (-1078 |#1|) (-1078 |#1|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3263 (((-1091 (-848) (-705)) (-519)) 93)) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 73)) (-3093 (((-390 $) $) 72)) (-3409 (((-108) $ $) 59)) (-1642 (((-705)) 103)) (-2249 (($) 17 T CONST)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2311 (($ $ $) 55)) (-4193 (((-3 $ "failed") $) 34)) (-3314 (($) 106)) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-1625 (($) 91)) (-4156 (((-108) $) 90)) (-3824 (($ $) 79) (($ $ (-705)) 78)) (-1320 (((-108) $) 71)) (-3709 (((-768 (-848)) $) 81) (((-848) $) 88)) (-1568 (((-108) $) 31)) (-1675 (((-3 $ "failed") $) 102)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-3334 (((-848) $) 105)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 70)) (-3816 (($) 101 T CONST)) (-2770 (($ (-848)) 104)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) 94)) (-1921 (((-390 $) $) 74)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-3129 (((-705) $) 58)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-2867 (((-3 (-705) "failed") $ $) 80) (((-705) $) 89)) (-2181 (($ $ (-705)) 99) (($ $) 97)) (-3132 (($) 92)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 95)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-379 (-519))) 65)) (-3773 (((-3 $ "failed") $) 82) (($ $) 96)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 69)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-705)) 100) (($ $) 98)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ $) 64)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 68)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 67) (($ (-379 (-519)) $) 66))) +(((-321) (-1194)) (T -321)) +((-3773 (*1 *1 *1) (-4 *1 (-321))) (-1376 (*1 *2 *3) (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-321)) (-5 *2 (-1163 *1)))) (-1666 (*1 *2) (-12 (-4 *1 (-321)) (-5 *2 (-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))))) (-3263 (*1 *2 *3) (-12 (-4 *1 (-321)) (-5 *3 (-519)) (-5 *2 (-1091 (-848) (-705))))) (-3132 (*1 *1) (-4 *1 (-321))) (-1625 (*1 *1) (-4 *1 (-321))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-321)) (-5 *2 (-108)))) (-2867 (*1 *2 *1) (-12 (-4 *1 (-321)) (-5 *2 (-705)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-321)) (-5 *2 (-848)))) (-1249 (*1 *2) (-12 (-4 *1 (-321)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-374) (-340) (-1058) (-209) (-10 -8 (-15 -3773 ($ $)) (-15 -1376 ((-3 (-1163 $) "failed") (-625 $))) (-15 -1666 ((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519)))))) (-15 -3263 ((-1091 (-848) (-705)) (-519))) (-15 -3132 ($)) (-15 -1625 ($)) (-15 -4156 ((-108) $)) (-15 -2867 ((-705) $)) (-15 -3709 ((-848) $)) (-15 -1249 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-559 (-790)) . T) ((-157) . T) ((-209) . T) ((-219) . T) ((-264) . T) ((-280) . T) ((-335) . T) ((-374) . T) ((-340) . T) ((-423) . T) ((-511) . T) ((-587 #0#) . T) ((-587 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-661) . T) ((-847) . T) ((-974 #0#) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1058) . T) ((-1121) . T)) +((-2902 (((-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) |#1|) 51)) (-3668 (((-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|)))) 49))) +(((-322 |#1| |#2| |#3|) (-10 -7 (-15 -3668 ((-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))))) (-15 -2902 ((-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) |#1|))) (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $)))) (-1139 |#1|) (-381 |#1| |#2|)) (T -322)) +((-2902 (*1 *2 *3) (-12 (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) (-4 *4 (-1139 *3)) (-5 *2 (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-322 *3 *4 *5)) (-4 *5 (-381 *3 *4)))) (-3668 (*1 *2) (-12 (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) (-4 *4 (-1139 *3)) (-5 *2 (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-322 *3 *4 *5)) (-4 *5 (-381 *3 *4))))) +(-10 -7 (-15 -3668 ((-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))))) (-15 -2902 ((-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 (((-837 |#1|) $) NIL) (($ $ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| (-837 |#1|) (-340)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2328 (((-705)) NIL)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) NIL (|has| (-837 |#1|) (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-837 |#1|) "failed") $) NIL)) (-1499 (((-837 |#1|) $) NIL)) (-2528 (($ (-1163 (-837 |#1|))) NIL)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-837 |#1|) (-340)))) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| (-837 |#1|) (-340)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) NIL (|has| (-837 |#1|) (-340)))) (-4156 (((-108) $) NIL (|has| (-837 |#1|) (-340)))) (-3824 (($ $ (-705)) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340)))) (($ $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-1320 (((-108) $) NIL)) (-3709 (((-848) $) NIL (|has| (-837 |#1|) (-340))) (((-768 (-848)) $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-1568 (((-108) $) NIL)) (-3637 (($) NIL (|has| (-837 |#1|) (-340)))) (-2877 (((-108) $) NIL (|has| (-837 |#1|) (-340)))) (-3681 (((-837 |#1|) $) NIL) (($ $ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-1675 (((-3 $ "failed") $) NIL (|has| (-837 |#1|) (-340)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 (-837 |#1|)) $) NIL) (((-1078 $) $ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-3334 (((-848) $) NIL (|has| (-837 |#1|) (-340)))) (-1955 (((-1078 (-837 |#1|)) $) NIL (|has| (-837 |#1|) (-340)))) (-3270 (((-1078 (-837 |#1|)) $) NIL (|has| (-837 |#1|) (-340))) (((-3 (-1078 (-837 |#1|)) "failed") $ $) NIL (|has| (-837 |#1|) (-340)))) (-3904 (($ $ (-1078 (-837 |#1|))) NIL (|has| (-837 |#1|) (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| (-837 |#1|) (-340)) CONST)) (-2770 (($ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-2141 (((-108) $) NIL)) (-4139 (((-1029) $) NIL)) (-4017 (((-1163 (-585 (-2 (|:| -3493 (-837 |#1|)) (|:| -2770 (-1029)))))) NIL)) (-1818 (((-625 (-837 |#1|))) NIL)) (-1397 (($) NIL (|has| (-837 |#1|) (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| (-837 |#1|) (-340)))) (-1921 (((-390 $) $) NIL)) (-1445 (((-768 (-848))) NIL) (((-848)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-705) $) NIL (|has| (-837 |#1|) (-340))) (((-3 (-705) "failed") $ $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-2914 (((-126)) NIL)) (-2181 (($ $) NIL (|has| (-837 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-837 |#1|) (-340)))) (-4178 (((-768 (-848)) $) NIL) (((-848) $) NIL)) (-1462 (((-1078 (-837 |#1|))) NIL)) (-3132 (($) NIL (|has| (-837 |#1|) (-340)))) (-3670 (($) NIL (|has| (-837 |#1|) (-340)))) (-3399 (((-1163 (-837 |#1|)) $) NIL) (((-625 (-837 |#1|)) (-1163 $)) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| (-837 |#1|) (-340)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ (-837 |#1|)) NIL)) (-3773 (($ $) NIL (|has| (-837 |#1|) (-340))) (((-3 $ "failed") $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-3594 (((-705)) NIL)) (-2070 (((-1163 $)) NIL) (((-1163 $) (-848)) NIL)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-3706 (($ $) NIL (|has| (-837 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-837 |#1|) (-340)))) (-2242 (($ $) NIL (|has| (-837 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-837 |#1|) (-340)))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL) (($ $ (-837 |#1|)) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ $ (-837 |#1|)) NIL) (($ (-837 |#1|) $) NIL))) +(((-323 |#1| |#2|) (-13 (-301 (-837 |#1|)) (-10 -7 (-15 -4017 ((-1163 (-585 (-2 (|:| -3493 (-837 |#1|)) (|:| -2770 (-1029))))))) (-15 -1818 ((-625 (-837 |#1|)))) (-15 -2328 ((-705))))) (-848) (-848)) (T -323)) +((-4017 (*1 *2) (-12 (-5 *2 (-1163 (-585 (-2 (|:| -3493 (-837 *3)) (|:| -2770 (-1029)))))) (-5 *1 (-323 *3 *4)) (-14 *3 (-848)) (-14 *4 (-848)))) (-1818 (*1 *2) (-12 (-5 *2 (-625 (-837 *3))) (-5 *1 (-323 *3 *4)) (-14 *3 (-848)) (-14 *4 (-848)))) (-2328 (*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-323 *3 *4)) (-14 *3 (-848)) (-14 *4 (-848))))) +(-13 (-301 (-837 |#1|)) (-10 -7 (-15 -4017 ((-1163 (-585 (-2 (|:| -3493 (-837 |#1|)) (|:| -2770 (-1029))))))) (-15 -1818 ((-625 (-837 |#1|)))) (-15 -2328 ((-705))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 75)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 ((|#1| $) 93) (($ $ (-848)) 91 (|has| |#1| (-340)))) (-3263 (((-1091 (-848) (-705)) (-519)) 149 (|has| |#1| (-340)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2328 (((-705)) 90)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) 163 (|has| |#1| (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) 112)) (-1499 ((|#1| $) 92)) (-2528 (($ (-1163 |#1|)) 56)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-340)))) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) 159 (|has| |#1| (-340)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) 150 (|has| |#1| (-340)))) (-4156 (((-108) $) NIL (|has| |#1| (-340)))) (-3824 (($ $ (-705)) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340)))) (($ $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1320 (((-108) $) NIL)) (-3709 (((-848) $) NIL (|has| |#1| (-340))) (((-768 (-848)) $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1568 (((-108) $) NIL)) (-3637 (($) 98 (|has| |#1| (-340)))) (-2877 (((-108) $) 176 (|has| |#1| (-340)))) (-3681 ((|#1| $) 95) (($ $ (-848)) 94 (|has| |#1| (-340)))) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-340)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 |#1|) $) 188) (((-1078 $) $ (-848)) NIL (|has| |#1| (-340)))) (-3334 (((-848) $) 134 (|has| |#1| (-340)))) (-1955 (((-1078 |#1|) $) 74 (|has| |#1| (-340)))) (-3270 (((-1078 |#1|) $) 71 (|has| |#1| (-340))) (((-3 (-1078 |#1|) "failed") $ $) 83 (|has| |#1| (-340)))) (-3904 (($ $ (-1078 |#1|)) 70 (|has| |#1| (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 191)) (-3816 (($) NIL (|has| |#1| (-340)) CONST)) (-2770 (($ (-848)) 137 (|has| |#1| (-340)))) (-2141 (((-108) $) 108)) (-4139 (((-1029) $) NIL)) (-4017 (((-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029)))))) 84)) (-1818 (((-625 |#1|)) 88)) (-1397 (($) 97 (|has| |#1| (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) 151 (|has| |#1| (-340)))) (-1921 (((-390 $) $) NIL)) (-1445 (((-768 (-848))) NIL) (((-848)) 152)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-705) $) NIL (|has| |#1| (-340))) (((-3 (-705) "failed") $ $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-2914 (((-126)) NIL)) (-2181 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-4178 (((-768 (-848)) $) NIL) (((-848) $) 63)) (-1462 (((-1078 |#1|)) 153)) (-3132 (($) 133 (|has| |#1| (-340)))) (-3670 (($) NIL (|has| |#1| (-340)))) (-3399 (((-1163 |#1|) $) 106) (((-625 |#1|) (-1163 $)) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| |#1| (-340)))) (-2217 (((-790) $) 124) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ |#1|) 55)) (-3773 (($ $) NIL (|has| |#1| (-340))) (((-3 $ "failed") $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-3594 (((-705)) 157)) (-2070 (((-1163 $)) 173) (((-1163 $) (-848)) 101)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 29 T CONST)) (-3611 (($) 22 T CONST)) (-3706 (($ $) 107 (|has| |#1| (-340))) (($ $ (-705)) 99 (|has| |#1| (-340)))) (-2242 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-1543 (((-108) $ $) 59)) (-1632 (($ $ $) 104) (($ $ |#1|) 105)) (-1623 (($ $) 178) (($ $ $) 182)) (-1614 (($ $ $) 180)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) 138)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 185) (($ $ $) 143) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-324 |#1| |#2|) (-13 (-301 |#1|) (-10 -7 (-15 -4017 ((-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))))) (-15 -1818 ((-625 |#1|))) (-15 -2328 ((-705))))) (-321) (-3 (-1078 |#1|) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))))) (T -324)) +((-4017 (*1 *2) (-12 (-5 *2 (-1163 (-585 (-2 (|:| -3493 *3) (|:| -2770 (-1029)))))) (-5 *1 (-324 *3 *4)) (-4 *3 (-321)) (-14 *4 (-3 (-1078 *3) *2)))) (-1818 (*1 *2) (-12 (-5 *2 (-625 *3)) (-5 *1 (-324 *3 *4)) (-4 *3 (-321)) (-14 *4 (-3 (-1078 *3) (-1163 (-585 (-2 (|:| -3493 *3) (|:| -2770 (-1029))))))))) (-2328 (*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-324 *3 *4)) (-4 *3 (-321)) (-14 *4 (-3 (-1078 *3) (-1163 (-585 (-2 (|:| -3493 *3) (|:| -2770 (-1029)))))))))) +(-13 (-301 |#1|) (-10 -7 (-15 -4017 ((-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))))) (-15 -1818 ((-625 |#1|))) (-15 -2328 ((-705))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 ((|#1| $) NIL) (($ $ (-848)) NIL (|has| |#1| (-340)))) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| |#1| (-340)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2328 (((-705)) NIL)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) NIL (|has| |#1| (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-2528 (($ (-1163 |#1|)) NIL)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-340)))) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| |#1| (-340)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) NIL (|has| |#1| (-340)))) (-4156 (((-108) $) NIL (|has| |#1| (-340)))) (-3824 (($ $ (-705)) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340)))) (($ $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1320 (((-108) $) NIL)) (-3709 (((-848) $) NIL (|has| |#1| (-340))) (((-768 (-848)) $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1568 (((-108) $) NIL)) (-3637 (($) NIL (|has| |#1| (-340)))) (-2877 (((-108) $) NIL (|has| |#1| (-340)))) (-3681 ((|#1| $) NIL) (($ $ (-848)) NIL (|has| |#1| (-340)))) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-340)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 |#1|) $) NIL) (((-1078 $) $ (-848)) NIL (|has| |#1| (-340)))) (-3334 (((-848) $) NIL (|has| |#1| (-340)))) (-1955 (((-1078 |#1|) $) NIL (|has| |#1| (-340)))) (-3270 (((-1078 |#1|) $) NIL (|has| |#1| (-340))) (((-3 (-1078 |#1|) "failed") $ $) NIL (|has| |#1| (-340)))) (-3904 (($ $ (-1078 |#1|)) NIL (|has| |#1| (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-340)) CONST)) (-2770 (($ (-848)) NIL (|has| |#1| (-340)))) (-2141 (((-108) $) NIL)) (-4139 (((-1029) $) NIL)) (-4017 (((-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029)))))) NIL)) (-1818 (((-625 |#1|)) NIL)) (-1397 (($) NIL (|has| |#1| (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| |#1| (-340)))) (-1921 (((-390 $) $) NIL)) (-1445 (((-768 (-848))) NIL) (((-848)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-705) $) NIL (|has| |#1| (-340))) (((-3 (-705) "failed") $ $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-2914 (((-126)) NIL)) (-2181 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-4178 (((-768 (-848)) $) NIL) (((-848) $) NIL)) (-1462 (((-1078 |#1|)) NIL)) (-3132 (($) NIL (|has| |#1| (-340)))) (-3670 (($) NIL (|has| |#1| (-340)))) (-3399 (((-1163 |#1|) $) NIL) (((-625 |#1|) (-1163 $)) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| |#1| (-340)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ |#1|) NIL)) (-3773 (($ $) NIL (|has| |#1| (-340))) (((-3 $ "failed") $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-3594 (((-705)) NIL)) (-2070 (((-1163 $)) NIL) (((-1163 $) (-848)) NIL)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-3706 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-2242 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-325 |#1| |#2|) (-13 (-301 |#1|) (-10 -7 (-15 -4017 ((-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))))) (-15 -1818 ((-625 |#1|))) (-15 -2328 ((-705))))) (-321) (-848)) (T -325)) +((-4017 (*1 *2) (-12 (-5 *2 (-1163 (-585 (-2 (|:| -3493 *3) (|:| -2770 (-1029)))))) (-5 *1 (-325 *3 *4)) (-4 *3 (-321)) (-14 *4 (-848)))) (-1818 (*1 *2) (-12 (-5 *2 (-625 *3)) (-5 *1 (-325 *3 *4)) (-4 *3 (-321)) (-14 *4 (-848)))) (-2328 (*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-325 *3 *4)) (-4 *3 (-321)) (-14 *4 (-848))))) +(-13 (-301 |#1|) (-10 -7 (-15 -4017 ((-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))))) (-15 -1818 ((-625 |#1|))) (-15 -2328 ((-705))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 (((-837 |#1|) $) NIL) (($ $ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| (-837 |#1|) (-340)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) NIL (|has| (-837 |#1|) (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-837 |#1|) "failed") $) NIL)) (-1499 (((-837 |#1|) $) NIL)) (-2528 (($ (-1163 (-837 |#1|))) NIL)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-837 |#1|) (-340)))) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| (-837 |#1|) (-340)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) NIL (|has| (-837 |#1|) (-340)))) (-4156 (((-108) $) NIL (|has| (-837 |#1|) (-340)))) (-3824 (($ $ (-705)) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340)))) (($ $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-1320 (((-108) $) NIL)) (-3709 (((-848) $) NIL (|has| (-837 |#1|) (-340))) (((-768 (-848)) $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-1568 (((-108) $) NIL)) (-3637 (($) NIL (|has| (-837 |#1|) (-340)))) (-2877 (((-108) $) NIL (|has| (-837 |#1|) (-340)))) (-3681 (((-837 |#1|) $) NIL) (($ $ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-1675 (((-3 $ "failed") $) NIL (|has| (-837 |#1|) (-340)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 (-837 |#1|)) $) NIL) (((-1078 $) $ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-3334 (((-848) $) NIL (|has| (-837 |#1|) (-340)))) (-1955 (((-1078 (-837 |#1|)) $) NIL (|has| (-837 |#1|) (-340)))) (-3270 (((-1078 (-837 |#1|)) $) NIL (|has| (-837 |#1|) (-340))) (((-3 (-1078 (-837 |#1|)) "failed") $ $) NIL (|has| (-837 |#1|) (-340)))) (-3904 (($ $ (-1078 (-837 |#1|))) NIL (|has| (-837 |#1|) (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| (-837 |#1|) (-340)) CONST)) (-2770 (($ (-848)) NIL (|has| (-837 |#1|) (-340)))) (-2141 (((-108) $) NIL)) (-4139 (((-1029) $) NIL)) (-1397 (($) NIL (|has| (-837 |#1|) (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| (-837 |#1|) (-340)))) (-1921 (((-390 $) $) NIL)) (-1445 (((-768 (-848))) NIL) (((-848)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-705) $) NIL (|has| (-837 |#1|) (-340))) (((-3 (-705) "failed") $ $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-2914 (((-126)) NIL)) (-2181 (($ $) NIL (|has| (-837 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-837 |#1|) (-340)))) (-4178 (((-768 (-848)) $) NIL) (((-848) $) NIL)) (-1462 (((-1078 (-837 |#1|))) NIL)) (-3132 (($) NIL (|has| (-837 |#1|) (-340)))) (-3670 (($) NIL (|has| (-837 |#1|) (-340)))) (-3399 (((-1163 (-837 |#1|)) $) NIL) (((-625 (-837 |#1|)) (-1163 $)) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| (-837 |#1|) (-340)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ (-837 |#1|)) NIL)) (-3773 (($ $) NIL (|has| (-837 |#1|) (-340))) (((-3 $ "failed") $) NIL (-3730 (|has| (-837 |#1|) (-133)) (|has| (-837 |#1|) (-340))))) (-3594 (((-705)) NIL)) (-2070 (((-1163 $)) NIL) (((-1163 $) (-848)) NIL)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-3706 (($ $) NIL (|has| (-837 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-837 |#1|) (-340)))) (-2242 (($ $) NIL (|has| (-837 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-837 |#1|) (-340)))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL) (($ $ (-837 |#1|)) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ $ (-837 |#1|)) NIL) (($ (-837 |#1|) $) NIL))) +(((-326 |#1| |#2|) (-301 (-837 |#1|)) (-848) (-848)) (T -326)) +NIL +(-301 (-837 |#1|)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 ((|#1| $) NIL) (($ $ (-848)) NIL (|has| |#1| (-340)))) (-3263 (((-1091 (-848) (-705)) (-519)) 119 (|has| |#1| (-340)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) 139 (|has| |#1| (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) 91)) (-1499 ((|#1| $) 88)) (-2528 (($ (-1163 |#1|)) 83)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-340)))) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) 80 (|has| |#1| (-340)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) 39 (|has| |#1| (-340)))) (-4156 (((-108) $) NIL (|has| |#1| (-340)))) (-3824 (($ $ (-705)) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340)))) (($ $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1320 (((-108) $) NIL)) (-3709 (((-848) $) NIL (|has| |#1| (-340))) (((-768 (-848)) $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1568 (((-108) $) NIL)) (-3637 (($) 120 (|has| |#1| (-340)))) (-2877 (((-108) $) 72 (|has| |#1| (-340)))) (-3681 ((|#1| $) 38) (($ $ (-848)) 40 (|has| |#1| (-340)))) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-340)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 |#1|) $) 62) (((-1078 $) $ (-848)) NIL (|has| |#1| (-340)))) (-3334 (((-848) $) 95 (|has| |#1| (-340)))) (-1955 (((-1078 |#1|) $) NIL (|has| |#1| (-340)))) (-3270 (((-1078 |#1|) $) NIL (|has| |#1| (-340))) (((-3 (-1078 |#1|) "failed") $ $) NIL (|has| |#1| (-340)))) (-3904 (($ $ (-1078 |#1|)) NIL (|has| |#1| (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-340)) CONST)) (-2770 (($ (-848)) 93 (|has| |#1| (-340)))) (-2141 (((-108) $) 141)) (-4139 (((-1029) $) NIL)) (-1397 (($) 35 (|has| |#1| (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) 113 (|has| |#1| (-340)))) (-1921 (((-390 $) $) NIL)) (-1445 (((-768 (-848))) NIL) (((-848)) 138)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-705) $) NIL (|has| |#1| (-340))) (((-3 (-705) "failed") $ $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-2914 (((-126)) NIL)) (-2181 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-4178 (((-768 (-848)) $) NIL) (((-848) $) 56)) (-1462 (((-1078 |#1|)) 86)) (-3132 (($) 125 (|has| |#1| (-340)))) (-3670 (($) NIL (|has| |#1| (-340)))) (-3399 (((-1163 |#1|) $) 50) (((-625 |#1|) (-1163 $)) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| |#1| (-340)))) (-2217 (((-790) $) 137) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ |#1|) 85)) (-3773 (($ $) NIL (|has| |#1| (-340))) (((-3 $ "failed") $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-3594 (((-705)) 143)) (-2070 (((-1163 $)) 107) (((-1163 $) (-848)) 46)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 109 T CONST)) (-3611 (($) 31 T CONST)) (-3706 (($ $) 65 (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-2242 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-1543 (((-108) $ $) 105)) (-1632 (($ $ $) 97) (($ $ |#1|) 98)) (-1623 (($ $) 78) (($ $ $) 103)) (-1614 (($ $ $) 101)) (** (($ $ (-848)) NIL) (($ $ (-705)) 41) (($ $ (-519)) 129)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 76) (($ $ $) 53) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74))) +(((-327 |#1| |#2|) (-301 |#1|) (-321) (-1078 |#1|)) (T -327)) +NIL +(-301 |#1|) +((-3331 ((|#1| (-1078 |#2|)) 51))) +(((-328 |#1| |#2|) (-10 -7 (-15 -3331 (|#1| (-1078 |#2|)))) (-13 (-374) (-10 -7 (-15 -2217 (|#1| |#2|)) (-15 -3334 ((-848) |#1|)) (-15 -2070 ((-1163 |#1|) (-848))) (-15 -3706 (|#1| |#1|)))) (-321)) (T -328)) +((-3331 (*1 *2 *3) (-12 (-5 *3 (-1078 *4)) (-4 *4 (-321)) (-4 *2 (-13 (-374) (-10 -7 (-15 -2217 (*2 *4)) (-15 -3334 ((-848) *2)) (-15 -2070 ((-1163 *2) (-848))) (-15 -3706 (*2 *2))))) (-5 *1 (-328 *2 *4))))) +(-10 -7 (-15 -3331 (|#1| (-1078 |#2|)))) +((-3840 (((-884 (-1078 |#1|)) (-1078 |#1|)) 37)) (-3314 (((-1078 |#1|) (-848) (-848)) 110) (((-1078 |#1|) (-848)) 109)) (-4156 (((-108) (-1078 |#1|)) 82)) (-3509 (((-848) (-848)) 72)) (-2816 (((-848) (-848)) 74)) (-3648 (((-848) (-848)) 70)) (-2877 (((-108) (-1078 |#1|)) 86)) (-1350 (((-3 (-1078 |#1|) "failed") (-1078 |#1|)) 98)) (-1877 (((-3 (-1078 |#1|) "failed") (-1078 |#1|)) 101)) (-2645 (((-3 (-1078 |#1|) "failed") (-1078 |#1|)) 100)) (-2044 (((-3 (-1078 |#1|) "failed") (-1078 |#1|)) 99)) (-1362 (((-3 (-1078 |#1|) "failed") (-1078 |#1|)) 95)) (-1385 (((-1078 |#1|) (-1078 |#1|)) 63)) (-3477 (((-1078 |#1|) (-848)) 104)) (-1443 (((-1078 |#1|) (-848)) 107)) (-2171 (((-1078 |#1|) (-848)) 106)) (-2551 (((-1078 |#1|) (-848)) 105)) (-1392 (((-1078 |#1|) (-848)) 102))) +(((-329 |#1|) (-10 -7 (-15 -4156 ((-108) (-1078 |#1|))) (-15 -2877 ((-108) (-1078 |#1|))) (-15 -3648 ((-848) (-848))) (-15 -3509 ((-848) (-848))) (-15 -2816 ((-848) (-848))) (-15 -1392 ((-1078 |#1|) (-848))) (-15 -3477 ((-1078 |#1|) (-848))) (-15 -2551 ((-1078 |#1|) (-848))) (-15 -2171 ((-1078 |#1|) (-848))) (-15 -1443 ((-1078 |#1|) (-848))) (-15 -1362 ((-3 (-1078 |#1|) "failed") (-1078 |#1|))) (-15 -1350 ((-3 (-1078 |#1|) "failed") (-1078 |#1|))) (-15 -2044 ((-3 (-1078 |#1|) "failed") (-1078 |#1|))) (-15 -2645 ((-3 (-1078 |#1|) "failed") (-1078 |#1|))) (-15 -1877 ((-3 (-1078 |#1|) "failed") (-1078 |#1|))) (-15 -3314 ((-1078 |#1|) (-848))) (-15 -3314 ((-1078 |#1|) (-848) (-848))) (-15 -1385 ((-1078 |#1|) (-1078 |#1|))) (-15 -3840 ((-884 (-1078 |#1|)) (-1078 |#1|)))) (-321)) (T -329)) +((-3840 (*1 *2 *3) (-12 (-4 *4 (-321)) (-5 *2 (-884 (-1078 *4))) (-5 *1 (-329 *4)) (-5 *3 (-1078 *4)))) (-1385 (*1 *2 *2) (-12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3)))) (-3314 (*1 *2 *3 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) (-4 *4 (-321)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) (-4 *4 (-321)))) (-1877 (*1 *2 *2) (|partial| -12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3)))) (-2645 (*1 *2 *2) (|partial| -12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3)))) (-2044 (*1 *2 *2) (|partial| -12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3)))) (-1350 (*1 *2 *2) (|partial| -12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3)))) (-1362 (*1 *2 *2) (|partial| -12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) (-4 *4 (-321)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) (-4 *4 (-321)))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) (-4 *4 (-321)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) (-4 *4 (-321)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) (-4 *4 (-321)))) (-2816 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-329 *3)) (-4 *3 (-321)))) (-3509 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-329 *3)) (-4 *3 (-321)))) (-3648 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-329 *3)) (-4 *3 (-321)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-1078 *4)) (-4 *4 (-321)) (-5 *2 (-108)) (-5 *1 (-329 *4)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-1078 *4)) (-4 *4 (-321)) (-5 *2 (-108)) (-5 *1 (-329 *4))))) +(-10 -7 (-15 -4156 ((-108) (-1078 |#1|))) (-15 -2877 ((-108) (-1078 |#1|))) (-15 -3648 ((-848) (-848))) (-15 -3509 ((-848) (-848))) (-15 -2816 ((-848) (-848))) (-15 -1392 ((-1078 |#1|) (-848))) (-15 -3477 ((-1078 |#1|) (-848))) (-15 -2551 ((-1078 |#1|) (-848))) (-15 -2171 ((-1078 |#1|) (-848))) (-15 -1443 ((-1078 |#1|) (-848))) (-15 -1362 ((-3 (-1078 |#1|) "failed") (-1078 |#1|))) (-15 -1350 ((-3 (-1078 |#1|) "failed") (-1078 |#1|))) (-15 -2044 ((-3 (-1078 |#1|) "failed") (-1078 |#1|))) (-15 -2645 ((-3 (-1078 |#1|) "failed") (-1078 |#1|))) (-15 -1877 ((-3 (-1078 |#1|) "failed") (-1078 |#1|))) (-15 -3314 ((-1078 |#1|) (-848))) (-15 -3314 ((-1078 |#1|) (-848) (-848))) (-15 -1385 ((-1078 |#1|) (-1078 |#1|))) (-15 -3840 ((-884 (-1078 |#1|)) (-1078 |#1|)))) +((-2960 (((-3 (-585 |#3|) "failed") (-585 |#3|) |#3|) 34))) +(((-330 |#1| |#2| |#3|) (-10 -7 (-15 -2960 ((-3 (-585 |#3|) "failed") (-585 |#3|) |#3|))) (-321) (-1139 |#1|) (-1139 |#2|)) (T -330)) +((-2960 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 *3)) (-4 *3 (-1139 *5)) (-4 *5 (-1139 *4)) (-4 *4 (-321)) (-5 *1 (-330 *4 *5 *3))))) +(-10 -7 (-15 -2960 ((-3 (-585 |#3|) "failed") (-585 |#3|) |#3|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 ((|#1| $) NIL) (($ $ (-848)) NIL (|has| |#1| (-340)))) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| |#1| (-340)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) NIL (|has| |#1| (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-2528 (($ (-1163 |#1|)) NIL)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-340)))) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| |#1| (-340)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) NIL (|has| |#1| (-340)))) (-4156 (((-108) $) NIL (|has| |#1| (-340)))) (-3824 (($ $ (-705)) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340)))) (($ $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1320 (((-108) $) NIL)) (-3709 (((-848) $) NIL (|has| |#1| (-340))) (((-768 (-848)) $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1568 (((-108) $) NIL)) (-3637 (($) NIL (|has| |#1| (-340)))) (-2877 (((-108) $) NIL (|has| |#1| (-340)))) (-3681 ((|#1| $) NIL) (($ $ (-848)) NIL (|has| |#1| (-340)))) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-340)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 |#1|) $) NIL) (((-1078 $) $ (-848)) NIL (|has| |#1| (-340)))) (-3334 (((-848) $) NIL (|has| |#1| (-340)))) (-1955 (((-1078 |#1|) $) NIL (|has| |#1| (-340)))) (-3270 (((-1078 |#1|) $) NIL (|has| |#1| (-340))) (((-3 (-1078 |#1|) "failed") $ $) NIL (|has| |#1| (-340)))) (-3904 (($ $ (-1078 |#1|)) NIL (|has| |#1| (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-340)) CONST)) (-2770 (($ (-848)) NIL (|has| |#1| (-340)))) (-2141 (((-108) $) NIL)) (-4139 (((-1029) $) NIL)) (-1397 (($) NIL (|has| |#1| (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| |#1| (-340)))) (-1921 (((-390 $) $) NIL)) (-1445 (((-768 (-848))) NIL) (((-848)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-705) $) NIL (|has| |#1| (-340))) (((-3 (-705) "failed") $ $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-2914 (((-126)) NIL)) (-2181 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-4178 (((-768 (-848)) $) NIL) (((-848) $) NIL)) (-1462 (((-1078 |#1|)) NIL)) (-3132 (($) NIL (|has| |#1| (-340)))) (-3670 (($) NIL (|has| |#1| (-340)))) (-3399 (((-1163 |#1|) $) NIL) (((-625 |#1|) (-1163 $)) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| |#1| (-340)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ |#1|) NIL)) (-3773 (($ $) NIL (|has| |#1| (-340))) (((-3 $ "failed") $) NIL (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-3594 (((-705)) NIL)) (-2070 (((-1163 $)) NIL) (((-1163 $) (-848)) NIL)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-3706 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-2242 (($ $) NIL (|has| |#1| (-340))) (($ $ (-705)) NIL (|has| |#1| (-340)))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-331 |#1| |#2|) (-301 |#1|) (-321) (-848)) (T -331)) +NIL +(-301 |#1|) +((-1535 (((-108) (-585 (-879 |#1|))) 32)) (-1835 (((-585 (-879 |#1|)) (-585 (-879 |#1|))) 43)) (-1429 (((-3 (-585 (-879 |#1|)) "failed") (-585 (-879 |#1|))) 39))) +(((-332 |#1| |#2|) (-10 -7 (-15 -1535 ((-108) (-585 (-879 |#1|)))) (-15 -1429 ((-3 (-585 (-879 |#1|)) "failed") (-585 (-879 |#1|)))) (-15 -1835 ((-585 (-879 |#1|)) (-585 (-879 |#1|))))) (-423) (-585 (-1082))) (T -332)) +((-1835 (*1 *2 *2) (-12 (-5 *2 (-585 (-879 *3))) (-4 *3 (-423)) (-5 *1 (-332 *3 *4)) (-14 *4 (-585 (-1082))))) (-1429 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-879 *3))) (-4 *3 (-423)) (-5 *1 (-332 *3 *4)) (-14 *4 (-585 (-1082))))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-585 (-879 *4))) (-4 *4 (-423)) (-5 *2 (-108)) (-5 *1 (-332 *4 *5)) (-14 *5 (-585 (-1082)))))) +(-10 -7 (-15 -1535 ((-108) (-585 (-879 |#1|)))) (-15 -1429 ((-3 (-585 (-879 |#1|)) "failed") (-585 (-879 |#1|)))) (-15 -1835 ((-585 (-879 |#1|)) (-585 (-879 |#1|))))) +((-1430 (((-108) $ $) NIL)) (-1642 (((-705) $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) 14)) (-4059 ((|#1| $ (-519)) NIL)) (-2765 (((-519) $ (-519)) NIL)) (-3902 (($ (-1 |#1| |#1|) $) 32)) (-4082 (($ (-1 (-519) (-519)) $) 24)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 26)) (-4139 (((-1029) $) NIL)) (-3433 (((-585 (-2 (|:| |gen| |#1|) (|:| -3325 (-519)))) $) 28)) (-3333 (($ $ $) NIL)) (-3190 (($ $ $) NIL)) (-2217 (((-790) $) 38) (($ |#1|) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3611 (($) 9 T CONST)) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL) (($ |#1| (-519)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-333 |#1|) (-13 (-444) (-959 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-519))) (-15 -1642 ((-705) $)) (-15 -2765 ((-519) $ (-519))) (-15 -4059 (|#1| $ (-519))) (-15 -4082 ($ (-1 (-519) (-519)) $)) (-15 -3902 ($ (-1 |#1| |#1|) $)) (-15 -3433 ((-585 (-2 (|:| |gen| |#1|) (|:| -3325 (-519)))) $)))) (-1011)) (T -333)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-333 *2)) (-4 *2 (-1011)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-333 *2)) (-4 *2 (-1011)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-333 *2)) (-4 *2 (-1011)))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-333 *3)) (-4 *3 (-1011)))) (-2765 (*1 *2 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-333 *3)) (-4 *3 (-1011)))) (-4059 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *1 (-333 *2)) (-4 *2 (-1011)))) (-4082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-519) (-519))) (-5 *1 (-333 *3)) (-4 *3 (-1011)))) (-3902 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1011)) (-5 *1 (-333 *3)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 (-519))))) (-5 *1 (-333 *3)) (-4 *3 (-1011))))) +(-13 (-444) (-959 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-519))) (-15 -1642 ((-705) $)) (-15 -2765 ((-519) $ (-519))) (-15 -4059 (|#1| $ (-519))) (-15 -4082 ($ (-1 (-519) (-519)) $)) (-15 -3902 ($ (-1 |#1| |#1|) $)) (-15 -3433 ((-585 (-2 (|:| |gen| |#1|) (|:| -3325 (-519)))) $)))) +((-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 13)) (-1410 (($ $) 14)) (-3093 (((-390 $) $) 30)) (-1320 (((-108) $) 26)) (-3151 (($ $) 19)) (-2292 (($ $ $) 23) (($ (-585 $)) NIL)) (-1921 (((-390 $) $) 31)) (-2261 (((-3 $ "failed") $ $) 22)) (-3129 (((-705) $) 25)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 35)) (-1617 (((-108) $ $) 16)) (-1632 (($ $ $) 33))) +(((-334 |#1|) (-10 -8 (-15 -1632 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1|)) (-15 -1320 ((-108) |#1|)) (-15 -3093 ((-390 |#1|) |#1|)) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -1745 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -3129 ((-705) |#1|)) (-15 -2292 (|#1| (-585 |#1|))) (-15 -2292 (|#1| |#1| |#1|)) (-15 -1617 ((-108) |#1| |#1|)) (-15 -1410 (|#1| |#1|)) (-15 -1201 ((-2 (|:| -3307 |#1|) (|:| -4208 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|))) (-335)) (T -334)) +NIL +(-10 -8 (-15 -1632 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1|)) (-15 -1320 ((-108) |#1|)) (-15 -3093 ((-390 |#1|) |#1|)) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -1745 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -3129 ((-705) |#1|)) (-15 -2292 (|#1| (-585 |#1|))) (-15 -2292 (|#1| |#1| |#1|)) (-15 -1617 ((-108) |#1| |#1|)) (-15 -1410 (|#1| |#1|)) (-15 -1201 ((-2 (|:| -3307 |#1|) (|:| -4208 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 73)) (-3093 (((-390 $) $) 72)) (-3409 (((-108) $ $) 59)) (-2249 (($) 17 T CONST)) (-2311 (($ $ $) 55)) (-4193 (((-3 $ "failed") $) 34)) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-1320 (((-108) $) 71)) (-1568 (((-108) $) 31)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 70)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-1921 (((-390 $) $) 74)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-3129 (((-705) $) 58)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-379 (-519))) 65)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 69)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ $) 64)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 68)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 67) (($ (-379 (-519)) $) 66))) +(((-335) (-1194)) (T -335)) +((-1632 (*1 *1 *1 *1) (-4 *1 (-335)))) +(-13 (-280) (-1121) (-219) (-10 -8 (-15 -1632 ($ $ $)) (-6 -4219) (-6 -4213))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-157) . T) ((-219) . T) ((-264) . T) ((-280) . T) ((-423) . T) ((-511) . T) ((-587 #0#) . T) ((-587 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-661) . T) ((-847) . T) ((-974 #0#) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1121) . T)) +((-1430 (((-108) $ $) 7)) (-3237 ((|#2| $ |#2|) 13)) (-3704 (($ $ (-1065)) 18)) (-1234 ((|#2| $) 14)) (-1556 (($ |#1|) 20) (($ |#1| (-1065)) 19)) (-2938 ((|#1| $) 16)) (-1266 (((-1065) $) 9)) (-2901 (((-1065) $) 15)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3657 (($ $) 17)) (-1543 (((-108) $ $) 6))) +(((-336 |#1| |#2|) (-1194) (-1011) (-1011)) (T -336)) +((-1556 (*1 *1 *2) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011)))) (-1556 (*1 *1 *2 *3) (-12 (-5 *3 (-1065)) (-4 *1 (-336 *2 *4)) (-4 *2 (-1011)) (-4 *4 (-1011)))) (-3704 (*1 *1 *1 *2) (-12 (-5 *2 (-1065)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)))) (-3657 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-1011)) (-4 *2 (-1011)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-5 *2 (-1065)))) (-1234 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011)))) (-3237 (*1 *2 *1 *2) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011))))) +(-13 (-1011) (-10 -8 (-15 -1556 ($ |t#1|)) (-15 -1556 ($ |t#1| (-1065))) (-15 -3704 ($ $ (-1065))) (-15 -3657 ($ $)) (-15 -2938 (|t#1| $)) (-15 -2901 ((-1065) $)) (-15 -1234 (|t#2| $)) (-15 -3237 (|t#2| $ |t#2|)))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3237 ((|#1| $ |#1|) 29)) (-3704 (($ $ (-1065)) 22)) (-1450 (((-3 |#1| "failed") $) 28)) (-1234 ((|#1| $) 26)) (-1556 (($ (-360)) 21) (($ (-360) (-1065)) 20)) (-2938 (((-360) $) 24)) (-1266 (((-1065) $) NIL)) (-2901 (((-1065) $) 25)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 19)) (-3657 (($ $) 23)) (-1543 (((-108) $ $) 18))) +(((-337 |#1|) (-13 (-336 (-360) |#1|) (-10 -8 (-15 -1450 ((-3 |#1| "failed") $)))) (-1011)) (T -337)) +((-1450 (*1 *2 *1) (|partial| -12 (-5 *1 (-337 *2)) (-4 *2 (-1011))))) +(-13 (-336 (-360) |#1|) (-10 -8 (-15 -1450 ((-3 |#1| "failed") $)))) +((-2329 (((-1163 (-625 |#2|)) (-1163 $)) 61)) (-3999 (((-625 |#2|) (-1163 $)) 119)) (-4172 ((|#2| $) 32)) (-3447 (((-625 |#2|) $ (-1163 $)) 123)) (-2682 (((-3 $ "failed") $) 75)) (-4147 ((|#2| $) 35)) (-1370 (((-1078 |#2|) $) 83)) (-2048 ((|#2| (-1163 $)) 106)) (-3055 (((-1078 |#2|) $) 28)) (-2660 (((-108)) 100)) (-2528 (($ (-1163 |#2|) (-1163 $)) 113)) (-4193 (((-3 $ "failed") $) 79)) (-4029 (((-108)) 95)) (-2061 (((-108)) 90)) (-3288 (((-108)) 53)) (-1684 (((-625 |#2|) (-1163 $)) 117)) (-3241 ((|#2| $) 31)) (-3130 (((-625 |#2|) $ (-1163 $)) 122)) (-2076 (((-3 $ "failed") $) 73)) (-3339 ((|#2| $) 34)) (-4024 (((-1078 |#2|) $) 82)) (-3069 ((|#2| (-1163 $)) 104)) (-3978 (((-1078 |#2|) $) 26)) (-1554 (((-108)) 99)) (-2618 (((-108)) 92)) (-3284 (((-108)) 51)) (-3163 (((-108)) 87)) (-1885 (((-108)) 101)) (-3399 (((-1163 |#2|) $ (-1163 $)) NIL) (((-625 |#2|) (-1163 $) (-1163 $)) 111)) (-2553 (((-108)) 97)) (-2219 (((-585 (-1163 |#2|))) 86)) (-1801 (((-108)) 98)) (-3547 (((-108)) 96)) (-1345 (((-108)) 46)) (-3328 (((-108)) 102))) +(((-338 |#1| |#2|) (-10 -8 (-15 -1370 ((-1078 |#2|) |#1|)) (-15 -4024 ((-1078 |#2|) |#1|)) (-15 -2219 ((-585 (-1163 |#2|)))) (-15 -2682 ((-3 |#1| "failed") |#1|)) (-15 -2076 ((-3 |#1| "failed") |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1|)) (-15 -2061 ((-108))) (-15 -2618 ((-108))) (-15 -4029 ((-108))) (-15 -3284 ((-108))) (-15 -3288 ((-108))) (-15 -3163 ((-108))) (-15 -3328 ((-108))) (-15 -1885 ((-108))) (-15 -2660 ((-108))) (-15 -1554 ((-108))) (-15 -1345 ((-108))) (-15 -1801 ((-108))) (-15 -3547 ((-108))) (-15 -2553 ((-108))) (-15 -3055 ((-1078 |#2|) |#1|)) (-15 -3978 ((-1078 |#2|) |#1|)) (-15 -3999 ((-625 |#2|) (-1163 |#1|))) (-15 -1684 ((-625 |#2|) (-1163 |#1|))) (-15 -2048 (|#2| (-1163 |#1|))) (-15 -3069 (|#2| (-1163 |#1|))) (-15 -2528 (|#1| (-1163 |#2|) (-1163 |#1|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1| (-1163 |#1|))) (-15 -4147 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -4172 (|#2| |#1|)) (-15 -3241 (|#2| |#1|)) (-15 -3447 ((-625 |#2|) |#1| (-1163 |#1|))) (-15 -3130 ((-625 |#2|) |#1| (-1163 |#1|))) (-15 -2329 ((-1163 (-625 |#2|)) (-1163 |#1|)))) (-339 |#2|) (-157)) (T -338)) +((-2553 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3547 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1801 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1345 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1554 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2660 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1885 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3328 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3163 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3288 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3284 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-4029 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2618 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2061 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2219 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-585 (-1163 *4))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4))))) +(-10 -8 (-15 -1370 ((-1078 |#2|) |#1|)) (-15 -4024 ((-1078 |#2|) |#1|)) (-15 -2219 ((-585 (-1163 |#2|)))) (-15 -2682 ((-3 |#1| "failed") |#1|)) (-15 -2076 ((-3 |#1| "failed") |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1|)) (-15 -2061 ((-108))) (-15 -2618 ((-108))) (-15 -4029 ((-108))) (-15 -3284 ((-108))) (-15 -3288 ((-108))) (-15 -3163 ((-108))) (-15 -3328 ((-108))) (-15 -1885 ((-108))) (-15 -2660 ((-108))) (-15 -1554 ((-108))) (-15 -1345 ((-108))) (-15 -1801 ((-108))) (-15 -3547 ((-108))) (-15 -2553 ((-108))) (-15 -3055 ((-1078 |#2|) |#1|)) (-15 -3978 ((-1078 |#2|) |#1|)) (-15 -3999 ((-625 |#2|) (-1163 |#1|))) (-15 -1684 ((-625 |#2|) (-1163 |#1|))) (-15 -2048 (|#2| (-1163 |#1|))) (-15 -3069 (|#2| (-1163 |#1|))) (-15 -2528 (|#1| (-1163 |#2|) (-1163 |#1|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1| (-1163 |#1|))) (-15 -4147 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -4172 (|#2| |#1|)) (-15 -3241 (|#2| |#1|)) (-15 -3447 ((-625 |#2|) |#1| (-1163 |#1|))) (-15 -3130 ((-625 |#2|) |#1| (-1163 |#1|))) (-15 -2329 ((-1163 (-625 |#2|)) (-1163 |#1|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3307 (((-3 $ "failed")) 37 (|has| |#1| (-511)))) (-3167 (((-3 $ "failed") $ $) 19)) (-2329 (((-1163 (-625 |#1|)) (-1163 $)) 78)) (-2729 (((-1163 $)) 81)) (-2249 (($) 17 T CONST)) (-3689 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) 40 (|has| |#1| (-511)))) (-1483 (((-3 $ "failed")) 38 (|has| |#1| (-511)))) (-3999 (((-625 |#1|) (-1163 $)) 65)) (-4172 ((|#1| $) 74)) (-3447 (((-625 |#1|) $ (-1163 $)) 76)) (-2682 (((-3 $ "failed") $) 45 (|has| |#1| (-511)))) (-1588 (($ $ (-848)) 28)) (-4147 ((|#1| $) 72)) (-1370 (((-1078 |#1|) $) 42 (|has| |#1| (-511)))) (-2048 ((|#1| (-1163 $)) 67)) (-3055 (((-1078 |#1|) $) 63)) (-2660 (((-108)) 57)) (-2528 (($ (-1163 |#1|) (-1163 $)) 69)) (-4193 (((-3 $ "failed") $) 47 (|has| |#1| (-511)))) (-3229 (((-848)) 80)) (-1373 (((-108)) 54)) (-1432 (($ $ (-848)) 33)) (-4029 (((-108)) 50)) (-2061 (((-108)) 48)) (-3288 (((-108)) 52)) (-3780 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) 41 (|has| |#1| (-511)))) (-2253 (((-3 $ "failed")) 39 (|has| |#1| (-511)))) (-1684 (((-625 |#1|) (-1163 $)) 66)) (-3241 ((|#1| $) 75)) (-3130 (((-625 |#1|) $ (-1163 $)) 77)) (-2076 (((-3 $ "failed") $) 46 (|has| |#1| (-511)))) (-1341 (($ $ (-848)) 29)) (-3339 ((|#1| $) 73)) (-4024 (((-1078 |#1|) $) 43 (|has| |#1| (-511)))) (-3069 ((|#1| (-1163 $)) 68)) (-3978 (((-1078 |#1|) $) 64)) (-1554 (((-108)) 58)) (-1266 (((-1065) $) 9)) (-2618 (((-108)) 49)) (-3284 (((-108)) 51)) (-3163 (((-108)) 53)) (-4139 (((-1029) $) 10)) (-1885 (((-108)) 56)) (-3399 (((-1163 |#1|) $ (-1163 $)) 71) (((-625 |#1|) (-1163 $) (-1163 $)) 70)) (-3842 (((-585 (-879 |#1|)) (-1163 $)) 79)) (-3190 (($ $ $) 25)) (-2553 (((-108)) 62)) (-2217 (((-790) $) 11)) (-2219 (((-585 (-1163 |#1|))) 44 (|has| |#1| (-511)))) (-3645 (($ $ $ $) 26)) (-1801 (((-108)) 60)) (-2025 (($ $ $) 24)) (-3547 (((-108)) 61)) (-1345 (((-108)) 59)) (-3328 (((-108)) 55)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 30)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-339 |#1|) (-1194) (-157)) (T -339)) +((-2729 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1163 *1)) (-4 *1 (-339 *3)))) (-3229 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-848)))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) (-5 *2 (-585 (-879 *4))))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) (-5 *2 (-1163 (-625 *4))))) (-3130 (*1 *2 *1 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) (-5 *2 (-625 *4)))) (-3447 (*1 *2 *1 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) (-5 *2 (-625 *4)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-157)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-157)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-157)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-157)))) (-3399 (*1 *2 *1 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) (-5 *2 (-1163 *4)))) (-3399 (*1 *2 *3 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) (-5 *2 (-625 *4)))) (-2528 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-1163 *1)) (-4 *4 (-157)) (-4 *1 (-339 *4)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *2)) (-4 *2 (-157)))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *2)) (-4 *2 (-157)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) (-5 *2 (-625 *4)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) (-5 *2 (-625 *4)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-1078 *3)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-1078 *3)))) (-2553 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3547 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1801 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1345 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1554 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2660 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1885 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3328 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1373 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3163 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3288 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3284 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-4029 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2618 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2061 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-4193 (*1 *1 *1) (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-157)) (-4 *2 (-511)))) (-2076 (*1 *1 *1) (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-157)) (-4 *2 (-511)))) (-2682 (*1 *1 *1) (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-157)) (-4 *2 (-511)))) (-2219 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-4 *3 (-511)) (-5 *2 (-585 (-1163 *3))))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-4 *3 (-511)) (-5 *2 (-1078 *3)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-4 *3 (-511)) (-5 *2 (-1078 *3)))) (-3780 (*1 *2) (|partial| -12 (-4 *3 (-511)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2070 (-585 *1)))) (-4 *1 (-339 *3)))) (-3689 (*1 *2) (|partial| -12 (-4 *3 (-511)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2070 (-585 *1)))) (-4 *1 (-339 *3)))) (-2253 (*1 *1) (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-511)) (-4 *2 (-157)))) (-1483 (*1 *1) (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-511)) (-4 *2 (-157)))) (-3307 (*1 *1) (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-511)) (-4 *2 (-157))))) +(-13 (-679 |t#1|) (-10 -8 (-15 -2729 ((-1163 $))) (-15 -3229 ((-848))) (-15 -3842 ((-585 (-879 |t#1|)) (-1163 $))) (-15 -2329 ((-1163 (-625 |t#1|)) (-1163 $))) (-15 -3130 ((-625 |t#1|) $ (-1163 $))) (-15 -3447 ((-625 |t#1|) $ (-1163 $))) (-15 -3241 (|t#1| $)) (-15 -4172 (|t#1| $)) (-15 -3339 (|t#1| $)) (-15 -4147 (|t#1| $)) (-15 -3399 ((-1163 |t#1|) $ (-1163 $))) (-15 -3399 ((-625 |t#1|) (-1163 $) (-1163 $))) (-15 -2528 ($ (-1163 |t#1|) (-1163 $))) (-15 -3069 (|t#1| (-1163 $))) (-15 -2048 (|t#1| (-1163 $))) (-15 -1684 ((-625 |t#1|) (-1163 $))) (-15 -3999 ((-625 |t#1|) (-1163 $))) (-15 -3978 ((-1078 |t#1|) $)) (-15 -3055 ((-1078 |t#1|) $)) (-15 -2553 ((-108))) (-15 -3547 ((-108))) (-15 -1801 ((-108))) (-15 -1345 ((-108))) (-15 -1554 ((-108))) (-15 -2660 ((-108))) (-15 -1885 ((-108))) (-15 -3328 ((-108))) (-15 -1373 ((-108))) (-15 -3163 ((-108))) (-15 -3288 ((-108))) (-15 -3284 ((-108))) (-15 -4029 ((-108))) (-15 -2618 ((-108))) (-15 -2061 ((-108))) (IF (|has| |t#1| (-511)) (PROGN (-15 -4193 ((-3 $ "failed") $)) (-15 -2076 ((-3 $ "failed") $)) (-15 -2682 ((-3 $ "failed") $)) (-15 -2219 ((-585 (-1163 |t#1|)))) (-15 -4024 ((-1078 |t#1|) $)) (-15 -1370 ((-1078 |t#1|) $)) (-15 -3780 ((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed"))) (-15 -3689 ((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed"))) (-15 -2253 ((-3 $ "failed"))) (-15 -1483 ((-3 $ "failed"))) (-15 -3307 ((-3 $ "failed"))) (-6 -4218)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-652 |#1|) . T) ((-655) . T) ((-679 |#1|) . T) ((-696) . T) ((-974 |#1|) . T) ((-1011) . T)) +((-1430 (((-108) $ $) 7)) (-1642 (((-705)) 16)) (-3314 (($) 13)) (-3334 (((-848) $) 14)) (-1266 (((-1065) $) 9)) (-2770 (($ (-848)) 15)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1543 (((-108) $ $) 6))) +(((-340) (-1194)) (T -340)) +((-1642 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-705)))) (-2770 (*1 *1 *2) (-12 (-5 *2 (-848)) (-4 *1 (-340)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-848)))) (-3314 (*1 *1) (-4 *1 (-340)))) +(-13 (-1011) (-10 -8 (-15 -1642 ((-705))) (-15 -2770 ($ (-848))) (-15 -3334 ((-848) $)) (-15 -3314 ($)))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-2935 (((-625 |#2|) (-1163 $)) 40)) (-2528 (($ (-1163 |#2|) (-1163 $)) 35)) (-3771 (((-625 |#2|) $ (-1163 $)) 43)) (-3677 ((|#2| (-1163 $)) 13)) (-3399 (((-1163 |#2|) $ (-1163 $)) NIL) (((-625 |#2|) (-1163 $) (-1163 $)) 25))) +(((-341 |#1| |#2| |#3|) (-10 -8 (-15 -2935 ((-625 |#2|) (-1163 |#1|))) (-15 -3677 (|#2| (-1163 |#1|))) (-15 -2528 (|#1| (-1163 |#2|) (-1163 |#1|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1| (-1163 |#1|))) (-15 -3771 ((-625 |#2|) |#1| (-1163 |#1|)))) (-342 |#2| |#3|) (-157) (-1139 |#2|)) (T -341)) +NIL +(-10 -8 (-15 -2935 ((-625 |#2|) (-1163 |#1|))) (-15 -3677 (|#2| (-1163 |#1|))) (-15 -2528 (|#1| (-1163 |#2|) (-1163 |#1|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1| (-1163 |#1|))) (-15 -3771 ((-625 |#2|) |#1| (-1163 |#1|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-2935 (((-625 |#1|) (-1163 $)) 46)) (-1871 ((|#1| $) 52)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-2528 (($ (-1163 |#1|) (-1163 $)) 48)) (-3771 (((-625 |#1|) $ (-1163 $)) 53)) (-4193 (((-3 $ "failed") $) 34)) (-3229 (((-848)) 54)) (-1568 (((-108) $) 31)) (-3681 ((|#1| $) 51)) (-3437 ((|#2| $) 44 (|has| |#1| (-335)))) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-3677 ((|#1| (-1163 $)) 47)) (-3399 (((-1163 |#1|) $ (-1163 $)) 50) (((-625 |#1|) (-1163 $) (-1163 $)) 49)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 37)) (-3773 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2165 ((|#2| $) 45)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-342 |#1| |#2|) (-1194) (-157) (-1139 |t#1|)) (T -342)) +((-3229 (*1 *2) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1139 *3)) (-5 *2 (-848)))) (-3771 (*1 *2 *1 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1139 *4)) (-5 *2 (-625 *4)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1139 *2)) (-4 *2 (-157)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1139 *2)) (-4 *2 (-157)))) (-3399 (*1 *2 *1 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1139 *4)) (-5 *2 (-1163 *4)))) (-3399 (*1 *2 *3 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1139 *4)) (-5 *2 (-625 *4)))) (-2528 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-1163 *1)) (-4 *4 (-157)) (-4 *1 (-342 *4 *5)) (-4 *5 (-1139 *4)))) (-3677 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-342 *2 *4)) (-4 *4 (-1139 *2)) (-4 *2 (-157)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1139 *4)) (-5 *2 (-625 *4)))) (-2165 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1139 *3)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-157)) (-4 *3 (-335)) (-4 *2 (-1139 *3))))) +(-13 (-37 |t#1|) (-10 -8 (-15 -3229 ((-848))) (-15 -3771 ((-625 |t#1|) $ (-1163 $))) (-15 -1871 (|t#1| $)) (-15 -3681 (|t#1| $)) (-15 -3399 ((-1163 |t#1|) $ (-1163 $))) (-15 -3399 ((-625 |t#1|) (-1163 $) (-1163 $))) (-15 -2528 ($ (-1163 |t#1|) (-1163 $))) (-15 -3677 (|t#1| (-1163 $))) (-15 -2935 ((-625 |t#1|) (-1163 $))) (-15 -2165 (|t#2| $)) (IF (|has| |t#1| (-335)) (-15 -3437 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-652 |#1|) . T) ((-661) . T) ((-974 |#1|) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1367 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3874 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1405 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-343 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3874 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1367 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1117) (-345 |#1|) (-1117) (-345 |#3|)) (T -343)) +((-1367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1117)) (-4 *5 (-1117)) (-4 *2 (-345 *5)) (-5 *1 (-343 *6 *4 *5 *2)) (-4 *4 (-345 *6)))) (-3874 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1117)) (-4 *2 (-1117)) (-5 *1 (-343 *5 *4 *2 *6)) (-4 *4 (-345 *5)) (-4 *6 (-345 *2)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *2 (-345 *6)) (-5 *1 (-343 *5 *4 *6 *2)) (-4 *4 (-345 *5))))) +(-10 -7 (-15 -1405 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3874 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1367 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2629 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-2078 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-3276 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-1868 (($ $) 25)) (-3297 (((-519) (-1 (-108) |#2|) $) NIL) (((-519) |#2| $) 11) (((-519) |#2| $ (-519)) NIL)) (-2500 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-344 |#1| |#2|) (-10 -8 (-15 -2078 (|#1| |#1|)) (-15 -2078 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2629 ((-108) |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -3297 ((-519) |#2| |#1| (-519))) (-15 -3297 ((-519) |#2| |#1|)) (-15 -3297 ((-519) (-1 (-108) |#2|) |#1|)) (-15 -2629 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3276 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1868 (|#1| |#1|)) (-15 -2500 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-345 |#2|) (-1117)) (T -344)) +NIL +(-10 -8 (-15 -2078 (|#1| |#1|)) (-15 -2078 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2629 ((-108) |#1|)) (-15 -3276 (|#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -3297 ((-519) |#2| |#1| (-519))) (-15 -3297 ((-519) |#2| |#1|)) (-15 -3297 ((-519) (-1 (-108) |#2|) |#1|)) (-15 -2629 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3276 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1868 (|#1| |#1|)) (-15 -2500 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1583 (((-1168) $ (-519) (-519)) 40 (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4222))) (($ $) 88 (-12 (|has| |#1| (-782)) (|has| $ (-6 -4222))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) 8)) (-2421 ((|#1| $ (-519) |#1|) 52 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) 58 (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-1998 (($ $) 90 (|has| $ (-6 -4222)))) (-1868 (($ $) 100)) (-2366 (($ $) 78 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#1| $) 77 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) 53 (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) 51)) (-3297 (((-519) (-1 (-108) |#1|) $) 97) (((-519) |#1| $) 96 (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) 95 (|has| |#1| (-1011)))) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-1822 (($ (-705) |#1|) 69)) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 43 (|has| (-519) (-782)))) (-2864 (($ $ $) 87 (|has| |#1| (-782)))) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 44 (|has| (-519) (-782)))) (-2489 (($ $ $) 86 (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1672 (($ |#1| $ (-519)) 60) (($ $ $ (-519)) 59)) (-3909 (((-585 (-519)) $) 46)) (-1506 (((-108) (-519) $) 47)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2331 ((|#1| $) 42 (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3640 (($ $ |#1|) 41 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) 48)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ (-519) |#1|) 50) ((|#1| $ (-519)) 49) (($ $ (-1130 (-519))) 63)) (-3720 (($ $ (-519)) 62) (($ $ (-1130 (-519))) 61)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2584 (($ $ $ (-519)) 91 (|has| $ (-6 -4222)))) (-2449 (($ $) 13)) (-1446 (((-495) $) 79 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 70)) (-4150 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-585 $)) 65)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) 84 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 83 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-1578 (((-108) $ $) 85 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 82 (|has| |#1| (-782)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-345 |#1|) (-1194) (-1117)) (T -345)) +((-2500 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-345 *3)) (-4 *3 (-1117)))) (-1868 (*1 *1 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-1117)))) (-3276 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-345 *3)) (-4 *3 (-1117)))) (-2629 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-345 *4)) (-4 *4 (-1117)) (-5 *2 (-108)))) (-3297 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-345 *4)) (-4 *4 (-1117)) (-5 *2 (-519)))) (-3297 (*1 *2 *3 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-1117)) (-4 *3 (-1011)) (-5 *2 (-519)))) (-3297 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-345 *3)) (-4 *3 (-1117)) (-4 *3 (-1011)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-1117)) (-4 *2 (-782)))) (-3276 (*1 *1 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-1117)) (-4 *2 (-782)))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-1117)) (-4 *3 (-782)) (-5 *2 (-108)))) (-2584 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-519)) (|has| *1 (-6 -4222)) (-4 *1 (-345 *3)) (-4 *3 (-1117)))) (-1998 (*1 *1 *1) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-345 *2)) (-4 *2 (-1117)))) (-2078 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4222)) (-4 *1 (-345 *3)) (-4 *3 (-1117)))) (-2078 (*1 *1 *1) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-345 *2)) (-4 *2 (-1117)) (-4 *2 (-782))))) +(-13 (-590 |t#1|) (-10 -8 (-6 -4221) (-15 -2500 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1868 ($ $)) (-15 -3276 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -2629 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -3297 ((-519) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1011)) (PROGN (-15 -3297 ((-519) |t#1| $)) (-15 -3297 ((-519) |t#1| $ (-519)))) |%noBranch|) (IF (|has| |t#1| (-782)) (PROGN (-6 (-782)) (-15 -2500 ($ $ $)) (-15 -3276 ($ $)) (-15 -2629 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4222)) (PROGN (-15 -2584 ($ $ $ (-519))) (-15 -1998 ($ $)) (-15 -2078 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-782)) (-15 -2078 ($ $)) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-97) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782))) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-260 #0=(-519) |#1|) . T) ((-262 #0# |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-552 #0# |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-590 |#1|) . T) ((-782) |has| |#1| (-782)) ((-1011) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782))) ((-1117) . T)) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4096 (((-585 |#1|) $) 32)) (-1851 (($ $ (-705)) 33)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1927 (((-1185 |#1| |#2|) (-1185 |#1| |#2|) $) 36)) (-2260 (($ $) 34)) (-3550 (((-1185 |#1| |#2|) (-1185 |#1| |#2|) $) 37)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2324 (($ $ |#1| $) 31) (($ $ (-585 |#1|) (-585 $)) 30)) (-4178 (((-705) $) 38)) (-2228 (($ $ $) 29)) (-2217 (((-790) $) 11) (($ |#1|) 41) (((-1176 |#1| |#2|) $) 40) (((-1185 |#1| |#2|) $) 39)) (-3031 ((|#2| (-1185 |#1| |#2|) $) 42)) (-3602 (($) 18 T CONST)) (-4016 (($ (-610 |#1|)) 35)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#2|) 28 (|has| |#2| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-346 |#1| |#2|) (-1194) (-782) (-157)) (T -346)) +((-3031 (*1 *2 *3 *1) (-12 (-5 *3 (-1185 *4 *2)) (-4 *1 (-346 *4 *2)) (-4 *4 (-782)) (-4 *2 (-157)))) (-2217 (*1 *1 *2) (-12 (-4 *1 (-346 *2 *3)) (-4 *2 (-782)) (-4 *3 (-157)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) (-5 *2 (-1176 *3 *4)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) (-5 *2 (-1185 *3 *4)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) (-5 *2 (-705)))) (-3550 (*1 *2 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)))) (-1927 (*1 *2 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)))) (-4016 (*1 *1 *2) (-12 (-5 *2 (-610 *3)) (-4 *3 (-782)) (-4 *1 (-346 *3 *4)) (-4 *4 (-157)))) (-2260 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *2 (-782)) (-4 *3 (-157)))) (-1851 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) (-5 *2 (-585 *3)))) (-2324 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *2 (-782)) (-4 *3 (-157)))) (-2324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-782)) (-4 *5 (-157))))) +(-13 (-576 |t#2|) (-10 -8 (-15 -3031 (|t#2| (-1185 |t#1| |t#2|) $)) (-15 -2217 ($ |t#1|)) (-15 -2217 ((-1176 |t#1| |t#2|) $)) (-15 -2217 ((-1185 |t#1| |t#2|) $)) (-15 -4178 ((-705) $)) (-15 -3550 ((-1185 |t#1| |t#2|) (-1185 |t#1| |t#2|) $)) (-15 -1927 ((-1185 |t#1| |t#2|) (-1185 |t#1| |t#2|) $)) (-15 -4016 ($ (-610 |t#1|))) (-15 -2260 ($ $)) (-15 -1851 ($ $ (-705))) (-15 -4096 ((-585 |t#1|) $)) (-15 -2324 ($ $ |t#1| $)) (-15 -2324 ($ $ (-585 |t#1|) (-585 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#2|) . T) ((-576 |#2|) . T) ((-652 |#2|) . T) ((-974 |#2|) . T) ((-1011) . T)) +((-2880 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-3488 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 12)) (-3117 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 21))) +(((-347 |#1| |#2|) (-10 -7 (-15 -3488 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3117 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2880 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1117) (-13 (-345 |#1|) (-10 -7 (-6 -4222)))) (T -347)) +((-2880 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1117)) (-5 *1 (-347 *4 *2)) (-4 *2 (-13 (-345 *4) (-10 -7 (-6 -4222)))))) (-3117 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1117)) (-5 *1 (-347 *4 *2)) (-4 *2 (-13 (-345 *4) (-10 -7 (-6 -4222)))))) (-3488 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1117)) (-5 *1 (-347 *4 *2)) (-4 *2 (-13 (-345 *4) (-10 -7 (-6 -4222))))))) +(-10 -7 (-15 -3488 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3117 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2880 (|#2| (-1 (-108) |#1| |#1|) |#2|))) +((-1562 (((-625 |#2|) (-625 $)) NIL) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 19) (((-625 (-519)) (-625 $)) 13))) +(((-348 |#1| |#2|) (-10 -8 (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-625 |#2|) (-625 |#1|)))) (-349 |#2|) (-968)) (T -348)) +NIL +(-10 -8 (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-625 |#2|) (-625 |#1|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1562 (((-625 |#1|) (-625 $)) 36) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 35) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 43 (|has| |#1| (-581 (-519)))) (((-625 (-519)) (-625 $)) 42 (|has| |#1| (-581 (-519))))) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 28)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-349 |#1|) (-1194) (-968)) (T -349)) +NIL +(-13 (-581 |t#1|) (-10 -7 (IF (|has| |t#1| (-581 (-519))) (-6 (-581 (-519))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 $) . T) ((-581 (-519)) |has| |#1| (-581 (-519))) ((-581 |#1|) . T) ((-661) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-3823 (((-585 (-267 (-879 (-154 |#1|)))) (-267 (-379 (-879 (-154 (-519))))) |#1|) 50) (((-585 (-267 (-879 (-154 |#1|)))) (-379 (-879 (-154 (-519)))) |#1|) 49) (((-585 (-585 (-267 (-879 (-154 |#1|))))) (-585 (-267 (-379 (-879 (-154 (-519)))))) |#1|) 45) (((-585 (-585 (-267 (-879 (-154 |#1|))))) (-585 (-379 (-879 (-154 (-519))))) |#1|) 39)) (-2948 (((-585 (-585 (-154 |#1|))) (-585 (-379 (-879 (-154 (-519))))) (-585 (-1082)) |#1|) 27) (((-585 (-154 |#1|)) (-379 (-879 (-154 (-519)))) |#1|) 15))) +(((-350 |#1|) (-10 -7 (-15 -3823 ((-585 (-585 (-267 (-879 (-154 |#1|))))) (-585 (-379 (-879 (-154 (-519))))) |#1|)) (-15 -3823 ((-585 (-585 (-267 (-879 (-154 |#1|))))) (-585 (-267 (-379 (-879 (-154 (-519)))))) |#1|)) (-15 -3823 ((-585 (-267 (-879 (-154 |#1|)))) (-379 (-879 (-154 (-519)))) |#1|)) (-15 -3823 ((-585 (-267 (-879 (-154 |#1|)))) (-267 (-379 (-879 (-154 (-519))))) |#1|)) (-15 -2948 ((-585 (-154 |#1|)) (-379 (-879 (-154 (-519)))) |#1|)) (-15 -2948 ((-585 (-585 (-154 |#1|))) (-585 (-379 (-879 (-154 (-519))))) (-585 (-1082)) |#1|))) (-13 (-335) (-780))) (T -350)) +((-2948 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-379 (-879 (-154 (-519)))))) (-5 *4 (-585 (-1082))) (-5 *2 (-585 (-585 (-154 *5)))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-335) (-780))))) (-2948 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 (-154 (-519))))) (-5 *2 (-585 (-154 *4))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-335) (-780))))) (-3823 (*1 *2 *3 *4) (-12 (-5 *3 (-267 (-379 (-879 (-154 (-519)))))) (-5 *2 (-585 (-267 (-879 (-154 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-335) (-780))))) (-3823 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 (-154 (-519))))) (-5 *2 (-585 (-267 (-879 (-154 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-335) (-780))))) (-3823 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-267 (-379 (-879 (-154 (-519))))))) (-5 *2 (-585 (-585 (-267 (-879 (-154 *4)))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-335) (-780))))) (-3823 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-379 (-879 (-154 (-519)))))) (-5 *2 (-585 (-585 (-267 (-879 (-154 *4)))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-335) (-780)))))) +(-10 -7 (-15 -3823 ((-585 (-585 (-267 (-879 (-154 |#1|))))) (-585 (-379 (-879 (-154 (-519))))) |#1|)) (-15 -3823 ((-585 (-585 (-267 (-879 (-154 |#1|))))) (-585 (-267 (-379 (-879 (-154 (-519)))))) |#1|)) (-15 -3823 ((-585 (-267 (-879 (-154 |#1|)))) (-379 (-879 (-154 (-519)))) |#1|)) (-15 -3823 ((-585 (-267 (-879 (-154 |#1|)))) (-267 (-379 (-879 (-154 (-519))))) |#1|)) (-15 -2948 ((-585 (-154 |#1|)) (-379 (-879 (-154 (-519)))) |#1|)) (-15 -2948 ((-585 (-585 (-154 |#1|))) (-585 (-379 (-879 (-154 (-519))))) (-585 (-1082)) |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 33)) (-2157 (((-519) $) 55)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-4057 (($ $) 110)) (-2958 (($ $) 82)) (-2823 (($ $) 71)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-1934 (($ $) 44)) (-3409 (((-108) $ $) NIL)) (-2934 (($ $) 80)) (-2800 (($ $) 69)) (-2287 (((-519) $) 64)) (-1674 (($ $ (-519)) 62)) (-2981 (($ $) NIL)) (-2844 (($ $) NIL)) (-2249 (($) NIL T CONST)) (-3925 (($ $) 112)) (-1301 (((-3 (-519) "failed") $) 188) (((-3 (-379 (-519)) "failed") $) 184)) (-1499 (((-519) $) 186) (((-379 (-519)) $) 182)) (-2311 (($ $ $) NIL)) (-2446 (((-519) $ $) 102)) (-4193 (((-3 $ "failed") $) 114)) (-2483 (((-379 (-519)) $ (-705)) 189) (((-379 (-519)) $ (-705) (-705)) 181)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-2199 (((-848)) 73) (((-848) (-848)) 98 (|has| $ (-6 -4212)))) (-3419 (((-108) $) 106)) (-2888 (($) 40)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL)) (-1602 (((-1168) (-705)) 151)) (-3136 (((-1168)) 156) (((-1168) (-705)) 157)) (-2064 (((-1168)) 158) (((-1168) (-705)) 159)) (-2134 (((-1168)) 154) (((-1168) (-705)) 155)) (-3709 (((-519) $) 58)) (-1568 (((-108) $) 104)) (-1517 (($ $ (-519)) NIL)) (-3161 (($ $) 48)) (-3681 (($ $) NIL)) (-2143 (((-108) $) 35)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) NIL) (($) NIL (-12 (-2445 (|has| $ (-6 -4204))) (-2445 (|has| $ (-6 -4212)))))) (-2489 (($ $ $) NIL) (($) 99 (-12 (-2445 (|has| $ (-6 -4204))) (-2445 (|has| $ (-6 -4212)))))) (-3417 (((-519) $) 17)) (-4109 (($) 87) (($ $) 92)) (-3145 (($) 91) (($ $) 93)) (-1254 (($ $) 83)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 116)) (-3747 (((-848) (-519)) 43 (|has| $ (-6 -4212)))) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) 53)) (-1525 (($ $) 109)) (-3123 (($ (-519) (-519)) 107) (($ (-519) (-519) (-848)) 108)) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1690 (((-519) $) 19)) (-2268 (($) 94)) (-3325 (($ $) 79)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-3084 (((-848)) 100) (((-848) (-848)) 101 (|has| $ (-6 -4212)))) (-2181 (($ $ (-705)) NIL) (($ $) 115)) (-4037 (((-848) (-519)) 47 (|has| $ (-6 -4212)))) (-1754 (($ $) NIL)) (-2854 (($ $) NIL)) (-2969 (($ $) NIL)) (-2834 (($ $) NIL)) (-2946 (($ $) 81)) (-2812 (($ $) 70)) (-1446 (((-351) $) 174) (((-201) $) 176) (((-819 (-351)) $) NIL) (((-1065) $) 161) (((-495) $) 172) (($ (-201)) 180)) (-2217 (((-790) $) 163) (($ (-519)) 185) (($ $) NIL) (($ (-379 (-519))) NIL) (($ (-519)) 185) (($ (-379 (-519))) NIL) (((-201) $) 177)) (-3594 (((-705)) NIL)) (-3617 (($ $) 111)) (-1858 (((-848)) 54) (((-848) (-848)) 66 (|has| $ (-6 -4212)))) (-3414 (((-848)) 103)) (-1774 (($ $) 86)) (-2886 (($ $) 46) (($ $ $) 52)) (-1617 (((-108) $ $) NIL)) (-1761 (($ $) 84)) (-2865 (($ $) 37)) (-1790 (($ $) NIL)) (-2910 (($ $) NIL)) (-3929 (($ $) NIL)) (-2922 (($ $) NIL)) (-1783 (($ $) NIL)) (-2898 (($ $) NIL)) (-1768 (($ $) 85)) (-2875 (($ $) 49)) (-1478 (($ $) 51)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 34 T CONST)) (-3611 (($) 38 T CONST)) (-2761 (((-1065) $) 27) (((-1065) $ (-108)) 29) (((-1168) (-757) $) 30) (((-1168) (-757) $ (-108)) 31)) (-2242 (($ $ (-705)) NIL) (($ $) NIL)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 39)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 42)) (-1632 (($ $ $) 45) (($ $ (-519)) 41)) (-1623 (($ $) 36) (($ $ $) 50)) (-1614 (($ $ $) 61)) (** (($ $ (-848)) 67) (($ $ (-705)) NIL) (($ $ (-519)) 88) (($ $ (-379 (-519))) 125) (($ $ $) 117)) (* (($ (-848) $) 65) (($ (-705) $) NIL) (($ (-519) $) 68) (($ $ $) 60) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL))) +(((-351) (-13 (-376) (-209) (-560 (-1065)) (-763) (-559 (-201)) (-1103) (-560 (-495)) (-10 -8 (-15 -1632 ($ $ (-519))) (-15 ** ($ $ $)) (-15 -3161 ($ $)) (-15 -2446 ((-519) $ $)) (-15 -1674 ($ $ (-519))) (-15 -2483 ((-379 (-519)) $ (-705))) (-15 -2483 ((-379 (-519)) $ (-705) (-705))) (-15 -4109 ($)) (-15 -3145 ($)) (-15 -2268 ($)) (-15 -2886 ($ $ $)) (-15 -4109 ($ $)) (-15 -3145 ($ $)) (-15 -1446 ($ (-201))) (-15 -2064 ((-1168))) (-15 -2064 ((-1168) (-705))) (-15 -2134 ((-1168))) (-15 -2134 ((-1168) (-705))) (-15 -3136 ((-1168))) (-15 -3136 ((-1168) (-705))) (-15 -1602 ((-1168) (-705))) (-6 -4212) (-6 -4204)))) (T -351)) +((** (*1 *1 *1 *1) (-5 *1 (-351))) (-1632 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-351)))) (-3161 (*1 *1 *1) (-5 *1 (-351))) (-2446 (*1 *2 *1 *1) (-12 (-5 *2 (-519)) (-5 *1 (-351)))) (-1674 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-351)))) (-2483 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *2 (-379 (-519))) (-5 *1 (-351)))) (-2483 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-705)) (-5 *2 (-379 (-519))) (-5 *1 (-351)))) (-4109 (*1 *1) (-5 *1 (-351))) (-3145 (*1 *1) (-5 *1 (-351))) (-2268 (*1 *1) (-5 *1 (-351))) (-2886 (*1 *1 *1 *1) (-5 *1 (-351))) (-4109 (*1 *1 *1) (-5 *1 (-351))) (-3145 (*1 *1 *1) (-5 *1 (-351))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-351)))) (-2064 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-351)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-351)))) (-2134 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-351)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-351)))) (-3136 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-351)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-351)))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-351))))) +(-13 (-376) (-209) (-560 (-1065)) (-763) (-559 (-201)) (-1103) (-560 (-495)) (-10 -8 (-15 -1632 ($ $ (-519))) (-15 ** ($ $ $)) (-15 -3161 ($ $)) (-15 -2446 ((-519) $ $)) (-15 -1674 ($ $ (-519))) (-15 -2483 ((-379 (-519)) $ (-705))) (-15 -2483 ((-379 (-519)) $ (-705) (-705))) (-15 -4109 ($)) (-15 -3145 ($)) (-15 -2268 ($)) (-15 -2886 ($ $ $)) (-15 -4109 ($ $)) (-15 -3145 ($ $)) (-15 -1446 ($ (-201))) (-15 -2064 ((-1168))) (-15 -2064 ((-1168) (-705))) (-15 -2134 ((-1168))) (-15 -2134 ((-1168) (-705))) (-15 -3136 ((-1168))) (-15 -3136 ((-1168) (-705))) (-15 -1602 ((-1168) (-705))) (-6 -4212) (-6 -4204))) +((-3442 (((-585 (-267 (-879 |#1|))) (-267 (-379 (-879 (-519)))) |#1|) 46) (((-585 (-267 (-879 |#1|))) (-379 (-879 (-519))) |#1|) 45) (((-585 (-585 (-267 (-879 |#1|)))) (-585 (-267 (-379 (-879 (-519))))) |#1|) 41) (((-585 (-585 (-267 (-879 |#1|)))) (-585 (-379 (-879 (-519)))) |#1|) 35)) (-2161 (((-585 |#1|) (-379 (-879 (-519))) |#1|) 19) (((-585 (-585 |#1|)) (-585 (-379 (-879 (-519)))) (-585 (-1082)) |#1|) 30))) +(((-352 |#1|) (-10 -7 (-15 -3442 ((-585 (-585 (-267 (-879 |#1|)))) (-585 (-379 (-879 (-519)))) |#1|)) (-15 -3442 ((-585 (-585 (-267 (-879 |#1|)))) (-585 (-267 (-379 (-879 (-519))))) |#1|)) (-15 -3442 ((-585 (-267 (-879 |#1|))) (-379 (-879 (-519))) |#1|)) (-15 -3442 ((-585 (-267 (-879 |#1|))) (-267 (-379 (-879 (-519)))) |#1|)) (-15 -2161 ((-585 (-585 |#1|)) (-585 (-379 (-879 (-519)))) (-585 (-1082)) |#1|)) (-15 -2161 ((-585 |#1|) (-379 (-879 (-519))) |#1|))) (-13 (-780) (-335))) (T -352)) +((-2161 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 (-519)))) (-5 *2 (-585 *4)) (-5 *1 (-352 *4)) (-4 *4 (-13 (-780) (-335))))) (-2161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-379 (-879 (-519))))) (-5 *4 (-585 (-1082))) (-5 *2 (-585 (-585 *5))) (-5 *1 (-352 *5)) (-4 *5 (-13 (-780) (-335))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-267 (-379 (-879 (-519))))) (-5 *2 (-585 (-267 (-879 *4)))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-780) (-335))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 (-519)))) (-5 *2 (-585 (-267 (-879 *4)))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-780) (-335))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-267 (-379 (-879 (-519)))))) (-5 *2 (-585 (-585 (-267 (-879 *4))))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-780) (-335))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-379 (-879 (-519))))) (-5 *2 (-585 (-585 (-267 (-879 *4))))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-780) (-335)))))) +(-10 -7 (-15 -3442 ((-585 (-585 (-267 (-879 |#1|)))) (-585 (-379 (-879 (-519)))) |#1|)) (-15 -3442 ((-585 (-585 (-267 (-879 |#1|)))) (-585 (-267 (-379 (-879 (-519))))) |#1|)) (-15 -3442 ((-585 (-267 (-879 |#1|))) (-379 (-879 (-519))) |#1|)) (-15 -3442 ((-585 (-267 (-879 |#1|))) (-267 (-379 (-879 (-519)))) |#1|)) (-15 -2161 ((-585 (-585 |#1|)) (-585 (-379 (-879 (-519)))) (-585 (-1082)) |#1|)) (-15 -2161 ((-585 |#1|) (-379 (-879 (-519))) |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#2| "failed") $) 25)) (-1499 ((|#2| $) 27)) (-3218 (($ $) NIL)) (-3798 (((-705) $) 10)) (-2089 (((-585 $) $) 20)) (-2642 (((-108) $) NIL)) (-2569 (($ |#2| |#1|) 18)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2352 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3185 ((|#2| $) 15)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 44) (($ |#2|) 26)) (-2988 (((-585 |#1|) $) 17)) (-1220 ((|#1| $ |#2|) 46)) (-3602 (($) 28 T CONST)) (-3613 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35))) +(((-353 |#1| |#2|) (-13 (-354 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-968) (-782)) (T -353)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-353 *3 *2)) (-4 *3 (-968)) (-4 *2 (-782))))) +(-13 (-354 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1301 (((-3 |#2| "failed") $) 44)) (-1499 ((|#2| $) 43)) (-3218 (($ $) 30)) (-3798 (((-705) $) 34)) (-2089 (((-585 $) $) 35)) (-2642 (((-108) $) 38)) (-2569 (($ |#2| |#1|) 39)) (-1405 (($ (-1 |#1| |#1|) $) 40)) (-2352 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3185 ((|#2| $) 33)) (-3197 ((|#1| $) 32)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ |#2|) 45)) (-2988 (((-585 |#1|) $) 36)) (-1220 ((|#1| $ |#2|) 41)) (-3602 (($) 18 T CONST)) (-3613 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-354 |#1| |#2|) (-1194) (-968) (-1011)) (T -354)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-354 *2 *3)) (-4 *2 (-968)) (-4 *3 (-1011)))) (-1220 (*1 *2 *1 *3) (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1011)) (-4 *2 (-968)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1011)))) (-2569 (*1 *1 *2 *3) (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1011)))) (-2642 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1011)) (-5 *2 (-108)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1011)) (-5 *2 (-585 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1011)) (-5 *2 (-585 *3)))) (-2089 (*1 *2 *1) (-12 (-4 *3 (-968)) (-4 *4 (-1011)) (-5 *2 (-585 *1)) (-4 *1 (-354 *3 *4)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1011)) (-5 *2 (-705)))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1011)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1011)) (-4 *2 (-968)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1011)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3218 (*1 *1 *1) (-12 (-4 *1 (-354 *2 *3)) (-4 *2 (-968)) (-4 *3 (-1011))))) +(-13 (-107 |t#1| |t#1|) (-959 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1220 (|t#1| $ |t#2|)) (-15 -1405 ($ (-1 |t#1| |t#1|) $)) (-15 -2569 ($ |t#2| |t#1|)) (-15 -2642 ((-108) $)) (-15 -3613 ((-585 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2988 ((-585 |t#1|) $)) (-15 -2089 ((-585 $) $)) (-15 -3798 ((-705) $)) (-15 -3185 (|t#2| $)) (-15 -3197 (|t#1| $)) (-15 -2352 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3218 ($ $)) (IF (|has| |t#1| (-157)) (-6 (-652 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-652 |#1|) |has| |#1| (-157)) ((-959 |#2|) . T) ((-974 |#1|) . T) ((-1011) . T)) +((-2021 (((-1168) $) 7)) (-2217 (((-790) $) 8) (($ (-625 (-634))) 14) (($ (-585 (-302))) 13) (($ (-302)) 12) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 11))) +(((-355) (-1194)) (T -355)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-625 (-634))) (-4 *1 (-355)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-4 *1 (-355)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-302)) (-4 *1 (-355)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) (-4 *1 (-355))))) +(-13 (-367) (-10 -8 (-15 -2217 ($ (-625 (-634)))) (-15 -2217 ($ (-585 (-302)))) (-15 -2217 ($ (-302))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302)))))))) +(((-559 (-790)) . T) ((-367) . T) ((-1117) . T)) +((-1301 (((-3 $ "failed") (-625 (-288 (-351)))) 21) (((-3 $ "failed") (-625 (-288 (-519)))) 19) (((-3 $ "failed") (-625 (-879 (-351)))) 17) (((-3 $ "failed") (-625 (-879 (-519)))) 15) (((-3 $ "failed") (-625 (-379 (-879 (-351))))) 13) (((-3 $ "failed") (-625 (-379 (-879 (-519))))) 11)) (-1499 (($ (-625 (-288 (-351)))) 22) (($ (-625 (-288 (-519)))) 20) (($ (-625 (-879 (-351)))) 18) (($ (-625 (-879 (-519)))) 16) (($ (-625 (-379 (-879 (-351))))) 14) (($ (-625 (-379 (-879 (-519))))) 12)) (-2021 (((-1168) $) 7)) (-2217 (((-790) $) 8) (($ (-585 (-302))) 25) (($ (-302)) 24) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 23))) +(((-356) (-1194)) (T -356)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-4 *1 (-356)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-302)) (-4 *1 (-356)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) (-4 *1 (-356)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-625 (-288 (-351)))) (-4 *1 (-356)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 (-288 (-351)))) (-4 *1 (-356)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-625 (-288 (-519)))) (-4 *1 (-356)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 (-288 (-519)))) (-4 *1 (-356)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-625 (-879 (-351)))) (-4 *1 (-356)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 (-879 (-351)))) (-4 *1 (-356)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-625 (-879 (-519)))) (-4 *1 (-356)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 (-879 (-519)))) (-4 *1 (-356)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-625 (-379 (-879 (-351))))) (-4 *1 (-356)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 (-379 (-879 (-351))))) (-4 *1 (-356)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-625 (-379 (-879 (-519))))) (-4 *1 (-356)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 (-379 (-879 (-519))))) (-4 *1 (-356))))) +(-13 (-367) (-10 -8 (-15 -2217 ($ (-585 (-302)))) (-15 -2217 ($ (-302))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302)))))) (-15 -1499 ($ (-625 (-288 (-351))))) (-15 -1301 ((-3 $ "failed") (-625 (-288 (-351))))) (-15 -1499 ($ (-625 (-288 (-519))))) (-15 -1301 ((-3 $ "failed") (-625 (-288 (-519))))) (-15 -1499 ($ (-625 (-879 (-351))))) (-15 -1301 ((-3 $ "failed") (-625 (-879 (-351))))) (-15 -1499 ($ (-625 (-879 (-519))))) (-15 -1301 ((-3 $ "failed") (-625 (-879 (-519))))) (-15 -1499 ($ (-625 (-379 (-879 (-351)))))) (-15 -1301 ((-3 $ "failed") (-625 (-379 (-879 (-351)))))) (-15 -1499 ($ (-625 (-379 (-879 (-519)))))) (-15 -1301 ((-3 $ "failed") (-625 (-379 (-879 (-519)))))))) +(((-559 (-790)) . T) ((-367) . T) ((-1117) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-3218 (($ $) NIL)) (-4042 (($ |#1| |#2|) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2211 ((|#2| $) NIL)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 28)) (-3602 (($) 12 T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-357 |#1| |#2|) (-13 (-107 |#1| |#1|) (-475 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-652 |#1|)) |%noBranch|))) (-968) (-782)) (T -357)) +NIL +(-13 (-107 |#1| |#1|) (-475 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-652 |#1|)) |%noBranch|))) +((-1430 (((-108) $ $) NIL)) (-1642 (((-705) $) 57)) (-2249 (($) NIL T CONST)) (-1927 (((-3 $ "failed") $ $) 59)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3225 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-1568 (((-108) $) 14)) (-4059 ((|#1| $ (-519)) NIL)) (-2765 (((-705) $ (-519)) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3902 (($ (-1 |#1| |#1|) $) 37)) (-4082 (($ (-1 (-705) (-705)) $) 34)) (-3550 (((-3 $ "failed") $ $) 50)) (-1266 (((-1065) $) NIL)) (-2766 (($ $ $) 25)) (-1628 (($ $ $) 23)) (-4139 (((-1029) $) NIL)) (-3433 (((-585 (-2 (|:| |gen| |#1|) (|:| -3325 (-705)))) $) 31)) (-1745 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2217 (((-790) $) 21) (($ |#1|) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3611 (($) 9 T CONST)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) 41)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) 61 (|has| |#1| (-782)))) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ |#1| (-705)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27))) +(((-358 |#1|) (-13 (-661) (-959 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-705))) (-15 -1628 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -3550 ((-3 $ "failed") $ $)) (-15 -1927 ((-3 $ "failed") $ $)) (-15 -1745 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3225 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1642 ((-705) $)) (-15 -3433 ((-585 (-2 (|:| |gen| |#1|) (|:| -3325 (-705)))) $)) (-15 -2765 ((-705) $ (-519))) (-15 -4059 (|#1| $ (-519))) (-15 -4082 ($ (-1 (-705) (-705)) $)) (-15 -3902 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|))) (-1011)) (T -358)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-705)) (-5 *1 (-358 *2)) (-4 *2 (-1011)))) (-1628 (*1 *1 *1 *1) (-12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) (-2766 (*1 *1 *1 *1) (-12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) (-3550 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) (-1927 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) (-1745 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-358 *3)) (|:| |rm| (-358 *3)))) (-5 *1 (-358 *3)) (-4 *3 (-1011)))) (-3225 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-358 *3)) (|:| |mm| (-358 *3)) (|:| |rm| (-358 *3)))) (-5 *1 (-358 *3)) (-4 *3 (-1011)))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-358 *3)) (-4 *3 (-1011)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 (-705))))) (-5 *1 (-358 *3)) (-4 *3 (-1011)))) (-2765 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-705)) (-5 *1 (-358 *4)) (-4 *4 (-1011)))) (-4059 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *1 (-358 *2)) (-4 *2 (-1011)))) (-4082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-705) (-705))) (-5 *1 (-358 *3)) (-4 *3 (-1011)))) (-3902 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1011)) (-5 *1 (-358 *3))))) +(-13 (-661) (-959 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-705))) (-15 -1628 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -3550 ((-3 $ "failed") $ $)) (-15 -1927 ((-3 $ "failed") $ $)) (-15 -1745 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3225 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1642 ((-705) $)) (-15 -3433 ((-585 (-2 (|:| |gen| |#1|) (|:| -3325 (-705)))) $)) (-15 -2765 ((-705) $ (-519))) (-15 -4059 (|#1| $ (-519))) (-15 -4082 ($ (-1 (-705) (-705)) $)) (-15 -3902 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1301 (((-3 (-519) "failed") $) 47)) (-1499 (((-519) $) 46)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-2864 (($ $ $) 54)) (-2489 (($ $ $) 53)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2261 (((-3 $ "failed") $ $) 42)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-519)) 48)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1586 (((-108) $ $) 51)) (-1569 (((-108) $ $) 50)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 52)) (-1561 (((-108) $ $) 49)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-359) (-1194)) (T -359)) +NIL +(-13 (-511) (-782) (-959 (-519))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-157) . T) ((-264) . T) ((-511) . T) ((-587 $) . T) ((-652 $) . T) ((-661) . T) ((-782) . T) ((-959 (-519)) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-1503 (((-108) $) 20)) (-1511 (((-108) $) 19)) (-1822 (($ (-1065) (-1065) (-1065)) 21)) (-2938 (((-1065) $) 16)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2608 (($ (-1065) (-1065) (-1065)) 14)) (-3094 (((-1065) $) 17)) (-1772 (((-108) $) 18)) (-3178 (((-1065) $) 15)) (-2217 (((-790) $) 12) (($ (-1065)) 13) (((-1065) $) 9)) (-1543 (((-108) $ $) 7))) +(((-360) (-361)) (T -360)) +NIL +(-361) +((-1430 (((-108) $ $) 7)) (-1503 (((-108) $) 14)) (-1511 (((-108) $) 15)) (-1822 (($ (-1065) (-1065) (-1065)) 13)) (-2938 (((-1065) $) 18)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2608 (($ (-1065) (-1065) (-1065)) 20)) (-3094 (((-1065) $) 17)) (-1772 (((-108) $) 16)) (-3178 (((-1065) $) 19)) (-2217 (((-790) $) 11) (($ (-1065)) 22) (((-1065) $) 21)) (-1543 (((-108) $ $) 6))) +(((-361) (-1194)) (T -361)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-4 *1 (-361)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-1065)))) (-2608 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1065)) (-4 *1 (-361)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-1065)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-1065)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-1065)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-108)))) (-1511 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-108)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-108)))) (-1822 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1065)) (-4 *1 (-361))))) +(-13 (-1011) (-10 -8 (-15 -2217 ($ (-1065))) (-15 -2217 ((-1065) $)) (-15 -2608 ($ (-1065) (-1065) (-1065))) (-15 -3178 ((-1065) $)) (-15 -2938 ((-1065) $)) (-15 -3094 ((-1065) $)) (-15 -1772 ((-108) $)) (-15 -1511 ((-108) $)) (-15 -1503 ((-108) $)) (-15 -1822 ($ (-1065) (-1065) (-1065))))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1491 (((-790) $) 50)) (-2249 (($) NIL T CONST)) (-1588 (($ $ (-848)) NIL)) (-1432 (($ $ (-848)) NIL)) (-1341 (($ $ (-848)) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1397 (($ (-705)) 26)) (-2914 (((-705)) 15)) (-2667 (((-790) $) 52)) (-3190 (($ $ $) NIL)) (-2217 (((-790) $) NIL)) (-3645 (($ $ $ $) NIL)) (-2025 (($ $ $) NIL)) (-3602 (($) 20 T CONST)) (-1543 (((-108) $ $) 28)) (-1623 (($ $) 34) (($ $ $) 36)) (-1614 (($ $ $) 37)) (** (($ $ (-848)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-362 |#1| |#2| |#3|) (-13 (-679 |#3|) (-10 -8 (-15 -2914 ((-705))) (-15 -2667 ((-790) $)) (-15 -1491 ((-790) $)) (-15 -1397 ($ (-705))))) (-705) (-705) (-157)) (T -362)) +((-2914 (*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-362 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-362 *3 *4 *5)) (-14 *3 (-705)) (-14 *4 (-705)) (-4 *5 (-157)))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-362 *3 *4 *5)) (-14 *3 (-705)) (-14 *4 (-705)) (-4 *5 (-157)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-362 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157))))) +(-13 (-679 |#3|) (-10 -8 (-15 -2914 ((-705))) (-15 -2667 ((-790) $)) (-15 -1491 ((-790) $)) (-15 -1397 ($ (-705))))) +((-4094 (((-1065)) 10)) (-3975 (((-1054 (-1065))) 28)) (-1991 (((-1168) (-1065)) 25) (((-1168) (-360)) 24)) (-2006 (((-1168)) 26)) (-1842 (((-1054 (-1065))) 27))) +(((-363) (-10 -7 (-15 -1842 ((-1054 (-1065)))) (-15 -3975 ((-1054 (-1065)))) (-15 -2006 ((-1168))) (-15 -1991 ((-1168) (-360))) (-15 -1991 ((-1168) (-1065))) (-15 -4094 ((-1065))))) (T -363)) +((-4094 (*1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-363)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-363)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1168)) (-5 *1 (-363)))) (-2006 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-363)))) (-3975 (*1 *2) (-12 (-5 *2 (-1054 (-1065))) (-5 *1 (-363)))) (-1842 (*1 *2) (-12 (-5 *2 (-1054 (-1065))) (-5 *1 (-363))))) +(-10 -7 (-15 -1842 ((-1054 (-1065)))) (-15 -3975 ((-1054 (-1065)))) (-15 -2006 ((-1168))) (-15 -1991 ((-1168) (-360))) (-15 -1991 ((-1168) (-1065))) (-15 -4094 ((-1065)))) +((-3709 (((-705) (-308 |#1| |#2| |#3| |#4|)) 16))) +(((-364 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3709 ((-705) (-308 |#1| |#2| |#3| |#4|)))) (-13 (-340) (-335)) (-1139 |#1|) (-1139 (-379 |#2|)) (-314 |#1| |#2| |#3|)) (T -364)) +((-3709 (*1 *2 *3) (-12 (-5 *3 (-308 *4 *5 *6 *7)) (-4 *4 (-13 (-340) (-335))) (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) (-4 *7 (-314 *4 *5 *6)) (-5 *2 (-705)) (-5 *1 (-364 *4 *5 *6 *7))))) +(-10 -7 (-15 -3709 ((-705) (-308 |#1| |#2| |#3| |#4|)))) +((-2217 (((-366) |#1|) 11))) +(((-365 |#1|) (-10 -7 (-15 -2217 ((-366) |#1|))) (-1011)) (T -365)) +((-2217 (*1 *2 *3) (-12 (-5 *2 (-366)) (-5 *1 (-365 *3)) (-4 *3 (-1011))))) +(-10 -7 (-15 -2217 ((-366) |#1|))) +((-1430 (((-108) $ $) NIL)) (-1352 (((-585 (-1065)) $ (-585 (-1065))) 37)) (-1919 (((-585 (-1065)) $ (-585 (-1065))) 38)) (-1764 (((-585 (-1065)) $ (-585 (-1065))) 39)) (-2606 (((-585 (-1065)) $) 34)) (-1822 (($) 23)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1395 (((-585 (-1065)) $) 35)) (-1800 (((-585 (-1065)) $) 36)) (-1691 (((-1168) $ (-519)) 32) (((-1168) $) 33)) (-1446 (($ (-790) (-519)) 29)) (-2217 (((-790) $) 41) (($ (-790)) 25)) (-1543 (((-108) $ $) NIL))) +(((-366) (-13 (-1011) (-10 -8 (-15 -2217 ($ (-790))) (-15 -1446 ($ (-790) (-519))) (-15 -1691 ((-1168) $ (-519))) (-15 -1691 ((-1168) $)) (-15 -1800 ((-585 (-1065)) $)) (-15 -1395 ((-585 (-1065)) $)) (-15 -1822 ($)) (-15 -2606 ((-585 (-1065)) $)) (-15 -1764 ((-585 (-1065)) $ (-585 (-1065)))) (-15 -1919 ((-585 (-1065)) $ (-585 (-1065)))) (-15 -1352 ((-585 (-1065)) $ (-585 (-1065))))))) (T -366)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-366)))) (-1446 (*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-519)) (-5 *1 (-366)))) (-1691 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-366)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-366)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366)))) (-1822 (*1 *1) (-5 *1 (-366))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366)))) (-1764 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366)))) (-1919 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366)))) (-1352 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366))))) +(-13 (-1011) (-10 -8 (-15 -2217 ($ (-790))) (-15 -1446 ($ (-790) (-519))) (-15 -1691 ((-1168) $ (-519))) (-15 -1691 ((-1168) $)) (-15 -1800 ((-585 (-1065)) $)) (-15 -1395 ((-585 (-1065)) $)) (-15 -1822 ($)) (-15 -2606 ((-585 (-1065)) $)) (-15 -1764 ((-585 (-1065)) $ (-585 (-1065)))) (-15 -1919 ((-585 (-1065)) $ (-585 (-1065)))) (-15 -1352 ((-585 (-1065)) $ (-585 (-1065)))))) +((-2021 (((-1168) $) 7)) (-2217 (((-790) $) 8))) +(((-367) (-1194)) (T -367)) +((-2021 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1168))))) +(-13 (-1117) (-559 (-790)) (-10 -8 (-15 -2021 ((-1168) $)))) +(((-559 (-790)) . T) ((-1117) . T)) +((-1301 (((-3 $ "failed") (-288 (-351))) 21) (((-3 $ "failed") (-288 (-519))) 19) (((-3 $ "failed") (-879 (-351))) 17) (((-3 $ "failed") (-879 (-519))) 15) (((-3 $ "failed") (-379 (-879 (-351)))) 13) (((-3 $ "failed") (-379 (-879 (-519)))) 11)) (-1499 (($ (-288 (-351))) 22) (($ (-288 (-519))) 20) (($ (-879 (-351))) 18) (($ (-879 (-519))) 16) (($ (-379 (-879 (-351)))) 14) (($ (-379 (-879 (-519)))) 12)) (-2021 (((-1168) $) 7)) (-2217 (((-790) $) 8) (($ (-585 (-302))) 25) (($ (-302)) 24) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 23))) +(((-368) (-1194)) (T -368)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-4 *1 (-368)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-302)) (-4 *1 (-368)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) (-4 *1 (-368)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-288 (-351))) (-4 *1 (-368)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-288 (-351))) (-4 *1 (-368)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-288 (-519))) (-4 *1 (-368)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-288 (-519))) (-4 *1 (-368)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-879 (-351))) (-4 *1 (-368)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-879 (-351))) (-4 *1 (-368)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-879 (-519))) (-4 *1 (-368)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-879 (-519))) (-4 *1 (-368)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-379 (-879 (-351)))) (-4 *1 (-368)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-379 (-879 (-351)))) (-4 *1 (-368)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-379 (-879 (-519)))) (-4 *1 (-368)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-379 (-879 (-519)))) (-4 *1 (-368))))) +(-13 (-367) (-10 -8 (-15 -2217 ($ (-585 (-302)))) (-15 -2217 ($ (-302))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302)))))) (-15 -1499 ($ (-288 (-351)))) (-15 -1301 ((-3 $ "failed") (-288 (-351)))) (-15 -1499 ($ (-288 (-519)))) (-15 -1301 ((-3 $ "failed") (-288 (-519)))) (-15 -1499 ($ (-879 (-351)))) (-15 -1301 ((-3 $ "failed") (-879 (-351)))) (-15 -1499 ($ (-879 (-519)))) (-15 -1301 ((-3 $ "failed") (-879 (-519)))) (-15 -1499 ($ (-379 (-879 (-351))))) (-15 -1301 ((-3 $ "failed") (-379 (-879 (-351))))) (-15 -1499 ($ (-379 (-879 (-519))))) (-15 -1301 ((-3 $ "failed") (-379 (-879 (-519))))))) +(((-559 (-790)) . T) ((-367) . T) ((-1117) . T)) +((-2263 (((-585 (-1065)) (-585 (-1065))) 8)) (-2021 (((-1168) (-360)) 27)) (-2576 (((-1015) (-1082) (-585 (-1082)) (-1085) (-585 (-1082))) 59) (((-1015) (-1082) (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082)))) (-585 (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082))))) (-585 (-1082)) (-1082)) 35) (((-1015) (-1082) (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082)))) (-585 (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082))))) (-585 (-1082))) 34))) +(((-369) (-10 -7 (-15 -2576 ((-1015) (-1082) (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082)))) (-585 (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082))))) (-585 (-1082)))) (-15 -2576 ((-1015) (-1082) (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082)))) (-585 (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082))))) (-585 (-1082)) (-1082))) (-15 -2576 ((-1015) (-1082) (-585 (-1082)) (-1085) (-585 (-1082)))) (-15 -2021 ((-1168) (-360))) (-15 -2263 ((-585 (-1065)) (-585 (-1065)))))) (T -369)) +((-2263 (*1 *2 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-369)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1168)) (-5 *1 (-369)))) (-2576 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-585 (-1082))) (-5 *5 (-1085)) (-5 *3 (-1082)) (-5 *2 (-1015)) (-5 *1 (-369)))) (-2576 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-585 (-585 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-585 (-3 (|:| |array| (-585 *3)) (|:| |scalar| (-1082))))) (-5 *6 (-585 (-1082))) (-5 *3 (-1082)) (-5 *2 (-1015)) (-5 *1 (-369)))) (-2576 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-585 (-585 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-585 (-3 (|:| |array| (-585 *3)) (|:| |scalar| (-1082))))) (-5 *6 (-585 (-1082))) (-5 *3 (-1082)) (-5 *2 (-1015)) (-5 *1 (-369))))) +(-10 -7 (-15 -2576 ((-1015) (-1082) (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082)))) (-585 (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082))))) (-585 (-1082)))) (-15 -2576 ((-1015) (-1082) (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082)))) (-585 (-585 (-3 (|:| |array| (-585 (-1082))) (|:| |scalar| (-1082))))) (-585 (-1082)) (-1082))) (-15 -2576 ((-1015) (-1082) (-585 (-1082)) (-1085) (-585 (-1082)))) (-15 -2021 ((-1168) (-360))) (-15 -2263 ((-585 (-1065)) (-585 (-1065))))) +((-2021 (((-1168) $) 37)) (-2217 (((-790) $) 89) (($ (-302)) 92) (($ (-585 (-302))) 91) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 88) (($ (-288 (-636))) 52) (($ (-288 (-634))) 66) (($ (-288 (-629))) 78) (($ (-267 (-288 (-636)))) 62) (($ (-267 (-288 (-634)))) 74) (($ (-267 (-288 (-629)))) 86) (($ (-288 (-519))) 96) (($ (-288 (-351))) 108) (($ (-288 (-154 (-351)))) 120) (($ (-267 (-288 (-519)))) 104) (($ (-267 (-288 (-351)))) 116) (($ (-267 (-288 (-154 (-351))))) 128))) +(((-370 |#1| |#2| |#3| |#4|) (-13 (-367) (-10 -8 (-15 -2217 ($ (-302))) (-15 -2217 ($ (-585 (-302)))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302)))))) (-15 -2217 ($ (-288 (-636)))) (-15 -2217 ($ (-288 (-634)))) (-15 -2217 ($ (-288 (-629)))) (-15 -2217 ($ (-267 (-288 (-636))))) (-15 -2217 ($ (-267 (-288 (-634))))) (-15 -2217 ($ (-267 (-288 (-629))))) (-15 -2217 ($ (-288 (-519)))) (-15 -2217 ($ (-288 (-351)))) (-15 -2217 ($ (-288 (-154 (-351))))) (-15 -2217 ($ (-267 (-288 (-519))))) (-15 -2217 ($ (-267 (-288 (-351))))) (-15 -2217 ($ (-267 (-288 (-154 (-351)))))))) (-1082) (-3 (|:| |fst| (-406)) (|:| -1378 "void")) (-585 (-1082)) (-1086)) (T -370)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-302)) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-288 (-636))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-288 (-634))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-288 (-629))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-267 (-288 (-636)))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-267 (-288 (-634)))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-267 (-288 (-629)))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-288 (-519))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-288 (-351))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-288 (-154 (-351)))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-267 (-288 (-519)))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-267 (-288 (-351)))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-267 (-288 (-154 (-351))))) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-14 *5 (-585 (-1082))) (-14 *6 (-1086))))) +(-13 (-367) (-10 -8 (-15 -2217 ($ (-302))) (-15 -2217 ($ (-585 (-302)))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302)))))) (-15 -2217 ($ (-288 (-636)))) (-15 -2217 ($ (-288 (-634)))) (-15 -2217 ($ (-288 (-629)))) (-15 -2217 ($ (-267 (-288 (-636))))) (-15 -2217 ($ (-267 (-288 (-634))))) (-15 -2217 ($ (-267 (-288 (-629))))) (-15 -2217 ($ (-288 (-519)))) (-15 -2217 ($ (-288 (-351)))) (-15 -2217 ($ (-288 (-154 (-351))))) (-15 -2217 ($ (-267 (-288 (-519))))) (-15 -2217 ($ (-267 (-288 (-351))))) (-15 -2217 ($ (-267 (-288 (-154 (-351)))))))) +((-1430 (((-108) $ $) NIL)) (-2084 ((|#2| $) 36)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1444 (($ (-379 |#2|)) 84)) (-2610 (((-585 (-2 (|:| -1690 (-705)) (|:| -1896 |#2|) (|:| |num| |#2|))) $) 37)) (-2181 (($ $) 32) (($ $ (-705)) 34)) (-1446 (((-379 |#2|) $) 46)) (-2228 (($ (-585 (-2 (|:| -1690 (-705)) (|:| -1896 |#2|) (|:| |num| |#2|)))) 31)) (-2217 (((-790) $) 120)) (-2242 (($ $) 33) (($ $ (-705)) 35)) (-1543 (((-108) $ $) NIL)) (-1614 (($ |#2| $) 39))) +(((-371 |#1| |#2|) (-13 (-1011) (-560 (-379 |#2|)) (-10 -8 (-15 -1614 ($ |#2| $)) (-15 -1444 ($ (-379 |#2|))) (-15 -2084 (|#2| $)) (-15 -2610 ((-585 (-2 (|:| -1690 (-705)) (|:| -1896 |#2|) (|:| |num| |#2|))) $)) (-15 -2228 ($ (-585 (-2 (|:| -1690 (-705)) (|:| -1896 |#2|) (|:| |num| |#2|))))) (-15 -2181 ($ $)) (-15 -2242 ($ $)) (-15 -2181 ($ $ (-705))) (-15 -2242 ($ $ (-705))))) (-13 (-335) (-135)) (-1139 |#1|)) (T -371)) +((-1614 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-335) (-135))) (-5 *1 (-371 *3 *2)) (-4 *2 (-1139 *3)))) (-1444 (*1 *1 *2) (-12 (-5 *2 (-379 *4)) (-4 *4 (-1139 *3)) (-4 *3 (-13 (-335) (-135))) (-5 *1 (-371 *3 *4)))) (-2084 (*1 *2 *1) (-12 (-4 *2 (-1139 *3)) (-5 *1 (-371 *3 *2)) (-4 *3 (-13 (-335) (-135))))) (-2610 (*1 *2 *1) (-12 (-4 *3 (-13 (-335) (-135))) (-5 *2 (-585 (-2 (|:| -1690 (-705)) (|:| -1896 *4) (|:| |num| *4)))) (-5 *1 (-371 *3 *4)) (-4 *4 (-1139 *3)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -1690 (-705)) (|:| -1896 *4) (|:| |num| *4)))) (-4 *4 (-1139 *3)) (-4 *3 (-13 (-335) (-135))) (-5 *1 (-371 *3 *4)))) (-2181 (*1 *1 *1) (-12 (-4 *2 (-13 (-335) (-135))) (-5 *1 (-371 *2 *3)) (-4 *3 (-1139 *2)))) (-2242 (*1 *1 *1) (-12 (-4 *2 (-13 (-335) (-135))) (-5 *1 (-371 *2 *3)) (-4 *3 (-1139 *2)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *3 (-13 (-335) (-135))) (-5 *1 (-371 *3 *4)) (-4 *4 (-1139 *3)))) (-2242 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *3 (-13 (-335) (-135))) (-5 *1 (-371 *3 *4)) (-4 *4 (-1139 *3))))) +(-13 (-1011) (-560 (-379 |#2|)) (-10 -8 (-15 -1614 ($ |#2| $)) (-15 -1444 ($ (-379 |#2|))) (-15 -2084 (|#2| $)) (-15 -2610 ((-585 (-2 (|:| -1690 (-705)) (|:| -1896 |#2|) (|:| |num| |#2|))) $)) (-15 -2228 ($ (-585 (-2 (|:| -1690 (-705)) (|:| -1896 |#2|) (|:| |num| |#2|))))) (-15 -2181 ($ $)) (-15 -2242 ($ $)) (-15 -2181 ($ $ (-705))) (-15 -2242 ($ $ (-705))))) +((-1430 (((-108) $ $) 9 (-3730 (|has| |#1| (-813 (-519))) (|has| |#1| (-813 (-351)))))) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 15 (|has| |#1| (-813 (-351)))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 14 (|has| |#1| (-813 (-519))))) (-1266 (((-1065) $) 13 (-3730 (|has| |#1| (-813 (-519))) (|has| |#1| (-813 (-351)))))) (-4139 (((-1029) $) 12 (-3730 (|has| |#1| (-813 (-519))) (|has| |#1| (-813 (-351)))))) (-2217 (((-790) $) 11 (-3730 (|has| |#1| (-813 (-519))) (|has| |#1| (-813 (-351)))))) (-1543 (((-108) $ $) 10 (-3730 (|has| |#1| (-813 (-519))) (|has| |#1| (-813 (-351))))))) +(((-372 |#1|) (-1194) (-1117)) (T -372)) +NIL +(-13 (-1117) (-10 -7 (IF (|has| |t#1| (-813 (-519))) (-6 (-813 (-519))) |%noBranch|) (IF (|has| |t#1| (-813 (-351))) (-6 (-813 (-351))) |%noBranch|))) +(((-97) -3730 (|has| |#1| (-813 (-519))) (|has| |#1| (-813 (-351)))) ((-559 (-790)) -3730 (|has| |#1| (-813 (-519))) (|has| |#1| (-813 (-351)))) ((-813 (-351)) |has| |#1| (-813 (-351))) ((-813 (-519)) |has| |#1| (-813 (-519))) ((-1011) -3730 (|has| |#1| (-813 (-519))) (|has| |#1| (-813 (-351)))) ((-1117) . T)) +((-3824 (($ $) 10) (($ $ (-705)) 11))) +(((-373 |#1|) (-10 -8 (-15 -3824 (|#1| |#1| (-705))) (-15 -3824 (|#1| |#1|))) (-374)) (T -373)) +NIL +(-10 -8 (-15 -3824 (|#1| |#1| (-705))) (-15 -3824 (|#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 73)) (-3093 (((-390 $) $) 72)) (-3409 (((-108) $ $) 59)) (-2249 (($) 17 T CONST)) (-2311 (($ $ $) 55)) (-4193 (((-3 $ "failed") $) 34)) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-3824 (($ $) 79) (($ $ (-705)) 78)) (-1320 (((-108) $) 71)) (-3709 (((-768 (-848)) $) 81)) (-1568 (((-108) $) 31)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 70)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-1921 (((-390 $) $) 74)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-3129 (((-705) $) 58)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-2867 (((-3 (-705) "failed") $ $) 80)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-379 (-519))) 65)) (-3773 (((-3 $ "failed") $) 82)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 69)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ $) 64)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 68)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 67) (($ (-379 (-519)) $) 66))) +(((-374) (-1194)) (T -374)) +((-3709 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-768 (-848))))) (-2867 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-374)) (-5 *2 (-705)))) (-3824 (*1 *1 *1) (-4 *1 (-374))) (-3824 (*1 *1 *1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-705))))) +(-13 (-335) (-133) (-10 -8 (-15 -3709 ((-768 (-848)) $)) (-15 -2867 ((-3 (-705) "failed") $ $)) (-15 -3824 ($ $)) (-15 -3824 ($ $ (-705))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-559 (-790)) . T) ((-157) . T) ((-219) . T) ((-264) . T) ((-280) . T) ((-335) . T) ((-423) . T) ((-511) . T) ((-587 #0#) . T) ((-587 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-661) . T) ((-847) . T) ((-974 #0#) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1121) . T)) +((-3123 (($ (-519) (-519)) 11) (($ (-519) (-519) (-848)) NIL)) (-3084 (((-848)) 16) (((-848) (-848)) NIL))) +(((-375 |#1|) (-10 -8 (-15 -3084 ((-848) (-848))) (-15 -3084 ((-848))) (-15 -3123 (|#1| (-519) (-519) (-848))) (-15 -3123 (|#1| (-519) (-519)))) (-376)) (T -375)) +((-3084 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-375 *3)) (-4 *3 (-376)))) (-3084 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-375 *3)) (-4 *3 (-376))))) +(-10 -8 (-15 -3084 ((-848) (-848))) (-15 -3084 ((-848))) (-15 -3123 (|#1| (-519) (-519) (-848))) (-15 -3123 (|#1| (-519) (-519)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-2157 (((-519) $) 89)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-4057 (($ $) 87)) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 73)) (-3093 (((-390 $) $) 72)) (-1934 (($ $) 97)) (-3409 (((-108) $ $) 59)) (-2287 (((-519) $) 114)) (-2249 (($) 17 T CONST)) (-3925 (($ $) 86)) (-1301 (((-3 (-519) "failed") $) 102) (((-3 (-379 (-519)) "failed") $) 99)) (-1499 (((-519) $) 101) (((-379 (-519)) $) 98)) (-2311 (($ $ $) 55)) (-4193 (((-3 $ "failed") $) 34)) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-1320 (((-108) $) 71)) (-2199 (((-848)) 130) (((-848) (-848)) 127 (|has| $ (-6 -4212)))) (-3419 (((-108) $) 112)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 93)) (-3709 (((-519) $) 136)) (-1568 (((-108) $) 31)) (-1517 (($ $ (-519)) 96)) (-3681 (($ $) 92)) (-2143 (((-108) $) 113)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-2864 (($ $ $) 111) (($) 124 (-12 (-2445 (|has| $ (-6 -4212))) (-2445 (|has| $ (-6 -4204)))))) (-2489 (($ $ $) 110) (($) 123 (-12 (-2445 (|has| $ (-6 -4212))) (-2445 (|has| $ (-6 -4204)))))) (-3417 (((-519) $) 133)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 70)) (-3747 (((-848) (-519)) 126 (|has| $ (-6 -4212)))) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-3326 (($ $) 88)) (-1525 (($ $) 90)) (-3123 (($ (-519) (-519)) 138) (($ (-519) (-519) (-848)) 137)) (-1921 (((-390 $) $) 74)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-1690 (((-519) $) 134)) (-3129 (((-705) $) 58)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-3084 (((-848)) 131) (((-848) (-848)) 128 (|has| $ (-6 -4212)))) (-4037 (((-848) (-519)) 125 (|has| $ (-6 -4212)))) (-1446 (((-351) $) 105) (((-201) $) 104) (((-819 (-351)) $) 94)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-379 (-519))) 65) (($ (-519)) 103) (($ (-379 (-519))) 100)) (-3594 (((-705)) 29)) (-3617 (($ $) 91)) (-1858 (((-848)) 132) (((-848) (-848)) 129 (|has| $ (-6 -4212)))) (-3414 (((-848)) 135)) (-1617 (((-108) $ $) 39)) (-1478 (($ $) 115)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 69)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1586 (((-108) $ $) 108)) (-1569 (((-108) $ $) 107)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 109)) (-1561 (((-108) $ $) 106)) (-1632 (($ $ $) 64)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 68) (($ $ (-379 (-519))) 95)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 67) (($ (-379 (-519)) $) 66))) +(((-376) (-1194)) (T -376)) +((-3123 (*1 *1 *2 *2) (-12 (-5 *2 (-519)) (-4 *1 (-376)))) (-3123 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-848)) (-4 *1 (-376)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-519)))) (-3414 (*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-848)))) (-1690 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-519)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-519)))) (-1858 (*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-848)))) (-3084 (*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-848)))) (-2199 (*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-848)))) (-1858 (*1 *2 *2) (-12 (-5 *2 (-848)) (|has| *1 (-6 -4212)) (-4 *1 (-376)))) (-3084 (*1 *2 *2) (-12 (-5 *2 (-848)) (|has| *1 (-6 -4212)) (-4 *1 (-376)))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-848)) (|has| *1 (-6 -4212)) (-4 *1 (-376)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-519)) (|has| *1 (-6 -4212)) (-4 *1 (-376)) (-5 *2 (-848)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-519)) (|has| *1 (-6 -4212)) (-4 *1 (-376)) (-5 *2 (-848)))) (-2864 (*1 *1) (-12 (-4 *1 (-376)) (-2445 (|has| *1 (-6 -4212))) (-2445 (|has| *1 (-6 -4204))))) (-2489 (*1 *1) (-12 (-4 *1 (-376)) (-2445 (|has| *1 (-6 -4212))) (-2445 (|has| *1 (-6 -4204)))))) +(-13 (-977) (-10 -8 (-6 -3905) (-15 -3123 ($ (-519) (-519))) (-15 -3123 ($ (-519) (-519) (-848))) (-15 -3709 ((-519) $)) (-15 -3414 ((-848))) (-15 -1690 ((-519) $)) (-15 -3417 ((-519) $)) (-15 -1858 ((-848))) (-15 -3084 ((-848))) (-15 -2199 ((-848))) (IF (|has| $ (-6 -4212)) (PROGN (-15 -1858 ((-848) (-848))) (-15 -3084 ((-848) (-848))) (-15 -2199 ((-848) (-848))) (-15 -3747 ((-848) (-519))) (-15 -4037 ((-848) (-519)))) |%noBranch|) (IF (|has| $ (-6 -4204)) |%noBranch| (IF (|has| $ (-6 -4212)) |%noBranch| (PROGN (-15 -2864 ($)) (-15 -2489 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-559 (-790)) . T) ((-157) . T) ((-560 (-201)) . T) ((-560 (-351)) . T) ((-560 (-819 (-351))) . T) ((-219) . T) ((-264) . T) ((-280) . T) ((-335) . T) ((-423) . T) ((-511) . T) ((-587 #0#) . T) ((-587 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-661) . T) ((-725) . T) ((-726) . T) ((-728) . T) ((-730) . T) ((-780) . T) ((-782) . T) ((-813 (-351)) . T) ((-847) . T) ((-925) . T) ((-944) . T) ((-977) . T) ((-959 (-379 (-519))) . T) ((-959 (-519)) . T) ((-974 #0#) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1121) . T)) +((-1405 (((-390 |#2|) (-1 |#2| |#1|) (-390 |#1|)) 20))) +(((-377 |#1| |#2|) (-10 -7 (-15 -1405 ((-390 |#2|) (-1 |#2| |#1|) (-390 |#1|)))) (-511) (-511)) (T -377)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-390 *5)) (-4 *5 (-511)) (-4 *6 (-511)) (-5 *2 (-390 *6)) (-5 *1 (-377 *5 *6))))) +(-10 -7 (-15 -1405 ((-390 |#2|) (-1 |#2| |#1|) (-390 |#1|)))) +((-1405 (((-379 |#2|) (-1 |#2| |#1|) (-379 |#1|)) 13))) +(((-378 |#1| |#2|) (-10 -7 (-15 -1405 ((-379 |#2|) (-1 |#2| |#1|) (-379 |#1|)))) (-511) (-511)) (T -378)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-379 *5)) (-4 *5 (-511)) (-4 *6 (-511)) (-5 *2 (-379 *6)) (-5 *1 (-378 *5 *6))))) +(-10 -7 (-15 -1405 ((-379 |#2|) (-1 |#2| |#1|) (-379 |#1|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 13)) (-2157 ((|#1| $) 21 (|has| |#1| (-280)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL (|has| |#1| (-755)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) 17) (((-3 (-1082) "failed") $) NIL (|has| |#1| (-959 (-1082)))) (((-3 (-379 (-519)) "failed") $) 70 (|has| |#1| (-959 (-519)))) (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519))))) (-1499 ((|#1| $) 15) (((-1082) $) NIL (|has| |#1| (-959 (-1082)))) (((-379 (-519)) $) 67 (|has| |#1| (-959 (-519)))) (((-519) $) NIL (|has| |#1| (-959 (-519))))) (-2311 (($ $ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) 50)) (-3314 (($) NIL (|has| |#1| (-504)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3419 (((-108) $) NIL (|has| |#1| (-755)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (|has| |#1| (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (|has| |#1| (-813 (-351))))) (-1568 (((-108) $) 64)) (-1534 (($ $) NIL)) (-2855 ((|#1| $) 71)) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-1058)))) (-2143 (((-108) $) NIL (|has| |#1| (-755)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| |#1| (-1058)) CONST)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 97)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) NIL (|has| |#1| (-280)))) (-1525 ((|#1| $) 28 (|has| |#1| (-504)))) (-1863 (((-390 (-1078 $)) (-1078 $)) 133 (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) 129 (|has| |#1| (-836)))) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2324 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-282 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-282 |#1|))) (($ $ (-267 |#1|)) NIL (|has| |#1| (-282 |#1|))) (($ $ (-585 (-267 |#1|))) NIL (|has| |#1| (-282 |#1|))) (($ $ (-585 (-1082)) (-585 |#1|)) NIL (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-1082) |#1|) NIL (|has| |#1| (-480 (-1082) |#1|)))) (-3129 (((-705) $) NIL)) (-2598 (($ $ |#1|) NIL (|has| |#1| (-260 |#1| |#1|)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2181 (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2724 (($ $) NIL)) (-2866 ((|#1| $) 73)) (-1446 (((-819 (-519)) $) NIL (|has| |#1| (-560 (-819 (-519))))) (((-819 (-351)) $) NIL (|has| |#1| (-560 (-819 (-351))))) (((-495) $) NIL (|has| |#1| (-560 (-495)))) (((-351) $) NIL (|has| |#1| (-944))) (((-201) $) NIL (|has| |#1| (-944)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 113 (-12 (|has| $ (-133)) (|has| |#1| (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ |#1|) 10) (($ (-1082)) NIL (|has| |#1| (-959 (-1082))))) (-3773 (((-3 $ "failed") $) 99 (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) 100)) (-3617 ((|#1| $) 26 (|has| |#1| (-504)))) (-1617 (((-108) $ $) NIL)) (-1478 (($ $) NIL (|has| |#1| (-755)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 22 T CONST)) (-3611 (($) 8 T CONST)) (-2761 (((-1065) $) 43 (-12 (|has| |#1| (-504)) (|has| |#1| (-763)))) (((-1065) $ (-108)) 44 (-12 (|has| |#1| (-504)) (|has| |#1| (-763)))) (((-1168) (-757) $) 45 (-12 (|has| |#1| (-504)) (|has| |#1| (-763)))) (((-1168) (-757) $ (-108)) 46 (-12 (|has| |#1| (-504)) (|has| |#1| (-763))))) (-2242 (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) 56)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) 24 (|has| |#1| (-782)))) (-1632 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1623 (($ $) 25) (($ $ $) 55)) (-1614 (($ $ $) 53)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) 123)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 60) (($ $ $) 57) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-379 |#1|) (-13 (-916 |#1|) (-10 -7 (IF (|has| |#1| (-504)) (IF (|has| |#1| (-763)) (-6 (-763)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4208)) (IF (|has| |#1| (-423)) (IF (|has| |#1| (-6 -4219)) (-6 -4208) |%noBranch|) |%noBranch|) |%noBranch|))) (-511)) (T -379)) +NIL +(-13 (-916 |#1|) (-10 -7 (IF (|has| |#1| (-504)) (IF (|has| |#1| (-763)) (-6 (-763)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4208)) (IF (|has| |#1| (-423)) (IF (|has| |#1| (-6 -4219)) (-6 -4208) |%noBranch|) |%noBranch|) |%noBranch|))) +((-2935 (((-625 |#2|) (-1163 $)) NIL) (((-625 |#2|)) 18)) (-2528 (($ (-1163 |#2|) (-1163 $)) NIL) (($ (-1163 |#2|)) 26)) (-3771 (((-625 |#2|) $ (-1163 $)) NIL) (((-625 |#2|) $) 22)) (-3437 ((|#3| $) 59)) (-3677 ((|#2| (-1163 $)) NIL) ((|#2|) 20)) (-3399 (((-1163 |#2|) $ (-1163 $)) NIL) (((-625 |#2|) (-1163 $) (-1163 $)) NIL) (((-1163 |#2|) $) NIL) (((-625 |#2|) (-1163 $)) 24)) (-1446 (((-1163 |#2|) $) 11) (($ (-1163 |#2|)) 13)) (-2165 ((|#3| $) 51))) +(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -3771 ((-625 |#2|) |#1|)) (-15 -3677 (|#2|)) (-15 -2935 ((-625 |#2|))) (-15 -1446 (|#1| (-1163 |#2|))) (-15 -1446 ((-1163 |#2|) |#1|)) (-15 -2528 (|#1| (-1163 |#2|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1|)) (-15 -3437 (|#3| |#1|)) (-15 -2165 (|#3| |#1|)) (-15 -2935 ((-625 |#2|) (-1163 |#1|))) (-15 -3677 (|#2| (-1163 |#1|))) (-15 -2528 (|#1| (-1163 |#2|) (-1163 |#1|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1| (-1163 |#1|))) (-15 -3771 ((-625 |#2|) |#1| (-1163 |#1|)))) (-381 |#2| |#3|) (-157) (-1139 |#2|)) (T -380)) +((-2935 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1139 *4)) (-5 *2 (-625 *4)) (-5 *1 (-380 *3 *4 *5)) (-4 *3 (-381 *4 *5)))) (-3677 (*1 *2) (-12 (-4 *4 (-1139 *2)) (-4 *2 (-157)) (-5 *1 (-380 *3 *2 *4)) (-4 *3 (-381 *2 *4))))) +(-10 -8 (-15 -3771 ((-625 |#2|) |#1|)) (-15 -3677 (|#2|)) (-15 -2935 ((-625 |#2|))) (-15 -1446 (|#1| (-1163 |#2|))) (-15 -1446 ((-1163 |#2|) |#1|)) (-15 -2528 (|#1| (-1163 |#2|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1|)) (-15 -3437 (|#3| |#1|)) (-15 -2165 (|#3| |#1|)) (-15 -2935 ((-625 |#2|) (-1163 |#1|))) (-15 -3677 (|#2| (-1163 |#1|))) (-15 -2528 (|#1| (-1163 |#2|) (-1163 |#1|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1| (-1163 |#1|))) (-15 -3771 ((-625 |#2|) |#1| (-1163 |#1|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-2935 (((-625 |#1|) (-1163 $)) 46) (((-625 |#1|)) 61)) (-1871 ((|#1| $) 52)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-2528 (($ (-1163 |#1|) (-1163 $)) 48) (($ (-1163 |#1|)) 64)) (-3771 (((-625 |#1|) $ (-1163 $)) 53) (((-625 |#1|) $) 59)) (-4193 (((-3 $ "failed") $) 34)) (-3229 (((-848)) 54)) (-1568 (((-108) $) 31)) (-3681 ((|#1| $) 51)) (-3437 ((|#2| $) 44 (|has| |#1| (-335)))) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-3677 ((|#1| (-1163 $)) 47) ((|#1|) 60)) (-3399 (((-1163 |#1|) $ (-1163 $)) 50) (((-625 |#1|) (-1163 $) (-1163 $)) 49) (((-1163 |#1|) $) 66) (((-625 |#1|) (-1163 $)) 65)) (-1446 (((-1163 |#1|) $) 63) (($ (-1163 |#1|)) 62)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 37)) (-3773 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2165 ((|#2| $) 45)) (-3594 (((-705)) 29)) (-2070 (((-1163 $)) 67)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-381 |#1| |#2|) (-1194) (-157) (-1139 |t#1|)) (T -381)) +((-2070 (*1 *2) (-12 (-4 *3 (-157)) (-4 *4 (-1139 *3)) (-5 *2 (-1163 *1)) (-4 *1 (-381 *3 *4)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1139 *3)) (-5 *2 (-1163 *3)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1139 *4)) (-5 *2 (-625 *4)))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-157)) (-4 *1 (-381 *3 *4)) (-4 *4 (-1139 *3)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1139 *3)) (-5 *2 (-1163 *3)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-157)) (-4 *1 (-381 *3 *4)) (-4 *4 (-1139 *3)))) (-2935 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1139 *3)) (-5 *2 (-625 *3)))) (-3677 (*1 *2) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1139 *2)) (-4 *2 (-157)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1139 *3)) (-5 *2 (-625 *3))))) +(-13 (-342 |t#1| |t#2|) (-10 -8 (-15 -2070 ((-1163 $))) (-15 -3399 ((-1163 |t#1|) $)) (-15 -3399 ((-625 |t#1|) (-1163 $))) (-15 -2528 ($ (-1163 |t#1|))) (-15 -1446 ((-1163 |t#1|) $)) (-15 -1446 ($ (-1163 |t#1|))) (-15 -2935 ((-625 |t#1|))) (-15 -3677 (|t#1|)) (-15 -3771 ((-625 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-342 |#1| |#2|) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-652 |#1|) . T) ((-661) . T) ((-974 |#1|) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1301 (((-3 |#2| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) 27) (((-3 (-519) "failed") $) 19)) (-1499 ((|#2| $) NIL) (((-379 (-519)) $) 24) (((-519) $) 14)) (-2217 (($ |#2|) NIL) (($ (-379 (-519))) 22) (($ (-519)) 11))) +(((-382 |#1| |#2|) (-10 -8 (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -2217 (|#1| (-519))) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| |#2|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1499 (|#2| |#1|))) (-383 |#2|) (-1117)) (T -382)) +NIL +(-10 -8 (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -2217 (|#1| (-519))) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| |#2|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1499 (|#2| |#1|))) +((-1301 (((-3 |#1| "failed") $) 7) (((-3 (-379 (-519)) "failed") $) 16 (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) 13 (|has| |#1| (-959 (-519))))) (-1499 ((|#1| $) 8) (((-379 (-519)) $) 15 (|has| |#1| (-959 (-379 (-519))))) (((-519) $) 12 (|has| |#1| (-959 (-519))))) (-2217 (($ |#1|) 6) (($ (-379 (-519))) 17 (|has| |#1| (-959 (-379 (-519))))) (($ (-519)) 14 (|has| |#1| (-959 (-519)))))) +(((-383 |#1|) (-1194) (-1117)) (T -383)) +NIL +(-13 (-959 |t#1|) (-10 -7 (IF (|has| |t#1| (-959 (-519))) (-6 (-959 (-519))) |%noBranch|) (IF (|has| |t#1| (-959 (-379 (-519)))) (-6 (-959 (-379 (-519)))) |%noBranch|))) +(((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 |#1|) . T)) +((-1405 (((-385 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-385 |#1| |#2| |#3| |#4|)) 33))) +(((-384 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1405 ((-385 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-385 |#1| |#2| |#3| |#4|)))) (-280) (-916 |#1|) (-1139 |#2|) (-13 (-381 |#2| |#3|) (-959 |#2|)) (-280) (-916 |#5|) (-1139 |#6|) (-13 (-381 |#6| |#7|) (-959 |#6|))) (T -384)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-385 *5 *6 *7 *8)) (-4 *5 (-280)) (-4 *6 (-916 *5)) (-4 *7 (-1139 *6)) (-4 *8 (-13 (-381 *6 *7) (-959 *6))) (-4 *9 (-280)) (-4 *10 (-916 *9)) (-4 *11 (-1139 *10)) (-5 *2 (-385 *9 *10 *11 *12)) (-5 *1 (-384 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-381 *10 *11) (-959 *10)))))) +(-10 -7 (-15 -1405 ((-385 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-385 |#1| |#2| |#3| |#4|)))) +((-1430 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) NIL)) (-2306 ((|#4| (-705) (-1163 |#4|)) 55)) (-1568 (((-108) $) NIL)) (-2855 (((-1163 |#4|) $) 17)) (-3681 ((|#2| $) 53)) (-2616 (($ $) 136)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 98)) (-2903 (($ (-1163 |#4|)) 97)) (-4139 (((-1029) $) NIL)) (-2866 ((|#1| $) 18)) (-3333 (($ $ $) NIL)) (-3190 (($ $ $) NIL)) (-2217 (((-790) $) 131)) (-2070 (((-1163 |#4|) $) 126)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3611 (($) 11 T CONST)) (-1543 (((-108) $ $) 39)) (-1632 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) 119)) (* (($ $ $) 118))) +(((-385 |#1| |#2| |#3| |#4|) (-13 (-444) (-10 -8 (-15 -2903 ($ (-1163 |#4|))) (-15 -2070 ((-1163 |#4|) $)) (-15 -3681 (|#2| $)) (-15 -2855 ((-1163 |#4|) $)) (-15 -2866 (|#1| $)) (-15 -2616 ($ $)) (-15 -2306 (|#4| (-705) (-1163 |#4|))))) (-280) (-916 |#1|) (-1139 |#2|) (-13 (-381 |#2| |#3|) (-959 |#2|))) (T -385)) +((-2903 (*1 *1 *2) (-12 (-5 *2 (-1163 *6)) (-4 *6 (-13 (-381 *4 *5) (-959 *4))) (-4 *4 (-916 *3)) (-4 *5 (-1139 *4)) (-4 *3 (-280)) (-5 *1 (-385 *3 *4 *5 *6)))) (-2070 (*1 *2 *1) (-12 (-4 *3 (-280)) (-4 *4 (-916 *3)) (-4 *5 (-1139 *4)) (-5 *2 (-1163 *6)) (-5 *1 (-385 *3 *4 *5 *6)) (-4 *6 (-13 (-381 *4 *5) (-959 *4))))) (-3681 (*1 *2 *1) (-12 (-4 *4 (-1139 *2)) (-4 *2 (-916 *3)) (-5 *1 (-385 *3 *2 *4 *5)) (-4 *3 (-280)) (-4 *5 (-13 (-381 *2 *4) (-959 *2))))) (-2855 (*1 *2 *1) (-12 (-4 *3 (-280)) (-4 *4 (-916 *3)) (-4 *5 (-1139 *4)) (-5 *2 (-1163 *6)) (-5 *1 (-385 *3 *4 *5 *6)) (-4 *6 (-13 (-381 *4 *5) (-959 *4))))) (-2866 (*1 *2 *1) (-12 (-4 *3 (-916 *2)) (-4 *4 (-1139 *3)) (-4 *2 (-280)) (-5 *1 (-385 *2 *3 *4 *5)) (-4 *5 (-13 (-381 *3 *4) (-959 *3))))) (-2616 (*1 *1 *1) (-12 (-4 *2 (-280)) (-4 *3 (-916 *2)) (-4 *4 (-1139 *3)) (-5 *1 (-385 *2 *3 *4 *5)) (-4 *5 (-13 (-381 *3 *4) (-959 *3))))) (-2306 (*1 *2 *3 *4) (-12 (-5 *3 (-705)) (-5 *4 (-1163 *2)) (-4 *5 (-280)) (-4 *6 (-916 *5)) (-4 *2 (-13 (-381 *6 *7) (-959 *6))) (-5 *1 (-385 *5 *6 *7 *2)) (-4 *7 (-1139 *6))))) +(-13 (-444) (-10 -8 (-15 -2903 ($ (-1163 |#4|))) (-15 -2070 ((-1163 |#4|) $)) (-15 -3681 (|#2| $)) (-15 -2855 ((-1163 |#4|) $)) (-15 -2866 (|#1| $)) (-15 -2616 ($ $)) (-15 -2306 (|#4| (-705) (-1163 |#4|))))) +((-1430 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) NIL)) (-3681 ((|#2| $) 60)) (-2564 (($ (-1163 |#4|)) 25) (($ (-385 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-959 |#2|)))) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 34)) (-2070 (((-1163 |#4|) $) 26)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3611 (($) 23 T CONST)) (-1543 (((-108) $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ $ $) 72))) +(((-386 |#1| |#2| |#3| |#4| |#5|) (-13 (-661) (-10 -8 (-15 -2070 ((-1163 |#4|) $)) (-15 -3681 (|#2| $)) (-15 -2564 ($ (-1163 |#4|))) (IF (|has| |#4| (-959 |#2|)) (-15 -2564 ($ (-385 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-280) (-916 |#1|) (-1139 |#2|) (-381 |#2| |#3|) (-1163 |#4|)) (T -386)) +((-2070 (*1 *2 *1) (-12 (-4 *3 (-280)) (-4 *4 (-916 *3)) (-4 *5 (-1139 *4)) (-5 *2 (-1163 *6)) (-5 *1 (-386 *3 *4 *5 *6 *7)) (-4 *6 (-381 *4 *5)) (-14 *7 *2))) (-3681 (*1 *2 *1) (-12 (-4 *4 (-1139 *2)) (-4 *2 (-916 *3)) (-5 *1 (-386 *3 *2 *4 *5 *6)) (-4 *3 (-280)) (-4 *5 (-381 *2 *4)) (-14 *6 (-1163 *5)))) (-2564 (*1 *1 *2) (-12 (-5 *2 (-1163 *6)) (-4 *6 (-381 *4 *5)) (-4 *4 (-916 *3)) (-4 *5 (-1139 *4)) (-4 *3 (-280)) (-5 *1 (-386 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2564 (*1 *1 *2) (-12 (-5 *2 (-385 *3 *4 *5 *6)) (-4 *6 (-959 *4)) (-4 *3 (-280)) (-4 *4 (-916 *3)) (-4 *5 (-1139 *4)) (-4 *6 (-381 *4 *5)) (-14 *7 (-1163 *6)) (-5 *1 (-386 *3 *4 *5 *6 *7))))) +(-13 (-661) (-10 -8 (-15 -2070 ((-1163 |#4|) $)) (-15 -3681 (|#2| $)) (-15 -2564 ($ (-1163 |#4|))) (IF (|has| |#4| (-959 |#2|)) (-15 -2564 ($ (-385 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-1405 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 (|#3| (-1 |#4| |#2|) |#1|))) (-389 |#2|) (-157) (-389 |#4|) (-157)) (T -387)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-389 *6)) (-5 *1 (-387 *4 *5 *2 *6)) (-4 *4 (-389 *5))))) +(-10 -7 (-15 -1405 (|#3| (-1 |#4| |#2|) |#1|))) +((-3307 (((-3 $ "failed")) 85)) (-2329 (((-1163 (-625 |#2|)) (-1163 $)) NIL) (((-1163 (-625 |#2|))) 90)) (-3689 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) 84)) (-1483 (((-3 $ "failed")) 83)) (-3999 (((-625 |#2|) (-1163 $)) NIL) (((-625 |#2|)) 101)) (-3447 (((-625 |#2|) $ (-1163 $)) NIL) (((-625 |#2|) $) 109)) (-4087 (((-1078 (-879 |#2|))) 54)) (-2048 ((|#2| (-1163 $)) NIL) ((|#2|) 105)) (-2528 (($ (-1163 |#2|) (-1163 $)) NIL) (($ (-1163 |#2|)) 112)) (-3780 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) 82)) (-2253 (((-3 $ "failed")) 74)) (-1684 (((-625 |#2|) (-1163 $)) NIL) (((-625 |#2|)) 99)) (-3130 (((-625 |#2|) $ (-1163 $)) NIL) (((-625 |#2|) $) 107)) (-3540 (((-1078 (-879 |#2|))) 53)) (-3069 ((|#2| (-1163 $)) NIL) ((|#2|) 103)) (-3399 (((-1163 |#2|) $ (-1163 $)) NIL) (((-625 |#2|) (-1163 $) (-1163 $)) NIL) (((-1163 |#2|) $) NIL) (((-625 |#2|) (-1163 $)) 111)) (-1446 (((-1163 |#2|) $) 95) (($ (-1163 |#2|)) 97)) (-3842 (((-585 (-879 |#2|)) (-1163 $)) NIL) (((-585 (-879 |#2|))) 93)) (-1627 (($ (-625 |#2|) $) 89))) +(((-388 |#1| |#2|) (-10 -8 (-15 -1627 (|#1| (-625 |#2|) |#1|)) (-15 -4087 ((-1078 (-879 |#2|)))) (-15 -3540 ((-1078 (-879 |#2|)))) (-15 -3447 ((-625 |#2|) |#1|)) (-15 -3130 ((-625 |#2|) |#1|)) (-15 -3999 ((-625 |#2|))) (-15 -1684 ((-625 |#2|))) (-15 -2048 (|#2|)) (-15 -3069 (|#2|)) (-15 -1446 (|#1| (-1163 |#2|))) (-15 -1446 ((-1163 |#2|) |#1|)) (-15 -2528 (|#1| (-1163 |#2|))) (-15 -3842 ((-585 (-879 |#2|)))) (-15 -2329 ((-1163 (-625 |#2|)))) (-15 -3399 ((-625 |#2|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1|)) (-15 -3307 ((-3 |#1| "failed"))) (-15 -1483 ((-3 |#1| "failed"))) (-15 -2253 ((-3 |#1| "failed"))) (-15 -3689 ((-3 (-2 (|:| |particular| |#1|) (|:| -2070 (-585 |#1|))) "failed"))) (-15 -3780 ((-3 (-2 (|:| |particular| |#1|) (|:| -2070 (-585 |#1|))) "failed"))) (-15 -3999 ((-625 |#2|) (-1163 |#1|))) (-15 -1684 ((-625 |#2|) (-1163 |#1|))) (-15 -2048 (|#2| (-1163 |#1|))) (-15 -3069 (|#2| (-1163 |#1|))) (-15 -2528 (|#1| (-1163 |#2|) (-1163 |#1|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1| (-1163 |#1|))) (-15 -3447 ((-625 |#2|) |#1| (-1163 |#1|))) (-15 -3130 ((-625 |#2|) |#1| (-1163 |#1|))) (-15 -2329 ((-1163 (-625 |#2|)) (-1163 |#1|))) (-15 -3842 ((-585 (-879 |#2|)) (-1163 |#1|)))) (-389 |#2|) (-157)) (T -388)) +((-2329 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1163 (-625 *4))) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))) (-3842 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-585 (-879 *4))) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))) (-3069 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-388 *3 *2)) (-4 *3 (-389 *2)))) (-2048 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-388 *3 *2)) (-4 *3 (-389 *2)))) (-1684 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-625 *4)) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))) (-3999 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-625 *4)) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))) (-3540 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1078 (-879 *4))) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))) (-4087 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1078 (-879 *4))) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4))))) +(-10 -8 (-15 -1627 (|#1| (-625 |#2|) |#1|)) (-15 -4087 ((-1078 (-879 |#2|)))) (-15 -3540 ((-1078 (-879 |#2|)))) (-15 -3447 ((-625 |#2|) |#1|)) (-15 -3130 ((-625 |#2|) |#1|)) (-15 -3999 ((-625 |#2|))) (-15 -1684 ((-625 |#2|))) (-15 -2048 (|#2|)) (-15 -3069 (|#2|)) (-15 -1446 (|#1| (-1163 |#2|))) (-15 -1446 ((-1163 |#2|) |#1|)) (-15 -2528 (|#1| (-1163 |#2|))) (-15 -3842 ((-585 (-879 |#2|)))) (-15 -2329 ((-1163 (-625 |#2|)))) (-15 -3399 ((-625 |#2|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1|)) (-15 -3307 ((-3 |#1| "failed"))) (-15 -1483 ((-3 |#1| "failed"))) (-15 -2253 ((-3 |#1| "failed"))) (-15 -3689 ((-3 (-2 (|:| |particular| |#1|) (|:| -2070 (-585 |#1|))) "failed"))) (-15 -3780 ((-3 (-2 (|:| |particular| |#1|) (|:| -2070 (-585 |#1|))) "failed"))) (-15 -3999 ((-625 |#2|) (-1163 |#1|))) (-15 -1684 ((-625 |#2|) (-1163 |#1|))) (-15 -2048 (|#2| (-1163 |#1|))) (-15 -3069 (|#2| (-1163 |#1|))) (-15 -2528 (|#1| (-1163 |#2|) (-1163 |#1|))) (-15 -3399 ((-625 |#2|) (-1163 |#1|) (-1163 |#1|))) (-15 -3399 ((-1163 |#2|) |#1| (-1163 |#1|))) (-15 -3447 ((-625 |#2|) |#1| (-1163 |#1|))) (-15 -3130 ((-625 |#2|) |#1| (-1163 |#1|))) (-15 -2329 ((-1163 (-625 |#2|)) (-1163 |#1|))) (-15 -3842 ((-585 (-879 |#2|)) (-1163 |#1|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3307 (((-3 $ "failed")) 37 (|has| |#1| (-511)))) (-3167 (((-3 $ "failed") $ $) 19)) (-2329 (((-1163 (-625 |#1|)) (-1163 $)) 78) (((-1163 (-625 |#1|))) 100)) (-2729 (((-1163 $)) 81)) (-2249 (($) 17 T CONST)) (-3689 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) 40 (|has| |#1| (-511)))) (-1483 (((-3 $ "failed")) 38 (|has| |#1| (-511)))) (-3999 (((-625 |#1|) (-1163 $)) 65) (((-625 |#1|)) 92)) (-4172 ((|#1| $) 74)) (-3447 (((-625 |#1|) $ (-1163 $)) 76) (((-625 |#1|) $) 90)) (-2682 (((-3 $ "failed") $) 45 (|has| |#1| (-511)))) (-4087 (((-1078 (-879 |#1|))) 88 (|has| |#1| (-335)))) (-1588 (($ $ (-848)) 28)) (-4147 ((|#1| $) 72)) (-1370 (((-1078 |#1|) $) 42 (|has| |#1| (-511)))) (-2048 ((|#1| (-1163 $)) 67) ((|#1|) 94)) (-3055 (((-1078 |#1|) $) 63)) (-2660 (((-108)) 57)) (-2528 (($ (-1163 |#1|) (-1163 $)) 69) (($ (-1163 |#1|)) 98)) (-4193 (((-3 $ "failed") $) 47 (|has| |#1| (-511)))) (-3229 (((-848)) 80)) (-1373 (((-108)) 54)) (-1432 (($ $ (-848)) 33)) (-4029 (((-108)) 50)) (-2061 (((-108)) 48)) (-3288 (((-108)) 52)) (-3780 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) 41 (|has| |#1| (-511)))) (-2253 (((-3 $ "failed")) 39 (|has| |#1| (-511)))) (-1684 (((-625 |#1|) (-1163 $)) 66) (((-625 |#1|)) 93)) (-3241 ((|#1| $) 75)) (-3130 (((-625 |#1|) $ (-1163 $)) 77) (((-625 |#1|) $) 91)) (-2076 (((-3 $ "failed") $) 46 (|has| |#1| (-511)))) (-3540 (((-1078 (-879 |#1|))) 89 (|has| |#1| (-335)))) (-1341 (($ $ (-848)) 29)) (-3339 ((|#1| $) 73)) (-4024 (((-1078 |#1|) $) 43 (|has| |#1| (-511)))) (-3069 ((|#1| (-1163 $)) 68) ((|#1|) 95)) (-3978 (((-1078 |#1|) $) 64)) (-1554 (((-108)) 58)) (-1266 (((-1065) $) 9)) (-2618 (((-108)) 49)) (-3284 (((-108)) 51)) (-3163 (((-108)) 53)) (-4139 (((-1029) $) 10)) (-1885 (((-108)) 56)) (-2598 ((|#1| $ (-519)) 101)) (-3399 (((-1163 |#1|) $ (-1163 $)) 71) (((-625 |#1|) (-1163 $) (-1163 $)) 70) (((-1163 |#1|) $) 103) (((-625 |#1|) (-1163 $)) 102)) (-1446 (((-1163 |#1|) $) 97) (($ (-1163 |#1|)) 96)) (-3842 (((-585 (-879 |#1|)) (-1163 $)) 79) (((-585 (-879 |#1|))) 99)) (-3190 (($ $ $) 25)) (-2553 (((-108)) 62)) (-2217 (((-790) $) 11)) (-2070 (((-1163 $)) 104)) (-2219 (((-585 (-1163 |#1|))) 44 (|has| |#1| (-511)))) (-3645 (($ $ $ $) 26)) (-1801 (((-108)) 60)) (-1627 (($ (-625 |#1|) $) 87)) (-2025 (($ $ $) 24)) (-3547 (((-108)) 61)) (-1345 (((-108)) 59)) (-3328 (((-108)) 55)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 30)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-389 |#1|) (-1194) (-157)) (T -389)) +((-2070 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1163 *1)) (-4 *1 (-389 *3)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-1163 *3)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-389 *4)) (-4 *4 (-157)) (-5 *2 (-625 *4)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *1 (-389 *2)) (-4 *2 (-157)))) (-2329 (*1 *2) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-1163 (-625 *3))))) (-3842 (*1 *2) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-585 (-879 *3))))) (-2528 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-157)) (-4 *1 (-389 *3)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-1163 *3)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-157)) (-4 *1 (-389 *3)))) (-3069 (*1 *2) (-12 (-4 *1 (-389 *2)) (-4 *2 (-157)))) (-2048 (*1 *2) (-12 (-4 *1 (-389 *2)) (-4 *2 (-157)))) (-1684 (*1 *2) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-625 *3)))) (-3999 (*1 *2) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-625 *3)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-625 *3)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-625 *3)))) (-3540 (*1 *2) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-4 *3 (-335)) (-5 *2 (-1078 (-879 *3))))) (-4087 (*1 *2) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-4 *3 (-335)) (-5 *2 (-1078 (-879 *3))))) (-1627 (*1 *1 *2 *1) (-12 (-5 *2 (-625 *3)) (-4 *1 (-389 *3)) (-4 *3 (-157))))) +(-13 (-339 |t#1|) (-10 -8 (-15 -2070 ((-1163 $))) (-15 -3399 ((-1163 |t#1|) $)) (-15 -3399 ((-625 |t#1|) (-1163 $))) (-15 -2598 (|t#1| $ (-519))) (-15 -2329 ((-1163 (-625 |t#1|)))) (-15 -3842 ((-585 (-879 |t#1|)))) (-15 -2528 ($ (-1163 |t#1|))) (-15 -1446 ((-1163 |t#1|) $)) (-15 -1446 ($ (-1163 |t#1|))) (-15 -3069 (|t#1|)) (-15 -2048 (|t#1|)) (-15 -1684 ((-625 |t#1|))) (-15 -3999 ((-625 |t#1|))) (-15 -3130 ((-625 |t#1|) $)) (-15 -3447 ((-625 |t#1|) $)) (IF (|has| |t#1| (-335)) (PROGN (-15 -3540 ((-1078 (-879 |t#1|)))) (-15 -4087 ((-1078 (-879 |t#1|))))) |%noBranch|) (-15 -1627 ($ (-625 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-339 |#1|) . T) ((-587 |#1|) . T) ((-652 |#1|) . T) ((-655) . T) ((-679 |#1|) . T) ((-696) . T) ((-974 |#1|) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 41)) (-2332 (($ $) 56)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 143)) (-1410 (($ $) NIL)) (-3060 (((-108) $) 35)) (-3307 ((|#1| $) 12)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL (|has| |#1| (-1121)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-1121)))) (-3001 (($ |#1| (-519)) 30)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 113)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) 54)) (-4193 (((-3 $ "failed") $) 128)) (-1631 (((-3 (-379 (-519)) "failed") $) 62 (|has| |#1| (-504)))) (-2102 (((-108) $) 58 (|has| |#1| (-504)))) (-2506 (((-379 (-519)) $) 60 (|has| |#1| (-504)))) (-3264 (($ |#1| (-519)) 32)) (-1320 (((-108) $) 149 (|has| |#1| (-1121)))) (-1568 (((-108) $) 42)) (-3183 (((-705) $) 37)) (-1368 (((-3 "nil" "sqfr" "irred" "prime") $ (-519)) 134)) (-4059 ((|#1| $ (-519)) 133)) (-3355 (((-519) $ (-519)) 132)) (-3243 (($ |#1| (-519)) 29)) (-1405 (($ (-1 |#1| |#1|) $) 140)) (-4073 (($ |#1| (-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-519))))) 57)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1266 (((-1065) $) NIL)) (-2399 (($ |#1| (-519)) 31)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) 144 (|has| |#1| (-423)))) (-1504 (($ |#1| (-519) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-3433 (((-585 (-2 (|:| -1921 |#1|) (|:| -1690 (-519)))) $) 53)) (-3426 (((-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-519)))) $) 11)) (-1921 (((-390 $) $) NIL (|has| |#1| (-1121)))) (-2261 (((-3 $ "failed") $ $) 135)) (-1690 (((-519) $) 129)) (-1616 ((|#1| $) 55)) (-2324 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-282 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-282 |#1|))) (($ $ (-267 |#1|)) NIL (|has| |#1| (-282 |#1|))) (($ $ (-585 (-267 |#1|))) 77 (|has| |#1| (-282 |#1|))) (($ $ (-585 (-1082)) (-585 |#1|)) 82 (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-1082) |#1|) NIL (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-1082) $) NIL (|has| |#1| (-480 (-1082) $))) (($ $ (-585 (-1082)) (-585 $)) 83 (|has| |#1| (-480 (-1082) $))) (($ $ (-585 (-267 $))) 79 (|has| |#1| (-282 $))) (($ $ (-267 $)) NIL (|has| |#1| (-282 $))) (($ $ $ $) NIL (|has| |#1| (-282 $))) (($ $ (-585 $) (-585 $)) NIL (|has| |#1| (-282 $)))) (-2598 (($ $ |#1|) 69 (|has| |#1| (-260 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-260 $ $)))) (-2181 (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-1446 (((-495) $) 26 (|has| |#1| (-560 (-495)))) (((-351) $) 89 (|has| |#1| (-944))) (((-201) $) 92 (|has| |#1| (-944)))) (-2217 (((-790) $) 111) (($ (-519)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-379 (-519))) NIL (|has| |#1| (-959 (-379 (-519)))))) (-3594 (((-705)) 47)) (-1617 (((-108) $ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 39 T CONST)) (-3611 (($) 38 T CONST)) (-2242 (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1543 (((-108) $ $) 93)) (-1623 (($ $) 125) (($ $ $) NIL)) (-1614 (($ $ $) 137)) (** (($ $ (-848)) NIL) (($ $ (-705)) 99)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL))) +(((-390 |#1|) (-13 (-511) (-207 |#1|) (-37 |#1|) (-310 |#1|) (-383 |#1|) (-10 -8 (-15 -1616 (|#1| $)) (-15 -1690 ((-519) $)) (-15 -4073 ($ |#1| (-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-519)))))) (-15 -3426 ((-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-519)))) $)) (-15 -3243 ($ |#1| (-519))) (-15 -3433 ((-585 (-2 (|:| -1921 |#1|) (|:| -1690 (-519)))) $)) (-15 -2399 ($ |#1| (-519))) (-15 -3355 ((-519) $ (-519))) (-15 -4059 (|#1| $ (-519))) (-15 -1368 ((-3 "nil" "sqfr" "irred" "prime") $ (-519))) (-15 -3183 ((-705) $)) (-15 -3264 ($ |#1| (-519))) (-15 -3001 ($ |#1| (-519))) (-15 -1504 ($ |#1| (-519) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3307 (|#1| $)) (-15 -2332 ($ $)) (-15 -1405 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-423)) (-6 (-423)) |%noBranch|) (IF (|has| |#1| (-944)) (-6 (-944)) |%noBranch|) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|) (IF (|has| |#1| (-504)) (PROGN (-15 -2102 ((-108) $)) (-15 -2506 ((-379 (-519)) $)) (-15 -1631 ((-3 (-379 (-519)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-260 $ $)) (-6 (-260 $ $)) |%noBranch|) (IF (|has| |#1| (-282 $)) (-6 (-282 $)) |%noBranch|) (IF (|has| |#1| (-480 (-1082) $)) (-6 (-480 (-1082) $)) |%noBranch|))) (-511)) (T -390)) +((-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-511)) (-5 *1 (-390 *3)))) (-1616 (*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-511)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-390 *3)) (-4 *3 (-511)))) (-4073 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-519))))) (-4 *2 (-511)) (-5 *1 (-390 *2)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-519))))) (-5 *1 (-390 *3)) (-4 *3 (-511)))) (-3243 (*1 *1 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-390 *2)) (-4 *2 (-511)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -1921 *3) (|:| -1690 (-519))))) (-5 *1 (-390 *3)) (-4 *3 (-511)))) (-2399 (*1 *1 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-390 *2)) (-4 *2 (-511)))) (-3355 (*1 *2 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-390 *3)) (-4 *3 (-511)))) (-4059 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *1 (-390 *2)) (-4 *2 (-511)))) (-1368 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-390 *4)) (-4 *4 (-511)))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-390 *3)) (-4 *3 (-511)))) (-3264 (*1 *1 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-390 *2)) (-4 *2 (-511)))) (-3001 (*1 *1 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-390 *2)) (-4 *2 (-511)))) (-1504 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-519)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-390 *2)) (-4 *2 (-511)))) (-3307 (*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-511)))) (-2332 (*1 *1 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-511)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-390 *3)) (-4 *3 (-504)) (-4 *3 (-511)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-390 *3)) (-4 *3 (-504)) (-4 *3 (-511)))) (-1631 (*1 *2 *1) (|partial| -12 (-5 *2 (-379 (-519))) (-5 *1 (-390 *3)) (-4 *3 (-504)) (-4 *3 (-511))))) +(-13 (-511) (-207 |#1|) (-37 |#1|) (-310 |#1|) (-383 |#1|) (-10 -8 (-15 -1616 (|#1| $)) (-15 -1690 ((-519) $)) (-15 -4073 ($ |#1| (-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-519)))))) (-15 -3426 ((-585 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-519)))) $)) (-15 -3243 ($ |#1| (-519))) (-15 -3433 ((-585 (-2 (|:| -1921 |#1|) (|:| -1690 (-519)))) $)) (-15 -2399 ($ |#1| (-519))) (-15 -3355 ((-519) $ (-519))) (-15 -4059 (|#1| $ (-519))) (-15 -1368 ((-3 "nil" "sqfr" "irred" "prime") $ (-519))) (-15 -3183 ((-705) $)) (-15 -3264 ($ |#1| (-519))) (-15 -3001 ($ |#1| (-519))) (-15 -1504 ($ |#1| (-519) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3307 (|#1| $)) (-15 -2332 ($ $)) (-15 -1405 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-423)) (-6 (-423)) |%noBranch|) (IF (|has| |#1| (-944)) (-6 (-944)) |%noBranch|) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|) (IF (|has| |#1| (-504)) (PROGN (-15 -2102 ((-108) $)) (-15 -2506 ((-379 (-519)) $)) (-15 -1631 ((-3 (-379 (-519)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-260 $ $)) (-6 (-260 $ $)) |%noBranch|) (IF (|has| |#1| (-282 $)) (-6 (-282 $)) |%noBranch|) (IF (|has| |#1| (-480 (-1082) $)) (-6 (-480 (-1082) $)) |%noBranch|))) +((-3171 (((-390 |#1|) (-390 |#1|) (-1 (-390 |#1|) |#1|)) 20)) (-2080 (((-390 |#1|) (-390 |#1|) (-390 |#1|)) 15))) +(((-391 |#1|) (-10 -7 (-15 -3171 ((-390 |#1|) (-390 |#1|) (-1 (-390 |#1|) |#1|))) (-15 -2080 ((-390 |#1|) (-390 |#1|) (-390 |#1|)))) (-511)) (T -391)) +((-2080 (*1 *2 *2 *2) (-12 (-5 *2 (-390 *3)) (-4 *3 (-511)) (-5 *1 (-391 *3)))) (-3171 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-390 *4) *4)) (-4 *4 (-511)) (-5 *2 (-390 *4)) (-5 *1 (-391 *4))))) +(-10 -7 (-15 -3171 ((-390 |#1|) (-390 |#1|) (-1 (-390 |#1|) |#1|))) (-15 -2080 ((-390 |#1|) (-390 |#1|) (-390 |#1|)))) +((-2983 ((|#2| |#2|) 161)) (-2662 (((-3 (|:| |%expansion| (-285 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065))))) |#2| (-108)) 55))) +(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2662 ((-3 (|:| |%expansion| (-285 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065))))) |#2| (-108))) (-15 -2983 (|#2| |#2|))) (-13 (-423) (-782) (-959 (-519)) (-581 (-519))) (-13 (-27) (-1103) (-402 |#1|)) (-1082) |#2|) (T -392)) +((-2983 (*1 *2 *2) (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-392 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1103) (-402 *3))) (-14 *4 (-1082)) (-14 *5 *2))) (-2662 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-3 (|:| |%expansion| (-285 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065)))))) (-5 *1 (-392 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1103) (-402 *5))) (-14 *6 (-1082)) (-14 *7 *3)))) +(-10 -7 (-15 -2662 ((-3 (|:| |%expansion| (-285 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065))))) |#2| (-108))) (-15 -2983 (|#2| |#2|))) +((-1405 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-968) (-782)) (-402 |#1|) (-13 (-968) (-782)) (-402 |#3|)) (T -393)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-968) (-782))) (-4 *6 (-13 (-968) (-782))) (-4 *2 (-402 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-402 *5))))) +(-10 -7 (-15 -1405 (|#4| (-1 |#3| |#1|) |#2|))) +((-2983 ((|#2| |#2|) 88)) (-1788 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065))))) |#2| (-108) (-1065)) 46)) (-2326 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065))))) |#2| (-108) (-1065)) 153))) +(((-394 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1788 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065))))) |#2| (-108) (-1065))) (-15 -2326 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065))))) |#2| (-108) (-1065))) (-15 -2983 (|#2| |#2|))) (-13 (-423) (-782) (-959 (-519)) (-581 (-519))) (-13 (-27) (-1103) (-402 |#1|) (-10 -8 (-15 -2217 ($ |#3|)))) (-780) (-13 (-1141 |#2| |#3|) (-335) (-1103) (-10 -8 (-15 -2181 ($ $)) (-15 -4142 ($ $)))) (-907 |#4|) (-1082)) (T -394)) +((-2983 (*1 *2 *2) (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-4 *2 (-13 (-27) (-1103) (-402 *3) (-10 -8 (-15 -2217 ($ *4))))) (-4 *4 (-780)) (-4 *5 (-13 (-1141 *2 *4) (-335) (-1103) (-10 -8 (-15 -2181 ($ $)) (-15 -4142 ($ $))))) (-5 *1 (-394 *3 *2 *4 *5 *6 *7)) (-4 *6 (-907 *5)) (-14 *7 (-1082)))) (-2326 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-4 *3 (-13 (-27) (-1103) (-402 *6) (-10 -8 (-15 -2217 ($ *7))))) (-4 *7 (-780)) (-4 *8 (-13 (-1141 *3 *7) (-335) (-1103) (-10 -8 (-15 -2181 ($ $)) (-15 -4142 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065)))))) (-5 *1 (-394 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1065)) (-4 *9 (-907 *8)) (-14 *10 (-1082)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-4 *3 (-13 (-27) (-1103) (-402 *6) (-10 -8 (-15 -2217 ($ *7))))) (-4 *7 (-780)) (-4 *8 (-13 (-1141 *3 *7) (-335) (-1103) (-10 -8 (-15 -2181 ($ $)) (-15 -4142 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065)))))) (-5 *1 (-394 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1065)) (-4 *9 (-907 *8)) (-14 *10 (-1082))))) +(-10 -7 (-15 -1788 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065))))) |#2| (-108) (-1065))) (-15 -2326 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065))))) |#2| (-108) (-1065))) (-15 -2983 (|#2| |#2|))) +((-1367 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3874 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1405 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3874 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1367 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1011) (-397 |#1|) (-1011) (-397 |#3|)) (T -395)) +((-1367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1011)) (-4 *5 (-1011)) (-4 *2 (-397 *5)) (-5 *1 (-395 *6 *4 *5 *2)) (-4 *4 (-397 *6)))) (-3874 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1011)) (-4 *2 (-1011)) (-5 *1 (-395 *5 *4 *2 *6)) (-4 *4 (-397 *5)) (-4 *6 (-397 *2)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-397 *6)) (-5 *1 (-395 *5 *4 *6 *2)) (-4 *4 (-397 *5))))) +(-10 -7 (-15 -1405 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3874 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1367 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3956 (($) 44)) (-2304 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1415 (($ $ $) 39)) (-3466 (((-108) $ $) 28)) (-1642 (((-705)) 47)) (-1780 (($ (-585 |#2|)) 20) (($) NIL)) (-3314 (($) 53)) (-2864 ((|#2| $) 61)) (-2489 ((|#2| $) 59)) (-3334 (((-848) $) 55)) (-3766 (($ $ $) 35)) (-2770 (($ (-848)) 50)) (-2019 (($ $ |#2|) NIL) (($ $ $) 38)) (-4155 (((-705) (-1 (-108) |#2|) $) NIL) (((-705) |#2| $) 26)) (-2228 (($ (-585 |#2|)) 24)) (-4132 (($ $) 46)) (-2217 (((-790) $) 33)) (-1383 (((-705) $) 21)) (-3451 (($ (-585 |#2|)) 19) (($) NIL)) (-1543 (((-108) $ $) 16)) (-1561 (((-108) $ $) 13))) +(((-396 |#1| |#2|) (-10 -8 (-15 -1642 ((-705))) (-15 -2770 (|#1| (-848))) (-15 -3334 ((-848) |#1|)) (-15 -3314 (|#1|)) (-15 -2864 (|#2| |#1|)) (-15 -2489 (|#2| |#1|)) (-15 -3956 (|#1|)) (-15 -4132 (|#1| |#1|)) (-15 -1383 ((-705) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1561 ((-108) |#1| |#1|)) (-15 -3451 (|#1|)) (-15 -3451 (|#1| (-585 |#2|))) (-15 -1780 (|#1|)) (-15 -1780 (|#1| (-585 |#2|))) (-15 -3766 (|#1| |#1| |#1|)) (-15 -2019 (|#1| |#1| |#1|)) (-15 -2019 (|#1| |#1| |#2|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -3466 ((-108) |#1| |#1|)) (-15 -2304 (|#1| |#1| |#1|)) (-15 -2304 (|#1| |#1| |#2|)) (-15 -2304 (|#1| |#2| |#1|)) (-15 -2228 (|#1| (-585 |#2|))) (-15 -4155 ((-705) |#2| |#1|)) (-15 -4155 ((-705) (-1 (-108) |#2|) |#1|))) (-397 |#2|) (-1011)) (T -396)) +((-1642 (*1 *2) (-12 (-4 *4 (-1011)) (-5 *2 (-705)) (-5 *1 (-396 *3 *4)) (-4 *3 (-397 *4))))) +(-10 -8 (-15 -1642 ((-705))) (-15 -2770 (|#1| (-848))) (-15 -3334 ((-848) |#1|)) (-15 -3314 (|#1|)) (-15 -2864 (|#2| |#1|)) (-15 -2489 (|#2| |#1|)) (-15 -3956 (|#1|)) (-15 -4132 (|#1| |#1|)) (-15 -1383 ((-705) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1561 ((-108) |#1| |#1|)) (-15 -3451 (|#1|)) (-15 -3451 (|#1| (-585 |#2|))) (-15 -1780 (|#1|)) (-15 -1780 (|#1| (-585 |#2|))) (-15 -3766 (|#1| |#1| |#1|)) (-15 -2019 (|#1| |#1| |#1|)) (-15 -2019 (|#1| |#1| |#2|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -3466 ((-108) |#1| |#1|)) (-15 -2304 (|#1| |#1| |#1|)) (-15 -2304 (|#1| |#1| |#2|)) (-15 -2304 (|#1| |#2| |#1|)) (-15 -2228 (|#1| (-585 |#2|))) (-15 -4155 ((-705) |#2| |#1|)) (-15 -4155 ((-705) (-1 (-108) |#2|) |#1|))) +((-1430 (((-108) $ $) 19)) (-3956 (($) 67 (|has| |#1| (-340)))) (-2304 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1415 (($ $ $) 78)) (-3466 (((-108) $ $) 79)) (-1473 (((-108) $ (-705)) 8)) (-1642 (((-705)) 61 (|has| |#1| (-340)))) (-1780 (($ (-585 |#1|)) 74) (($) 73)) (-2846 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-2366 (($ $) 58 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2502 (($ |#1| $) 47 (|has| $ (-6 -4221))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4221)))) (-1438 (($ |#1| $) 57 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4221)))) (-3314 (($) 64 (|has| |#1| (-340)))) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-2864 ((|#1| $) 65 (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2489 ((|#1| $) 66 (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-3334 (((-848) $) 63 (|has| |#1| (-340)))) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22)) (-3766 (($ $ $) 75)) (-4152 ((|#1| $) 39)) (-1846 (($ |#1| $) 40)) (-2770 (($ (-848)) 62 (|has| |#1| (-340)))) (-4139 (((-1029) $) 21)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3212 ((|#1| $) 41)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2019 (($ $ |#1|) 77) (($ $ $) 76)) (-2436 (($) 49) (($ (-585 |#1|)) 48)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 59 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 50)) (-4132 (($ $) 68 (|has| |#1| (-340)))) (-2217 (((-790) $) 18)) (-1383 (((-705) $) 69)) (-3451 (($ (-585 |#1|)) 72) (($) 71)) (-3879 (($ (-585 |#1|)) 42)) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20)) (-1561 (((-108) $ $) 70)) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-397 |#1|) (-1194) (-1011)) (T -397)) +((-1383 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1011)) (-5 *2 (-705)))) (-4132 (*1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1011)) (-4 *2 (-340)))) (-3956 (*1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-340)) (-4 *2 (-1011)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1011)) (-4 *2 (-782)))) (-2864 (*1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1011)) (-4 *2 (-782))))) +(-13 (-205 |t#1|) (-1009 |t#1|) (-10 -8 (-6 -4221) (-15 -1383 ((-705) $)) (IF (|has| |t#1| (-340)) (PROGN (-6 (-340)) (-15 -4132 ($ $)) (-15 -3956 ($))) |%noBranch|) (IF (|has| |t#1| (-782)) (PROGN (-15 -2489 (|t#1| $)) (-15 -2864 (|t#1| $))) |%noBranch|))) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-559 (-790)) . T) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-205 |#1|) . T) ((-211 |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-340) |has| |#1| (-340)) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1009 |#1|) . T) ((-1011) . T) ((-1117) . T)) +((-4146 (((-536 |#2|) |#2| (-1082)) 35)) (-3147 (((-536 |#2|) |#2| (-1082)) 19)) (-2437 ((|#2| |#2| (-1082)) 24))) +(((-398 |#1| |#2|) (-10 -7 (-15 -3147 ((-536 |#2|) |#2| (-1082))) (-15 -4146 ((-536 |#2|) |#2| (-1082))) (-15 -2437 (|#2| |#2| (-1082)))) (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519))) (-13 (-1103) (-29 |#1|))) (T -398)) +((-2437 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *1 (-398 *4 *2)) (-4 *2 (-13 (-1103) (-29 *4))))) (-4146 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-536 *3)) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1103) (-29 *5))))) (-3147 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-536 *3)) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1103) (-29 *5)))))) +(-10 -7 (-15 -3147 ((-536 |#2|) |#2| (-1082))) (-15 -4146 ((-536 |#2|) |#2| (-1082))) (-15 -2437 (|#2| |#2| (-1082)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) NIL)) (-4173 (($ |#2| |#1|) 35)) (-3115 (($ |#2| |#1|) 33)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL) (($ (-303 |#2|)) 25)) (-3594 (((-705)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 10 T CONST)) (-3611 (($) 16 T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 34)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-399 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4208)) (IF (|has| |#1| (-6 -4208)) (-6 -4208) |%noBranch|) |%noBranch|) (-15 -2217 ($ |#1|)) (-15 -2217 ($ (-303 |#2|))) (-15 -4173 ($ |#2| |#1|)) (-15 -3115 ($ |#2| |#1|)))) (-13 (-157) (-37 (-379 (-519)))) (-13 (-782) (-21))) (T -399)) +((-2217 (*1 *1 *2) (-12 (-5 *1 (-399 *2 *3)) (-4 *2 (-13 (-157) (-37 (-379 (-519))))) (-4 *3 (-13 (-782) (-21))))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-303 *4)) (-4 *4 (-13 (-782) (-21))) (-5 *1 (-399 *3 *4)) (-4 *3 (-13 (-157) (-37 (-379 (-519))))))) (-4173 (*1 *1 *2 *3) (-12 (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-157) (-37 (-379 (-519))))) (-4 *2 (-13 (-782) (-21))))) (-3115 (*1 *1 *2 *3) (-12 (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-157) (-37 (-379 (-519))))) (-4 *2 (-13 (-782) (-21)))))) +(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4208)) (IF (|has| |#1| (-6 -4208)) (-6 -4208) |%noBranch|) |%noBranch|) (-15 -2217 ($ |#1|)) (-15 -2217 ($ (-303 |#2|))) (-15 -4173 ($ |#2| |#1|)) (-15 -3115 ($ |#2| |#1|)))) +((-4142 (((-3 |#2| (-585 |#2|)) |#2| (-1082)) 105))) +(((-400 |#1| |#2|) (-10 -7 (-15 -4142 ((-3 |#2| (-585 |#2|)) |#2| (-1082)))) (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519))) (-13 (-1103) (-885) (-29 |#1|))) (T -400)) +((-4142 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-3 *3 (-585 *3))) (-5 *1 (-400 *5 *3)) (-4 *3 (-13 (-1103) (-885) (-29 *5)))))) +(-10 -7 (-15 -4142 ((-3 |#2| (-585 |#2|)) |#2| (-1082)))) +((-4083 (((-585 (-1082)) $) 72)) (-1283 (((-379 (-1078 $)) $ (-558 $)) 269)) (-3364 (($ $ (-267 $)) NIL) (($ $ (-585 (-267 $))) NIL) (($ $ (-585 (-558 $)) (-585 $)) 234)) (-1301 (((-3 (-558 $) "failed") $) NIL) (((-3 (-1082) "failed") $) 75) (((-3 (-519) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-379 (-879 |#2|)) "failed") $) 320) (((-3 (-879 |#2|) "failed") $) 232) (((-3 (-379 (-519)) "failed") $) NIL)) (-1499 (((-558 $) $) NIL) (((-1082) $) 30) (((-519) $) NIL) ((|#2| $) 228) (((-379 (-879 |#2|)) $) 301) (((-879 |#2|) $) 229) (((-379 (-519)) $) NIL)) (-3752 (((-110) (-110)) 47)) (-1534 (($ $) 87)) (-3029 (((-3 (-558 $) "failed") $) 225)) (-1268 (((-585 (-558 $)) $) 226)) (-3499 (((-3 (-585 $) "failed") $) 244)) (-3785 (((-3 (-2 (|:| |val| $) (|:| -1690 (-519))) "failed") $) 251)) (-2100 (((-3 (-585 $) "failed") $) 242)) (-3672 (((-3 (-2 (|:| -3031 (-519)) (|:| |var| (-558 $))) "failed") $) 260)) (-2669 (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $) 248) (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $ (-110)) 215) (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $ (-1082)) 217)) (-3162 (((-108) $) 19)) (-3173 ((|#2| $) 21)) (-2324 (($ $ (-558 $) $) NIL) (($ $ (-585 (-558 $)) (-585 $)) 233) (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-585 (-1082)) (-585 (-1 $ $))) NIL) (($ $ (-585 (-1082)) (-585 (-1 $ (-585 $)))) 96) (($ $ (-1082) (-1 $ (-585 $))) NIL) (($ $ (-1082) (-1 $ $)) NIL) (($ $ (-585 (-110)) (-585 (-1 $ $))) NIL) (($ $ (-585 (-110)) (-585 (-1 $ (-585 $)))) NIL) (($ $ (-110) (-1 $ (-585 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1082)) 57) (($ $ (-585 (-1082))) 237) (($ $) 238) (($ $ (-110) $ (-1082)) 60) (($ $ (-585 (-110)) (-585 $) (-1082)) 67) (($ $ (-585 (-1082)) (-585 (-705)) (-585 (-1 $ $))) 107) (($ $ (-585 (-1082)) (-585 (-705)) (-585 (-1 $ (-585 $)))) 239) (($ $ (-1082) (-705) (-1 $ (-585 $))) 94) (($ $ (-1082) (-705) (-1 $ $)) 93)) (-2598 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-585 $)) 106)) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082)) 235)) (-2724 (($ $) 280)) (-1446 (((-819 (-519)) $) 254) (((-819 (-351)) $) 257) (($ (-390 $)) 316) (((-495) $) NIL)) (-2217 (((-790) $) 236) (($ (-558 $)) 84) (($ (-1082)) 26) (($ |#2|) NIL) (($ (-1034 |#2| (-558 $))) NIL) (($ (-379 |#2|)) 285) (($ (-879 (-379 |#2|))) 325) (($ (-379 (-879 (-379 |#2|)))) 297) (($ (-379 (-879 |#2|))) 291) (($ $) NIL) (($ (-879 |#2|)) 184) (($ (-379 (-519))) 330) (($ (-519)) NIL)) (-3594 (((-705)) 79)) (-2631 (((-108) (-110)) 41)) (-1816 (($ (-1082) $) 33) (($ (-1082) $ $) 34) (($ (-1082) $ $ $) 35) (($ (-1082) $ $ $ $) 36) (($ (-1082) (-585 $)) 39)) (* (($ (-379 (-519)) $) NIL) (($ $ (-379 (-519))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-519) $) NIL) (($ (-705) $) NIL) (($ (-848) $) NIL))) +(((-401 |#1| |#2|) (-10 -8 (-15 * (|#1| (-848) |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3594 ((-705))) (-15 -2217 (|#1| (-519))) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -1446 ((-495) |#1|)) (-15 -1499 ((-879 |#2|) |#1|)) (-15 -1301 ((-3 (-879 |#2|) "failed") |#1|)) (-15 -2217 (|#1| (-879 |#2|))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2217 (|#1| |#1|)) (-15 * (|#1| |#1| (-379 (-519)))) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 -1499 ((-379 (-879 |#2|)) |#1|)) (-15 -1301 ((-3 (-379 (-879 |#2|)) "failed") |#1|)) (-15 -2217 (|#1| (-379 (-879 |#2|)))) (-15 -1283 ((-379 (-1078 |#1|)) |#1| (-558 |#1|))) (-15 -2217 (|#1| (-379 (-879 (-379 |#2|))))) (-15 -2217 (|#1| (-879 (-379 |#2|)))) (-15 -2217 (|#1| (-379 |#2|))) (-15 -2724 (|#1| |#1|)) (-15 -1446 (|#1| (-390 |#1|))) (-15 -2324 (|#1| |#1| (-1082) (-705) (-1 |#1| |#1|))) (-15 -2324 (|#1| |#1| (-1082) (-705) (-1 |#1| (-585 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-705)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-705)) (-585 (-1 |#1| |#1|)))) (-15 -3785 ((-3 (-2 (|:| |val| |#1|) (|:| -1690 (-519))) "failed") |#1|)) (-15 -2669 ((-3 (-2 (|:| |var| (-558 |#1|)) (|:| -1690 (-519))) "failed") |#1| (-1082))) (-15 -2669 ((-3 (-2 (|:| |var| (-558 |#1|)) (|:| -1690 (-519))) "failed") |#1| (-110))) (-15 -1534 (|#1| |#1|)) (-15 -2217 (|#1| (-1034 |#2| (-558 |#1|)))) (-15 -3672 ((-3 (-2 (|:| -3031 (-519)) (|:| |var| (-558 |#1|))) "failed") |#1|)) (-15 -2100 ((-3 (-585 |#1|) "failed") |#1|)) (-15 -2669 ((-3 (-2 (|:| |var| (-558 |#1|)) (|:| -1690 (-519))) "failed") |#1|)) (-15 -3499 ((-3 (-585 |#1|) "failed") |#1|)) (-15 -2324 (|#1| |#1| (-585 (-110)) (-585 |#1|) (-1082))) (-15 -2324 (|#1| |#1| (-110) |#1| (-1082))) (-15 -2324 (|#1| |#1|)) (-15 -2324 (|#1| |#1| (-585 (-1082)))) (-15 -2324 (|#1| |#1| (-1082))) (-15 -1816 (|#1| (-1082) (-585 |#1|))) (-15 -1816 (|#1| (-1082) |#1| |#1| |#1| |#1|)) (-15 -1816 (|#1| (-1082) |#1| |#1| |#1|)) (-15 -1816 (|#1| (-1082) |#1| |#1|)) (-15 -1816 (|#1| (-1082) |#1|)) (-15 -4083 ((-585 (-1082)) |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -3162 ((-108) |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -1499 ((-1082) |#1|)) (-15 -1301 ((-3 (-1082) "failed") |#1|)) (-15 -2217 (|#1| (-1082))) (-15 -2324 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2324 (|#1| |#1| (-110) (-1 |#1| (-585 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-110)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -2324 (|#1| |#1| (-585 (-110)) (-585 (-1 |#1| |#1|)))) (-15 -2324 (|#1| |#1| (-1082) (-1 |#1| |#1|))) (-15 -2324 (|#1| |#1| (-1082) (-1 |#1| (-585 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-1 |#1| |#1|)))) (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 -1268 ((-585 (-558 |#1|)) |#1|)) (-15 -3029 ((-3 (-558 |#1|) "failed") |#1|)) (-15 -3364 (|#1| |#1| (-585 (-558 |#1|)) (-585 |#1|))) (-15 -3364 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -3364 (|#1| |#1| (-267 |#1|))) (-15 -2598 (|#1| (-110) (-585 |#1|))) (-15 -2598 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1|)) (-15 -2324 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| (-267 |#1|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-558 |#1|)) (-585 |#1|))) (-15 -2324 (|#1| |#1| (-558 |#1|) |#1|)) (-15 -1499 ((-558 |#1|) |#1|)) (-15 -1301 ((-3 (-558 |#1|) "failed") |#1|)) (-15 -2217 (|#1| (-558 |#1|))) (-15 -2217 ((-790) |#1|))) (-402 |#2|) (-782)) (T -401)) +((-3752 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-782)) (-5 *1 (-401 *3 *4)) (-4 *3 (-402 *4)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-782)) (-5 *2 (-108)) (-5 *1 (-401 *4 *5)) (-4 *4 (-402 *5)))) (-3594 (*1 *2) (-12 (-4 *4 (-782)) (-5 *2 (-705)) (-5 *1 (-401 *3 *4)) (-4 *3 (-402 *4))))) +(-10 -8 (-15 * (|#1| (-848) |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3594 ((-705))) (-15 -2217 (|#1| (-519))) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -1446 ((-495) |#1|)) (-15 -1499 ((-879 |#2|) |#1|)) (-15 -1301 ((-3 (-879 |#2|) "failed") |#1|)) (-15 -2217 (|#1| (-879 |#2|))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2217 (|#1| |#1|)) (-15 * (|#1| |#1| (-379 (-519)))) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 -1499 ((-379 (-879 |#2|)) |#1|)) (-15 -1301 ((-3 (-379 (-879 |#2|)) "failed") |#1|)) (-15 -2217 (|#1| (-379 (-879 |#2|)))) (-15 -1283 ((-379 (-1078 |#1|)) |#1| (-558 |#1|))) (-15 -2217 (|#1| (-379 (-879 (-379 |#2|))))) (-15 -2217 (|#1| (-879 (-379 |#2|)))) (-15 -2217 (|#1| (-379 |#2|))) (-15 -2724 (|#1| |#1|)) (-15 -1446 (|#1| (-390 |#1|))) (-15 -2324 (|#1| |#1| (-1082) (-705) (-1 |#1| |#1|))) (-15 -2324 (|#1| |#1| (-1082) (-705) (-1 |#1| (-585 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-705)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-705)) (-585 (-1 |#1| |#1|)))) (-15 -3785 ((-3 (-2 (|:| |val| |#1|) (|:| -1690 (-519))) "failed") |#1|)) (-15 -2669 ((-3 (-2 (|:| |var| (-558 |#1|)) (|:| -1690 (-519))) "failed") |#1| (-1082))) (-15 -2669 ((-3 (-2 (|:| |var| (-558 |#1|)) (|:| -1690 (-519))) "failed") |#1| (-110))) (-15 -1534 (|#1| |#1|)) (-15 -2217 (|#1| (-1034 |#2| (-558 |#1|)))) (-15 -3672 ((-3 (-2 (|:| -3031 (-519)) (|:| |var| (-558 |#1|))) "failed") |#1|)) (-15 -2100 ((-3 (-585 |#1|) "failed") |#1|)) (-15 -2669 ((-3 (-2 (|:| |var| (-558 |#1|)) (|:| -1690 (-519))) "failed") |#1|)) (-15 -3499 ((-3 (-585 |#1|) "failed") |#1|)) (-15 -2324 (|#1| |#1| (-585 (-110)) (-585 |#1|) (-1082))) (-15 -2324 (|#1| |#1| (-110) |#1| (-1082))) (-15 -2324 (|#1| |#1|)) (-15 -2324 (|#1| |#1| (-585 (-1082)))) (-15 -2324 (|#1| |#1| (-1082))) (-15 -1816 (|#1| (-1082) (-585 |#1|))) (-15 -1816 (|#1| (-1082) |#1| |#1| |#1| |#1|)) (-15 -1816 (|#1| (-1082) |#1| |#1| |#1|)) (-15 -1816 (|#1| (-1082) |#1| |#1|)) (-15 -1816 (|#1| (-1082) |#1|)) (-15 -4083 ((-585 (-1082)) |#1|)) (-15 -3173 (|#2| |#1|)) (-15 -3162 ((-108) |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -1499 ((-1082) |#1|)) (-15 -1301 ((-3 (-1082) "failed") |#1|)) (-15 -2217 (|#1| (-1082))) (-15 -2324 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2324 (|#1| |#1| (-110) (-1 |#1| (-585 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-110)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -2324 (|#1| |#1| (-585 (-110)) (-585 (-1 |#1| |#1|)))) (-15 -2324 (|#1| |#1| (-1082) (-1 |#1| |#1|))) (-15 -2324 (|#1| |#1| (-1082) (-1 |#1| (-585 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-1 |#1| (-585 |#1|))))) (-15 -2324 (|#1| |#1| (-585 (-1082)) (-585 (-1 |#1| |#1|)))) (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 -1268 ((-585 (-558 |#1|)) |#1|)) (-15 -3029 ((-3 (-558 |#1|) "failed") |#1|)) (-15 -3364 (|#1| |#1| (-585 (-558 |#1|)) (-585 |#1|))) (-15 -3364 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -3364 (|#1| |#1| (-267 |#1|))) (-15 -2598 (|#1| (-110) (-585 |#1|))) (-15 -2598 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1| |#1|)) (-15 -2598 (|#1| (-110) |#1|)) (-15 -2324 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| (-267 |#1|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -2324 (|#1| |#1| (-585 (-558 |#1|)) (-585 |#1|))) (-15 -2324 (|#1| |#1| (-558 |#1|) |#1|)) (-15 -1499 ((-558 |#1|) |#1|)) (-15 -1301 ((-3 (-558 |#1|) "failed") |#1|)) (-15 -2217 (|#1| (-558 |#1|))) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 116 (|has| |#1| (-25)))) (-4083 (((-585 (-1082)) $) 203)) (-1283 (((-379 (-1078 $)) $ (-558 $)) 171 (|has| |#1| (-511)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 143 (|has| |#1| (-511)))) (-1410 (($ $) 144 (|has| |#1| (-511)))) (-3060 (((-108) $) 146 (|has| |#1| (-511)))) (-1890 (((-585 (-558 $)) $) 44)) (-3167 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3364 (($ $ (-267 $)) 56) (($ $ (-585 (-267 $))) 55) (($ $ (-585 (-558 $)) (-585 $)) 54)) (-4043 (($ $) 163 (|has| |#1| (-511)))) (-3093 (((-390 $) $) 164 (|has| |#1| (-511)))) (-3409 (((-108) $ $) 154 (|has| |#1| (-511)))) (-2249 (($) 102 (-3730 (|has| |#1| (-1023)) (|has| |#1| (-25))) CONST)) (-1301 (((-3 (-558 $) "failed") $) 69) (((-3 (-1082) "failed") $) 216) (((-3 (-519) "failed") $) 209 (|has| |#1| (-959 (-519)))) (((-3 |#1| "failed") $) 207) (((-3 (-379 (-879 |#1|)) "failed") $) 169 (|has| |#1| (-511))) (((-3 (-879 |#1|) "failed") $) 123 (|has| |#1| (-968))) (((-3 (-379 (-519)) "failed") $) 95 (-3730 (-12 (|has| |#1| (-959 (-519))) (|has| |#1| (-511))) (|has| |#1| (-959 (-379 (-519))))))) (-1499 (((-558 $) $) 68) (((-1082) $) 215) (((-519) $) 210 (|has| |#1| (-959 (-519)))) ((|#1| $) 206) (((-379 (-879 |#1|)) $) 168 (|has| |#1| (-511))) (((-879 |#1|) $) 122 (|has| |#1| (-968))) (((-379 (-519)) $) 94 (-3730 (-12 (|has| |#1| (-959 (-519))) (|has| |#1| (-511))) (|has| |#1| (-959 (-379 (-519))))))) (-2311 (($ $ $) 158 (|has| |#1| (-511)))) (-1562 (((-625 (-519)) (-625 $)) 137 (-4012 (|has| |#1| (-581 (-519))) (|has| |#1| (-968)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 136 (-4012 (|has| |#1| (-581 (-519))) (|has| |#1| (-968)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 135 (|has| |#1| (-968))) (((-625 |#1|) (-625 $)) 134 (|has| |#1| (-968)))) (-4193 (((-3 $ "failed") $) 105 (|has| |#1| (-1023)))) (-2286 (($ $ $) 157 (|has| |#1| (-511)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 152 (|has| |#1| (-511)))) (-1320 (((-108) $) 165 (|has| |#1| (-511)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 212 (|has| |#1| (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 211 (|has| |#1| (-813 (-351))))) (-1340 (($ $) 51) (($ (-585 $)) 50)) (-3866 (((-585 (-110)) $) 43)) (-3752 (((-110) (-110)) 42)) (-1568 (((-108) $) 103 (|has| |#1| (-1023)))) (-3164 (((-108) $) 22 (|has| $ (-959 (-519))))) (-1534 (($ $) 186 (|has| |#1| (-968)))) (-2855 (((-1034 |#1| (-558 $)) $) 187 (|has| |#1| (-968)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 161 (|has| |#1| (-511)))) (-2042 (((-1078 $) (-558 $)) 25 (|has| $ (-968)))) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-1405 (($ (-1 $ $) (-558 $)) 36)) (-3029 (((-3 (-558 $) "failed") $) 46)) (-2254 (($ (-585 $)) 150 (|has| |#1| (-511))) (($ $ $) 149 (|has| |#1| (-511)))) (-1266 (((-1065) $) 9)) (-1268 (((-585 (-558 $)) $) 45)) (-2959 (($ (-110) $) 38) (($ (-110) (-585 $)) 37)) (-3499 (((-3 (-585 $) "failed") $) 192 (|has| |#1| (-1023)))) (-3785 (((-3 (-2 (|:| |val| $) (|:| -1690 (-519))) "failed") $) 183 (|has| |#1| (-968)))) (-2100 (((-3 (-585 $) "failed") $) 190 (|has| |#1| (-25)))) (-3672 (((-3 (-2 (|:| -3031 (-519)) (|:| |var| (-558 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2669 (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $) 191 (|has| |#1| (-1023))) (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $ (-110)) 185 (|has| |#1| (-968))) (((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $ (-1082)) 184 (|has| |#1| (-968)))) (-2917 (((-108) $ (-110)) 40) (((-108) $ (-1082)) 39)) (-3151 (($ $) 107 (-3730 (|has| |#1| (-444)) (|has| |#1| (-511))))) (-4141 (((-705) $) 47)) (-4139 (((-1029) $) 10)) (-3162 (((-108) $) 205)) (-3173 ((|#1| $) 204)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 151 (|has| |#1| (-511)))) (-2292 (($ (-585 $)) 148 (|has| |#1| (-511))) (($ $ $) 147 (|has| |#1| (-511)))) (-4040 (((-108) $ $) 35) (((-108) $ (-1082)) 34)) (-1921 (((-390 $) $) 162 (|has| |#1| (-511)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-511))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 159 (|has| |#1| (-511)))) (-2261 (((-3 $ "failed") $ $) 142 (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 153 (|has| |#1| (-511)))) (-1295 (((-108) $) 23 (|has| $ (-959 (-519))))) (-2324 (($ $ (-558 $) $) 67) (($ $ (-585 (-558 $)) (-585 $)) 66) (($ $ (-585 (-267 $))) 65) (($ $ (-267 $)) 64) (($ $ $ $) 63) (($ $ (-585 $) (-585 $)) 62) (($ $ (-585 (-1082)) (-585 (-1 $ $))) 33) (($ $ (-585 (-1082)) (-585 (-1 $ (-585 $)))) 32) (($ $ (-1082) (-1 $ (-585 $))) 31) (($ $ (-1082) (-1 $ $)) 30) (($ $ (-585 (-110)) (-585 (-1 $ $))) 29) (($ $ (-585 (-110)) (-585 (-1 $ (-585 $)))) 28) (($ $ (-110) (-1 $ (-585 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1082)) 197 (|has| |#1| (-560 (-495)))) (($ $ (-585 (-1082))) 196 (|has| |#1| (-560 (-495)))) (($ $) 195 (|has| |#1| (-560 (-495)))) (($ $ (-110) $ (-1082)) 194 (|has| |#1| (-560 (-495)))) (($ $ (-585 (-110)) (-585 $) (-1082)) 193 (|has| |#1| (-560 (-495)))) (($ $ (-585 (-1082)) (-585 (-705)) (-585 (-1 $ $))) 182 (|has| |#1| (-968))) (($ $ (-585 (-1082)) (-585 (-705)) (-585 (-1 $ (-585 $)))) 181 (|has| |#1| (-968))) (($ $ (-1082) (-705) (-1 $ (-585 $))) 180 (|has| |#1| (-968))) (($ $ (-1082) (-705) (-1 $ $)) 179 (|has| |#1| (-968)))) (-3129 (((-705) $) 155 (|has| |#1| (-511)))) (-2598 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-585 $)) 57)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 156 (|has| |#1| (-511)))) (-1802 (($ $) 49) (($ $ $) 48)) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) 128 (|has| |#1| (-968))) (($ $ (-1082) (-705)) 127 (|has| |#1| (-968))) (($ $ (-585 (-1082))) 126 (|has| |#1| (-968))) (($ $ (-1082)) 125 (|has| |#1| (-968)))) (-2724 (($ $) 176 (|has| |#1| (-511)))) (-2866 (((-1034 |#1| (-558 $)) $) 177 (|has| |#1| (-511)))) (-1462 (($ $) 24 (|has| $ (-968)))) (-1446 (((-819 (-519)) $) 214 (|has| |#1| (-560 (-819 (-519))))) (((-819 (-351)) $) 213 (|has| |#1| (-560 (-819 (-351))))) (($ (-390 $)) 178 (|has| |#1| (-511))) (((-495) $) 97 (|has| |#1| (-560 (-495))))) (-3333 (($ $ $) 111 (|has| |#1| (-444)))) (-3190 (($ $ $) 112 (|has| |#1| (-444)))) (-2217 (((-790) $) 11) (($ (-558 $)) 70) (($ (-1082)) 217) (($ |#1|) 208) (($ (-1034 |#1| (-558 $))) 188 (|has| |#1| (-968))) (($ (-379 |#1|)) 174 (|has| |#1| (-511))) (($ (-879 (-379 |#1|))) 173 (|has| |#1| (-511))) (($ (-379 (-879 (-379 |#1|)))) 172 (|has| |#1| (-511))) (($ (-379 (-879 |#1|))) 170 (|has| |#1| (-511))) (($ $) 141 (|has| |#1| (-511))) (($ (-879 |#1|)) 124 (|has| |#1| (-968))) (($ (-379 (-519))) 96 (-3730 (|has| |#1| (-511)) (-12 (|has| |#1| (-959 (-519))) (|has| |#1| (-511))) (|has| |#1| (-959 (-379 (-519)))))) (($ (-519)) 93 (-3730 (|has| |#1| (-968)) (|has| |#1| (-959 (-519)))))) (-3773 (((-3 $ "failed") $) 138 (|has| |#1| (-133)))) (-3594 (((-705)) 133 (|has| |#1| (-968)))) (-1647 (($ $) 53) (($ (-585 $)) 52)) (-2631 (((-108) (-110)) 41)) (-1617 (((-108) $ $) 145 (|has| |#1| (-511)))) (-1816 (($ (-1082) $) 202) (($ (-1082) $ $) 201) (($ (-1082) $ $ $) 200) (($ (-1082) $ $ $ $) 199) (($ (-1082) (-585 $)) 198)) (-3559 (($ $ (-519)) 110 (-3730 (|has| |#1| (-444)) (|has| |#1| (-511)))) (($ $ (-705)) 104 (|has| |#1| (-1023))) (($ $ (-848)) 100 (|has| |#1| (-1023)))) (-3602 (($) 115 (|has| |#1| (-25)) CONST)) (-3611 (($) 101 (|has| |#1| (-1023)) CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) 132 (|has| |#1| (-968))) (($ $ (-1082) (-705)) 131 (|has| |#1| (-968))) (($ $ (-585 (-1082))) 130 (|has| |#1| (-968))) (($ $ (-1082)) 129 (|has| |#1| (-968)))) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18)) (-1632 (($ (-1034 |#1| (-558 $)) (-1034 |#1| (-558 $))) 175 (|has| |#1| (-511))) (($ $ $) 108 (-3730 (|has| |#1| (-444)) (|has| |#1| (-511))))) (-1623 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1614 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-519)) 109 (-3730 (|has| |#1| (-444)) (|has| |#1| (-511)))) (($ $ (-705)) 106 (|has| |#1| (-1023))) (($ $ (-848)) 99 (|has| |#1| (-1023)))) (* (($ (-379 (-519)) $) 167 (|has| |#1| (-511))) (($ $ (-379 (-519))) 166 (|has| |#1| (-511))) (($ |#1| $) 140 (|has| |#1| (-157))) (($ $ |#1|) 139 (|has| |#1| (-157))) (($ (-519) $) 121 (|has| |#1| (-21))) (($ (-705) $) 117 (|has| |#1| (-25))) (($ (-848) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1023))))) +(((-402 |#1|) (-1194) (-782)) (T -402)) +((-3162 (*1 *2 *1) (-12 (-4 *1 (-402 *3)) (-4 *3 (-782)) (-5 *2 (-108)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-782)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-402 *3)) (-4 *3 (-782)) (-5 *2 (-585 (-1082))))) (-1816 (*1 *1 *2 *1) (-12 (-5 *2 (-1082)) (-4 *1 (-402 *3)) (-4 *3 (-782)))) (-1816 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1082)) (-4 *1 (-402 *3)) (-4 *3 (-782)))) (-1816 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1082)) (-4 *1 (-402 *3)) (-4 *3 (-782)))) (-1816 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1082)) (-4 *1 (-402 *3)) (-4 *3 (-782)))) (-1816 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-585 *1)) (-4 *1 (-402 *4)) (-4 *4 (-782)))) (-2324 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-402 *3)) (-4 *3 (-782)) (-4 *3 (-560 (-495))))) (-2324 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1082))) (-4 *1 (-402 *3)) (-4 *3 (-782)) (-4 *3 (-560 (-495))))) (-2324 (*1 *1 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-782)) (-4 *2 (-560 (-495))))) (-2324 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1082)) (-4 *1 (-402 *4)) (-4 *4 (-782)) (-4 *4 (-560 (-495))))) (-2324 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-110))) (-5 *3 (-585 *1)) (-5 *4 (-1082)) (-4 *1 (-402 *5)) (-4 *5 (-782)) (-4 *5 (-560 (-495))))) (-3499 (*1 *2 *1) (|partial| -12 (-4 *3 (-1023)) (-4 *3 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-402 *3)))) (-2669 (*1 *2 *1) (|partial| -12 (-4 *3 (-1023)) (-4 *3 (-782)) (-5 *2 (-2 (|:| |var| (-558 *1)) (|:| -1690 (-519)))) (-4 *1 (-402 *3)))) (-2100 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-402 *3)))) (-3672 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-782)) (-5 *2 (-2 (|:| -3031 (-519)) (|:| |var| (-558 *1)))) (-4 *1 (-402 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1034 *3 (-558 *1))) (-4 *3 (-968)) (-4 *3 (-782)) (-4 *1 (-402 *3)))) (-2855 (*1 *2 *1) (-12 (-4 *3 (-968)) (-4 *3 (-782)) (-5 *2 (-1034 *3 (-558 *1))) (-4 *1 (-402 *3)))) (-1534 (*1 *1 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-782)) (-4 *2 (-968)))) (-2669 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-968)) (-4 *4 (-782)) (-5 *2 (-2 (|:| |var| (-558 *1)) (|:| -1690 (-519)))) (-4 *1 (-402 *4)))) (-2669 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1082)) (-4 *4 (-968)) (-4 *4 (-782)) (-5 *2 (-2 (|:| |var| (-558 *1)) (|:| -1690 (-519)))) (-4 *1 (-402 *4)))) (-3785 (*1 *2 *1) (|partial| -12 (-4 *3 (-968)) (-4 *3 (-782)) (-5 *2 (-2 (|:| |val| *1) (|:| -1690 (-519)))) (-4 *1 (-402 *3)))) (-2324 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-585 (-705))) (-5 *4 (-585 (-1 *1 *1))) (-4 *1 (-402 *5)) (-4 *5 (-782)) (-4 *5 (-968)))) (-2324 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-585 (-705))) (-5 *4 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-402 *5)) (-4 *5 (-782)) (-4 *5 (-968)))) (-2324 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1082)) (-5 *3 (-705)) (-5 *4 (-1 *1 (-585 *1))) (-4 *1 (-402 *5)) (-4 *5 (-782)) (-4 *5 (-968)))) (-2324 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1082)) (-5 *3 (-705)) (-5 *4 (-1 *1 *1)) (-4 *1 (-402 *5)) (-4 *5 (-782)) (-4 *5 (-968)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-390 *1)) (-4 *1 (-402 *3)) (-4 *3 (-511)) (-4 *3 (-782)))) (-2866 (*1 *2 *1) (-12 (-4 *3 (-511)) (-4 *3 (-782)) (-5 *2 (-1034 *3 (-558 *1))) (-4 *1 (-402 *3)))) (-2724 (*1 *1 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-782)) (-4 *2 (-511)))) (-1632 (*1 *1 *2 *2) (-12 (-5 *2 (-1034 *3 (-558 *1))) (-4 *3 (-511)) (-4 *3 (-782)) (-4 *1 (-402 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-379 *3)) (-4 *3 (-511)) (-4 *3 (-782)) (-4 *1 (-402 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-879 (-379 *3))) (-4 *3 (-511)) (-4 *3 (-782)) (-4 *1 (-402 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-379 (-879 (-379 *3)))) (-4 *3 (-511)) (-4 *3 (-782)) (-4 *1 (-402 *3)))) (-1283 (*1 *2 *1 *3) (-12 (-5 *3 (-558 *1)) (-4 *1 (-402 *4)) (-4 *4 (-782)) (-4 *4 (-511)) (-5 *2 (-379 (-1078 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-402 *3)) (-4 *3 (-782)) (-4 *3 (-1023))))) +(-13 (-275) (-959 (-1082)) (-811 |t#1|) (-372 |t#1|) (-383 |t#1|) (-10 -8 (-15 -3162 ((-108) $)) (-15 -3173 (|t#1| $)) (-15 -4083 ((-585 (-1082)) $)) (-15 -1816 ($ (-1082) $)) (-15 -1816 ($ (-1082) $ $)) (-15 -1816 ($ (-1082) $ $ $)) (-15 -1816 ($ (-1082) $ $ $ $)) (-15 -1816 ($ (-1082) (-585 $))) (IF (|has| |t#1| (-560 (-495))) (PROGN (-6 (-560 (-495))) (-15 -2324 ($ $ (-1082))) (-15 -2324 ($ $ (-585 (-1082)))) (-15 -2324 ($ $)) (-15 -2324 ($ $ (-110) $ (-1082))) (-15 -2324 ($ $ (-585 (-110)) (-585 $) (-1082)))) |%noBranch|) (IF (|has| |t#1| (-1023)) (PROGN (-6 (-661)) (-15 ** ($ $ (-705))) (-15 -3499 ((-3 (-585 $) "failed") $)) (-15 -2669 ((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2100 ((-3 (-585 $) "failed") $)) (-15 -3672 ((-3 (-2 (|:| -3031 (-519)) (|:| |var| (-558 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-968)) (PROGN (-6 (-968)) (-6 (-959 (-879 |t#1|))) (-6 (-827 (-1082))) (-6 (-349 |t#1|)) (-15 -2217 ($ (-1034 |t#1| (-558 $)))) (-15 -2855 ((-1034 |t#1| (-558 $)) $)) (-15 -1534 ($ $)) (-15 -2669 ((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $ (-110))) (-15 -2669 ((-3 (-2 (|:| |var| (-558 $)) (|:| -1690 (-519))) "failed") $ (-1082))) (-15 -3785 ((-3 (-2 (|:| |val| $) (|:| -1690 (-519))) "failed") $)) (-15 -2324 ($ $ (-585 (-1082)) (-585 (-705)) (-585 (-1 $ $)))) (-15 -2324 ($ $ (-585 (-1082)) (-585 (-705)) (-585 (-1 $ (-585 $))))) (-15 -2324 ($ $ (-1082) (-705) (-1 $ (-585 $)))) (-15 -2324 ($ $ (-1082) (-705) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-511)) (PROGN (-6 (-335)) (-6 (-959 (-379 (-879 |t#1|)))) (-15 -1446 ($ (-390 $))) (-15 -2866 ((-1034 |t#1| (-558 $)) $)) (-15 -2724 ($ $)) (-15 -1632 ($ (-1034 |t#1| (-558 $)) (-1034 |t#1| (-558 $)))) (-15 -2217 ($ (-379 |t#1|))) (-15 -2217 ($ (-879 (-379 |t#1|)))) (-15 -2217 ($ (-379 (-879 (-379 |t#1|))))) (-15 -1283 ((-379 (-1078 $)) $ (-558 $))) (IF (|has| |t#1| (-959 (-519))) (-6 (-959 (-379 (-519)))) |%noBranch|)) |%noBranch|))) +(((-21) -3730 (|has| |#1| (-968)) (|has| |#1| (-511)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-23) -3730 (|has| |#1| (-968)) (|has| |#1| (-511)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3730 (|has| |#1| (-968)) (|has| |#1| (-511)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-379 (-519))) |has| |#1| (-511)) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-511)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-511)) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) |has| |#1| (-511)) ((-124) -3730 (|has| |#1| (-968)) (|has| |#1| (-511)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) |has| |#1| (-511)) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-560 (-819 (-351))) |has| |#1| (-560 (-819 (-351)))) ((-560 (-819 (-519))) |has| |#1| (-560 (-819 (-519)))) ((-219) |has| |#1| (-511)) ((-264) |has| |#1| (-511)) ((-280) |has| |#1| (-511)) ((-282 $) . T) ((-275) . T) ((-335) |has| |#1| (-511)) ((-349 |#1|) |has| |#1| (-968)) ((-372 |#1|) . T) ((-383 |#1|) . T) ((-423) |has| |#1| (-511)) ((-444) |has| |#1| (-444)) ((-480 (-558 $) $) . T) ((-480 $ $) . T) ((-511) |has| |#1| (-511)) ((-587 #0#) |has| |#1| (-511)) ((-587 |#1|) |has| |#1| (-157)) ((-587 $) -3730 (|has| |#1| (-968)) (|has| |#1| (-511)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-581 (-519)) -12 (|has| |#1| (-581 (-519))) (|has| |#1| (-968))) ((-581 |#1|) |has| |#1| (-968)) ((-652 #0#) |has| |#1| (-511)) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) |has| |#1| (-511)) ((-661) -3730 (|has| |#1| (-1023)) (|has| |#1| (-968)) (|has| |#1| (-511)) (|has| |#1| (-444)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-782) . T) ((-827 (-1082)) |has| |#1| (-968)) ((-813 (-351)) |has| |#1| (-813 (-351))) ((-813 (-519)) |has| |#1| (-813 (-519))) ((-811 |#1|) . T) ((-847) |has| |#1| (-511)) ((-959 (-379 (-519))) -3730 (|has| |#1| (-959 (-379 (-519)))) (-12 (|has| |#1| (-511)) (|has| |#1| (-959 (-519))))) ((-959 (-379 (-879 |#1|))) |has| |#1| (-511)) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 (-558 $)) . T) ((-959 (-879 |#1|)) |has| |#1| (-968)) ((-959 (-1082)) . T) ((-959 |#1|) . T) ((-974 #0#) |has| |#1| (-511)) ((-974 |#1|) |has| |#1| (-157)) ((-974 $) |has| |#1| (-511)) ((-968) -3730 (|has| |#1| (-968)) (|has| |#1| (-511)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-975) -3730 (|has| |#1| (-968)) (|has| |#1| (-511)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1023) -3730 (|has| |#1| (-1023)) (|has| |#1| (-968)) (|has| |#1| (-511)) (|has| |#1| (-444)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1011) . T) ((-1117) . T) ((-1121) |has| |#1| (-511))) +((-1831 ((|#2| |#2| |#2|) 33)) (-3752 (((-110) (-110)) 44)) (-3245 ((|#2| |#2|) 66)) (-3778 ((|#2| |#2|) 69)) (-1989 ((|#2| |#2|) 32)) (-3872 ((|#2| |#2| |#2|) 35)) (-3793 ((|#2| |#2| |#2|) 37)) (-1600 ((|#2| |#2| |#2|) 34)) (-2628 ((|#2| |#2| |#2|) 36)) (-2631 (((-108) (-110)) 42)) (-1810 ((|#2| |#2|) 39)) (-2767 ((|#2| |#2|) 38)) (-1478 ((|#2| |#2|) 27)) (-1222 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2144 ((|#2| |#2| |#2|) 31))) +(((-403 |#1| |#2|) (-10 -7 (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 -1478 (|#2| |#2|)) (-15 -1222 (|#2| |#2|)) (-15 -1222 (|#2| |#2| |#2|)) (-15 -2144 (|#2| |#2| |#2|)) (-15 -1989 (|#2| |#2|)) (-15 -1831 (|#2| |#2| |#2|)) (-15 -1600 (|#2| |#2| |#2|)) (-15 -3872 (|#2| |#2| |#2|)) (-15 -2628 (|#2| |#2| |#2|)) (-15 -3793 (|#2| |#2| |#2|)) (-15 -2767 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3245 (|#2| |#2|))) (-13 (-782) (-511)) (-402 |#1|)) (T -403)) +((-3245 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-1810 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-2767 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-3793 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-2628 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-3872 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-1600 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-1831 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-2144 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-1222 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-1222 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-1478 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) (-4 *2 (-402 *3)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *4)) (-4 *4 (-402 *3)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) (-5 *1 (-403 *4 *5)) (-4 *5 (-402 *4))))) +(-10 -7 (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 -1478 (|#2| |#2|)) (-15 -1222 (|#2| |#2|)) (-15 -1222 (|#2| |#2| |#2|)) (-15 -2144 (|#2| |#2| |#2|)) (-15 -1989 (|#2| |#2|)) (-15 -1831 (|#2| |#2| |#2|)) (-15 -1600 (|#2| |#2| |#2|)) (-15 -3872 (|#2| |#2| |#2|)) (-15 -2628 (|#2| |#2| |#2|)) (-15 -3793 (|#2| |#2| |#2|)) (-15 -2767 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3245 (|#2| |#2|))) +((-1625 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1078 |#2|)) (|:| |pol2| (-1078 |#2|)) (|:| |prim| (-1078 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-585 (-1078 |#2|))) (|:| |prim| (-1078 |#2|))) (-585 |#2|)) 58))) +(((-404 |#1| |#2|) (-10 -7 (-15 -1625 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-585 (-1078 |#2|))) (|:| |prim| (-1078 |#2|))) (-585 |#2|))) (IF (|has| |#2| (-27)) (-15 -1625 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1078 |#2|)) (|:| |pol2| (-1078 |#2|)) (|:| |prim| (-1078 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-511) (-782) (-135)) (-402 |#1|)) (T -404)) +((-1625 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-511) (-782) (-135))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1078 *3)) (|:| |pol2| (-1078 *3)) (|:| |prim| (-1078 *3)))) (-5 *1 (-404 *4 *3)) (-4 *3 (-27)) (-4 *3 (-402 *4)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-402 *4)) (-4 *4 (-13 (-511) (-782) (-135))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-585 (-1078 *5))) (|:| |prim| (-1078 *5)))) (-5 *1 (-404 *4 *5))))) +(-10 -7 (-15 -1625 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-585 (-1078 |#2|))) (|:| |prim| (-1078 |#2|))) (-585 |#2|))) (IF (|has| |#2| (-27)) (-15 -1625 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1078 |#2|)) (|:| |pol2| (-1078 |#2|)) (|:| |prim| (-1078 |#2|))) |#2| |#2|)) |%noBranch|)) +((-3830 (((-1168)) 18)) (-2347 (((-1078 (-379 (-519))) |#2| (-558 |#2|)) 40) (((-379 (-519)) |#2|) 23))) +(((-405 |#1| |#2|) (-10 -7 (-15 -2347 ((-379 (-519)) |#2|)) (-15 -2347 ((-1078 (-379 (-519))) |#2| (-558 |#2|))) (-15 -3830 ((-1168)))) (-13 (-782) (-511) (-959 (-519))) (-402 |#1|)) (T -405)) +((-3830 (*1 *2) (-12 (-4 *3 (-13 (-782) (-511) (-959 (-519)))) (-5 *2 (-1168)) (-5 *1 (-405 *3 *4)) (-4 *4 (-402 *3)))) (-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-558 *3)) (-4 *3 (-402 *5)) (-4 *5 (-13 (-782) (-511) (-959 (-519)))) (-5 *2 (-1078 (-379 (-519)))) (-5 *1 (-405 *5 *3)))) (-2347 (*1 *2 *3) (-12 (-4 *4 (-13 (-782) (-511) (-959 (-519)))) (-5 *2 (-379 (-519))) (-5 *1 (-405 *4 *3)) (-4 *3 (-402 *4))))) +(-10 -7 (-15 -2347 ((-379 (-519)) |#2|)) (-15 -2347 ((-1078 (-379 (-519))) |#2| (-558 |#2|))) (-15 -3830 ((-1168)))) +((-2534 (((-108) $) 28)) (-2290 (((-108) $) 30)) (-2226 (((-108) $) 31)) (-1510 (((-108) $) 34)) (-1393 (((-108) $) 29)) (-2777 (((-108) $) 33)) (-2217 (((-790) $) 18) (($ (-1065)) 27) (($ (-1082)) 23) (((-1082) $) 22) (((-1015) $) 21)) (-2371 (((-108) $) 32)) (-1543 (((-108) $ $) 15))) +(((-406) (-13 (-559 (-790)) (-10 -8 (-15 -2217 ($ (-1065))) (-15 -2217 ($ (-1082))) (-15 -2217 ((-1082) $)) (-15 -2217 ((-1015) $)) (-15 -2534 ((-108) $)) (-15 -1393 ((-108) $)) (-15 -2226 ((-108) $)) (-15 -2777 ((-108) $)) (-15 -1510 ((-108) $)) (-15 -2371 ((-108) $)) (-15 -2290 ((-108) $)) (-15 -1543 ((-108) $ $))))) (T -406)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-406)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-406)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-406)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-406)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406)))) (-2226 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406)))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406)))) (-1543 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406))))) +(-13 (-559 (-790)) (-10 -8 (-15 -2217 ($ (-1065))) (-15 -2217 ($ (-1082))) (-15 -2217 ((-1082) $)) (-15 -2217 ((-1015) $)) (-15 -2534 ((-108) $)) (-15 -1393 ((-108) $)) (-15 -2226 ((-108) $)) (-15 -2777 ((-108) $)) (-15 -1510 ((-108) $)) (-15 -2371 ((-108) $)) (-15 -2290 ((-108) $)) (-15 -1543 ((-108) $ $)))) +((-2313 (((-3 (-390 (-1078 (-379 (-519)))) "failed") |#3|) 69)) (-2214 (((-390 |#3|) |#3|) 33)) (-3584 (((-3 (-390 (-1078 (-47))) "failed") |#3|) 27 (|has| |#2| (-959 (-47))))) (-4038 (((-3 (|:| |overq| (-1078 (-379 (-519)))) (|:| |overan| (-1078 (-47))) (|:| -3134 (-108))) |#3|) 35))) +(((-407 |#1| |#2| |#3|) (-10 -7 (-15 -2214 ((-390 |#3|) |#3|)) (-15 -2313 ((-3 (-390 (-1078 (-379 (-519)))) "failed") |#3|)) (-15 -4038 ((-3 (|:| |overq| (-1078 (-379 (-519)))) (|:| |overan| (-1078 (-47))) (|:| -3134 (-108))) |#3|)) (IF (|has| |#2| (-959 (-47))) (-15 -3584 ((-3 (-390 (-1078 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-511) (-782) (-959 (-519))) (-402 |#1|) (-1139 |#2|)) (T -407)) +((-3584 (*1 *2 *3) (|partial| -12 (-4 *5 (-959 (-47))) (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-4 *5 (-402 *4)) (-5 *2 (-390 (-1078 (-47)))) (-5 *1 (-407 *4 *5 *3)) (-4 *3 (-1139 *5)))) (-4038 (*1 *2 *3) (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-4 *5 (-402 *4)) (-5 *2 (-3 (|:| |overq| (-1078 (-379 (-519)))) (|:| |overan| (-1078 (-47))) (|:| -3134 (-108)))) (-5 *1 (-407 *4 *5 *3)) (-4 *3 (-1139 *5)))) (-2313 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-4 *5 (-402 *4)) (-5 *2 (-390 (-1078 (-379 (-519))))) (-5 *1 (-407 *4 *5 *3)) (-4 *3 (-1139 *5)))) (-2214 (*1 *2 *3) (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-4 *5 (-402 *4)) (-5 *2 (-390 *3)) (-5 *1 (-407 *4 *5 *3)) (-4 *3 (-1139 *5))))) +(-10 -7 (-15 -2214 ((-390 |#3|) |#3|)) (-15 -2313 ((-3 (-390 (-1078 (-379 (-519)))) "failed") |#3|)) (-15 -4038 ((-3 (|:| |overq| (-1078 (-379 (-519)))) (|:| |overan| (-1078 (-47))) (|:| -3134 (-108))) |#3|)) (IF (|has| |#2| (-959 (-47))) (-15 -3584 ((-3 (-390 (-1078 (-47))) "failed") |#3|)) |%noBranch|)) +((-1430 (((-108) $ $) NIL)) (-3237 (((-1065) $ (-1065)) NIL)) (-3704 (($ $ (-1065)) NIL)) (-1234 (((-1065) $) NIL)) (-1972 (((-360) (-360) (-360)) 17) (((-360) (-360)) 15)) (-1556 (($ (-360)) NIL) (($ (-360) (-1065)) NIL)) (-2938 (((-360) $) NIL)) (-1266 (((-1065) $) NIL)) (-2901 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2296 (((-1168) (-1065)) 9)) (-3715 (((-1168) (-1065)) 10)) (-3636 (((-1168)) 11)) (-2217 (((-790) $) NIL)) (-3657 (($ $) 35)) (-1543 (((-108) $ $) NIL))) +(((-408) (-13 (-336 (-360) (-1065)) (-10 -7 (-15 -1972 ((-360) (-360) (-360))) (-15 -1972 ((-360) (-360))) (-15 -2296 ((-1168) (-1065))) (-15 -3715 ((-1168) (-1065))) (-15 -3636 ((-1168)))))) (T -408)) +((-1972 (*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-408)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-408)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-408)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-408)))) (-3636 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-408))))) +(-13 (-336 (-360) (-1065)) (-10 -7 (-15 -1972 ((-360) (-360) (-360))) (-15 -1972 ((-360) (-360))) (-15 -2296 ((-1168) (-1065))) (-15 -3715 ((-1168) (-1065))) (-15 -3636 ((-1168))))) +((-1430 (((-108) $ $) NIL)) (-2883 (((-3 (|:| |fst| (-406)) (|:| -1378 "void")) $) 10)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2570 (($) 31)) (-3271 (($) 37)) (-2545 (($) 33)) (-3423 (($) 35)) (-1610 (($) 32)) (-3000 (($) 34)) (-1928 (($) 36)) (-4136 (((-108) $) 8)) (-3052 (((-585 (-879 (-519))) $) 16)) (-2228 (($ (-3 (|:| |fst| (-406)) (|:| -1378 "void")) (-585 (-1082)) (-108)) 25) (($ (-3 (|:| |fst| (-406)) (|:| -1378 "void")) (-585 (-879 (-519))) (-108)) 26)) (-2217 (((-790) $) 21) (($ (-406)) 28)) (-1543 (((-108) $ $) NIL))) +(((-409) (-13 (-1011) (-10 -8 (-15 -2217 ((-790) $)) (-15 -2217 ($ (-406))) (-15 -2883 ((-3 (|:| |fst| (-406)) (|:| -1378 "void")) $)) (-15 -3052 ((-585 (-879 (-519))) $)) (-15 -4136 ((-108) $)) (-15 -2228 ($ (-3 (|:| |fst| (-406)) (|:| -1378 "void")) (-585 (-1082)) (-108))) (-15 -2228 ($ (-3 (|:| |fst| (-406)) (|:| -1378 "void")) (-585 (-879 (-519))) (-108))) (-15 -2570 ($)) (-15 -1610 ($)) (-15 -2545 ($)) (-15 -3271 ($)) (-15 -3000 ($)) (-15 -3423 ($)) (-15 -1928 ($))))) (T -409)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-409)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-406)) (-5 *1 (-409)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-5 *1 (-409)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-585 (-879 (-519)))) (-5 *1 (-409)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-2228 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-5 *3 (-585 (-1082))) (-5 *4 (-108)) (-5 *1 (-409)))) (-2228 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-5 *3 (-585 (-879 (-519)))) (-5 *4 (-108)) (-5 *1 (-409)))) (-2570 (*1 *1) (-5 *1 (-409))) (-1610 (*1 *1) (-5 *1 (-409))) (-2545 (*1 *1) (-5 *1 (-409))) (-3271 (*1 *1) (-5 *1 (-409))) (-3000 (*1 *1) (-5 *1 (-409))) (-3423 (*1 *1) (-5 *1 (-409))) (-1928 (*1 *1) (-5 *1 (-409)))) +(-13 (-1011) (-10 -8 (-15 -2217 ((-790) $)) (-15 -2217 ($ (-406))) (-15 -2883 ((-3 (|:| |fst| (-406)) (|:| -1378 "void")) $)) (-15 -3052 ((-585 (-879 (-519))) $)) (-15 -4136 ((-108) $)) (-15 -2228 ($ (-3 (|:| |fst| (-406)) (|:| -1378 "void")) (-585 (-1082)) (-108))) (-15 -2228 ($ (-3 (|:| |fst| (-406)) (|:| -1378 "void")) (-585 (-879 (-519))) (-108))) (-15 -2570 ($)) (-15 -1610 ($)) (-15 -2545 ($)) (-15 -3271 ($)) (-15 -3000 ($)) (-15 -3423 ($)) (-15 -1928 ($)))) +((-1430 (((-108) $ $) NIL)) (-2938 (((-1082) $) 8)) (-1266 (((-1065) $) 16)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 11)) (-1543 (((-108) $ $) 13))) +(((-410 |#1|) (-13 (-1011) (-10 -8 (-15 -2938 ((-1082) $)))) (-1082)) (T -410)) +((-2938 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-410 *3)) (-14 *3 *2)))) +(-13 (-1011) (-10 -8 (-15 -2938 ((-1082) $)))) +((-2021 (((-1168) $) 7)) (-2217 (((-790) $) 8) (($ (-1163 (-634))) 14) (($ (-585 (-302))) 13) (($ (-302)) 12) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 11))) +(((-411) (-1194)) (T -411)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-634))) (-4 *1 (-411)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-4 *1 (-411)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-302)) (-4 *1 (-411)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) (-4 *1 (-411))))) +(-13 (-367) (-10 -8 (-15 -2217 ($ (-1163 (-634)))) (-15 -2217 ($ (-585 (-302)))) (-15 -2217 ($ (-302))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302)))))))) +(((-559 (-790)) . T) ((-367) . T) ((-1117) . T)) +((-1301 (((-3 $ "failed") (-1163 (-288 (-351)))) 21) (((-3 $ "failed") (-1163 (-288 (-519)))) 19) (((-3 $ "failed") (-1163 (-879 (-351)))) 17) (((-3 $ "failed") (-1163 (-879 (-519)))) 15) (((-3 $ "failed") (-1163 (-379 (-879 (-351))))) 13) (((-3 $ "failed") (-1163 (-379 (-879 (-519))))) 11)) (-1499 (($ (-1163 (-288 (-351)))) 22) (($ (-1163 (-288 (-519)))) 20) (($ (-1163 (-879 (-351)))) 18) (($ (-1163 (-879 (-519)))) 16) (($ (-1163 (-379 (-879 (-351))))) 14) (($ (-1163 (-379 (-879 (-519))))) 12)) (-2021 (((-1168) $) 7)) (-2217 (((-790) $) 8) (($ (-585 (-302))) 25) (($ (-302)) 24) (($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) 23))) +(((-412) (-1194)) (T -412)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-4 *1 (-412)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-302)) (-4 *1 (-412)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) (-4 *1 (-412)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1163 (-288 (-351)))) (-4 *1 (-412)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-1163 (-288 (-351)))) (-4 *1 (-412)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1163 (-288 (-519)))) (-4 *1 (-412)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-1163 (-288 (-519)))) (-4 *1 (-412)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1163 (-879 (-351)))) (-4 *1 (-412)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-1163 (-879 (-351)))) (-4 *1 (-412)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1163 (-879 (-519)))) (-4 *1 (-412)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-1163 (-879 (-519)))) (-4 *1 (-412)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1163 (-379 (-879 (-351))))) (-4 *1 (-412)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-1163 (-379 (-879 (-351))))) (-4 *1 (-412)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1163 (-379 (-879 (-519))))) (-4 *1 (-412)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-1163 (-379 (-879 (-519))))) (-4 *1 (-412))))) +(-13 (-367) (-10 -8 (-15 -2217 ($ (-585 (-302)))) (-15 -2217 ($ (-302))) (-15 -2217 ($ (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302)))))) (-15 -1499 ($ (-1163 (-288 (-351))))) (-15 -1301 ((-3 $ "failed") (-1163 (-288 (-351))))) (-15 -1499 ($ (-1163 (-288 (-519))))) (-15 -1301 ((-3 $ "failed") (-1163 (-288 (-519))))) (-15 -1499 ($ (-1163 (-879 (-351))))) (-15 -1301 ((-3 $ "failed") (-1163 (-879 (-351))))) (-15 -1499 ($ (-1163 (-879 (-519))))) (-15 -1301 ((-3 $ "failed") (-1163 (-879 (-519))))) (-15 -1499 ($ (-1163 (-379 (-879 (-351)))))) (-15 -1301 ((-3 $ "failed") (-1163 (-379 (-879 (-351)))))) (-15 -1499 ($ (-1163 (-379 (-879 (-519)))))) (-15 -1301 ((-3 $ "failed") (-1163 (-379 (-879 (-519)))))))) +(((-559 (-790)) . T) ((-367) . T) ((-1117) . T)) +((-2822 (((-108)) 17)) (-2062 (((-108) (-108)) 18)) (-2561 (((-108)) 13)) (-2740 (((-108) (-108)) 14)) (-3738 (((-108)) 15)) (-3102 (((-108) (-108)) 16)) (-2739 (((-848) (-848)) 21) (((-848)) 20)) (-3183 (((-705) (-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519))))) 42)) (-2654 (((-848) (-848)) 23) (((-848)) 22)) (-3230 (((-2 (|:| -2377 (-519)) (|:| -3433 (-585 |#1|))) |#1|) 62)) (-4073 (((-390 |#1|) (-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519))))))) 124)) (-2020 (((-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519)))))) |#1| (-108)) 150)) (-2496 (((-390 |#1|) |#1| (-705) (-705)) 163) (((-390 |#1|) |#1| (-585 (-705)) (-705)) 160) (((-390 |#1|) |#1| (-585 (-705))) 162) (((-390 |#1|) |#1| (-705)) 161) (((-390 |#1|) |#1|) 159)) (-3462 (((-3 |#1| "failed") (-848) |#1| (-585 (-705)) (-705) (-108)) 165) (((-3 |#1| "failed") (-848) |#1| (-585 (-705)) (-705)) 166) (((-3 |#1| "failed") (-848) |#1| (-585 (-705))) 168) (((-3 |#1| "failed") (-848) |#1| (-705)) 167) (((-3 |#1| "failed") (-848) |#1|) 169)) (-1921 (((-390 |#1|) |#1| (-705) (-705)) 158) (((-390 |#1|) |#1| (-585 (-705)) (-705)) 154) (((-390 |#1|) |#1| (-585 (-705))) 156) (((-390 |#1|) |#1| (-705)) 155) (((-390 |#1|) |#1|) 153)) (-2887 (((-108) |#1|) 37)) (-2523 (((-672 (-705)) (-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519))))) 67)) (-2424 (((-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519)))))) |#1| (-108) (-1013 (-705)) (-705)) 152))) +(((-413 |#1|) (-10 -7 (-15 -4073 ((-390 |#1|) (-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519)))))))) (-15 -2523 ((-672 (-705)) (-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519)))))) (-15 -2654 ((-848))) (-15 -2654 ((-848) (-848))) (-15 -2739 ((-848))) (-15 -2739 ((-848) (-848))) (-15 -3183 ((-705) (-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519)))))) (-15 -3230 ((-2 (|:| -2377 (-519)) (|:| -3433 (-585 |#1|))) |#1|)) (-15 -2822 ((-108))) (-15 -2062 ((-108) (-108))) (-15 -2561 ((-108))) (-15 -2740 ((-108) (-108))) (-15 -2887 ((-108) |#1|)) (-15 -3738 ((-108))) (-15 -3102 ((-108) (-108))) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -1921 ((-390 |#1|) |#1| (-705))) (-15 -1921 ((-390 |#1|) |#1| (-585 (-705)))) (-15 -1921 ((-390 |#1|) |#1| (-585 (-705)) (-705))) (-15 -1921 ((-390 |#1|) |#1| (-705) (-705))) (-15 -2496 ((-390 |#1|) |#1|)) (-15 -2496 ((-390 |#1|) |#1| (-705))) (-15 -2496 ((-390 |#1|) |#1| (-585 (-705)))) (-15 -2496 ((-390 |#1|) |#1| (-585 (-705)) (-705))) (-15 -2496 ((-390 |#1|) |#1| (-705) (-705))) (-15 -3462 ((-3 |#1| "failed") (-848) |#1|)) (-15 -3462 ((-3 |#1| "failed") (-848) |#1| (-705))) (-15 -3462 ((-3 |#1| "failed") (-848) |#1| (-585 (-705)))) (-15 -3462 ((-3 |#1| "failed") (-848) |#1| (-585 (-705)) (-705))) (-15 -3462 ((-3 |#1| "failed") (-848) |#1| (-585 (-705)) (-705) (-108))) (-15 -2020 ((-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519)))))) |#1| (-108))) (-15 -2424 ((-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519)))))) |#1| (-108) (-1013 (-705)) (-705)))) (-1139 (-519))) (T -413)) +((-2424 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1013 (-705))) (-5 *6 (-705)) (-5 *2 (-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| *3) (|:| -1258 (-519))))))) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2020 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| *3) (|:| -1258 (-519))))))) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-3462 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-848)) (-5 *4 (-585 (-705))) (-5 *5 (-705)) (-5 *6 (-108)) (-5 *1 (-413 *2)) (-4 *2 (-1139 (-519))))) (-3462 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-848)) (-5 *4 (-585 (-705))) (-5 *5 (-705)) (-5 *1 (-413 *2)) (-4 *2 (-1139 (-519))))) (-3462 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-848)) (-5 *4 (-585 (-705))) (-5 *1 (-413 *2)) (-4 *2 (-1139 (-519))))) (-3462 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-848)) (-5 *4 (-705)) (-5 *1 (-413 *2)) (-4 *2 (-1139 (-519))))) (-3462 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-848)) (-5 *1 (-413 *2)) (-4 *2 (-1139 (-519))))) (-2496 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-705)) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2496 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 (-705))) (-5 *5 (-705)) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-705))) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-705)) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2496 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-1921 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-705)) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-1921 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 (-705))) (-5 *5 (-705)) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-705))) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-705)) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-1921 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-3738 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2887 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2740 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2561 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2062 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2822 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-3230 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2377 (-519)) (|:| -3433 (-585 *3)))) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-3183 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -1921 *4) (|:| -4178 (-519))))) (-4 *4 (-1139 (-519))) (-5 *2 (-705)) (-5 *1 (-413 *4)))) (-2739 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2739 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2654 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -1921 *4) (|:| -4178 (-519))))) (-4 *4 (-1139 (-519))) (-5 *2 (-672 (-705))) (-5 *1 (-413 *4)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| *4) (|:| -1258 (-519))))))) (-4 *4 (-1139 (-519))) (-5 *2 (-390 *4)) (-5 *1 (-413 *4))))) +(-10 -7 (-15 -4073 ((-390 |#1|) (-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519)))))))) (-15 -2523 ((-672 (-705)) (-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519)))))) (-15 -2654 ((-848))) (-15 -2654 ((-848) (-848))) (-15 -2739 ((-848))) (-15 -2739 ((-848) (-848))) (-15 -3183 ((-705) (-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519)))))) (-15 -3230 ((-2 (|:| -2377 (-519)) (|:| -3433 (-585 |#1|))) |#1|)) (-15 -2822 ((-108))) (-15 -2062 ((-108) (-108))) (-15 -2561 ((-108))) (-15 -2740 ((-108) (-108))) (-15 -2887 ((-108) |#1|)) (-15 -3738 ((-108))) (-15 -3102 ((-108) (-108))) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -1921 ((-390 |#1|) |#1| (-705))) (-15 -1921 ((-390 |#1|) |#1| (-585 (-705)))) (-15 -1921 ((-390 |#1|) |#1| (-585 (-705)) (-705))) (-15 -1921 ((-390 |#1|) |#1| (-705) (-705))) (-15 -2496 ((-390 |#1|) |#1|)) (-15 -2496 ((-390 |#1|) |#1| (-705))) (-15 -2496 ((-390 |#1|) |#1| (-585 (-705)))) (-15 -2496 ((-390 |#1|) |#1| (-585 (-705)) (-705))) (-15 -2496 ((-390 |#1|) |#1| (-705) (-705))) (-15 -3462 ((-3 |#1| "failed") (-848) |#1|)) (-15 -3462 ((-3 |#1| "failed") (-848) |#1| (-705))) (-15 -3462 ((-3 |#1| "failed") (-848) |#1| (-585 (-705)))) (-15 -3462 ((-3 |#1| "failed") (-848) |#1| (-585 (-705)) (-705))) (-15 -3462 ((-3 |#1| "failed") (-848) |#1| (-585 (-705)) (-705) (-108))) (-15 -2020 ((-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519)))))) |#1| (-108))) (-15 -2424 ((-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519)))))) |#1| (-108) (-1013 (-705)) (-705)))) +((-3906 (((-519) |#2|) 48) (((-519) |#2| (-705)) 47)) (-4148 (((-519) |#2|) 55)) (-3389 ((|#3| |#2|) 25)) (-3681 ((|#3| |#2| (-848)) 14)) (-2568 ((|#3| |#2|) 15)) (-2694 ((|#3| |#2|) 9)) (-4141 ((|#3| |#2|) 10)) (-3633 ((|#3| |#2| (-848)) 62) ((|#3| |#2|) 30)) (-2769 (((-519) |#2|) 57))) +(((-414 |#1| |#2| |#3|) (-10 -7 (-15 -2769 ((-519) |#2|)) (-15 -3633 (|#3| |#2|)) (-15 -3633 (|#3| |#2| (-848))) (-15 -4148 ((-519) |#2|)) (-15 -3906 ((-519) |#2| (-705))) (-15 -3906 ((-519) |#2|)) (-15 -3681 (|#3| |#2| (-848))) (-15 -3389 (|#3| |#2|)) (-15 -2694 (|#3| |#2|)) (-15 -4141 (|#3| |#2|)) (-15 -2568 (|#3| |#2|))) (-968) (-1139 |#1|) (-13 (-376) (-959 |#1|) (-335) (-1103) (-258))) (T -414)) +((-2568 (*1 *2 *3) (-12 (-4 *4 (-968)) (-4 *2 (-13 (-376) (-959 *4) (-335) (-1103) (-258))) (-5 *1 (-414 *4 *3 *2)) (-4 *3 (-1139 *4)))) (-4141 (*1 *2 *3) (-12 (-4 *4 (-968)) (-4 *2 (-13 (-376) (-959 *4) (-335) (-1103) (-258))) (-5 *1 (-414 *4 *3 *2)) (-4 *3 (-1139 *4)))) (-2694 (*1 *2 *3) (-12 (-4 *4 (-968)) (-4 *2 (-13 (-376) (-959 *4) (-335) (-1103) (-258))) (-5 *1 (-414 *4 *3 *2)) (-4 *3 (-1139 *4)))) (-3389 (*1 *2 *3) (-12 (-4 *4 (-968)) (-4 *2 (-13 (-376) (-959 *4) (-335) (-1103) (-258))) (-5 *1 (-414 *4 *3 *2)) (-4 *3 (-1139 *4)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *4 (-848)) (-4 *5 (-968)) (-4 *2 (-13 (-376) (-959 *5) (-335) (-1103) (-258))) (-5 *1 (-414 *5 *3 *2)) (-4 *3 (-1139 *5)))) (-3906 (*1 *2 *3) (-12 (-4 *4 (-968)) (-5 *2 (-519)) (-5 *1 (-414 *4 *3 *5)) (-4 *3 (-1139 *4)) (-4 *5 (-13 (-376) (-959 *4) (-335) (-1103) (-258))))) (-3906 (*1 *2 *3 *4) (-12 (-5 *4 (-705)) (-4 *5 (-968)) (-5 *2 (-519)) (-5 *1 (-414 *5 *3 *6)) (-4 *3 (-1139 *5)) (-4 *6 (-13 (-376) (-959 *5) (-335) (-1103) (-258))))) (-4148 (*1 *2 *3) (-12 (-4 *4 (-968)) (-5 *2 (-519)) (-5 *1 (-414 *4 *3 *5)) (-4 *3 (-1139 *4)) (-4 *5 (-13 (-376) (-959 *4) (-335) (-1103) (-258))))) (-3633 (*1 *2 *3 *4) (-12 (-5 *4 (-848)) (-4 *5 (-968)) (-4 *2 (-13 (-376) (-959 *5) (-335) (-1103) (-258))) (-5 *1 (-414 *5 *3 *2)) (-4 *3 (-1139 *5)))) (-3633 (*1 *2 *3) (-12 (-4 *4 (-968)) (-4 *2 (-13 (-376) (-959 *4) (-335) (-1103) (-258))) (-5 *1 (-414 *4 *3 *2)) (-4 *3 (-1139 *4)))) (-2769 (*1 *2 *3) (-12 (-4 *4 (-968)) (-5 *2 (-519)) (-5 *1 (-414 *4 *3 *5)) (-4 *3 (-1139 *4)) (-4 *5 (-13 (-376) (-959 *4) (-335) (-1103) (-258)))))) +(-10 -7 (-15 -2769 ((-519) |#2|)) (-15 -3633 (|#3| |#2|)) (-15 -3633 (|#3| |#2| (-848))) (-15 -4148 ((-519) |#2|)) (-15 -3906 ((-519) |#2| (-705))) (-15 -3906 ((-519) |#2|)) (-15 -3681 (|#3| |#2| (-848))) (-15 -3389 (|#3| |#2|)) (-15 -2694 (|#3| |#2|)) (-15 -4141 (|#3| |#2|)) (-15 -2568 (|#3| |#2|))) +((-2093 ((|#2| (-1163 |#1|)) 36)) (-3829 ((|#2| |#2| |#1|) 49)) (-2516 ((|#2| |#2| |#1|) 41)) (-1868 ((|#2| |#2|) 38)) (-2734 (((-108) |#2|) 30)) (-3964 (((-585 |#2|) (-848) (-390 |#2|)) 16)) (-3462 ((|#2| (-848) (-390 |#2|)) 21)) (-2523 (((-672 (-705)) (-390 |#2|)) 25))) +(((-415 |#1| |#2|) (-10 -7 (-15 -2734 ((-108) |#2|)) (-15 -2093 (|#2| (-1163 |#1|))) (-15 -1868 (|#2| |#2|)) (-15 -2516 (|#2| |#2| |#1|)) (-15 -3829 (|#2| |#2| |#1|)) (-15 -2523 ((-672 (-705)) (-390 |#2|))) (-15 -3462 (|#2| (-848) (-390 |#2|))) (-15 -3964 ((-585 |#2|) (-848) (-390 |#2|)))) (-968) (-1139 |#1|)) (T -415)) +((-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-848)) (-5 *4 (-390 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-968)) (-5 *2 (-585 *6)) (-5 *1 (-415 *5 *6)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-848)) (-5 *4 (-390 *2)) (-4 *2 (-1139 *5)) (-5 *1 (-415 *5 *2)) (-4 *5 (-968)))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-390 *5)) (-4 *5 (-1139 *4)) (-4 *4 (-968)) (-5 *2 (-672 (-705))) (-5 *1 (-415 *4 *5)))) (-3829 (*1 *2 *2 *3) (-12 (-4 *3 (-968)) (-5 *1 (-415 *3 *2)) (-4 *2 (-1139 *3)))) (-2516 (*1 *2 *2 *3) (-12 (-4 *3 (-968)) (-5 *1 (-415 *3 *2)) (-4 *2 (-1139 *3)))) (-1868 (*1 *2 *2) (-12 (-4 *3 (-968)) (-5 *1 (-415 *3 *2)) (-4 *2 (-1139 *3)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-968)) (-4 *2 (-1139 *4)) (-5 *1 (-415 *4 *2)))) (-2734 (*1 *2 *3) (-12 (-4 *4 (-968)) (-5 *2 (-108)) (-5 *1 (-415 *4 *3)) (-4 *3 (-1139 *4))))) +(-10 -7 (-15 -2734 ((-108) |#2|)) (-15 -2093 (|#2| (-1163 |#1|))) (-15 -1868 (|#2| |#2|)) (-15 -2516 (|#2| |#2| |#1|)) (-15 -3829 (|#2| |#2| |#1|)) (-15 -2523 ((-672 (-705)) (-390 |#2|))) (-15 -3462 (|#2| (-848) (-390 |#2|))) (-15 -3964 ((-585 |#2|) (-848) (-390 |#2|)))) +((-3983 (((-705)) 41)) (-4018 (((-705)) 23 (|has| |#1| (-376))) (((-705) (-705)) 22 (|has| |#1| (-376)))) (-3181 (((-519) |#1|) 18 (|has| |#1| (-376)))) (-1305 (((-519) |#1|) 20 (|has| |#1| (-376)))) (-2619 (((-705)) 40) (((-705) (-705)) 39)) (-3538 ((|#1| (-705) (-519)) 29)) (-1739 (((-1168)) 43))) +(((-416 |#1|) (-10 -7 (-15 -3538 (|#1| (-705) (-519))) (-15 -2619 ((-705) (-705))) (-15 -2619 ((-705))) (-15 -3983 ((-705))) (-15 -1739 ((-1168))) (IF (|has| |#1| (-376)) (PROGN (-15 -1305 ((-519) |#1|)) (-15 -3181 ((-519) |#1|)) (-15 -4018 ((-705) (-705))) (-15 -4018 ((-705)))) |%noBranch|)) (-968)) (T -416)) +((-4018 (*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-416 *3)) (-4 *3 (-376)) (-4 *3 (-968)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-705)) (-5 *1 (-416 *3)) (-4 *3 (-376)) (-4 *3 (-968)))) (-3181 (*1 *2 *3) (-12 (-5 *2 (-519)) (-5 *1 (-416 *3)) (-4 *3 (-376)) (-4 *3 (-968)))) (-1305 (*1 *2 *3) (-12 (-5 *2 (-519)) (-5 *1 (-416 *3)) (-4 *3 (-376)) (-4 *3 (-968)))) (-1739 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-416 *3)) (-4 *3 (-968)))) (-3983 (*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-416 *3)) (-4 *3 (-968)))) (-2619 (*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-416 *3)) (-4 *3 (-968)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-705)) (-5 *1 (-416 *3)) (-4 *3 (-968)))) (-3538 (*1 *2 *3 *4) (-12 (-5 *3 (-705)) (-5 *4 (-519)) (-5 *1 (-416 *2)) (-4 *2 (-968))))) +(-10 -7 (-15 -3538 (|#1| (-705) (-519))) (-15 -2619 ((-705) (-705))) (-15 -2619 ((-705))) (-15 -3983 ((-705))) (-15 -1739 ((-1168))) (IF (|has| |#1| (-376)) (PROGN (-15 -1305 ((-519) |#1|)) (-15 -3181 ((-519) |#1|)) (-15 -4018 ((-705) (-705))) (-15 -4018 ((-705)))) |%noBranch|)) +((-3152 (((-585 (-519)) (-519)) 59)) (-1320 (((-108) (-154 (-519))) 63)) (-1921 (((-390 (-154 (-519))) (-154 (-519))) 58))) +(((-417) (-10 -7 (-15 -1921 ((-390 (-154 (-519))) (-154 (-519)))) (-15 -3152 ((-585 (-519)) (-519))) (-15 -1320 ((-108) (-154 (-519)))))) (T -417)) +((-1320 (*1 *2 *3) (-12 (-5 *3 (-154 (-519))) (-5 *2 (-108)) (-5 *1 (-417)))) (-3152 (*1 *2 *3) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-417)) (-5 *3 (-519)))) (-1921 (*1 *2 *3) (-12 (-5 *2 (-390 (-154 (-519)))) (-5 *1 (-417)) (-5 *3 (-154 (-519)))))) +(-10 -7 (-15 -1921 ((-390 (-154 (-519))) (-154 (-519)))) (-15 -3152 ((-585 (-519)) (-519))) (-15 -1320 ((-108) (-154 (-519))))) +((-3463 ((|#4| |#4| (-585 |#4|)) 59)) (-2088 (((-585 |#4|) (-585 |#4|) (-1065) (-1065)) 17) (((-585 |#4|) (-585 |#4|) (-1065)) 16) (((-585 |#4|) (-585 |#4|)) 11))) +(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3463 (|#4| |#4| (-585 |#4|))) (-15 -2088 ((-585 |#4|) (-585 |#4|))) (-15 -2088 ((-585 |#4|) (-585 |#4|) (-1065))) (-15 -2088 ((-585 |#4|) (-585 |#4|) (-1065) (-1065)))) (-280) (-727) (-782) (-876 |#1| |#2| |#3|)) (T -418)) +((-2088 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1065)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-280)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2088 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1065)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-280)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-280)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3463 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *4 *5 *6)) (-4 *4 (-280)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-418 *4 *5 *6 *2))))) +(-10 -7 (-15 -3463 (|#4| |#4| (-585 |#4|))) (-15 -2088 ((-585 |#4|) (-585 |#4|))) (-15 -2088 ((-585 |#4|) (-585 |#4|) (-1065))) (-15 -2088 ((-585 |#4|) (-585 |#4|) (-1065) (-1065)))) +((-3838 (((-585 (-585 |#4|)) (-585 |#4|) (-108)) 71) (((-585 (-585 |#4|)) (-585 |#4|)) 70) (((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|) (-108)) 64) (((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|)) 65)) (-1864 (((-585 (-585 |#4|)) (-585 |#4|) (-108)) 41) (((-585 (-585 |#4|)) (-585 |#4|)) 61))) +(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 ((-585 (-585 |#4|)) (-585 |#4|))) (-15 -1864 ((-585 (-585 |#4|)) (-585 |#4|) (-108))) (-15 -3838 ((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|))) (-15 -3838 ((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|) (-108))) (-15 -3838 ((-585 (-585 |#4|)) (-585 |#4|))) (-15 -3838 ((-585 (-585 |#4|)) (-585 |#4|) (-108)))) (-13 (-280) (-135)) (-727) (-782) (-876 |#1| |#2| |#3|)) (T -419)) +((-3838 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-876 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-419 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-876 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-419 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-3838 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-876 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-419 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-3838 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-876 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-419 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-1864 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-876 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) (-5 *1 (-419 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) (-1864 (*1 *2 *3) (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-876 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-419 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) +(-10 -7 (-15 -1864 ((-585 (-585 |#4|)) (-585 |#4|))) (-15 -1864 ((-585 (-585 |#4|)) (-585 |#4|) (-108))) (-15 -3838 ((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|))) (-15 -3838 ((-585 (-585 |#4|)) (-585 |#4|) (-585 |#4|) (-108))) (-15 -3838 ((-585 (-585 |#4|)) (-585 |#4|))) (-15 -3838 ((-585 (-585 |#4|)) (-585 |#4|) (-108)))) +((-3017 (((-705) |#4|) 12)) (-3941 (((-585 (-2 (|:| |totdeg| (-705)) (|:| -2714 |#4|))) |#4| (-705) (-585 (-2 (|:| |totdeg| (-705)) (|:| -2714 |#4|)))) 31)) (-2297 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1964 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2790 ((|#4| |#4| (-585 |#4|)) 40)) (-1285 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-585 |#4|)) 69)) (-2245 (((-1168) |#4|) 42)) (-1572 (((-1168) (-585 |#4|)) 51)) (-1259 (((-519) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-519) (-519) (-519)) 48)) (-3255 (((-1168) (-519)) 77)) (-2373 (((-585 |#4|) (-585 |#4|)) 75)) (-1847 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-705)) (|:| -2714 |#4|)) |#4| (-705)) 25)) (-1881 (((-519) |#4|) 76)) (-3653 ((|#4| |#4|) 29)) (-1920 (((-585 |#4|) (-585 |#4|) (-519) (-519)) 55)) (-2265 (((-519) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-519) (-519) (-519) (-519)) 87)) (-1811 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3002 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-3934 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-1394 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3649 (((-108) |#2| |#2|) 56)) (-3471 (((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2476 (((-108) |#2| |#2| |#2| |#2|) 59)) (-3616 ((|#4| |#4| (-585 |#4|)) 70))) +(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3616 (|#4| |#4| (-585 |#4|))) (-15 -2790 (|#4| |#4| (-585 |#4|))) (-15 -1920 ((-585 |#4|) (-585 |#4|) (-519) (-519))) (-15 -3002 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3649 ((-108) |#2| |#2|)) (-15 -2476 ((-108) |#2| |#2| |#2| |#2|)) (-15 -3471 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1394 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3934 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1285 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-585 |#4|))) (-15 -3653 (|#4| |#4|)) (-15 -3941 ((-585 (-2 (|:| |totdeg| (-705)) (|:| -2714 |#4|))) |#4| (-705) (-585 (-2 (|:| |totdeg| (-705)) (|:| -2714 |#4|))))) (-15 -1964 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2297 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2373 ((-585 |#4|) (-585 |#4|))) (-15 -1881 ((-519) |#4|)) (-15 -2245 ((-1168) |#4|)) (-15 -1259 ((-519) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-519) (-519) (-519))) (-15 -2265 ((-519) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-519) (-519) (-519) (-519))) (-15 -1572 ((-1168) (-585 |#4|))) (-15 -3255 ((-1168) (-519))) (-15 -1811 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1847 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-705)) (|:| -2714 |#4|)) |#4| (-705))) (-15 -3017 ((-705) |#4|))) (-423) (-727) (-782) (-876 |#1| |#2| |#3|)) (T -420)) +((-3017 (*1 *2 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-705)) (-5 *1 (-420 *4 *5 *6 *3)) (-4 *3 (-876 *4 *5 *6)))) (-1847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-705)) (|:| -2714 *4))) (-5 *5 (-705)) (-4 *4 (-876 *6 *7 *8)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-420 *6 *7 *8 *4)))) (-1811 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-705)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-727)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-420 *4 *5 *6 *7)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-519)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-1168)) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *7 (-876 *4 *5 *6)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-1168)) (-5 *1 (-420 *4 *5 *6 *7)))) (-2265 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-705)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-727)) (-4 *4 (-876 *5 *6 *7)) (-4 *5 (-423)) (-4 *7 (-782)) (-5 *1 (-420 *5 *6 *7 *4)))) (-1259 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-705)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-727)) (-4 *4 (-876 *5 *6 *7)) (-4 *5 (-423)) (-4 *7 (-782)) (-5 *1 (-420 *5 *6 *7 *4)))) (-2245 (*1 *2 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-1168)) (-5 *1 (-420 *4 *5 *6 *3)) (-4 *3 (-876 *4 *5 *6)))) (-1881 (*1 *2 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-519)) (-5 *1 (-420 *4 *5 *6 *3)) (-4 *3 (-876 *4 *5 *6)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-420 *3 *4 *5 *6)))) (-2297 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-705)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-727)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-423)) (-4 *5 (-782)) (-5 *1 (-420 *3 *4 *5 *6)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-705)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-727)) (-4 *2 (-876 *4 *5 *6)) (-5 *1 (-420 *4 *5 *6 *2)) (-4 *4 (-423)) (-4 *6 (-782)))) (-3941 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-585 (-2 (|:| |totdeg| (-705)) (|:| -2714 *3)))) (-5 *4 (-705)) (-4 *3 (-876 *5 *6 *7)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-420 *5 *6 *7 *3)))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-420 *3 *4 *5 *2)) (-4 *2 (-876 *3 *4 *5)))) (-1285 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-876 *5 *6 *7)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-420 *5 *6 *7 *3)))) (-3934 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-705)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-727)) (-4 *6 (-876 *4 *3 *5)) (-4 *4 (-423)) (-4 *5 (-782)) (-5 *1 (-420 *4 *3 *5 *6)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-705)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-727)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-423)) (-4 *5 (-782)) (-5 *1 (-420 *3 *4 *5 *6)))) (-3471 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-705)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-727)) (-4 *3 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *6 (-782)) (-5 *1 (-420 *4 *5 *6 *3)))) (-2476 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-423)) (-4 *3 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) (-5 *1 (-420 *4 *3 *5 *6)) (-4 *6 (-876 *4 *3 *5)))) (-3649 (*1 *2 *3 *3) (-12 (-4 *4 (-423)) (-4 *3 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) (-5 *1 (-420 *4 *3 *5 *6)) (-4 *6 (-876 *4 *3 *5)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-705)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-727)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-420 *4 *5 *6 *7)))) (-1920 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-519)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-420 *4 *5 *6 *7)))) (-2790 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-420 *4 *5 *6 *2)))) (-3616 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-420 *4 *5 *6 *2))))) +(-10 -7 (-15 -3616 (|#4| |#4| (-585 |#4|))) (-15 -2790 (|#4| |#4| (-585 |#4|))) (-15 -1920 ((-585 |#4|) (-585 |#4|) (-519) (-519))) (-15 -3002 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3649 ((-108) |#2| |#2|)) (-15 -2476 ((-108) |#2| |#2| |#2| |#2|)) (-15 -3471 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1394 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3934 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1285 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-585 |#4|))) (-15 -3653 (|#4| |#4|)) (-15 -3941 ((-585 (-2 (|:| |totdeg| (-705)) (|:| -2714 |#4|))) |#4| (-705) (-585 (-2 (|:| |totdeg| (-705)) (|:| -2714 |#4|))))) (-15 -1964 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2297 ((-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-585 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2373 ((-585 |#4|) (-585 |#4|))) (-15 -1881 ((-519) |#4|)) (-15 -2245 ((-1168) |#4|)) (-15 -1259 ((-519) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-519) (-519) (-519))) (-15 -2265 ((-519) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-519) (-519) (-519) (-519))) (-15 -1572 ((-1168) (-585 |#4|))) (-15 -3255 ((-1168) (-519))) (-15 -1811 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1847 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-705)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-705)) (|:| -2714 |#4|)) |#4| (-705))) (-15 -3017 ((-705) |#4|))) +((-2933 ((|#4| |#4| (-585 |#4|)) 22 (|has| |#1| (-335)))) (-1835 (((-585 |#4|) (-585 |#4|) (-1065) (-1065)) 42) (((-585 |#4|) (-585 |#4|) (-1065)) 41) (((-585 |#4|) (-585 |#4|)) 36))) +(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1835 ((-585 |#4|) (-585 |#4|))) (-15 -1835 ((-585 |#4|) (-585 |#4|) (-1065))) (-15 -1835 ((-585 |#4|) (-585 |#4|) (-1065) (-1065))) (IF (|has| |#1| (-335)) (-15 -2933 (|#4| |#4| (-585 |#4|))) |%noBranch|)) (-423) (-727) (-782) (-876 |#1| |#2| |#3|)) (T -421)) +((-2933 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *4 *5 *6)) (-4 *4 (-335)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-421 *4 *5 *6 *2)))) (-1835 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1065)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-421 *4 *5 *6 *7)))) (-1835 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-1065)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-421 *4 *5 *6 *7)))) (-1835 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-421 *3 *4 *5 *6))))) +(-10 -7 (-15 -1835 ((-585 |#4|) (-585 |#4|))) (-15 -1835 ((-585 |#4|) (-585 |#4|) (-1065))) (-15 -1835 ((-585 |#4|) (-585 |#4|) (-1065) (-1065))) (IF (|has| |#1| (-335)) (-15 -2933 (|#4| |#4| (-585 |#4|))) |%noBranch|)) +((-2254 (($ $ $) 14) (($ (-585 $)) 21)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 41)) (-2292 (($ $ $) NIL) (($ (-585 $)) 22))) +(((-422 |#1|) (-10 -8 (-15 -1715 ((-1078 |#1|) (-1078 |#1|) (-1078 |#1|))) (-15 -2254 (|#1| (-585 |#1|))) (-15 -2254 (|#1| |#1| |#1|)) (-15 -2292 (|#1| (-585 |#1|))) (-15 -2292 (|#1| |#1| |#1|))) (-423)) (T -422)) +NIL +(-10 -8 (-15 -1715 ((-1078 |#1|) (-1078 |#1|) (-1078 |#1|))) (-15 -2254 (|#1| (-585 |#1|))) (-15 -2254 (|#1| |#1| |#1|)) (-15 -2292 (|#1| (-585 |#1|))) (-15 -2292 (|#1| |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-2261 (((-3 $ "failed") $ $) 42)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-423) (-1194)) (T -423)) +((-2292 (*1 *1 *1 *1) (-4 *1 (-423))) (-2292 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-423)))) (-2254 (*1 *1 *1 *1) (-4 *1 (-423))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-423)))) (-1715 (*1 *2 *2 *2) (-12 (-5 *2 (-1078 *1)) (-4 *1 (-423))))) +(-13 (-511) (-10 -8 (-15 -2292 ($ $ $)) (-15 -2292 ($ (-585 $))) (-15 -2254 ($ $ $)) (-15 -2254 ($ (-585 $))) (-15 -1715 ((-1078 $) (-1078 $) (-1078 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-157) . T) ((-264) . T) ((-511) . T) ((-587 $) . T) ((-652 $) . T) ((-661) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3307 (((-3 $ "failed")) NIL (|has| (-379 (-879 |#1|)) (-511)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-2329 (((-1163 (-625 (-379 (-879 |#1|)))) (-1163 $)) NIL) (((-1163 (-625 (-379 (-879 |#1|))))) NIL)) (-2729 (((-1163 $)) NIL)) (-2249 (($) NIL T CONST)) (-3689 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) NIL)) (-1483 (((-3 $ "failed")) NIL (|has| (-379 (-879 |#1|)) (-511)))) (-3999 (((-625 (-379 (-879 |#1|))) (-1163 $)) NIL) (((-625 (-379 (-879 |#1|)))) NIL)) (-4172 (((-379 (-879 |#1|)) $) NIL)) (-3447 (((-625 (-379 (-879 |#1|))) $ (-1163 $)) NIL) (((-625 (-379 (-879 |#1|))) $) NIL)) (-2682 (((-3 $ "failed") $) NIL (|has| (-379 (-879 |#1|)) (-511)))) (-4087 (((-1078 (-879 (-379 (-879 |#1|))))) NIL (|has| (-379 (-879 |#1|)) (-335))) (((-1078 (-379 (-879 |#1|)))) 79 (|has| |#1| (-511)))) (-1588 (($ $ (-848)) NIL)) (-4147 (((-379 (-879 |#1|)) $) NIL)) (-1370 (((-1078 (-379 (-879 |#1|))) $) 77 (|has| (-379 (-879 |#1|)) (-511)))) (-2048 (((-379 (-879 |#1|)) (-1163 $)) NIL) (((-379 (-879 |#1|))) NIL)) (-3055 (((-1078 (-379 (-879 |#1|))) $) NIL)) (-2660 (((-108)) NIL)) (-2528 (($ (-1163 (-379 (-879 |#1|))) (-1163 $)) 97) (($ (-1163 (-379 (-879 |#1|)))) NIL)) (-4193 (((-3 $ "failed") $) NIL (|has| (-379 (-879 |#1|)) (-511)))) (-3229 (((-848)) NIL)) (-1373 (((-108)) NIL)) (-1432 (($ $ (-848)) NIL)) (-4029 (((-108)) NIL)) (-2061 (((-108)) NIL)) (-3288 (((-108)) NIL)) (-3780 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) NIL)) (-2253 (((-3 $ "failed")) NIL (|has| (-379 (-879 |#1|)) (-511)))) (-1684 (((-625 (-379 (-879 |#1|))) (-1163 $)) NIL) (((-625 (-379 (-879 |#1|)))) NIL)) (-3241 (((-379 (-879 |#1|)) $) NIL)) (-3130 (((-625 (-379 (-879 |#1|))) $ (-1163 $)) NIL) (((-625 (-379 (-879 |#1|))) $) NIL)) (-2076 (((-3 $ "failed") $) NIL (|has| (-379 (-879 |#1|)) (-511)))) (-3540 (((-1078 (-879 (-379 (-879 |#1|))))) NIL (|has| (-379 (-879 |#1|)) (-335))) (((-1078 (-379 (-879 |#1|)))) 78 (|has| |#1| (-511)))) (-1341 (($ $ (-848)) NIL)) (-3339 (((-379 (-879 |#1|)) $) NIL)) (-4024 (((-1078 (-379 (-879 |#1|))) $) 72 (|has| (-379 (-879 |#1|)) (-511)))) (-3069 (((-379 (-879 |#1|)) (-1163 $)) NIL) (((-379 (-879 |#1|))) NIL)) (-3978 (((-1078 (-379 (-879 |#1|))) $) NIL)) (-1554 (((-108)) NIL)) (-1266 (((-1065) $) NIL)) (-2618 (((-108)) NIL)) (-3284 (((-108)) NIL)) (-3163 (((-108)) NIL)) (-4139 (((-1029) $) NIL)) (-1364 (((-379 (-879 |#1|)) $ $) 66 (|has| |#1| (-511)))) (-3800 (((-379 (-879 |#1|)) $) 65 (|has| |#1| (-511)))) (-3718 (((-379 (-879 |#1|)) $) 89 (|has| |#1| (-511)))) (-1288 (((-1078 (-379 (-879 |#1|))) $) 83 (|has| |#1| (-511)))) (-2696 (((-379 (-879 |#1|))) 67 (|has| |#1| (-511)))) (-1485 (((-379 (-879 |#1|)) $ $) 54 (|has| |#1| (-511)))) (-2559 (((-379 (-879 |#1|)) $) 53 (|has| |#1| (-511)))) (-3582 (((-379 (-879 |#1|)) $) 88 (|has| |#1| (-511)))) (-2510 (((-1078 (-379 (-879 |#1|))) $) 82 (|has| |#1| (-511)))) (-2256 (((-379 (-879 |#1|))) 64 (|has| |#1| (-511)))) (-3825 (($) 95) (($ (-1082)) 101) (($ (-1163 (-1082))) 100) (($ (-1163 $)) 90) (($ (-1082) (-1163 $)) 99) (($ (-1163 (-1082)) (-1163 $)) 98)) (-1885 (((-108)) NIL)) (-2598 (((-379 (-879 |#1|)) $ (-519)) NIL)) (-3399 (((-1163 (-379 (-879 |#1|))) $ (-1163 $)) 92) (((-625 (-379 (-879 |#1|))) (-1163 $) (-1163 $)) NIL) (((-1163 (-379 (-879 |#1|))) $) 37) (((-625 (-379 (-879 |#1|))) (-1163 $)) NIL)) (-1446 (((-1163 (-379 (-879 |#1|))) $) NIL) (($ (-1163 (-379 (-879 |#1|)))) 34)) (-3842 (((-585 (-879 (-379 (-879 |#1|)))) (-1163 $)) NIL) (((-585 (-879 (-379 (-879 |#1|))))) NIL) (((-585 (-879 |#1|)) (-1163 $)) 93 (|has| |#1| (-511))) (((-585 (-879 |#1|))) 94 (|has| |#1| (-511)))) (-3190 (($ $ $) NIL)) (-2553 (((-108)) NIL)) (-2217 (((-790) $) NIL) (($ (-1163 (-379 (-879 |#1|)))) NIL)) (-2070 (((-1163 $)) 56)) (-2219 (((-585 (-1163 (-379 (-879 |#1|))))) NIL (|has| (-379 (-879 |#1|)) (-511)))) (-3645 (($ $ $ $) NIL)) (-1801 (((-108)) NIL)) (-1627 (($ (-625 (-379 (-879 |#1|))) $) NIL)) (-2025 (($ $ $) NIL)) (-3547 (((-108)) NIL)) (-1345 (((-108)) NIL)) (-3328 (((-108)) NIL)) (-3602 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) 91)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 52) (($ $ (-379 (-879 |#1|))) NIL) (($ (-379 (-879 |#1|)) $) NIL) (($ (-1049 |#2| (-379 (-879 |#1|))) $) NIL))) +(((-424 |#1| |#2| |#3| |#4|) (-13 (-389 (-379 (-879 |#1|))) (-587 (-1049 |#2| (-379 (-879 |#1|)))) (-10 -8 (-15 -2217 ($ (-1163 (-379 (-879 |#1|))))) (-15 -3780 ((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed"))) (-15 -3689 ((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed"))) (-15 -3825 ($)) (-15 -3825 ($ (-1082))) (-15 -3825 ($ (-1163 (-1082)))) (-15 -3825 ($ (-1163 $))) (-15 -3825 ($ (-1082) (-1163 $))) (-15 -3825 ($ (-1163 (-1082)) (-1163 $))) (IF (|has| |#1| (-511)) (PROGN (-15 -3540 ((-1078 (-379 (-879 |#1|))))) (-15 -2510 ((-1078 (-379 (-879 |#1|))) $)) (-15 -2559 ((-379 (-879 |#1|)) $)) (-15 -3582 ((-379 (-879 |#1|)) $)) (-15 -4087 ((-1078 (-379 (-879 |#1|))))) (-15 -1288 ((-1078 (-379 (-879 |#1|))) $)) (-15 -3800 ((-379 (-879 |#1|)) $)) (-15 -3718 ((-379 (-879 |#1|)) $)) (-15 -1485 ((-379 (-879 |#1|)) $ $)) (-15 -2256 ((-379 (-879 |#1|)))) (-15 -1364 ((-379 (-879 |#1|)) $ $)) (-15 -2696 ((-379 (-879 |#1|)))) (-15 -3842 ((-585 (-879 |#1|)) (-1163 $))) (-15 -3842 ((-585 (-879 |#1|))))) |%noBranch|))) (-157) (-848) (-585 (-1082)) (-1163 (-625 |#1|))) (T -424)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1163 (-379 (-879 *3)))) (-4 *3 (-157)) (-14 *6 (-1163 (-625 *3))) (-5 *1 (-424 *3 *4 *5 *6)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))))) (-3780 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-424 *3 *4 *5 *6)) (|:| -2070 (-585 (-424 *3 *4 *5 *6))))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-3689 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-424 *3 *4 *5 *6)) (|:| -2070 (-585 (-424 *3 *4 *5 *6))))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-3825 (*1 *1) (-12 (-5 *1 (-424 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-848)) (-14 *4 (-585 (-1082))) (-14 *5 (-1163 (-625 *2))))) (-3825 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 *2)) (-14 *6 (-1163 (-625 *3))))) (-3825 (*1 *1 *2) (-12 (-5 *2 (-1163 (-1082))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-3825 (*1 *1 *2) (-12 (-5 *2 (-1163 (-424 *3 *4 *5 *6))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-3825 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-424 *4 *5 *6 *7))) (-5 *1 (-424 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-848)) (-14 *6 (-585 *2)) (-14 *7 (-1163 (-625 *4))))) (-3825 (*1 *1 *2 *3) (-12 (-5 *2 (-1163 (-1082))) (-5 *3 (-1163 (-424 *4 *5 *6 *7))) (-5 *1 (-424 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-848)) (-14 *6 (-585 (-1082))) (-14 *7 (-1163 (-625 *4))))) (-3540 (*1 *2) (-12 (-5 *2 (-1078 (-379 (-879 *3)))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-1078 (-379 (-879 *3)))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-4087 (*1 *2) (-12 (-5 *2 (-1078 (-379 (-879 *3)))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-1078 (-379 (-879 *3)))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-1485 (*1 *2 *1 *1) (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-2256 (*1 *2) (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-1364 (*1 *2 *1 *1) (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-2696 (*1 *2) (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-1163 (-424 *4 *5 *6 *7))) (-5 *2 (-585 (-879 *4))) (-5 *1 (-424 *4 *5 *6 *7)) (-4 *4 (-511)) (-4 *4 (-157)) (-14 *5 (-848)) (-14 *6 (-585 (-1082))) (-14 *7 (-1163 (-625 *4))))) (-3842 (*1 *2) (-12 (-5 *2 (-585 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(-13 (-389 (-379 (-879 |#1|))) (-587 (-1049 |#2| (-379 (-879 |#1|)))) (-10 -8 (-15 -2217 ($ (-1163 (-379 (-879 |#1|))))) (-15 -3780 ((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed"))) (-15 -3689 ((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed"))) (-15 -3825 ($)) (-15 -3825 ($ (-1082))) (-15 -3825 ($ (-1163 (-1082)))) (-15 -3825 ($ (-1163 $))) (-15 -3825 ($ (-1082) (-1163 $))) (-15 -3825 ($ (-1163 (-1082)) (-1163 $))) (IF (|has| |#1| (-511)) (PROGN (-15 -3540 ((-1078 (-379 (-879 |#1|))))) (-15 -2510 ((-1078 (-379 (-879 |#1|))) $)) (-15 -2559 ((-379 (-879 |#1|)) $)) (-15 -3582 ((-379 (-879 |#1|)) $)) (-15 -4087 ((-1078 (-379 (-879 |#1|))))) (-15 -1288 ((-1078 (-379 (-879 |#1|))) $)) (-15 -3800 ((-379 (-879 |#1|)) $)) (-15 -3718 ((-379 (-879 |#1|)) $)) (-15 -1485 ((-379 (-879 |#1|)) $ $)) (-15 -2256 ((-379 (-879 |#1|)))) (-15 -1364 ((-379 (-879 |#1|)) $ $)) (-15 -2696 ((-379 (-879 |#1|)))) (-15 -3842 ((-585 (-879 |#1|)) (-1163 $))) (-15 -3842 ((-585 (-879 |#1|))))) |%noBranch|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 13)) (-4083 (((-585 (-792 |#1|)) $) 74)) (-1283 (((-1078 $) $ (-792 |#1|)) 46) (((-1078 |#2|) $) 116)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#2| (-511)))) (-1410 (($ $) NIL (|has| |#2| (-511)))) (-3060 (((-108) $) NIL (|has| |#2| (-511)))) (-1976 (((-705) $) 21) (((-705) $ (-585 (-792 |#1|))) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-4043 (($ $) NIL (|has| |#2| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#2| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#2| "failed") $) 44) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#2| (-959 (-519)))) (((-3 (-792 |#1|) "failed") $) NIL)) (-1499 ((|#2| $) 42) (((-379 (-519)) $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#2| (-959 (-519)))) (((-792 |#1|) $) NIL)) (-1286 (($ $ $ (-792 |#1|)) NIL (|has| |#2| (-157)))) (-1638 (($ $ (-585 (-519))) 79)) (-3218 (($ $) 68)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL) (((-625 |#2|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#2| (-423))) (($ $ (-792 |#1|)) NIL (|has| |#2| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#2| (-836)))) (-4015 (($ $ |#2| |#3| $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-792 |#1|) (-813 (-351))) (|has| |#2| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-792 |#1|) (-813 (-519))) (|has| |#2| (-813 (-519)))))) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) 58)) (-4066 (($ (-1078 |#2|) (-792 |#1|)) 121) (($ (-1078 $) (-792 |#1|)) 52)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) 59)) (-4042 (($ |#2| |#3|) 28) (($ $ (-792 |#1|) (-705)) 30) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-792 |#1|)) NIL)) (-3695 ((|#3| $) NIL) (((-705) $ (-792 |#1|)) 50) (((-585 (-705)) $ (-585 (-792 |#1|))) 57)) (-2864 (($ $ $) NIL (|has| |#2| (-782)))) (-2489 (($ $ $) NIL (|has| |#2| (-782)))) (-3737 (($ (-1 |#3| |#3|) $) NIL)) (-1405 (($ (-1 |#2| |#2|) $) NIL)) (-2635 (((-3 (-792 |#1|) "failed") $) 39)) (-3185 (($ $) NIL)) (-3197 ((|#2| $) 41)) (-2254 (($ (-585 $)) NIL (|has| |#2| (-423))) (($ $ $) NIL (|has| |#2| (-423)))) (-1266 (((-1065) $) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| (-792 |#1|)) (|:| -1690 (-705))) "failed") $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) 40)) (-3173 ((|#2| $) 114)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#2| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#2| (-423))) (($ $ $) 126 (|has| |#2| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#2| (-836)))) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-511))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-511)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-792 |#1|) |#2|) 86) (($ $ (-585 (-792 |#1|)) (-585 |#2|)) 89) (($ $ (-792 |#1|) $) 84) (($ $ (-585 (-792 |#1|)) (-585 $)) 105)) (-3677 (($ $ (-792 |#1|)) NIL (|has| |#2| (-157)))) (-2181 (($ $ (-792 |#1|)) 53) (($ $ (-585 (-792 |#1|))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-4178 ((|#3| $) 67) (((-705) $ (-792 |#1|)) 37) (((-585 (-705)) $ (-585 (-792 |#1|))) 56)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| (-792 |#1|) (-560 (-819 (-351)))) (|has| |#2| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| (-792 |#1|) (-560 (-819 (-519)))) (|has| |#2| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| (-792 |#1|) (-560 (-495))) (|has| |#2| (-560 (-495)))))) (-3939 ((|#2| $) 123 (|has| |#2| (-423))) (($ $ (-792 |#1|)) NIL (|has| |#2| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-836))))) (-2217 (((-790) $) 142) (($ (-519)) NIL) (($ |#2|) 85) (($ (-792 |#1|)) 31) (($ (-379 (-519))) NIL (-3730 (|has| |#2| (-37 (-379 (-519)))) (|has| |#2| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#2| (-511)))) (-2988 (((-585 |#2|) $) NIL)) (-1220 ((|#2| $ |#3|) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#2| (-836))) (|has| |#2| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#2| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#2| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 16 T CONST)) (-3611 (($) 25 T CONST)) (-2242 (($ $ (-792 |#1|)) NIL) (($ $ (-585 (-792 |#1|))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-1586 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1632 (($ $ |#2|) 64 (|has| |#2| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 110)) (** (($ $ (-848)) NIL) (($ $ (-705)) 108)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 29) (($ $ (-379 (-519))) NIL (|has| |#2| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#2| (-37 (-379 (-519))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-425 |#1| |#2| |#3|) (-13 (-876 |#2| |#3| (-792 |#1|)) (-10 -8 (-15 -1638 ($ $ (-585 (-519)))))) (-585 (-1082)) (-968) (-214 (-3532 |#1|) (-705))) (T -425)) +((-1638 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-519))) (-14 *3 (-585 (-1082))) (-5 *1 (-425 *3 *4 *5)) (-4 *4 (-968)) (-4 *5 (-214 (-3532 *3) (-705)))))) +(-13 (-876 |#2| |#3| (-792 |#1|)) (-10 -8 (-15 -1638 ($ $ (-585 (-519)))))) +((-3193 (((-108) |#1| (-585 |#2|)) 66)) (-1639 (((-3 (-1163 (-585 |#2|)) "failed") (-705) |#1| (-585 |#2|)) 75)) (-3682 (((-3 (-585 |#2|) "failed") |#2| |#1| (-1163 (-585 |#2|))) 77)) (-2536 ((|#2| |#2| |#1|) 28)) (-2152 (((-705) |#2| (-585 |#2|)) 20))) +(((-426 |#1| |#2|) (-10 -7 (-15 -2536 (|#2| |#2| |#1|)) (-15 -2152 ((-705) |#2| (-585 |#2|))) (-15 -1639 ((-3 (-1163 (-585 |#2|)) "failed") (-705) |#1| (-585 |#2|))) (-15 -3682 ((-3 (-585 |#2|) "failed") |#2| |#1| (-1163 (-585 |#2|)))) (-15 -3193 ((-108) |#1| (-585 |#2|)))) (-280) (-1139 |#1|)) (T -426)) +((-3193 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *5)) (-4 *5 (-1139 *3)) (-4 *3 (-280)) (-5 *2 (-108)) (-5 *1 (-426 *3 *5)))) (-3682 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1163 (-585 *3))) (-4 *4 (-280)) (-5 *2 (-585 *3)) (-5 *1 (-426 *4 *3)) (-4 *3 (-1139 *4)))) (-1639 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-705)) (-4 *4 (-280)) (-4 *6 (-1139 *4)) (-5 *2 (-1163 (-585 *6))) (-5 *1 (-426 *4 *6)) (-5 *5 (-585 *6)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1139 *5)) (-4 *5 (-280)) (-5 *2 (-705)) (-5 *1 (-426 *5 *3)))) (-2536 (*1 *2 *2 *3) (-12 (-4 *3 (-280)) (-5 *1 (-426 *3 *2)) (-4 *2 (-1139 *3))))) +(-10 -7 (-15 -2536 (|#2| |#2| |#1|)) (-15 -2152 ((-705) |#2| (-585 |#2|))) (-15 -1639 ((-3 (-1163 (-585 |#2|)) "failed") (-705) |#1| (-585 |#2|))) (-15 -3682 ((-3 (-585 |#2|) "failed") |#2| |#1| (-1163 (-585 |#2|)))) (-15 -3193 ((-108) |#1| (-585 |#2|)))) +((-1921 (((-390 |#5|) |#5|) 24))) +(((-427 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1921 ((-390 |#5|) |#5|))) (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)) (-15 -1622 ((-3 $ "failed") (-1082))))) (-727) (-511) (-511) (-876 |#4| |#2| |#1|)) (T -427)) +((-1921 (*1 *2 *3) (-12 (-4 *4 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)) (-15 -1622 ((-3 $ "failed") (-1082)))))) (-4 *5 (-727)) (-4 *7 (-511)) (-5 *2 (-390 *3)) (-5 *1 (-427 *4 *5 *6 *7 *3)) (-4 *6 (-511)) (-4 *3 (-876 *7 *5 *4))))) +(-10 -7 (-15 -1921 ((-390 |#5|) |#5|))) +((-3285 ((|#3|) 36)) (-1715 (((-1078 |#4|) (-1078 |#4|) (-1078 |#4|)) 32))) +(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1715 ((-1078 |#4|) (-1078 |#4|) (-1078 |#4|))) (-15 -3285 (|#3|))) (-727) (-782) (-836) (-876 |#3| |#1| |#2|)) (T -428)) +((-3285 (*1 *2) (-12 (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-836)) (-5 *1 (-428 *3 *4 *2 *5)) (-4 *5 (-876 *2 *3 *4)))) (-1715 (*1 *2 *2 *2) (-12 (-5 *2 (-1078 *6)) (-4 *6 (-876 *5 *3 *4)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *5 (-836)) (-5 *1 (-428 *3 *4 *5 *6))))) +(-10 -7 (-15 -1715 ((-1078 |#4|) (-1078 |#4|) (-1078 |#4|))) (-15 -3285 (|#3|))) +((-1921 (((-390 (-1078 |#1|)) (-1078 |#1|)) 41))) +(((-429 |#1|) (-10 -7 (-15 -1921 ((-390 (-1078 |#1|)) (-1078 |#1|)))) (-280)) (T -429)) +((-1921 (*1 *2 *3) (-12 (-4 *4 (-280)) (-5 *2 (-390 (-1078 *4))) (-5 *1 (-429 *4)) (-5 *3 (-1078 *4))))) +(-10 -7 (-15 -1921 ((-390 (-1078 |#1|)) (-1078 |#1|)))) +((-3110 (((-51) |#2| (-1082) (-267 |#2|) (-1130 (-705))) 42) (((-51) (-1 |#2| (-519)) (-267 |#2|) (-1130 (-705))) 41) (((-51) |#2| (-1082) (-267 |#2|)) 35) (((-51) (-1 |#2| (-519)) (-267 |#2|)) 27)) (-2824 (((-51) |#2| (-1082) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519))) 80) (((-51) (-1 |#2| (-379 (-519))) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519))) 79) (((-51) |#2| (-1082) (-267 |#2|) (-1130 (-519))) 78) (((-51) (-1 |#2| (-519)) (-267 |#2|) (-1130 (-519))) 77) (((-51) |#2| (-1082) (-267 |#2|)) 72) (((-51) (-1 |#2| (-519)) (-267 |#2|)) 71)) (-3131 (((-51) |#2| (-1082) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519))) 66) (((-51) (-1 |#2| (-379 (-519))) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519))) 64)) (-3120 (((-51) |#2| (-1082) (-267 |#2|) (-1130 (-519))) 48) (((-51) (-1 |#2| (-519)) (-267 |#2|) (-1130 (-519))) 47))) +(((-430 |#1| |#2|) (-10 -7 (-15 -3110 ((-51) (-1 |#2| (-519)) (-267 |#2|))) (-15 -3110 ((-51) |#2| (-1082) (-267 |#2|))) (-15 -3110 ((-51) (-1 |#2| (-519)) (-267 |#2|) (-1130 (-705)))) (-15 -3110 ((-51) |#2| (-1082) (-267 |#2|) (-1130 (-705)))) (-15 -3120 ((-51) (-1 |#2| (-519)) (-267 |#2|) (-1130 (-519)))) (-15 -3120 ((-51) |#2| (-1082) (-267 |#2|) (-1130 (-519)))) (-15 -3131 ((-51) (-1 |#2| (-379 (-519))) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519)))) (-15 -3131 ((-51) |#2| (-1082) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519)))) (-15 -2824 ((-51) (-1 |#2| (-519)) (-267 |#2|))) (-15 -2824 ((-51) |#2| (-1082) (-267 |#2|))) (-15 -2824 ((-51) (-1 |#2| (-519)) (-267 |#2|) (-1130 (-519)))) (-15 -2824 ((-51) |#2| (-1082) (-267 |#2|) (-1130 (-519)))) (-15 -2824 ((-51) (-1 |#2| (-379 (-519))) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519)))) (-15 -2824 ((-51) |#2| (-1082) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519))))) (-13 (-511) (-782) (-959 (-519)) (-581 (-519))) (-13 (-27) (-1103) (-402 |#1|))) (T -430)) +((-2824 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-5 *6 (-1130 (-379 (-519)))) (-5 *7 (-379 (-519))) (-4 *3 (-13 (-27) (-1103) (-402 *8))) (-4 *8 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *8 *3)))) (-2824 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-379 (-519)))) (-5 *4 (-267 *8)) (-5 *5 (-1130 (-379 (-519)))) (-5 *6 (-379 (-519))) (-4 *8 (-13 (-27) (-1103) (-402 *7))) (-4 *7 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *7 *8)))) (-2824 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-5 *6 (-1130 (-519))) (-4 *3 (-13 (-27) (-1103) (-402 *7))) (-4 *7 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *7 *3)))) (-2824 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-519))) (-5 *4 (-267 *7)) (-5 *5 (-1130 (-519))) (-4 *7 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *6 *7)))) (-2824 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *6 *3)))) (-2824 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-519))) (-5 *4 (-267 *6)) (-4 *6 (-13 (-27) (-1103) (-402 *5))) (-4 *5 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *5 *6)))) (-3131 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-5 *6 (-1130 (-379 (-519)))) (-5 *7 (-379 (-519))) (-4 *3 (-13 (-27) (-1103) (-402 *8))) (-4 *8 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *8 *3)))) (-3131 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-379 (-519)))) (-5 *4 (-267 *8)) (-5 *5 (-1130 (-379 (-519)))) (-5 *6 (-379 (-519))) (-4 *8 (-13 (-27) (-1103) (-402 *7))) (-4 *7 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *7 *8)))) (-3120 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-5 *6 (-1130 (-519))) (-4 *3 (-13 (-27) (-1103) (-402 *7))) (-4 *7 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *7 *3)))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-519))) (-5 *4 (-267 *7)) (-5 *5 (-1130 (-519))) (-4 *7 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *6 *7)))) (-3110 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-5 *6 (-1130 (-705))) (-4 *3 (-13 (-27) (-1103) (-402 *7))) (-4 *7 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *7 *3)))) (-3110 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-519))) (-5 *4 (-267 *7)) (-5 *5 (-1130 (-705))) (-4 *7 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *6 *7)))) (-3110 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *6 *3)))) (-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-519))) (-5 *4 (-267 *6)) (-4 *6 (-13 (-27) (-1103) (-402 *5))) (-4 *5 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-51)) (-5 *1 (-430 *5 *6))))) +(-10 -7 (-15 -3110 ((-51) (-1 |#2| (-519)) (-267 |#2|))) (-15 -3110 ((-51) |#2| (-1082) (-267 |#2|))) (-15 -3110 ((-51) (-1 |#2| (-519)) (-267 |#2|) (-1130 (-705)))) (-15 -3110 ((-51) |#2| (-1082) (-267 |#2|) (-1130 (-705)))) (-15 -3120 ((-51) (-1 |#2| (-519)) (-267 |#2|) (-1130 (-519)))) (-15 -3120 ((-51) |#2| (-1082) (-267 |#2|) (-1130 (-519)))) (-15 -3131 ((-51) (-1 |#2| (-379 (-519))) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519)))) (-15 -3131 ((-51) |#2| (-1082) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519)))) (-15 -2824 ((-51) (-1 |#2| (-519)) (-267 |#2|))) (-15 -2824 ((-51) |#2| (-1082) (-267 |#2|))) (-15 -2824 ((-51) (-1 |#2| (-519)) (-267 |#2|) (-1130 (-519)))) (-15 -2824 ((-51) |#2| (-1082) (-267 |#2|) (-1130 (-519)))) (-15 -2824 ((-51) (-1 |#2| (-379 (-519))) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519)))) (-15 -2824 ((-51) |#2| (-1082) (-267 |#2|) (-1130 (-379 (-519))) (-379 (-519))))) +((-2536 ((|#2| |#2| |#1|) 15)) (-4013 (((-585 |#2|) |#2| (-585 |#2|) |#1| (-848)) 69)) (-3697 (((-2 (|:| |plist| (-585 |#2|)) (|:| |modulo| |#1|)) |#2| (-585 |#2|) |#1| (-848)) 60))) +(((-431 |#1| |#2|) (-10 -7 (-15 -3697 ((-2 (|:| |plist| (-585 |#2|)) (|:| |modulo| |#1|)) |#2| (-585 |#2|) |#1| (-848))) (-15 -4013 ((-585 |#2|) |#2| (-585 |#2|) |#1| (-848))) (-15 -2536 (|#2| |#2| |#1|))) (-280) (-1139 |#1|)) (T -431)) +((-2536 (*1 *2 *2 *3) (-12 (-4 *3 (-280)) (-5 *1 (-431 *3 *2)) (-4 *2 (-1139 *3)))) (-4013 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-585 *3)) (-5 *5 (-848)) (-4 *3 (-1139 *4)) (-4 *4 (-280)) (-5 *1 (-431 *4 *3)))) (-3697 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-848)) (-4 *5 (-280)) (-4 *3 (-1139 *5)) (-5 *2 (-2 (|:| |plist| (-585 *3)) (|:| |modulo| *5))) (-5 *1 (-431 *5 *3)) (-5 *4 (-585 *3))))) +(-10 -7 (-15 -3697 ((-2 (|:| |plist| (-585 |#2|)) (|:| |modulo| |#1|)) |#2| (-585 |#2|) |#1| (-848))) (-15 -4013 ((-585 |#2|) |#2| (-585 |#2|) |#1| (-848))) (-15 -2536 (|#2| |#2| |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 28)) (-2096 (($ |#3|) 25)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-3218 (($ $) 32)) (-2408 (($ |#2| |#4| $) 33)) (-4042 (($ |#2| (-648 |#3| |#4| |#5|)) 24)) (-3185 (((-648 |#3| |#4| |#5|) $) 15)) (-2650 ((|#3| $) 19)) (-3318 ((|#4| $) 17)) (-3197 ((|#2| $) 29)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-3421 (($ |#2| |#3| |#4|) 26)) (-3602 (($) 36 T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 34)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-432 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-652 |#6|) (-652 |#2|) (-10 -8 (-15 -3197 (|#2| $)) (-15 -3185 ((-648 |#3| |#4| |#5|) $)) (-15 -3318 (|#4| $)) (-15 -2650 (|#3| $)) (-15 -3218 ($ $)) (-15 -4042 ($ |#2| (-648 |#3| |#4| |#5|))) (-15 -2096 ($ |#3|)) (-15 -3421 ($ |#2| |#3| |#4|)) (-15 -2408 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-585 (-1082)) (-157) (-782) (-214 (-3532 |#1|) (-705)) (-1 (-108) (-2 (|:| -2770 |#3|) (|:| -1690 |#4|)) (-2 (|:| -2770 |#3|) (|:| -1690 |#4|))) (-876 |#2| |#4| (-792 |#1|))) (T -432)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-585 (-1082))) (-4 *4 (-157)) (-4 *6 (-214 (-3532 *3) (-705))) (-14 *7 (-1 (-108) (-2 (|:| -2770 *5) (|:| -1690 *6)) (-2 (|:| -2770 *5) (|:| -1690 *6)))) (-5 *1 (-432 *3 *4 *5 *6 *7 *2)) (-4 *5 (-782)) (-4 *2 (-876 *4 *6 (-792 *3))))) (-3197 (*1 *2 *1) (-12 (-14 *3 (-585 (-1082))) (-4 *5 (-214 (-3532 *3) (-705))) (-14 *6 (-1 (-108) (-2 (|:| -2770 *4) (|:| -1690 *5)) (-2 (|:| -2770 *4) (|:| -1690 *5)))) (-4 *2 (-157)) (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *4 (-782)) (-4 *7 (-876 *2 *5 (-792 *3))))) (-3185 (*1 *2 *1) (-12 (-14 *3 (-585 (-1082))) (-4 *4 (-157)) (-4 *6 (-214 (-3532 *3) (-705))) (-14 *7 (-1 (-108) (-2 (|:| -2770 *5) (|:| -1690 *6)) (-2 (|:| -2770 *5) (|:| -1690 *6)))) (-5 *2 (-648 *5 *6 *7)) (-5 *1 (-432 *3 *4 *5 *6 *7 *8)) (-4 *5 (-782)) (-4 *8 (-876 *4 *6 (-792 *3))))) (-3318 (*1 *2 *1) (-12 (-14 *3 (-585 (-1082))) (-4 *4 (-157)) (-14 *6 (-1 (-108) (-2 (|:| -2770 *5) (|:| -1690 *2)) (-2 (|:| -2770 *5) (|:| -1690 *2)))) (-4 *2 (-214 (-3532 *3) (-705))) (-5 *1 (-432 *3 *4 *5 *2 *6 *7)) (-4 *5 (-782)) (-4 *7 (-876 *4 *2 (-792 *3))))) (-2650 (*1 *2 *1) (-12 (-14 *3 (-585 (-1082))) (-4 *4 (-157)) (-4 *5 (-214 (-3532 *3) (-705))) (-14 *6 (-1 (-108) (-2 (|:| -2770 *2) (|:| -1690 *5)) (-2 (|:| -2770 *2) (|:| -1690 *5)))) (-4 *2 (-782)) (-5 *1 (-432 *3 *4 *2 *5 *6 *7)) (-4 *7 (-876 *4 *5 (-792 *3))))) (-3218 (*1 *1 *1) (-12 (-14 *2 (-585 (-1082))) (-4 *3 (-157)) (-4 *5 (-214 (-3532 *2) (-705))) (-14 *6 (-1 (-108) (-2 (|:| -2770 *4) (|:| -1690 *5)) (-2 (|:| -2770 *4) (|:| -1690 *5)))) (-5 *1 (-432 *2 *3 *4 *5 *6 *7)) (-4 *4 (-782)) (-4 *7 (-876 *3 *5 (-792 *2))))) (-4042 (*1 *1 *2 *3) (-12 (-5 *3 (-648 *5 *6 *7)) (-4 *5 (-782)) (-4 *6 (-214 (-3532 *4) (-705))) (-14 *7 (-1 (-108) (-2 (|:| -2770 *5) (|:| -1690 *6)) (-2 (|:| -2770 *5) (|:| -1690 *6)))) (-14 *4 (-585 (-1082))) (-4 *2 (-157)) (-5 *1 (-432 *4 *2 *5 *6 *7 *8)) (-4 *8 (-876 *2 *6 (-792 *4))))) (-2096 (*1 *1 *2) (-12 (-14 *3 (-585 (-1082))) (-4 *4 (-157)) (-4 *5 (-214 (-3532 *3) (-705))) (-14 *6 (-1 (-108) (-2 (|:| -2770 *2) (|:| -1690 *5)) (-2 (|:| -2770 *2) (|:| -1690 *5)))) (-5 *1 (-432 *3 *4 *2 *5 *6 *7)) (-4 *2 (-782)) (-4 *7 (-876 *4 *5 (-792 *3))))) (-3421 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-585 (-1082))) (-4 *2 (-157)) (-4 *4 (-214 (-3532 *5) (-705))) (-14 *6 (-1 (-108) (-2 (|:| -2770 *3) (|:| -1690 *4)) (-2 (|:| -2770 *3) (|:| -1690 *4)))) (-5 *1 (-432 *5 *2 *3 *4 *6 *7)) (-4 *3 (-782)) (-4 *7 (-876 *2 *4 (-792 *5))))) (-2408 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-585 (-1082))) (-4 *2 (-157)) (-4 *3 (-214 (-3532 *4) (-705))) (-14 *6 (-1 (-108) (-2 (|:| -2770 *5) (|:| -1690 *3)) (-2 (|:| -2770 *5) (|:| -1690 *3)))) (-5 *1 (-432 *4 *2 *5 *3 *6 *7)) (-4 *5 (-782)) (-4 *7 (-876 *2 *3 (-792 *4)))))) +(-13 (-652 |#6|) (-652 |#2|) (-10 -8 (-15 -3197 (|#2| $)) (-15 -3185 ((-648 |#3| |#4| |#5|) $)) (-15 -3318 (|#4| $)) (-15 -2650 (|#3| $)) (-15 -3218 ($ $)) (-15 -4042 ($ |#2| (-648 |#3| |#4| |#5|))) (-15 -2096 ($ |#3|)) (-15 -3421 ($ |#2| |#3| |#4|)) (-15 -2408 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3116 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35))) +(((-433 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3116 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-727) (-782) (-511) (-876 |#3| |#1| |#2|) (-13 (-959 (-379 (-519))) (-335) (-10 -8 (-15 -2217 ($ |#4|)) (-15 -2855 (|#4| $)) (-15 -2866 (|#4| $))))) (T -433)) +((-3116 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-782)) (-4 *5 (-727)) (-4 *6 (-511)) (-4 *7 (-876 *6 *5 *3)) (-5 *1 (-433 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-959 (-379 (-519))) (-335) (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $)))))))) +(-10 -7 (-15 -3116 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-1430 (((-108) $ $) NIL)) (-4083 (((-585 |#3|) $) 41)) (-2968 (((-108) $) NIL)) (-3146 (((-108) $) NIL (|has| |#1| (-511)))) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#3|) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-1640 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-3266 (((-108) $) NIL (|has| |#1| (-511)))) (-2542 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3609 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1276 (((-108) $) NIL (|has| |#1| (-511)))) (-1456 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-511)))) (-3596 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 |#4|)) 47)) (-1499 (($ (-585 |#4|)) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-1438 (($ |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-511)))) (-3874 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4221))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4221)))) (-3844 (((-585 |#4|) $) 18 (|has| $ (-6 -4221)))) (-4086 ((|#3| $) 45)) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#4|) $) 14 (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-3850 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) 21)) (-1360 (((-585 |#3|) $) NIL)) (-1219 (((-108) |#3| $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-2573 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-511)))) (-4139 (((-1029) $) NIL)) (-2395 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 (-267 |#4|))) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 39)) (-1548 (($) 17)) (-4155 (((-705) |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) (((-705) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) 16)) (-1446 (((-495) $) NIL (|has| |#4| (-560 (-495)))) (($ (-585 |#4|)) 49)) (-2228 (($ (-585 |#4|)) 13)) (-4175 (($ $ |#3|) NIL)) (-1982 (($ $ |#3|) NIL)) (-1272 (($ $ |#3|) NIL)) (-2217 (((-790) $) 38) (((-585 |#4|) $) 48)) (-1778 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 30)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-434 |#1| |#2| |#3| |#4|) (-13 (-900 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1446 ($ (-585 |#4|))) (-6 -4221) (-6 -4222))) (-968) (-727) (-782) (-982 |#1| |#2| |#3|)) (T -434)) +((-1446 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-434 *3 *4 *5 *6))))) +(-13 (-900 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1446 ($ (-585 |#4|))) (-6 -4221) (-6 -4222))) +((-3602 (($) 11)) (-3611 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-435 |#1| |#2| |#3|) (-10 -8 (-15 -3611 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3602 (|#1|))) (-436 |#2| |#3|) (-157) (-23)) (T -435)) +NIL +(-10 -8 (-15 -3611 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3602 (|#1|))) +((-1430 (((-108) $ $) 7)) (-1301 (((-3 |#1| "failed") $) 26)) (-1499 ((|#1| $) 25)) (-2792 (($ $ $) 23)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-4178 ((|#2| $) 19)) (-2217 (((-790) $) 11) (($ |#1|) 27)) (-3602 (($) 18 T CONST)) (-3611 (($) 24 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 15) (($ $ $) 13)) (-1614 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-436 |#1| |#2|) (-1194) (-157) (-23)) (T -436)) +((-3611 (*1 *1) (-12 (-4 *1 (-436 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-2792 (*1 *1 *1 *1) (-12 (-4 *1 (-436 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))) +(-13 (-441 |t#1| |t#2|) (-959 |t#1|) (-10 -8 (-15 (-3611) ($) -2730) (-15 -2792 ($ $ $)))) +(((-97) . T) ((-559 (-790)) . T) ((-441 |#1| |#2|) . T) ((-959 |#1|) . T) ((-1011) . T)) +((-2471 (((-1163 (-1163 (-519))) (-1163 (-1163 (-519))) (-848)) 18)) (-2905 (((-1163 (-1163 (-519))) (-848)) 16))) +(((-437) (-10 -7 (-15 -2471 ((-1163 (-1163 (-519))) (-1163 (-1163 (-519))) (-848))) (-15 -2905 ((-1163 (-1163 (-519))) (-848))))) (T -437)) +((-2905 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1163 (-1163 (-519)))) (-5 *1 (-437)))) (-2471 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 (-1163 (-519)))) (-5 *3 (-848)) (-5 *1 (-437))))) +(-10 -7 (-15 -2471 ((-1163 (-1163 (-519))) (-1163 (-1163 (-519))) (-848))) (-15 -2905 ((-1163 (-1163 (-519))) (-848)))) +((-1404 (((-519) (-519)) 30) (((-519)) 22)) (-3043 (((-519) (-519)) 26) (((-519)) 18)) (-3124 (((-519) (-519)) 28) (((-519)) 20)) (-1699 (((-108) (-108)) 12) (((-108)) 10)) (-3781 (((-108) (-108)) 11) (((-108)) 9)) (-3803 (((-108) (-108)) 24) (((-108)) 15))) +(((-438) (-10 -7 (-15 -3781 ((-108))) (-15 -1699 ((-108))) (-15 -3781 ((-108) (-108))) (-15 -1699 ((-108) (-108))) (-15 -3803 ((-108))) (-15 -3124 ((-519))) (-15 -3043 ((-519))) (-15 -1404 ((-519))) (-15 -3803 ((-108) (-108))) (-15 -3124 ((-519) (-519))) (-15 -3043 ((-519) (-519))) (-15 -1404 ((-519) (-519))))) (T -438)) +((-1404 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) (-3124 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438)))) (-1404 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) (-3043 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) (-3124 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) (-3803 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438)))) (-1699 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438)))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438)))) (-1699 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438)))) (-3781 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438))))) +(-10 -7 (-15 -3781 ((-108))) (-15 -1699 ((-108))) (-15 -3781 ((-108) (-108))) (-15 -1699 ((-108) (-108))) (-15 -3803 ((-108))) (-15 -3124 ((-519))) (-15 -3043 ((-519))) (-15 -1404 ((-519))) (-15 -3803 ((-108) (-108))) (-15 -3124 ((-519) (-519))) (-15 -3043 ((-519) (-519))) (-15 -1404 ((-519) (-519)))) +((-1430 (((-108) $ $) NIL)) (-1977 (((-585 (-351)) $) 27) (((-585 (-351)) $ (-585 (-351))) 91)) (-3483 (((-585 (-1006 (-351))) $) 14) (((-585 (-1006 (-351))) $ (-585 (-1006 (-351)))) 88)) (-3557 (((-585 (-585 (-870 (-201)))) (-585 (-585 (-870 (-201)))) (-585 (-801))) 42)) (-1474 (((-585 (-585 (-870 (-201)))) $) 84)) (-2789 (((-1168) $ (-870 (-201)) (-801)) 104)) (-2554 (($ $) 83) (($ (-585 (-585 (-870 (-201))))) 94) (($ (-585 (-585 (-870 (-201)))) (-585 (-801)) (-585 (-801)) (-585 (-848))) 93) (($ (-585 (-585 (-870 (-201)))) (-585 (-801)) (-585 (-801)) (-585 (-848)) (-585 (-238))) 95)) (-1266 (((-1065) $) NIL)) (-2583 (((-519) $) 66)) (-4139 (((-1029) $) NIL)) (-2908 (($) 92)) (-3125 (((-585 (-201)) (-585 (-585 (-870 (-201))))) 52)) (-2614 (((-1168) $ (-585 (-870 (-201))) (-801) (-801) (-848)) 98) (((-1168) $ (-870 (-201))) 100) (((-1168) $ (-870 (-201)) (-801) (-801) (-848)) 99)) (-2217 (((-790) $) 110) (($ (-585 (-585 (-870 (-201))))) 105)) (-2367 (((-1168) $ (-870 (-201))) 103)) (-1543 (((-108) $ $) NIL))) +(((-439) (-13 (-1011) (-10 -8 (-15 -2908 ($)) (-15 -2554 ($ $)) (-15 -2554 ($ (-585 (-585 (-870 (-201)))))) (-15 -2554 ($ (-585 (-585 (-870 (-201)))) (-585 (-801)) (-585 (-801)) (-585 (-848)))) (-15 -2554 ($ (-585 (-585 (-870 (-201)))) (-585 (-801)) (-585 (-801)) (-585 (-848)) (-585 (-238)))) (-15 -1474 ((-585 (-585 (-870 (-201)))) $)) (-15 -2583 ((-519) $)) (-15 -3483 ((-585 (-1006 (-351))) $)) (-15 -3483 ((-585 (-1006 (-351))) $ (-585 (-1006 (-351))))) (-15 -1977 ((-585 (-351)) $)) (-15 -1977 ((-585 (-351)) $ (-585 (-351)))) (-15 -2614 ((-1168) $ (-585 (-870 (-201))) (-801) (-801) (-848))) (-15 -2614 ((-1168) $ (-870 (-201)))) (-15 -2614 ((-1168) $ (-870 (-201)) (-801) (-801) (-848))) (-15 -2367 ((-1168) $ (-870 (-201)))) (-15 -2789 ((-1168) $ (-870 (-201)) (-801))) (-15 -2217 ($ (-585 (-585 (-870 (-201)))))) (-15 -2217 ((-790) $)) (-15 -3557 ((-585 (-585 (-870 (-201)))) (-585 (-585 (-870 (-201)))) (-585 (-801)))) (-15 -3125 ((-585 (-201)) (-585 (-585 (-870 (-201))))))))) (T -439)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-439)))) (-2908 (*1 *1) (-5 *1 (-439))) (-2554 (*1 *1 *1) (-5 *1 (-439))) (-2554 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *1 (-439)))) (-2554 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *3 (-585 (-801))) (-5 *4 (-585 (-848))) (-5 *1 (-439)))) (-2554 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *3 (-585 (-801))) (-5 *4 (-585 (-848))) (-5 *5 (-585 (-238))) (-5 *1 (-439)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *1 (-439)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-439)))) (-3483 (*1 *2 *1) (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *1 (-439)))) (-3483 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *1 (-439)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-585 (-351))) (-5 *1 (-439)))) (-1977 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-351))) (-5 *1 (-439)))) (-2614 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-585 (-870 (-201)))) (-5 *4 (-801)) (-5 *5 (-848)) (-5 *2 (-1168)) (-5 *1 (-439)))) (-2614 (*1 *2 *1 *3) (-12 (-5 *3 (-870 (-201))) (-5 *2 (-1168)) (-5 *1 (-439)))) (-2614 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-870 (-201))) (-5 *4 (-801)) (-5 *5 (-848)) (-5 *2 (-1168)) (-5 *1 (-439)))) (-2367 (*1 *2 *1 *3) (-12 (-5 *3 (-870 (-201))) (-5 *2 (-1168)) (-5 *1 (-439)))) (-2789 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-870 (-201))) (-5 *4 (-801)) (-5 *2 (-1168)) (-5 *1 (-439)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *1 (-439)))) (-3557 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *3 (-585 (-801))) (-5 *1 (-439)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *2 (-585 (-201))) (-5 *1 (-439))))) +(-13 (-1011) (-10 -8 (-15 -2908 ($)) (-15 -2554 ($ $)) (-15 -2554 ($ (-585 (-585 (-870 (-201)))))) (-15 -2554 ($ (-585 (-585 (-870 (-201)))) (-585 (-801)) (-585 (-801)) (-585 (-848)))) (-15 -2554 ($ (-585 (-585 (-870 (-201)))) (-585 (-801)) (-585 (-801)) (-585 (-848)) (-585 (-238)))) (-15 -1474 ((-585 (-585 (-870 (-201)))) $)) (-15 -2583 ((-519) $)) (-15 -3483 ((-585 (-1006 (-351))) $)) (-15 -3483 ((-585 (-1006 (-351))) $ (-585 (-1006 (-351))))) (-15 -1977 ((-585 (-351)) $)) (-15 -1977 ((-585 (-351)) $ (-585 (-351)))) (-15 -2614 ((-1168) $ (-585 (-870 (-201))) (-801) (-801) (-848))) (-15 -2614 ((-1168) $ (-870 (-201)))) (-15 -2614 ((-1168) $ (-870 (-201)) (-801) (-801) (-848))) (-15 -2367 ((-1168) $ (-870 (-201)))) (-15 -2789 ((-1168) $ (-870 (-201)) (-801))) (-15 -2217 ($ (-585 (-585 (-870 (-201)))))) (-15 -2217 ((-790) $)) (-15 -3557 ((-585 (-585 (-870 (-201)))) (-585 (-585 (-870 (-201)))) (-585 (-801)))) (-15 -3125 ((-585 (-201)) (-585 (-585 (-870 (-201)))))))) +((-1623 (($ $) NIL) (($ $ $) 11))) +(((-440 |#1| |#2| |#3|) (-10 -8 (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|))) (-441 |#2| |#3|) (-157) (-23)) (T -440)) +NIL +(-10 -8 (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-4178 ((|#2| $) 19)) (-2217 (((-790) $) 11)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 15) (($ $ $) 13)) (-1614 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-441 |#1| |#2|) (-1194) (-157) (-23)) (T -441)) +((-4178 (*1 *2 *1) (-12 (-4 *1 (-441 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23)))) (-3602 (*1 *1) (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1623 (*1 *1 *1) (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1614 (*1 *1 *1 *1) (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1623 (*1 *1 *1 *1) (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))) +(-13 (-1011) (-10 -8 (-15 -4178 (|t#2| $)) (-15 (-3602) ($) -2730) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1623 ($ $)) (-15 -1614 ($ $ $)) (-15 -1623 ($ $ $)))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-3081 (((-3 (-585 (-451 |#1| |#2|)) "failed") (-585 (-451 |#1| |#2|)) (-585 (-792 |#1|))) 90)) (-2925 (((-585 (-585 (-223 |#1| |#2|))) (-585 (-223 |#1| |#2|)) (-585 (-792 |#1|))) 88)) (-1526 (((-2 (|:| |dpolys| (-585 (-223 |#1| |#2|))) (|:| |coords| (-585 (-519)))) (-585 (-223 |#1| |#2|)) (-585 (-792 |#1|))) 58))) +(((-442 |#1| |#2| |#3|) (-10 -7 (-15 -2925 ((-585 (-585 (-223 |#1| |#2|))) (-585 (-223 |#1| |#2|)) (-585 (-792 |#1|)))) (-15 -3081 ((-3 (-585 (-451 |#1| |#2|)) "failed") (-585 (-451 |#1| |#2|)) (-585 (-792 |#1|)))) (-15 -1526 ((-2 (|:| |dpolys| (-585 (-223 |#1| |#2|))) (|:| |coords| (-585 (-519)))) (-585 (-223 |#1| |#2|)) (-585 (-792 |#1|))))) (-585 (-1082)) (-423) (-423)) (T -442)) +((-1526 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-792 *5))) (-14 *5 (-585 (-1082))) (-4 *6 (-423)) (-5 *2 (-2 (|:| |dpolys| (-585 (-223 *5 *6))) (|:| |coords| (-585 (-519))))) (-5 *1 (-442 *5 *6 *7)) (-5 *3 (-585 (-223 *5 *6))) (-4 *7 (-423)))) (-3081 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-451 *4 *5))) (-5 *3 (-585 (-792 *4))) (-14 *4 (-585 (-1082))) (-4 *5 (-423)) (-5 *1 (-442 *4 *5 *6)) (-4 *6 (-423)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-792 *5))) (-14 *5 (-585 (-1082))) (-4 *6 (-423)) (-5 *2 (-585 (-585 (-223 *5 *6)))) (-5 *1 (-442 *5 *6 *7)) (-5 *3 (-585 (-223 *5 *6))) (-4 *7 (-423))))) +(-10 -7 (-15 -2925 ((-585 (-585 (-223 |#1| |#2|))) (-585 (-223 |#1| |#2|)) (-585 (-792 |#1|)))) (-15 -3081 ((-3 (-585 (-451 |#1| |#2|)) "failed") (-585 (-451 |#1| |#2|)) (-585 (-792 |#1|)))) (-15 -1526 ((-2 (|:| |dpolys| (-585 (-223 |#1| |#2|))) (|:| |coords| (-585 (-519)))) (-585 (-223 |#1| |#2|)) (-585 (-792 |#1|))))) +((-4193 (((-3 $ "failed") $) 11)) (-3333 (($ $ $) 20)) (-3190 (($ $ $) 21)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) 14)) (-1632 (($ $ $) 9)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) 19))) +(((-443 |#1|) (-10 -8 (-15 -3190 (|#1| |#1| |#1|)) (-15 -3333 (|#1| |#1| |#1|)) (-15 -3559 (|#1| |#1| (-519))) (-15 ** (|#1| |#1| (-519))) (-15 -1632 (|#1| |#1| |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1|)) (-15 -3559 (|#1| |#1| (-705))) (-15 ** (|#1| |#1| (-705))) (-15 -3559 (|#1| |#1| (-848))) (-15 ** (|#1| |#1| (-848)))) (-444)) (T -443)) +NIL +(-10 -8 (-15 -3190 (|#1| |#1| |#1|)) (-15 -3333 (|#1| |#1| |#1|)) (-15 -3559 (|#1| |#1| (-519))) (-15 ** (|#1| |#1| (-519))) (-15 -1632 (|#1| |#1| |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1|)) (-15 -3559 (|#1| |#1| (-705))) (-15 ** (|#1| |#1| (-705))) (-15 -3559 (|#1| |#1| (-848))) (-15 ** (|#1| |#1| (-848)))) +((-1430 (((-108) $ $) 7)) (-2249 (($) 20 T CONST)) (-4193 (((-3 $ "failed") $) 16)) (-1568 (((-108) $) 19)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 27)) (-4139 (((-1029) $) 10)) (-3333 (($ $ $) 23)) (-3190 (($ $ $) 22)) (-2217 (((-790) $) 11)) (-3559 (($ $ (-848)) 13) (($ $ (-705)) 17) (($ $ (-519)) 24)) (-3611 (($) 21 T CONST)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ $) 26)) (** (($ $ (-848)) 14) (($ $ (-705)) 18) (($ $ (-519)) 25)) (* (($ $ $) 15))) +(((-444) (-1194)) (T -444)) +((-3151 (*1 *1 *1) (-4 *1 (-444))) (-1632 (*1 *1 *1 *1) (-4 *1 (-444))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-444)) (-5 *2 (-519)))) (-3559 (*1 *1 *1 *2) (-12 (-4 *1 (-444)) (-5 *2 (-519)))) (-3333 (*1 *1 *1 *1) (-4 *1 (-444))) (-3190 (*1 *1 *1 *1) (-4 *1 (-444)))) +(-13 (-661) (-10 -8 (-15 -3151 ($ $)) (-15 -1632 ($ $ $)) (-15 ** ($ $ (-519))) (-15 -3559 ($ $ (-519))) (-6 -4218) (-15 -3333 ($ $ $)) (-15 -3190 ($ $ $)))) +(((-97) . T) ((-559 (-790)) . T) ((-661) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 (-996)) $) NIL)) (-1622 (((-1082) $) 17)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-4057 (($ $ (-379 (-519))) NIL) (($ $ (-379 (-519)) (-379 (-519))) NIL)) (-3088 (((-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|))) $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL (|has| |#1| (-335)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-2934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2824 (($ (-705) (-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|)))) NIL)) (-2981 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-1320 (((-108) $) NIL (|has| |#1| (-335)))) (-3943 (((-108) $) NIL)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-379 (-519)) $) NIL) (((-379 (-519)) $ (-379 (-519))) NIL)) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1855 (($ $ (-848)) NIL) (($ $ (-379 (-519))) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-379 (-519))) NIL) (($ $ (-996) (-379 (-519))) NIL) (($ $ (-585 (-996)) (-585 (-379 (-519)))) NIL)) (-1405 (($ (-1 |#1| |#1|) $) 22)) (-1254 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL (|has| |#1| (-335)))) (-4142 (($ $) 26 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) 33 (-3730 (-12 (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-885)) (|has| |#1| (-1103))))) (($ $ (-1159 |#2|)) 27 (|has| |#1| (-37 (-379 (-519)))))) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-335)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-3881 (($ $ (-379 (-519))) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-3325 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))))) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-2598 ((|#1| $ (-379 (-519))) NIL) (($ $ $) NIL (|has| (-379 (-519)) (-1023)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) 25 (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $ (-1159 |#2|)) 15)) (-4178 (((-379 (-519)) $) NIL)) (-1754 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1159 |#2|)) NIL) (($ (-1148 |#1| |#2| |#3|)) 9) (($ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $) NIL (|has| |#1| (-511)))) (-1220 ((|#1| $ (-379 (-519))) NIL)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-1896 ((|#1| $) 18)) (-1774 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1761 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-379 (-519))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) 24)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-445 |#1| |#2| |#3|) (-13 (-1144 |#1|) (-10 -8 (-15 -2217 ($ (-1159 |#2|))) (-15 -2217 ($ (-1148 |#1| |#2| |#3|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) (-968) (-1082) |#1|) (T -445)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-445 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1148 *3 *4 *5)) (-4 *3 (-968)) (-14 *4 (-1082)) (-14 *5 *3) (-5 *1 (-445 *3 *4 *5)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-445 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-445 *3 *4 *5)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3)))) +(-13 (-1144 |#1|) (-10 -8 (-15 -2217 ($ (-1159 |#2|))) (-15 -2217 ($ (-1148 |#1| |#2| |#3|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) +((-1430 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-1812 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1583 (((-1168) $ |#1| |#1|) NIL (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#2| $ |#1| |#2|) 18)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-2802 (((-3 |#2| "failed") |#1| $) 19)) (-2249 (($) NIL T CONST)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-2502 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-3 |#2| "failed") |#1| $) 16)) (-1438 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#2| $ |#1|) NIL)) (-3844 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 ((|#1| $) NIL (|has| |#1| (-782)))) (-3725 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-3890 ((|#1| $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4222))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3019 (((-585 |#1|) $) NIL)) (-4194 (((-108) |#1| $) NIL)) (-4152 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-1846 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-3909 (((-585 |#1|) $) NIL)) (-1506 (((-108) |#1| $) NIL)) (-4139 (((-1029) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-2331 ((|#2| $) NIL (|has| |#1| (-782)))) (-2395 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL)) (-3640 (($ $ |#2|) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2436 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011)))) (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-2217 (((-790) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790))) (|has| |#2| (-559 (-790)))))) (-3879 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-446 |#1| |#2| |#3| |#4|) (-1094 |#1| |#2|) (-1011) (-1011) (-1094 |#1| |#2|) |#2|) (T -446)) +NIL +(-1094 |#1| |#2|) +((-1430 (((-108) $ $) NIL)) (-3106 (((-585 (-2 (|:| -1664 $) (|:| -1556 (-585 |#4|)))) (-585 |#4|)) NIL)) (-2548 (((-585 $) (-585 |#4|)) NIL)) (-4083 (((-585 |#3|) $) NIL)) (-2968 (((-108) $) NIL)) (-3146 (((-108) $) NIL (|has| |#1| (-511)))) (-2943 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4145 ((|#4| |#4| $) NIL)) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#3|) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-1640 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2249 (($) NIL T CONST)) (-3266 (((-108) $) 26 (|has| |#1| (-511)))) (-2542 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3609 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1276 (((-108) $) NIL (|has| |#1| (-511)))) (-4117 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1456 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-511)))) (-3596 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 |#4|)) NIL)) (-1499 (($ (-585 |#4|)) NIL)) (-2343 (((-3 $ "failed") $) 39)) (-1570 ((|#4| |#4| $) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-1438 (($ |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-511)))) (-2459 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3805 ((|#4| |#4| $) NIL)) (-3874 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4221))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4221))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2109 (((-2 (|:| -1664 (-585 |#4|)) (|:| -1556 (-585 |#4|))) $) NIL)) (-3844 (((-585 |#4|) $) 16 (|has| $ (-6 -4221)))) (-3507 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4086 ((|#3| $) 33)) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#4|) $) 17 (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-3850 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) 21)) (-1360 (((-585 |#3|) $) NIL)) (-1219 (((-108) |#3| $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-1457 (((-3 |#4| "failed") $) 37)) (-4092 (((-585 |#4|) $) NIL)) (-2921 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3369 ((|#4| |#4| $) NIL)) (-3291 (((-108) $ $) NIL)) (-2573 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-511)))) (-3300 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1867 ((|#4| |#4| $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 (((-3 |#4| "failed") $) 35)) (-2395 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2781 (((-3 $ "failed") $ |#4|) 47)) (-3881 (($ $ |#4|) NIL)) (-2379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 (-267 |#4|))) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 15)) (-1548 (($) 13)) (-4178 (((-705) $) NIL)) (-4155 (((-705) |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) (((-705) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) 12)) (-1446 (((-495) $) NIL (|has| |#4| (-560 (-495))))) (-2228 (($ (-585 |#4|)) 20)) (-4175 (($ $ |#3|) 42)) (-1982 (($ $ |#3|) 44)) (-3282 (($ $) NIL)) (-1272 (($ $ |#3|) NIL)) (-2217 (((-790) $) 31) (((-585 |#4|) $) 40)) (-3156 (((-705) $) NIL (|has| |#3| (-340)))) (-3541 (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3735 (((-108) $ (-1 (-108) |#4| (-585 |#4|))) NIL)) (-1778 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-3059 (((-585 |#3|) $) NIL)) (-3980 (((-108) |#3| $) NIL)) (-1543 (((-108) $ $) NIL)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-447 |#1| |#2| |#3| |#4|) (-1111 |#1| |#2| |#3| |#4|) (-511) (-727) (-782) (-982 |#1| |#2| |#3|)) (T -447)) +NIL +(-1111 |#1| |#2| |#3| |#4|) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL)) (-1499 (((-519) $) NIL) (((-379 (-519)) $) NIL)) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-2888 (($) 18)) (-1568 (((-108) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-1446 (((-351) $) 22) (((-201) $) 25) (((-379 (-1078 (-519))) $) 19) (((-495) $) 53)) (-2217 (((-790) $) 51) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (((-201) $) 24) (((-351) $) 21)) (-3594 (((-705)) NIL)) (-1617 (((-108) $ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 36 T CONST)) (-3611 (($) 11 T CONST)) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL))) +(((-448) (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))) (-944) (-559 (-201)) (-559 (-351)) (-560 (-379 (-1078 (-519)))) (-560 (-495)) (-10 -8 (-15 -2888 ($))))) (T -448)) +((-2888 (*1 *1) (-5 *1 (-448)))) +(-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))) (-944) (-559 (-201)) (-559 (-351)) (-560 (-379 (-1078 (-519)))) (-560 (-495)) (-10 -8 (-15 -2888 ($)))) +((-1430 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-1812 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1583 (((-1168) $ |#1| |#1|) NIL (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#2| $ |#1| |#2|) 16)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-2802 (((-3 |#2| "failed") |#1| $) 20)) (-2249 (($) NIL T CONST)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-2502 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-3 |#2| "failed") |#1| $) 18)) (-1438 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#2| $ |#1|) NIL)) (-3844 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 ((|#1| $) NIL (|has| |#1| (-782)))) (-3725 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-3890 ((|#1| $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4222))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3019 (((-585 |#1|) $) 13)) (-4194 (((-108) |#1| $) NIL)) (-4152 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-1846 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-3909 (((-585 |#1|) $) NIL)) (-1506 (((-108) |#1| $) NIL)) (-4139 (((-1029) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-2331 ((|#2| $) NIL (|has| |#1| (-782)))) (-2395 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL)) (-3640 (($ $ |#2|) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) 19)) (-2598 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2436 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011)))) (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-2217 (((-790) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790))) (|has| |#2| (-559 (-790)))))) (-3879 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 11 (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3532 (((-705) $) 15 (|has| $ (-6 -4221))))) +(((-449 |#1| |#2| |#3|) (-13 (-1094 |#1| |#2|) (-10 -7 (-6 -4221))) (-1011) (-1011) (-1065)) (T -449)) +NIL +(-13 (-1094 |#1| |#2|) (-10 -7 (-6 -4221))) +((-3666 (((-519) (-519) (-519)) 7)) (-3487 (((-108) (-519) (-519) (-519) (-519)) 11)) (-1590 (((-1163 (-585 (-519))) (-705) (-705)) 23))) +(((-450) (-10 -7 (-15 -3666 ((-519) (-519) (-519))) (-15 -3487 ((-108) (-519) (-519) (-519) (-519))) (-15 -1590 ((-1163 (-585 (-519))) (-705) (-705))))) (T -450)) +((-1590 (*1 *2 *3 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1163 (-585 (-519)))) (-5 *1 (-450)))) (-3487 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-519)) (-5 *2 (-108)) (-5 *1 (-450)))) (-3666 (*1 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-450))))) +(-10 -7 (-15 -3666 ((-519) (-519) (-519))) (-15 -3487 ((-108) (-519) (-519) (-519) (-519))) (-15 -1590 ((-1163 (-585 (-519))) (-705) (-705)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 (-792 |#1|)) $) NIL)) (-1283 (((-1078 $) $ (-792 |#1|)) NIL) (((-1078 |#2|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#2| (-511)))) (-1410 (($ $) NIL (|has| |#2| (-511)))) (-3060 (((-108) $) NIL (|has| |#2| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 (-792 |#1|))) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-4043 (($ $) NIL (|has| |#2| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#2| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#2| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#2| (-959 (-519)))) (((-3 (-792 |#1|) "failed") $) NIL)) (-1499 ((|#2| $) NIL) (((-379 (-519)) $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#2| (-959 (-519)))) (((-792 |#1|) $) NIL)) (-1286 (($ $ $ (-792 |#1|)) NIL (|has| |#2| (-157)))) (-1638 (($ $ (-585 (-519))) NIL)) (-3218 (($ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL) (((-625 |#2|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#2| (-423))) (($ $ (-792 |#1|)) NIL (|has| |#2| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#2| (-836)))) (-4015 (($ $ |#2| (-452 (-3532 |#1|) (-705)) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-792 |#1|) (-813 (-351))) (|has| |#2| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-792 |#1|) (-813 (-519))) (|has| |#2| (-813 (-519)))))) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-4066 (($ (-1078 |#2|) (-792 |#1|)) NIL) (($ (-1078 $) (-792 |#1|)) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#2| (-452 (-3532 |#1|) (-705))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-792 |#1|)) NIL)) (-3695 (((-452 (-3532 |#1|) (-705)) $) NIL) (((-705) $ (-792 |#1|)) NIL) (((-585 (-705)) $ (-585 (-792 |#1|))) NIL)) (-2864 (($ $ $) NIL (|has| |#2| (-782)))) (-2489 (($ $ $) NIL (|has| |#2| (-782)))) (-3737 (($ (-1 (-452 (-3532 |#1|) (-705)) (-452 (-3532 |#1|) (-705))) $) NIL)) (-1405 (($ (-1 |#2| |#2|) $) NIL)) (-2635 (((-3 (-792 |#1|) "failed") $) NIL)) (-3185 (($ $) NIL)) (-3197 ((|#2| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#2| (-423))) (($ $ $) NIL (|has| |#2| (-423)))) (-1266 (((-1065) $) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| (-792 |#1|)) (|:| -1690 (-705))) "failed") $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) NIL)) (-3173 ((|#2| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#2| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#2| (-423))) (($ $ $) NIL (|has| |#2| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#2| (-836)))) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-511))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-511)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-792 |#1|) |#2|) NIL) (($ $ (-585 (-792 |#1|)) (-585 |#2|)) NIL) (($ $ (-792 |#1|) $) NIL) (($ $ (-585 (-792 |#1|)) (-585 $)) NIL)) (-3677 (($ $ (-792 |#1|)) NIL (|has| |#2| (-157)))) (-2181 (($ $ (-792 |#1|)) NIL) (($ $ (-585 (-792 |#1|))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-4178 (((-452 (-3532 |#1|) (-705)) $) NIL) (((-705) $ (-792 |#1|)) NIL) (((-585 (-705)) $ (-585 (-792 |#1|))) NIL)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| (-792 |#1|) (-560 (-819 (-351)))) (|has| |#2| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| (-792 |#1|) (-560 (-819 (-519)))) (|has| |#2| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| (-792 |#1|) (-560 (-495))) (|has| |#2| (-560 (-495)))))) (-3939 ((|#2| $) NIL (|has| |#2| (-423))) (($ $ (-792 |#1|)) NIL (|has| |#2| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#2|) NIL) (($ (-792 |#1|)) NIL) (($ (-379 (-519))) NIL (-3730 (|has| |#2| (-37 (-379 (-519)))) (|has| |#2| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#2| (-511)))) (-2988 (((-585 |#2|) $) NIL)) (-1220 ((|#2| $ (-452 (-3532 |#1|) (-705))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#2| (-836))) (|has| |#2| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#2| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#2| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-792 |#1|)) NIL) (($ $ (-585 (-792 |#1|))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-1586 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1632 (($ $ |#2|) NIL (|has| |#2| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL (|has| |#2| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#2| (-37 (-379 (-519))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-451 |#1| |#2|) (-13 (-876 |#2| (-452 (-3532 |#1|) (-705)) (-792 |#1|)) (-10 -8 (-15 -1638 ($ $ (-585 (-519)))))) (-585 (-1082)) (-968)) (T -451)) +((-1638 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-451 *3 *4)) (-14 *3 (-585 (-1082))) (-4 *4 (-968))))) +(-13 (-876 |#2| (-452 (-3532 |#1|) (-705)) (-792 |#1|)) (-10 -8 (-15 -1638 ($ $ (-585 (-519)))))) +((-1430 (((-108) $ $) NIL (|has| |#2| (-1011)))) (-3569 (((-108) $) NIL (|has| |#2| (-124)))) (-2096 (($ (-848)) NIL (|has| |#2| (-968)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2494 (($ $ $) NIL (|has| |#2| (-727)))) (-3167 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-1473 (((-108) $ (-705)) NIL)) (-1642 (((-705)) NIL (|has| |#2| (-340)))) (-2287 (((-519) $) NIL (|has| |#2| (-780)))) (-2421 ((|#2| $ (-519) |#2|) NIL (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (-12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011)))) (((-3 (-379 (-519)) "failed") $) NIL (-12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1011)))) (-1499 (((-519) $) NIL (-12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011)))) (((-379 (-519)) $) NIL (-12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) ((|#2| $) NIL (|has| |#2| (-1011)))) (-1562 (((-625 (-519)) (-625 $)) NIL (-12 (|has| |#2| (-581 (-519))) (|has| |#2| (-968)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (-12 (|has| |#2| (-581 (-519))) (|has| |#2| (-968)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL (|has| |#2| (-968))) (((-625 |#2|) (-625 $)) NIL (|has| |#2| (-968)))) (-4193 (((-3 $ "failed") $) NIL (|has| |#2| (-968)))) (-3314 (($) NIL (|has| |#2| (-340)))) (-3865 ((|#2| $ (-519) |#2|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#2| $ (-519)) 11)) (-3419 (((-108) $) NIL (|has| |#2| (-780)))) (-3844 (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1568 (((-108) $) NIL (|has| |#2| (-968)))) (-2143 (((-108) $) NIL (|has| |#2| (-780)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-3725 (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-3850 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#2| |#2|) $) NIL)) (-3334 (((-848) $) NIL (|has| |#2| (-340)))) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#2| (-1011)))) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-2770 (($ (-848)) NIL (|has| |#2| (-340)))) (-4139 (((-1029) $) NIL (|has| |#2| (-1011)))) (-2331 ((|#2| $) NIL (|has| (-519) (-782)))) (-3640 (($ $ |#2|) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#2| $ (-519) |#2|) NIL) ((|#2| $ (-519)) NIL)) (-1466 ((|#2| $ $) NIL (|has| |#2| (-968)))) (-1963 (($ (-1163 |#2|)) NIL)) (-2914 (((-126)) NIL (|has| |#2| (-335)))) (-2181 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1 |#2| |#2|) (-705)) NIL (|has| |#2| (-968))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-968)))) (-4155 (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-1163 |#2|) $) NIL) (($ (-519)) NIL (-3730 (-12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011))) (|has| |#2| (-968)))) (($ (-379 (-519))) NIL (-12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) (($ |#2|) NIL (|has| |#2| (-1011))) (((-790) $) NIL (|has| |#2| (-559 (-790))))) (-3594 (((-705)) NIL (|has| |#2| (-968)))) (-1778 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-1478 (($ $) NIL (|has| |#2| (-780)))) (-3559 (($ $ (-705)) NIL (|has| |#2| (-968))) (($ $ (-848)) NIL (|has| |#2| (-968)))) (-3602 (($) NIL (|has| |#2| (-124)) CONST)) (-3611 (($) NIL (|has| |#2| (-968)) CONST)) (-2242 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1 |#2| |#2|) (-705)) NIL (|has| |#2| (-968))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-968)))) (-1586 (((-108) $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1569 (((-108) $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1543 (((-108) $ $) NIL (|has| |#2| (-1011)))) (-1578 (((-108) $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1561 (((-108) $ $) 15 (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1632 (($ $ |#2|) NIL (|has| |#2| (-335)))) (-1623 (($ $ $) NIL (|has| |#2| (-968))) (($ $) NIL (|has| |#2| (-968)))) (-1614 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-705)) NIL (|has| |#2| (-968))) (($ $ (-848)) NIL (|has| |#2| (-968)))) (* (($ $ $) NIL (|has| |#2| (-968))) (($ (-519) $) NIL (|has| |#2| (-968))) (($ $ |#2|) NIL (|has| |#2| (-661))) (($ |#2| $) NIL (|has| |#2| (-661))) (($ (-705) $) NIL (|has| |#2| (-124))) (($ (-848) $) NIL (|has| |#2| (-25)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-452 |#1| |#2|) (-214 |#1| |#2|) (-705) (-727)) (T -452)) +NIL +(-214 |#1| |#2|) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) NIL)) (-2249 (($) NIL T CONST)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2511 (($ $ $) 32)) (-2500 (($ $ $) 31)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2489 ((|#1| $) 26)) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4152 ((|#1| $) 27)) (-1846 (($ |#1| $) 10)) (-2130 (($ (-585 |#1|)) 12)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-3212 ((|#1| $) 23)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) 9)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) 29)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3532 (((-705) $) 21 (|has| $ (-6 -4221))))) +(((-453 |#1|) (-13 (-893 |#1|) (-10 -8 (-15 -2130 ($ (-585 |#1|))))) (-782)) (T -453)) +((-2130 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-453 *3))))) +(-13 (-893 |#1|) (-10 -8 (-15 -2130 ($ (-585 |#1|))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-3874 (($ $) 69)) (-3454 (((-108) $) NIL)) (-1266 (((-1065) $) NIL)) (-2903 (((-385 |#2| (-379 |#2|) |#3| |#4|) $) 43)) (-4139 (((-1029) $) NIL)) (-1397 (((-3 |#4| "failed") $) 105)) (-2755 (($ (-385 |#2| (-379 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-519)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2285 (((-2 (|:| -1794 (-385 |#2| (-379 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2217 (((-790) $) 100)) (-3602 (($) 33 T CONST)) (-1543 (((-108) $ $) 107)) (-1623 (($ $) 72) (($ $ $) NIL)) (-1614 (($ $ $) 70)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 73))) +(((-454 |#1| |#2| |#3| |#4|) (-307 |#1| |#2| |#3| |#4|) (-335) (-1139 |#1|) (-1139 (-379 |#2|)) (-314 |#1| |#2| |#3|)) (T -454)) +NIL +(-307 |#1| |#2| |#3| |#4|) +((-2049 (((-519) (-585 (-519))) 30)) (-2029 ((|#1| (-585 |#1|)) 56)) (-1879 (((-585 |#1|) (-585 |#1|)) 57)) (-2092 (((-585 |#1|) (-585 |#1|)) 59)) (-2292 ((|#1| (-585 |#1|)) 58)) (-3939 (((-585 (-519)) (-585 |#1|)) 33))) +(((-455 |#1|) (-10 -7 (-15 -2292 (|#1| (-585 |#1|))) (-15 -2029 (|#1| (-585 |#1|))) (-15 -2092 ((-585 |#1|) (-585 |#1|))) (-15 -1879 ((-585 |#1|) (-585 |#1|))) (-15 -3939 ((-585 (-519)) (-585 |#1|))) (-15 -2049 ((-519) (-585 (-519))))) (-1139 (-519))) (T -455)) +((-2049 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-519)) (-5 *1 (-455 *4)) (-4 *4 (-1139 *2)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1139 (-519))) (-5 *2 (-585 (-519))) (-5 *1 (-455 *4)))) (-1879 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1139 (-519))) (-5 *1 (-455 *3)))) (-2092 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1139 (-519))) (-5 *1 (-455 *3)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-455 *2)) (-4 *2 (-1139 (-519))))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-455 *2)) (-4 *2 (-1139 (-519)))))) +(-10 -7 (-15 -2292 (|#1| (-585 |#1|))) (-15 -2029 (|#1| (-585 |#1|))) (-15 -2092 ((-585 |#1|) (-585 |#1|))) (-15 -1879 ((-585 |#1|) (-585 |#1|))) (-15 -3939 ((-585 (-519)) (-585 |#1|))) (-15 -2049 ((-519) (-585 (-519))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2157 (((-519) $) NIL (|has| (-519) (-280)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL (|has| (-519) (-755)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL) (((-3 (-1082) "failed") $) NIL (|has| (-519) (-959 (-1082)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| (-519) (-959 (-519)))) (((-3 (-519) "failed") $) NIL (|has| (-519) (-959 (-519))))) (-1499 (((-519) $) NIL) (((-1082) $) NIL (|has| (-519) (-959 (-1082)))) (((-379 (-519)) $) NIL (|has| (-519) (-959 (-519)))) (((-519) $) NIL (|has| (-519) (-959 (-519))))) (-2311 (($ $ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| (-519) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| (-519) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-625 (-519)) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| (-519) (-504)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3419 (((-108) $) NIL (|has| (-519) (-755)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (|has| (-519) (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (|has| (-519) (-813 (-351))))) (-1568 (((-108) $) NIL)) (-1534 (($ $) NIL)) (-2855 (((-519) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| (-519) (-1058)))) (-2143 (((-108) $) NIL (|has| (-519) (-755)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| (-519) (-782)))) (-1405 (($ (-1 (-519) (-519)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| (-519) (-1058)) CONST)) (-2989 (($ (-379 (-519))) 8)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) NIL (|has| (-519) (-280))) (((-379 (-519)) $) NIL)) (-1525 (((-519) $) NIL (|has| (-519) (-504)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2324 (($ $ (-585 (-519)) (-585 (-519))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-519) (-519)) NIL (|has| (-519) (-282 (-519)))) (($ $ (-267 (-519))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-585 (-267 (-519)))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-585 (-1082)) (-585 (-519))) NIL (|has| (-519) (-480 (-1082) (-519)))) (($ $ (-1082) (-519)) NIL (|has| (-519) (-480 (-1082) (-519))))) (-3129 (((-705) $) NIL)) (-2598 (($ $ (-519)) NIL (|has| (-519) (-260 (-519) (-519))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2181 (($ $) NIL (|has| (-519) (-209))) (($ $ (-705)) NIL (|has| (-519) (-209))) (($ $ (-1082)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1 (-519) (-519)) (-705)) NIL) (($ $ (-1 (-519) (-519))) NIL)) (-2724 (($ $) NIL)) (-2866 (((-519) $) NIL)) (-1446 (((-819 (-519)) $) NIL (|has| (-519) (-560 (-819 (-519))))) (((-819 (-351)) $) NIL (|has| (-519) (-560 (-819 (-351))))) (((-495) $) NIL (|has| (-519) (-560 (-495)))) (((-351) $) NIL (|has| (-519) (-944))) (((-201) $) NIL (|has| (-519) (-944)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| (-519) (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) 7) (($ (-519)) NIL) (($ (-1082)) NIL (|has| (-519) (-959 (-1082)))) (((-379 (-519)) $) NIL) (((-927 16) $) 9)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| (-519) (-836))) (|has| (-519) (-133))))) (-3594 (((-705)) NIL)) (-3617 (((-519) $) NIL (|has| (-519) (-504)))) (-1617 (((-108) $ $) NIL)) (-1478 (($ $) NIL (|has| (-519) (-755)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $) NIL (|has| (-519) (-209))) (($ $ (-705)) NIL (|has| (-519) (-209))) (($ $ (-1082)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1 (-519) (-519)) (-705)) NIL) (($ $ (-1 (-519) (-519))) NIL)) (-1586 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1569 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1561 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1632 (($ $ $) NIL) (($ (-519) (-519)) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ (-519) $) NIL) (($ $ (-519)) NIL))) +(((-456) (-13 (-916 (-519)) (-10 -8 (-15 -2217 ((-379 (-519)) $)) (-15 -2217 ((-927 16) $)) (-15 -3326 ((-379 (-519)) $)) (-15 -2989 ($ (-379 (-519))))))) (T -456)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-456)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-927 16)) (-5 *1 (-456)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-456)))) (-2989 (*1 *1 *2) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-456))))) +(-13 (-916 (-519)) (-10 -8 (-15 -2217 ((-379 (-519)) $)) (-15 -2217 ((-927 16) $)) (-15 -3326 ((-379 (-519)) $)) (-15 -2989 ($ (-379 (-519)))))) +((-3725 (((-585 |#2|) $) 22)) (-1933 (((-108) |#2| $) 27)) (-2379 (((-108) (-1 (-108) |#2|) $) 20)) (-2324 (($ $ (-585 (-267 |#2|))) 12) (($ $ (-267 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-585 |#2|) (-585 |#2|)) NIL)) (-4155 (((-705) (-1 (-108) |#2|) $) 21) (((-705) |#2| $) 25)) (-2217 (((-790) $) 36)) (-1778 (((-108) (-1 (-108) |#2|) $) 19)) (-1543 (((-108) $ $) 30)) (-3532 (((-705) $) 16))) +(((-457 |#1| |#2|) (-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -2324 (|#1| |#1| (-585 |#2|) (-585 |#2|))) (-15 -2324 (|#1| |#1| |#2| |#2|)) (-15 -2324 (|#1| |#1| (-267 |#2|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#2|)))) (-15 -1933 ((-108) |#2| |#1|)) (-15 -4155 ((-705) |#2| |#1|)) (-15 -3725 ((-585 |#2|) |#1|)) (-15 -4155 ((-705) (-1 (-108) |#2|) |#1|)) (-15 -2379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3532 ((-705) |#1|))) (-458 |#2|) (-1117)) (T -457)) +NIL +(-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -2324 (|#1| |#1| (-585 |#2|) (-585 |#2|))) (-15 -2324 (|#1| |#1| |#2| |#2|)) (-15 -2324 (|#1| |#1| (-267 |#2|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#2|)))) (-15 -1933 ((-108) |#2| |#1|)) (-15 -4155 ((-705) |#2| |#1|)) (-15 -3725 ((-585 |#2|) |#1|)) (-15 -4155 ((-705) (-1 (-108) |#2|) |#1|)) (-15 -2379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3532 ((-705) |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) 8)) (-2249 (($) 7 T CONST)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-458 |#1|) (-1194) (-1117)) (T -458)) +((-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-458 *3)) (-4 *3 (-1117)))) (-3850 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4222)) (-4 *1 (-458 *3)) (-4 *3 (-1117)))) (-1778 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4221)) (-4 *1 (-458 *4)) (-4 *4 (-1117)) (-5 *2 (-108)))) (-2379 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4221)) (-4 *1 (-458 *4)) (-4 *4 (-1117)) (-5 *2 (-108)))) (-4155 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4221)) (-4 *1 (-458 *4)) (-4 *4 (-1117)) (-5 *2 (-705)))) (-3844 (*1 *2 *1) (-12 (|has| *1 (-6 -4221)) (-4 *1 (-458 *3)) (-4 *3 (-1117)) (-5 *2 (-585 *3)))) (-3725 (*1 *2 *1) (-12 (|has| *1 (-6 -4221)) (-4 *1 (-458 *3)) (-4 *3 (-1117)) (-5 *2 (-585 *3)))) (-4155 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4221)) (-4 *1 (-458 *3)) (-4 *3 (-1117)) (-4 *3 (-1011)) (-5 *2 (-705)))) (-1933 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4221)) (-4 *1 (-458 *3)) (-4 *3 (-1117)) (-4 *3 (-1011)) (-5 *2 (-108))))) +(-13 (-33) (-10 -8 (IF (|has| |t#1| (-559 (-790))) (-6 (-559 (-790))) |%noBranch|) (IF (|has| |t#1| (-1011)) (-6 (-1011)) |%noBranch|) (IF (|has| |t#1| (-1011)) (IF (|has| |t#1| (-282 |t#1|)) (-6 (-282 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1405 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4222)) (-15 -3850 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4221)) (PROGN (-15 -1778 ((-108) (-1 (-108) |t#1|) $)) (-15 -2379 ((-108) (-1 (-108) |t#1|) $)) (-15 -4155 ((-705) (-1 (-108) |t#1|) $)) (-15 -3844 ((-585 |t#1|) $)) (-15 -3725 ((-585 |t#1|) $)) (IF (|has| |t#1| (-1011)) (PROGN (-15 -4155 ((-705) |t#1| $)) (-15 -1933 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-2958 (($ $) 15)) (-2934 (($ $) 24)) (-2981 (($ $) 12)) (-1754 (($ $) 10)) (-2969 (($ $) 17)) (-2946 (($ $) 22))) +(((-459 |#1|) (-10 -8 (-15 -2946 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2934 (|#1| |#1|)) (-15 -2958 (|#1| |#1|))) (-460)) (T -459)) +NIL +(-10 -8 (-15 -2946 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2934 (|#1| |#1|)) (-15 -2958 (|#1| |#1|))) +((-2958 (($ $) 11)) (-2934 (($ $) 10)) (-2981 (($ $) 9)) (-1754 (($ $) 8)) (-2969 (($ $) 7)) (-2946 (($ $) 6))) +(((-460) (-1194)) (T -460)) +((-2958 (*1 *1 *1) (-4 *1 (-460))) (-2934 (*1 *1 *1) (-4 *1 (-460))) (-2981 (*1 *1 *1) (-4 *1 (-460))) (-1754 (*1 *1 *1) (-4 *1 (-460))) (-2969 (*1 *1 *1) (-4 *1 (-460))) (-2946 (*1 *1 *1) (-4 *1 (-460)))) +(-13 (-10 -8 (-15 -2946 ($ $)) (-15 -2969 ($ $)) (-15 -1754 ($ $)) (-15 -2981 ($ $)) (-15 -2934 ($ $)) (-15 -2958 ($ $)))) +((-1921 (((-390 |#4|) |#4| (-1 (-390 |#2|) |#2|)) 42))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1921 ((-390 |#4|) |#4| (-1 (-390 |#2|) |#2|)))) (-335) (-1139 |#1|) (-13 (-335) (-135) (-659 |#1| |#2|)) (-1139 |#3|)) (T -461)) +((-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) (-4 *7 (-13 (-335) (-135) (-659 *5 *6))) (-5 *2 (-390 *3)) (-5 *1 (-461 *5 *6 *7 *3)) (-4 *3 (-1139 *7))))) +(-10 -7 (-15 -1921 ((-390 |#4|) |#4| (-1 (-390 |#2|) |#2|)))) +((-1430 (((-108) $ $) NIL)) (-1211 (((-585 $) (-1078 $) (-1082)) NIL) (((-585 $) (-1078 $)) NIL) (((-585 $) (-879 $)) NIL)) (-2977 (($ (-1078 $) (-1082)) NIL) (($ (-1078 $)) NIL) (($ (-879 $)) NIL)) (-3569 (((-108) $) 37)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-2386 (((-108) $ $) 63)) (-1890 (((-585 (-558 $)) $) 47)) (-3167 (((-3 $ "failed") $ $) NIL)) (-3364 (($ $ (-267 $)) NIL) (($ $ (-585 (-267 $))) NIL) (($ $ (-585 (-558 $)) (-585 $)) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-1934 (($ $) NIL)) (-3409 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-2825 (((-585 $) (-1078 $) (-1082)) NIL) (((-585 $) (-1078 $)) NIL) (((-585 $) (-879 $)) NIL)) (-4027 (($ (-1078 $) (-1082)) NIL) (($ (-1078 $)) NIL) (($ (-879 $)) NIL)) (-1301 (((-3 (-558 $) "failed") $) NIL) (((-3 (-519) "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL)) (-1499 (((-558 $) $) NIL) (((-519) $) NIL) (((-379 (-519)) $) 49)) (-2311 (($ $ $) NIL)) (-1562 (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-625 (-519)) (-625 $)) NIL) (((-2 (|:| -2488 (-625 (-379 (-519)))) (|:| |vec| (-1163 (-379 (-519))))) (-625 $) (-1163 $)) NIL) (((-625 (-379 (-519))) (-625 $)) NIL)) (-3874 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-1340 (($ $) NIL) (($ (-585 $)) NIL)) (-3866 (((-585 (-110)) $) NIL)) (-3752 (((-110) (-110)) NIL)) (-1568 (((-108) $) 40)) (-3164 (((-108) $) NIL (|has| $ (-959 (-519))))) (-2855 (((-1034 (-519) (-558 $)) $) 35)) (-1517 (($ $ (-519)) NIL)) (-3681 (((-1078 $) (-1078 $) (-558 $)) 78) (((-1078 $) (-1078 $) (-585 (-558 $))) 54) (($ $ (-558 $)) 67) (($ $ (-585 (-558 $))) 68)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2042 (((-1078 $) (-558 $)) 65 (|has| $ (-968)))) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1405 (($ (-1 $ $) (-558 $)) NIL)) (-3029 (((-3 (-558 $) "failed") $) NIL)) (-2254 (($ (-585 $)) NIL) (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-1268 (((-585 (-558 $)) $) NIL)) (-2959 (($ (-110) $) NIL) (($ (-110) (-585 $)) NIL)) (-2917 (((-108) $ (-110)) NIL) (((-108) $ (-1082)) NIL)) (-3151 (($ $) NIL)) (-4141 (((-705) $) NIL)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ (-585 $)) NIL) (($ $ $) NIL)) (-4040 (((-108) $ $) NIL) (((-108) $ (-1082)) NIL)) (-1921 (((-390 $) $) NIL)) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1295 (((-108) $) NIL (|has| $ (-959 (-519))))) (-2324 (($ $ (-558 $) $) NIL) (($ $ (-585 (-558 $)) (-585 $)) NIL) (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-585 (-1082)) (-585 (-1 $ $))) NIL) (($ $ (-585 (-1082)) (-585 (-1 $ (-585 $)))) NIL) (($ $ (-1082) (-1 $ (-585 $))) NIL) (($ $ (-1082) (-1 $ $)) NIL) (($ $ (-585 (-110)) (-585 (-1 $ $))) NIL) (($ $ (-585 (-110)) (-585 (-1 $ (-585 $)))) NIL) (($ $ (-110) (-1 $ (-585 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3129 (((-705) $) NIL)) (-2598 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-585 $)) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-1802 (($ $) NIL) (($ $ $) NIL)) (-2181 (($ $ (-705)) NIL) (($ $) 34)) (-2866 (((-1034 (-519) (-558 $)) $) 18)) (-1462 (($ $) NIL (|has| $ (-968)))) (-1446 (((-351) $) 92) (((-201) $) 100) (((-154 (-351)) $) 108)) (-2217 (((-790) $) NIL) (($ (-558 $)) NIL) (($ (-379 (-519))) NIL) (($ $) NIL) (($ (-519)) NIL) (($ (-1034 (-519) (-558 $))) 19)) (-3594 (((-705)) NIL)) (-1647 (($ $) NIL) (($ (-585 $)) NIL)) (-2631 (((-108) (-110)) 84)) (-1617 (((-108) $ $) NIL)) (-3559 (($ $ (-519)) NIL) (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (-3602 (($) 9 T CONST)) (-3611 (($) 20 T CONST)) (-2242 (($ $ (-705)) NIL) (($ $) NIL)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 22)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL)) (-1632 (($ $ $) 42)) (-1623 (($ $ $) NIL) (($ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-379 (-519))) NIL) (($ $ (-519)) 45) (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (* (($ (-379 (-519)) $) NIL) (($ $ (-379 (-519))) NIL) (($ $ $) 25) (($ (-519) $) NIL) (($ (-705) $) NIL) (($ (-848) $) NIL))) +(((-462) (-13 (-275) (-27) (-959 (-519)) (-959 (-379 (-519))) (-581 (-519)) (-944) (-581 (-379 (-519))) (-135) (-560 (-154 (-351))) (-209) (-10 -8 (-15 -2217 ($ (-1034 (-519) (-558 $)))) (-15 -2855 ((-1034 (-519) (-558 $)) $)) (-15 -2866 ((-1034 (-519) (-558 $)) $)) (-15 -3874 ($ $)) (-15 -2386 ((-108) $ $)) (-15 -3681 ((-1078 $) (-1078 $) (-558 $))) (-15 -3681 ((-1078 $) (-1078 $) (-585 (-558 $)))) (-15 -3681 ($ $ (-558 $))) (-15 -3681 ($ $ (-585 (-558 $))))))) (T -462)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1034 (-519) (-558 (-462)))) (-5 *1 (-462)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1034 (-519) (-558 (-462)))) (-5 *1 (-462)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-1034 (-519) (-558 (-462)))) (-5 *1 (-462)))) (-3874 (*1 *1 *1) (-5 *1 (-462))) (-2386 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-462)))) (-3681 (*1 *2 *2 *3) (-12 (-5 *2 (-1078 (-462))) (-5 *3 (-558 (-462))) (-5 *1 (-462)))) (-3681 (*1 *2 *2 *3) (-12 (-5 *2 (-1078 (-462))) (-5 *3 (-585 (-558 (-462)))) (-5 *1 (-462)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-558 (-462))) (-5 *1 (-462)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-558 (-462)))) (-5 *1 (-462))))) +(-13 (-275) (-27) (-959 (-519)) (-959 (-379 (-519))) (-581 (-519)) (-944) (-581 (-379 (-519))) (-135) (-560 (-154 (-351))) (-209) (-10 -8 (-15 -2217 ($ (-1034 (-519) (-558 $)))) (-15 -2855 ((-1034 (-519) (-558 $)) $)) (-15 -2866 ((-1034 (-519) (-558 $)) $)) (-15 -3874 ($ $)) (-15 -2386 ((-108) $ $)) (-15 -3681 ((-1078 $) (-1078 $) (-558 $))) (-15 -3681 ((-1078 $) (-1078 $) (-585 (-558 $)))) (-15 -3681 ($ $ (-558 $))) (-15 -3681 ($ $ (-585 (-558 $)))))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4222))) (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| |#1| (-782))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#1| $ (-519) |#1|) 25 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) NIL (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) 22 (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) 21)) (-3297 (((-519) (-1 (-108) |#1|) $) NIL) (((-519) |#1| $) NIL (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) NIL (|has| |#1| (-1011)))) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1822 (($ (-705) |#1|) 14)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) 12 (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) 23 (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1672 (($ |#1| $ (-519)) NIL) (($ $ $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2331 ((|#1| $) NIL (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3640 (($ $ |#1|) 10 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) 13)) (-2598 ((|#1| $ (-519) |#1|) NIL) ((|#1| $ (-519)) 24) (($ $ (-1130 (-519))) NIL)) (-3720 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) NIL)) (-4150 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-585 $)) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-3532 (((-705) $) 9 (|has| $ (-6 -4221))))) +(((-463 |#1| |#2|) (-19 |#1|) (-1117) (-519)) (T -463)) NIL (-19 |#1|) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) NIL)) (-3911 (($ $ (-517) (-461 |#1| |#3|)) NIL)) (-3101 (($ $ (-517) (-461 |#1| |#2|)) NIL)) (-3038 (($) NIL T CONST)) (-1397 (((-461 |#1| |#3|) $ (-517)) NIL)) (-2750 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2557 ((|#1| $ (-517) (-517)) NIL)) (-1525 (((-583 |#1|) $) NIL)) (-1409 (((-703) $) NIL)) (-3204 (($ (-703) (-703) |#1|) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2295 (((-461 |#1| |#2|) $ (-517)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-462 |#1| |#2| |#3|) (-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) (-1112) (-517) (-517)) (T -462)) -NIL -(-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) -((-3035 (((-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703)) 27)) (-2780 (((-583 (-1073 |#1|)) |#1| (-703) (-703) (-703)) 34)) (-2424 (((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)) 84))) -(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-583 (-1073 |#1|)) |#1| (-703) (-703) (-703))) (-15 -3035 ((-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -2424 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)))) (-319) (-1134 |#1|) (-1134 |#2|)) (T -463)) -((-2424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -3700 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1134 *7)) (-4 *7 (-1134 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -3700 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) (-3035 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -3700 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -3700 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1134 *6)))) (-2780 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1134 *3)) (-5 *2 (-583 (-1073 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1134 *5))))) -(-10 -7 (-15 -2780 ((-583 (-1073 |#1|)) |#1| (-703) (-703) (-703))) (-15 -3035 ((-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -2424 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)))) -((-2434 (((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 60)) (-3109 ((|#1| (-623 |#1|) |#1| (-703)) 25)) (-2790 (((-703) (-703) (-703)) 30)) (-2103 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 42)) (-3822 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 50) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 47)) (-4075 ((|#1| (-623 |#1|) (-623 |#1|) |#1| (-517)) 29)) (-1455 ((|#1| (-623 |#1|)) 18))) -(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -1455 (|#1| (-623 |#1|))) (-15 -3109 (|#1| (-623 |#1|) |#1| (-703))) (-15 -4075 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2790 ((-703) (-703) (-703))) (-15 -3822 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3822 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -2103 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2434 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))))) (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $)))) (-1134 |#1|) (-379 |#1| |#2|)) (T -464)) -((-2434 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2103 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3822 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-3822 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2790 (*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-4075 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *5 (-1134 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-3109 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-4 *5 (-1134 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1134 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4))))) -(-10 -7 (-15 -1455 (|#1| (-623 |#1|))) (-15 -3109 (|#1| (-623 |#1|) |#1| (-703))) (-15 -4075 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2790 ((-703) (-703) (-703))) (-15 -3822 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3822 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -2103 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2434 ((-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -3700 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))))) -((-2105 (((-107) $ $) NIL)) (-3670 (($ $) NIL)) (-2284 (($ $ $) 35)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-4109 (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4196)))) (-2149 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2436 (((-107) $ (-1125 (-517)) (-107)) NIL (|has| $ (-6 -4196))) (((-107) $ (-517) (-107)) 36 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1423 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1510 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-2750 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4196)))) (-2557 (((-107) $ (-517)) NIL)) (-1210 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1006))) (((-517) (-107) $) NIL (|has| (-107) (-1006))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1525 (((-583 (-107)) $) NIL (|has| $ (-6 -4195)))) (-4011 (($ $ $) 33)) (-2479 (($ $) NIL)) (-3243 (($ $ $) NIL)) (-3204 (($ (-703) (-107)) 23)) (-1353 (($ $ $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 8 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL)) (-3824 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-3687 (((-583 (-107)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL)) (-2737 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-107) (-107) (-107)) $ $) 30) (($ (-1 (-107) (-107)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-107) $) NIL (|has| (-517) (-779)))) (-1985 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2837 (($ $ (-107)) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006))))) (-2862 (((-583 (-107)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 24)) (-2612 (($ $ (-1125 (-517))) NIL) (((-107) $ (-517)) 18) (((-107) $ (-517) (-107)) NIL)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-4140 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-107) (-1006)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) 25)) (-3367 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2279 (($ (-583 (-107))) NIL)) (-4117 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2262 (((-787) $) 22)) (-1272 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4195)))) (-4024 (($ $ $) 31)) (-2806 (($ $) NIL)) (-3849 (($ $ $) NIL)) (-3940 (($ $ $) 39)) (-3950 (($ $) 37)) (-3927 (($ $ $) 38)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 26)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 27)) (-3838 (($ $ $) NIL)) (-3573 (((-703) $) 10 (|has| $ (-6 -4195))))) -(((-465 |#1|) (-13 (-118) (-10 -8 (-15 -3950 ($ $)) (-15 -3940 ($ $ $)) (-15 -3927 ($ $ $)))) (-517)) (T -465)) -((-3950 (*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3940 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3927 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517))))) -(-13 (-118) (-10 -8 (-15 -3950 ($ $)) (-15 -3940 ($ $ $)) (-15 -3927 ($ $ $)))) -((-3197 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1073 |#4|)) 35)) (-1534 (((-1073 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1073 |#4|)) 22)) (-1245 (((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1073 |#4|))) 46)) (-3458 (((-1073 (-1073 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1534 (|#2| (-1 |#1| |#4|) (-1073 |#4|))) (-15 -1534 ((-1073 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3197 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1073 |#4|))) (-15 -1245 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1073 |#4|)))) (-15 -3458 ((-1073 (-1073 |#4|)) (-1 |#4| |#1|) |#3|))) (-964) (-1134 |#1|) (-1134 |#2|) (-964)) (T -466)) -((-3458 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-964)) (-4 *7 (-964)) (-4 *6 (-1134 *5)) (-5 *2 (-1073 (-1073 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1134 *6)))) (-1245 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1073 *8))) (-4 *5 (-964)) (-4 *8 (-964)) (-4 *6 (-1134 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1134 *6)))) (-3197 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1073 *7)) (-4 *5 (-964)) (-4 *7 (-964)) (-4 *2 (-1134 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1134 *2)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-964)) (-4 *7 (-964)) (-4 *4 (-1134 *5)) (-5 *2 (-1073 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1134 *4)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1073 *7)) (-4 *5 (-964)) (-4 *7 (-964)) (-4 *2 (-1134 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1134 *2))))) -(-10 -7 (-15 -1534 (|#2| (-1 |#1| |#4|) (-1073 |#4|))) (-15 -1534 ((-1073 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3197 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1073 |#4|))) (-15 -1245 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1073 |#4|)))) (-15 -3458 ((-1073 (-1073 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2105 (((-107) $ $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3012 (((-1163) $) 18)) (-2612 (((-1060) $ (-1077)) 22)) (-1744 (((-1163) $) 14)) (-2262 (((-787) $) 20) (($ (-1060)) 19)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 8)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 7))) -(((-467) (-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $)) (-15 -2262 ($ (-1060)))))) (T -467)) -((-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1060)) (-5 *1 (-467)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-467)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-467)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-467))))) -(-13 (-779) (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) (-15 -3012 ((-1163) $)) (-15 -2262 ($ (-1060))))) -((-1955 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1703 ((|#1| |#4|) 10)) (-3253 ((|#3| |#4|) 17))) -(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1703 (|#1| |#4|)) (-15 -3253 (|#3| |#4|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-509) (-912 |#1|) (-343 |#1|) (-343 |#2|)) (T -468)) -((-1955 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) (-3253 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) (-1703 (*1 *2 *3) (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4))))) -(-10 -7 (-15 -1703 (|#1| |#4|)) (-15 -3253 (|#3| |#4|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2105 (((-107) $ $) NIL)) (-1229 (((-107) $ (-583 |#3|)) 103) (((-107) $) 104)) (-1992 (((-107) $) 146)) (-2966 (($ $ |#4|) 95) (($ $ |#4| (-583 |#3|)) 99)) (-1448 (((-1067 (-583 (-876 |#1|)) (-583 (-265 (-876 |#1|)))) (-583 |#4|)) 139 (|has| |#3| (-558 (-1077))))) (-2773 (($ $ $) 89) (($ $ |#4|) 87)) (-1690 (((-107) $) 145)) (-1751 (($ $) 107)) (-3232 (((-1060) $) NIL)) (-2187 (($ $ $) 81) (($ (-583 $)) 83)) (-2716 (((-107) |#4| $) 106)) (-3558 (((-107) $ $) 70)) (-4162 (($ (-583 |#4|)) 88)) (-4130 (((-1024) $) NIL)) (-3924 (($ (-583 |#4|)) 143)) (-2207 (((-107) $) 144)) (-1582 (($ $) 72)) (-2433 (((-583 |#4|) $) 56)) (-3750 (((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL)) (-1517 (((-107) |#4| $) 75)) (-1470 (((-517) $ (-583 |#3|)) 108) (((-517) $) 109)) (-2262 (((-787) $) 142) (($ (-583 |#4|)) 84)) (-1658 (($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $))) NIL)) (-1572 (((-107) $ $) 71)) (-1666 (($ $ $) 91)) (** (($ $ (-703)) 94)) (* (($ $ $) 93))) -(((-469 |#1| |#2| |#3| |#4|) (-13 (-1006) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1666 ($ $ $)) (-15 -1690 ((-107) $)) (-15 -1992 ((-107) $)) (-15 -1517 ((-107) |#4| $)) (-15 -3558 ((-107) $ $)) (-15 -2716 ((-107) |#4| $)) (-15 -1229 ((-107) $ (-583 |#3|))) (-15 -1229 ((-107) $)) (-15 -2187 ($ $ $)) (-15 -2187 ($ (-583 $))) (-15 -2773 ($ $ $)) (-15 -2773 ($ $ |#4|)) (-15 -1582 ($ $)) (-15 -3750 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1658 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -1470 ((-517) $ (-583 |#3|))) (-15 -1470 ((-517) $)) (-15 -1751 ($ $)) (-15 -4162 ($ (-583 |#4|))) (-15 -3924 ($ (-583 |#4|))) (-15 -2207 ((-107) $)) (-15 -2433 ((-583 |#4|) $)) (-15 -2262 ($ (-583 |#4|))) (-15 -2966 ($ $ |#4|)) (-15 -2966 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1077))) (-15 -1448 ((-1067 (-583 (-876 |#1|)) (-583 (-265 (-876 |#1|)))) (-583 |#4|))) |%noBranch|))) (-333) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -469)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-1666 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-1690 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-1992 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-1517 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))) (-3558 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-2716 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6)))) (-1229 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))) (-1229 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-2187 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-2187 (*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-2773 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-2773 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5)))) (-1582 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))) (-1658 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-1470 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))) (-1470 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-1751 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-2207 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-2433 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-2966 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5)))) (-2966 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-873 *4 *5 *6)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *5 *6)) (-4 *6 (-558 (-1077))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1067 (-583 (-876 *4)) (-583 (-265 (-876 *4))))) (-5 *1 (-469 *4 *5 *6 *7))))) -(-13 (-1006) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1666 ($ $ $)) (-15 -1690 ((-107) $)) (-15 -1992 ((-107) $)) (-15 -1517 ((-107) |#4| $)) (-15 -3558 ((-107) $ $)) (-15 -2716 ((-107) |#4| $)) (-15 -1229 ((-107) $ (-583 |#3|))) (-15 -1229 ((-107) $)) (-15 -2187 ($ $ $)) (-15 -2187 ($ (-583 $))) (-15 -2773 ($ $ $)) (-15 -2773 ($ $ |#4|)) (-15 -1582 ($ $)) (-15 -3750 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1658 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -1470 ((-517) $ (-583 |#3|))) (-15 -1470 ((-517) $)) (-15 -1751 ($ $)) (-15 -4162 ($ (-583 |#4|))) (-15 -3924 ($ (-583 |#4|))) (-15 -2207 ((-107) $)) (-15 -2433 ((-583 |#4|) $)) (-15 -2262 ($ (-583 |#4|))) (-15 -2966 ($ $ |#4|)) (-15 -2966 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1077))) (-15 -1448 ((-1067 (-583 (-876 |#1|)) (-583 (-265 (-876 |#1|)))) (-583 |#4|))) |%noBranch|))) -((-1242 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 146)) (-3261 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 147)) (-3114 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 105)) (-2022 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) NIL)) (-3559 (((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 149)) (-1532 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))) 161))) -(((-470 |#1| |#2|) (-10 -7 (-15 -1242 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3261 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2022 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3114 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3559 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1532 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))))) (-583 (-1077)) (-703)) (T -470)) -((-1532 (*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))) (-3559 (*1 *2 *3) (-12 (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1077))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-3261 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5))))) -(-10 -7 (-15 -1242 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3261 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2022 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3114 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3559 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -1532 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-2059 (($ |#1| |#2|) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3663 (($) 12 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) 11) (($ $ $) 24)) (-1666 (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 19))) -(((-471 |#1| |#2|) (-13 (-21) (-473 |#1| |#2|)) (-21) (-779)) (T -471)) -NIL -(-13 (-21) (-473 |#1| |#2|)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 12)) (-3038 (($) NIL T CONST)) (-2364 (($ $) 27)) (-2059 (($ |#1| |#2|) 24)) (-3312 (($ (-1 |#1| |#1|) $) 26)) (-2282 ((|#2| $) NIL)) (-2336 ((|#1| $) 28)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3663 (($) 10 T CONST)) (-1572 (((-107) $ $) NIL)) (-1666 (($ $ $) 18)) (* (($ (-845) $) NIL) (($ (-703) $) 23))) -(((-472 |#1| |#2|) (-13 (-23) (-473 |#1| |#2|)) (-23) (-779)) (T -472)) -NIL -(-13 (-23) (-473 |#1| |#2|)) -((-2105 (((-107) $ $) 7)) (-2364 (($ $) 13)) (-2059 (($ |#1| |#2|) 16)) (-3312 (($ (-1 |#1| |#1|) $) 17)) (-2282 ((|#2| $) 14)) (-2336 ((|#1| $) 15)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6))) -(((-473 |#1| |#2|) (-1189) (-1006) (-779)) (T -473)) -((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-779)))) (-2059 (*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-779)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1006)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-779)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-779))))) -(-13 (-1006) (-10 -8 (-15 -3312 ($ (-1 |t#1| |t#1|) $)) (-15 -2059 ($ |t#1| |t#2|)) (-15 -2336 (|t#1| $)) (-15 -2282 (|t#2| $)) (-15 -2364 ($ $)))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-2059 (($ |#1| |#2|) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3663 (($) NIL T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 13)) (-1666 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-845) $) NIL))) -(((-474 |#1| |#2|) (-13 (-724) (-473 |#1| |#2|)) (-724) (-779)) (T -474)) -NIL -(-13 (-724) (-473 |#1| |#2|)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3505 (($ $ $) 16)) (-1783 (((-3 $ "failed") $ $) 13)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-2059 (($ |#1| |#2|) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL)) (-3663 (($) NIL T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-845) $) NIL))) -(((-475 |#1| |#2|) (-13 (-725) (-473 |#1| |#2|)) (-725) (-779)) (T -475)) -NIL -(-13 (-725) (-473 |#1| |#2|)) -((-2105 (((-107) $ $) NIL)) (-2364 (($ $) 25)) (-2059 (($ |#1| |#2|) 22)) (-3312 (($ (-1 |#1| |#1|) $) 24)) (-2282 ((|#2| $) 27)) (-2336 ((|#1| $) 26)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 21)) (-1572 (((-107) $ $) 14))) -(((-476 |#1| |#2|) (-473 |#1| |#2|) (-1006) (-779)) (T -476)) -NIL -(-473 |#1| |#2|) -((-3552 (($ $ (-583 |#2|) (-583 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -3552 (|#1| |#1| |#2| |#3|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-478 |#2| |#3|) (-1006) (-1112)) (T -477)) -NIL -(-10 -8 (-15 -3552 (|#1| |#1| |#2| |#3|)) (-15 -3552 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) -((-3552 (($ $ (-583 |#1|) (-583 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-478 |#1| |#2|) (-1189) (-1006) (-1112)) (T -478)) -((-3552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1112)))) (-3552 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1112))))) -(-13 (-10 -8 (-15 -3552 ($ $ |t#1| |t#2|)) (-15 -3552 ($ $ (-583 |t#1|) (-583 |t#2|))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 16)) (-3747 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))) $) 18)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703) $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-2115 ((|#1| $ (-517)) 23)) (-2013 ((|#2| $ (-517)) 21)) (-3027 (($ (-1 |#1| |#1|) $) 46)) (-2198 (($ (-1 |#2| |#2|) $) 43)) (-3232 (((-1060) $) NIL)) (-3041 (($ $ $) 53 (|has| |#2| (-724)))) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 42) (($ |#1|) NIL)) (-1939 ((|#2| |#1| $) 49)) (-3663 (($) 11 T CONST)) (-1572 (((-107) $ $) 29)) (-1666 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-845) $) NIL) (($ (-703) $) 36) (($ |#2| |#1|) 31))) -(((-479 |#1| |#2| |#3|) (-293 |#1| |#2|) (-1006) (-123) |#2|) (T -479)) -NIL -(-293 |#1| |#2|) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2404 (((-107) (-107)) 24)) (-2436 ((|#1| $ (-517) |#1|) 27 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) 51)) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-3081 (($ $) 55 (|has| |#1| (-1006)))) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) NIL (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) 43)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-3528 (($ $ (-517)) 13)) (-4157 (((-703) $) 11)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 22)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 20 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2785 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 34)) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) 19 (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-3439 (($ $ $ (-517)) 50) (($ |#1| $ (-517)) 36)) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2900 (($ (-583 |#1|)) 28)) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) 18 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 39)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 14)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 32) (($ $ (-1125 (-517))) NIL)) (-1921 (($ $ (-1125 (-517))) 49) (($ $ (-517)) 44)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) 40 (|has| $ (-6 -4196)))) (-2453 (($ $) 31)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-3495 (($ $ $) 41) (($ $ |#1|) 38)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) 15 (|has| $ (-6 -4195))))) -(((-480 |#1| |#2|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2900 ($ (-583 |#1|))) (-15 -4157 ((-703) $)) (-15 -3528 ($ $ (-517))) (-15 -2404 ((-107) (-107))))) (-1112) (-517)) (T -480)) -((-2900 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112)) (-14 *4 (-517)))) (-3528 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112)) (-14 *4 *2))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112)) (-14 *4 (-517))))) -(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -2900 ($ (-583 |#1|))) (-15 -4157 ((-703) $)) (-15 -3528 ($ $ (-517))) (-15 -2404 ((-107) (-107))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (((-530 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-530 |#1|) (-338)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-530 |#1|) (-338)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL (|has| (-530 |#1|) (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-530 |#1|) "failed") $) NIL)) (-3402 (((-530 |#1|) $) NIL)) (-3539 (($ (-1158 (-530 |#1|))) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-530 |#1|) (-338)))) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-530 |#1|) (-338)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL (|has| (-530 |#1|) (-338)))) (-2634 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2627 (($ $ (-703)) NIL (-3786 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338)))) (($ $) NIL (-3786 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-2022 (((-107) $) NIL)) (-3250 (((-845) $) NIL (|has| (-530 |#1|) (-338))) (((-765 (-845)) $) NIL (-3786 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| (-530 |#1|) (-338)))) (-3715 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-3522 (((-530 |#1|) $) NIL) (($ $ (-845)) NIL (|has| (-530 |#1|) (-338)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-530 |#1|) (-338)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 (-530 |#1|)) $) NIL) (((-1073 $) $ (-845)) NIL (|has| (-530 |#1|) (-338)))) (-4161 (((-845) $) NIL (|has| (-530 |#1|) (-338)))) (-3905 (((-1073 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338)))) (-3211 (((-1073 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-1073 (-530 |#1|)) "failed") $ $) NIL (|has| (-530 |#1|) (-338)))) (-3063 (($ $ (-1073 (-530 |#1|))) NIL (|has| (-530 |#1|) (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-530 |#1|) (-338)) CONST)) (-2803 (($ (-845)) NIL (|has| (-530 |#1|) (-338)))) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL (|has| (-530 |#1|) (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-530 |#1|) (-338)))) (-3896 (((-388 $) $) NIL)) (-2177 (((-765 (-845))) NIL) (((-845)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-703) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3786 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1470 (((-125)) NIL)) (-2042 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-1191 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-2819 (((-1073 (-530 |#1|))) NIL)) (-3718 (($) NIL (|has| (-530 |#1|) (-338)))) (-3297 (($) NIL (|has| (-530 |#1|) (-338)))) (-1372 (((-1158 (-530 |#1|)) $) NIL) (((-623 (-530 |#1|)) (-1158 $)) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-530 |#1|) (-338)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-530 |#1|)) NIL)) (-3385 (($ $) NIL (|has| (-530 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3786 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL) (((-1158 $) (-845)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-3348 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL) (($ $ (-530 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-530 |#1|)) NIL) (($ (-530 |#1|) $) NIL))) -(((-481 |#1| |#2|) (-299 (-530 |#1|)) (-845) (-845)) (T -481)) -NIL -(-299 (-530 |#1|)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) 33)) (-3911 (($ $ (-517) |#4|) NIL)) (-3101 (($ $ (-517) |#5|) NIL)) (-3038 (($) NIL T CONST)) (-1397 ((|#4| $ (-517)) NIL)) (-2750 ((|#1| $ (-517) (-517) |#1|) 32)) (-2557 ((|#1| $ (-517) (-517)) 30)) (-1525 (((-583 |#1|) $) NIL)) (-1409 (((-703) $) 26)) (-3204 (($ (-703) (-703) |#1|) 23)) (-1422 (((-703) $) 28)) (-2266 (((-107) $ (-703)) NIL)) (-2560 (((-517) $) 24)) (-2970 (((-517) $) 25)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) 27)) (-1718 (((-517) $) 29)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) 36 (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 14)) (-2679 (($) 15)) (-2612 ((|#1| $ (-517) (-517)) 31) ((|#1| $ (-517) (-517) |#1|) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2295 ((|#5| $ (-517)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-482 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1112) (-517) (-517) (-343 |#1|) (-343 |#1|)) (T -482)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#1| $ (-519) (-519) |#1|) NIL)) (-4054 (($ $ (-519) (-463 |#1| |#3|)) NIL)) (-3281 (($ $ (-519) (-463 |#1| |#2|)) NIL)) (-2249 (($) NIL T CONST)) (-4159 (((-463 |#1| |#3|) $ (-519)) NIL)) (-3865 ((|#1| $ (-519) (-519) |#1|) NIL)) (-3659 ((|#1| $ (-519) (-519)) NIL)) (-3844 (((-585 |#1|) $) NIL)) (-1426 (((-705) $) NIL)) (-1822 (($ (-705) (-705) |#1|) NIL)) (-1437 (((-705) $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-4161 (((-519) $) NIL)) (-2918 (((-519) $) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1238 (((-519) $) NIL)) (-2012 (((-519) $) NIL)) (-3850 (($ (-1 |#1| |#1|) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-3640 (($ $ |#1|) NIL)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ (-519) (-519)) NIL) ((|#1| $ (-519) (-519) |#1|) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-3067 (((-463 |#1| |#2|) $ (-519)) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-464 |#1| |#2| |#3|) (-55 |#1| (-463 |#1| |#3|) (-463 |#1| |#2|)) (-1117) (-519) (-519)) (T -464)) +NIL +(-55 |#1| (-463 |#1| |#3|) (-463 |#1| |#2|)) +((-3278 (((-585 (-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-705) (-705)) 27)) (-3426 (((-585 (-1078 |#1|)) |#1| (-705) (-705) (-705)) 34)) (-3680 (((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-585 |#3|) (-585 (-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-705)) 84))) +(((-465 |#1| |#2| |#3|) (-10 -7 (-15 -3426 ((-585 (-1078 |#1|)) |#1| (-705) (-705) (-705))) (-15 -3278 ((-585 (-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-705) (-705))) (-15 -3680 ((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-585 |#3|) (-585 (-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-705)))) (-321) (-1139 |#1|) (-1139 |#2|)) (T -465)) +((-3680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-2 (|:| -2070 (-625 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-625 *7))))) (-5 *5 (-705)) (-4 *8 (-1139 *7)) (-4 *7 (-1139 *6)) (-4 *6 (-321)) (-5 *2 (-2 (|:| -2070 (-625 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-625 *7)))) (-5 *1 (-465 *6 *7 *8)))) (-3278 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-705)) (-4 *5 (-321)) (-4 *6 (-1139 *5)) (-5 *2 (-585 (-2 (|:| -2070 (-625 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-625 *6))))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-2 (|:| -2070 (-625 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-625 *6)))) (-4 *7 (-1139 *6)))) (-3426 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-705)) (-4 *3 (-321)) (-4 *5 (-1139 *3)) (-5 *2 (-585 (-1078 *3))) (-5 *1 (-465 *3 *5 *6)) (-4 *6 (-1139 *5))))) +(-10 -7 (-15 -3426 ((-585 (-1078 |#1|)) |#1| (-705) (-705) (-705))) (-15 -3278 ((-585 (-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-705) (-705))) (-15 -3680 ((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-585 |#3|) (-585 (-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-705)))) +((-3877 (((-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|)))) 60)) (-2597 ((|#1| (-625 |#1|) |#1| (-705)) 25)) (-3641 (((-705) (-705) (-705)) 30)) (-1859 (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 42)) (-1291 (((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|) 50) (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 47)) (-4062 ((|#1| (-625 |#1|) (-625 |#1|) |#1| (-519)) 29)) (-3619 ((|#1| (-625 |#1|)) 18))) +(((-466 |#1| |#2| |#3|) (-10 -7 (-15 -3619 (|#1| (-625 |#1|))) (-15 -2597 (|#1| (-625 |#1|) |#1| (-705))) (-15 -4062 (|#1| (-625 |#1|) (-625 |#1|) |#1| (-519))) (-15 -3641 ((-705) (-705) (-705))) (-15 -1291 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -1291 ((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|)) (-15 -1859 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -3877 ((-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|)))))) (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $)))) (-1139 |#1|) (-381 |#1| |#2|)) (T -466)) +((-3877 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) (-4 *4 (-1139 *3)) (-5 *1 (-466 *3 *4 *5)) (-4 *5 (-381 *3 *4)))) (-1859 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) (-4 *4 (-1139 *3)) (-5 *1 (-466 *3 *4 *5)) (-4 *5 (-381 *3 *4)))) (-1291 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) (-4 *4 (-1139 *3)) (-5 *1 (-466 *3 *4 *5)) (-4 *5 (-381 *3 *4)))) (-1291 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) (-4 *4 (-1139 *3)) (-5 *1 (-466 *3 *4 *5)) (-4 *5 (-381 *3 *4)))) (-3641 (*1 *2 *2 *2) (-12 (-5 *2 (-705)) (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) (-4 *4 (-1139 *3)) (-5 *1 (-466 *3 *4 *5)) (-4 *5 (-381 *3 *4)))) (-4062 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-625 *2)) (-5 *4 (-519)) (-4 *2 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) (-4 *5 (-1139 *2)) (-5 *1 (-466 *2 *5 *6)) (-4 *6 (-381 *2 *5)))) (-2597 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-625 *2)) (-5 *4 (-705)) (-4 *2 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) (-4 *5 (-1139 *2)) (-5 *1 (-466 *2 *5 *6)) (-4 *6 (-381 *2 *5)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *4 (-1139 *2)) (-4 *2 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) (-5 *1 (-466 *2 *4 *5)) (-4 *5 (-381 *2 *4))))) +(-10 -7 (-15 -3619 (|#1| (-625 |#1|))) (-15 -2597 (|#1| (-625 |#1|) |#1| (-705))) (-15 -4062 (|#1| (-625 |#1|) (-625 |#1|) |#1| (-519))) (-15 -3641 ((-705) (-705) (-705))) (-15 -1291 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -1291 ((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|)) (-15 -1859 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -3877 ((-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -2070 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|)))))) +((-1430 (((-108) $ $) NIL)) (-1515 (($ $) NIL)) (-3408 (($ $ $) 35)) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) $) NIL (|has| (-108) (-782))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2078 (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| (-108) (-782)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4222)))) (-3276 (($ $) NIL (|has| (-108) (-782))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-2421 (((-108) $ (-1130 (-519)) (-108)) NIL (|has| $ (-6 -4222))) (((-108) $ (-519) (-108)) 36 (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011))))) (-1438 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4221))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011))))) (-3874 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011))))) (-3865 (((-108) $ (-519) (-108)) NIL (|has| $ (-6 -4222)))) (-3659 (((-108) $ (-519)) NIL)) (-3297 (((-519) (-108) $ (-519)) NIL (|has| (-108) (-1011))) (((-519) (-108) $) NIL (|has| (-108) (-1011))) (((-519) (-1 (-108) (-108)) $) NIL)) (-3844 (((-585 (-108)) $) NIL (|has| $ (-6 -4221)))) (-3997 (($ $ $) 33)) (-2445 (($ $) NIL)) (-1678 (($ $ $) NIL)) (-1822 (($ (-705) (-108)) 23)) (-1382 (($ $ $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) 8 (|has| (-519) (-782)))) (-2864 (($ $ $) NIL)) (-2500 (($ $ $) NIL (|has| (-108) (-782))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3725 (((-585 (-108)) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL)) (-3850 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-1672 (($ $ $ (-519)) NIL) (($ (-108) $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 (((-108) $) NIL (|has| (-519) (-782)))) (-2395 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-3640 (($ $ (-108)) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-108)) (-585 (-108))) NIL (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011)))) (($ $ (-267 (-108))) NIL (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011)))) (($ $ (-585 (-267 (-108)))) NIL (-12 (|has| (-108) (-282 (-108))) (|has| (-108) (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011))))) (-2222 (((-585 (-108)) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) 24)) (-2598 (($ $ (-1130 (-519))) NIL) (((-108) $ (-519)) 18) (((-108) $ (-519) (-108)) NIL)) (-3720 (($ $ (-1130 (-519))) NIL) (($ $ (-519)) NIL)) (-4155 (((-705) (-108) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-108) (-1011)))) (((-705) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4221)))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) 25)) (-1446 (((-495) $) NIL (|has| (-108) (-560 (-495))))) (-2228 (($ (-585 (-108))) NIL)) (-4150 (($ (-585 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2217 (((-790) $) 22)) (-1778 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4221)))) (-4012 (($ $ $) 31)) (-3559 (($ $) NIL)) (-2818 (($ $ $) NIL)) (-3555 (($ $ $) 39)) (-3564 (($ $) 37)) (-3548 (($ $ $) 38)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 26)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 27)) (-2360 (($ $ $) NIL)) (-3532 (((-705) $) 10 (|has| $ (-6 -4221))))) +(((-467 |#1|) (-13 (-119) (-10 -8 (-15 -3564 ($ $)) (-15 -3555 ($ $ $)) (-15 -3548 ($ $ $)))) (-519)) (T -467)) +((-3564 (*1 *1 *1) (-12 (-5 *1 (-467 *2)) (-14 *2 (-519)))) (-3555 (*1 *1 *1 *1) (-12 (-5 *1 (-467 *2)) (-14 *2 (-519)))) (-3548 (*1 *1 *1 *1) (-12 (-5 *1 (-467 *2)) (-14 *2 (-519))))) +(-13 (-119) (-10 -8 (-15 -3564 ($ $)) (-15 -3555 ($ $ $)) (-15 -3548 ($ $ $)))) +((-3893 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1078 |#4|)) 35)) (-2182 (((-1078 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1078 |#4|)) 22)) (-2974 (((-3 (-625 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-625 (-1078 |#4|))) 46)) (-3935 (((-1078 (-1078 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2182 (|#2| (-1 |#1| |#4|) (-1078 |#4|))) (-15 -2182 ((-1078 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3893 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1078 |#4|))) (-15 -2974 ((-3 (-625 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-625 (-1078 |#4|)))) (-15 -3935 ((-1078 (-1078 |#4|)) (-1 |#4| |#1|) |#3|))) (-968) (-1139 |#1|) (-1139 |#2|) (-968)) (T -468)) +((-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-968)) (-4 *7 (-968)) (-4 *6 (-1139 *5)) (-5 *2 (-1078 (-1078 *7))) (-5 *1 (-468 *5 *6 *4 *7)) (-4 *4 (-1139 *6)))) (-2974 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-625 (-1078 *8))) (-4 *5 (-968)) (-4 *8 (-968)) (-4 *6 (-1139 *5)) (-5 *2 (-625 *6)) (-5 *1 (-468 *5 *6 *7 *8)) (-4 *7 (-1139 *6)))) (-3893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1078 *7)) (-4 *5 (-968)) (-4 *7 (-968)) (-4 *2 (-1139 *5)) (-5 *1 (-468 *5 *2 *6 *7)) (-4 *6 (-1139 *2)))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-968)) (-4 *7 (-968)) (-4 *4 (-1139 *5)) (-5 *2 (-1078 *7)) (-5 *1 (-468 *5 *4 *6 *7)) (-4 *6 (-1139 *4)))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1078 *7)) (-4 *5 (-968)) (-4 *7 (-968)) (-4 *2 (-1139 *5)) (-5 *1 (-468 *5 *2 *6 *7)) (-4 *6 (-1139 *2))))) +(-10 -7 (-15 -2182 (|#2| (-1 |#1| |#4|) (-1078 |#4|))) (-15 -2182 ((-1078 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3893 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1078 |#4|))) (-15 -2974 ((-3 (-625 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-625 (-1078 |#4|)))) (-15 -3935 ((-1078 (-1078 |#4|)) (-1 |#4| |#1|) |#3|))) +((-1430 (((-108) $ $) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2056 (((-1168) $) 18)) (-2598 (((-1065) $ (-1082)) 22)) (-1691 (((-1168) $) 14)) (-2217 (((-790) $) 20) (($ (-1065)) 19)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 8)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 7))) +(((-469) (-13 (-782) (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 ((-1168) $)) (-15 -2056 ((-1168) $)) (-15 -2217 ($ (-1065)))))) (T -469)) +((-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1065)) (-5 *1 (-469)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-469)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-469)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-469))))) +(-13 (-782) (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 ((-1168) $)) (-15 -2056 ((-1168) $)) (-15 -2217 ($ (-1065))))) +((-2107 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3770 ((|#1| |#4|) 10)) (-2307 ((|#3| |#4|) 17))) +(((-470 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3770 (|#1| |#4|)) (-15 -2307 (|#3| |#4|)) (-15 -2107 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-511) (-916 |#1|) (-345 |#1|) (-345 |#2|)) (T -470)) +((-2107 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-916 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-470 *4 *5 *6 *3)) (-4 *6 (-345 *4)) (-4 *3 (-345 *5)))) (-2307 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-916 *4)) (-4 *2 (-345 *4)) (-5 *1 (-470 *4 *5 *2 *3)) (-4 *3 (-345 *5)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-916 *2)) (-4 *2 (-511)) (-5 *1 (-470 *2 *4 *5 *3)) (-4 *5 (-345 *2)) (-4 *3 (-345 *4))))) +(-10 -7 (-15 -3770 (|#1| |#4|)) (-15 -2307 (|#3| |#4|)) (-15 -2107 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-1430 (((-108) $ $) NIL)) (-3620 (((-108) $ (-585 |#3|)) 103) (((-108) $) 104)) (-3569 (((-108) $) 146)) (-3465 (($ $ |#4|) 95) (($ $ |#4| (-585 |#3|)) 99)) (-3352 (((-1072 (-585 (-879 |#1|)) (-585 (-267 (-879 |#1|)))) (-585 |#4|)) 139 (|has| |#3| (-560 (-1082))))) (-3573 (($ $ $) 89) (($ $ |#4|) 87)) (-1568 (((-108) $) 145)) (-2522 (($ $) 107)) (-1266 (((-1065) $) NIL)) (-3766 (($ $ $) 81) (($ (-585 $)) 83)) (-2732 (((-108) |#4| $) 106)) (-3952 (((-108) $ $) 70)) (-2903 (($ (-585 |#4|)) 88)) (-4139 (((-1029) $) NIL)) (-2929 (($ (-585 |#4|)) 143)) (-4050 (((-108) $) 144)) (-1835 (($ $) 72)) (-4195 (((-585 |#4|) $) 56)) (-1682 (((-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $)) $ (-585 |#3|)) NIL)) (-2543 (((-108) |#4| $) 75)) (-2914 (((-519) $ (-585 |#3|)) 108) (((-519) $) 109)) (-2217 (((-790) $) 142) (($ (-585 |#4|)) 84)) (-1929 (($ (-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $))) NIL)) (-1543 (((-108) $ $) 71)) (-1614 (($ $ $) 91)) (** (($ $ (-705)) 94)) (* (($ $ $) 93))) +(((-471 |#1| |#2| |#3| |#4|) (-13 (-1011) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-705))) (-15 -1614 ($ $ $)) (-15 -1568 ((-108) $)) (-15 -3569 ((-108) $)) (-15 -2543 ((-108) |#4| $)) (-15 -3952 ((-108) $ $)) (-15 -2732 ((-108) |#4| $)) (-15 -3620 ((-108) $ (-585 |#3|))) (-15 -3620 ((-108) $)) (-15 -3766 ($ $ $)) (-15 -3766 ($ (-585 $))) (-15 -3573 ($ $ $)) (-15 -3573 ($ $ |#4|)) (-15 -1835 ($ $)) (-15 -1682 ((-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $)) $ (-585 |#3|))) (-15 -1929 ($ (-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $)))) (-15 -2914 ((-519) $ (-585 |#3|))) (-15 -2914 ((-519) $)) (-15 -2522 ($ $)) (-15 -2903 ($ (-585 |#4|))) (-15 -2929 ($ (-585 |#4|))) (-15 -4050 ((-108) $)) (-15 -4195 ((-585 |#4|) $)) (-15 -2217 ($ (-585 |#4|))) (-15 -3465 ($ $ |#4|)) (-15 -3465 ($ $ |#4| (-585 |#3|))) (IF (|has| |#3| (-560 (-1082))) (-15 -3352 ((-1072 (-585 (-879 |#1|)) (-585 (-267 (-879 |#1|)))) (-585 |#4|))) |%noBranch|))) (-335) (-727) (-782) (-876 |#1| |#2| |#3|)) (T -471)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) (-1614 (*1 *1 *1 *1) (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) (-1568 (*1 *2 *1) (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) (-3569 (*1 *2 *1) (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) (-2543 (*1 *2 *3 *1) (-12 (-4 *4 (-335)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-471 *4 *5 *6 *3)) (-4 *3 (-876 *4 *5 *6)))) (-3952 (*1 *2 *1 *1) (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) (-2732 (*1 *2 *3 *1) (-12 (-4 *4 (-335)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-471 *4 *5 *6 *3)) (-4 *3 (-876 *4 *5 *6)))) (-3620 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-782)) (-4 *4 (-335)) (-4 *5 (-727)) (-5 *2 (-108)) (-5 *1 (-471 *4 *5 *6 *7)) (-4 *7 (-876 *4 *5 *6)))) (-3620 (*1 *2 *1) (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) (-3766 (*1 *1 *1 *1) (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-585 (-471 *3 *4 *5 *6))) (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) (-3573 (*1 *1 *1 *1) (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) (-3573 (*1 *1 *1 *2) (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *2)) (-4 *2 (-876 *3 *4 *5)))) (-1835 (*1 *1 *1) (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) (-1682 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-782)) (-4 *4 (-335)) (-4 *5 (-727)) (-5 *2 (-2 (|:| |mval| (-625 *4)) (|:| |invmval| (-625 *4)) (|:| |genIdeal| (-471 *4 *5 *6 *7)))) (-5 *1 (-471 *4 *5 *6 *7)) (-4 *7 (-876 *4 *5 *6)))) (-1929 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-625 *3)) (|:| |invmval| (-625 *3)) (|:| |genIdeal| (-471 *3 *4 *5 *6)))) (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) (-2914 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-782)) (-4 *4 (-335)) (-4 *5 (-727)) (-5 *2 (-519)) (-5 *1 (-471 *4 *5 *6 *7)) (-4 *7 (-876 *4 *5 *6)))) (-2914 (*1 *2 *1) (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-519)) (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) (-2522 (*1 *1 *1) (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *6)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *6)))) (-4050 (*1 *2 *1) (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) (-4195 (*1 *2 *1) (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *6)) (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *6)))) (-3465 (*1 *1 *1 *2) (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *2)) (-4 *2 (-876 *3 *4 *5)))) (-3465 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-782)) (-4 *4 (-335)) (-4 *5 (-727)) (-5 *1 (-471 *4 *5 *6 *2)) (-4 *2 (-876 *4 *5 *6)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-876 *4 *5 *6)) (-4 *6 (-560 (-1082))) (-4 *4 (-335)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-1072 (-585 (-879 *4)) (-585 (-267 (-879 *4))))) (-5 *1 (-471 *4 *5 *6 *7))))) +(-13 (-1011) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-705))) (-15 -1614 ($ $ $)) (-15 -1568 ((-108) $)) (-15 -3569 ((-108) $)) (-15 -2543 ((-108) |#4| $)) (-15 -3952 ((-108) $ $)) (-15 -2732 ((-108) |#4| $)) (-15 -3620 ((-108) $ (-585 |#3|))) (-15 -3620 ((-108) $)) (-15 -3766 ($ $ $)) (-15 -3766 ($ (-585 $))) (-15 -3573 ($ $ $)) (-15 -3573 ($ $ |#4|)) (-15 -1835 ($ $)) (-15 -1682 ((-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $)) $ (-585 |#3|))) (-15 -1929 ($ (-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $)))) (-15 -2914 ((-519) $ (-585 |#3|))) (-15 -2914 ((-519) $)) (-15 -2522 ($ $)) (-15 -2903 ($ (-585 |#4|))) (-15 -2929 ($ (-585 |#4|))) (-15 -4050 ((-108) $)) (-15 -4195 ((-585 |#4|) $)) (-15 -2217 ($ (-585 |#4|))) (-15 -3465 ($ $ |#4|)) (-15 -3465 ($ $ |#4| (-585 |#3|))) (IF (|has| |#3| (-560 (-1082))) (-15 -3352 ((-1072 (-585 (-879 |#1|)) (-585 (-267 (-879 |#1|)))) (-585 |#4|))) |%noBranch|))) +((-4186 (((-108) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519))))) 146)) (-3139 (((-108) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519))))) 147)) (-2447 (((-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519))))) 105)) (-1320 (((-108) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519))))) NIL)) (-2549 (((-585 (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519))))) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519))))) 149)) (-1349 (((-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))) (-585 (-792 |#1|))) 161))) +(((-472 |#1| |#2|) (-10 -7 (-15 -4186 ((-108) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))))) (-15 -3139 ((-108) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))))) (-15 -1320 ((-108) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))))) (-15 -2447 ((-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))))) (-15 -2549 ((-585 (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519))))) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))))) (-15 -1349 ((-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))) (-585 (-792 |#1|))))) (-585 (-1082)) (-705)) (T -472)) +((-1349 (*1 *2 *2 *3) (-12 (-5 *2 (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) (-223 *4 (-379 (-519))))) (-5 *3 (-585 (-792 *4))) (-14 *4 (-585 (-1082))) (-14 *5 (-705)) (-5 *1 (-472 *4 *5)))) (-2549 (*1 *2 *3) (-12 (-14 *4 (-585 (-1082))) (-14 *5 (-705)) (-5 *2 (-585 (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) (-223 *4 (-379 (-519)))))) (-5 *1 (-472 *4 *5)) (-5 *3 (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) (-223 *4 (-379 (-519))))))) (-2447 (*1 *2 *2) (-12 (-5 *2 (-471 (-379 (-519)) (-216 *4 (-705)) (-792 *3) (-223 *3 (-379 (-519))))) (-14 *3 (-585 (-1082))) (-14 *4 (-705)) (-5 *1 (-472 *3 *4)))) (-1320 (*1 *2 *3) (-12 (-5 *3 (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) (-223 *4 (-379 (-519))))) (-14 *4 (-585 (-1082))) (-14 *5 (-705)) (-5 *2 (-108)) (-5 *1 (-472 *4 *5)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) (-223 *4 (-379 (-519))))) (-14 *4 (-585 (-1082))) (-14 *5 (-705)) (-5 *2 (-108)) (-5 *1 (-472 *4 *5)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) (-223 *4 (-379 (-519))))) (-14 *4 (-585 (-1082))) (-14 *5 (-705)) (-5 *2 (-108)) (-5 *1 (-472 *4 *5))))) +(-10 -7 (-15 -4186 ((-108) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))))) (-15 -3139 ((-108) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))))) (-15 -1320 ((-108) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))))) (-15 -2447 ((-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))))) (-15 -2549 ((-585 (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519))))) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))))) (-15 -1349 ((-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))) (-471 (-379 (-519)) (-216 |#2| (-705)) (-792 |#1|) (-223 |#1| (-379 (-519)))) (-585 (-792 |#1|))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-3218 (($ $) NIL)) (-4042 (($ |#1| |#2|) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2211 ((|#2| $) NIL)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-3602 (($) 12 T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) 11) (($ $ $) 24)) (-1614 (($ $ $) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 19))) +(((-473 |#1| |#2|) (-13 (-21) (-475 |#1| |#2|)) (-21) (-782)) (T -473)) +NIL +(-13 (-21) (-475 |#1| |#2|)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 12)) (-2249 (($) NIL T CONST)) (-3218 (($ $) 27)) (-4042 (($ |#1| |#2|) 24)) (-1405 (($ (-1 |#1| |#1|) $) 26)) (-2211 ((|#2| $) NIL)) (-3197 ((|#1| $) 28)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-3602 (($) 10 T CONST)) (-1543 (((-108) $ $) NIL)) (-1614 (($ $ $) 18)) (* (($ (-848) $) NIL) (($ (-705) $) 23))) +(((-474 |#1| |#2|) (-13 (-23) (-475 |#1| |#2|)) (-23) (-782)) (T -474)) +NIL +(-13 (-23) (-475 |#1| |#2|)) +((-1430 (((-108) $ $) 7)) (-3218 (($ $) 13)) (-4042 (($ |#1| |#2|) 16)) (-1405 (($ (-1 |#1| |#1|) $) 17)) (-2211 ((|#2| $) 14)) (-3197 ((|#1| $) 15)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1543 (((-108) $ $) 6))) +(((-475 |#1| |#2|) (-1194) (-1011) (-782)) (T -475)) +((-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-475 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-782)))) (-4042 (*1 *1 *2 *3) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-782)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *3 (-782)) (-4 *2 (-1011)))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-782)))) (-3218 (*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-782))))) +(-13 (-1011) (-10 -8 (-15 -1405 ($ (-1 |t#1| |t#1|) $)) (-15 -4042 ($ |t#1| |t#2|)) (-15 -3197 (|t#1| $)) (-15 -2211 (|t#2| $)) (-15 -3218 ($ $)))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2249 (($) NIL T CONST)) (-3218 (($ $) NIL)) (-4042 (($ |#1| |#2|) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2211 ((|#2| $) NIL)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-3602 (($) NIL T CONST)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 13)) (-1614 (($ $ $) NIL)) (* (($ (-705) $) NIL) (($ (-848) $) NIL))) +(((-476 |#1| |#2|) (-13 (-726) (-475 |#1| |#2|)) (-726) (-782)) (T -476)) +NIL +(-13 (-726) (-475 |#1| |#2|)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2494 (($ $ $) 16)) (-3167 (((-3 $ "failed") $ $) 13)) (-2249 (($) NIL T CONST)) (-3218 (($ $) NIL)) (-4042 (($ |#1| |#2|) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2211 ((|#2| $) NIL)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL)) (-3602 (($) NIL T CONST)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL)) (-1614 (($ $ $) NIL)) (* (($ (-705) $) NIL) (($ (-848) $) NIL))) +(((-477 |#1| |#2|) (-13 (-727) (-475 |#1| |#2|)) (-727) (-782)) (T -477)) +NIL +(-13 (-727) (-475 |#1| |#2|)) +((-1430 (((-108) $ $) NIL)) (-3218 (($ $) 25)) (-4042 (($ |#1| |#2|) 22)) (-1405 (($ (-1 |#1| |#1|) $) 24)) (-2211 ((|#2| $) 27)) (-3197 ((|#1| $) 26)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 21)) (-1543 (((-108) $ $) 14))) +(((-478 |#1| |#2|) (-475 |#1| |#2|) (-1011) (-782)) (T -478)) +NIL +(-475 |#1| |#2|) +((-2324 (($ $ (-585 |#2|) (-585 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-479 |#1| |#2| |#3|) (-10 -8 (-15 -2324 (|#1| |#1| |#2| |#3|)) (-15 -2324 (|#1| |#1| (-585 |#2|) (-585 |#3|)))) (-480 |#2| |#3|) (-1011) (-1117)) (T -479)) +NIL +(-10 -8 (-15 -2324 (|#1| |#1| |#2| |#3|)) (-15 -2324 (|#1| |#1| (-585 |#2|) (-585 |#3|)))) +((-2324 (($ $ (-585 |#1|) (-585 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-480 |#1| |#2|) (-1194) (-1011) (-1117)) (T -480)) +((-2324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *5)) (-4 *1 (-480 *4 *5)) (-4 *4 (-1011)) (-4 *5 (-1117)))) (-2324 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1117))))) +(-13 (-10 -8 (-15 -2324 ($ $ |t#1| |t#2|)) (-15 -2324 ($ $ (-585 |t#1|) (-585 |t#2|))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 16)) (-3088 (((-585 (-2 (|:| |gen| |#1|) (|:| -3325 |#2|))) $) 18)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1642 (((-705) $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-4059 ((|#1| $ (-519)) 23)) (-2058 ((|#2| $ (-519)) 21)) (-3902 (($ (-1 |#1| |#1|) $) 46)) (-2665 (($ (-1 |#2| |#2|) $) 43)) (-1266 (((-1065) $) NIL)) (-1899 (($ $ $) 53 (|has| |#2| (-726)))) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 42) (($ |#1|) NIL)) (-1220 ((|#2| |#1| $) 49)) (-3602 (($) 11 T CONST)) (-1543 (((-108) $ $) 29)) (-1614 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-848) $) NIL) (($ (-705) $) 36) (($ |#2| |#1|) 31))) +(((-481 |#1| |#2| |#3|) (-295 |#1| |#2|) (-1011) (-124) |#2|) (T -481)) +NIL +(-295 |#1| |#2|) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4222))) (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| |#1| (-782))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) NIL)) (-3351 (((-108) (-108)) 24)) (-2421 ((|#1| $ (-519) |#1|) 27 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) NIL (|has| $ (-6 -4222)))) (-2846 (($ (-1 (-108) |#1|) $) 51)) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-1552 (($ $) 55 (|has| |#1| (-1011)))) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2502 (($ |#1| $) NIL (|has| |#1| (-1011))) (($ (-1 (-108) |#1|) $) 43)) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) NIL)) (-3297 (((-519) (-1 (-108) |#1|) $) NIL) (((-519) |#1| $) NIL (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) NIL (|has| |#1| (-1011)))) (-1747 (($ $ (-519)) 13)) (-3684 (((-705) $) 11)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1822 (($ (-705) |#1|) 22)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) 20 (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2511 (($ $ $) NIL (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $ $) 34)) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) 19 (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1846 (($ $ $ (-519)) 50) (($ |#1| $ (-519)) 36)) (-1672 (($ |#1| $ (-519)) NIL) (($ $ $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-1453 (($ (-585 |#1|)) 28)) (-2331 ((|#1| $) NIL (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3640 (($ $ |#1|) 18 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 39)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) 14)) (-2598 ((|#1| $ (-519) |#1|) NIL) ((|#1| $ (-519)) 32) (($ $ (-1130 (-519))) NIL)) (-2137 (($ $ (-1130 (-519))) 49) (($ $ (-519)) 44)) (-3720 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2584 (($ $ $ (-519)) 40 (|has| $ (-6 -4222)))) (-2449 (($ $) 31)) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) NIL)) (-3954 (($ $ $) 41) (($ $ |#1|) 38)) (-4150 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-585 $)) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-3532 (((-705) $) 15 (|has| $ (-6 -4221))))) +(((-482 |#1| |#2|) (-13 (-19 |#1|) (-256 |#1|) (-10 -8 (-15 -1453 ($ (-585 |#1|))) (-15 -3684 ((-705) $)) (-15 -1747 ($ $ (-519))) (-15 -3351 ((-108) (-108))))) (-1117) (-519)) (T -482)) +((-1453 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-482 *3 *4)) (-14 *4 (-519)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-482 *3 *4)) (-4 *3 (-1117)) (-14 *4 (-519)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-482 *3 *4)) (-4 *3 (-1117)) (-14 *4 *2))) (-3351 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-482 *3 *4)) (-4 *3 (-1117)) (-14 *4 (-519))))) +(-13 (-19 |#1|) (-256 |#1|) (-10 -8 (-15 -1453 ($ (-585 |#1|))) (-15 -3684 ((-705) $)) (-15 -1747 ($ $ (-519))) (-15 -3351 ((-108) (-108))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 (((-532 |#1|) $) NIL) (($ $ (-848)) NIL (|has| (-532 |#1|) (-340)))) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| (-532 |#1|) (-340)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) NIL (|has| (-532 |#1|) (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-532 |#1|) "failed") $) NIL)) (-1499 (((-532 |#1|) $) NIL)) (-2528 (($ (-1163 (-532 |#1|))) NIL)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-532 |#1|) (-340)))) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| (-532 |#1|) (-340)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) NIL (|has| (-532 |#1|) (-340)))) (-4156 (((-108) $) NIL (|has| (-532 |#1|) (-340)))) (-3824 (($ $ (-705)) NIL (-3730 (|has| (-532 |#1|) (-133)) (|has| (-532 |#1|) (-340)))) (($ $) NIL (-3730 (|has| (-532 |#1|) (-133)) (|has| (-532 |#1|) (-340))))) (-1320 (((-108) $) NIL)) (-3709 (((-848) $) NIL (|has| (-532 |#1|) (-340))) (((-768 (-848)) $) NIL (-3730 (|has| (-532 |#1|) (-133)) (|has| (-532 |#1|) (-340))))) (-1568 (((-108) $) NIL)) (-3637 (($) NIL (|has| (-532 |#1|) (-340)))) (-2877 (((-108) $) NIL (|has| (-532 |#1|) (-340)))) (-3681 (((-532 |#1|) $) NIL) (($ $ (-848)) NIL (|has| (-532 |#1|) (-340)))) (-1675 (((-3 $ "failed") $) NIL (|has| (-532 |#1|) (-340)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 (-532 |#1|)) $) NIL) (((-1078 $) $ (-848)) NIL (|has| (-532 |#1|) (-340)))) (-3334 (((-848) $) NIL (|has| (-532 |#1|) (-340)))) (-1955 (((-1078 (-532 |#1|)) $) NIL (|has| (-532 |#1|) (-340)))) (-3270 (((-1078 (-532 |#1|)) $) NIL (|has| (-532 |#1|) (-340))) (((-3 (-1078 (-532 |#1|)) "failed") $ $) NIL (|has| (-532 |#1|) (-340)))) (-3904 (($ $ (-1078 (-532 |#1|))) NIL (|has| (-532 |#1|) (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| (-532 |#1|) (-340)) CONST)) (-2770 (($ (-848)) NIL (|has| (-532 |#1|) (-340)))) (-2141 (((-108) $) NIL)) (-4139 (((-1029) $) NIL)) (-1397 (($) NIL (|has| (-532 |#1|) (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| (-532 |#1|) (-340)))) (-1921 (((-390 $) $) NIL)) (-1445 (((-768 (-848))) NIL) (((-848)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-705) $) NIL (|has| (-532 |#1|) (-340))) (((-3 (-705) "failed") $ $) NIL (-3730 (|has| (-532 |#1|) (-133)) (|has| (-532 |#1|) (-340))))) (-2914 (((-126)) NIL)) (-2181 (($ $) NIL (|has| (-532 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-532 |#1|) (-340)))) (-4178 (((-768 (-848)) $) NIL) (((-848) $) NIL)) (-1462 (((-1078 (-532 |#1|))) NIL)) (-3132 (($) NIL (|has| (-532 |#1|) (-340)))) (-3670 (($) NIL (|has| (-532 |#1|) (-340)))) (-3399 (((-1163 (-532 |#1|)) $) NIL) (((-625 (-532 |#1|)) (-1163 $)) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| (-532 |#1|) (-340)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ (-532 |#1|)) NIL)) (-3773 (($ $) NIL (|has| (-532 |#1|) (-340))) (((-3 $ "failed") $) NIL (-3730 (|has| (-532 |#1|) (-133)) (|has| (-532 |#1|) (-340))))) (-3594 (((-705)) NIL)) (-2070 (((-1163 $)) NIL) (((-1163 $) (-848)) NIL)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-3706 (($ $) NIL (|has| (-532 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-532 |#1|) (-340)))) (-2242 (($ $) NIL (|has| (-532 |#1|) (-340))) (($ $ (-705)) NIL (|has| (-532 |#1|) (-340)))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL) (($ $ (-532 |#1|)) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ $ (-532 |#1|)) NIL) (($ (-532 |#1|) $) NIL))) +(((-483 |#1| |#2|) (-301 (-532 |#1|)) (-848) (-848)) (T -483)) +NIL +(-301 (-532 |#1|)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#1| $ (-519) (-519) |#1|) 33)) (-4054 (($ $ (-519) |#4|) NIL)) (-3281 (($ $ (-519) |#5|) NIL)) (-2249 (($) NIL T CONST)) (-4159 ((|#4| $ (-519)) NIL)) (-3865 ((|#1| $ (-519) (-519) |#1|) 32)) (-3659 ((|#1| $ (-519) (-519)) 30)) (-3844 (((-585 |#1|) $) NIL)) (-1426 (((-705) $) 26)) (-1822 (($ (-705) (-705) |#1|) 23)) (-1437 (((-705) $) 28)) (-3878 (((-108) $ (-705)) NIL)) (-4161 (((-519) $) 24)) (-2918 (((-519) $) 25)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1238 (((-519) $) 27)) (-2012 (((-519) $) 29)) (-3850 (($ (-1 |#1| |#1|) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) 36 (|has| |#1| (-1011)))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-3640 (($ $ |#1|) NIL)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 14)) (-1548 (($) 15)) (-2598 ((|#1| $ (-519) (-519)) 31) ((|#1| $ (-519) (-519) |#1|) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-3067 ((|#5| $ (-519)) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-484 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1117) (-519) (-519) (-345 |#1|) (-345 |#1|)) (T -484)) NIL (-55 |#1| |#4| |#5|) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) NIL)) (-2577 ((|#1| $) NIL)) (-1529 (($ $) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 58 (|has| $ (-6 -4196)))) (-2508 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-4109 (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) 56 (|has| $ (-6 -4196)))) (-2149 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1223 (($ $ $) 23 (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 21 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4196))) (($ $ "rest" $) 24 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2567 ((|#1| $) NIL)) (-3038 (($) NIL T CONST)) (-3797 (($ $) 28 (|has| $ (-6 -4196)))) (-1894 (($ $) 29)) (-2429 (($ $) 18) (($ $ (-703)) 32)) (-3081 (($ $) 54 (|has| |#1| (-1006)))) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) NIL (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1210 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006))) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1525 (((-583 |#1|) $) 27 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 31 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2785 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 57)) (-3824 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 52 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2315 (($ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) 51 (|has| |#1| (-1006)))) (-1447 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3439 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) 13) (($ $ (-703)) NIL)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-2611 (((-107) $) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 12)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) 17)) (-2679 (($) 16)) (-2612 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1125 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL)) (-3868 (((-517) $ $) NIL)) (-1921 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-1414 (((-107) $) 34)) (-2074 (($ $) NIL)) (-4155 (($ $) NIL (|has| $ (-6 -4196)))) (-2792 (((-703) $) NIL)) (-2736 (($ $) 36)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) 35)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 26)) (-3495 (($ $ $) 53) (($ $ |#1|) NIL)) (-4117 (($ $ $) NIL) (($ |#1| $) 10) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2262 (((-787) $) 46 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 48 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) 9 (|has| $ (-6 -4195))))) -(((-483 |#1| |#2|) (-603 |#1|) (-1112) (-517)) (T -483)) -NIL -(-603 |#1|) -((-1197 ((|#4| |#4|) 26)) (-3778 (((-703) |#4|) 31)) (-3850 (((-703) |#4|) 32)) (-1671 (((-583 |#3|) |#4|) 38 (|has| |#3| (-6 -4196)))) (-2137 (((-3 |#4| "failed") |#4|) 48)) (-2820 ((|#4| |#4|) 41)) (-2533 ((|#1| |#4|) 40))) -(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1197 (|#4| |#4|)) (-15 -3778 ((-703) |#4|)) (-15 -3850 ((-703) |#4|)) (IF (|has| |#3| (-6 -4196)) (-15 -1671 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -2533 (|#1| |#4|)) (-15 -2820 (|#4| |#4|)) (-15 -2137 ((-3 |#4| "failed") |#4|))) (-333) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -484)) -((-2137 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2533 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-1671 (*1 *2 *3) (-12 (|has| *6 (-6 -4196)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3778 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1197 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) -(-10 -7 (-15 -1197 (|#4| |#4|)) (-15 -3778 ((-703) |#4|)) (-15 -3850 ((-703) |#4|)) (IF (|has| |#3| (-6 -4196)) (-15 -1671 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -2533 (|#1| |#4|)) (-15 -2820 (|#4| |#4|)) (-15 -2137 ((-3 |#4| "failed") |#4|))) -((-1197 ((|#8| |#4|) 20)) (-1671 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -4196)))) (-2137 (((-3 |#8| "failed") |#4|) 23))) -(((-485 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1197 (|#8| |#4|)) (-15 -2137 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4196)) (-15 -1671 ((-583 |#3|) |#4|)) |%noBranch|)) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-912 |#1|) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -485)) -((-1671 (*1 *2 *3) (-12 (|has| *9 (-6 -4196)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-912 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) (-2137 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-912 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) (-1197 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-912 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7))))) -(-10 -7 (-15 -1197 (|#8| |#4|)) (-15 -2137 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4196)) (-15 -1671 ((-583 |#3|) |#4|)) |%noBranch|)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703) (-703)) NIL)) (-2688 (($ $ $) NIL)) (-1911 (($ (-548 |#1| |#3|)) NIL) (($ $) NIL)) (-1912 (((-107) $) NIL)) (-1393 (($ $ (-517) (-517)) 12)) (-3632 (($ $ (-517) (-517)) NIL)) (-3031 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-1281 (($ $) NIL)) (-1256 (((-107) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-3382 (($ $ (-517) (-517) $) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3911 (($ $ (-517) (-548 |#1| |#3|)) NIL)) (-3101 (($ $ (-517) (-548 |#1| |#2|)) NIL)) (-1634 (($ (-703) |#1|) NIL)) (-3038 (($) NIL T CONST)) (-1197 (($ $) 19 (|has| |#1| (-278)))) (-1397 (((-548 |#1| |#3|) $ (-517)) NIL)) (-3778 (((-703) $) 22 (|has| |#1| (-509)))) (-2750 ((|#1| $ (-517) (-517) |#1|) NIL)) (-2557 ((|#1| $ (-517) (-517)) NIL)) (-1525 (((-583 |#1|) $) NIL)) (-3850 (((-703) $) 24 (|has| |#1| (-509)))) (-1671 (((-583 (-548 |#1| |#2|)) $) 27 (|has| |#1| (-509)))) (-1409 (((-703) $) NIL)) (-3204 (($ (-703) (-703) |#1|) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-1779 ((|#1| $) 17 (|has| |#1| (-6 (-4197 "*"))))) (-2560 (((-517) $) 10)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) 11)) (-1718 (((-517) $) NIL)) (-2362 (($ (-583 (-583 |#1|))) NIL)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3468 (((-583 (-583 |#1|)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2137 (((-3 $ "failed") $) 31 (|has| |#1| (-333)))) (-3095 (($ $ $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-4025 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1974 (((-107) $) NIL)) (-2533 ((|#1| $) 15 (|has| |#1| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2295 (((-548 |#1| |#2|) $ (-517)) NIL)) (-2262 (($ (-548 |#1| |#2|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-548 |#1| |#2|) $ (-548 |#1| |#2|)) NIL) (((-548 |#1| |#3|) (-548 |#1| |#3|) $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-486 |#1| |#2| |#3|) (-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) (-964) (-517) (-517)) (T -486)) -NIL -(-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) -((-2849 (((-1073 |#1|) (-703)) 75)) (-1991 (((-1158 |#1|) (-1158 |#1|) (-845)) 68)) (-1565 (((-1163) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) |#1|) 83)) (-3415 (((-1158 |#1|) (-1158 |#1|) (-703)) 36)) (-2192 (((-1158 |#1|) (-845)) 70)) (-1311 (((-1158 |#1|) (-1158 |#1|) (-517)) 24)) (-2242 (((-1073 |#1|) (-1158 |#1|)) 76)) (-1222 (((-1158 |#1|) (-845)) 94)) (-3715 (((-107) (-1158 |#1|)) 79)) (-3522 (((-1158 |#1|) (-1158 |#1|) (-845)) 61)) (-1914 (((-1073 |#1|) (-1158 |#1|)) 88)) (-4161 (((-845) (-1158 |#1|)) 58)) (-2291 (((-1158 |#1|) (-1158 |#1|)) 30)) (-2803 (((-1158 |#1|) (-845) (-845)) 96)) (-1715 (((-1158 |#1|) (-1158 |#1|) (-1024) (-1024)) 23)) (-4034 (((-1158 |#1|) (-1158 |#1|) (-703) (-1024)) 37)) (-3700 (((-1158 (-1158 |#1|)) (-845)) 93)) (-1692 (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 80)) (** (((-1158 |#1|) (-1158 |#1|) (-517)) 45)) (* (((-1158 |#1|) (-1158 |#1|) (-1158 |#1|)) 25))) -(((-487 |#1|) (-10 -7 (-15 -1565 ((-1163) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) |#1|)) (-15 -2192 ((-1158 |#1|) (-845))) (-15 -2803 ((-1158 |#1|) (-845) (-845))) (-15 -2242 ((-1073 |#1|) (-1158 |#1|))) (-15 -2849 ((-1073 |#1|) (-703))) (-15 -4034 ((-1158 |#1|) (-1158 |#1|) (-703) (-1024))) (-15 -3415 ((-1158 |#1|) (-1158 |#1|) (-703))) (-15 -1715 ((-1158 |#1|) (-1158 |#1|) (-1024) (-1024))) (-15 -1311 ((-1158 |#1|) (-1158 |#1|) (-517))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-517))) (-15 * ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -1692 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3522 ((-1158 |#1|) (-1158 |#1|) (-845))) (-15 -1991 ((-1158 |#1|) (-1158 |#1|) (-845))) (-15 -2291 ((-1158 |#1|) (-1158 |#1|))) (-15 -4161 ((-845) (-1158 |#1|))) (-15 -3715 ((-107) (-1158 |#1|))) (-15 -3700 ((-1158 (-1158 |#1|)) (-845))) (-15 -1222 ((-1158 |#1|) (-845))) (-15 -1914 ((-1073 |#1|) (-1158 |#1|)))) (-319)) (T -487)) -((-1914 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-1073 *4)) (-5 *1 (-487 *4)))) (-1222 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1158 (-1158 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-845)) (-5 *1 (-487 *4)))) (-2291 (*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (-1991 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-845)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3522 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-845)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1692 (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1311 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1715 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1024)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3415 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-4034 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1158 *5)) (-5 *3 (-703)) (-5 *4 (-1024)) (-4 *5 (-319)) (-5 *1 (-487 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1073 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-1073 *4)) (-5 *1 (-487 *4)))) (-2803 (*1 *2 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1565 (*1 *2 *3 *4) (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) (-4 *4 (-319)) (-5 *2 (-1163)) (-5 *1 (-487 *4))))) -(-10 -7 (-15 -1565 ((-1163) (-1158 (-583 (-2 (|:| -3112 |#1|) (|:| -2803 (-1024))))) |#1|)) (-15 -2192 ((-1158 |#1|) (-845))) (-15 -2803 ((-1158 |#1|) (-845) (-845))) (-15 -2242 ((-1073 |#1|) (-1158 |#1|))) (-15 -2849 ((-1073 |#1|) (-703))) (-15 -4034 ((-1158 |#1|) (-1158 |#1|) (-703) (-1024))) (-15 -3415 ((-1158 |#1|) (-1158 |#1|) (-703))) (-15 -1715 ((-1158 |#1|) (-1158 |#1|) (-1024) (-1024))) (-15 -1311 ((-1158 |#1|) (-1158 |#1|) (-517))) (-15 ** ((-1158 |#1|) (-1158 |#1|) (-517))) (-15 * ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -1692 ((-1158 |#1|) (-1158 |#1|) (-1158 |#1|))) (-15 -3522 ((-1158 |#1|) (-1158 |#1|) (-845))) (-15 -1991 ((-1158 |#1|) (-1158 |#1|) (-845))) (-15 -2291 ((-1158 |#1|) (-1158 |#1|))) (-15 -4161 ((-845) (-1158 |#1|))) (-15 -3715 ((-107) (-1158 |#1|))) (-15 -3700 ((-1158 (-1158 |#1|)) (-845))) (-15 -1222 ((-1158 |#1|) (-845))) (-15 -1914 ((-1073 |#1|) (-1158 |#1|)))) -((-2273 (((-1 |#1| |#1|) |#1|) 11)) (-3951 (((-1 |#1| |#1|)) 10))) -(((-488 |#1|) (-10 -7 (-15 -3951 ((-1 |#1| |#1|))) (-15 -2273 ((-1 |#1| |#1|) |#1|))) (-13 (-659) (-25))) (T -488)) -((-2273 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))) (-3951 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25)))))) -(-10 -7 (-15 -3951 ((-1 |#1| |#1|))) (-15 -2273 ((-1 |#1| |#1|) |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3505 (($ $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-2059 (($ (-703) |#1|) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 (-703) (-703)) $) NIL)) (-2282 ((|#1| $) NIL)) (-2336 (((-703) $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 20)) (-3663 (($) NIL T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-845) $) NIL))) -(((-489 |#1|) (-13 (-725) (-473 (-703) |#1|)) (-779)) (T -489)) -NIL -(-13 (-725) (-473 (-703) |#1|)) -((-2891 (((-583 |#2|) (-1073 |#1|) |#3|) 83)) (-3591 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1073 |#1|)) (-1073 |#1|))) 99)) (-3129 (((-1073 |#1|) (-623 |#1|)) 95))) -(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-1073 |#1|) (-623 |#1|))) (-15 -2891 ((-583 |#2|) (-1073 |#1|) |#3|)) (-15 -3591 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1073 |#1|)) (-1073 |#1|))))) (-333) (-333) (-13 (-333) (-777))) (T -490)) -((-3591 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1073 *6)) (-1073 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1073 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777)))))) -(-10 -7 (-15 -3129 ((-1073 |#1|) (-623 |#1|))) (-15 -2891 ((-583 |#2|) (-1073 |#1|) |#3|)) (-15 -3591 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1073 |#1|)) (-1073 |#1|))))) -((-3135 (((-772 (-517))) 11)) (-3147 (((-772 (-517))) 13)) (-2111 (((-765 (-517))) 8))) -(((-491) (-10 -7 (-15 -2111 ((-765 (-517)))) (-15 -3135 ((-772 (-517)))) (-15 -3147 ((-772 (-517)))))) (T -491)) -((-3147 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-3135 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2111 (*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491))))) -(-10 -7 (-15 -2111 ((-765 (-517)))) (-15 -3135 ((-772 (-517)))) (-15 -3147 ((-772 (-517))))) -((-1876 (((-493) (-1077)) 15)) (-2338 ((|#1| (-493)) 20))) -(((-492 |#1|) (-10 -7 (-15 -1876 ((-493) (-1077))) (-15 -2338 (|#1| (-493)))) (-1112)) (T -492)) -((-2338 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1112)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1112))))) -(-10 -7 (-15 -1876 ((-493) (-1077))) (-15 -2338 (|#1| (-493)))) -((-2105 (((-107) $ $) NIL)) (-3205 (((-1060) $) 46)) (-2798 (((-107) $) 43)) (-2243 (((-1077) $) 44)) (-3844 (((-107) $) 41)) (-1507 (((-1060) $) 42)) (-3347 (((-107) $) NIL)) (-2469 (((-107) $) NIL)) (-1294 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-1938 (($ $ (-583 (-1077))) 20)) (-2338 (((-51) $) 22)) (-3744 (((-107) $) NIL)) (-2258 (((-517) $) NIL)) (-4130 (((-1024) $) NIL)) (-2218 (($ $ (-583 (-1077)) (-1077)) 58)) (-2965 (((-107) $) NIL)) (-3202 (((-199) $) NIL)) (-2604 (($ $) 38)) (-3756 (((-787) $) NIL)) (-3817 (((-107) $ $) NIL)) (-2612 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3964 (((-583 $) $) 28)) (-1899 (((-1077) (-583 $)) 47)) (-3367 (($ (-583 $)) 51) (($ (-1060)) NIL) (($ (-1077)) 18) (($ (-517)) 8) (($ (-199)) 25) (($ (-787)) NIL) (((-1010) $) 11) (($ (-1010)) 12)) (-2511 (((-1077) (-1077) (-583 $)) 50)) (-2262 (((-787) $) NIL)) (-3311 (($ $) 49)) (-3301 (($ $) 48)) (-2799 (($ $ (-583 $)) 55)) (-4112 (((-107) $) 27)) (-3663 (($) 9 T CONST)) (-3675 (($) 10 T CONST)) (-1572 (((-107) $ $) 59)) (-1692 (($ $ $) 64)) (-1666 (($ $ $) 60)) (** (($ $ (-703)) 63) (($ $ (-517)) 62)) (* (($ $ $) 61)) (-3573 (((-517) $) NIL))) -(((-493) (-13 (-1009 (-1060) (-1077) (-517) (-199) (-787)) (-558 (-1010)) (-10 -8 (-15 -2338 ((-51) $)) (-15 -3367 ($ (-1010))) (-15 -2799 ($ $ (-583 $))) (-15 -2218 ($ $ (-583 (-1077)) (-1077))) (-15 -1938 ($ $ (-583 (-1077)))) (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 -1692 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 0 ($) -1373) (-15 1 ($) -1373) (-15 -2604 ($ $)) (-15 -3205 ((-1060) $)) (-15 -1899 ((-1077) (-583 $))) (-15 -2511 ((-1077) (-1077) (-583 $)))))) (T -493)) -((-2338 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-493)))) (-2799 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))) (-2218 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-1077)) (-5 *1 (-493)))) (-1938 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-493)))) (-1666 (*1 *1 *1 *1) (-5 *1 (-493))) (* (*1 *1 *1 *1) (-5 *1 (-493))) (-1692 (*1 *1 *1 *1) (-5 *1 (-493))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) (-3663 (*1 *1) (-5 *1 (-493))) (-3675 (*1 *1) (-5 *1 (-493))) (-2604 (*1 *1 *1) (-5 *1 (-493))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-493)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1077)) (-5 *1 (-493)))) (-2511 (*1 *2 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-493))) (-5 *1 (-493))))) -(-13 (-1009 (-1060) (-1077) (-517) (-199) (-787)) (-558 (-1010)) (-10 -8 (-15 -2338 ((-51) $)) (-15 -3367 ($ (-1010))) (-15 -2799 ($ $ (-583 $))) (-15 -2218 ($ $ (-583 (-1077)) (-1077))) (-15 -1938 ($ $ (-583 (-1077)))) (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 -1692 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 (-3663) ($) -1373) (-15 (-3675) ($) -1373) (-15 -2604 ($ $)) (-15 -3205 ((-1060) $)) (-15 -1899 ((-1077) (-583 $))) (-15 -2511 ((-1077) (-1077) (-583 $))))) -((-3693 ((|#2| |#2|) 17)) (-2658 ((|#2| |#2|) 13)) (-2787 ((|#2| |#2| (-517) (-517)) 20)) (-1520 ((|#2| |#2|) 15))) -(((-494 |#1| |#2|) (-10 -7 (-15 -2658 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -2787 (|#2| |#2| (-517) (-517)))) (-13 (-509) (-134)) (-1149 |#1|)) (T -494)) -((-2787 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1149 *4)))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1149 *3)))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1149 *3)))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1149 *3))))) -(-10 -7 (-15 -2658 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -2787 (|#2| |#2| (-517) (-517)))) -((-1360 (((-583 (-265 (-876 |#2|))) (-583 |#2|) (-583 (-1077))) 32)) (-3571 (((-583 |#2|) (-876 |#1|) |#3|) 53) (((-583 |#2|) (-1073 |#1|) |#3|) 52)) (-4148 (((-583 (-583 |#2|)) (-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077)) |#3|) 87))) -(((-495 |#1| |#2| |#3|) (-10 -7 (-15 -3571 ((-583 |#2|) (-1073 |#1|) |#3|)) (-15 -3571 ((-583 |#2|) (-876 |#1|) |#3|)) (-15 -4148 ((-583 (-583 |#2|)) (-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077)) |#3|)) (-15 -1360 ((-583 (-265 (-876 |#2|))) (-583 |#2|) (-583 (-1077))))) (-421) (-333) (-13 (-333) (-777))) (T -495)) -((-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1077))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-876 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))) (-4148 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777)))))) -(-10 -7 (-15 -3571 ((-583 |#2|) (-1073 |#1|) |#3|)) (-15 -3571 ((-583 |#2|) (-876 |#1|) |#3|)) (-15 -4148 ((-583 (-583 |#2|)) (-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077)) |#3|)) (-15 -1360 ((-583 (-265 (-876 |#2|))) (-583 |#2|) (-583 (-1077))))) -((-2563 ((|#2| |#2| |#1|) 17)) (-2403 ((|#2| (-583 |#2|)) 27)) (-1198 ((|#2| (-583 |#2|)) 46))) -(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2403 (|#2| (-583 |#2|))) (-15 -1198 (|#2| (-583 |#2|))) (-15 -2563 (|#2| |#2| |#1|))) (-278) (-1134 |#1|) |#1| (-1 |#1| |#1| (-703))) (T -496)) -((-2563 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1134 *3)))) (-1198 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703)))))) -(-10 -7 (-15 -2403 (|#2| (-583 |#2|))) (-15 -1198 (|#2| (-583 |#2|))) (-15 -2563 (|#2| |#2| |#1|))) -((-3896 (((-388 (-1073 |#4|)) (-1073 |#4|) (-1 (-388 (-1073 |#3|)) (-1073 |#3|))) 79) (((-388 |#4|) |#4| (-1 (-388 (-1073 |#3|)) (-1073 |#3|))) 166))) -(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4| (-1 (-388 (-1073 |#3|)) (-1073 |#3|)))) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|) (-1 (-388 (-1073 |#3|)) (-1073 |#3|))))) (-779) (-725) (-13 (-278) (-134)) (-873 |#3| |#2| |#1|)) (T -497)) -((-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1073 *7)) (-1073 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-873 *7 *6 *5)) (-5 *2 (-388 (-1073 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1073 *8)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1073 *7)) (-1073 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-873 *7 *6 *5))))) -(-10 -7 (-15 -3896 ((-388 |#4|) |#4| (-1 (-388 (-1073 |#3|)) (-1073 |#3|)))) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|) (-1 (-388 (-1073 |#3|)) (-1073 |#3|))))) -((-3693 ((|#4| |#4|) 74)) (-2658 ((|#4| |#4|) 70)) (-2787 ((|#4| |#4| (-517) (-517)) 76)) (-1520 ((|#4| |#4|) 72))) -(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2658 (|#4| |#4|)) (-15 -1520 (|#4| |#4|)) (-15 -3693 (|#4| |#4|)) (-15 -2787 (|#4| |#4| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1134 |#1|) (-657 |#1| |#2|) (-1149 |#3|)) (T -498)) -((-2787 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1134 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1149 *6)))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5)))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5)))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5))))) -(-10 -7 (-15 -2658 (|#4| |#4|)) (-15 -1520 (|#4| |#4|)) (-15 -3693 (|#4| |#4|)) (-15 -2787 (|#4| |#4| (-517) (-517)))) -((-3693 ((|#2| |#2|) 27)) (-2658 ((|#2| |#2|) 23)) (-2787 ((|#2| |#2| (-517) (-517)) 29)) (-1520 ((|#2| |#2|) 25))) -(((-499 |#1| |#2|) (-10 -7 (-15 -2658 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -2787 (|#2| |#2| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1149 |#1|)) (T -499)) -((-2787 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1149 *4)))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1149 *3)))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1149 *3)))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1149 *3))))) -(-10 -7 (-15 -2658 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -3693 (|#2| |#2|)) (-15 -2787 (|#2| |#2| (-517) (-517)))) -((-2689 (((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)) 14) (((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|)) 13) (((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|)) 26))) -(((-500 |#1| |#2|) (-10 -7 (-15 -2689 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2689 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2689 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)))) (-964) (-1134 |#1|)) (T -500)) -((-2689 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1134 *4)))) (-2689 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1134 *4)))) (-2689 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-964)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1134 *5))))) -(-10 -7 (-15 -2689 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2689 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2689 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)))) -((-2199 (($ $ $) 79)) (-3306 (((-388 $) $) 47)) (-3220 (((-3 (-517) "failed") $) 59)) (-3402 (((-517) $) 37)) (-3389 (((-3 (-377 (-517)) "failed") $) 74)) (-3748 (((-107) $) 24)) (-3727 (((-377 (-517)) $) 72)) (-2022 (((-107) $) 50)) (-1214 (($ $ $ $) 86)) (-2671 (((-107) $) 16)) (-3624 (($ $ $) 57)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 69)) (-1639 (((-3 $ "failed") $) 64)) (-2628 (($ $) 23)) (-3598 (($ $ $) 84)) (-2578 (($) 60)) (-2038 (($ $) 53)) (-3896 (((-388 $) $) 45)) (-2278 (((-107) $) 14)) (-3388 (((-703) $) 28)) (-2042 (($ $ (-703)) NIL) (($ $) 10)) (-2453 (($ $) 17)) (-3367 (((-517) $) NIL) (((-493) $) 36) (((-816 (-517)) $) 40) (((-349) $) 31) (((-199) $) 33)) (-1818 (((-703)) 8)) (-1638 (((-107) $ $) 20)) (-1462 (($ $ $) 55))) -(((-501 |#1|) (-10 -8 (-15 -3598 (|#1| |#1| |#1|)) (-15 -1214 (|#1| |#1| |#1| |#1|)) (-15 -2628 (|#1| |#1|)) (-15 -2453 (|#1| |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -1638 ((-107) |#1| |#1|)) (-15 -2278 ((-107) |#1|)) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -3624 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -1462 (|#1| |#1| |#1|)) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3367 ((-517) |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2671 ((-107) |#1|)) (-15 -3388 ((-703) |#1|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -2022 ((-107) |#1|)) (-15 -1818 ((-703)))) (-502)) (T -501)) -((-1818 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502))))) -(-10 -8 (-15 -3598 (|#1| |#1| |#1|)) (-15 -1214 (|#1| |#1| |#1| |#1|)) (-15 -2628 (|#1| |#1|)) (-15 -2453 (|#1| |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2199 (|#1| |#1| |#1|)) (-15 -1638 ((-107) |#1| |#1|)) (-15 -2278 ((-107) |#1|)) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -3624 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -1462 (|#1| |#1| |#1|)) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3367 ((-517) |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2671 ((-107) |#1|)) (-15 -3388 ((-703) |#1|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -2022 ((-107) |#1|)) (-15 -1818 ((-703)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2199 (($ $ $) 85)) (-1783 (((-3 $ "failed") $ $) 19)) (-2800 (($ $ $ $) 73)) (-1322 (($ $) 51)) (-3306 (((-388 $) $) 52)) (-1765 (((-107) $ $) 125)) (-3502 (((-517) $) 114)) (-2127 (($ $ $) 88)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 106)) (-3402 (((-517) $) 105)) (-2383 (($ $ $) 129)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 104) (((-623 (-517)) (-623 $)) 103)) (-3550 (((-3 $ "failed") $) 34)) (-3389 (((-3 (-377 (-517)) "failed") $) 82)) (-3748 (((-107) $) 84)) (-3727 (((-377 (-517)) $) 83)) (-2192 (($) 81) (($ $) 80)) (-2356 (($ $ $) 128)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 123)) (-2022 (((-107) $) 53)) (-1214 (($ $ $ $) 71)) (-4146 (($ $ $) 86)) (-2671 (((-107) $) 116)) (-3624 (($ $ $) 97)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 100)) (-1690 (((-107) $) 31)) (-3448 (((-107) $) 92)) (-1639 (((-3 $ "failed") $) 94)) (-2321 (((-107) $) 115)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 132)) (-3721 (($ $ $ $) 72)) (-3480 (($ $ $) 117)) (-4095 (($ $ $) 118)) (-2628 (($ $) 75)) (-3728 (($ $) 89)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-3598 (($ $ $) 70)) (-2578 (($) 93 T CONST)) (-4022 (($ $) 77)) (-4130 (((-1024) $) 10) (($ $) 79)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2038 (($ $) 98)) (-3896 (((-388 $) $) 50)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 130)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 124)) (-2278 (((-107) $) 91)) (-3388 (((-703) $) 126)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 127)) (-2042 (($ $ (-703)) 111) (($ $) 109)) (-2909 (($ $) 76)) (-2453 (($ $) 78)) (-3367 (((-517) $) 108) (((-493) $) 102) (((-816 (-517)) $) 101) (((-349) $) 96) (((-199) $) 95)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 107)) (-1818 (((-703)) 29)) (-1638 (((-107) $ $) 87)) (-1462 (($ $ $) 99)) (-4003 (($) 90)) (-2944 (((-107) $ $) 39)) (-2006 (($ $ $ $) 74)) (-2829 (($ $) 113)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-703)) 112) (($ $) 110)) (-1630 (((-107) $ $) 120)) (-1606 (((-107) $ $) 121)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 119)) (-1596 (((-107) $ $) 122)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-502) (-1189)) (T -502)) -((-3448 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-4003 (*1 *1) (-4 *1 (-502))) (-3728 (*1 *1 *1) (-4 *1 (-502))) (-2127 (*1 *1 *1 *1) (-4 *1 (-502))) (-1638 (*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-4146 (*1 *1 *1 *1) (-4 *1 (-502))) (-2199 (*1 *1 *1 *1) (-4 *1 (-502))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-3389 (*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-2192 (*1 *1) (-4 *1 (-502))) (-2192 (*1 *1 *1) (-4 *1 (-502))) (-4130 (*1 *1 *1) (-4 *1 (-502))) (-2453 (*1 *1 *1) (-4 *1 (-502))) (-4022 (*1 *1 *1) (-4 *1 (-502))) (-2909 (*1 *1 *1) (-4 *1 (-502))) (-2628 (*1 *1 *1) (-4 *1 (-502))) (-2006 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-2800 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-3721 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1214 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-3598 (*1 *1 *1 *1) (-4 *1 (-502)))) -(-13 (-1116) (-278) (-752) (-207) (-558 (-517)) (-955 (-517)) (-579 (-517)) (-558 (-493)) (-558 (-816 (-517))) (-810 (-517)) (-130) (-940) (-134) (-1053) (-10 -8 (-15 -3448 ((-107) $)) (-15 -2278 ((-107) $)) (-6 -4194) (-15 -4003 ($)) (-15 -3728 ($ $)) (-15 -2127 ($ $ $)) (-15 -1638 ((-107) $ $)) (-15 -4146 ($ $ $)) (-15 -2199 ($ $ $)) (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $)) (-15 -2192 ($)) (-15 -2192 ($ $)) (-15 -4130 ($ $)) (-15 -2453 ($ $)) (-15 -4022 ($ $)) (-15 -2909 ($ $)) (-15 -2628 ($ $)) (-15 -2006 ($ $ $ $)) (-15 -2800 ($ $ $ $)) (-15 -3721 ($ $ $ $)) (-15 -1214 ($ $ $ $)) (-15 -3598 ($ $ $)) (-6 -4193))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-130) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-493)) . T) ((-558 (-517)) . T) ((-558 (-816 (-517))) . T) ((-207) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-579 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-752) . T) ((-777) . T) ((-779) . T) ((-810 (-517)) . T) ((-844) . T) ((-940) . T) ((-955 (-517)) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) . T) ((-1116) . T)) -((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) NIL)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-503 |#1| |#2| |#3|) (-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) (-1006) (-1006) (-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195)))) (T -503)) -NIL -(-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) -((-4141 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1073 |#2|) (-1073 |#2|))) 49))) -(((-504 |#1| |#2|) (-10 -7 (-15 -4141 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1073 |#2|) (-1073 |#2|))))) (-13 (-779) (-509)) (-13 (-27) (-400 |#1|))) (T -504)) -((-4141 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1073 *3) (-1073 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3))))) -(-10 -7 (-15 -4141 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1073 |#2|) (-1073 |#2|))))) -((-2381 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-1811 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-2592 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 198))) -(((-505 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2592 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2381 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1811 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-779) (-509) (-955 (-517))) (-13 (-27) (-400 |#1|)) (-1134 |#2|) (-1134 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -505)) -((-1811 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-4 *7 (-1134 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1134 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-955 (-517)))) (-4 *8 (-1134 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1134 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-955 (-517)))) (-4 *8 (-1134 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8))))) -(-10 -7 (-15 -2592 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2381 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1811 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-1667 (((-107) (-517) (-517)) 10)) (-2625 (((-517) (-517)) 7)) (-1566 (((-517) (-517) (-517)) 8))) -(((-506) (-10 -7 (-15 -2625 ((-517) (-517))) (-15 -1566 ((-517) (-517) (-517))) (-15 -1667 ((-107) (-517) (-517))))) (T -506)) -((-1667 (*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))) (-1566 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))) (-2625 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506))))) -(-10 -7 (-15 -2625 ((-517) (-517))) (-15 -1566 ((-517) (-517) (-517))) (-15 -1667 ((-107) (-517) (-517)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3436 ((|#1| $) 61)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1636 (($ $) 91)) (-1482 (($ $) 74)) (-3505 ((|#1| $) 62)) (-1783 (((-3 $ "failed") $ $) 19)) (-3908 (($ $) 73)) (-1612 (($ $) 90)) (-1459 (($ $) 75)) (-1659 (($ $) 89)) (-1508 (($ $) 76)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 69)) (-3402 (((-517) $) 68)) (-3550 (((-3 $ "failed") $) 34)) (-3363 (($ |#1| |#1|) 66)) (-2671 (((-107) $) 60)) (-2102 (($) 101)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 72)) (-2321 (((-107) $) 59)) (-3480 (($ $ $) 107)) (-4095 (($ $ $) 106)) (-1232 (($ $) 98)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-1887 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-377 (-517))) 64)) (-2720 ((|#1| $) 63)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2333 (((-3 $ "failed") $ $) 42)) (-3898 (($ $) 99)) (-1670 (($ $) 88)) (-1521 (($ $) 77)) (-1647 (($ $) 87)) (-1495 (($ $) 78)) (-1622 (($ $) 86)) (-1471 (($ $) 79)) (-4168 (((-107) $ |#1|) 58)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 70)) (-1818 (((-703)) 29)) (-1706 (($ $) 97)) (-1564 (($ $) 85)) (-2944 (((-107) $ $) 39)) (-1685 (($ $) 96)) (-1536 (($ $) 84)) (-3517 (($ $) 95)) (-1588 (($ $) 83)) (-2815 (($ $) 94)) (-1601 (($ $) 82)) (-1722 (($ $) 93)) (-1577 (($ $) 81)) (-1698 (($ $) 92)) (-1550 (($ $) 80)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 104)) (-1606 (((-107) $ $) 103)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 105)) (-1596 (((-107) $ $) 102)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ $) 100) (($ $ (-377 (-517))) 71)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-507 |#1|) (-1189) (-13 (-374) (-1098))) (T -507)) -((-1887 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-3363 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-1887 (*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107)))) (-4168 (*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107))))) -(-13 (-421) (-779) (-1098) (-921) (-955 (-517)) (-10 -8 (-6 -2194) (-15 -1887 ($ |t#1| |t#1|)) (-15 -3363 ($ |t#1| |t#1|)) (-15 -1887 ($ |t#1|)) (-15 -1887 ($ (-377 (-517)))) (-15 -2720 (|t#1| $)) (-15 -3505 (|t#1| $)) (-15 -3436 (|t#1| $)) (-15 -2671 ((-107) $)) (-15 -2321 ((-107) $)) (-15 -4168 ((-107) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-256) . T) ((-262) . T) ((-421) . T) ((-458) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-921) . T) ((-955 (-517)) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) . T) ((-1101) . T)) -((-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 9)) (-2491 (($ $) 11)) (-2025 (((-107) $) 18)) (-3550 (((-3 $ "failed") $) 16)) (-2944 (((-107) $ $) 20))) -(((-508 |#1|) (-10 -8 (-15 -2025 ((-107) |#1|)) (-15 -2944 ((-107) |#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|))) (-509)) (T -508)) -NIL -(-10 -8 (-15 -2025 ((-107) |#1|)) (-15 -2944 ((-107) |#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -3479 ((-2 (|:| -1966 |#1|) (|:| -4182 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ $) 42)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-509) (-1189)) (T -509)) -((-2333 (*1 *1 *1 *1) (|partial| -4 *1 (-509))) (-3479 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1966 *1) (|:| -4182 *1) (|:| |associate| *1))) (-4 *1 (-509)))) (-2491 (*1 *1 *1) (-4 *1 (-509))) (-2944 (*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107))))) -(-13 (-156) (-37 $) (-262) (-10 -8 (-15 -2333 ((-3 $ "failed") $ $)) (-15 -3479 ((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $)) (-15 -2491 ($ $)) (-15 -2944 ((-107) $ $)) (-15 -2025 ((-107) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-3441 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1077) (-583 |#2|)) 35)) (-3967 (((-534 |#2|) |#2| (-1077)) 58)) (-2349 (((-3 |#2| "failed") |#2| (-1077)) 149)) (-1581 (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) (-556 |#2|) (-583 (-556 |#2|))) 152)) (-1349 (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) |#2|) 38))) -(((-510 |#1| |#2|) (-10 -7 (-15 -1349 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) |#2|)) (-15 -3441 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1077) (-583 |#2|))) (-15 -2349 ((-3 |#2| "failed") |#2| (-1077))) (-15 -3967 ((-534 |#2|) |#2| (-1077))) (-15 -1581 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) (-556 |#2|) (-583 (-556 |#2|))))) (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -510)) -((-1581 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1077)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))) (-3967 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-2349 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-3441 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))) (-1349 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5)))))) -(-10 -7 (-15 -1349 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) |#2|)) (-15 -3441 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1077) (-583 |#2|))) (-15 -2349 ((-3 |#2| "failed") |#2| (-1077))) (-15 -3967 ((-534 |#2|) |#2| (-1077))) (-15 -1581 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1077) (-556 |#2|) (-583 (-556 |#2|))))) -((-3306 (((-388 |#1|) |#1|) 18)) (-3896 (((-388 |#1|) |#1|) 33)) (-3682 (((-3 |#1| "failed") |#1|) 44)) (-1679 (((-388 |#1|) |#1|) 51))) -(((-511 |#1|) (-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1679 ((-388 |#1|) |#1|)) (-15 -3682 ((-3 |#1| "failed") |#1|))) (-502)) (T -511)) -((-3682 (*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))) (-1679 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-3306 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502))))) -(-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1679 ((-388 |#1|) |#1|)) (-15 -3682 ((-3 |#1| "failed") |#1|))) -((-1419 (($) 9)) (-1287 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-1869 (((-583 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 26)) (-3439 (($ (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-1866 (($ (-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-1846 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)) (-2862 (((-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-1888 (((-1163)) 12))) -(((-512) (-10 -8 (-15 -1419 ($)) (-15 -1888 ((-1163))) (-15 -1869 ((-583 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1866 ($ (-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3439 ($ (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1287 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2862 ((-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1846 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -512)) -((-1846 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-1287 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-3439 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) (-1866 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) (-1888 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-512)))) (-1419 (*1 *1) (-5 *1 (-512)))) -(-10 -8 (-15 -1419 ($)) (-15 -1888 ((-1163))) (-15 -1869 ((-583 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1866 ($ (-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3439 ($ (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1287 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2862 ((-583 (-2 (|:| -2576 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1846 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1058 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3177 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) -((-1428 (((-1073 (-377 (-1073 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1073 |#2|)) 28)) (-2977 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1073 |#2|)) 106)) (-3097 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|))) 78) (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|)) 50)) (-2741 (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1073 |#2|))) 85) (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1073 |#2|)) 105)) (-3219 (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) (-556 |#2|) |#2| (-377 (-1073 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) |#2| (-1073 |#2|)) 107)) (-2175 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|))) 124 (|has| |#3| (-593 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|)) 123 (|has| |#3| (-593 |#2|)))) (-2069 ((|#2| (-1073 (-377 (-1073 |#2|))) (-556 |#2|) |#2|) 48)) (-1497 (((-1073 (-377 (-1073 |#2|))) (-1073 |#2|) (-556 |#2|)) 27))) -(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -3097 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|))) (-15 -3097 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -2741 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1073 |#2|))) (-15 -2741 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -2977 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1073 |#2|))) (-15 -2977 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -3219 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) |#2| (-1073 |#2|))) (-15 -3219 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -1428 ((-1073 (-377 (-1073 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1073 |#2|))) (-15 -2069 (|#2| (-1073 (-377 (-1073 |#2|))) (-556 |#2|) |#2|)) (-15 -1497 ((-1073 (-377 (-1073 |#2|))) (-1073 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2175 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|))) (-15 -2175 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|))))) |%noBranch|)) (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1098)) (-1006)) (T -513)) -((-2175 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1073 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1098))) (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006)))) (-2175 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1073 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1098))) (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1098))) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1073 (-377 (-1073 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1073 *6)) (-4 *7 (-1006)))) (-2069 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1073 (-377 (-1073 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1098))) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1006)))) (-1428 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1073 (-377 (-1073 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1073 *3)) (-4 *7 (-1006)))) (-3219 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077))) (-5 *5 (-377 (-1073 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1006)))) (-3219 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077))) (-5 *5 (-1073 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1006)))) (-2977 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1073 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1098))) (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1006)))) (-2977 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1073 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1098))) (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1006)))) (-2741 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1073 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006)))) (-2741 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1073 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006)))) (-3097 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1073 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006)))) (-3097 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1073 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006))))) -(-10 -7 (-15 -3097 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|))) (-15 -3097 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -2741 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1073 |#2|))) (-15 -2741 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -2977 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1073 |#2|))) (-15 -2977 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -3219 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) |#2| (-1073 |#2|))) (-15 -3219 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)) (-556 |#2|) |#2| (-377 (-1073 |#2|)))) (-15 -1428 ((-1073 (-377 (-1073 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1073 |#2|))) (-15 -2069 (|#2| (-1073 (-377 (-1073 |#2|))) (-556 |#2|) |#2|)) (-15 -1497 ((-1073 (-377 (-1073 |#2|))) (-1073 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2175 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1073 |#2|))) (-15 -2175 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1073 |#2|))))) |%noBranch|)) -((-2657 (((-517) (-517) (-703)) 66)) (-3484 (((-517) (-517)) 65)) (-4138 (((-517) (-517)) 64)) (-1940 (((-517) (-517)) 69)) (-1895 (((-517) (-517) (-517)) 49)) (-1674 (((-517) (-517) (-517)) 46)) (-4164 (((-377 (-517)) (-517)) 20)) (-3397 (((-517) (-517)) 21)) (-2863 (((-517) (-517)) 58)) (-1796 (((-517) (-517)) 32)) (-2610 (((-583 (-517)) (-517)) 63)) (-2424 (((-517) (-517) (-517) (-517) (-517)) 44)) (-3132 (((-377 (-517)) (-517)) 41))) -(((-514) (-10 -7 (-15 -3132 ((-377 (-517)) (-517))) (-15 -2424 ((-517) (-517) (-517) (-517) (-517))) (-15 -2610 ((-583 (-517)) (-517))) (-15 -1796 ((-517) (-517))) (-15 -2863 ((-517) (-517))) (-15 -3397 ((-517) (-517))) (-15 -4164 ((-377 (-517)) (-517))) (-15 -1674 ((-517) (-517) (-517))) (-15 -1895 ((-517) (-517) (-517))) (-15 -1940 ((-517) (-517))) (-15 -4138 ((-517) (-517))) (-15 -3484 ((-517) (-517))) (-15 -2657 ((-517) (-517) (-703))))) (T -514)) -((-2657 (*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-4138 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1895 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1674 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-3397 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2863 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1796 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2610 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-2424 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3132 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517))))) -(-10 -7 (-15 -3132 ((-377 (-517)) (-517))) (-15 -2424 ((-517) (-517) (-517) (-517) (-517))) (-15 -2610 ((-583 (-517)) (-517))) (-15 -1796 ((-517) (-517))) (-15 -2863 ((-517) (-517))) (-15 -3397 ((-517) (-517))) (-15 -4164 ((-377 (-517)) (-517))) (-15 -1674 ((-517) (-517) (-517))) (-15 -1895 ((-517) (-517) (-517))) (-15 -1940 ((-517) (-517))) (-15 -4138 ((-517) (-517))) (-15 -3484 ((-517) (-517))) (-15 -2657 ((-517) (-517) (-703)))) -((-2639 (((-2 (|:| |answer| |#4|) (|:| -2249 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2639 ((-2 (|:| |answer| |#4|) (|:| -2249 |#4|)) |#4| (-1 |#2| |#2|)))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -515)) -((-2639 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-4 *7 (-1134 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2249 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7))))) -(-10 -7 (-15 -2639 ((-2 (|:| |answer| |#4|) (|:| -2249 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2639 (((-2 (|:| |answer| (-377 |#2|)) (|:| -2249 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 18))) -(((-516 |#1| |#2|) (-10 -7 (-15 -2639 ((-2 (|:| |answer| (-377 |#2|)) (|:| -2249 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1134 |#1|)) (T -516)) -((-2639 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -2249 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6))))) -(-10 -7 (-15 -2639 ((-2 (|:| |answer| (-377 |#2|)) (|:| -2249 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 25)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 86)) (-2491 (($ $) 87)) (-2025 (((-107) $) NIL)) (-2199 (($ $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2800 (($ $ $ $) 42)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL)) (-2127 (($ $ $) 80)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL)) (-3402 (((-517) $) NIL)) (-2383 (($ $ $) 79)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 60) (((-623 (-517)) (-623 $)) 57)) (-3550 (((-3 $ "failed") $) 83)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL)) (-3748 (((-107) $) NIL)) (-3727 (((-377 (-517)) $) NIL)) (-2192 (($) 62) (($ $) 63)) (-2356 (($ $ $) 78)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1214 (($ $ $ $) NIL)) (-4146 (($ $ $) 54)) (-2671 (((-107) $) NIL)) (-3624 (($ $ $) NIL)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL)) (-1690 (((-107) $) 26)) (-3448 (((-107) $) 73)) (-1639 (((-3 $ "failed") $) NIL)) (-2321 (((-107) $) 34)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3721 (($ $ $ $) 43)) (-3480 (($ $ $) 75)) (-4095 (($ $ $) 74)) (-2628 (($ $) NIL)) (-3728 (($ $) 40)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) 53)) (-3598 (($ $ $) NIL)) (-2578 (($) NIL T CONST)) (-4022 (($ $) 31)) (-4130 (((-1024) $) NIL) (($ $) 33)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 117)) (-2361 (($ $ $) 84) (($ (-583 $)) NIL)) (-2038 (($ $) NIL)) (-3896 (((-388 $) $) 103)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) 82)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 77)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-2909 (($ $) 32)) (-2453 (($ $) 30)) (-3367 (((-517) $) 39) (((-493) $) 51) (((-816 (-517)) $) NIL) (((-349) $) 46) (((-199) $) 48) (((-1060) $) 52)) (-2262 (((-787) $) 37) (($ (-517)) 38) (($ $) NIL) (($ (-517)) 38)) (-1818 (((-703)) NIL)) (-1638 (((-107) $ $) NIL)) (-1462 (($ $ $) NIL)) (-4003 (($) 29)) (-2944 (((-107) $ $) NIL)) (-2006 (($ $ $ $) 41)) (-2829 (($ $) 61)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 27 T CONST)) (-3675 (($) 28 T CONST)) (-2514 (((-1060) $) 20) (((-1060) $ (-107)) 22) (((-1163) (-754) $) 23) (((-1163) (-754) $ (-107)) 24)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 64)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 65)) (-1680 (($ $) 66) (($ $ $) 68)) (-1666 (($ $ $) 67)) (** (($ $ (-845)) NIL) (($ $ (-703)) 72)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 70) (($ $ $) 69))) -(((-517) (-13 (-502) (-558 (-1060)) (-760) (-10 -8 (-15 -2192 ($ $)) (-6 -4182) (-6 -4187) (-6 -4183) (-6 -4177)))) (T -517)) -((-2192 (*1 *1 *1) (-5 *1 (-517)))) -(-13 (-502) (-558 (-1060)) (-760) (-10 -8 (-15 -2192 ($ $)) (-6 -4182) (-6 -4187) (-6 -4183) (-6 -4177))) -((-3661 (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701) (-976)) 103) (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701)) 105)) (-3296 (((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1077)) 168) (((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1060)) 167) (((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349) (-976)) 173) (((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349)) 174) (((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349)) 175) (((-953) (-286 (-349)) (-583 (-1001 (-772 (-349))))) 176) (((-953) (-286 (-349)) (-1001 (-772 (-349)))) 163) (((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349)) 162) (((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349)) 158) (((-953) (-701)) 150) (((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349) (-976)) 157))) -(((-518) (-10 -7 (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349) (-976))) (-15 -3296 ((-953) (-701))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349) (-976))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701) (-976))) (-15 -3296 ((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1060))) (-15 -3296 ((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1077))))) (T -518)) -((-3296 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349)))) (-5 *5 (-1077)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349)))) (-5 *5 (-1060)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-976)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953)))) (-5 *1 (-518)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953)))) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-976)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-953)) (-5 *1 (-518)))) (-3296 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-976)) (-5 *2 (-953)) (-5 *1 (-518))))) -(-10 -7 (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349) (-976))) (-15 -3296 ((-953) (-701))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-1001 (-772 (-349))))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349))) (-15 -3296 ((-953) (-286 (-349)) (-583 (-1001 (-772 (-349)))) (-349) (-349) (-976))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953))) (-701) (-976))) (-15 -3296 ((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1060))) (-15 -3296 ((-3 (-953) "failed") (-286 (-349)) (-999 (-772 (-349))) (-1077)))) -((-1552 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|)) 181)) (-1382 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|)) 99)) (-1254 (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|) 177)) (-2343 (((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077))) 186)) (-3025 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1077)) 194 (|has| |#3| (-593 |#2|))))) -(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -1382 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -1254 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1552 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2343 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3025 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1077))) |%noBranch|)) (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1098)) (-1006)) (T -519)) -((-3025 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1077)) (-4 *4 (-13 (-400 *7) (-27) (-1098))) (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006)))) (-2343 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077))) (-4 *2 (-13 (-400 *5) (-27) (-1098))) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1006)))) (-1552 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1098))) (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1006)))) (-1254 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1098))) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1006)))) (-1382 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1098))) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1006))))) -(-10 -7 (-15 -1382 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -1254 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1552 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2343 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1077)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3025 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3700 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1077))) |%noBranch|)) -((-3537 (((-2 (|:| -3319 |#2|) (|:| |nconst| |#2|)) |#2| (-1077)) 62)) (-1881 (((-3 |#2| "failed") |#2| (-1077) (-772 |#2|) (-772 |#2|)) 159 (-12 (|has| |#2| (-1041)) (|has| |#1| (-558 (-816 (-517)))) (|has| |#1| (-810 (-517))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)) 133 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-816 (-517)))) (|has| |#1| (-810 (-517)))))) (-1930 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)) 142 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-816 (-517)))) (|has| |#1| (-810 (-517))))))) -(((-520 |#1| |#2|) (-10 -7 (-15 -3537 ((-2 (|:| -3319 |#2|) (|:| |nconst| |#2|)) |#2| (-1077))) (IF (|has| |#1| (-558 (-816 (-517)))) (IF (|has| |#1| (-810 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -1930 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077))) (-15 -1881 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)))) |%noBranch|) (IF (|has| |#2| (-1041)) (-15 -1881 ((-3 |#2| "failed") |#2| (-1077) (-772 |#2|) (-772 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-779) (-955 (-517)) (-421) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -520)) -((-1881 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1077)) (-5 *4 (-772 *2)) (-4 *2 (-1041)) (-4 *2 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-558 (-816 (-517)))) (-4 *5 (-810 (-517))) (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))) (-1881 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-558 (-816 (-517)))) (-4 *5 (-810 (-517))) (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-1930 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-558 (-816 (-517)))) (-4 *5 (-810 (-517))) (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-3537 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -3319 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5)))))) -(-10 -7 (-15 -3537 ((-2 (|:| -3319 |#2|) (|:| |nconst| |#2|)) |#2| (-1077))) (IF (|has| |#1| (-558 (-816 (-517)))) (IF (|has| |#1| (-810 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -1930 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077))) (-15 -1881 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)))) |%noBranch|) (IF (|has| |#2| (-1041)) (-15 -1881 ((-3 |#2| "failed") |#2| (-1077) (-772 |#2|) (-772 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1540 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))) 39)) (-3296 (((-534 (-377 |#2|)) (-377 |#2|)) 27)) (-2961 (((-3 (-377 |#2|) "failed") (-377 |#2|)) 16)) (-1996 (((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|)) 46))) -(((-521 |#1| |#2|) (-10 -7 (-15 -3296 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2961 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -1996 ((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -1540 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))))) (-13 (-333) (-134) (-955 (-517))) (-1134 |#1|)) (T -521)) -((-1540 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))) (-1996 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| -2791 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) (-2961 (*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-13 (-333) (-134) (-955 (-517)))) (-5 *1 (-521 *3 *4)))) (-3296 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5))))) -(-10 -7 (-15 -3296 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2961 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -1996 ((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -1540 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))))) -((-3616 (((-3 (-517) "failed") |#1|) 14)) (-3744 (((-107) |#1|) 13)) (-2258 (((-517) |#1|) 9))) -(((-522 |#1|) (-10 -7 (-15 -2258 ((-517) |#1|)) (-15 -3744 ((-107) |#1|)) (-15 -3616 ((-3 (-517) "failed") |#1|))) (-955 (-517))) (T -522)) -((-3616 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-955 *2)))) (-3744 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-955 (-517))))) (-2258 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-955 *2))))) -(-10 -7 (-15 -2258 ((-517) |#1|)) (-15 -3744 ((-107) |#1|)) (-15 -3616 ((-3 (-517) "failed") |#1|))) -((-2653 (((-3 (-2 (|:| |mainpart| (-377 (-876 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-876 |#1|))) (|:| |logand| (-377 (-876 |#1|))))))) "failed") (-377 (-876 |#1|)) (-1077) (-583 (-377 (-876 |#1|)))) 43)) (-1513 (((-534 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-1077)) 25)) (-3980 (((-3 (-377 (-876 |#1|)) "failed") (-377 (-876 |#1|)) (-1077)) 20)) (-3492 (((-3 (-2 (|:| -2791 (-377 (-876 |#1|))) (|:| |coeff| (-377 (-876 |#1|)))) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|))) 32))) -(((-523 |#1|) (-10 -7 (-15 -1513 ((-534 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -3980 ((-3 (-377 (-876 |#1|)) "failed") (-377 (-876 |#1|)) (-1077))) (-15 -2653 ((-3 (-2 (|:| |mainpart| (-377 (-876 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-876 |#1|))) (|:| |logand| (-377 (-876 |#1|))))))) "failed") (-377 (-876 |#1|)) (-1077) (-583 (-377 (-876 |#1|))))) (-15 -3492 ((-3 (-2 (|:| -2791 (-377 (-876 |#1|))) (|:| |coeff| (-377 (-876 |#1|)))) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|))))) (-13 (-509) (-955 (-517)) (-134))) (T -523)) -((-3492 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-955 (-517)) (-134))) (-5 *2 (-2 (|:| -2791 (-377 (-876 *5))) (|:| |coeff| (-377 (-876 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-876 *5))))) (-2653 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 (-377 (-876 *6)))) (-5 *3 (-377 (-876 *6))) (-4 *6 (-13 (-509) (-955 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))) (-3980 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-876 *4))) (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-955 (-517)) (-134))) (-5 *1 (-523 *4)))) (-1513 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-955 (-517)) (-134))) (-5 *2 (-534 (-377 (-876 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-876 *5)))))) -(-10 -7 (-15 -1513 ((-534 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -3980 ((-3 (-377 (-876 |#1|)) "failed") (-377 (-876 |#1|)) (-1077))) (-15 -2653 ((-3 (-2 (|:| |mainpart| (-377 (-876 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-876 |#1|))) (|:| |logand| (-377 (-876 |#1|))))))) "failed") (-377 (-876 |#1|)) (-1077) (-583 (-377 (-876 |#1|))))) (-15 -3492 ((-3 (-2 (|:| -2791 (-377 (-876 |#1|))) (|:| |coeff| (-377 (-876 |#1|)))) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|))))) -((-2105 (((-107) $ $) 59)) (-1992 (((-107) $) 36)) (-3436 ((|#1| $) 30)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) 63)) (-1636 (($ $) 123)) (-1482 (($ $) 103)) (-3505 ((|#1| $) 28)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $) NIL)) (-1612 (($ $) 125)) (-1459 (($ $) 99)) (-1659 (($ $) 127)) (-1508 (($ $) 107)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) 78)) (-3402 (((-517) $) 80)) (-3550 (((-3 $ "failed") $) 62)) (-3363 (($ |#1| |#1|) 26)) (-2671 (((-107) $) 33)) (-2102 (($) 89)) (-1690 (((-107) $) 43)) (-2940 (($ $ (-517)) NIL)) (-2321 (((-107) $) 34)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-1232 (($ $) 91)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-1887 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-377 (-517))) 77)) (-2720 ((|#1| $) 27)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) 65) (($ (-583 $)) NIL)) (-2333 (((-3 $ "failed") $ $) 64)) (-3898 (($ $) 93)) (-1670 (($ $) 131)) (-1521 (($ $) 105)) (-1647 (($ $) 133)) (-1495 (($ $) 109)) (-1622 (($ $) 129)) (-1471 (($ $) 101)) (-4168 (((-107) $ |#1|) 31)) (-2262 (((-787) $) 85) (($ (-517)) 67) (($ $) NIL) (($ (-517)) 67)) (-1818 (((-703)) 87)) (-1706 (($ $) 145)) (-1564 (($ $) 115)) (-2944 (((-107) $ $) NIL)) (-1685 (($ $) 143)) (-1536 (($ $) 111)) (-3517 (($ $) 141)) (-1588 (($ $) 121)) (-2815 (($ $) 139)) (-1601 (($ $) 119)) (-1722 (($ $) 137)) (-1577 (($ $) 117)) (-1698 (($ $) 135)) (-1550 (($ $) 113)) (-2806 (($ $ (-845)) 55) (($ $ (-703)) NIL)) (-3663 (($) 21 T CONST)) (-3675 (($) 10 T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 37)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 35)) (-1680 (($ $) 41) (($ $ $) 42)) (-1666 (($ $ $) 40)) (** (($ $ (-845)) 54) (($ $ (-703)) NIL) (($ $ $) 95) (($ $ (-377 (-517))) 147)) (* (($ (-845) $) 51) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 48))) -(((-524 |#1|) (-507 |#1|) (-13 (-374) (-1098))) (T -524)) -NIL -(-507 |#1|) -((-3862 (((-3 (-583 (-1073 (-517))) "failed") (-583 (-1073 (-517))) (-1073 (-517))) 24))) -(((-525) (-10 -7 (-15 -3862 ((-3 (-583 (-1073 (-517))) "failed") (-583 (-1073 (-517))) (-1073 (-517)))))) (T -525)) -((-3862 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 (-517)))) (-5 *3 (-1073 (-517))) (-5 *1 (-525))))) -(-10 -7 (-15 -3862 ((-3 (-583 (-1073 (-517))) "failed") (-583 (-1073 (-517))) (-1073 (-517))))) -((-1859 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1077)) 18)) (-3882 (((-583 (-556 |#2|)) (-583 |#2|) (-1077)) 23)) (-2374 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|))) 10)) (-4038 ((|#2| |#2| (-1077)) 52 (|has| |#1| (-509)))) (-2910 ((|#2| |#2| (-1077)) 77 (-12 (|has| |#2| (-256)) (|has| |#1| (-421))))) (-3437 (((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1077)) 25)) (-1771 (((-556 |#2|) (-583 (-556 |#2|))) 24)) (-3626 (((-534 |#2|) |#2| (-1077) (-1 (-534 |#2|) |#2| (-1077)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077))) 101 (-12 (|has| |#2| (-256)) (|has| |#2| (-569)) (|has| |#2| (-955 (-1077))) (|has| |#1| (-558 (-816 (-517)))) (|has| |#1| (-421)) (|has| |#1| (-810 (-517))))))) -(((-526 |#1| |#2|) (-10 -7 (-15 -1859 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1077))) (-15 -1771 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -3437 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1077))) (-15 -2374 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -3882 ((-583 (-556 |#2|)) (-583 |#2|) (-1077))) (IF (|has| |#1| (-509)) (-15 -4038 (|#2| |#2| (-1077))) |%noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -2910 (|#2| |#2| (-1077))) (IF (|has| |#1| (-558 (-816 (-517)))) (IF (|has| |#1| (-810 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-955 (-1077))) (-15 -3626 ((-534 |#2|) |#2| (-1077) (-1 (-534 |#2|) |#2| (-1077)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-779) (-400 |#1|)) (T -526)) -((-3626 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1077))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1077))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-955 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1077)) (-4 *7 (-558 (-816 (-517)))) (-4 *7 (-421)) (-4 *7 (-810 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))) (-2910 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))) (-4038 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1077)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))) (-2374 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) (-3437 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1077)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))) (-1859 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1077)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5))))) -(-10 -7 (-15 -1859 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1077))) (-15 -1771 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -3437 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1077))) (-15 -2374 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -3882 ((-583 (-556 |#2|)) (-583 |#2|) (-1077))) (IF (|has| |#1| (-509)) (-15 -4038 (|#2| |#2| (-1077))) |%noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -2910 (|#2| |#2| (-1077))) (IF (|has| |#1| (-558 (-816 (-517)))) (IF (|has| |#1| (-810 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-955 (-1077))) (-15 -3626 ((-534 |#2|) |#2| (-1077) (-1 (-534 |#2|) |#2| (-1077)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1077)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2306 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|)) 168)) (-4175 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|))) 144)) (-2294 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|))) 141)) (-3498 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-2585 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-3702 (((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|)) 171)) (-3285 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|)) 174)) (-3141 (((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 82)) (-4052 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-1977 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|))) 148)) (-3915 (((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 134)) (-1219 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 158)) (-3782 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|)) 179))) -(((-527 |#1| |#2|) (-10 -7 (-15 -2585 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1219 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2306 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3285 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -3782 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -4175 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -1977 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -3702 ((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -2294 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -3498 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3915 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -3141 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -4052 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-333) (-1134 |#1|)) (T -527)) -((-4052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))) (-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3915 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3302 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1134 *4)) (-5 *1 (-527 *4 *5)))) (-3498 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1134 *4)))) (-2294 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1134 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))) (-3702 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2791 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-1977 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3302 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1134 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-4175 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2791 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1134 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-3782 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3302 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2791 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-3285 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2791 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2791 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2306 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-1219 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3302 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2585 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2791 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) -(-10 -7 (-15 -2585 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1219 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2306 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -3285 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -3782 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -4175 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -1977 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -3702 ((-3 (-2 (|:| -2791 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -2294 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -3498 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3915 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3302 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -3141 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -4052 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-3340 (((-3 |#2| "failed") |#2| (-1077) (-1077)) 10))) -(((-528 |#1| |#2|) (-10 -7 (-15 -3340 ((-3 |#2| "failed") |#2| (-1077) (-1077)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-882) (-1041) (-29 |#1|))) (T -528)) -((-3340 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1077)) (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1098) (-882) (-1041) (-29 *4)))))) -(-10 -7 (-15 -3340 ((-3 |#2| "failed") |#2| (-1077) (-1077)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $ (-517)) 65)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2902 (($ (-1073 (-517)) (-517)) 71)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) 57)) (-4021 (($ $) 33)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-3250 (((-703) $) 15)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2263 (((-517)) 27)) (-3907 (((-517) $) 31)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3175 (($ $ (-517)) 21)) (-2333 (((-3 $ "failed") $ $) 58)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) 16)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 60)) (-3685 (((-1058 (-517)) $) 18)) (-2384 (($ $) 23)) (-2262 (((-787) $) 86) (($ (-517)) 51) (($ $) NIL)) (-1818 (((-703)) 14)) (-2944 (((-107) $ $) NIL)) (-2194 (((-517) $ (-517)) 35)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 34 T CONST)) (-3675 (($) 19 T CONST)) (-1572 (((-107) $ $) 38)) (-1680 (($ $) 50) (($ $ $) 36)) (-1666 (($ $ $) 49)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 53) (($ $ $) 54))) -(((-529 |#1| |#2|) (-793 |#1|) (-517) (-107)) (T -529)) -NIL -(-793 |#1|) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 18)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (($ $ (-845)) NIL (|has| $ (-338))) (($ $) NIL)) (-2461 (((-1086 (-845) (-703)) (-517)) 47)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 $ "failed") $) 75)) (-3402 (($ $) 74)) (-3539 (($ (-1158 $)) 73)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) 30)) (-2192 (($) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) 49)) (-2634 (((-107) $) NIL)) (-2627 (($ $) NIL) (($ $ (-703)) NIL)) (-2022 (((-107) $) NIL)) (-3250 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-1690 (((-107) $) NIL)) (-1222 (($) 35 (|has| $ (-338)))) (-3715 (((-107) $) NIL (|has| $ (-338)))) (-3522 (($ $ (-845)) NIL (|has| $ (-338))) (($ $) NIL)) (-1639 (((-3 $ "failed") $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 $) $ (-845)) NIL (|has| $ (-338))) (((-1073 $) $) 83)) (-4161 (((-845) $) 55)) (-3905 (((-1073 $) $) NIL (|has| $ (-338)))) (-3211 (((-3 (-1073 $) "failed") $ $) NIL (|has| $ (-338))) (((-1073 $) $) NIL (|has| $ (-338)))) (-3063 (($ $ (-1073 $)) NIL (|has| $ (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL T CONST)) (-2803 (($ (-845)) 48)) (-1333 (((-107) $) 67)) (-4130 (((-1024) $) NIL)) (-1306 (($) 16 (|has| $ (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 40)) (-3896 (((-388 $) $) NIL)) (-2177 (((-845)) 66) (((-765 (-845))) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-1470 (((-125)) NIL)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-1191 (((-845) $) 65) (((-765 (-845)) $) NIL)) (-2819 (((-1073 $)) 82)) (-3718 (($) 54)) (-3297 (($) 36 (|has| $ (-338)))) (-1372 (((-623 $) (-1158 $)) NIL) (((-1158 $) $) 71)) (-3367 (((-517) $) 26)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) 28) (($ $) NIL) (($ (-377 (-517))) NIL)) (-3385 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1818 (((-703)) 37)) (-3700 (((-1158 $) (-845)) 77) (((-1158 $)) 76)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 19 T CONST)) (-3675 (($) 15 T CONST)) (-4115 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 24)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 61) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) -(((-530 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-845)) (T -530)) -NIL -(-13 (-319) (-299 $) (-558 (-517))) -((-3094 (((-1163) (-1060)) 10))) -(((-531) (-10 -7 (-15 -3094 ((-1163) (-1060))))) (T -531)) -((-3094 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-531))))) -(-10 -7 (-15 -3094 ((-1163) (-1060)))) -((-1975 (((-534 |#2|) (-534 |#2|)) 38)) (-2287 (((-583 |#2|) (-534 |#2|)) 40)) (-3916 ((|#2| (-534 |#2|)) 47))) -(((-532 |#1| |#2|) (-10 -7 (-15 -1975 ((-534 |#2|) (-534 |#2|))) (-15 -2287 ((-583 |#2|) (-534 |#2|))) (-15 -3916 (|#2| (-534 |#2|)))) (-13 (-421) (-955 (-517)) (-779) (-579 (-517))) (-13 (-29 |#1|) (-1098))) (T -532)) -((-3916 (*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1098))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1098))) (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) (-1975 (*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1098))) (-4 *3 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4))))) -(-10 -7 (-15 -1975 ((-534 |#2|) (-534 |#2|))) (-15 -2287 ((-583 |#2|) (-534 |#2|))) (-15 -3916 (|#2| (-534 |#2|)))) -((-3312 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|)) 26))) -(((-533 |#1| |#2|) (-10 -7 (-15 -3312 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -3312 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3312 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3312 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-333) (-333)) (T -533)) -((-3312 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) (-3312 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) (-3312 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2791 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2791 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6))))) -(-10 -7 (-15 -3312 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -3312 ((-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2791 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3312 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3312 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 69)) (-3402 ((|#1| $) NIL)) (-2791 ((|#1| $) 24)) (-3686 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-4090 (($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-2249 (((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) $) 25)) (-3232 (((-1060) $) NIL)) (-1329 (($ |#1| |#1|) 32) (($ |#1| (-1077)) 43 (|has| |#1| (-955 (-1077))))) (-4130 (((-1024) $) NIL)) (-3841 (((-107) $) 28)) (-2042 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1077)) 82 (|has| |#1| (-824 (-1077))))) (-2262 (((-787) $) 96) (($ |#1|) 23)) (-3663 (($) 16 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) 15) (($ $ $) NIL)) (-1666 (($ $ $) 78)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 14) (($ (-377 (-517)) $) 35) (($ $ (-377 (-517))) NIL))) -(((-534 |#1|) (-13 (-650 (-377 (-517))) (-955 |#1|) (-10 -8 (-15 -4090 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2791 (|#1| $)) (-15 -2249 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) $)) (-15 -3686 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3841 ((-107) $)) (-15 -1329 ($ |#1| |#1|)) (-15 -2042 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-824 (-1077))) (-15 -2042 (|#1| $ (-1077))) |%noBranch|) (IF (|has| |#1| (-955 (-1077))) (-15 -1329 ($ |#1| (-1077))) |%noBranch|))) (-333)) (T -534)) -((-4090 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 *2)) (|:| |logand| (-1073 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))) (-2791 (*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 *3)) (|:| |logand| (-1073 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-3686 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1329 (*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2042 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-2042 (*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-824 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1077)))) (-1329 (*1 *1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *1 (-534 *2)) (-4 *2 (-955 *3)) (-4 *2 (-333))))) -(-13 (-650 (-377 (-517))) (-955 |#1|) (-10 -8 (-15 -4090 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2791 (|#1| $)) (-15 -2249 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 |#1|)) (|:| |logand| (-1073 |#1|)))) $)) (-15 -3686 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3841 ((-107) $)) (-15 -1329 ($ |#1| |#1|)) (-15 -2042 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-824 (-1077))) (-15 -2042 (|#1| $ (-1077))) |%noBranch|) (IF (|has| |#1| (-955 (-1077))) (-15 -1329 ($ |#1| (-1077))) |%noBranch|))) -((-2860 (((-107) |#1|) 16)) (-2354 (((-3 |#1| "failed") |#1|) 14)) (-1733 (((-2 (|:| -4003 |#1|) (|:| -1725 (-703))) |#1|) 31) (((-3 |#1| "failed") |#1| (-703)) 18)) (-1230 (((-107) |#1| (-703)) 19)) (-1929 ((|#1| |#1|) 32)) (-3830 ((|#1| |#1| (-703)) 34))) -(((-535 |#1|) (-10 -7 (-15 -1230 ((-107) |#1| (-703))) (-15 -1733 ((-3 |#1| "failed") |#1| (-703))) (-15 -1733 ((-2 (|:| -4003 |#1|) (|:| -1725 (-703))) |#1|)) (-15 -3830 (|#1| |#1| (-703))) (-15 -2860 ((-107) |#1|)) (-15 -2354 ((-3 |#1| "failed") |#1|)) (-15 -1929 (|#1| |#1|))) (-502)) (T -535)) -((-1929 (*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-2354 (*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-2860 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-3830 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1733 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4003 *3) (|:| -1725 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-1733 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1230 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502))))) -(-10 -7 (-15 -1230 ((-107) |#1| (-703))) (-15 -1733 ((-3 |#1| "failed") |#1| (-703))) (-15 -1733 ((-2 (|:| -4003 |#1|) (|:| -1725 (-703))) |#1|)) (-15 -3830 (|#1| |#1| (-703))) (-15 -2860 ((-107) |#1|)) (-15 -2354 ((-3 |#1| "failed") |#1|)) (-15 -1929 (|#1| |#1|))) -((-1279 (((-1073 |#1|) (-845)) 27))) -(((-536 |#1|) (-10 -7 (-15 -1279 ((-1073 |#1|) (-845)))) (-319)) (T -536)) -((-1279 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319))))) -(-10 -7 (-15 -1279 ((-1073 |#1|) (-845)))) -((-1975 (((-534 (-377 (-876 |#1|))) (-534 (-377 (-876 |#1|)))) 26)) (-3296 (((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-876 |#1|)) (-1077)) 32 (|has| |#1| (-134)))) (-2287 (((-583 (-286 |#1|)) (-534 (-377 (-876 |#1|)))) 18)) (-2984 (((-286 |#1|) (-377 (-876 |#1|)) (-1077)) 30 (|has| |#1| (-134)))) (-3916 (((-286 |#1|) (-534 (-377 (-876 |#1|)))) 20))) -(((-537 |#1|) (-10 -7 (-15 -1975 ((-534 (-377 (-876 |#1|))) (-534 (-377 (-876 |#1|))))) (-15 -2287 ((-583 (-286 |#1|)) (-534 (-377 (-876 |#1|))))) (-15 -3916 ((-286 |#1|) (-534 (-377 (-876 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -3296 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -2984 ((-286 |#1|) (-377 (-876 |#1|)) (-1077)))) |%noBranch|)) (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (T -537)) -((-2984 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-876 *4)))) (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-876 *4)))) (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) (-1975 (*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-876 *3)))) (-4 *3 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3))))) -(-10 -7 (-15 -1975 ((-534 (-377 (-876 |#1|))) (-534 (-377 (-876 |#1|))))) (-15 -2287 ((-583 (-286 |#1|)) (-534 (-377 (-876 |#1|))))) (-15 -3916 ((-286 |#1|) (-534 (-377 (-876 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -3296 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -2984 ((-286 |#1|) (-377 (-876 |#1|)) (-1077)))) |%noBranch|)) -((-1805 (((-583 (-623 (-517))) (-583 (-517)) (-583 (-829 (-517)))) 46) (((-583 (-623 (-517))) (-583 (-517))) 47) (((-623 (-517)) (-583 (-517)) (-829 (-517))) 42)) (-2254 (((-703) (-583 (-517))) 40))) -(((-538) (-10 -7 (-15 -2254 ((-703) (-583 (-517)))) (-15 -1805 ((-623 (-517)) (-583 (-517)) (-829 (-517)))) (-15 -1805 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -1805 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-829 (-517))))))) (T -538)) -((-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-829 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-829 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538))))) -(-10 -7 (-15 -2254 ((-703) (-583 (-517)))) (-15 -1805 ((-623 (-517)) (-583 (-517)) (-829 (-517)))) (-15 -1805 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -1805 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-829 (-517)))))) -((-3327 (((-583 |#5|) |#5| (-107)) 73)) (-2225 (((-107) |#5| (-583 |#5|)) 30))) -(((-539 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3327 ((-583 |#5|) |#5| (-107))) (-15 -2225 ((-107) |#5| (-583 |#5|)))) (-13 (-278) (-134)) (-725) (-779) (-978 |#1| |#2| |#3|) (-1015 |#1| |#2| |#3| |#4|)) (T -539)) -((-2225 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1015 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1015 *5 *6 *7 *8))))) -(-10 -7 (-15 -3327 ((-583 |#5|) |#5| (-107))) (-15 -2225 ((-107) |#5| (-583 |#5|)))) -((-2105 (((-107) $ $) NIL (|has| (-131) (-1006)))) (-3169 (($ $) 34)) (-2811 (($ $) NIL)) (-3199 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2542 (((-107) $ $) 51)) (-3133 (((-107) $ $ (-517)) 46)) (-1975 (((-583 $) $ (-131)) 60) (((-583 $) $ (-128)) 61)) (-2508 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-4109 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| (-131) (-779))))) (-2149 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 (((-131) $ (-517) (-131)) 45 (|has| $ (-6 -4196))) (((-131) $ (-1125 (-517)) (-131)) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-2899 (($ $ (-131)) 64) (($ $ (-128)) 65)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-3225 (($ $ (-1125 (-517)) $) 44)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1423 (($ (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4195)))) (-2750 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4196)))) (-2557 (((-131) $ (-517)) NIL)) (-2562 (((-107) $ $) 71)) (-1210 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1006))) (((-517) (-131) $ (-517)) 48 (|has| (-131) (-1006))) (((-517) $ $ (-517)) 47) (((-517) (-128) $ (-517)) 50)) (-1525 (((-583 (-131)) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) (-131)) 9)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 28 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| (-131) (-779)))) (-3824 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-3687 (((-583 (-131)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1969 (((-517) $) 42 (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-131) (-779)))) (-1436 (((-107) $ $ (-131)) 72)) (-1924 (((-703) $ $ (-131)) 70)) (-2737 (($ (-1 (-131) (-131)) $) 33 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3410 (($ $) 37)) (-3577 (($ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-2912 (($ $ (-131)) 62) (($ $ (-128)) 63)) (-3232 (((-1060) $) 38 (|has| (-131) (-1006)))) (-1734 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) 23)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-517) $) 69) (((-1024) $) NIL (|has| (-131) (-1006)))) (-2420 (((-131) $) NIL (|has| (-517) (-779)))) (-1985 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2837 (($ $ (-131)) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-2862 (((-583 (-131)) $) NIL)) (-1754 (((-107) $) 12)) (-2679 (($) 10)) (-2612 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) 52) (($ $ (-1125 (-517))) 21) (($ $ $) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1704 (($ $ $ (-517)) 66 (|has| $ (-6 -4196)))) (-2453 (($ $) 17)) (-3367 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2279 (($ (-583 (-131))) NIL)) (-4117 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) 16) (($ (-583 $)) 67)) (-2262 (($ (-131)) NIL) (((-787) $) 27 (|has| (-131) (-557 (-787))))) (-1272 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1572 (((-107) $ $) 14 (|has| (-131) (-1006)))) (-1618 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1596 (((-107) $ $) 15 (|has| (-131) (-779)))) (-3573 (((-703) $) 13 (|has| $ (-6 -4195))))) -(((-540 |#1|) (-13 (-1046) (-10 -8 (-15 -4130 ((-517) $)))) (-517)) (T -540)) -((-4130 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2)))) -(-13 (-1046) (-10 -8 (-15 -4130 ((-517) $)))) -((-3476 (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-1001 |#4|)) 32))) -(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3476 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-1001 |#4|))) (-15 -3476 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|))) (-725) (-779) (-509) (-873 |#3| |#1| |#2|)) (T -541)) -((-3476 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-873 *6 *5 *4)))) (-3476 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1001 *3)) (-4 *3 (-873 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3))))) -(-10 -7 (-15 -3476 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-1001 |#4|))) (-15 -3476 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 63)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-517)) 54) (($ $ (-517) (-517)) 55)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 60)) (-1519 (($ $) 100)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2027 (((-787) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-944 (-772 (-517))) (-1077) |#1| (-377 (-517))) 215)) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 34)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3690 (((-107) $) NIL)) (-3250 (((-517) $) 58) (((-517) $ (-517)) 59)) (-1690 (((-107) $) NIL)) (-2113 (($ $ (-845)) 76)) (-2603 (($ (-1 |#1| (-517)) $) 73)) (-3022 (((-107) $) 25)) (-2059 (($ |#1| (-517)) 22) (($ $ (-992) (-517)) NIL) (($ $ (-583 (-992)) (-583 (-517))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) 67)) (-2839 (($ (-944 (-772 (-517))) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 11)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-3296 (($ $) 112 (|has| |#1| (-37 (-377 (-517)))))) (-1392 (((-3 $ "failed") $ $ (-107)) 99)) (-3629 (($ $ $) 108)) (-4130 (((-1024) $) NIL)) (-3289 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 13)) (-3433 (((-944 (-772 (-517))) $) 12)) (-3175 (($ $ (-517)) 45)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-2612 ((|#1| $ (-517)) 57) (($ $ $) NIL (|has| (-517) (-1018)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1191 (((-517) $) NIL)) (-2384 (($ $) 46)) (-2262 (((-787) $) NIL) (($ (-517)) 28) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 27 (|has| |#1| (-156)))) (-1939 ((|#1| $ (-517)) 56)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) 37)) (-3605 ((|#1| $) NIL)) (-1591 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-4173 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-1553 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-2915 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-1224 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-3781 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-3866 (($ $ (-377 (-517))) 146 (|has| |#1| (-37 (-377 (-517)))))) (-2540 (($ $ |#1|) 121 (|has| |#1| (-37 (-377 (-517)))))) (-2879 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-2221 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-2636 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-2483 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-2487 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-2916 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-3976 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-2132 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-2055 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-3050 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-2459 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3802 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-3271 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-1713 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-3016 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-2825 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1847 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-2277 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1877 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2194 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 29 T CONST)) (-3675 (($) 38 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1572 (((-107) $ $) 65)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) 84) (($ $ $) 64)) (-1666 (($ $ $) 81)) (** (($ $ (-845)) NIL) (($ $ (-703)) 103)) (* (($ (-845) $) 89) (($ (-703) $) 87) (($ (-517) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-542 |#1|) (-13 (-1136 |#1| (-517)) (-10 -8 (-15 -2839 ($ (-944 (-772 (-517))) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3433 ((-944 (-772 (-517))) $)) (-15 -3289 ((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -3452 ($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3022 ((-107) $)) (-15 -2603 ($ (-1 |#1| (-517)) $)) (-15 -1392 ((-3 $ "failed") $ $ (-107))) (-15 -1519 ($ $)) (-15 -3629 ($ $ $)) (-15 -2027 ((-787) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-944 (-772 (-517))) (-1077) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $)) (-15 -2540 ($ $ |#1|)) (-15 -3866 ($ $ (-377 (-517)))) (-15 -2221 ($ $)) (-15 -2879 ($ $)) (-15 -2915 ($ $)) (-15 -2132 ($ $)) (-15 -4173 ($ $)) (-15 -2916 ($ $)) (-15 -3781 ($ $)) (-15 -2483 ($ $)) (-15 -3430 ($ $)) (-15 -1877 ($ $)) (-15 -3050 ($ $)) (-15 -1847 ($ $)) (-15 -3271 ($ $)) (-15 -3016 ($ $)) (-15 -1553 ($ $)) (-15 -3976 ($ $)) (-15 -1591 ($ $)) (-15 -2487 ($ $)) (-15 -1224 ($ $)) (-15 -2636 ($ $)) (-15 -2459 ($ $)) (-15 -2277 ($ $)) (-15 -2055 ($ $)) (-15 -2825 ($ $)) (-15 -3802 ($ $)) (-15 -1713 ($ $))) |%noBranch|))) (-964)) (T -542)) -((-3022 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-964)))) (-2839 (*1 *1 *2 *3) (-12 (-5 *2 (-944 (-772 (-517)))) (-5 *3 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-964)) (-5 *1 (-542 *4)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-944 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-964)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-964)))) (-3452 (*1 *1 *2) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-964)) (-5 *1 (-542 *3)))) (-2603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-964)) (-5 *1 (-542 *3)))) (-1392 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-964)))) (-1519 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-964)))) (-3629 (*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-964)))) (-2027 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-944 (-772 (-517)))) (-5 *5 (-1077)) (-5 *7 (-377 (-517))) (-4 *6 (-964)) (-5 *2 (-787)) (-5 *1 (-542 *6)))) (-3296 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2540 (*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3866 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-964)))) (-2221 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2879 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2915 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2132 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-4173 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2916 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3430 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1877 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3050 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1847 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3271 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3016 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1553 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3976 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2487 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1224 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2636 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2459 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2055 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-2825 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) (-1713 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(-13 (-1136 |#1| (-517)) (-10 -8 (-15 -2839 ($ (-944 (-772 (-517))) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3433 ((-944 (-772 (-517))) $)) (-15 -3289 ((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -3452 ($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3022 ((-107) $)) (-15 -2603 ($ (-1 |#1| (-517)) $)) (-15 -1392 ((-3 $ "failed") $ $ (-107))) (-15 -1519 ($ $)) (-15 -3629 ($ $ $)) (-15 -2027 ((-787) (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-944 (-772 (-517))) (-1077) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $)) (-15 -2540 ($ $ |#1|)) (-15 -3866 ($ $ (-377 (-517)))) (-15 -2221 ($ $)) (-15 -2879 ($ $)) (-15 -2915 ($ $)) (-15 -2132 ($ $)) (-15 -4173 ($ $)) (-15 -2916 ($ $)) (-15 -3781 ($ $)) (-15 -2483 ($ $)) (-15 -3430 ($ $)) (-15 -1877 ($ $)) (-15 -3050 ($ $)) (-15 -1847 ($ $)) (-15 -3271 ($ $)) (-15 -3016 ($ $)) (-15 -1553 ($ $)) (-15 -3976 ($ $)) (-15 -1591 ($ $)) (-15 -2487 ($ $)) (-15 -1224 ($ $)) (-15 -2636 ($ $)) (-15 -2459 ($ $)) (-15 -2277 ($ $)) (-15 -2055 ($ $)) (-15 -2825 ($ $)) (-15 -3802 ($ $)) (-15 -1713 ($ $))) |%noBranch|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3452 (($ (-1058 |#1|)) 9)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) 42)) (-3690 (((-107) $) 52)) (-3250 (((-703) $) 55) (((-703) $ (-703)) 54)) (-1690 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ $) 44 (|has| |#1| (-509)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-1058 |#1|) $) 23)) (-1818 (((-703)) 51)) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 10 T CONST)) (-3675 (($) 14 T CONST)) (-1572 (((-107) $ $) 22)) (-1680 (($ $) 30) (($ $ $) 16)) (-1666 (($ $ $) 25)) (** (($ $ (-845)) NIL) (($ $ (-703)) 49)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-517)) 36))) -(((-543 |#1|) (-13 (-964) (-10 -8 (-15 -3186 ((-1058 |#1|) $)) (-15 -3452 ($ (-1058 |#1|))) (-15 -3690 ((-107) $)) (-15 -3250 ((-703) $)) (-15 -3250 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |%noBranch|))) (-964)) (T -543)) -((-3186 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) (-3452 (*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-543 *3)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) (-3250 (*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-964)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-964)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-964))))) -(-13 (-964) (-10 -8 (-15 -3186 ((-1058 |#1|) $)) (-15 -3452 ($ (-1058 |#1|))) (-15 -3690 ((-107) $)) (-15 -3250 ((-703) $)) (-15 -3250 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |%noBranch|))) -((-3312 (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 15))) -(((-544 |#1| |#2|) (-10 -7 (-15 -3312 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)))) (-1112) (-1112)) (T -544)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6))))) -(-10 -7 (-15 -3312 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)))) -((-3312 (((-1058 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1058 |#2|)) 20) (((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-547 |#2|)) 19) (((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|)) 18))) -(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-547 |#2|))) (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1058 |#2|)))) (-1112) (-1112) (-1112)) (T -545)) -((-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1058 *7)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8)) (-5 *1 (-545 *6 *7 *8)))) (-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8)) (-5 *1 (-545 *6 *7 *8)))) (-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8))))) -(-10 -7 (-15 -3312 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-547 |#2|))) (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1058 |#2|)))) -((-3131 ((|#3| |#3| (-583 (-556 |#3|)) (-583 (-1077))) 55)) (-2731 (((-153 |#2|) |#3|) 116)) (-2212 ((|#3| (-153 |#2|)) 43)) (-2085 ((|#2| |#3|) 19)) (-2827 ((|#3| |#2|) 32))) -(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2212 (|#3| (-153 |#2|))) (-15 -2085 (|#2| |#3|)) (-15 -2827 (|#3| |#2|)) (-15 -2731 ((-153 |#2|) |#3|)) (-15 -3131 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1077))))) (-13 (-509) (-779)) (-13 (-400 |#1|) (-921) (-1098)) (-13 (-400 (-153 |#1|)) (-921) (-1098))) (T -546)) -((-3131 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1077))) (-4 *2 (-13 (-400 (-153 *5)) (-921) (-1098))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-921) (-1098))))) (-2731 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-921) (-1098))) (-4 *3 (-13 (-400 (-153 *4)) (-921) (-1098))))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-921) (-1098))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-921) (-1098))))) (-2085 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-921) (-1098))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-921) (-1098))))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-921) (-1098))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-921) (-1098))) (-5 *1 (-546 *4 *5 *2))))) -(-10 -7 (-15 -2212 (|#3| (-153 |#2|))) (-15 -2085 (|#2| |#3|)) (-15 -2827 (|#3| |#2|)) (-15 -2731 ((-153 |#2|) |#3|)) (-15 -3131 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1077))))) -((-2317 (($ (-1 (-107) |#1|) $) 16)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2257 (($ (-1 |#1| |#1|) |#1|) 9)) (-2297 (($ (-1 (-107) |#1|) $) 12)) (-2307 (($ (-1 (-107) |#1|) $) 14)) (-2279 (((-1058 |#1|) $) 17)) (-2262 (((-787) $) NIL))) -(((-547 |#1|) (-13 (-557 (-787)) (-10 -8 (-15 -3312 ($ (-1 |#1| |#1|) $)) (-15 -2297 ($ (-1 (-107) |#1|) $)) (-15 -2307 ($ (-1 (-107) |#1|) $)) (-15 -2317 ($ (-1 (-107) |#1|) $)) (-15 -2257 ($ (-1 |#1| |#1|) |#1|)) (-15 -2279 ((-1058 |#1|) $)))) (-1112)) (T -547)) -((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) (-2297 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) (-2307 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) (-2317 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) (-2257 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) (-2279 (*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1112))))) -(-13 (-557 (-787)) (-10 -8 (-15 -3312 ($ (-1 |#1| |#1|) $)) (-15 -2297 ($ (-1 (-107) |#1|) $)) (-15 -2307 ($ (-1 (-107) |#1|) $)) (-15 -2317 ($ (-1 (-107) |#1|) $)) (-15 -2257 ($ (-1 |#1| |#1|) |#1|)) (-15 -2279 ((-1058 |#1|) $)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703)) NIL (|has| |#1| (-23)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2681 (((-623 |#1|) $ $) NIL (|has| |#1| (-964)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1492 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-2328 (((-107) $ (-703)) NIL)) (-3728 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-3912 ((|#1| $ $) NIL (|has| |#1| (-964)))) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-1305 (($ $ $) NIL (|has| |#1| (-964)))) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1680 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1666 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-548 |#1| |#2|) (-1156 |#1|) (-1112) (-517)) (T -548)) -NIL -(-1156 |#1|) -((-3351 (((-1163) $ |#2| |#2|) 36)) (-3531 ((|#2| $) 23)) (-1969 ((|#2| $) 21)) (-2737 (($ (-1 |#3| |#3|) $) 32)) (-3312 (($ (-1 |#3| |#3|) $) 30)) (-2420 ((|#3| $) 26)) (-2837 (($ $ |#3|) 33)) (-2124 (((-107) |#3| $) 17)) (-2862 (((-583 |#3|) $) 15)) (-2612 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-549 |#1| |#2| |#3|) (-10 -8 (-15 -3351 ((-1163) |#1| |#2| |#2|)) (-15 -2837 (|#1| |#1| |#3|)) (-15 -2420 (|#3| |#1|)) (-15 -3531 (|#2| |#1|)) (-15 -1969 (|#2| |#1|)) (-15 -2124 ((-107) |#3| |#1|)) (-15 -2862 ((-583 |#3|) |#1|)) (-15 -2612 (|#3| |#1| |#2|)) (-15 -2612 (|#3| |#1| |#2| |#3|)) (-15 -2737 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3312 (|#1| (-1 |#3| |#3|) |#1|))) (-550 |#2| |#3|) (-1006) (-1112)) (T -549)) -NIL -(-10 -8 (-15 -3351 ((-1163) |#1| |#2| |#2|)) (-15 -2837 (|#1| |#1| |#3|)) (-15 -2420 (|#3| |#1|)) (-15 -3531 (|#2| |#1|)) (-15 -1969 (|#2| |#1|)) (-15 -2124 ((-107) |#3| |#1|)) (-15 -2862 ((-583 |#3|) |#1|)) (-15 -2612 (|#3| |#1| |#2|)) (-15 -2612 (|#3| |#1| |#2| |#3|)) (-15 -2737 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3312 (|#1| (-1 |#3| |#3|) |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#2| (-1006)))) (-3351 (((-1163) $ |#1| |#1|) 40 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-2750 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) 51)) (-1525 (((-583 |#2|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3531 ((|#1| $) 43 (|has| |#1| (-779)))) (-3687 (((-583 |#2|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-1969 ((|#1| $) 44 (|has| |#1| (-779)))) (-2737 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#2| (-1006)))) (-1449 (((-583 |#1|) $) 46)) (-3413 (((-107) |#1| $) 47)) (-4130 (((-1024) $) 21 (|has| |#2| (-1006)))) (-2420 ((|#2| $) 42 (|has| |#1| (-779)))) (-2837 (($ $ |#2|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4140 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4195))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#2| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#2| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-550 |#1| |#2|) (-1189) (-1006) (-1112)) (T -550)) -((-2862 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112)) (-5 *2 (-583 *4)))) (-3413 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112)) (-5 *2 (-107)))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112)) (-5 *2 (-583 *3)))) (-2124 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1006)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-107)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1006)) (-4 *2 (-779)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1006)) (-4 *2 (-779)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1006)) (-4 *3 (-779)) (-4 *2 (-1112)))) (-2837 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))) (-3351 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112)) (-5 *2 (-1163))))) -(-13 (-456 |t#2|) (-260 |t#1| |t#2|) (-10 -8 (-15 -2862 ((-583 |t#2|) $)) (-15 -3413 ((-107) |t#1| $)) (-15 -1449 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1006)) (IF (|has| $ (-6 -4195)) (-15 -2124 ((-107) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -1969 (|t#1| $)) (-15 -3531 (|t#1| $)) (-15 -2420 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4196)) (PROGN (-15 -2837 ($ $ |t#2|)) (-15 -3351 ((-1163) $ |t#1| |t#1|))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#2| (-1006)) ((-557 (-787)) -3786 (|has| |#2| (-1006)) (|has| |#2| (-557 (-787)))) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-1006) |has| |#2| (-1006)) ((-1112) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1966 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1158 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1158 (-623 |#1|)) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-4026 (((-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3038 (($) NIL T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1745 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2998 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2496 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1793 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3071 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3928 (((-1073 (-876 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2823 (($ $ (-845)) NIL)) (-4132 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1363 (((-1073 |#1|) $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3708 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2740 (((-1073 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2889 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3539 (($ (-1158 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1158 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3550 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3778 (((-845)) NIL (|has| |#2| (-337 |#1|)))) (-3874 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1768 (($ $ (-845)) NIL)) (-3544 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4016 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1627 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3277 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1830 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2002 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-4044 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2680 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3221 (((-1073 (-876 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-4119 (($ $ (-845)) NIL)) (-1249 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3556 (((-1073 |#1|) $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1274 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3570 (((-1073 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-1878 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3232 (((-1060) $) NIL)) (-2455 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4102 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2032 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4130 (((-1024) $) NIL)) (-3377 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2612 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-1372 (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-387 |#1|))) (((-1158 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $) (-1158 $)) NIL (|has| |#2| (-337 |#1|))) (((-1158 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3367 (($ (-1158 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1158 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3861 (((-583 (-876 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-876 |#1|)) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-1970 (($ $ $) NIL)) (-1293 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2262 (((-787) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3700 (((-1158 $)) NIL (|has| |#2| (-387 |#1|)))) (-3741 (((-583 (-1158 |#1|))) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2182 (($ $ $ $) NIL)) (-3450 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2365 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2742 (($ $ $) NIL)) (-3014 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1901 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1555 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3663 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) 24)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-551 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2262 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) (-156) (-677 |#1|)) (T -551)) -((-2262 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3))))) -(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2262 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) -((-2105 (((-107) $ $) NIL)) (-3188 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) 32)) (-3195 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL) (($) NIL)) (-3351 (((-1163) $ (-1060) (-1060)) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-1060) |#1|) 42)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#1| "failed") (-1060) $) 45)) (-3038 (($) NIL T CONST)) (-3010 (($ $ (-1060)) 24)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-1749 (((-3 |#1| "failed") (-1060) $) 46) (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (|has| $ (-6 -4195)))) (-1423 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-1510 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-2872 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) 31)) (-2750 ((|#1| $ (-1060) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-1060)) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-3684 (($ $) 47)) (-3723 (($ (-358)) 22) (($ (-358) (-1060)) 21)) (-2981 (((-358) $) 33)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-1060) $) NIL (|has| (-1060) (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195))) (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (((-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-1969 (((-1060) $) NIL (|has| (-1060) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1869 (((-583 (-1060)) $) 38)) (-2409 (((-107) (-1060) $) NIL)) (-3048 (((-1060) $) 34)) (-2015 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-1449 (((-583 (-1060)) $) NIL)) (-3413 (((-107) (-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 ((|#1| $) NIL (|has| (-1060) (-779)))) (-1985 (((-3 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) "failed") (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-583 (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 36)) (-2612 ((|#1| $ (-1060) |#1|) NIL) ((|#1| $ (-1060)) 41)) (-3808 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL) (($) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (((-703) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (((-703) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-2262 (((-787) $) 20)) (-3604 (($ $) 25)) (-2729 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 19)) (-3573 (((-703) $) 40 (|has| $ (-6 -4195))))) -(((-552 |#1|) (-13 (-334 (-358) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) (-1089 (-1060) |#1|) (-10 -8 (-6 -4195) (-15 -3684 ($ $)))) (-1006)) (T -552)) -((-3684 (*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1006))))) -(-13 (-334 (-358) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) (-1089 (-1060) |#1|) (-10 -8 (-6 -4195) (-15 -3684 ($ $)))) -((-1949 (((-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) 15)) (-1869 (((-583 |#2|) $) 19)) (-2409 (((-107) |#2| $) 12))) -(((-553 |#1| |#2| |#3|) (-10 -8 (-15 -1869 ((-583 |#2|) |#1|)) (-15 -2409 ((-107) |#2| |#1|)) (-15 -1949 ((-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|))) (-554 |#2| |#3|) (-1006) (-1006)) (T -553)) -NIL -(-10 -8 (-15 -1869 ((-583 |#2|) |#1|)) (-15 -2409 ((-107) |#2| |#1|)) (-15 -1949 ((-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|))) -((-2105 (((-107) $ $) 19 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 55 (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) 61)) (-3038 (($) 7 T CONST)) (-2446 (($ $) 58 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 46 (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 62)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 54 (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 56 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 53 (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1869 (((-583 |#1|) $) 63)) (-2409 (((-107) |#1| $) 64)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 39)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 40)) (-4130 (((-1024) $) 21 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 51)) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 41)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) 26 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 25 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 24 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 23 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-3808 (($) 49) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 48)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 31 (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 50)) (-2262 (((-787) $) 18 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 42)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-554 |#1| |#2|) (-1189) (-1006) (-1006)) (T -554)) -((-2409 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-107)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-583 *3)))) (-1749 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-3599 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) -(-13 (-203 (-2 (|:| -2576 |t#1|) (|:| -1846 |t#2|))) (-10 -8 (-15 -2409 ((-107) |t#1| $)) (-15 -1869 ((-583 |t#1|) $)) (-15 -1749 ((-3 |t#2| "failed") |t#1| $)) (-15 -3599 ((-3 |t#2| "failed") |t#1| $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((-97) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) ((-557 (-787)) -3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787)))) ((-138 #0#) . T) ((-558 (-493)) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-280 #0#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-456 #0#) . T) ((-478 #0# #0#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-1006) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) ((-1112) . T)) -((-1227 (((-556 |#2|) |#1|) 15)) (-2053 (((-3 |#1| "failed") (-556 |#2|)) 19))) -(((-555 |#1| |#2|) (-10 -7 (-15 -1227 ((-556 |#2|) |#1|)) (-15 -2053 ((-3 |#1| "failed") (-556 |#2|)))) (-779) (-779)) (T -555)) -((-2053 (*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))) (-1227 (*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779))))) -(-10 -7 (-15 -1227 ((-556 |#2|) |#1|)) (-15 -2053 ((-3 |#1| "failed") (-556 |#2|)))) -((-2105 (((-107) $ $) NIL)) (-1794 (((-3 (-1077) "failed") $) 36)) (-1798 (((-1163) $ (-703)) 26)) (-1210 (((-703) $) 25)) (-1325 (((-109) $) 12)) (-2981 (((-1077) $) 20)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-1385 (($ (-109) (-583 |#1|) (-703)) 30) (($ (-1077)) 31)) (-3731 (((-107) $ (-109)) 18) (((-107) $ (-1077)) 16)) (-1795 (((-703) $) 22)) (-4130 (((-1024) $) NIL)) (-3367 (((-816 (-517)) $) 69 (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) 75 (|has| |#1| (-558 (-816 (-349))))) (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2262 (((-787) $) 51)) (-2842 (((-583 |#1|) $) 24)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 39)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 40))) -(((-556 |#1|) (-13 (-124) (-808 |#1|) (-10 -8 (-15 -2981 ((-1077) $)) (-15 -1325 ((-109) $)) (-15 -2842 ((-583 |#1|) $)) (-15 -1795 ((-703) $)) (-15 -1385 ($ (-109) (-583 |#1|) (-703))) (-15 -1385 ($ (-1077))) (-15 -1794 ((-3 (-1077) "failed") $)) (-15 -3731 ((-107) $ (-109))) (-15 -3731 ((-107) $ (-1077))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) (-779)) (T -556)) -((-2981 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1385 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1794 (*1 *2 *1) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) (-3731 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779))))) -(-13 (-124) (-808 |#1|) (-10 -8 (-15 -2981 ((-1077) $)) (-15 -1325 ((-109) $)) (-15 -2842 ((-583 |#1|) $)) (-15 -1795 ((-703) $)) (-15 -1385 ($ (-109) (-583 |#1|) (-703))) (-15 -1385 ($ (-1077))) (-15 -1794 ((-3 (-1077) "failed") $)) (-15 -3731 ((-107) $ (-109))) (-15 -3731 ((-107) $ (-1077))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) -((-2262 ((|#1| $) 6))) -(((-557 |#1|) (-1189) (-1112)) (T -557)) -((-2262 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1112))))) -(-13 (-10 -8 (-15 -2262 (|t#1| $)))) -((-3367 ((|#1| $) 6))) -(((-558 |#1|) (-1189) (-1112)) (T -558)) -((-3367 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1112))))) -(-13 (-10 -8 (-15 -3367 (|t#1| $)))) -((-2152 (((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)) 13) (((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 14))) -(((-559 |#1| |#2|) (-10 -7 (-15 -2152 ((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2152 ((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)))) (-13 (-134) (-27) (-955 (-517)) (-955 (-377 (-517)))) (-1134 |#1|)) (T -559)) -((-2152 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-134) (-27) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-1073 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))) (-2152 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-955 (-517)) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-1073 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5))))) -(-10 -7 (-15 -2152 ((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2152 ((-3 (-1073 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)))) -((-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10))) -(((-560 |#1| |#2|) (-10 -8 (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-561 |#2|) (-964)) (T -560)) -NIL -(-10 -8 (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 36)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#1| $) 37))) -(((-561 |#1|) (-1189) (-964)) (T -561)) -((-2262 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-964))))) -(-13 (-964) (-585 |t#1|) (-10 -8 (-15 -2262 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3502 (((-517) $) NIL (|has| |#1| (-777)))) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-2671 (((-107) $) NIL (|has| |#1| (-777)))) (-1690 (((-107) $) NIL)) (-3858 ((|#1| $) 13)) (-2321 (((-107) $) NIL (|has| |#1| (-777)))) (-3480 (($ $ $) NIL (|has| |#1| (-777)))) (-4095 (($ $ $) NIL (|has| |#1| (-777)))) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2082 ((|#3| $) 15)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL)) (-1818 (((-703)) 20)) (-2829 (($ $) NIL (|has| |#1| (-777)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) 12 T CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1692 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-562 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1692 ($ $ |#3|)) (-15 -1692 ($ |#1| |#3|)) (-15 -3858 (|#1| $)) (-15 -2082 (|#3| $)))) (-37 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -562)) -((-1692 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1692 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-3858 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-2082 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4))))) -(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (-15 -1692 ($ $ |#3|)) (-15 -1692 ($ |#1| |#3|)) (-15 -3858 (|#1| $)) (-15 -2082 (|#3| $)))) -((-1635 ((|#2| |#2| (-1077) (-1077)) 18))) -(((-563 |#1| |#2|) (-10 -7 (-15 -1635 (|#2| |#2| (-1077) (-1077)))) (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-882) (-29 |#1|))) (T -563)) -((-1635 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1098) (-882) (-29 *4)))))) -(-10 -7 (-15 -1635 (|#2| |#2| (-1077) (-1077)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 52)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1291 ((|#1| $) 49)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1421 (((-2 (|:| -3191 $) (|:| -3119 (-377 |#2|))) (-377 |#2|)) 97 (|has| |#1| (-333)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) 24)) (-3550 (((-3 $ "failed") $) 76)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3250 (((-517) $) 19)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) 36)) (-2059 (($ |#1| (-517)) 21)) (-2336 ((|#1| $) 51)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) 87 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ $) 80)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3388 (((-703) $) 99 (|has| |#1| (-333)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 98 (|has| |#1| (-333)))) (-2042 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1191 (((-517) $) 34)) (-3367 (((-377 |#2|) $) 42)) (-2262 (((-787) $) 63) (($ (-517)) 32) (($ $) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) 31) (($ |#2|) 22)) (-1939 ((|#1| $ (-517)) 64)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 9 T CONST)) (-3675 (($) 12 T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1572 (((-107) $ $) 17)) (-1680 (($ $) 46) (($ $ $) NIL)) (-1666 (($ $ $) 77)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 26) (($ $ $) 44))) -(((-564 |#1| |#2|) (-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-955 |#2|) (-10 -8 (-15 -3022 ((-107) $)) (-15 -1191 ((-517) $)) (-15 -3250 ((-517) $)) (-15 -2364 ($ $)) (-15 -2336 (|#1| $)) (-15 -1291 (|#1| $)) (-15 -1939 (|#1| $ (-517))) (-15 -2059 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -1421 ((-2 (|:| -3191 $) (|:| -3119 (-377 |#2|))) (-377 |#2|)))) |%noBranch|))) (-509) (-1134 |#1|)) (T -564)) -((-3022 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1134 *3)))) (-1191 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1134 *3)))) (-3250 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1134 *3)))) (-2364 (*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2)))) (-2336 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2)))) (-1291 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1134 *2)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1134 *2)))) (-1421 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| -3191 (-564 *4 *5)) (|:| -3119 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5))))) -(-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-955 |#2|) (-10 -8 (-15 -3022 ((-107) $)) (-15 -1191 ((-517) $)) (-15 -3250 ((-517) $)) (-15 -2364 ($ $)) (-15 -2336 (|#1| $)) (-15 -1291 (|#1| $)) (-15 -1939 (|#1| $ (-517))) (-15 -2059 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -1421 ((-2 (|:| -3191 $) (|:| -3119 (-377 |#2|))) (-377 |#2|)))) |%noBranch|))) -((-3246 (((-583 |#6|) (-583 |#4|) (-107)) 47)) (-3724 ((|#6| |#6|) 40))) -(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3724 (|#6| |#6|)) (-15 -3246 ((-583 |#6|) (-583 |#4|) (-107)))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|) (-1015 |#1| |#2| |#3| |#4|)) (T -565)) -((-3246 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *10 (-1015 *5 *6 *7 *8)))) (-3724 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *2 (-1015 *3 *4 *5 *6))))) -(-10 -7 (-15 -3724 (|#6| |#6|)) (-15 -3246 ((-583 |#6|) (-583 |#4|) (-107)))) -((-3524 (((-107) |#3| (-703) (-583 |#3|)) 23)) (-3429 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1073 |#3|)))) "failed") |#3| (-583 (-1073 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2283 (-583 (-2 (|:| |irr| |#4|) (|:| -1332 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 52))) -(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3524 ((-107) |#3| (-703) (-583 |#3|))) (-15 -3429 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1073 |#3|)))) "failed") |#3| (-583 (-1073 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2283 (-583 (-2 (|:| |irr| |#4|) (|:| -1332 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-779) (-725) (-278) (-873 |#3| |#2| |#1|)) (T -566)) -((-3429 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2283 (-583 (-2 (|:| |irr| *10) (|:| -1332 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-873 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1073 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1073 *3))))) (-3524 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-873 *3 *7 *6))))) -(-10 -7 (-15 -3524 ((-107) |#3| (-703) (-583 |#3|))) (-15 -3429 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1073 |#3|)))) "failed") |#3| (-583 (-1073 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2283 (-583 (-2 (|:| |irr| |#4|) (|:| -1332 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) -((-2105 (((-107) $ $) NIL)) (-3375 (((-583 |#1|) $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-2833 (($ $) 67)) (-1232 (((-601 |#1| |#2|) $) 52)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 70)) (-2298 (((-583 (-265 |#2|)) $ $) 33)) (-4130 (((-1024) $) NIL)) (-3898 (($ (-601 |#1| |#2|)) 48)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) 58) (((-1171 |#1| |#2|) $) NIL) (((-1176 |#1| |#2|) $) 66)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 53 T CONST)) (-4079 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) 31)) (-3006 (((-583 (-601 |#1| |#2|)) (-583 |#1|)) 65)) (-1226 (((-583 (-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|))) $) 36)) (-1572 (((-107) $ $) 54)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 44))) -(((-567 |#1| |#2| |#3|) (-13 (-442) (-10 -8 (-15 -3898 ($ (-601 |#1| |#2|))) (-15 -1232 ((-601 |#1| |#2|) $)) (-15 -1226 ((-583 (-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|))) $)) (-15 -2262 ((-1171 |#1| |#2|) $)) (-15 -2262 ((-1176 |#1| |#2|) $)) (-15 -2833 ($ $)) (-15 -3375 ((-583 |#1|) $)) (-15 -3006 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -4079 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -2298 ((-583 (-265 |#2|)) $ $)))) (-779) (-13 (-156) (-650 (-377 (-517)))) (-845)) (T -567)) -((-3898 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-845)))) (-1232 (*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-1226 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-817 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-2833 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-845)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-845)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) (-2298 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845))))) -(-13 (-442) (-10 -8 (-15 -3898 ($ (-601 |#1| |#2|))) (-15 -1232 ((-601 |#1| |#2|) $)) (-15 -1226 ((-583 (-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|))) $)) (-15 -2262 ((-1171 |#1| |#2|) $)) (-15 -2262 ((-1176 |#1| |#2|) $)) (-15 -2833 ($ $)) (-15 -3375 ((-583 |#1|) $)) (-15 -3006 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -4079 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -2298 ((-583 (-265 |#2|)) $ $)))) -((-3246 (((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 71) (((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 57)) (-3210 (((-107) (-583 (-712 |#1| (-789 |#2|)))) 22)) (-2756 (((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 70)) (-3483 (((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 56)) (-1582 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) 26)) (-4002 (((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|)))) 25))) -(((-568 |#1| |#2|) (-10 -7 (-15 -3210 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -4002 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1582 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -3483 ((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2756 ((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3246 ((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3246 ((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)))) (-421) (-583 (-1077))) (T -568)) -((-3246 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-1048 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-3246 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-1048 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-568 *5 *6)))) (-1582 (*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1077))) (-5 *1 (-568 *3 *4)))) (-4002 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1077))) (-5 *1 (-568 *3 *4)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1077))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5))))) -(-10 -7 (-15 -3210 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -4002 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1582 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -3483 ((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -2756 ((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3246 ((-583 (-961 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -3246 ((-583 (-1048 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)))) -((-1636 (($ $) 38)) (-1482 (($ $) 21)) (-1612 (($ $) 37)) (-1459 (($ $) 22)) (-1659 (($ $) 36)) (-1508 (($ $) 23)) (-2102 (($) 48)) (-1232 (($ $) 45)) (-2168 (($ $) 17)) (-1329 (($ $ (-999 $)) 7) (($ $ (-1077)) 6)) (-3898 (($ $) 46)) (-1410 (($ $) 15)) (-1446 (($ $) 16)) (-1670 (($ $) 35)) (-1521 (($ $) 24)) (-1647 (($ $) 34)) (-1495 (($ $) 25)) (-1622 (($ $) 33)) (-1471 (($ $) 26)) (-1706 (($ $) 44)) (-1564 (($ $) 32)) (-1685 (($ $) 43)) (-1536 (($ $) 31)) (-3517 (($ $) 42)) (-1588 (($ $) 30)) (-2815 (($ $) 41)) (-1601 (($ $) 29)) (-1722 (($ $) 40)) (-1577 (($ $) 28)) (-1698 (($ $) 39)) (-1550 (($ $) 27)) (-2641 (($ $) 19)) (-1418 (($ $) 20)) (-1717 (($ $) 18)) (** (($ $ $) 47))) -(((-569) (-1189)) (T -569)) -((-1418 (*1 *1 *1) (-4 *1 (-569))) (-2641 (*1 *1 *1) (-4 *1 (-569))) (-1717 (*1 *1 *1) (-4 *1 (-569))) (-2168 (*1 *1 *1) (-4 *1 (-569))) (-1446 (*1 *1 *1) (-4 *1 (-569))) (-1410 (*1 *1 *1) (-4 *1 (-569)))) -(-13 (-882) (-1098) (-10 -8 (-15 -1418 ($ $)) (-15 -2641 ($ $)) (-15 -1717 ($ $)) (-15 -2168 ($ $)) (-15 -1446 ($ $)) (-15 -1410 ($ $)))) -(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-882) . T) ((-1098) . T) ((-1101) . T)) -((-1325 (((-109) (-109)) 83)) (-2168 ((|#2| |#2|) 30)) (-1329 ((|#2| |#2| (-999 |#2|)) 79) ((|#2| |#2| (-1077)) 52)) (-1410 ((|#2| |#2|) 29)) (-1446 ((|#2| |#2|) 31)) (-4116 (((-107) (-109)) 34)) (-2641 ((|#2| |#2|) 26)) (-1418 ((|#2| |#2|) 28)) (-1717 ((|#2| |#2|) 27))) -(((-570 |#1| |#2|) (-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1418 (|#2| |#2|)) (-15 -2641 (|#2| |#2|)) (-15 -1717 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -1410 (|#2| |#2|)) (-15 -1446 (|#2| |#2|)) (-15 -1329 (|#2| |#2| (-1077))) (-15 -1329 (|#2| |#2| (-999 |#2|)))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-921) (-1098))) (T -570)) -((-1329 (*1 *2 *2 *3) (-12 (-5 *3 (-999 *2)) (-4 *2 (-13 (-400 *4) (-921) (-1098))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) (-1329 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-921) (-1098))))) (-1446 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-1717 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-2641 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-1418 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-921) (-1098))))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-921) (-1098))))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-921) (-1098)))))) -(-10 -7 (-15 -4116 ((-107) (-109))) (-15 -1325 ((-109) (-109))) (-15 -1418 (|#2| |#2|)) (-15 -2641 (|#2| |#2|)) (-15 -1717 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -1410 (|#2| |#2|)) (-15 -1446 (|#2| |#2|)) (-15 -1329 (|#2| |#2| (-1077))) (-15 -1329 (|#2| |#2| (-999 |#2|)))) -((-1915 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 53)) (-2209 (((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 68)) (-1435 (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 70) (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 69)) (-2274 (((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|))) 106)) (-2707 (((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 83)) (-1681 (((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|))) 117)) (-2077 (((-1158 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|))) 58)) (-2579 (((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 39)) (-3996 (((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 49)) (-2745 (((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 90))) -(((-571 |#1| |#2|) (-10 -7 (-15 -2274 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -1681 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -2209 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1435 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -1435 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2579 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2077 ((-1158 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -2745 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -2707 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3996 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1915 ((-449 |#1| |#2|) (-221 |#1| |#2|)))) (-583 (-1077)) (-421)) (T -571)) -((-1915 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))) (-3996 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-2707 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-2745 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1077))) (-5 *1 (-571 *5 *6)))) (-2077 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1077))) (-4 *6 (-421)) (-5 *2 (-1158 *6)) (-5 *1 (-571 *5 *6)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1077))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))) (-1435 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1077))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-1435 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1077))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))) (-1681 (*1 *2 *3) (-12 (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5))))) -(-10 -7 (-15 -2274 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -1681 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -2209 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1435 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -1435 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2579 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2077 ((-1158 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -2745 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -2707 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3996 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1915 ((-449 |#1| |#2|) (-221 |#1| |#2|)))) -((-2105 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL)) (-3351 (((-1163) $ (-1060) (-1060)) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 (((-51) $ (-1060) (-51)) 16) (((-51) $ (-1077) (-51)) 17)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 (-51) "failed") (-1060) $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006))))) (-1749 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-3 (-51) "failed") (-1060) $) NIL)) (-1423 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (((-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2750 (((-51) $ (-1060) (-51)) NIL (|has| $ (-6 -4196)))) (-2557 (((-51) $ (-1060)) NIL)) (-1525 (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-3684 (($ $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-1060) $) NIL (|has| (-1060) (-779)))) (-3687 (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-1969 (((-1060) $) NIL (|has| (-1060) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4196))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1809 (($ (-358)) 9)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006))))) (-1869 (((-583 (-1060)) $) NIL)) (-2409 (((-107) (-1060) $) NIL)) (-2015 (((-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL)) (-3439 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL)) (-1449 (((-583 (-1060)) $) NIL)) (-3413 (((-107) (-1060) $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006))))) (-2420 (((-51) $) NIL (|has| (-1060) (-779)))) (-1985 (((-3 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) "failed") (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL)) (-2837 (($ $ (-51)) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (($ $ (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (($ $ (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-2862 (((-583 (-51)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 (((-51) $ (-1060)) 14) (((-51) $ (-1060) (-51)) NIL) (((-51) $ (-1077)) 15)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 (-51))) (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-572) (-13 (-1089 (-1060) (-51)) (-10 -8 (-15 -1809 ($ (-358))) (-15 -3684 ($ $)) (-15 -2612 ((-51) $ (-1077))) (-15 -2436 ((-51) $ (-1077) (-51)))))) (T -572)) -((-1809 (*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))) (-3684 (*1 *1 *1) (-5 *1 (-572))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-51)) (-5 *1 (-572)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1077)) (-5 *1 (-572))))) -(-13 (-1089 (-1060) (-51)) (-10 -8 (-15 -1809 ($ (-358))) (-15 -3684 ($ $)) (-15 -2612 ((-51) $ (-1077))) (-15 -2436 ((-51) $ (-1077) (-51))))) -((-1692 (($ $ |#2|) 10))) -(((-573 |#1| |#2|) (-10 -8 (-15 -1692 (|#1| |#1| |#2|))) (-574 |#2|) (-156)) (T -573)) -NIL -(-10 -8 (-15 -1692 (|#1| |#1| |#2|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2279 (($ $ $) 29)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 28 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-574 |#1|) (-1189) (-156)) (T -574)) -((-2279 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) (-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333))))) -(-13 (-650 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2279 ($ $ $)) (IF (|has| |t#1| (-333)) (-15 -1692 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-970 |#1|) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1966 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1158 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1158 (-623 |#1|)) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-4026 (((-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3038 (($) NIL T CONST)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1745 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2998 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2496 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1793 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3071 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3928 (((-1073 (-876 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2823 (($ $ (-845)) NIL)) (-4132 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-1363 (((-1073 |#1|) $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3708 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2740 (((-1073 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2889 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3539 (($ (-1158 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1158 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3550 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3778 (((-845)) NIL (|has| |#2| (-337 |#1|)))) (-3874 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1768 (($ $ (-845)) NIL)) (-3544 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4016 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1627 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3277 (((-3 $ "failed")) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1830 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2002 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-4044 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-2680 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3221 (((-1073 (-876 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-4119 (($ $ (-845)) NIL)) (-1249 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3556 (((-1073 |#1|) $) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1274 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3570 (((-1073 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-1878 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3232 (((-1060) $) NIL)) (-2455 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4102 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2032 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-4130 (((-1024) $) NIL)) (-3377 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2612 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-1372 (((-623 |#1|) (-1158 $)) NIL (|has| |#2| (-387 |#1|))) (((-1158 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1158 $) (-1158 $)) NIL (|has| |#2| (-337 |#1|))) (((-1158 |#1|) $ (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-3367 (($ (-1158 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1158 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-3861 (((-583 (-876 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-876 |#1|)) (-1158 $)) NIL (|has| |#2| (-337 |#1|)))) (-1970 (($ $ $) NIL)) (-1293 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2262 (((-787) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3700 (((-1158 $)) NIL (|has| |#2| (-387 |#1|)))) (-3741 (((-583 (-1158 |#1|))) NIL (-3786 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2182 (($ $ $ $) NIL)) (-3450 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2365 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2742 (($ $ $) NIL)) (-3014 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1901 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1555 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3663 (($) 15 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) 17)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-575 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2262 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) (-156) (-677 |#1|)) (T -575)) -((-2262 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3))))) -(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2262 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |%noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |%noBranch|))) -((-2406 (((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1060)) 78) (((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|))) 100)) (-2007 (((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|))) 105))) -(((-576 |#1| |#2|) (-10 -7 (-15 -2406 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -2007 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -2406 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1060)))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -576)) -((-2406 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1060)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) (-2007 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))))) (-2406 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1098) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3))))) -(-10 -7 (-15 -2406 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -2007 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -2406 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1060)))) -((-2406 (((-3 (-772 (-377 (-876 |#1|))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))) (-1060)) 79) (((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|)))) 18) (((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-772 (-876 |#1|)))) 34)) (-2007 (((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|)))) 21) (((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-765 (-876 |#1|)))) 42))) -(((-577 |#1|) (-10 -7 (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-772 (-876 |#1|))))) (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -2007 ((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-765 (-876 |#1|))))) (-15 -2007 ((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))) (-1060)))) (-421)) (T -577)) -((-2406 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-876 *6)))) (-5 *5 (-1060)) (-5 *3 (-377 (-876 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))) (-2007 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))) (-2007 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-876 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-876 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-876 *5))))) (-2406 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-876 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-876 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-876 *5)))))) -(-10 -7 (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-772 (-876 |#1|))))) (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-876 |#1|))) "failed"))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -2007 ((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-765 (-876 |#1|))))) (-15 -2007 ((-765 (-377 (-876 |#1|))) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -2406 ((-3 (-772 (-377 (-876 |#1|))) "failed") (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))) (-1060)))) -((-3600 (((-3 (-1158 (-377 |#1|)) "failed") (-1158 |#2|) |#2|) 57 (-2479 (|has| |#1| (-333)))) (((-3 (-1158 |#1|) "failed") (-1158 |#2|) |#2|) 42 (|has| |#1| (-333)))) (-2196 (((-107) (-1158 |#2|)) 30)) (-1828 (((-3 (-1158 |#1|) "failed") (-1158 |#2|)) 33))) -(((-578 |#1| |#2|) (-10 -7 (-15 -2196 ((-107) (-1158 |#2|))) (-15 -1828 ((-3 (-1158 |#1|) "failed") (-1158 |#2|))) (IF (|has| |#1| (-333)) (-15 -3600 ((-3 (-1158 |#1|) "failed") (-1158 |#2|) |#2|)) (-15 -3600 ((-3 (-1158 (-377 |#1|)) "failed") (-1158 |#2|) |#2|)))) (-509) (-579 |#1|)) (T -578)) -((-3600 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 *5)) (-2479 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1158 (-377 *5))) (-5 *1 (-578 *5 *4)))) (-3600 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1158 *5)) (-5 *1 (-578 *5 *4)))) (-1828 (*1 *2 *3) (|partial| -12 (-5 *3 (-1158 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1158 *4)) (-5 *1 (-578 *4 *5)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-1158 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5))))) -(-10 -7 (-15 -2196 ((-107) (-1158 |#2|))) (-15 -1828 ((-3 (-1158 |#1|) "failed") (-1158 |#2|))) (IF (|has| |#1| (-333)) (-15 -3600 ((-3 (-1158 |#1|) "failed") (-1158 |#2|) |#2|)) (-15 -3600 ((-3 (-1158 (-377 |#1|)) "failed") (-1158 |#2|) |#2|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2947 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 35)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-579 |#1|) (-1189) (-964)) (T -579)) -((-2947 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-964)) (-5 *2 (-623 *4)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1158 *1)) (-4 *1 (-579 *5)) (-4 *5 (-964)) (-5 *2 (-2 (|:| -3725 (-623 *5)) (|:| |vec| (-1158 *5))))))) -(-13 (-964) (-10 -8 (-15 -2947 ((-623 |t#1|) (-623 $))) (-15 -2947 ((-2 (|:| -3725 (-623 |t#1|)) (|:| |vec| (-1158 |t#1|))) (-623 $) (-1158 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-1924 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12))) -(((-580 |#1| |#2|) (-10 -7 (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1006) (-1112)) (T -580)) -((-1924 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1006)) (-4 *2 (-1112)) (-5 *1 (-580 *5 *2)))) (-1924 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1006)) (-4 *6 (-1112)) (-5 *1 (-580 *5 *6)))) (-1924 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1006)) (-4 *2 (-1112)) (-5 *1 (-580 *5 *2)))) (-1924 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1006)) (-4 *5 (-1112)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-1924 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1006)) (-4 *2 (-1112)) (-5 *1 (-580 *5 *2)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1006)) (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6))))) -(-10 -7 (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -1924 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -1924 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) -((-1250 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16)) (-1510 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18)) (-3312 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13))) -(((-581 |#1| |#2|) (-10 -7 (-15 -1250 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3312 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1112) (-1112)) (T -581)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-581 *5 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5))))) -(-10 -7 (-15 -1250 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3312 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) -((-3312 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 13))) -(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1112) (-1112) (-1112)) (T -582)) -((-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8))))) -(-10 -7 (-15 -3312 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) NIL)) (-2577 ((|#1| $) NIL)) (-1529 (($ $) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-4109 (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-2149 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1223 (($ $ $) NIL (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "rest" $) NIL (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-2352 (($ $ $) 32 (|has| |#1| (-1006)))) (-2339 (($ $ $) 34 (|has| |#1| (-1006)))) (-2326 (($ $ $) 37 (|has| |#1| (-1006)))) (-2582 (($ (-1 (-107) |#1|) $) NIL)) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2567 ((|#1| $) NIL)) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2429 (($ $) NIL) (($ $ (-703)) NIL)) (-3081 (($ $) NIL (|has| |#1| (-1006)))) (-2446 (($ $) 31 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) NIL (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) NIL)) (-1423 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1210 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006))) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-3917 (((-107) $) 9)) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2169 (($) 7)) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2785 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3824 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 33 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2315 (($ |#1|) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1447 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-3439 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-2611 (((-107) $) NIL)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1125 (-517))) NIL) ((|#1| $ (-517)) 36) ((|#1| $ (-517) |#1|) NIL)) (-3868 (((-517) $ $) NIL)) (-1921 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-1414 (((-107) $) NIL)) (-2074 (($ $) NIL)) (-4155 (($ $) NIL (|has| $ (-6 -4196)))) (-2792 (((-703) $) NIL)) (-2736 (($ $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) 45 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-2987 (($ |#1| $) 10)) (-3495 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4117 (($ $ $) 30) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3768 (($ $ $) 11)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2514 (((-1060) $) 26 (|has| |#1| (-760))) (((-1060) $ (-107)) 27 (|has| |#1| (-760))) (((-1163) (-754) $) 28 (|has| |#1| (-760))) (((-1163) (-754) $ (-107)) 29 (|has| |#1| (-760)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-583 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2169 ($)) (-15 -3917 ((-107) $)) (-15 -2987 ($ |#1| $)) (-15 -3768 ($ $ $)) (IF (|has| |#1| (-1006)) (PROGN (-15 -2352 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2326 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|))) (-1112)) (T -583)) -((-2169 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1112)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112)))) (-3768 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112)))) (-2352 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112)))) (-2339 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112)))) (-2326 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112))))) -(-13 (-603 |#1|) (-10 -8 (-15 -2169 ($)) (-15 -3917 ((-107) $)) (-15 -2987 ($ |#1| $)) (-15 -3768 ($ $ $)) (IF (|has| |#1| (-1006)) (PROGN (-15 -2352 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2326 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |%noBranch|))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2439 (($ |#1| |#1| $) 43)) (-3443 (((-107) $ (-703)) NIL)) (-2582 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3081 (($ $) 45)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) 52 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 9 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 37)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) 46)) (-3439 (($ |#1| $) 26) (($ |#1| $ (-703)) 42)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1551 ((|#1| $) 48)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 21)) (-2679 (($) 25)) (-2749 (((-107) $) 50)) (-1907 (((-583 (-2 (|:| -1846 |#1|) (|:| -4140 (-703)))) $) 59)) (-3808 (($) 23) (($ (-583 |#1|)) 18)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) 56 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 19)) (-3367 (((-493) $) 34 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-2262 (((-787) $) 14 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 22)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 61 (|has| |#1| (-1006)))) (-3573 (((-703) $) 16 (|has| $ (-6 -4195))))) -(((-584 |#1|) (-13 (-628 |#1|) (-10 -8 (-6 -4195) (-15 -2749 ((-107) $)) (-15 -2439 ($ |#1| |#1| $)))) (-1006)) (T -584)) -((-2749 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1006)))) (-2439 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1006))))) -(-13 (-628 |#1|) (-10 -8 (-6 -4195) (-15 -2749 ((-107) $)) (-15 -2439 ($ |#1| |#1| $)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23))) -(((-585 |#1|) (-1189) (-971)) (T -585)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-971))))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3493 ((|#1| $) NIL)) (-2111 ((|#1| $) NIL)) (-3847 (($ $) NIL)) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2258 (($ $ (-519)) 58 (|has| $ (-6 -4222)))) (-2629 (((-108) $) NIL (|has| |#1| (-782))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2078 (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| |#1| (-782)))) (($ (-1 (-108) |#1| |#1|) $) 56 (|has| $ (-6 -4222)))) (-3276 (($ $) NIL (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-2410 ((|#1| $ |#1|) NIL (|has| $ (-6 -4222)))) (-1440 (($ $ $) 23 (|has| $ (-6 -4222)))) (-1907 ((|#1| $ |#1|) NIL (|has| $ (-6 -4222)))) (-2692 ((|#1| $ |#1|) 21 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4222))) (($ $ "rest" $) 24 (|has| $ (-6 -4222))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) NIL (|has| $ (-6 -4222)))) (-2846 (($ (-1 (-108) |#1|) $) NIL)) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2098 ((|#1| $) NIL)) (-2249 (($) NIL T CONST)) (-1998 (($ $) 28 (|has| $ (-6 -4222)))) (-1868 (($ $) 29)) (-2343 (($ $) 18) (($ $ (-705)) 32)) (-1552 (($ $) 54 (|has| |#1| (-1011)))) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2502 (($ |#1| $) NIL (|has| |#1| (-1011))) (($ (-1 (-108) |#1|) $) NIL)) (-1438 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3865 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) NIL)) (-2303 (((-108) $) NIL)) (-3297 (((-519) |#1| $ (-519)) NIL (|has| |#1| (-1011))) (((-519) |#1| $) NIL (|has| |#1| (-1011))) (((-519) (-1 (-108) |#1|) $) NIL)) (-3844 (((-585 |#1|) $) 27 (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) NIL)) (-3458 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1822 (($ (-705) |#1|) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) 31 (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2511 (($ $ $) NIL (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $ $) 57)) (-2500 (($ $ $) NIL (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 52 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1592 (($ |#1|) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1281 (((-585 |#1|) $) NIL)) (-1668 (((-108) $) NIL)) (-1266 (((-1065) $) 51 (|has| |#1| (-1011)))) (-1457 ((|#1| $) NIL) (($ $ (-705)) NIL)) (-1846 (($ $ $ (-519)) NIL) (($ |#1| $ (-519)) NIL)) (-1672 (($ $ $ (-519)) NIL) (($ |#1| $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2331 ((|#1| $) 13) (($ $ (-705)) NIL)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3640 (($ $ |#1|) NIL (|has| $ (-6 -4222)))) (-3664 (((-108) $) NIL)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 12)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) 17)) (-1548 (($) 16)) (-2598 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1130 (-519))) NIL) ((|#1| $ (-519)) NIL) ((|#1| $ (-519) |#1|) NIL)) (-1763 (((-519) $ $) NIL)) (-2137 (($ $ (-1130 (-519))) NIL) (($ $ (-519)) NIL)) (-3720 (($ $ (-1130 (-519))) NIL) (($ $ (-519)) NIL)) (-3096 (((-108) $) 34)) (-1407 (($ $) NIL)) (-2434 (($ $) NIL (|has| $ (-6 -4222)))) (-2067 (((-705) $) NIL)) (-3376 (($ $) 36)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) 35)) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 26)) (-3954 (($ $ $) 53) (($ $ |#1|) NIL)) (-4150 (($ $ $) NIL) (($ |#1| $) 10) (($ (-585 $)) NIL) (($ $ |#1|) NIL)) (-2217 (((-790) $) 46 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) NIL)) (-2915 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) 48 (|has| |#1| (-1011)))) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-3532 (((-705) $) 9 (|has| $ (-6 -4221))))) +(((-485 |#1| |#2|) (-605 |#1|) (-1117) (-519)) (T -485)) +NIL +(-605 |#1|) +((-3196 ((|#4| |#4|) 26)) (-3229 (((-705) |#4|) 31)) (-2518 (((-705) |#4|) 32)) (-3885 (((-585 |#3|) |#4|) 38 (|has| |#3| (-6 -4222)))) (-1452 (((-3 |#4| "failed") |#4|) 48)) (-1512 ((|#4| |#4|) 41)) (-3406 ((|#1| |#4|) 40))) +(((-486 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3196 (|#4| |#4|)) (-15 -3229 ((-705) |#4|)) (-15 -2518 ((-705) |#4|)) (IF (|has| |#3| (-6 -4222)) (-15 -3885 ((-585 |#3|) |#4|)) |%noBranch|) (-15 -3406 (|#1| |#4|)) (-15 -1512 (|#4| |#4|)) (-15 -1452 ((-3 |#4| "failed") |#4|))) (-335) (-345 |#1|) (-345 |#1|) (-623 |#1| |#2| |#3|)) (T -486)) +((-1452 (*1 *2 *2) (|partial| -12 (-4 *3 (-335)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *1 (-486 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-1512 (*1 *2 *2) (-12 (-4 *3 (-335)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *1 (-486 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-345 *2)) (-4 *5 (-345 *2)) (-4 *2 (-335)) (-5 *1 (-486 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5)))) (-3885 (*1 *2 *3) (-12 (|has| *6 (-6 -4222)) (-4 *4 (-335)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-5 *2 (-585 *6)) (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-2518 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-5 *2 (-705)) (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-3229 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-5 *2 (-705)) (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-3196 (*1 *2 *2) (-12 (-4 *3 (-335)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *1 (-486 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +(-10 -7 (-15 -3196 (|#4| |#4|)) (-15 -3229 ((-705) |#4|)) (-15 -2518 ((-705) |#4|)) (IF (|has| |#3| (-6 -4222)) (-15 -3885 ((-585 |#3|) |#4|)) |%noBranch|) (-15 -3406 (|#1| |#4|)) (-15 -1512 (|#4| |#4|)) (-15 -1452 ((-3 |#4| "failed") |#4|))) +((-3196 ((|#8| |#4|) 20)) (-3885 (((-585 |#3|) |#4|) 29 (|has| |#7| (-6 -4222)))) (-1452 (((-3 |#8| "failed") |#4|) 23))) +(((-487 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3196 (|#8| |#4|)) (-15 -1452 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4222)) (-15 -3885 ((-585 |#3|) |#4|)) |%noBranch|)) (-511) (-345 |#1|) (-345 |#1|) (-623 |#1| |#2| |#3|) (-916 |#1|) (-345 |#5|) (-345 |#5|) (-623 |#5| |#6| |#7|)) (T -487)) +((-3885 (*1 *2 *3) (-12 (|has| *9 (-6 -4222)) (-4 *4 (-511)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-4 *7 (-916 *4)) (-4 *8 (-345 *7)) (-4 *9 (-345 *7)) (-5 *2 (-585 *6)) (-5 *1 (-487 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-623 *4 *5 *6)) (-4 *10 (-623 *7 *8 *9)))) (-1452 (*1 *2 *3) (|partial| -12 (-4 *4 (-511)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-4 *7 (-916 *4)) (-4 *2 (-623 *7 *8 *9)) (-5 *1 (-487 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-623 *4 *5 *6)) (-4 *8 (-345 *7)) (-4 *9 (-345 *7)))) (-3196 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-4 *7 (-916 *4)) (-4 *2 (-623 *7 *8 *9)) (-5 *1 (-487 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-623 *4 *5 *6)) (-4 *8 (-345 *7)) (-4 *9 (-345 *7))))) +(-10 -7 (-15 -3196 (|#8| |#4|)) (-15 -1452 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4222)) (-15 -3885 ((-585 |#3|) |#4|)) |%noBranch|)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3535 (($ (-705) (-705)) NIL)) (-2339 (($ $ $) NIL)) (-3635 (($ (-550 |#1| |#3|)) NIL) (($ $) NIL)) (-3411 (((-108) $) NIL)) (-3273 (($ $ (-519) (-519)) 12)) (-3991 (($ $ (-519) (-519)) NIL)) (-3432 (($ $ (-519) (-519) (-519) (-519)) NIL)) (-3166 (($ $) NIL)) (-1413 (((-108) $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-3515 (($ $ (-519) (-519) $) NIL)) (-2421 ((|#1| $ (-519) (-519) |#1|) NIL) (($ $ (-585 (-519)) (-585 (-519)) $) NIL)) (-4054 (($ $ (-519) (-550 |#1| |#3|)) NIL)) (-3281 (($ $ (-519) (-550 |#1| |#2|)) NIL)) (-1889 (($ (-705) |#1|) NIL)) (-2249 (($) NIL T CONST)) (-3196 (($ $) 19 (|has| |#1| (-280)))) (-4159 (((-550 |#1| |#3|) $ (-519)) NIL)) (-3229 (((-705) $) 22 (|has| |#1| (-511)))) (-3865 ((|#1| $ (-519) (-519) |#1|) NIL)) (-3659 ((|#1| $ (-519) (-519)) NIL)) (-3844 (((-585 |#1|) $) NIL)) (-2518 (((-705) $) 24 (|has| |#1| (-511)))) (-3885 (((-585 (-550 |#1| |#2|)) $) 27 (|has| |#1| (-511)))) (-1426 (((-705) $) NIL)) (-1822 (($ (-705) (-705) |#1|) NIL)) (-1437 (((-705) $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2749 ((|#1| $) 17 (|has| |#1| (-6 (-4223 "*"))))) (-4161 (((-519) $) 10)) (-2918 (((-519) $) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1238 (((-519) $) 11)) (-2012 (((-519) $) NIL)) (-1377 (($ (-585 (-585 |#1|))) NIL)) (-3850 (($ (-1 |#1| |#1|) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2723 (((-585 (-585 |#1|)) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1452 (((-3 $ "failed") $) 31 (|has| |#1| (-335)))) (-3627 (($ $ $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-3640 (($ $ |#1|) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ (-519) (-519)) NIL) ((|#1| $ (-519) (-519) |#1|) NIL) (($ $ (-585 (-519)) (-585 (-519))) NIL)) (-1757 (($ (-585 |#1|)) NIL) (($ (-585 $)) NIL)) (-2464 (((-108) $) NIL)) (-3406 ((|#1| $) 15 (|has| |#1| (-6 (-4223 "*"))))) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-3067 (((-550 |#1| |#2|) $ (-519)) NIL)) (-2217 (($ (-550 |#1| |#2|)) NIL) (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3238 (((-108) $) NIL)) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $ $) NIL) (($ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-519) $) NIL) (((-550 |#1| |#2|) $ (-550 |#1| |#2|)) NIL) (((-550 |#1| |#3|) (-550 |#1| |#3|) $) NIL)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-488 |#1| |#2| |#3|) (-623 |#1| (-550 |#1| |#3|) (-550 |#1| |#2|)) (-968) (-519) (-519)) (T -488)) +NIL +(-623 |#1| (-550 |#1| |#3|) (-550 |#1| |#2|)) +((-4076 (((-1078 |#1|) (-705)) 75)) (-1871 (((-1163 |#1|) (-1163 |#1|) (-848)) 68)) (-4080 (((-1168) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))) |#1|) 83)) (-3656 (((-1163 |#1|) (-1163 |#1|) (-705)) 36)) (-3314 (((-1163 |#1|) (-848)) 70)) (-2690 (((-1163 |#1|) (-1163 |#1|) (-519)) 24)) (-2714 (((-1078 |#1|) (-1163 |#1|)) 76)) (-3637 (((-1163 |#1|) (-848)) 94)) (-2877 (((-108) (-1163 |#1|)) 79)) (-3681 (((-1163 |#1|) (-1163 |#1|) (-848)) 61)) (-3437 (((-1078 |#1|) (-1163 |#1|)) 88)) (-3334 (((-848) (-1163 |#1|)) 58)) (-3151 (((-1163 |#1|) (-1163 |#1|)) 30)) (-2770 (((-1163 |#1|) (-848) (-848)) 96)) (-2349 (((-1163 |#1|) (-1163 |#1|) (-1029) (-1029)) 23)) (-1241 (((-1163 |#1|) (-1163 |#1|) (-705) (-1029)) 37)) (-2070 (((-1163 (-1163 |#1|)) (-848)) 93)) (-1632 (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 80)) (** (((-1163 |#1|) (-1163 |#1|) (-519)) 45)) (* (((-1163 |#1|) (-1163 |#1|) (-1163 |#1|)) 25))) +(((-489 |#1|) (-10 -7 (-15 -4080 ((-1168) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))) |#1|)) (-15 -3314 ((-1163 |#1|) (-848))) (-15 -2770 ((-1163 |#1|) (-848) (-848))) (-15 -2714 ((-1078 |#1|) (-1163 |#1|))) (-15 -4076 ((-1078 |#1|) (-705))) (-15 -1241 ((-1163 |#1|) (-1163 |#1|) (-705) (-1029))) (-15 -3656 ((-1163 |#1|) (-1163 |#1|) (-705))) (-15 -2349 ((-1163 |#1|) (-1163 |#1|) (-1029) (-1029))) (-15 -2690 ((-1163 |#1|) (-1163 |#1|) (-519))) (-15 ** ((-1163 |#1|) (-1163 |#1|) (-519))) (-15 * ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -1632 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3681 ((-1163 |#1|) (-1163 |#1|) (-848))) (-15 -1871 ((-1163 |#1|) (-1163 |#1|) (-848))) (-15 -3151 ((-1163 |#1|) (-1163 |#1|))) (-15 -3334 ((-848) (-1163 |#1|))) (-15 -2877 ((-108) (-1163 |#1|))) (-15 -2070 ((-1163 (-1163 |#1|)) (-848))) (-15 -3637 ((-1163 |#1|) (-848))) (-15 -3437 ((-1078 |#1|) (-1163 |#1|)))) (-321)) (T -489)) +((-3437 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-321)) (-5 *2 (-1078 *4)) (-5 *1 (-489 *4)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1163 *4)) (-5 *1 (-489 *4)) (-4 *4 (-321)))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1163 (-1163 *4))) (-5 *1 (-489 *4)) (-4 *4 (-321)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-321)) (-5 *2 (-108)) (-5 *1 (-489 *4)))) (-3334 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-321)) (-5 *2 (-848)) (-5 *1 (-489 *4)))) (-3151 (*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-321)) (-5 *1 (-489 *3)))) (-1871 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-848)) (-4 *4 (-321)) (-5 *1 (-489 *4)))) (-3681 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-848)) (-4 *4 (-321)) (-5 *1 (-489 *4)))) (-1632 (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-321)) (-5 *1 (-489 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-321)) (-5 *1 (-489 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-519)) (-4 *4 (-321)) (-5 *1 (-489 *4)))) (-2690 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-519)) (-4 *4 (-321)) (-5 *1 (-489 *4)))) (-2349 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-1029)) (-4 *4 (-321)) (-5 *1 (-489 *4)))) (-3656 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *4)) (-5 *3 (-705)) (-4 *4 (-321)) (-5 *1 (-489 *4)))) (-1241 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1163 *5)) (-5 *3 (-705)) (-5 *4 (-1029)) (-4 *5 (-321)) (-5 *1 (-489 *5)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1078 *4)) (-5 *1 (-489 *4)) (-4 *4 (-321)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-321)) (-5 *2 (-1078 *4)) (-5 *1 (-489 *4)))) (-2770 (*1 *2 *3 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1163 *4)) (-5 *1 (-489 *4)) (-4 *4 (-321)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1163 *4)) (-5 *1 (-489 *4)) (-4 *4 (-321)))) (-4080 (*1 *2 *3 *4) (-12 (-5 *3 (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029)))))) (-4 *4 (-321)) (-5 *2 (-1168)) (-5 *1 (-489 *4))))) +(-10 -7 (-15 -4080 ((-1168) (-1163 (-585 (-2 (|:| -3493 |#1|) (|:| -2770 (-1029))))) |#1|)) (-15 -3314 ((-1163 |#1|) (-848))) (-15 -2770 ((-1163 |#1|) (-848) (-848))) (-15 -2714 ((-1078 |#1|) (-1163 |#1|))) (-15 -4076 ((-1078 |#1|) (-705))) (-15 -1241 ((-1163 |#1|) (-1163 |#1|) (-705) (-1029))) (-15 -3656 ((-1163 |#1|) (-1163 |#1|) (-705))) (-15 -2349 ((-1163 |#1|) (-1163 |#1|) (-1029) (-1029))) (-15 -2690 ((-1163 |#1|) (-1163 |#1|) (-519))) (-15 ** ((-1163 |#1|) (-1163 |#1|) (-519))) (-15 * ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -1632 ((-1163 |#1|) (-1163 |#1|) (-1163 |#1|))) (-15 -3681 ((-1163 |#1|) (-1163 |#1|) (-848))) (-15 -1871 ((-1163 |#1|) (-1163 |#1|) (-848))) (-15 -3151 ((-1163 |#1|) (-1163 |#1|))) (-15 -3334 ((-848) (-1163 |#1|))) (-15 -2877 ((-108) (-1163 |#1|))) (-15 -2070 ((-1163 (-1163 |#1|)) (-848))) (-15 -3637 ((-1163 |#1|) (-848))) (-15 -3437 ((-1078 |#1|) (-1163 |#1|)))) +((-1605 (((-1 |#1| |#1|) |#1|) 11)) (-3179 (((-1 |#1| |#1|)) 10))) +(((-490 |#1|) (-10 -7 (-15 -3179 ((-1 |#1| |#1|))) (-15 -1605 ((-1 |#1| |#1|) |#1|))) (-13 (-661) (-25))) (T -490)) +((-1605 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-490 *3)) (-4 *3 (-13 (-661) (-25))))) (-3179 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-490 *3)) (-4 *3 (-13 (-661) (-25)))))) +(-10 -7 (-15 -3179 ((-1 |#1| |#1|))) (-15 -1605 ((-1 |#1| |#1|) |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2494 (($ $ $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-3218 (($ $) NIL)) (-4042 (($ (-705) |#1|) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1405 (($ (-1 (-705) (-705)) $) NIL)) (-2211 ((|#1| $) NIL)) (-3197 (((-705) $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 20)) (-3602 (($) NIL T CONST)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL)) (-1614 (($ $ $) NIL)) (* (($ (-705) $) NIL) (($ (-848) $) NIL))) +(((-491 |#1|) (-13 (-727) (-475 (-705) |#1|)) (-782)) (T -491)) +NIL +(-13 (-727) (-475 (-705) |#1|)) +((-1825 (((-585 |#2|) (-1078 |#1|) |#3|) 83)) (-2689 (((-585 (-2 (|:| |outval| |#2|) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 |#2|))))) (-625 |#1|) |#3| (-1 (-390 (-1078 |#1|)) (-1078 |#1|))) 99)) (-3309 (((-1078 |#1|) (-625 |#1|)) 95))) +(((-492 |#1| |#2| |#3|) (-10 -7 (-15 -3309 ((-1078 |#1|) (-625 |#1|))) (-15 -1825 ((-585 |#2|) (-1078 |#1|) |#3|)) (-15 -2689 ((-585 (-2 (|:| |outval| |#2|) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 |#2|))))) (-625 |#1|) |#3| (-1 (-390 (-1078 |#1|)) (-1078 |#1|))))) (-335) (-335) (-13 (-335) (-780))) (T -492)) +((-2689 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *6)) (-5 *5 (-1 (-390 (-1078 *6)) (-1078 *6))) (-4 *6 (-335)) (-5 *2 (-585 (-2 (|:| |outval| *7) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 *7)))))) (-5 *1 (-492 *6 *7 *4)) (-4 *7 (-335)) (-4 *4 (-13 (-335) (-780))))) (-1825 (*1 *2 *3 *4) (-12 (-5 *3 (-1078 *5)) (-4 *5 (-335)) (-5 *2 (-585 *6)) (-5 *1 (-492 *5 *6 *4)) (-4 *6 (-335)) (-4 *4 (-13 (-335) (-780))))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-335)) (-5 *2 (-1078 *4)) (-5 *1 (-492 *4 *5 *6)) (-4 *5 (-335)) (-4 *6 (-13 (-335) (-780)))))) +(-10 -7 (-15 -3309 ((-1078 |#1|) (-625 |#1|))) (-15 -1825 ((-585 |#2|) (-1078 |#1|) |#3|)) (-15 -2689 ((-585 (-2 (|:| |outval| |#2|) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 |#2|))))) (-625 |#1|) |#3| (-1 (-390 (-1078 |#1|)) (-1078 |#1|))))) +((-2923 (((-775 (-519))) 11)) (-2936 (((-775 (-519))) 13)) (-2899 (((-768 (-519))) 8))) +(((-493) (-10 -7 (-15 -2899 ((-768 (-519)))) (-15 -2923 ((-775 (-519)))) (-15 -2936 ((-775 (-519)))))) (T -493)) +((-2936 (*1 *2) (-12 (-5 *2 (-775 (-519))) (-5 *1 (-493)))) (-2923 (*1 *2) (-12 (-5 *2 (-775 (-519))) (-5 *1 (-493)))) (-2899 (*1 *2) (-12 (-5 *2 (-768 (-519))) (-5 *1 (-493))))) +(-10 -7 (-15 -2899 ((-768 (-519)))) (-15 -2923 ((-775 (-519)))) (-15 -2936 ((-775 (-519))))) +((-3544 (((-495) (-1082)) 15)) (-1574 ((|#1| (-495)) 20))) +(((-494 |#1|) (-10 -7 (-15 -3544 ((-495) (-1082))) (-15 -1574 (|#1| (-495)))) (-1117)) (T -494)) +((-1574 (*1 *2 *3) (-12 (-5 *3 (-495)) (-5 *1 (-494 *2)) (-4 *2 (-1117)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-495)) (-5 *1 (-494 *4)) (-4 *4 (-1117))))) +(-10 -7 (-15 -3544 ((-495) (-1082))) (-15 -1574 (|#1| (-495)))) +((-1430 (((-108) $ $) NIL)) (-3475 (((-1065) $) 46)) (-1465 (((-108) $) 43)) (-1505 (((-1082) $) 44)) (-2626 (((-108) $) 41)) (-1522 (((-1065) $) 42)) (-1701 (((-108) $) NIL)) (-3757 (((-108) $) NIL)) (-1918 (((-108) $) NIL)) (-1266 (((-1065) $) NIL)) (-1292 (($ $ (-585 (-1082))) 20)) (-1574 (((-51) $) 22)) (-2226 (((-108) $) NIL)) (-1523 (((-519) $) NIL)) (-4139 (((-1029) $) NIL)) (-2112 (($ $ (-585 (-1082)) (-1082)) 58)) (-1251 (((-108) $) NIL)) (-3123 (((-201) $) NIL)) (-3871 (($ $) 38)) (-1587 (((-790) $) NIL)) (-3257 (((-108) $ $) NIL)) (-2598 (($ $ (-519)) NIL) (($ $ (-585 (-519))) NIL)) (-2002 (((-585 $) $) 28)) (-1236 (((-1082) (-585 $)) 47)) (-1446 (($ (-585 $)) 51) (($ (-1065)) NIL) (($ (-1082)) 18) (($ (-519)) 8) (($ (-201)) 25) (($ (-790)) NIL) (((-1015) $) 11) (($ (-1015)) 12)) (-1792 (((-1082) (-1082) (-585 $)) 50)) (-2217 (((-790) $) NIL)) (-3272 (($ $) 49)) (-3262 (($ $) 48)) (-1412 (($ $ (-585 $)) 55)) (-3520 (((-108) $) 27)) (-3602 (($) 9 T CONST)) (-3611 (($) 10 T CONST)) (-1543 (((-108) $ $) 59)) (-1632 (($ $ $) 64)) (-1614 (($ $ $) 60)) (** (($ $ (-705)) 63) (($ $ (-519)) 62)) (* (($ $ $) 61)) (-3532 (((-519) $) NIL))) +(((-495) (-13 (-1014 (-1065) (-1082) (-519) (-201) (-790)) (-560 (-1015)) (-10 -8 (-15 -1574 ((-51) $)) (-15 -1446 ($ (-1015))) (-15 -1412 ($ $ (-585 $))) (-15 -2112 ($ $ (-585 (-1082)) (-1082))) (-15 -1292 ($ $ (-585 (-1082)))) (-15 -1614 ($ $ $)) (-15 * ($ $ $)) (-15 -1632 ($ $ $)) (-15 ** ($ $ (-705))) (-15 ** ($ $ (-519))) (-15 0 ($) -2730) (-15 1 ($) -2730) (-15 -3871 ($ $)) (-15 -3475 ((-1065) $)) (-15 -1236 ((-1082) (-585 $))) (-15 -1792 ((-1082) (-1082) (-585 $)))))) (T -495)) +((-1574 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-495)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-495)))) (-1412 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-495))) (-5 *1 (-495)))) (-2112 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-1082)) (-5 *1 (-495)))) (-1292 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-495)))) (-1614 (*1 *1 *1 *1) (-5 *1 (-495))) (* (*1 *1 *1 *1) (-5 *1 (-495))) (-1632 (*1 *1 *1 *1) (-5 *1 (-495))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-495)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-495)))) (-3602 (*1 *1) (-5 *1 (-495))) (-3611 (*1 *1) (-5 *1 (-495))) (-3871 (*1 *1 *1) (-5 *1 (-495))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-495)))) (-1236 (*1 *2 *3) (-12 (-5 *3 (-585 (-495))) (-5 *2 (-1082)) (-5 *1 (-495)))) (-1792 (*1 *2 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-495))) (-5 *1 (-495))))) +(-13 (-1014 (-1065) (-1082) (-519) (-201) (-790)) (-560 (-1015)) (-10 -8 (-15 -1574 ((-51) $)) (-15 -1446 ($ (-1015))) (-15 -1412 ($ $ (-585 $))) (-15 -2112 ($ $ (-585 (-1082)) (-1082))) (-15 -1292 ($ $ (-585 (-1082)))) (-15 -1614 ($ $ $)) (-15 * ($ $ $)) (-15 -1632 ($ $ $)) (-15 ** ($ $ (-705))) (-15 ** ($ $ (-519))) (-15 (-3602) ($) -2730) (-15 (-3611) ($) -2730) (-15 -3871 ($ $)) (-15 -3475 ((-1065) $)) (-15 -1236 ((-1082) (-585 $))) (-15 -1792 ((-1082) (-1082) (-585 $))))) +((-2512 ((|#2| |#2|) 17)) (-1947 ((|#2| |#2|) 13)) (-1557 ((|#2| |#2| (-519) (-519)) 20)) (-2333 ((|#2| |#2|) 15))) +(((-496 |#1| |#2|) (-10 -7 (-15 -1947 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -1557 (|#2| |#2| (-519) (-519)))) (-13 (-511) (-135)) (-1154 |#1|)) (T -496)) +((-1557 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-519)) (-4 *4 (-13 (-511) (-135))) (-5 *1 (-496 *4 *2)) (-4 *2 (-1154 *4)))) (-2512 (*1 *2 *2) (-12 (-4 *3 (-13 (-511) (-135))) (-5 *1 (-496 *3 *2)) (-4 *2 (-1154 *3)))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-511) (-135))) (-5 *1 (-496 *3 *2)) (-4 *2 (-1154 *3)))) (-1947 (*1 *2 *2) (-12 (-4 *3 (-13 (-511) (-135))) (-5 *1 (-496 *3 *2)) (-4 *2 (-1154 *3))))) +(-10 -7 (-15 -1947 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -1557 (|#2| |#2| (-519) (-519)))) +((-3960 (((-585 (-267 (-879 |#2|))) (-585 |#2|) (-585 (-1082))) 32)) (-1878 (((-585 |#2|) (-879 |#1|) |#3|) 53) (((-585 |#2|) (-1078 |#1|) |#3|) 52)) (-2779 (((-585 (-585 |#2|)) (-585 (-879 |#1|)) (-585 (-879 |#1|)) (-585 (-1082)) |#3|) 87))) +(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -1878 ((-585 |#2|) (-1078 |#1|) |#3|)) (-15 -1878 ((-585 |#2|) (-879 |#1|) |#3|)) (-15 -2779 ((-585 (-585 |#2|)) (-585 (-879 |#1|)) (-585 (-879 |#1|)) (-585 (-1082)) |#3|)) (-15 -3960 ((-585 (-267 (-879 |#2|))) (-585 |#2|) (-585 (-1082))))) (-423) (-335) (-13 (-335) (-780))) (T -497)) +((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1082))) (-4 *6 (-335)) (-5 *2 (-585 (-267 (-879 *6)))) (-5 *1 (-497 *5 *6 *7)) (-4 *5 (-423)) (-4 *7 (-13 (-335) (-780))))) (-2779 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-585 (-879 *6))) (-5 *4 (-585 (-1082))) (-4 *6 (-423)) (-5 *2 (-585 (-585 *7))) (-5 *1 (-497 *6 *7 *5)) (-4 *7 (-335)) (-4 *5 (-13 (-335) (-780))))) (-1878 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-4 *5 (-423)) (-5 *2 (-585 *6)) (-5 *1 (-497 *5 *6 *4)) (-4 *6 (-335)) (-4 *4 (-13 (-335) (-780))))) (-1878 (*1 *2 *3 *4) (-12 (-5 *3 (-1078 *5)) (-4 *5 (-423)) (-5 *2 (-585 *6)) (-5 *1 (-497 *5 *6 *4)) (-4 *6 (-335)) (-4 *4 (-13 (-335) (-780)))))) +(-10 -7 (-15 -1878 ((-585 |#2|) (-1078 |#1|) |#3|)) (-15 -1878 ((-585 |#2|) (-879 |#1|) |#3|)) (-15 -2779 ((-585 (-585 |#2|)) (-585 (-879 |#1|)) (-585 (-879 |#1|)) (-585 (-1082)) |#3|)) (-15 -3960 ((-585 (-267 (-879 |#2|))) (-585 |#2|) (-585 (-1082))))) +((-2536 ((|#2| |#2| |#1|) 17)) (-1461 ((|#2| (-585 |#2|)) 27)) (-1528 ((|#2| (-585 |#2|)) 46))) +(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1461 (|#2| (-585 |#2|))) (-15 -1528 (|#2| (-585 |#2|))) (-15 -2536 (|#2| |#2| |#1|))) (-280) (-1139 |#1|) |#1| (-1 |#1| |#1| (-705))) (T -498)) +((-2536 (*1 *2 *2 *3) (-12 (-4 *3 (-280)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-705))) (-5 *1 (-498 *3 *2 *4 *5)) (-4 *2 (-1139 *3)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1139 *4)) (-5 *1 (-498 *4 *2 *5 *6)) (-4 *4 (-280)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-705))))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1139 *4)) (-5 *1 (-498 *4 *2 *5 *6)) (-4 *4 (-280)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-705)))))) +(-10 -7 (-15 -1461 (|#2| (-585 |#2|))) (-15 -1528 (|#2| (-585 |#2|))) (-15 -2536 (|#2| |#2| |#1|))) +((-1921 (((-390 (-1078 |#4|)) (-1078 |#4|) (-1 (-390 (-1078 |#3|)) (-1078 |#3|))) 79) (((-390 |#4|) |#4| (-1 (-390 (-1078 |#3|)) (-1078 |#3|))) 166))) +(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1921 ((-390 |#4|) |#4| (-1 (-390 (-1078 |#3|)) (-1078 |#3|)))) (-15 -1921 ((-390 (-1078 |#4|)) (-1078 |#4|) (-1 (-390 (-1078 |#3|)) (-1078 |#3|))))) (-782) (-727) (-13 (-280) (-135)) (-876 |#3| |#2| |#1|)) (T -499)) +((-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 (-1078 *7)) (-1078 *7))) (-4 *7 (-13 (-280) (-135))) (-4 *5 (-782)) (-4 *6 (-727)) (-4 *8 (-876 *7 *6 *5)) (-5 *2 (-390 (-1078 *8))) (-5 *1 (-499 *5 *6 *7 *8)) (-5 *3 (-1078 *8)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 (-1078 *7)) (-1078 *7))) (-4 *7 (-13 (-280) (-135))) (-4 *5 (-782)) (-4 *6 (-727)) (-5 *2 (-390 *3)) (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-876 *7 *6 *5))))) +(-10 -7 (-15 -1921 ((-390 |#4|) |#4| (-1 (-390 (-1078 |#3|)) (-1078 |#3|)))) (-15 -1921 ((-390 (-1078 |#4|)) (-1078 |#4|) (-1 (-390 (-1078 |#3|)) (-1078 |#3|))))) +((-2512 ((|#4| |#4|) 74)) (-1947 ((|#4| |#4|) 70)) (-1557 ((|#4| |#4| (-519) (-519)) 76)) (-2333 ((|#4| |#4|) 72))) +(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1947 (|#4| |#4|)) (-15 -2333 (|#4| |#4|)) (-15 -2512 (|#4| |#4|)) (-15 -1557 (|#4| |#4| (-519) (-519)))) (-13 (-335) (-340) (-560 (-519))) (-1139 |#1|) (-659 |#1| |#2|) (-1154 |#3|)) (T -500)) +((-1557 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-519)) (-4 *4 (-13 (-335) (-340) (-560 *3))) (-4 *5 (-1139 *4)) (-4 *6 (-659 *4 *5)) (-5 *1 (-500 *4 *5 *6 *2)) (-4 *2 (-1154 *6)))) (-2512 (*1 *2 *2) (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-4 *4 (-1139 *3)) (-4 *5 (-659 *3 *4)) (-5 *1 (-500 *3 *4 *5 *2)) (-4 *2 (-1154 *5)))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-4 *4 (-1139 *3)) (-4 *5 (-659 *3 *4)) (-5 *1 (-500 *3 *4 *5 *2)) (-4 *2 (-1154 *5)))) (-1947 (*1 *2 *2) (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-4 *4 (-1139 *3)) (-4 *5 (-659 *3 *4)) (-5 *1 (-500 *3 *4 *5 *2)) (-4 *2 (-1154 *5))))) +(-10 -7 (-15 -1947 (|#4| |#4|)) (-15 -2333 (|#4| |#4|)) (-15 -2512 (|#4| |#4|)) (-15 -1557 (|#4| |#4| (-519) (-519)))) +((-2512 ((|#2| |#2|) 27)) (-1947 ((|#2| |#2|) 23)) (-1557 ((|#2| |#2| (-519) (-519)) 29)) (-2333 ((|#2| |#2|) 25))) +(((-501 |#1| |#2|) (-10 -7 (-15 -1947 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -1557 (|#2| |#2| (-519) (-519)))) (-13 (-335) (-340) (-560 (-519))) (-1154 |#1|)) (T -501)) +((-1557 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-519)) (-4 *4 (-13 (-335) (-340) (-560 *3))) (-5 *1 (-501 *4 *2)) (-4 *2 (-1154 *4)))) (-2512 (*1 *2 *2) (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-5 *1 (-501 *3 *2)) (-4 *2 (-1154 *3)))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-5 *1 (-501 *3 *2)) (-4 *2 (-1154 *3)))) (-1947 (*1 *2 *2) (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-5 *1 (-501 *3 *2)) (-4 *2 (-1154 *3))))) +(-10 -7 (-15 -1947 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -1557 (|#2| |#2| (-519) (-519)))) +((-4189 (((-3 (-519) "failed") |#2| |#1| (-1 (-3 (-519) "failed") |#1|)) 14) (((-3 (-519) "failed") |#2| |#1| (-519) (-1 (-3 (-519) "failed") |#1|)) 13) (((-3 (-519) "failed") |#2| (-519) (-1 (-3 (-519) "failed") |#1|)) 26))) +(((-502 |#1| |#2|) (-10 -7 (-15 -4189 ((-3 (-519) "failed") |#2| (-519) (-1 (-3 (-519) "failed") |#1|))) (-15 -4189 ((-3 (-519) "failed") |#2| |#1| (-519) (-1 (-3 (-519) "failed") |#1|))) (-15 -4189 ((-3 (-519) "failed") |#2| |#1| (-1 (-3 (-519) "failed") |#1|)))) (-968) (-1139 |#1|)) (T -502)) +((-4189 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-519) "failed") *4)) (-4 *4 (-968)) (-5 *2 (-519)) (-5 *1 (-502 *4 *3)) (-4 *3 (-1139 *4)))) (-4189 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-519) "failed") *4)) (-4 *4 (-968)) (-5 *2 (-519)) (-5 *1 (-502 *4 *3)) (-4 *3 (-1139 *4)))) (-4189 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-519) "failed") *5)) (-4 *5 (-968)) (-5 *2 (-519)) (-5 *1 (-502 *5 *3)) (-4 *3 (-1139 *5))))) +(-10 -7 (-15 -4189 ((-3 (-519) "failed") |#2| (-519) (-1 (-3 (-519) "failed") |#1|))) (-15 -4189 ((-3 (-519) "failed") |#2| |#1| (-519) (-1 (-3 (-519) "failed") |#1|))) (-15 -4189 ((-3 (-519) "failed") |#2| |#1| (-1 (-3 (-519) "failed") |#1|)))) +((-3133 (($ $ $) 79)) (-3093 (((-390 $) $) 47)) (-1301 (((-3 (-519) "failed") $) 59)) (-1499 (((-519) $) 37)) (-1631 (((-3 (-379 (-519)) "failed") $) 74)) (-2102 (((-108) $) 24)) (-2506 (((-379 (-519)) $) 72)) (-1320 (((-108) $) 50)) (-3504 (($ $ $ $) 86)) (-3419 (((-108) $) 16)) (-3449 (($ $ $) 57)) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 69)) (-1675 (((-3 $ "failed") $) 64)) (-3900 (($ $) 23)) (-2691 (($ $ $) 84)) (-3816 (($) 60)) (-1314 (($ $) 53)) (-1921 (((-390 $) $) 45)) (-1295 (((-108) $) 14)) (-3129 (((-705) $) 28)) (-2181 (($ $ (-705)) NIL) (($ $) 10)) (-2449 (($ $) 17)) (-1446 (((-519) $) NIL) (((-495) $) 36) (((-819 (-519)) $) 40) (((-351) $) 31) (((-201) $) 33)) (-3594 (((-705)) 8)) (-4200 (((-108) $ $) 20)) (-3563 (($ $ $) 55))) +(((-503 |#1|) (-10 -8 (-15 -2691 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1| |#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -2449 (|#1| |#1|)) (-15 -1631 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2506 ((-379 (-519)) |#1|)) (-15 -2102 ((-108) |#1|)) (-15 -3133 (|#1| |#1| |#1|)) (-15 -4200 ((-108) |#1| |#1|)) (-15 -1295 ((-108) |#1|)) (-15 -3816 (|#1|)) (-15 -1675 ((-3 |#1| "failed") |#1|)) (-15 -1446 ((-201) |#1|)) (-15 -1446 ((-351) |#1|)) (-15 -3449 (|#1| |#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -4068 ((-816 (-519) |#1|) |#1| (-819 (-519)) (-816 (-519) |#1|))) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1446 ((-519) |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -3419 ((-108) |#1|)) (-15 -3129 ((-705) |#1|)) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -3093 ((-390 |#1|) |#1|)) (-15 -1320 ((-108) |#1|)) (-15 -3594 ((-705)))) (-504)) (T -503)) +((-3594 (*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-503 *3)) (-4 *3 (-504))))) +(-10 -8 (-15 -2691 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1| |#1| |#1|)) (-15 -3900 (|#1| |#1|)) (-15 -2449 (|#1| |#1|)) (-15 -1631 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2506 ((-379 (-519)) |#1|)) (-15 -2102 ((-108) |#1|)) (-15 -3133 (|#1| |#1| |#1|)) (-15 -4200 ((-108) |#1| |#1|)) (-15 -1295 ((-108) |#1|)) (-15 -3816 (|#1|)) (-15 -1675 ((-3 |#1| "failed") |#1|)) (-15 -1446 ((-201) |#1|)) (-15 -1446 ((-351) |#1|)) (-15 -3449 (|#1| |#1| |#1|)) (-15 -1314 (|#1| |#1|)) (-15 -3563 (|#1| |#1| |#1|)) (-15 -4068 ((-816 (-519) |#1|) |#1| (-819 (-519)) (-816 (-519) |#1|))) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1446 ((-519) |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -3419 ((-108) |#1|)) (-15 -3129 ((-705) |#1|)) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -3093 ((-390 |#1|) |#1|)) (-15 -1320 ((-108) |#1|)) (-15 -3594 ((-705)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3133 (($ $ $) 85)) (-3167 (((-3 $ "failed") $ $) 19)) (-2131 (($ $ $ $) 73)) (-4043 (($ $) 51)) (-3093 (((-390 $) $) 52)) (-3409 (((-108) $ $) 125)) (-2287 (((-519) $) 114)) (-1674 (($ $ $) 88)) (-2249 (($) 17 T CONST)) (-1301 (((-3 (-519) "failed") $) 106)) (-1499 (((-519) $) 105)) (-2311 (($ $ $) 129)) (-1562 (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 104) (((-625 (-519)) (-625 $)) 103)) (-4193 (((-3 $ "failed") $) 34)) (-1631 (((-3 (-379 (-519)) "failed") $) 82)) (-2102 (((-108) $) 84)) (-2506 (((-379 (-519)) $) 83)) (-3314 (($) 81) (($ $) 80)) (-2286 (($ $ $) 128)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 123)) (-1320 (((-108) $) 53)) (-3504 (($ $ $ $) 71)) (-2233 (($ $ $) 86)) (-3419 (((-108) $) 116)) (-3449 (($ $ $) 97)) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 100)) (-1568 (((-108) $) 31)) (-3164 (((-108) $) 92)) (-1675 (((-3 $ "failed") $) 94)) (-2143 (((-108) $) 115)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 132)) (-1843 (($ $ $ $) 72)) (-2864 (($ $ $) 117)) (-2489 (($ $ $) 118)) (-3900 (($ $) 75)) (-2568 (($ $) 89)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-2691 (($ $ $) 70)) (-3816 (($) 93 T CONST)) (-3011 (($ $) 77)) (-4139 (((-1029) $) 10) (($ $) 79)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-1314 (($ $) 98)) (-1921 (((-390 $) $) 50)) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 130)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 124)) (-1295 (((-108) $) 91)) (-3129 (((-705) $) 126)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 127)) (-2181 (($ $ (-705)) 111) (($ $) 109)) (-3104 (($ $) 76)) (-2449 (($ $) 78)) (-1446 (((-519) $) 108) (((-495) $) 102) (((-819 (-519)) $) 101) (((-351) $) 96) (((-201) $) 95)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-519)) 107)) (-3594 (((-705)) 29)) (-4200 (((-108) $ $) 87)) (-3563 (($ $ $) 99)) (-3414 (($) 90)) (-1617 (((-108) $ $) 39)) (-1748 (($ $ $ $) 74)) (-1478 (($ $) 113)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-705)) 112) (($ $) 110)) (-1586 (((-108) $ $) 120)) (-1569 (((-108) $ $) 121)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 119)) (-1561 (((-108) $ $) 122)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-504) (-1194)) (T -504)) +((-3164 (*1 *2 *1) (-12 (-4 *1 (-504)) (-5 *2 (-108)))) (-1295 (*1 *2 *1) (-12 (-4 *1 (-504)) (-5 *2 (-108)))) (-3414 (*1 *1) (-4 *1 (-504))) (-2568 (*1 *1 *1) (-4 *1 (-504))) (-1674 (*1 *1 *1 *1) (-4 *1 (-504))) (-4200 (*1 *2 *1 *1) (-12 (-4 *1 (-504)) (-5 *2 (-108)))) (-2233 (*1 *1 *1 *1) (-4 *1 (-504))) (-3133 (*1 *1 *1 *1) (-4 *1 (-504))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-504)) (-5 *2 (-108)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-504)) (-5 *2 (-379 (-519))))) (-1631 (*1 *2 *1) (|partial| -12 (-4 *1 (-504)) (-5 *2 (-379 (-519))))) (-3314 (*1 *1) (-4 *1 (-504))) (-3314 (*1 *1 *1) (-4 *1 (-504))) (-4139 (*1 *1 *1) (-4 *1 (-504))) (-2449 (*1 *1 *1) (-4 *1 (-504))) (-3011 (*1 *1 *1) (-4 *1 (-504))) (-3104 (*1 *1 *1) (-4 *1 (-504))) (-3900 (*1 *1 *1) (-4 *1 (-504))) (-1748 (*1 *1 *1 *1 *1) (-4 *1 (-504))) (-2131 (*1 *1 *1 *1 *1) (-4 *1 (-504))) (-1843 (*1 *1 *1 *1 *1) (-4 *1 (-504))) (-3504 (*1 *1 *1 *1 *1) (-4 *1 (-504))) (-2691 (*1 *1 *1 *1) (-4 *1 (-504)))) +(-13 (-1121) (-280) (-755) (-209) (-560 (-519)) (-959 (-519)) (-581 (-519)) (-560 (-495)) (-560 (-819 (-519))) (-813 (-519)) (-131) (-944) (-135) (-1058) (-10 -8 (-15 -3164 ((-108) $)) (-15 -1295 ((-108) $)) (-6 -4220) (-15 -3414 ($)) (-15 -2568 ($ $)) (-15 -1674 ($ $ $)) (-15 -4200 ((-108) $ $)) (-15 -2233 ($ $ $)) (-15 -3133 ($ $ $)) (-15 -2102 ((-108) $)) (-15 -2506 ((-379 (-519)) $)) (-15 -1631 ((-3 (-379 (-519)) "failed") $)) (-15 -3314 ($)) (-15 -3314 ($ $)) (-15 -4139 ($ $)) (-15 -2449 ($ $)) (-15 -3011 ($ $)) (-15 -3104 ($ $)) (-15 -3900 ($ $)) (-15 -1748 ($ $ $ $)) (-15 -2131 ($ $ $ $)) (-15 -1843 ($ $ $ $)) (-15 -3504 ($ $ $ $)) (-15 -2691 ($ $ $)) (-6 -4219))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-559 (-790)) . T) ((-131) . T) ((-157) . T) ((-560 (-201)) . T) ((-560 (-351)) . T) ((-560 (-495)) . T) ((-560 (-519)) . T) ((-560 (-819 (-519))) . T) ((-209) . T) ((-264) . T) ((-280) . T) ((-423) . T) ((-511) . T) ((-587 $) . T) ((-581 (-519)) . T) ((-652 $) . T) ((-661) . T) ((-725) . T) ((-726) . T) ((-728) . T) ((-730) . T) ((-755) . T) ((-780) . T) ((-782) . T) ((-813 (-519)) . T) ((-847) . T) ((-944) . T) ((-959 (-519)) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1058) . T) ((-1121) . T)) +((-1430 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-1812 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1583 (((-1168) $ |#1| |#1|) NIL (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#2| $ |#1| |#2|) NIL)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-2802 (((-3 |#2| "failed") |#1| $) NIL)) (-2249 (($) NIL T CONST)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-2502 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-3 |#2| "failed") |#1| $) NIL)) (-1438 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#2| $ |#1|) NIL)) (-3844 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 ((|#1| $) NIL (|has| |#1| (-782)))) (-3725 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-3890 ((|#1| $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4222))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3019 (((-585 |#1|) $) NIL)) (-4194 (((-108) |#1| $) NIL)) (-4152 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-1846 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-3909 (((-585 |#1|) $) NIL)) (-1506 (((-108) |#1| $) NIL)) (-4139 (((-1029) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-2331 ((|#2| $) NIL (|has| |#1| (-782)))) (-2395 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL)) (-3640 (($ $ |#2|) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2436 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011)))) (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-2217 (((-790) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790))) (|has| |#2| (-559 (-790)))))) (-3879 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-505 |#1| |#2| |#3|) (-13 (-1094 |#1| |#2|) (-10 -7 (-6 -4221))) (-1011) (-1011) (-13 (-1094 |#1| |#2|) (-10 -7 (-6 -4221)))) (T -505)) +NIL +(-13 (-1094 |#1| |#2|) (-10 -7 (-6 -4221))) +((-2288 (((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|) (-1 (-1078 |#2|) (-1078 |#2|))) 49))) +(((-506 |#1| |#2|) (-10 -7 (-15 -2288 ((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|) (-1 (-1078 |#2|) (-1078 |#2|))))) (-13 (-782) (-511)) (-13 (-27) (-402 |#1|))) (T -506)) +((-2288 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-558 *3)) (-5 *5 (-1 (-1078 *3) (-1078 *3))) (-4 *3 (-13 (-27) (-402 *6))) (-4 *6 (-13 (-782) (-511))) (-5 *2 (-536 *3)) (-5 *1 (-506 *6 *3))))) +(-10 -7 (-15 -2288 ((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|) (-1 (-1078 |#2|) (-1078 |#2|))))) +((-3404 (((-536 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-2810 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-1862 (((-536 |#5|) |#5| (-1 |#3| |#3|)) 198))) +(((-507 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1862 ((-536 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3404 ((-536 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2810 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-782) (-511) (-959 (-519))) (-13 (-27) (-402 |#1|)) (-1139 |#2|) (-1139 (-379 |#3|)) (-314 |#2| |#3| |#4|)) (T -507)) +((-2810 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-13 (-27) (-402 *4))) (-4 *4 (-13 (-782) (-511) (-959 (-519)))) (-4 *7 (-1139 (-379 *6))) (-5 *1 (-507 *4 *5 *6 *7 *2)) (-4 *2 (-314 *5 *6 *7)))) (-3404 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1139 *6)) (-4 *6 (-13 (-27) (-402 *5))) (-4 *5 (-13 (-782) (-511) (-959 (-519)))) (-4 *8 (-1139 (-379 *7))) (-5 *2 (-536 *3)) (-5 *1 (-507 *5 *6 *7 *8 *3)) (-4 *3 (-314 *6 *7 *8)))) (-1862 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1139 *6)) (-4 *6 (-13 (-27) (-402 *5))) (-4 *5 (-13 (-782) (-511) (-959 (-519)))) (-4 *8 (-1139 (-379 *7))) (-5 *2 (-536 *3)) (-5 *1 (-507 *5 *6 *7 *8 *3)) (-4 *3 (-314 *6 *7 *8))))) +(-10 -7 (-15 -1862 ((-536 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3404 ((-536 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2810 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-1459 (((-108) (-519) (-519)) 10)) (-2101 (((-519) (-519)) 7)) (-2775 (((-519) (-519) (-519)) 8))) +(((-508) (-10 -7 (-15 -2101 ((-519) (-519))) (-15 -2775 ((-519) (-519) (-519))) (-15 -1459 ((-108) (-519) (-519))))) (T -508)) +((-1459 (*1 *2 *3 *3) (-12 (-5 *3 (-519)) (-5 *2 (-108)) (-5 *1 (-508)))) (-2775 (*1 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-508)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-508))))) +(-10 -7 (-15 -2101 ((-519) (-519))) (-15 -2775 ((-519) (-519) (-519))) (-15 -1459 ((-108) (-519) (-519)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-2699 ((|#1| $) 61)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-2958 (($ $) 91)) (-2823 (($ $) 74)) (-2494 ((|#1| $) 62)) (-3167 (((-3 $ "failed") $ $) 19)) (-1934 (($ $) 73)) (-2934 (($ $) 90)) (-2800 (($ $) 75)) (-2981 (($ $) 89)) (-2844 (($ $) 76)) (-2249 (($) 17 T CONST)) (-1301 (((-3 (-519) "failed") $) 69)) (-1499 (((-519) $) 68)) (-4193 (((-3 $ "failed") $) 34)) (-2580 (($ |#1| |#1|) 66)) (-3419 (((-108) $) 60)) (-2888 (($) 101)) (-1568 (((-108) $) 31)) (-1517 (($ $ (-519)) 72)) (-2143 (((-108) $) 59)) (-2864 (($ $ $) 107)) (-2489 (($ $ $) 106)) (-1254 (($ $) 98)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-1724 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-379 (-519))) 64)) (-3600 ((|#1| $) 63)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-2261 (((-3 $ "failed") $ $) 42)) (-3325 (($ $) 99)) (-1754 (($ $) 88)) (-2854 (($ $) 77)) (-2969 (($ $) 87)) (-2834 (($ $) 78)) (-2946 (($ $) 86)) (-2812 (($ $) 79)) (-3416 (((-108) $ |#1|) 58)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-519)) 70)) (-3594 (((-705)) 29)) (-1774 (($ $) 97)) (-2886 (($ $) 85)) (-1617 (((-108) $ $) 39)) (-1761 (($ $) 96)) (-2865 (($ $) 84)) (-1790 (($ $) 95)) (-2910 (($ $) 83)) (-3929 (($ $) 94)) (-2922 (($ $) 82)) (-1783 (($ $) 93)) (-2898 (($ $) 81)) (-1768 (($ $) 92)) (-2875 (($ $) 80)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1586 (((-108) $ $) 104)) (-1569 (((-108) $ $) 103)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 105)) (-1561 (((-108) $ $) 102)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ $) 100) (($ $ (-379 (-519))) 71)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-509 |#1|) (-1194) (-13 (-376) (-1103))) (T -509)) +((-1724 (*1 *1 *2 *2) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103))))) (-2580 (*1 *1 *2 *2) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103))))) (-1724 (*1 *1 *2) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103))))) (-1724 (*1 *1 *2) (-12 (-5 *2 (-379 (-519))) (-4 *1 (-509 *3)) (-4 *3 (-13 (-376) (-1103))))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103))))) (-2494 (*1 *2 *1) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103))))) (-2699 (*1 *2 *1) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103))))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-509 *3)) (-4 *3 (-13 (-376) (-1103))) (-5 *2 (-108)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-509 *3)) (-4 *3 (-13 (-376) (-1103))) (-5 *2 (-108)))) (-3416 (*1 *2 *1 *3) (-12 (-4 *1 (-509 *3)) (-4 *3 (-13 (-376) (-1103))) (-5 *2 (-108))))) +(-13 (-423) (-782) (-1103) (-925) (-959 (-519)) (-10 -8 (-6 -3905) (-15 -1724 ($ |t#1| |t#1|)) (-15 -2580 ($ |t#1| |t#1|)) (-15 -1724 ($ |t#1|)) (-15 -1724 ($ (-379 (-519)))) (-15 -3600 (|t#1| $)) (-15 -2494 (|t#1| $)) (-15 -2699 (|t#1| $)) (-15 -3419 ((-108) $)) (-15 -2143 ((-108) $)) (-15 -3416 ((-108) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-157) . T) ((-258) . T) ((-264) . T) ((-423) . T) ((-460) . T) ((-511) . T) ((-587 $) . T) ((-652 $) . T) ((-661) . T) ((-782) . T) ((-925) . T) ((-959 (-519)) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1103) . T) ((-1106) . T)) +((-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 9)) (-1410 (($ $) 11)) (-3060 (((-108) $) 18)) (-4193 (((-3 $ "failed") $) 16)) (-1617 (((-108) $ $) 20))) +(((-510 |#1|) (-10 -8 (-15 -3060 ((-108) |#1|)) (-15 -1617 ((-108) |#1| |#1|)) (-15 -1410 (|#1| |#1|)) (-15 -1201 ((-2 (|:| -3307 |#1|) (|:| -4208 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1|))) (-511)) (T -510)) +NIL +(-10 -8 (-15 -3060 ((-108) |#1|)) (-15 -1617 ((-108) |#1| |#1|)) (-15 -1410 (|#1| |#1|)) (-15 -1201 ((-2 (|:| -3307 |#1|) (|:| -4208 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2261 (((-3 $ "failed") $ $) 42)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-511) (-1194)) (T -511)) +((-2261 (*1 *1 *1 *1) (|partial| -4 *1 (-511))) (-1201 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3307 *1) (|:| -4208 *1) (|:| |associate| *1))) (-4 *1 (-511)))) (-1410 (*1 *1 *1) (-4 *1 (-511))) (-1617 (*1 *2 *1 *1) (-12 (-4 *1 (-511)) (-5 *2 (-108)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-511)) (-5 *2 (-108))))) +(-13 (-157) (-37 $) (-264) (-10 -8 (-15 -2261 ((-3 $ "failed") $ $)) (-15 -1201 ((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $)) (-15 -1410 ($ $)) (-15 -1617 ((-108) $ $)) (-15 -3060 ((-108) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-157) . T) ((-264) . T) ((-587 $) . T) ((-652 $) . T) ((-661) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1985 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1082) (-585 |#2|)) 35)) (-3327 (((-536 |#2|) |#2| (-1082)) 58)) (-4107 (((-3 |#2| "failed") |#2| (-1082)) 149)) (-2108 (((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1082) (-558 |#2|) (-585 (-558 |#2|))) 152)) (-1315 (((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1082) |#2|) 38))) +(((-512 |#1| |#2|) (-10 -7 (-15 -1315 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1082) |#2|)) (-15 -1985 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1082) (-585 |#2|))) (-15 -4107 ((-3 |#2| "failed") |#2| (-1082))) (-15 -3327 ((-536 |#2|) |#2| (-1082))) (-15 -2108 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1082) (-558 |#2|) (-585 (-558 |#2|))))) (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519))) (-13 (-27) (-1103) (-402 |#1|))) (T -512)) +((-2108 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1082)) (-5 *6 (-585 (-558 *3))) (-5 *5 (-558 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *7))) (-4 *7 (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-2 (|:| -1265 *3) (|:| |coeff| *3))) (-5 *1 (-512 *7 *3)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-536 *3)) (-5 *1 (-512 *5 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))))) (-4107 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1082)) (-4 *4 (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *1 (-512 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4))))) (-1985 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-585 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-512 *6 *3)))) (-1315 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1082)) (-4 *5 (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 (-2 (|:| -1265 *3) (|:| |coeff| *3))) (-5 *1 (-512 *5 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5)))))) +(-10 -7 (-15 -1315 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1082) |#2|)) (-15 -1985 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1082) (-585 |#2|))) (-15 -4107 ((-3 |#2| "failed") |#2| (-1082))) (-15 -3327 ((-536 |#2|) |#2| (-1082))) (-15 -2108 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1082) (-558 |#2|) (-585 (-558 |#2|))))) +((-3093 (((-390 |#1|) |#1|) 18)) (-1921 (((-390 |#1|) |#1|) 33)) (-3795 (((-3 |#1| "failed") |#1|) 44)) (-3484 (((-390 |#1|) |#1|) 51))) +(((-513 |#1|) (-10 -7 (-15 -1921 ((-390 |#1|) |#1|)) (-15 -3093 ((-390 |#1|) |#1|)) (-15 -3484 ((-390 |#1|) |#1|)) (-15 -3795 ((-3 |#1| "failed") |#1|))) (-504)) (T -513)) +((-3795 (*1 *2 *2) (|partial| -12 (-5 *1 (-513 *2)) (-4 *2 (-504)))) (-3484 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-513 *3)) (-4 *3 (-504)))) (-3093 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-513 *3)) (-4 *3 (-504)))) (-1921 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-513 *3)) (-4 *3 (-504))))) +(-10 -7 (-15 -1921 ((-390 |#1|) |#1|)) (-15 -3093 ((-390 |#1|) |#1|)) (-15 -3484 ((-390 |#1|) |#1|)) (-15 -3795 ((-3 |#1| "failed") |#1|))) +((-1242 (($) 9)) (-1325 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 29)) (-3019 (((-585 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $) 26)) (-1846 (($ (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-1806 (($ (-585 (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-3100 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 33)) (-2222 (((-585 (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-3032 (((-1168)) 12))) +(((-514) (-10 -8 (-15 -1242 ($)) (-15 -3032 ((-1168))) (-15 -3019 ((-585 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $)) (-15 -1806 ($ (-585 (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1846 ($ (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1325 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2222 ((-585 (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3100 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (T -514)) +((-3100 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-514)))) (-2222 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-514)))) (-1325 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-514)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-514)))) (-1806 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-514)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-5 *1 (-514)))) (-3032 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-514)))) (-1242 (*1 *1) (-5 *1 (-514)))) +(-10 -8 (-15 -1242 ($)) (-15 -3032 ((-1168))) (-15 -3019 ((-585 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $)) (-15 -1806 ($ (-585 (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1846 ($ (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1325 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2222 ((-585 (-2 (|:| -2583 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3100 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) +((-1283 (((-1078 (-379 (-1078 |#2|))) |#2| (-558 |#2|) (-558 |#2|) (-1078 |#2|)) 28)) (-2163 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-558 |#2|) (-558 |#2|) (-585 |#2|) (-558 |#2|) |#2| (-379 (-1078 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-558 |#2|) (-558 |#2|) (-585 |#2|) |#2| (-1078 |#2|)) 106)) (-1905 (((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|) (-558 |#2|) |#2| (-379 (-1078 |#2|))) 78) (((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|) |#2| (-1078 |#2|)) 50)) (-2418 (((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-558 |#2|) (-558 |#2|) |#2| (-558 |#2|) |#2| (-379 (-1078 |#2|))) 85) (((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-558 |#2|) (-558 |#2|) |#2| |#2| (-1078 |#2|)) 105)) (-3265 (((-3 |#2| "failed") |#2| |#2| (-558 |#2|) (-558 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1082)) (-558 |#2|) |#2| (-379 (-1078 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-558 |#2|) (-558 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1082)) |#2| (-1078 |#2|)) 107)) (-1606 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2070 (-585 |#2|))) |#3| |#2| (-558 |#2|) (-558 |#2|) (-558 |#2|) |#2| (-379 (-1078 |#2|))) 124 (|has| |#3| (-595 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2070 (-585 |#2|))) |#3| |#2| (-558 |#2|) (-558 |#2|) |#2| (-1078 |#2|)) 123 (|has| |#3| (-595 |#2|)))) (-4066 ((|#2| (-1078 (-379 (-1078 |#2|))) (-558 |#2|) |#2|) 48)) (-3860 (((-1078 (-379 (-1078 |#2|))) (-1078 |#2|) (-558 |#2|)) 27))) +(((-515 |#1| |#2| |#3|) (-10 -7 (-15 -1905 ((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|) |#2| (-1078 |#2|))) (-15 -1905 ((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|) (-558 |#2|) |#2| (-379 (-1078 |#2|)))) (-15 -2418 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-558 |#2|) (-558 |#2|) |#2| |#2| (-1078 |#2|))) (-15 -2418 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-558 |#2|) (-558 |#2|) |#2| (-558 |#2|) |#2| (-379 (-1078 |#2|)))) (-15 -2163 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-558 |#2|) (-558 |#2|) (-585 |#2|) |#2| (-1078 |#2|))) (-15 -2163 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-558 |#2|) (-558 |#2|) (-585 |#2|) (-558 |#2|) |#2| (-379 (-1078 |#2|)))) (-15 -3265 ((-3 |#2| "failed") |#2| |#2| (-558 |#2|) (-558 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1082)) |#2| (-1078 |#2|))) (-15 -3265 ((-3 |#2| "failed") |#2| |#2| (-558 |#2|) (-558 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1082)) (-558 |#2|) |#2| (-379 (-1078 |#2|)))) (-15 -1283 ((-1078 (-379 (-1078 |#2|))) |#2| (-558 |#2|) (-558 |#2|) (-1078 |#2|))) (-15 -4066 (|#2| (-1078 (-379 (-1078 |#2|))) (-558 |#2|) |#2|)) (-15 -3860 ((-1078 (-379 (-1078 |#2|))) (-1078 |#2|) (-558 |#2|))) (IF (|has| |#3| (-595 |#2|)) (PROGN (-15 -1606 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2070 (-585 |#2|))) |#3| |#2| (-558 |#2|) (-558 |#2|) |#2| (-1078 |#2|))) (-15 -1606 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2070 (-585 |#2|))) |#3| |#2| (-558 |#2|) (-558 |#2|) (-558 |#2|) |#2| (-379 (-1078 |#2|))))) |%noBranch|)) (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519))) (-13 (-402 |#1|) (-27) (-1103)) (-1011)) (T -515)) +((-1606 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-558 *4)) (-5 *6 (-379 (-1078 *4))) (-4 *4 (-13 (-402 *7) (-27) (-1103))) (-4 *7 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) (-5 *1 (-515 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1011)))) (-1606 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-558 *4)) (-5 *6 (-1078 *4)) (-4 *4 (-13 (-402 *7) (-27) (-1103))) (-4 *7 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) (-5 *1 (-515 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1011)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *4 (-558 *6)) (-4 *6 (-13 (-402 *5) (-27) (-1103))) (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-1078 (-379 (-1078 *6)))) (-5 *1 (-515 *5 *6 *7)) (-5 *3 (-1078 *6)) (-4 *7 (-1011)))) (-4066 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1078 (-379 (-1078 *2)))) (-5 *4 (-558 *2)) (-4 *2 (-13 (-402 *5) (-27) (-1103))) (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *1 (-515 *5 *2 *6)) (-4 *6 (-1011)))) (-1283 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-558 *3)) (-4 *3 (-13 (-402 *6) (-27) (-1103))) (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-1078 (-379 (-1078 *3)))) (-5 *1 (-515 *6 *3 *7)) (-5 *5 (-1078 *3)) (-4 *7 (-1011)))) (-3265 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-558 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1082))) (-5 *5 (-379 (-1078 *2))) (-4 *2 (-13 (-402 *6) (-27) (-1103))) (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *1 (-515 *6 *2 *7)) (-4 *7 (-1011)))) (-3265 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-558 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1082))) (-5 *5 (-1078 *2)) (-4 *2 (-13 (-402 *6) (-27) (-1103))) (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *1 (-515 *6 *2 *7)) (-4 *7 (-1011)))) (-2163 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-558 *3)) (-5 *5 (-585 *3)) (-5 *6 (-379 (-1078 *3))) (-4 *3 (-13 (-402 *7) (-27) (-1103))) (-4 *7 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-515 *7 *3 *8)) (-4 *8 (-1011)))) (-2163 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-558 *3)) (-5 *5 (-585 *3)) (-5 *6 (-1078 *3)) (-4 *3 (-13 (-402 *7) (-27) (-1103))) (-4 *7 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-515 *7 *3 *8)) (-4 *8 (-1011)))) (-2418 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-558 *3)) (-5 *5 (-379 (-1078 *3))) (-4 *3 (-13 (-402 *6) (-27) (-1103))) (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-2 (|:| -1265 *3) (|:| |coeff| *3))) (-5 *1 (-515 *6 *3 *7)) (-4 *7 (-1011)))) (-2418 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-558 *3)) (-5 *5 (-1078 *3)) (-4 *3 (-13 (-402 *6) (-27) (-1103))) (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-2 (|:| -1265 *3) (|:| |coeff| *3))) (-5 *1 (-515 *6 *3 *7)) (-4 *7 (-1011)))) (-1905 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-558 *3)) (-5 *5 (-379 (-1078 *3))) (-4 *3 (-13 (-402 *6) (-27) (-1103))) (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-536 *3)) (-5 *1 (-515 *6 *3 *7)) (-4 *7 (-1011)))) (-1905 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-558 *3)) (-5 *5 (-1078 *3)) (-4 *3 (-13 (-402 *6) (-27) (-1103))) (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-536 *3)) (-5 *1 (-515 *6 *3 *7)) (-4 *7 (-1011))))) +(-10 -7 (-15 -1905 ((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|) |#2| (-1078 |#2|))) (-15 -1905 ((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|) (-558 |#2|) |#2| (-379 (-1078 |#2|)))) (-15 -2418 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-558 |#2|) (-558 |#2|) |#2| |#2| (-1078 |#2|))) (-15 -2418 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-558 |#2|) (-558 |#2|) |#2| (-558 |#2|) |#2| (-379 (-1078 |#2|)))) (-15 -2163 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-558 |#2|) (-558 |#2|) (-585 |#2|) |#2| (-1078 |#2|))) (-15 -2163 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-558 |#2|) (-558 |#2|) (-585 |#2|) (-558 |#2|) |#2| (-379 (-1078 |#2|)))) (-15 -3265 ((-3 |#2| "failed") |#2| |#2| (-558 |#2|) (-558 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1082)) |#2| (-1078 |#2|))) (-15 -3265 ((-3 |#2| "failed") |#2| |#2| (-558 |#2|) (-558 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1082)) (-558 |#2|) |#2| (-379 (-1078 |#2|)))) (-15 -1283 ((-1078 (-379 (-1078 |#2|))) |#2| (-558 |#2|) (-558 |#2|) (-1078 |#2|))) (-15 -4066 (|#2| (-1078 (-379 (-1078 |#2|))) (-558 |#2|) |#2|)) (-15 -3860 ((-1078 (-379 (-1078 |#2|))) (-1078 |#2|) (-558 |#2|))) (IF (|has| |#3| (-595 |#2|)) (PROGN (-15 -1606 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2070 (-585 |#2|))) |#3| |#2| (-558 |#2|) (-558 |#2|) |#2| (-1078 |#2|))) (-15 -1606 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2070 (-585 |#2|))) |#3| |#2| (-558 |#2|) (-558 |#2|) (-558 |#2|) |#2| (-379 (-1078 |#2|))))) |%noBranch|)) +((-1737 (((-519) (-519) (-705)) 66)) (-4009 (((-519) (-519)) 65)) (-3216 (((-519) (-519)) 64)) (-3233 (((-519) (-519)) 69)) (-3537 (((-519) (-519) (-519)) 49)) (-3062 (((-519) (-519) (-519)) 46)) (-3888 (((-379 (-519)) (-519)) 20)) (-4137 (((-519) (-519)) 21)) (-3160 (((-519) (-519)) 58)) (-3480 (((-519) (-519)) 32)) (-3651 (((-585 (-519)) (-519)) 63)) (-3680 (((-519) (-519) (-519) (-519) (-519)) 44)) (-2244 (((-379 (-519)) (-519)) 41))) +(((-516) (-10 -7 (-15 -2244 ((-379 (-519)) (-519))) (-15 -3680 ((-519) (-519) (-519) (-519) (-519))) (-15 -3651 ((-585 (-519)) (-519))) (-15 -3480 ((-519) (-519))) (-15 -3160 ((-519) (-519))) (-15 -4137 ((-519) (-519))) (-15 -3888 ((-379 (-519)) (-519))) (-15 -3062 ((-519) (-519) (-519))) (-15 -3537 ((-519) (-519) (-519))) (-15 -3233 ((-519) (-519))) (-15 -3216 ((-519) (-519))) (-15 -4009 ((-519) (-519))) (-15 -1737 ((-519) (-519) (-705))))) (T -516)) +((-1737 (*1 *2 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-705)) (-5 *1 (-516)))) (-4009 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516)))) (-3216 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516)))) (-3233 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516)))) (-3537 (*1 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516)))) (-3062 (*1 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516)))) (-3888 (*1 *2 *3) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-516)) (-5 *3 (-519)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516)))) (-3160 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516)))) (-3651 (*1 *2 *3) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-516)) (-5 *3 (-519)))) (-3680 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516)))) (-2244 (*1 *2 *3) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-516)) (-5 *3 (-519))))) +(-10 -7 (-15 -2244 ((-379 (-519)) (-519))) (-15 -3680 ((-519) (-519) (-519) (-519) (-519))) (-15 -3651 ((-585 (-519)) (-519))) (-15 -3480 ((-519) (-519))) (-15 -3160 ((-519) (-519))) (-15 -4137 ((-519) (-519))) (-15 -3888 ((-379 (-519)) (-519))) (-15 -3062 ((-519) (-519) (-519))) (-15 -3537 ((-519) (-519) (-519))) (-15 -3233 ((-519) (-519))) (-15 -3216 ((-519) (-519))) (-15 -4009 ((-519) (-519))) (-15 -1737 ((-519) (-519) (-705)))) +((-2677 (((-2 (|:| |answer| |#4|) (|:| -1239 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-517 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2677 ((-2 (|:| |answer| |#4|) (|:| -1239 |#4|)) |#4| (-1 |#2| |#2|)))) (-335) (-1139 |#1|) (-1139 (-379 |#2|)) (-314 |#1| |#2| |#3|)) (T -517)) +((-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) (-4 *7 (-1139 (-379 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1239 *3))) (-5 *1 (-517 *5 *6 *7 *3)) (-4 *3 (-314 *5 *6 *7))))) +(-10 -7 (-15 -2677 ((-2 (|:| |answer| |#4|) (|:| -1239 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2677 (((-2 (|:| |answer| (-379 |#2|)) (|:| -1239 (-379 |#2|)) (|:| |specpart| (-379 |#2|)) (|:| |polypart| |#2|)) (-379 |#2|) (-1 |#2| |#2|)) 18))) +(((-518 |#1| |#2|) (-10 -7 (-15 -2677 ((-2 (|:| |answer| (-379 |#2|)) (|:| -1239 (-379 |#2|)) (|:| |specpart| (-379 |#2|)) (|:| |polypart| |#2|)) (-379 |#2|) (-1 |#2| |#2|)))) (-335) (-1139 |#1|)) (T -518)) +((-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) (-5 *2 (-2 (|:| |answer| (-379 *6)) (|:| -1239 (-379 *6)) (|:| |specpart| (-379 *6)) (|:| |polypart| *6))) (-5 *1 (-518 *5 *6)) (-5 *3 (-379 *6))))) +(-10 -7 (-15 -2677 ((-2 (|:| |answer| (-379 |#2|)) (|:| -1239 (-379 |#2|)) (|:| |specpart| (-379 |#2|)) (|:| |polypart| |#2|)) (-379 |#2|) (-1 |#2| |#2|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 25)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 86)) (-1410 (($ $) 87)) (-3060 (((-108) $) NIL)) (-3133 (($ $ $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2131 (($ $ $ $) 42)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL)) (-1674 (($ $ $) 80)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL)) (-1499 (((-519) $) NIL)) (-2311 (($ $ $) 79)) (-1562 (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 60) (((-625 (-519)) (-625 $)) 57)) (-4193 (((-3 $ "failed") $) 83)) (-1631 (((-3 (-379 (-519)) "failed") $) NIL)) (-2102 (((-108) $) NIL)) (-2506 (((-379 (-519)) $) NIL)) (-3314 (($) 62) (($ $) 63)) (-2286 (($ $ $) 78)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3504 (($ $ $ $) NIL)) (-2233 (($ $ $) 54)) (-3419 (((-108) $) NIL)) (-3449 (($ $ $) NIL)) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL)) (-1568 (((-108) $) 26)) (-3164 (((-108) $) 73)) (-1675 (((-3 $ "failed") $) NIL)) (-2143 (((-108) $) 34)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1843 (($ $ $ $) 43)) (-2864 (($ $ $) 75)) (-2489 (($ $ $) 74)) (-3900 (($ $) NIL)) (-2568 (($ $) 40)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) 53)) (-2691 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-3011 (($ $) 31)) (-4139 (((-1029) $) NIL) (($ $) 33)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 117)) (-2292 (($ $ $) 84) (($ (-585 $)) NIL)) (-1314 (($ $) NIL)) (-1921 (((-390 $) $) 103)) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) 82)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1295 (((-108) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 77)) (-2181 (($ $ (-705)) NIL) (($ $) NIL)) (-3104 (($ $) 32)) (-2449 (($ $) 30)) (-1446 (((-519) $) 39) (((-495) $) 51) (((-819 (-519)) $) NIL) (((-351) $) 46) (((-201) $) 48) (((-1065) $) 52)) (-2217 (((-790) $) 37) (($ (-519)) 38) (($ $) NIL) (($ (-519)) 38)) (-3594 (((-705)) NIL)) (-4200 (((-108) $ $) NIL)) (-3563 (($ $ $) NIL)) (-3414 (($) 29)) (-1617 (((-108) $ $) NIL)) (-1748 (($ $ $ $) 41)) (-1478 (($ $) 61)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 27 T CONST)) (-3611 (($) 28 T CONST)) (-2761 (((-1065) $) 20) (((-1065) $ (-108)) 22) (((-1168) (-757) $) 23) (((-1168) (-757) $ (-108)) 24)) (-2242 (($ $ (-705)) NIL) (($ $) NIL)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 64)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 65)) (-1623 (($ $) 66) (($ $ $) 68)) (-1614 (($ $ $) 67)) (** (($ $ (-848)) NIL) (($ $ (-705)) 72)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 70) (($ $ $) 69))) +(((-519) (-13 (-504) (-560 (-1065)) (-763) (-10 -8 (-15 -3314 ($ $)) (-6 -4208) (-6 -4213) (-6 -4209) (-6 -4203)))) (T -519)) +((-3314 (*1 *1 *1) (-5 *1 (-519)))) +(-13 (-504) (-560 (-1065)) (-763) (-10 -8 (-15 -3314 ($ $)) (-6 -4208) (-6 -4213) (-6 -4209) (-6 -4203))) +((-1809 (((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957))) (-703) (-980)) 103) (((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957))) (-703)) 105)) (-4142 (((-3 (-957) "failed") (-288 (-351)) (-1004 (-775 (-351))) (-1082)) 168) (((-3 (-957) "failed") (-288 (-351)) (-1004 (-775 (-351))) (-1065)) 167) (((-957) (-288 (-351)) (-585 (-1006 (-775 (-351)))) (-351) (-351) (-980)) 173) (((-957) (-288 (-351)) (-585 (-1006 (-775 (-351)))) (-351) (-351)) 174) (((-957) (-288 (-351)) (-585 (-1006 (-775 (-351)))) (-351)) 175) (((-957) (-288 (-351)) (-585 (-1006 (-775 (-351))))) 176) (((-957) (-288 (-351)) (-1006 (-775 (-351)))) 163) (((-957) (-288 (-351)) (-1006 (-775 (-351))) (-351)) 162) (((-957) (-288 (-351)) (-1006 (-775 (-351))) (-351) (-351)) 158) (((-957) (-703)) 150) (((-957) (-288 (-351)) (-1006 (-775 (-351))) (-351) (-351) (-980)) 157))) +(((-520) (-10 -7 (-15 -4142 ((-957) (-288 (-351)) (-1006 (-775 (-351))) (-351) (-351) (-980))) (-15 -4142 ((-957) (-703))) (-15 -4142 ((-957) (-288 (-351)) (-1006 (-775 (-351))) (-351) (-351))) (-15 -4142 ((-957) (-288 (-351)) (-1006 (-775 (-351))) (-351))) (-15 -4142 ((-957) (-288 (-351)) (-1006 (-775 (-351))))) (-15 -4142 ((-957) (-288 (-351)) (-585 (-1006 (-775 (-351)))))) (-15 -4142 ((-957) (-288 (-351)) (-585 (-1006 (-775 (-351)))) (-351))) (-15 -4142 ((-957) (-288 (-351)) (-585 (-1006 (-775 (-351)))) (-351) (-351))) (-15 -4142 ((-957) (-288 (-351)) (-585 (-1006 (-775 (-351)))) (-351) (-351) (-980))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957))) (-703))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957))) (-703) (-980))) (-15 -4142 ((-3 (-957) "failed") (-288 (-351)) (-1004 (-775 (-351))) (-1065))) (-15 -4142 ((-3 (-957) "failed") (-288 (-351)) (-1004 (-775 (-351))) (-1082))))) (T -520)) +((-4142 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-288 (-351))) (-5 *4 (-1004 (-775 (-351)))) (-5 *5 (-1082)) (-5 *2 (-957)) (-5 *1 (-520)))) (-4142 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-288 (-351))) (-5 *4 (-1004 (-775 (-351)))) (-5 *5 (-1065)) (-5 *2 (-957)) (-5 *1 (-520)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-980)) (-5 *2 (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957)))) (-5 *1 (-520)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957)))) (-5 *1 (-520)))) (-4142 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-1006 (-775 (-351))))) (-5 *5 (-351)) (-5 *6 (-980)) (-5 *2 (-957)) (-5 *1 (-520)))) (-4142 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-1006 (-775 (-351))))) (-5 *5 (-351)) (-5 *2 (-957)) (-5 *1 (-520)))) (-4142 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-1006 (-775 (-351))))) (-5 *5 (-351)) (-5 *2 (-957)) (-5 *1 (-520)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-1006 (-775 (-351))))) (-5 *2 (-957)) (-5 *1 (-520)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-351))) (-5 *4 (-1006 (-775 (-351)))) (-5 *2 (-957)) (-5 *1 (-520)))) (-4142 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 (-351))) (-5 *4 (-1006 (-775 (-351)))) (-5 *5 (-351)) (-5 *2 (-957)) (-5 *1 (-520)))) (-4142 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-288 (-351))) (-5 *4 (-1006 (-775 (-351)))) (-5 *5 (-351)) (-5 *2 (-957)) (-5 *1 (-520)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-957)) (-5 *1 (-520)))) (-4142 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-288 (-351))) (-5 *4 (-1006 (-775 (-351)))) (-5 *5 (-351)) (-5 *6 (-980)) (-5 *2 (-957)) (-5 *1 (-520))))) +(-10 -7 (-15 -4142 ((-957) (-288 (-351)) (-1006 (-775 (-351))) (-351) (-351) (-980))) (-15 -4142 ((-957) (-703))) (-15 -4142 ((-957) (-288 (-351)) (-1006 (-775 (-351))) (-351) (-351))) (-15 -4142 ((-957) (-288 (-351)) (-1006 (-775 (-351))) (-351))) (-15 -4142 ((-957) (-288 (-351)) (-1006 (-775 (-351))))) (-15 -4142 ((-957) (-288 (-351)) (-585 (-1006 (-775 (-351)))))) (-15 -4142 ((-957) (-288 (-351)) (-585 (-1006 (-775 (-351)))) (-351))) (-15 -4142 ((-957) (-288 (-351)) (-585 (-1006 (-775 (-351)))) (-351) (-351))) (-15 -4142 ((-957) (-288 (-351)) (-585 (-1006 (-775 (-351)))) (-351) (-351) (-980))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957))) (-703))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957))) (-703) (-980))) (-15 -4142 ((-3 (-957) "failed") (-288 (-351)) (-1004 (-775 (-351))) (-1065))) (-15 -4142 ((-3 (-957) "failed") (-288 (-351)) (-1004 (-775 (-351))) (-1082)))) +((-2871 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-558 |#2|) (-558 |#2|) (-585 |#2|)) 181)) (-2023 (((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|)) 99)) (-2188 (((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-558 |#2|) (-558 |#2|) |#2|) 177)) (-3033 (((-3 |#2| "failed") |#2| |#2| |#2| (-558 |#2|) (-558 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1082))) 186)) (-3141 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2070 (-585 |#2|))) |#3| |#2| (-558 |#2|) (-558 |#2|) (-1082)) 194 (|has| |#3| (-595 |#2|))))) +(((-521 |#1| |#2| |#3|) (-10 -7 (-15 -2023 ((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|))) (-15 -2188 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-558 |#2|) (-558 |#2|) |#2|)) (-15 -2871 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-558 |#2|) (-558 |#2|) (-585 |#2|))) (-15 -3033 ((-3 |#2| "failed") |#2| |#2| |#2| (-558 |#2|) (-558 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1082)))) (IF (|has| |#3| (-595 |#2|)) (-15 -3141 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2070 (-585 |#2|))) |#3| |#2| (-558 |#2|) (-558 |#2|) (-1082))) |%noBranch|)) (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519))) (-13 (-402 |#1|) (-27) (-1103)) (-1011)) (T -521)) +((-3141 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-558 *4)) (-5 *6 (-1082)) (-4 *4 (-13 (-402 *7) (-27) (-1103))) (-4 *7 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1011)))) (-3033 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-558 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1082))) (-4 *2 (-13 (-402 *5) (-27) (-1103))) (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1011)))) (-2871 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-558 *3)) (-5 *5 (-585 *3)) (-4 *3 (-13 (-402 *6) (-27) (-1103))) (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1011)))) (-2188 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-558 *3)) (-4 *3 (-13 (-402 *5) (-27) (-1103))) (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-2 (|:| -1265 *3) (|:| |coeff| *3))) (-5 *1 (-521 *5 *3 *6)) (-4 *6 (-1011)))) (-2023 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-558 *3)) (-4 *3 (-13 (-402 *5) (-27) (-1103))) (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-536 *3)) (-5 *1 (-521 *5 *3 *6)) (-4 *6 (-1011))))) +(-10 -7 (-15 -2023 ((-536 |#2|) |#2| (-558 |#2|) (-558 |#2|))) (-15 -2188 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-558 |#2|) (-558 |#2|) |#2|)) (-15 -2871 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-558 |#2|) (-558 |#2|) (-585 |#2|))) (-15 -3033 ((-3 |#2| "failed") |#2| |#2| |#2| (-558 |#2|) (-558 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1082)))) (IF (|has| |#3| (-595 |#2|)) (-15 -3141 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2070 (-585 |#2|))) |#3| |#2| (-558 |#2|) (-558 |#2|) (-1082))) |%noBranch|)) +((-1217 (((-2 (|:| -3880 |#2|) (|:| |nconst| |#2|)) |#2| (-1082)) 62)) (-3481 (((-3 |#2| "failed") |#2| (-1082) (-775 |#2|) (-775 |#2|)) 159 (-12 (|has| |#2| (-1046)) (|has| |#1| (-560 (-819 (-519)))) (|has| |#1| (-813 (-519))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1082)) 133 (-12 (|has| |#2| (-571)) (|has| |#1| (-560 (-819 (-519)))) (|has| |#1| (-813 (-519)))))) (-2319 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1082)) 142 (-12 (|has| |#2| (-571)) (|has| |#1| (-560 (-819 (-519)))) (|has| |#1| (-813 (-519))))))) +(((-522 |#1| |#2|) (-10 -7 (-15 -1217 ((-2 (|:| -3880 |#2|) (|:| |nconst| |#2|)) |#2| (-1082))) (IF (|has| |#1| (-560 (-819 (-519)))) (IF (|has| |#1| (-813 (-519))) (PROGN (IF (|has| |#2| (-571)) (PROGN (-15 -2319 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1082))) (-15 -3481 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1082)))) |%noBranch|) (IF (|has| |#2| (-1046)) (-15 -3481 ((-3 |#2| "failed") |#2| (-1082) (-775 |#2|) (-775 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-782) (-959 (-519)) (-423) (-581 (-519))) (-13 (-27) (-1103) (-402 |#1|))) (T -522)) +((-3481 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1082)) (-5 *4 (-775 *2)) (-4 *2 (-1046)) (-4 *2 (-13 (-27) (-1103) (-402 *5))) (-4 *5 (-560 (-819 (-519)))) (-4 *5 (-813 (-519))) (-4 *5 (-13 (-782) (-959 (-519)) (-423) (-581 (-519)))) (-5 *1 (-522 *5 *2)))) (-3481 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1082)) (-4 *5 (-560 (-819 (-519)))) (-4 *5 (-813 (-519))) (-4 *5 (-13 (-782) (-959 (-519)) (-423) (-581 (-519)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-522 *5 *3)) (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1103) (-402 *5))))) (-2319 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1082)) (-4 *5 (-560 (-819 (-519)))) (-4 *5 (-813 (-519))) (-4 *5 (-13 (-782) (-959 (-519)) (-423) (-581 (-519)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-522 *5 *3)) (-4 *3 (-571)) (-4 *3 (-13 (-27) (-1103) (-402 *5))))) (-1217 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-782) (-959 (-519)) (-423) (-581 (-519)))) (-5 *2 (-2 (|:| -3880 *3) (|:| |nconst| *3))) (-5 *1 (-522 *5 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5)))))) +(-10 -7 (-15 -1217 ((-2 (|:| -3880 |#2|) (|:| |nconst| |#2|)) |#2| (-1082))) (IF (|has| |#1| (-560 (-819 (-519)))) (IF (|has| |#1| (-813 (-519))) (PROGN (IF (|has| |#2| (-571)) (PROGN (-15 -2319 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1082))) (-15 -3481 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1082)))) |%noBranch|) (IF (|has| |#2| (-1046)) (-15 -3481 ((-3 |#2| "failed") |#2| (-1082) (-775 |#2|) (-775 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1536 (((-3 (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|)))))) "failed") (-379 |#2|) (-585 (-379 |#2|))) 39)) (-4142 (((-536 (-379 |#2|)) (-379 |#2|)) 27)) (-2797 (((-3 (-379 |#2|) "failed") (-379 |#2|)) 16)) (-1379 (((-3 (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-379 |#2|)) 46))) +(((-523 |#1| |#2|) (-10 -7 (-15 -4142 ((-536 (-379 |#2|)) (-379 |#2|))) (-15 -2797 ((-3 (-379 |#2|) "failed") (-379 |#2|))) (-15 -1379 ((-3 (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-379 |#2|))) (-15 -1536 ((-3 (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|)))))) "failed") (-379 |#2|) (-585 (-379 |#2|))))) (-13 (-335) (-135) (-959 (-519))) (-1139 |#1|)) (T -523)) +((-1536 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-585 (-379 *6))) (-5 *3 (-379 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-13 (-335) (-135) (-959 (-519)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *5 *6)))) (-1379 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-335) (-135) (-959 (-519)))) (-4 *5 (-1139 *4)) (-5 *2 (-2 (|:| -1265 (-379 *5)) (|:| |coeff| (-379 *5)))) (-5 *1 (-523 *4 *5)) (-5 *3 (-379 *5)))) (-2797 (*1 *2 *2) (|partial| -12 (-5 *2 (-379 *4)) (-4 *4 (-1139 *3)) (-4 *3 (-13 (-335) (-135) (-959 (-519)))) (-5 *1 (-523 *3 *4)))) (-4142 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-135) (-959 (-519)))) (-4 *5 (-1139 *4)) (-5 *2 (-536 (-379 *5))) (-5 *1 (-523 *4 *5)) (-5 *3 (-379 *5))))) +(-10 -7 (-15 -4142 ((-536 (-379 |#2|)) (-379 |#2|))) (-15 -2797 ((-3 (-379 |#2|) "failed") (-379 |#2|))) (-15 -1379 ((-3 (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-379 |#2|))) (-15 -1536 ((-3 (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|)))))) "failed") (-379 |#2|) (-585 (-379 |#2|))))) +((-3674 (((-3 (-519) "failed") |#1|) 14)) (-2226 (((-108) |#1|) 13)) (-1523 (((-519) |#1|) 9))) +(((-524 |#1|) (-10 -7 (-15 -1523 ((-519) |#1|)) (-15 -2226 ((-108) |#1|)) (-15 -3674 ((-3 (-519) "failed") |#1|))) (-959 (-519))) (T -524)) +((-3674 (*1 *2 *3) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-524 *3)) (-4 *3 (-959 *2)))) (-2226 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-524 *3)) (-4 *3 (-959 (-519))))) (-1523 (*1 *2 *3) (-12 (-5 *2 (-519)) (-5 *1 (-524 *3)) (-4 *3 (-959 *2))))) +(-10 -7 (-15 -1523 ((-519) |#1|)) (-15 -2226 ((-108) |#1|)) (-15 -3674 ((-3 (-519) "failed") |#1|))) +((-2354 (((-3 (-2 (|:| |mainpart| (-379 (-879 |#1|))) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 (-879 |#1|))) (|:| |logand| (-379 (-879 |#1|))))))) "failed") (-379 (-879 |#1|)) (-1082) (-585 (-379 (-879 |#1|)))) 43)) (-3147 (((-536 (-379 (-879 |#1|))) (-379 (-879 |#1|)) (-1082)) 25)) (-2836 (((-3 (-379 (-879 |#1|)) "failed") (-379 (-879 |#1|)) (-1082)) 20)) (-3700 (((-3 (-2 (|:| -1265 (-379 (-879 |#1|))) (|:| |coeff| (-379 (-879 |#1|)))) "failed") (-379 (-879 |#1|)) (-1082) (-379 (-879 |#1|))) 32))) +(((-525 |#1|) (-10 -7 (-15 -3147 ((-536 (-379 (-879 |#1|))) (-379 (-879 |#1|)) (-1082))) (-15 -2836 ((-3 (-379 (-879 |#1|)) "failed") (-379 (-879 |#1|)) (-1082))) (-15 -2354 ((-3 (-2 (|:| |mainpart| (-379 (-879 |#1|))) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 (-879 |#1|))) (|:| |logand| (-379 (-879 |#1|))))))) "failed") (-379 (-879 |#1|)) (-1082) (-585 (-379 (-879 |#1|))))) (-15 -3700 ((-3 (-2 (|:| -1265 (-379 (-879 |#1|))) (|:| |coeff| (-379 (-879 |#1|)))) "failed") (-379 (-879 |#1|)) (-1082) (-379 (-879 |#1|))))) (-13 (-511) (-959 (-519)) (-135))) (T -525)) +((-3700 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1082)) (-4 *5 (-13 (-511) (-959 (-519)) (-135))) (-5 *2 (-2 (|:| -1265 (-379 (-879 *5))) (|:| |coeff| (-379 (-879 *5))))) (-5 *1 (-525 *5)) (-5 *3 (-379 (-879 *5))))) (-2354 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-585 (-379 (-879 *6)))) (-5 *3 (-379 (-879 *6))) (-4 *6 (-13 (-511) (-959 (-519)) (-135))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *6)))) (-2836 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-379 (-879 *4))) (-5 *3 (-1082)) (-4 *4 (-13 (-511) (-959 (-519)) (-135))) (-5 *1 (-525 *4)))) (-3147 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-511) (-959 (-519)) (-135))) (-5 *2 (-536 (-379 (-879 *5)))) (-5 *1 (-525 *5)) (-5 *3 (-379 (-879 *5)))))) +(-10 -7 (-15 -3147 ((-536 (-379 (-879 |#1|))) (-379 (-879 |#1|)) (-1082))) (-15 -2836 ((-3 (-379 (-879 |#1|)) "failed") (-379 (-879 |#1|)) (-1082))) (-15 -2354 ((-3 (-2 (|:| |mainpart| (-379 (-879 |#1|))) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 (-879 |#1|))) (|:| |logand| (-379 (-879 |#1|))))))) "failed") (-379 (-879 |#1|)) (-1082) (-585 (-379 (-879 |#1|))))) (-15 -3700 ((-3 (-2 (|:| -1265 (-379 (-879 |#1|))) (|:| |coeff| (-379 (-879 |#1|)))) "failed") (-379 (-879 |#1|)) (-1082) (-379 (-879 |#1|))))) +((-1430 (((-108) $ $) 59)) (-3569 (((-108) $) 36)) (-2699 ((|#1| $) 30)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) 63)) (-2958 (($ $) 123)) (-2823 (($ $) 103)) (-2494 ((|#1| $) 28)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1934 (($ $) NIL)) (-2934 (($ $) 125)) (-2800 (($ $) 99)) (-2981 (($ $) 127)) (-2844 (($ $) 107)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) 78)) (-1499 (((-519) $) 80)) (-4193 (((-3 $ "failed") $) 62)) (-2580 (($ |#1| |#1|) 26)) (-3419 (((-108) $) 33)) (-2888 (($) 89)) (-1568 (((-108) $) 43)) (-1517 (($ $ (-519)) NIL)) (-2143 (((-108) $) 34)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1254 (($ $) 91)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-1724 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-379 (-519))) 77)) (-3600 ((|#1| $) 27)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) 65) (($ (-585 $)) NIL)) (-2261 (((-3 $ "failed") $ $) 64)) (-3325 (($ $) 93)) (-1754 (($ $) 131)) (-2854 (($ $) 105)) (-2969 (($ $) 133)) (-2834 (($ $) 109)) (-2946 (($ $) 129)) (-2812 (($ $) 101)) (-3416 (((-108) $ |#1|) 31)) (-2217 (((-790) $) 85) (($ (-519)) 67) (($ $) NIL) (($ (-519)) 67)) (-3594 (((-705)) 87)) (-1774 (($ $) 145)) (-2886 (($ $) 115)) (-1617 (((-108) $ $) NIL)) (-1761 (($ $) 143)) (-2865 (($ $) 111)) (-1790 (($ $) 141)) (-2910 (($ $) 121)) (-3929 (($ $) 139)) (-2922 (($ $) 119)) (-1783 (($ $) 137)) (-2898 (($ $) 117)) (-1768 (($ $) 135)) (-2875 (($ $) 113)) (-3559 (($ $ (-848)) 55) (($ $ (-705)) NIL)) (-3602 (($) 21 T CONST)) (-3611 (($) 10 T CONST)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 37)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 35)) (-1623 (($ $) 41) (($ $ $) 42)) (-1614 (($ $ $) 40)) (** (($ $ (-848)) 54) (($ $ (-705)) NIL) (($ $ $) 95) (($ $ (-379 (-519))) 147)) (* (($ (-848) $) 51) (($ (-705) $) NIL) (($ (-519) $) 50) (($ $ $) 48))) +(((-526 |#1|) (-509 |#1|) (-13 (-376) (-1103))) (T -526)) +NIL +(-509 |#1|) +((-2960 (((-3 (-585 (-1078 (-519))) "failed") (-585 (-1078 (-519))) (-1078 (-519))) 24))) +(((-527) (-10 -7 (-15 -2960 ((-3 (-585 (-1078 (-519))) "failed") (-585 (-1078 (-519))) (-1078 (-519)))))) (T -527)) +((-2960 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1078 (-519)))) (-5 *3 (-1078 (-519))) (-5 *1 (-527))))) +(-10 -7 (-15 -2960 ((-3 (-585 (-1078 (-519))) "failed") (-585 (-1078 (-519))) (-1078 (-519))))) +((-4201 (((-585 (-558 |#2|)) (-585 (-558 |#2|)) (-1082)) 18)) (-2024 (((-585 (-558 |#2|)) (-585 |#2|) (-1082)) 23)) (-2304 (((-585 (-558 |#2|)) (-585 (-558 |#2|)) (-585 (-558 |#2|))) 10)) (-2715 ((|#2| |#2| (-1082)) 52 (|has| |#1| (-511)))) (-3023 ((|#2| |#2| (-1082)) 77 (-12 (|has| |#2| (-258)) (|has| |#1| (-423))))) (-4064 (((-558 |#2|) (-558 |#2|) (-585 (-558 |#2|)) (-1082)) 25)) (-2622 (((-558 |#2|) (-585 (-558 |#2|))) 24)) (-3705 (((-536 |#2|) |#2| (-1082) (-1 (-536 |#2|) |#2| (-1082)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1082))) 101 (-12 (|has| |#2| (-258)) (|has| |#2| (-571)) (|has| |#2| (-959 (-1082))) (|has| |#1| (-560 (-819 (-519)))) (|has| |#1| (-423)) (|has| |#1| (-813 (-519))))))) +(((-528 |#1| |#2|) (-10 -7 (-15 -4201 ((-585 (-558 |#2|)) (-585 (-558 |#2|)) (-1082))) (-15 -2622 ((-558 |#2|) (-585 (-558 |#2|)))) (-15 -4064 ((-558 |#2|) (-558 |#2|) (-585 (-558 |#2|)) (-1082))) (-15 -2304 ((-585 (-558 |#2|)) (-585 (-558 |#2|)) (-585 (-558 |#2|)))) (-15 -2024 ((-585 (-558 |#2|)) (-585 |#2|) (-1082))) (IF (|has| |#1| (-511)) (-15 -2715 (|#2| |#2| (-1082))) |%noBranch|) (IF (|has| |#1| (-423)) (IF (|has| |#2| (-258)) (PROGN (-15 -3023 (|#2| |#2| (-1082))) (IF (|has| |#1| (-560 (-819 (-519)))) (IF (|has| |#1| (-813 (-519))) (IF (|has| |#2| (-571)) (IF (|has| |#2| (-959 (-1082))) (-15 -3705 ((-536 |#2|) |#2| (-1082) (-1 (-536 |#2|) |#2| (-1082)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1082)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-782) (-402 |#1|)) (T -528)) +((-3705 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-536 *3) *3 (-1082))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1082))) (-4 *3 (-258)) (-4 *3 (-571)) (-4 *3 (-959 *4)) (-4 *3 (-402 *7)) (-5 *4 (-1082)) (-4 *7 (-560 (-819 (-519)))) (-4 *7 (-423)) (-4 *7 (-813 (-519))) (-4 *7 (-782)) (-5 *2 (-536 *3)) (-5 *1 (-528 *7 *3)))) (-3023 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-423)) (-4 *4 (-782)) (-5 *1 (-528 *4 *2)) (-4 *2 (-258)) (-4 *2 (-402 *4)))) (-2715 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-511)) (-4 *4 (-782)) (-5 *1 (-528 *4 *2)) (-4 *2 (-402 *4)))) (-2024 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-1082)) (-4 *6 (-402 *5)) (-4 *5 (-782)) (-5 *2 (-585 (-558 *6))) (-5 *1 (-528 *5 *6)))) (-2304 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-558 *4))) (-4 *4 (-402 *3)) (-4 *3 (-782)) (-5 *1 (-528 *3 *4)))) (-4064 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-558 *6))) (-5 *4 (-1082)) (-5 *2 (-558 *6)) (-4 *6 (-402 *5)) (-4 *5 (-782)) (-5 *1 (-528 *5 *6)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-585 (-558 *5))) (-4 *4 (-782)) (-5 *2 (-558 *5)) (-5 *1 (-528 *4 *5)) (-4 *5 (-402 *4)))) (-4201 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-558 *5))) (-5 *3 (-1082)) (-4 *5 (-402 *4)) (-4 *4 (-782)) (-5 *1 (-528 *4 *5))))) +(-10 -7 (-15 -4201 ((-585 (-558 |#2|)) (-585 (-558 |#2|)) (-1082))) (-15 -2622 ((-558 |#2|) (-585 (-558 |#2|)))) (-15 -4064 ((-558 |#2|) (-558 |#2|) (-585 (-558 |#2|)) (-1082))) (-15 -2304 ((-585 (-558 |#2|)) (-585 (-558 |#2|)) (-585 (-558 |#2|)))) (-15 -2024 ((-585 (-558 |#2|)) (-585 |#2|) (-1082))) (IF (|has| |#1| (-511)) (-15 -2715 (|#2| |#2| (-1082))) |%noBranch|) (IF (|has| |#1| (-423)) (IF (|has| |#2| (-258)) (PROGN (-15 -3023 (|#2| |#2| (-1082))) (IF (|has| |#1| (-560 (-819 (-519)))) (IF (|has| |#1| (-813 (-519))) (IF (|has| |#2| (-571)) (IF (|has| |#2| (-959 (-1082))) (-15 -3705 ((-536 |#2|) |#2| (-1082) (-1 (-536 |#2|) |#2| (-1082)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1082)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2433 (((-2 (|:| |answer| (-536 (-379 |#2|))) (|:| |a0| |#1|)) (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-585 |#1|) "failed") (-519) |#1| |#1|)) 168)) (-2121 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|))))))) (|:| |a0| |#1|)) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-585 (-379 |#2|))) 144)) (-1520 (((-3 (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|)))))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-585 (-379 |#2|))) 141)) (-1262 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-2457 (((-2 (|:| |answer| (-536 (-379 |#2|))) (|:| |a0| |#1|)) (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-2702 (((-3 (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-379 |#2|)) 171)) (-3496 (((-3 (-2 (|:| |answer| (-379 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-379 |#2|)) 174)) (-2403 (((-2 (|:| |ir| (-536 (-379 |#2|))) (|:| |specpart| (-379 |#2|)) (|:| |polypart| |#2|)) (-379 |#2|) (-1 |#2| |#2|)) 82)) (-1417 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-2819 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|))))))) (|:| |a0| |#1|)) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|) (-585 (-379 |#2|))) 148)) (-2368 (((-3 (-566 |#1| |#2|) "failed") (-566 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|)) 134)) (-1679 (((-2 (|:| |answer| (-536 (-379 |#2|))) (|:| |a0| |#1|)) (-379 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|)) 158)) (-2309 (((-3 (-2 (|:| |answer| (-379 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|) (-379 |#2|)) 179))) +(((-529 |#1| |#2|) (-10 -7 (-15 -2457 ((-2 (|:| |answer| (-536 (-379 |#2|))) (|:| |a0| |#1|)) (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1679 ((-2 (|:| |answer| (-536 (-379 |#2|))) (|:| |a0| |#1|)) (-379 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|))) (-15 -2433 ((-2 (|:| |answer| (-536 (-379 |#2|))) (|:| |a0| |#1|)) (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-585 |#1|) "failed") (-519) |#1| |#1|))) (-15 -3496 ((-3 (-2 (|:| |answer| (-379 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-379 |#2|))) (-15 -2309 ((-3 (-2 (|:| |answer| (-379 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|) (-379 |#2|))) (-15 -2121 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|))))))) (|:| |a0| |#1|)) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-585 (-379 |#2|)))) (-15 -2819 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|))))))) (|:| |a0| |#1|)) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|) (-585 (-379 |#2|)))) (-15 -2702 ((-3 (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-379 |#2|))) (-15 -1520 ((-3 (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|)))))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-585 (-379 |#2|)))) (-15 -1262 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2368 ((-3 (-566 |#1| |#2|) "failed") (-566 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|))) (-15 -2403 ((-2 (|:| |ir| (-536 (-379 |#2|))) (|:| |specpart| (-379 |#2|)) (|:| |polypart| |#2|)) (-379 |#2|) (-1 |#2| |#2|))) (-15 -1417 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-335) (-1139 |#1|)) (T -529)) +((-1417 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1139 *5)) (-4 *5 (-335)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-529 *5 *3)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) (-5 *2 (-2 (|:| |ir| (-536 (-379 *6))) (|:| |specpart| (-379 *6)) (|:| |polypart| *6))) (-5 *1 (-529 *5 *6)) (-5 *3 (-379 *6)))) (-2368 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-566 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1931 *4) (|:| |sol?| (-108))) (-519) *4)) (-4 *4 (-335)) (-4 *5 (-1139 *4)) (-5 *1 (-529 *4 *5)))) (-1262 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1265 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-335)) (-5 *1 (-529 *4 *2)) (-4 *2 (-1139 *4)))) (-1520 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-585 (-379 *7))) (-4 *7 (-1139 *6)) (-5 *3 (-379 *7)) (-4 *6 (-335)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-529 *6 *7)))) (-2702 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) (-5 *2 (-2 (|:| -1265 (-379 *6)) (|:| |coeff| (-379 *6)))) (-5 *1 (-529 *5 *6)) (-5 *3 (-379 *6)))) (-2819 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1931 *7) (|:| |sol?| (-108))) (-519) *7)) (-5 *6 (-585 (-379 *8))) (-4 *7 (-335)) (-4 *8 (-1139 *7)) (-5 *3 (-379 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-529 *7 *8)))) (-2121 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1265 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-585 (-379 *8))) (-4 *7 (-335)) (-4 *8 (-1139 *7)) (-5 *3 (-379 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-529 *7 *8)))) (-2309 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1931 *6) (|:| |sol?| (-108))) (-519) *6)) (-4 *6 (-335)) (-4 *7 (-1139 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-379 *7)) (|:| |a0| *6)) (-2 (|:| -1265 (-379 *7)) (|:| |coeff| (-379 *7))) "failed")) (-5 *1 (-529 *6 *7)) (-5 *3 (-379 *7)))) (-3496 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1265 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-335)) (-4 *7 (-1139 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-379 *7)) (|:| |a0| *6)) (-2 (|:| -1265 (-379 *7)) (|:| |coeff| (-379 *7))) "failed")) (-5 *1 (-529 *6 *7)) (-5 *3 (-379 *7)))) (-2433 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-585 *6) "failed") (-519) *6 *6)) (-4 *6 (-335)) (-4 *7 (-1139 *6)) (-5 *2 (-2 (|:| |answer| (-536 (-379 *7))) (|:| |a0| *6))) (-5 *1 (-529 *6 *7)) (-5 *3 (-379 *7)))) (-1679 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1931 *6) (|:| |sol?| (-108))) (-519) *6)) (-4 *6 (-335)) (-4 *7 (-1139 *6)) (-5 *2 (-2 (|:| |answer| (-536 (-379 *7))) (|:| |a0| *6))) (-5 *1 (-529 *6 *7)) (-5 *3 (-379 *7)))) (-2457 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1265 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-335)) (-4 *7 (-1139 *6)) (-5 *2 (-2 (|:| |answer| (-536 (-379 *7))) (|:| |a0| *6))) (-5 *1 (-529 *6 *7)) (-5 *3 (-379 *7))))) +(-10 -7 (-15 -2457 ((-2 (|:| |answer| (-536 (-379 |#2|))) (|:| |a0| |#1|)) (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1679 ((-2 (|:| |answer| (-536 (-379 |#2|))) (|:| |a0| |#1|)) (-379 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|))) (-15 -2433 ((-2 (|:| |answer| (-536 (-379 |#2|))) (|:| |a0| |#1|)) (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-585 |#1|) "failed") (-519) |#1| |#1|))) (-15 -3496 ((-3 (-2 (|:| |answer| (-379 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-379 |#2|))) (-15 -2309 ((-3 (-2 (|:| |answer| (-379 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|) (-379 |#2|))) (-15 -2121 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|))))))) (|:| |a0| |#1|)) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-585 (-379 |#2|)))) (-15 -2819 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|))))))) (|:| |a0| |#1|)) "failed") (-379 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|) (-585 (-379 |#2|)))) (-15 -2702 ((-3 (-2 (|:| -1265 (-379 |#2|)) (|:| |coeff| (-379 |#2|))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-379 |#2|))) (-15 -1520 ((-3 (-2 (|:| |mainpart| (-379 |#2|)) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| (-379 |#2|)) (|:| |logand| (-379 |#2|)))))) "failed") (-379 |#2|) (-1 |#2| |#2|) (-585 (-379 |#2|)))) (-15 -1262 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2368 ((-3 (-566 |#1| |#2|) "failed") (-566 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1931 |#1|) (|:| |sol?| (-108))) (-519) |#1|))) (-15 -2403 ((-2 (|:| |ir| (-536 (-379 |#2|))) (|:| |specpart| (-379 |#2|)) (|:| |polypart| |#2|)) (-379 |#2|) (-1 |#2| |#2|))) (-15 -1417 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3543 (((-3 |#2| "failed") |#2| (-1082) (-1082)) 10))) +(((-530 |#1| |#2|) (-10 -7 (-15 -3543 ((-3 |#2| "failed") |#2| (-1082) (-1082)))) (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519))) (-13 (-1103) (-885) (-1046) (-29 |#1|))) (T -530)) +((-3543 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1082)) (-4 *4 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *1 (-530 *4 *2)) (-4 *2 (-13 (-1103) (-885) (-1046) (-29 *4)))))) +(-10 -7 (-15 -3543 ((-3 |#2| "failed") |#2| (-1082) (-1082)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1934 (($ $ (-519)) 65)) (-3409 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-1730 (($ (-1078 (-519)) (-519)) 71)) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) 57)) (-3503 (($ $) 33)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-3709 (((-705) $) 15)) (-1568 (((-108) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2205 (((-519)) 27)) (-1290 (((-519) $) 31)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3881 (($ $ (-519)) 21)) (-2261 (((-3 $ "failed") $ $) 58)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) 16)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 60)) (-3084 (((-1063 (-519)) $) 18)) (-1508 (($ $) 23)) (-2217 (((-790) $) 86) (($ (-519)) 51) (($ $) NIL)) (-3594 (((-705)) 14)) (-1617 (((-108) $ $) NIL)) (-3905 (((-519) $ (-519)) 35)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 34 T CONST)) (-3611 (($) 19 T CONST)) (-1543 (((-108) $ $) 38)) (-1623 (($ $) 50) (($ $ $) 36)) (-1614 (($ $ $) 49)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 53) (($ $ $) 54))) +(((-531 |#1| |#2|) (-796 |#1|) (-519) (-108)) (T -531)) +NIL +(-796 |#1|) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 18)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 (($ $ (-848)) NIL (|has| $ (-340))) (($ $) NIL)) (-3263 (((-1091 (-848) (-705)) (-519)) 47)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 $ "failed") $) 75)) (-1499 (($ $) 74)) (-2528 (($ (-1163 $)) 73)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) 30)) (-3314 (($) NIL)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) 49)) (-4156 (((-108) $) NIL)) (-3824 (($ $) NIL) (($ $ (-705)) NIL)) (-1320 (((-108) $) NIL)) (-3709 (((-768 (-848)) $) NIL) (((-848) $) NIL)) (-1568 (((-108) $) NIL)) (-3637 (($) 35 (|has| $ (-340)))) (-2877 (((-108) $) NIL (|has| $ (-340)))) (-3681 (($ $ (-848)) NIL (|has| $ (-340))) (($ $) NIL)) (-1675 (((-3 $ "failed") $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 $) $ (-848)) NIL (|has| $ (-340))) (((-1078 $) $) 83)) (-3334 (((-848) $) 55)) (-1955 (((-1078 $) $) NIL (|has| $ (-340)))) (-3270 (((-3 (-1078 $) "failed") $ $) NIL (|has| $ (-340))) (((-1078 $) $) NIL (|has| $ (-340)))) (-3904 (($ $ (-1078 $)) NIL (|has| $ (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL T CONST)) (-2770 (($ (-848)) 48)) (-2141 (((-108) $) 67)) (-4139 (((-1029) $) NIL)) (-1397 (($) 16 (|has| $ (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) 40)) (-1921 (((-390 $) $) NIL)) (-1445 (((-848)) 66) (((-768 (-848))) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-3 (-705) "failed") $ $) NIL) (((-705) $) NIL)) (-2914 (((-126)) NIL)) (-2181 (($ $ (-705)) NIL) (($ $) NIL)) (-4178 (((-848) $) 65) (((-768 (-848)) $) NIL)) (-1462 (((-1078 $)) 82)) (-3132 (($) 54)) (-3670 (($) 36 (|has| $ (-340)))) (-3399 (((-625 $) (-1163 $)) NIL) (((-1163 $) $) 71)) (-1446 (((-519) $) 26)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) 28) (($ $) NIL) (($ (-379 (-519))) NIL)) (-3773 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3594 (((-705)) 37)) (-2070 (((-1163 $) (-848)) 77) (((-1163 $)) 76)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 19 T CONST)) (-3611 (($) 15 T CONST)) (-3706 (($ $ (-705)) NIL (|has| $ (-340))) (($ $) NIL (|has| $ (-340)))) (-2242 (($ $ (-705)) NIL) (($ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) 24)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 61) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL))) +(((-532 |#1|) (-13 (-321) (-301 $) (-560 (-519))) (-848)) (T -532)) +NIL +(-13 (-321) (-301 $) (-560 (-519))) +((-1396 (((-1168) (-1065)) 10))) +(((-533) (-10 -7 (-15 -1396 ((-1168) (-1065))))) (T -533)) +((-1396 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-533))))) +(-10 -7 (-15 -1396 ((-1168) (-1065)))) +((-2482 (((-536 |#2|) (-536 |#2|)) 38)) (-1616 (((-585 |#2|) (-536 |#2|)) 40)) (-4058 ((|#2| (-536 |#2|)) 47))) +(((-534 |#1| |#2|) (-10 -7 (-15 -2482 ((-536 |#2|) (-536 |#2|))) (-15 -1616 ((-585 |#2|) (-536 |#2|))) (-15 -4058 (|#2| (-536 |#2|)))) (-13 (-423) (-959 (-519)) (-782) (-581 (-519))) (-13 (-29 |#1|) (-1103))) (T -534)) +((-4058 (*1 *2 *3) (-12 (-5 *3 (-536 *2)) (-4 *2 (-13 (-29 *4) (-1103))) (-5 *1 (-534 *4 *2)) (-4 *4 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-536 *5)) (-4 *5 (-13 (-29 *4) (-1103))) (-4 *4 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) (-5 *2 (-585 *5)) (-5 *1 (-534 *4 *5)))) (-2482 (*1 *2 *2) (-12 (-5 *2 (-536 *4)) (-4 *4 (-13 (-29 *3) (-1103))) (-4 *3 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) (-5 *1 (-534 *3 *4))))) +(-10 -7 (-15 -2482 ((-536 |#2|) (-536 |#2|))) (-15 -1616 ((-585 |#2|) (-536 |#2|))) (-15 -4058 (|#2| (-536 |#2|)))) +((-1405 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|)) 26))) +(((-535 |#1| |#2|) (-10 -7 (-15 -1405 ((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|))) (-15 -1405 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1405 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1405 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-335) (-335)) (T -535)) +((-1405 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-335)) (-4 *6 (-335)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-535 *5 *6)))) (-1405 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-335)) (-4 *2 (-335)) (-5 *1 (-535 *5 *2)))) (-1405 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1265 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-335)) (-4 *6 (-335)) (-5 *2 (-2 (|:| -1265 *6) (|:| |coeff| *6))) (-5 *1 (-535 *5 *6)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-335)) (-4 *6 (-335)) (-5 *2 (-536 *6)) (-5 *1 (-535 *5 *6))))) +(-10 -7 (-15 -1405 ((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|))) (-15 -1405 ((-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1265 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1405 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1405 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) 69)) (-1499 ((|#1| $) NIL)) (-1265 ((|#1| $) 24)) (-4122 (((-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-3661 (($ |#1| (-585 (-2 (|:| |scalar| (-379 (-519))) (|:| |coeff| (-1078 |#1|)) (|:| |logand| (-1078 |#1|)))) (-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-1239 (((-585 (-2 (|:| |scalar| (-379 (-519))) (|:| |coeff| (-1078 |#1|)) (|:| |logand| (-1078 |#1|)))) $) 25)) (-1266 (((-1065) $) NIL)) (-3647 (($ |#1| |#1|) 32) (($ |#1| (-1082)) 43 (|has| |#1| (-959 (-1082))))) (-4139 (((-1029) $) NIL)) (-2954 (((-108) $) 28)) (-2181 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1082)) 82 (|has| |#1| (-827 (-1082))))) (-2217 (((-790) $) 96) (($ |#1|) 23)) (-3602 (($) 16 T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) 15) (($ $ $) NIL)) (-1614 (($ $ $) 78)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 14) (($ (-379 (-519)) $) 35) (($ $ (-379 (-519))) NIL))) +(((-536 |#1|) (-13 (-652 (-379 (-519))) (-959 |#1|) (-10 -8 (-15 -3661 ($ |#1| (-585 (-2 (|:| |scalar| (-379 (-519))) (|:| |coeff| (-1078 |#1|)) (|:| |logand| (-1078 |#1|)))) (-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1265 (|#1| $)) (-15 -1239 ((-585 (-2 (|:| |scalar| (-379 (-519))) (|:| |coeff| (-1078 |#1|)) (|:| |logand| (-1078 |#1|)))) $)) (-15 -4122 ((-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2954 ((-108) $)) (-15 -3647 ($ |#1| |#1|)) (-15 -2181 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-827 (-1082))) (-15 -2181 (|#1| $ (-1082))) |%noBranch|) (IF (|has| |#1| (-959 (-1082))) (-15 -3647 ($ |#1| (-1082))) |%noBranch|))) (-335)) (T -536)) +((-3661 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |scalar| (-379 (-519))) (|:| |coeff| (-1078 *2)) (|:| |logand| (-1078 *2))))) (-5 *4 (-585 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-335)) (-5 *1 (-536 *2)))) (-1265 (*1 *2 *1) (-12 (-5 *1 (-536 *2)) (-4 *2 (-335)))) (-1239 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |scalar| (-379 (-519))) (|:| |coeff| (-1078 *3)) (|:| |logand| (-1078 *3))))) (-5 *1 (-536 *3)) (-4 *3 (-335)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-536 *3)) (-4 *3 (-335)))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-536 *3)) (-4 *3 (-335)))) (-3647 (*1 *1 *2 *2) (-12 (-5 *1 (-536 *2)) (-4 *2 (-335)))) (-2181 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-536 *2)) (-4 *2 (-335)))) (-2181 (*1 *2 *1 *3) (-12 (-4 *2 (-335)) (-4 *2 (-827 *3)) (-5 *1 (-536 *2)) (-5 *3 (-1082)))) (-3647 (*1 *1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *1 (-536 *2)) (-4 *2 (-959 *3)) (-4 *2 (-335))))) +(-13 (-652 (-379 (-519))) (-959 |#1|) (-10 -8 (-15 -3661 ($ |#1| (-585 (-2 (|:| |scalar| (-379 (-519))) (|:| |coeff| (-1078 |#1|)) (|:| |logand| (-1078 |#1|)))) (-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1265 (|#1| $)) (-15 -1239 ((-585 (-2 (|:| |scalar| (-379 (-519))) (|:| |coeff| (-1078 |#1|)) (|:| |logand| (-1078 |#1|)))) $)) (-15 -4122 ((-585 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2954 ((-108) $)) (-15 -3647 ($ |#1| |#1|)) (-15 -2181 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-827 (-1082))) (-15 -2181 (|#1| $ (-1082))) |%noBranch|) (IF (|has| |#1| (-959 (-1082))) (-15 -3647 ($ |#1| (-1082))) |%noBranch|))) +((-2687 (((-108) |#1|) 16)) (-1974 (((-3 |#1| "failed") |#1|) 14)) (-3562 (((-2 (|:| -3414 |#1|) (|:| -1690 (-705))) |#1|) 31) (((-3 |#1| "failed") |#1| (-705)) 18)) (-2986 (((-108) |#1| (-705)) 19)) (-4124 ((|#1| |#1|) 32)) (-2493 ((|#1| |#1| (-705)) 34))) +(((-537 |#1|) (-10 -7 (-15 -2986 ((-108) |#1| (-705))) (-15 -3562 ((-3 |#1| "failed") |#1| (-705))) (-15 -3562 ((-2 (|:| -3414 |#1|) (|:| -1690 (-705))) |#1|)) (-15 -2493 (|#1| |#1| (-705))) (-15 -2687 ((-108) |#1|)) (-15 -1974 ((-3 |#1| "failed") |#1|)) (-15 -4124 (|#1| |#1|))) (-504)) (T -537)) +((-4124 (*1 *2 *2) (-12 (-5 *1 (-537 *2)) (-4 *2 (-504)))) (-1974 (*1 *2 *2) (|partial| -12 (-5 *1 (-537 *2)) (-4 *2 (-504)))) (-2687 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-537 *3)) (-4 *3 (-504)))) (-2493 (*1 *2 *2 *3) (-12 (-5 *3 (-705)) (-5 *1 (-537 *2)) (-4 *2 (-504)))) (-3562 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3414 *3) (|:| -1690 (-705)))) (-5 *1 (-537 *3)) (-4 *3 (-504)))) (-3562 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-705)) (-5 *1 (-537 *2)) (-4 *2 (-504)))) (-2986 (*1 *2 *3 *4) (-12 (-5 *4 (-705)) (-5 *2 (-108)) (-5 *1 (-537 *3)) (-4 *3 (-504))))) +(-10 -7 (-15 -2986 ((-108) |#1| (-705))) (-15 -3562 ((-3 |#1| "failed") |#1| (-705))) (-15 -3562 ((-2 (|:| -3414 |#1|) (|:| -1690 (-705))) |#1|)) (-15 -2493 (|#1| |#1| (-705))) (-15 -2687 ((-108) |#1|)) (-15 -1974 ((-3 |#1| "failed") |#1|)) (-15 -4124 (|#1| |#1|))) +((-4095 (((-1078 |#1|) (-848)) 27))) +(((-538 |#1|) (-10 -7 (-15 -4095 ((-1078 |#1|) (-848)))) (-321)) (T -538)) +((-4095 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-538 *4)) (-4 *4 (-321))))) +(-10 -7 (-15 -4095 ((-1078 |#1|) (-848)))) +((-2482 (((-536 (-379 (-879 |#1|))) (-536 (-379 (-879 |#1|)))) 26)) (-4142 (((-3 (-288 |#1|) (-585 (-288 |#1|))) (-379 (-879 |#1|)) (-1082)) 32 (|has| |#1| (-135)))) (-1616 (((-585 (-288 |#1|)) (-536 (-379 (-879 |#1|)))) 18)) (-2437 (((-288 |#1|) (-379 (-879 |#1|)) (-1082)) 30 (|has| |#1| (-135)))) (-4058 (((-288 |#1|) (-536 (-379 (-879 |#1|)))) 20))) +(((-539 |#1|) (-10 -7 (-15 -2482 ((-536 (-379 (-879 |#1|))) (-536 (-379 (-879 |#1|))))) (-15 -1616 ((-585 (-288 |#1|)) (-536 (-379 (-879 |#1|))))) (-15 -4058 ((-288 |#1|) (-536 (-379 (-879 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -4142 ((-3 (-288 |#1|) (-585 (-288 |#1|))) (-379 (-879 |#1|)) (-1082))) (-15 -2437 ((-288 |#1|) (-379 (-879 |#1|)) (-1082)))) |%noBranch|)) (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) (T -539)) +((-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) (-4 *5 (-135)) (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) (-5 *2 (-288 *5)) (-5 *1 (-539 *5)))) (-4142 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) (-4 *5 (-135)) (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) (-5 *2 (-3 (-288 *5) (-585 (-288 *5)))) (-5 *1 (-539 *5)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-536 (-379 (-879 *4)))) (-4 *4 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) (-5 *2 (-288 *4)) (-5 *1 (-539 *4)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-536 (-379 (-879 *4)))) (-4 *4 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) (-5 *2 (-585 (-288 *4))) (-5 *1 (-539 *4)))) (-2482 (*1 *2 *2) (-12 (-5 *2 (-536 (-379 (-879 *3)))) (-4 *3 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) (-5 *1 (-539 *3))))) +(-10 -7 (-15 -2482 ((-536 (-379 (-879 |#1|))) (-536 (-379 (-879 |#1|))))) (-15 -1616 ((-585 (-288 |#1|)) (-536 (-379 (-879 |#1|))))) (-15 -4058 ((-288 |#1|) (-536 (-379 (-879 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -4142 ((-3 (-288 |#1|) (-585 (-288 |#1|))) (-379 (-879 |#1|)) (-1082))) (-15 -2437 ((-288 |#1|) (-379 (-879 |#1|)) (-1082)))) |%noBranch|)) +((-2132 (((-585 (-625 (-519))) (-585 (-519)) (-585 (-832 (-519)))) 46) (((-585 (-625 (-519))) (-585 (-519))) 47) (((-625 (-519)) (-585 (-519)) (-832 (-519))) 42)) (-1451 (((-705) (-585 (-519))) 40))) +(((-540) (-10 -7 (-15 -1451 ((-705) (-585 (-519)))) (-15 -2132 ((-625 (-519)) (-585 (-519)) (-832 (-519)))) (-15 -2132 ((-585 (-625 (-519))) (-585 (-519)))) (-15 -2132 ((-585 (-625 (-519))) (-585 (-519)) (-585 (-832 (-519))))))) (T -540)) +((-2132 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-519))) (-5 *4 (-585 (-832 (-519)))) (-5 *2 (-585 (-625 (-519)))) (-5 *1 (-540)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-585 (-625 (-519)))) (-5 *1 (-540)))) (-2132 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-519))) (-5 *4 (-832 (-519))) (-5 *2 (-625 (-519))) (-5 *1 (-540)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-705)) (-5 *1 (-540))))) +(-10 -7 (-15 -1451 ((-705) (-585 (-519)))) (-15 -2132 ((-625 (-519)) (-585 (-519)) (-832 (-519)))) (-15 -2132 ((-585 (-625 (-519))) (-585 (-519)))) (-15 -2132 ((-585 (-625 (-519))) (-585 (-519)) (-585 (-832 (-519)))))) +((-3459 (((-585 |#5|) |#5| (-108)) 73)) (-2122 (((-108) |#5| (-585 |#5|)) 30))) +(((-541 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3459 ((-585 |#5|) |#5| (-108))) (-15 -2122 ((-108) |#5| (-585 |#5|)))) (-13 (-280) (-135)) (-727) (-782) (-982 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -541)) +((-2122 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-1020 *5 *6 *7 *8)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-982 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-541 *5 *6 *7 *8 *3)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-982 *5 *6 *7)) (-5 *2 (-585 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-1020 *5 *6 *7 *8))))) +(-10 -7 (-15 -3459 ((-585 |#5|) |#5| (-108))) (-15 -2122 ((-108) |#5| (-585 |#5|)))) +((-1430 (((-108) $ $) NIL (|has| (-132) (-1011)))) (-1594 (($ $) 34)) (-4079 (($ $) NIL)) (-2344 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-3786 (((-108) $ $) 51)) (-3763 (((-108) $ $ (-519)) 46)) (-2482 (((-585 $) $ (-132)) 60) (((-585 $) $ (-129)) 61)) (-2629 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-782)))) (-2078 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4222))) (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| (-132) (-782))))) (-3276 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-782)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 (((-132) $ (-519) (-132)) 45 (|has| $ (-6 -4222))) (((-132) $ (-1130 (-519)) (-132)) NIL (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-2900 (($ $ (-132)) 64) (($ $ (-129)) 65)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2567 (($ $ (-1130 (-519)) $) 44)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-1438 (($ (-132) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4221))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4221)))) (-3865 (((-132) $ (-519) (-132)) NIL (|has| $ (-6 -4222)))) (-3659 (((-132) $ (-519)) NIL)) (-3808 (((-108) $ $) 71)) (-3297 (((-519) (-1 (-108) (-132)) $) NIL) (((-519) (-132) $) NIL (|has| (-132) (-1011))) (((-519) (-132) $ (-519)) 48 (|has| (-132) (-1011))) (((-519) $ $ (-519)) 47) (((-519) (-129) $ (-519)) 50)) (-3844 (((-585 (-132)) $) NIL (|has| $ (-6 -4221)))) (-1822 (($ (-705) (-132)) 9)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) 28 (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| (-132) (-782)))) (-2500 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-782)))) (-3725 (((-585 (-132)) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-3890 (((-519) $) 42 (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| (-132) (-782)))) (-1469 (((-108) $ $ (-132)) 72)) (-4135 (((-705) $ $ (-132)) 70)) (-3850 (($ (-1 (-132) (-132)) $) 33 (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1332 (($ $) 37)) (-1785 (($ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-2912 (($ $ (-132)) 62) (($ $ (-129)) 63)) (-1266 (((-1065) $) 38 (|has| (-132) (-1011)))) (-1672 (($ (-132) $ (-519)) NIL) (($ $ $ (-519)) 23)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-519) $) 69) (((-1029) $) NIL (|has| (-132) (-1011)))) (-2331 (((-132) $) NIL (|has| (-519) (-782)))) (-2395 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-3640 (($ $ (-132)) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-132)))) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-267 (-132))) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-585 (-132)) (-585 (-132))) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-2222 (((-585 (-132)) $) NIL)) (-3108 (((-108) $) 12)) (-1548 (($) 10)) (-2598 (((-132) $ (-519) (-132)) NIL) (((-132) $ (-519)) 52) (($ $ (-1130 (-519))) 21) (($ $ $) NIL)) (-3720 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-4155 (((-705) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221))) (((-705) (-132) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-2584 (($ $ $ (-519)) 66 (|has| $ (-6 -4222)))) (-2449 (($ $) 17)) (-1446 (((-495) $) NIL (|has| (-132) (-560 (-495))))) (-2228 (($ (-585 (-132))) NIL)) (-4150 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) 16) (($ (-585 $)) 67)) (-2217 (($ (-132)) NIL) (((-790) $) 27 (|has| (-132) (-559 (-790))))) (-1778 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| (-132) (-782)))) (-1569 (((-108) $ $) NIL (|has| (-132) (-782)))) (-1543 (((-108) $ $) 14 (|has| (-132) (-1011)))) (-1578 (((-108) $ $) NIL (|has| (-132) (-782)))) (-1561 (((-108) $ $) 15 (|has| (-132) (-782)))) (-3532 (((-705) $) 13 (|has| $ (-6 -4221))))) +(((-542 |#1|) (-13 (-1051) (-10 -8 (-15 -4139 ((-519) $)))) (-519)) (T -542)) +((-4139 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-542 *3)) (-14 *3 *2)))) +(-13 (-1051) (-10 -8 (-15 -4139 ((-519) $)))) +((-3565 (((-2 (|:| |num| |#4|) (|:| |den| (-519))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-519))) |#4| |#2| (-1006 |#4|)) 32))) +(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3565 ((-2 (|:| |num| |#4|) (|:| |den| (-519))) |#4| |#2| (-1006 |#4|))) (-15 -3565 ((-2 (|:| |num| |#4|) (|:| |den| (-519))) |#4| |#2|))) (-727) (-782) (-511) (-876 |#3| |#1| |#2|)) (T -543)) +((-3565 (*1 *2 *3 *4) (-12 (-4 *5 (-727)) (-4 *4 (-782)) (-4 *6 (-511)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-519)))) (-5 *1 (-543 *5 *4 *6 *3)) (-4 *3 (-876 *6 *5 *4)))) (-3565 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1006 *3)) (-4 *3 (-876 *7 *6 *4)) (-4 *6 (-727)) (-4 *4 (-782)) (-4 *7 (-511)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-519)))) (-5 *1 (-543 *6 *4 *7 *3))))) +(-10 -7 (-15 -3565 ((-2 (|:| |num| |#4|) (|:| |den| (-519))) |#4| |#2| (-1006 |#4|))) (-15 -3565 ((-2 (|:| |num| |#4|) (|:| |den| (-519))) |#4| |#2|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 63)) (-4083 (((-585 (-996)) $) NIL)) (-1622 (((-1082) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-4057 (($ $ (-519)) 54) (($ $ (-519) (-519)) 55)) (-3088 (((-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) $) 60)) (-1782 (($ $) 100)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4039 (((-790) (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) (-948 (-775 (-519))) (-1082) |#1| (-379 (-519))) 215)) (-2824 (($ (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|)))) 34)) (-2249 (($) NIL T CONST)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3943 (((-108) $) NIL)) (-3709 (((-519) $) 58) (((-519) $ (-519)) 59)) (-1568 (((-108) $) NIL)) (-1855 (($ $ (-848)) 76)) (-2221 (($ (-1 |#1| (-519)) $) 73)) (-2642 (((-108) $) 25)) (-4042 (($ |#1| (-519)) 22) (($ $ (-996) (-519)) NIL) (($ $ (-585 (-996)) (-585 (-519))) NIL)) (-1405 (($ (-1 |#1| |#1|) $) 67)) (-4071 (($ (-948 (-775 (-519))) (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|)))) 11)) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4142 (($ $) 112 (|has| |#1| (-37 (-379 (-519)))))) (-1650 (((-3 $ "failed") $ $ (-108)) 99)) (-3030 (($ $ $) 108)) (-4139 (((-1029) $) NIL)) (-2547 (((-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) $) 13)) (-2663 (((-948 (-775 (-519))) $) 12)) (-3881 (($ $ (-519)) 45)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2324 (((-1063 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-519)))))) (-2598 ((|#1| $ (-519)) 57) (($ $ $) NIL (|has| (-519) (-1023)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-519) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (-4178 (((-519) $) NIL)) (-1508 (($ $) 46)) (-2217 (((-790) $) NIL) (($ (-519)) 28) (($ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $) NIL (|has| |#1| (-511))) (($ |#1|) 27 (|has| |#1| (-157)))) (-1220 ((|#1| $ (-519)) 56)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) 37)) (-1896 ((|#1| $) NIL)) (-1326 (($ $) 180 (|has| |#1| (-37 (-379 (-519)))))) (-4162 (($ $) 156 (|has| |#1| (-37 (-379 (-519)))))) (-3097 (($ $) 177 (|has| |#1| (-37 (-379 (-519)))))) (-2753 (($ $) 153 (|has| |#1| (-37 (-379 (-519)))))) (-3188 (($ $) 182 (|has| |#1| (-37 (-379 (-519)))))) (-3182 (($ $) 159 (|has| |#1| (-37 (-379 (-519)))))) (-2803 (($ $ (-379 (-519))) 146 (|has| |#1| (-37 (-379 (-519)))))) (-3382 (($ $ |#1|) 121 (|has| |#1| (-37 (-379 (-519)))))) (-3585 (($ $) 150 (|has| |#1| (-37 (-379 (-519)))))) (-3446 (($ $) 148 (|has| |#1| (-37 (-379 (-519)))))) (-1827 (($ $) 183 (|has| |#1| (-37 (-379 (-519)))))) (-1681 (($ $) 160 (|has| |#1| (-37 (-379 (-519)))))) (-2398 (($ $) 181 (|has| |#1| (-37 (-379 (-519)))))) (-1693 (($ $) 158 (|has| |#1| (-37 (-379 (-519)))))) (-2485 (($ $) 178 (|has| |#1| (-37 (-379 (-519)))))) (-1733 (($ $) 154 (|has| |#1| (-37 (-379 (-519)))))) (-3316 (($ $) 188 (|has| |#1| (-37 (-379 (-519)))))) (-1282 (($ $) 168 (|has| |#1| (-37 (-379 (-519)))))) (-2773 (($ $) 185 (|has| |#1| (-37 (-379 (-519)))))) (-1289 (($ $) 163 (|has| |#1| (-37 (-379 (-519)))))) (-2282 (($ $) 192 (|has| |#1| (-37 (-379 (-519)))))) (-1776 (($ $) 172 (|has| |#1| (-37 (-379 (-519)))))) (-1932 (($ $) 194 (|has| |#1| (-37 (-379 (-519)))))) (-2220 (($ $) 174 (|has| |#1| (-37 (-379 (-519)))))) (-3042 (($ $) 190 (|has| |#1| (-37 (-379 (-519)))))) (-2736 (($ $) 170 (|has| |#1| (-37 (-379 (-519)))))) (-3440 (($ $) 187 (|has| |#1| (-37 (-379 (-519)))))) (-2017 (($ $) 166 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3905 ((|#1| $ (-519)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-519)))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 29 T CONST)) (-3611 (($) 38 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-519) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (-1543 (((-108) $ $) 65)) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) 84) (($ $ $) 64)) (-1614 (($ $ $) 81)) (** (($ $ (-848)) NIL) (($ $ (-705)) 103)) (* (($ (-848) $) 89) (($ (-705) $) 87) (($ (-519) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-544 |#1|) (-13 (-1141 |#1| (-519)) (-10 -8 (-15 -4071 ($ (-948 (-775 (-519))) (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))))) (-15 -2663 ((-948 (-775 (-519))) $)) (-15 -2547 ((-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) $)) (-15 -2824 ($ (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))))) (-15 -2642 ((-108) $)) (-15 -2221 ($ (-1 |#1| (-519)) $)) (-15 -1650 ((-3 $ "failed") $ $ (-108))) (-15 -1782 ($ $)) (-15 -3030 ($ $ $)) (-15 -4039 ((-790) (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) (-948 (-775 (-519))) (-1082) |#1| (-379 (-519)))) (IF (|has| |#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ($ $)) (-15 -3382 ($ $ |#1|)) (-15 -2803 ($ $ (-379 (-519)))) (-15 -3446 ($ $)) (-15 -3585 ($ $)) (-15 -2753 ($ $)) (-15 -1733 ($ $)) (-15 -4162 ($ $)) (-15 -1693 ($ $)) (-15 -3182 ($ $)) (-15 -1681 ($ $)) (-15 -1289 ($ $)) (-15 -2017 ($ $)) (-15 -1282 ($ $)) (-15 -2736 ($ $)) (-15 -1776 ($ $)) (-15 -2220 ($ $)) (-15 -3097 ($ $)) (-15 -2485 ($ $)) (-15 -1326 ($ $)) (-15 -2398 ($ $)) (-15 -3188 ($ $)) (-15 -1827 ($ $)) (-15 -2773 ($ $)) (-15 -3440 ($ $)) (-15 -3316 ($ $)) (-15 -3042 ($ $)) (-15 -2282 ($ $)) (-15 -1932 ($ $))) |%noBranch|))) (-968)) (T -544)) +((-2642 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-544 *3)) (-4 *3 (-968)))) (-4071 (*1 *1 *2 *3) (-12 (-5 *2 (-948 (-775 (-519)))) (-5 *3 (-1063 (-2 (|:| |k| (-519)) (|:| |c| *4)))) (-4 *4 (-968)) (-5 *1 (-544 *4)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-948 (-775 (-519)))) (-5 *1 (-544 *3)) (-4 *3 (-968)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-1063 (-2 (|:| |k| (-519)) (|:| |c| *3)))) (-5 *1 (-544 *3)) (-4 *3 (-968)))) (-2824 (*1 *1 *2) (-12 (-5 *2 (-1063 (-2 (|:| |k| (-519)) (|:| |c| *3)))) (-4 *3 (-968)) (-5 *1 (-544 *3)))) (-2221 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-519))) (-4 *3 (-968)) (-5 *1 (-544 *3)))) (-1650 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-544 *3)) (-4 *3 (-968)))) (-1782 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-968)))) (-3030 (*1 *1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-968)))) (-4039 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1063 (-2 (|:| |k| (-519)) (|:| |c| *6)))) (-5 *4 (-948 (-775 (-519)))) (-5 *5 (-1082)) (-5 *7 (-379 (-519))) (-4 *6 (-968)) (-5 *2 (-790)) (-5 *1 (-544 *6)))) (-4142 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-3382 (*1 *1 *1 *2) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-2803 (*1 *1 *1 *2) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-544 *3)) (-4 *3 (-37 *2)) (-4 *3 (-968)))) (-3446 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-3585 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-2753 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-1733 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-1693 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-3182 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-1681 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-1289 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-2017 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-1282 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-2736 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-1776 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-2220 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-3097 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-2485 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-1326 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-2398 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-3188 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-1827 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-2773 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-3440 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-3316 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-3042 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) (-1932 (*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(-13 (-1141 |#1| (-519)) (-10 -8 (-15 -4071 ($ (-948 (-775 (-519))) (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))))) (-15 -2663 ((-948 (-775 (-519))) $)) (-15 -2547 ((-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) $)) (-15 -2824 ($ (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))))) (-15 -2642 ((-108) $)) (-15 -2221 ($ (-1 |#1| (-519)) $)) (-15 -1650 ((-3 $ "failed") $ $ (-108))) (-15 -1782 ($ $)) (-15 -3030 ($ $ $)) (-15 -4039 ((-790) (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) (-948 (-775 (-519))) (-1082) |#1| (-379 (-519)))) (IF (|has| |#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ($ $)) (-15 -3382 ($ $ |#1|)) (-15 -2803 ($ $ (-379 (-519)))) (-15 -3446 ($ $)) (-15 -3585 ($ $)) (-15 -2753 ($ $)) (-15 -1733 ($ $)) (-15 -4162 ($ $)) (-15 -1693 ($ $)) (-15 -3182 ($ $)) (-15 -1681 ($ $)) (-15 -1289 ($ $)) (-15 -2017 ($ $)) (-15 -1282 ($ $)) (-15 -2736 ($ $)) (-15 -1776 ($ $)) (-15 -2220 ($ $)) (-15 -3097 ($ $)) (-15 -2485 ($ $)) (-15 -1326 ($ $)) (-15 -2398 ($ $)) (-15 -3188 ($ $)) (-15 -1827 ($ $)) (-15 -2773 ($ $)) (-15 -3440 ($ $)) (-15 -3316 ($ $)) (-15 -3042 ($ $)) (-15 -2282 ($ $)) (-15 -1932 ($ $))) |%noBranch|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-2824 (($ (-1063 |#1|)) 9)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) 42)) (-3943 (((-108) $) 52)) (-3709 (((-705) $) 55) (((-705) $ (-705)) 54)) (-1568 (((-108) $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2261 (((-3 $ "failed") $ $) 44 (|has| |#1| (-511)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL (|has| |#1| (-511)))) (-2988 (((-1063 |#1|) $) 23)) (-3594 (((-705)) 51)) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 10 T CONST)) (-3611 (($) 14 T CONST)) (-1543 (((-108) $ $) 22)) (-1623 (($ $) 30) (($ $ $) 16)) (-1614 (($ $ $) 25)) (** (($ $ (-848)) NIL) (($ $ (-705)) 49)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-519)) 36))) +(((-545 |#1|) (-13 (-968) (-10 -8 (-15 -2988 ((-1063 |#1|) $)) (-15 -2824 ($ (-1063 |#1|))) (-15 -3943 ((-108) $)) (-15 -3709 ((-705) $)) (-15 -3709 ((-705) $ (-705))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-519))) (IF (|has| |#1| (-511)) (-6 (-511)) |%noBranch|))) (-968)) (T -545)) +((-2988 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-545 *3)) (-4 *3 (-968)))) (-2824 (*1 *1 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-545 *3)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-545 *3)) (-4 *3 (-968)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-545 *3)) (-4 *3 (-968)))) (-3709 (*1 *2 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-545 *3)) (-4 *3 (-968)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-968)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-545 *2)) (-4 *2 (-968)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-545 *3)) (-4 *3 (-968))))) +(-13 (-968) (-10 -8 (-15 -2988 ((-1063 |#1|) $)) (-15 -2824 ($ (-1063 |#1|))) (-15 -3943 ((-108) $)) (-15 -3709 ((-705) $)) (-15 -3709 ((-705) $ (-705))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-519))) (IF (|has| |#1| (-511)) (-6 (-511)) |%noBranch|))) +((-1405 (((-549 |#2|) (-1 |#2| |#1|) (-549 |#1|)) 15))) +(((-546 |#1| |#2|) (-10 -7 (-15 -1405 ((-549 |#2|) (-1 |#2| |#1|) (-549 |#1|)))) (-1117) (-1117)) (T -546)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-549 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-549 *6)) (-5 *1 (-546 *5 *6))))) +(-10 -7 (-15 -1405 ((-549 |#2|) (-1 |#2| |#1|) (-549 |#1|)))) +((-1405 (((-1063 |#3|) (-1 |#3| |#1| |#2|) (-549 |#1|) (-1063 |#2|)) 20) (((-1063 |#3|) (-1 |#3| |#1| |#2|) (-1063 |#1|) (-549 |#2|)) 19) (((-549 |#3|) (-1 |#3| |#1| |#2|) (-549 |#1|) (-549 |#2|)) 18))) +(((-547 |#1| |#2| |#3|) (-10 -7 (-15 -1405 ((-549 |#3|) (-1 |#3| |#1| |#2|) (-549 |#1|) (-549 |#2|))) (-15 -1405 ((-1063 |#3|) (-1 |#3| |#1| |#2|) (-1063 |#1|) (-549 |#2|))) (-15 -1405 ((-1063 |#3|) (-1 |#3| |#1| |#2|) (-549 |#1|) (-1063 |#2|)))) (-1117) (-1117) (-1117)) (T -547)) +((-1405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-549 *6)) (-5 *5 (-1063 *7)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-4 *8 (-1117)) (-5 *2 (-1063 *8)) (-5 *1 (-547 *6 *7 *8)))) (-1405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1063 *6)) (-5 *5 (-549 *7)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-4 *8 (-1117)) (-5 *2 (-1063 *8)) (-5 *1 (-547 *6 *7 *8)))) (-1405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-549 *6)) (-5 *5 (-549 *7)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-4 *8 (-1117)) (-5 *2 (-549 *8)) (-5 *1 (-547 *6 *7 *8))))) +(-10 -7 (-15 -1405 ((-549 |#3|) (-1 |#3| |#1| |#2|) (-549 |#1|) (-549 |#2|))) (-15 -1405 ((-1063 |#3|) (-1 |#3| |#1| |#2|) (-1063 |#1|) (-549 |#2|))) (-15 -1405 ((-1063 |#3|) (-1 |#3| |#1| |#2|) (-549 |#1|) (-1063 |#2|)))) +((-1529 ((|#3| |#3| (-585 (-558 |#3|)) (-585 (-1082))) 55)) (-2909 (((-154 |#2|) |#3|) 116)) (-3673 ((|#3| (-154 |#2|)) 43)) (-3908 ((|#2| |#3|) 19)) (-3378 ((|#3| |#2|) 32))) +(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -3673 (|#3| (-154 |#2|))) (-15 -3908 (|#2| |#3|)) (-15 -3378 (|#3| |#2|)) (-15 -2909 ((-154 |#2|) |#3|)) (-15 -1529 (|#3| |#3| (-585 (-558 |#3|)) (-585 (-1082))))) (-13 (-511) (-782)) (-13 (-402 |#1|) (-925) (-1103)) (-13 (-402 (-154 |#1|)) (-925) (-1103))) (T -548)) +((-1529 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-558 *2))) (-5 *4 (-585 (-1082))) (-4 *2 (-13 (-402 (-154 *5)) (-925) (-1103))) (-4 *5 (-13 (-511) (-782))) (-5 *1 (-548 *5 *6 *2)) (-4 *6 (-13 (-402 *5) (-925) (-1103))))) (-2909 (*1 *2 *3) (-12 (-4 *4 (-13 (-511) (-782))) (-5 *2 (-154 *5)) (-5 *1 (-548 *4 *5 *3)) (-4 *5 (-13 (-402 *4) (-925) (-1103))) (-4 *3 (-13 (-402 (-154 *4)) (-925) (-1103))))) (-3378 (*1 *2 *3) (-12 (-4 *4 (-13 (-511) (-782))) (-4 *2 (-13 (-402 (-154 *4)) (-925) (-1103))) (-5 *1 (-548 *4 *3 *2)) (-4 *3 (-13 (-402 *4) (-925) (-1103))))) (-3908 (*1 *2 *3) (-12 (-4 *4 (-13 (-511) (-782))) (-4 *2 (-13 (-402 *4) (-925) (-1103))) (-5 *1 (-548 *4 *2 *3)) (-4 *3 (-13 (-402 (-154 *4)) (-925) (-1103))))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-402 *4) (-925) (-1103))) (-4 *4 (-13 (-511) (-782))) (-4 *2 (-13 (-402 (-154 *4)) (-925) (-1103))) (-5 *1 (-548 *4 *5 *2))))) +(-10 -7 (-15 -3673 (|#3| (-154 |#2|))) (-15 -3908 (|#2| |#3|)) (-15 -3378 (|#3| |#2|)) (-15 -2909 ((-154 |#2|) |#3|)) (-15 -1529 (|#3| |#3| (-585 (-558 |#3|)) (-585 (-1082))))) +((-1640 (($ (-1 (-108) |#1|) $) 16)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-1590 (($ (-1 |#1| |#1|) |#1|) 9)) (-1626 (($ (-1 (-108) |#1|) $) 12)) (-1634 (($ (-1 (-108) |#1|) $) 14)) (-2228 (((-1063 |#1|) $) 17)) (-2217 (((-790) $) NIL))) +(((-549 |#1|) (-13 (-559 (-790)) (-10 -8 (-15 -1405 ($ (-1 |#1| |#1|) $)) (-15 -1626 ($ (-1 (-108) |#1|) $)) (-15 -1634 ($ (-1 (-108) |#1|) $)) (-15 -1640 ($ (-1 (-108) |#1|) $)) (-15 -1590 ($ (-1 |#1| |#1|) |#1|)) (-15 -2228 ((-1063 |#1|) $)))) (-1117)) (T -549)) +((-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-549 *3)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1117)) (-5 *1 (-549 *3)))) (-1634 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1117)) (-5 *1 (-549 *3)))) (-1640 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1117)) (-5 *1 (-549 *3)))) (-1590 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-549 *3)))) (-2228 (*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-549 *3)) (-4 *3 (-1117))))) +(-13 (-559 (-790)) (-10 -8 (-15 -1405 ($ (-1 |#1| |#1|) $)) (-15 -1626 ($ (-1 (-108) |#1|) $)) (-15 -1634 ($ (-1 (-108) |#1|) $)) (-15 -1640 ($ (-1 (-108) |#1|) $)) (-15 -1590 ($ (-1 |#1| |#1|) |#1|)) (-15 -2228 ((-1063 |#1|) $)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3535 (($ (-705)) NIL (|has| |#1| (-23)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4222))) (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| |#1| (-782))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) NIL (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) NIL)) (-3297 (((-519) (-1 (-108) |#1|) $) NIL) (((-519) |#1| $) NIL (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) NIL (|has| |#1| (-1011)))) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3959 (((-625 |#1|) $ $) NIL (|has| |#1| (-968)))) (-1822 (($ (-705) |#1|) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1464 ((|#1| $) NIL (-12 (|has| |#1| (-925)) (|has| |#1| (-968))))) (-2768 (((-108) $ (-705)) NIL)) (-2568 ((|#1| $) NIL (-12 (|has| |#1| (-925)) (|has| |#1| (-968))))) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1672 (($ |#1| $ (-519)) NIL) (($ $ $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2331 ((|#1| $) NIL (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3640 (($ $ |#1|) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ (-519) |#1|) NIL) ((|#1| $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-1466 ((|#1| $ $) NIL (|has| |#1| (-968)))) (-3720 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-2376 (($ $ $) NIL (|has| |#1| (-968)))) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) NIL)) (-4150 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-585 $)) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1623 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1614 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-519) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-661))) (($ $ |#1|) NIL (|has| |#1| (-661)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-550 |#1| |#2|) (-1161 |#1|) (-1117) (-519)) (T -550)) +NIL +(-1161 |#1|) +((-1583 (((-1168) $ |#2| |#2|) 36)) (-2737 ((|#2| $) 23)) (-3890 ((|#2| $) 21)) (-3850 (($ (-1 |#3| |#3|) $) 32)) (-1405 (($ (-1 |#3| |#3|) $) 30)) (-2331 ((|#3| $) 26)) (-3640 (($ $ |#3|) 33)) (-3744 (((-108) |#3| $) 17)) (-2222 (((-585 |#3|) $) 15)) (-2598 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-551 |#1| |#2| |#3|) (-10 -8 (-15 -1583 ((-1168) |#1| |#2| |#2|)) (-15 -3640 (|#1| |#1| |#3|)) (-15 -2331 (|#3| |#1|)) (-15 -2737 (|#2| |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -3744 ((-108) |#3| |#1|)) (-15 -2222 ((-585 |#3|) |#1|)) (-15 -2598 (|#3| |#1| |#2|)) (-15 -2598 (|#3| |#1| |#2| |#3|)) (-15 -3850 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1405 (|#1| (-1 |#3| |#3|) |#1|))) (-552 |#2| |#3|) (-1011) (-1117)) (T -551)) +NIL +(-10 -8 (-15 -1583 ((-1168) |#1| |#2| |#2|)) (-15 -3640 (|#1| |#1| |#3|)) (-15 -2331 (|#3| |#1|)) (-15 -2737 (|#2| |#1|)) (-15 -3890 (|#2| |#1|)) (-15 -3744 ((-108) |#3| |#1|)) (-15 -2222 ((-585 |#3|) |#1|)) (-15 -2598 (|#3| |#1| |#2|)) (-15 -2598 (|#3| |#1| |#2| |#3|)) (-15 -3850 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1405 (|#1| (-1 |#3| |#3|) |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#2| (-1011)))) (-1583 (((-1168) $ |#1| |#1|) 40 (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) 8)) (-2421 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4222)))) (-2249 (($) 7 T CONST)) (-3865 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4222)))) (-3659 ((|#2| $ |#1|) 51)) (-3844 (((-585 |#2|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-2737 ((|#1| $) 43 (|has| |#1| (-782)))) (-3725 (((-585 |#2|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1011)) (|has| $ (-6 -4221))))) (-3890 ((|#1| $) 44 (|has| |#1| (-782)))) (-3850 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#2| |#2|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#2| (-1011)))) (-3909 (((-585 |#1|) $) 46)) (-1506 (((-108) |#1| $) 47)) (-4139 (((-1029) $) 21 (|has| |#2| (-1011)))) (-2331 ((|#2| $) 42 (|has| |#1| (-782)))) (-3640 (($ $ |#2|) 41 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#2|))) 26 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) 25 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) 23 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) 48)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4155 (((-705) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4221))) (((-705) |#2| $) 28 (-12 (|has| |#2| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-2217 (((-790) $) 18 (|has| |#2| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#2| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-552 |#1| |#2|) (-1194) (-1011) (-1117)) (T -552)) +((-2222 (*1 *2 *1) (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1117)) (-5 *2 (-585 *4)))) (-1506 (*1 *2 *3 *1) (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1117)) (-5 *2 (-108)))) (-3909 (*1 *2 *1) (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1117)) (-5 *2 (-585 *3)))) (-3744 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4221)) (-4 *1 (-552 *4 *3)) (-4 *4 (-1011)) (-4 *3 (-1117)) (-4 *3 (-1011)) (-5 *2 (-108)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-552 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1011)) (-4 *2 (-782)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-552 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1011)) (-4 *2 (-782)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-552 *3 *2)) (-4 *3 (-1011)) (-4 *3 (-782)) (-4 *2 (-1117)))) (-3640 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-552 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1117)))) (-1583 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-552 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1117)) (-5 *2 (-1168))))) +(-13 (-458 |t#2|) (-262 |t#1| |t#2|) (-10 -8 (-15 -2222 ((-585 |t#2|) $)) (-15 -1506 ((-108) |t#1| $)) (-15 -3909 ((-585 |t#1|) $)) (IF (|has| |t#2| (-1011)) (IF (|has| $ (-6 -4221)) (-15 -3744 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-782)) (PROGN (-15 -3890 (|t#1| $)) (-15 -2737 (|t#1| $)) (-15 -2331 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4222)) (PROGN (-15 -3640 ($ $ |t#2|)) (-15 -1583 ((-1168) $ |t#1| |t#1|))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#2| (-1011)) ((-559 (-790)) -3730 (|has| |#2| (-1011)) (|has| |#2| (-559 (-790)))) ((-260 |#1| |#2|) . T) ((-262 |#1| |#2|) . T) ((-282 |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((-458 |#2|) . T) ((-480 |#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((-1011) |has| |#2| (-1011)) ((-1117) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3307 (((-3 $ "failed")) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-2329 (((-1163 (-625 |#1|))) NIL (|has| |#2| (-389 |#1|))) (((-1163 (-625 |#1|)) (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-2729 (((-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-2249 (($) NIL T CONST)) (-3689 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-1483 (((-3 $ "failed")) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3999 (((-625 |#1|)) NIL (|has| |#2| (-389 |#1|))) (((-625 |#1|) (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-4172 ((|#1| $) NIL (|has| |#2| (-339 |#1|)))) (-3447 (((-625 |#1|) $) NIL (|has| |#2| (-389 |#1|))) (((-625 |#1|) $ (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-2682 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-4087 (((-1078 (-879 |#1|))) NIL (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-335))))) (-1588 (($ $ (-848)) NIL)) (-4147 ((|#1| $) NIL (|has| |#2| (-339 |#1|)))) (-1370 (((-1078 |#1|) $) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-2048 ((|#1|) NIL (|has| |#2| (-389 |#1|))) ((|#1| (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-3055 (((-1078 |#1|) $) NIL (|has| |#2| (-339 |#1|)))) (-2660 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-2528 (($ (-1163 |#1|)) NIL (|has| |#2| (-389 |#1|))) (($ (-1163 |#1|) (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-4193 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3229 (((-848)) NIL (|has| |#2| (-339 |#1|)))) (-1373 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-1432 (($ $ (-848)) NIL)) (-4029 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-2061 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3288 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3780 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-2253 (((-3 $ "failed")) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-1684 (((-625 |#1|)) NIL (|has| |#2| (-389 |#1|))) (((-625 |#1|) (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-3241 ((|#1| $) NIL (|has| |#2| (-339 |#1|)))) (-3130 (((-625 |#1|) $) NIL (|has| |#2| (-389 |#1|))) (((-625 |#1|) $ (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-2076 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3540 (((-1078 (-879 |#1|))) NIL (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-335))))) (-1341 (($ $ (-848)) NIL)) (-3339 ((|#1| $) NIL (|has| |#2| (-339 |#1|)))) (-4024 (((-1078 |#1|) $) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3069 ((|#1|) NIL (|has| |#2| (-389 |#1|))) ((|#1| (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-3978 (((-1078 |#1|) $) NIL (|has| |#2| (-339 |#1|)))) (-1554 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-1266 (((-1065) $) NIL)) (-2618 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3284 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3163 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-4139 (((-1029) $) NIL)) (-1885 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-2598 ((|#1| $ (-519)) NIL (|has| |#2| (-389 |#1|)))) (-3399 (((-625 |#1|) (-1163 $)) NIL (|has| |#2| (-389 |#1|))) (((-1163 |#1|) $) NIL (|has| |#2| (-389 |#1|))) (((-625 |#1|) (-1163 $) (-1163 $)) NIL (|has| |#2| (-339 |#1|))) (((-1163 |#1|) $ (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-1446 (($ (-1163 |#1|)) NIL (|has| |#2| (-389 |#1|))) (((-1163 |#1|) $) NIL (|has| |#2| (-389 |#1|)))) (-3842 (((-585 (-879 |#1|))) NIL (|has| |#2| (-389 |#1|))) (((-585 (-879 |#1|)) (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-3190 (($ $ $) NIL)) (-2553 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-2217 (((-790) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2070 (((-1163 $)) NIL (|has| |#2| (-389 |#1|)))) (-2219 (((-585 (-1163 |#1|))) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3645 (($ $ $ $) NIL)) (-1801 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-1627 (($ (-625 |#1|) $) NIL (|has| |#2| (-389 |#1|)))) (-2025 (($ $ $) NIL)) (-3547 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-1345 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3328 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3602 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) 24)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-553 |#1| |#2|) (-13 (-679 |#1|) (-559 |#2|) (-10 -8 (-15 -2217 ($ |#2|)) (IF (|has| |#2| (-389 |#1|)) (-6 (-389 |#1|)) |%noBranch|) (IF (|has| |#2| (-339 |#1|)) (-6 (-339 |#1|)) |%noBranch|))) (-157) (-679 |#1|)) (T -553)) +((-2217 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-553 *3 *2)) (-4 *2 (-679 *3))))) +(-13 (-679 |#1|) (-559 |#2|) (-10 -8 (-15 -2217 ($ |#2|)) (IF (|has| |#2| (-389 |#1|)) (-6 (-389 |#1|)) |%noBranch|) (IF (|has| |#2| (-339 |#1|)) (-6 (-339 |#1|)) |%noBranch|))) +((-1430 (((-108) $ $) NIL)) (-3237 (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) 32)) (-1812 (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL) (($) NIL)) (-1583 (((-1168) $ (-1065) (-1065)) NIL (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#1| $ (-1065) |#1|) 42)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221)))) (-2802 (((-3 |#1| "failed") (-1065) $) 45)) (-2249 (($) NIL T CONST)) (-3704 (($ $ (-1065)) 24)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011))))) (-2502 (((-3 |#1| "failed") (-1065) $) 46) (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221))) (($ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL (|has| $ (-6 -4221)))) (-1438 (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221))) (($ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011))))) (-3874 (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011))))) (-1234 (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) 31)) (-3865 ((|#1| $ (-1065) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-1065)) NIL)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221))) (((-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221)))) (-3401 (($ $) 47)) (-1556 (($ (-360)) 22) (($ (-360) (-1065)) 21)) (-2938 (((-360) $) 33)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-1065) $) NIL (|has| (-1065) (-782)))) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221))) (((-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (((-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011))))) (-3890 (((-1065) $) NIL (|has| (-1065) (-782)))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222))) (($ (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-3019 (((-585 (-1065)) $) 38)) (-4194 (((-108) (-1065) $) NIL)) (-2901 (((-1065) $) 34)) (-4152 (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL)) (-1846 (($ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL)) (-3909 (((-585 (-1065)) $) NIL)) (-1506 (((-108) (-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 ((|#1| $) NIL (|has| (-1065) (-782)))) (-2395 (((-3 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) "failed") (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL)) (-3640 (($ $ |#1|) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (($ $ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (($ $ (-585 (-267 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) 36)) (-2598 ((|#1| $ (-1065) |#1|) NIL) ((|#1| $ (-1065)) 41)) (-2436 (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL) (($) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (((-705) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (((-705) (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL)) (-2217 (((-790) $) 20)) (-3657 (($ $) 25)) (-3879 (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 19)) (-3532 (((-705) $) 40 (|has| $ (-6 -4221))))) +(((-554 |#1|) (-13 (-336 (-360) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) (-1094 (-1065) |#1|) (-10 -8 (-6 -4221) (-15 -3401 ($ $)))) (-1011)) (T -554)) +((-3401 (*1 *1 *1) (-12 (-5 *1 (-554 *2)) (-4 *2 (-1011))))) +(-13 (-336 (-360) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) (-1094 (-1065) |#1|) (-10 -8 (-6 -4221) (-15 -3401 ($ $)))) +((-1933 (((-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) $) 15)) (-3019 (((-585 |#2|) $) 19)) (-4194 (((-108) |#2| $) 12))) +(((-555 |#1| |#2| |#3|) (-10 -8 (-15 -3019 ((-585 |#2|) |#1|)) (-15 -4194 ((-108) |#2| |#1|)) (-15 -1933 ((-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|))) (-556 |#2| |#3|) (-1011) (-1011)) (T -555)) +NIL +(-10 -8 (-15 -3019 ((-585 |#2|) |#1|)) (-15 -4194 ((-108) |#2| |#1|)) (-15 -1933 ((-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|))) +((-1430 (((-108) $ $) 19 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-1473 (((-108) $ (-705)) 8)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 45 (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 55 (|has| $ (-6 -4221)))) (-2802 (((-3 |#2| "failed") |#1| $) 61)) (-2249 (($) 7 T CONST)) (-2366 (($ $) 58 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221))))) (-2502 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 47 (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 46 (|has| $ (-6 -4221))) (((-3 |#2| "failed") |#1| $) 62)) (-1438 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 54 (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 56 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 53 (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 52 (|has| $ (-6 -4221)))) (-3844 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-3019 (((-585 |#1|) $) 63)) (-4194 (((-108) |#1| $) 64)) (-4152 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 39)) (-1846 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 40)) (-4139 (((-1029) $) 21 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-2395 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 51)) (-3212 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 41)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) 26 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 25 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 24 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 23 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2436 (($) 49) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 48)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 31 (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 59 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 50)) (-2217 (((-790) $) 18 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790))))) (-3879 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 42)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-556 |#1| |#2|) (-1194) (-1011) (-1011)) (T -556)) +((-4194 (*1 *2 *3 *1) (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-5 *2 (-108)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-5 *2 (-585 *3)))) (-2502 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-556 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011)))) (-2802 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-556 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011))))) +(-13 (-205 (-2 (|:| -2583 |t#1|) (|:| -3100 |t#2|))) (-10 -8 (-15 -4194 ((-108) |t#1| $)) (-15 -3019 ((-585 |t#1|) $)) (-15 -2502 ((-3 |t#2| "failed") |t#1| $)) (-15 -2802 ((-3 |t#2| "failed") |t#1| $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T) ((-97) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) ((-559 (-790)) -3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790)))) ((-139 #0#) . T) ((-560 (-495)) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))) ((-205 #0#) . T) ((-211 #0#) . T) ((-282 #0#) -12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))) ((-458 #0#) . T) ((-480 #0# #0#) -12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))) ((-1011) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) ((-1117) . T)) +((-2658 (((-558 |#2|) |#1|) 15)) (-3149 (((-3 |#1| "failed") (-558 |#2|)) 19))) +(((-557 |#1| |#2|) (-10 -7 (-15 -2658 ((-558 |#2|) |#1|)) (-15 -3149 ((-3 |#1| "failed") (-558 |#2|)))) (-782) (-782)) (T -557)) +((-3149 (*1 *2 *3) (|partial| -12 (-5 *3 (-558 *4)) (-4 *4 (-782)) (-4 *2 (-782)) (-5 *1 (-557 *2 *4)))) (-2658 (*1 *2 *3) (-12 (-5 *2 (-558 *4)) (-5 *1 (-557 *3 *4)) (-4 *3 (-782)) (-4 *4 (-782))))) +(-10 -7 (-15 -2658 ((-558 |#2|) |#1|)) (-15 -3149 ((-3 |#1| "failed") (-558 |#2|)))) +((-1430 (((-108) $ $) NIL)) (-2353 (((-3 (-1082) "failed") $) 36)) (-2873 (((-1168) $ (-705)) 26)) (-3297 (((-705) $) 25)) (-3752 (((-110) $) 12)) (-2938 (((-1082) $) 20)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-2959 (($ (-110) (-585 |#1|) (-705)) 30) (($ (-1082)) 31)) (-2917 (((-108) $ (-110)) 18) (((-108) $ (-1082)) 16)) (-4141 (((-705) $) 22)) (-4139 (((-1029) $) NIL)) (-1446 (((-819 (-519)) $) 69 (|has| |#1| (-560 (-819 (-519))))) (((-819 (-351)) $) 75 (|has| |#1| (-560 (-819 (-351))))) (((-495) $) 62 (|has| |#1| (-560 (-495))))) (-2217 (((-790) $) 51)) (-3867 (((-585 |#1|) $) 24)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 39)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 40))) +(((-558 |#1|) (-13 (-125) (-811 |#1|) (-10 -8 (-15 -2938 ((-1082) $)) (-15 -3752 ((-110) $)) (-15 -3867 ((-585 |#1|) $)) (-15 -4141 ((-705) $)) (-15 -2959 ($ (-110) (-585 |#1|) (-705))) (-15 -2959 ($ (-1082))) (-15 -2353 ((-3 (-1082) "failed") $)) (-15 -2917 ((-108) $ (-110))) (-15 -2917 ((-108) $ (-1082))) (IF (|has| |#1| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|))) (-782)) (T -558)) +((-2938 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-558 *3)) (-4 *3 (-782)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-558 *3)) (-4 *3 (-782)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-558 *3)) (-4 *3 (-782)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-558 *3)) (-4 *3 (-782)))) (-2959 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-585 *5)) (-5 *4 (-705)) (-4 *5 (-782)) (-5 *1 (-558 *5)))) (-2959 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-558 *3)) (-4 *3 (-782)))) (-2353 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-558 *3)) (-4 *3 (-782)))) (-2917 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-558 *4)) (-4 *4 (-782)))) (-2917 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-108)) (-5 *1 (-558 *4)) (-4 *4 (-782))))) +(-13 (-125) (-811 |#1|) (-10 -8 (-15 -2938 ((-1082) $)) (-15 -3752 ((-110) $)) (-15 -3867 ((-585 |#1|) $)) (-15 -4141 ((-705) $)) (-15 -2959 ($ (-110) (-585 |#1|) (-705))) (-15 -2959 ($ (-1082))) (-15 -2353 ((-3 (-1082) "failed") $)) (-15 -2917 ((-108) $ (-110))) (-15 -2917 ((-108) $ (-1082))) (IF (|has| |#1| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|))) +((-2217 ((|#1| $) 6))) +(((-559 |#1|) (-1194) (-1117)) (T -559)) +((-2217 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-1117))))) +(-13 (-10 -8 (-15 -2217 (|t#1| $)))) +((-1446 ((|#1| $) 6))) +(((-560 |#1|) (-1194) (-1117)) (T -560)) +((-1446 (*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-1117))))) +(-13 (-10 -8 (-15 -1446 (|t#1| $)))) +((-3889 (((-3 (-1078 (-379 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|) (-1 (-390 |#2|) |#2|)) 13) (((-3 (-1078 (-379 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|)) 14))) +(((-561 |#1| |#2|) (-10 -7 (-15 -3889 ((-3 (-1078 (-379 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|))) (-15 -3889 ((-3 (-1078 (-379 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|) (-1 (-390 |#2|) |#2|)))) (-13 (-135) (-27) (-959 (-519)) (-959 (-379 (-519)))) (-1139 |#1|)) (T -561)) +((-3889 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1139 *5)) (-4 *5 (-13 (-135) (-27) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 (-1078 (-379 *6))) (-5 *1 (-561 *5 *6)) (-5 *3 (-379 *6)))) (-3889 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-135) (-27) (-959 (-519)) (-959 (-379 (-519))))) (-4 *5 (-1139 *4)) (-5 *2 (-1078 (-379 *5))) (-5 *1 (-561 *4 *5)) (-5 *3 (-379 *5))))) +(-10 -7 (-15 -3889 ((-3 (-1078 (-379 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|))) (-15 -3889 ((-3 (-1078 (-379 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|) (-1 (-390 |#2|) |#2|)))) +((-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#2|) 10))) +(((-562 |#1| |#2|) (-10 -8 (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) (-563 |#2|) (-968)) (T -562)) +NIL +(-10 -8 (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 36)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ |#1| $) 37))) +(((-563 |#1|) (-1194) (-968)) (T -563)) +((-2217 (*1 *1 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-968))))) +(-13 (-968) (-587 |t#1|) (-10 -8 (-15 -2217 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-661) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2287 (((-519) $) NIL (|has| |#1| (-780)))) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) NIL)) (-3419 (((-108) $) NIL (|has| |#1| (-780)))) (-1568 (((-108) $) NIL)) (-2855 ((|#1| $) 13)) (-2143 (((-108) $) NIL (|has| |#1| (-780)))) (-2864 (($ $ $) NIL (|has| |#1| (-780)))) (-2489 (($ $ $) NIL (|has| |#1| (-780)))) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2866 ((|#3| $) 15)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#2|) NIL)) (-3594 (((-705)) 20)) (-1478 (($ $) NIL (|has| |#1| (-780)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) 12 T CONST)) (-1586 (((-108) $ $) NIL (|has| |#1| (-780)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-780)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#1| (-780)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-780)))) (-1632 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-564 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (-15 -1632 ($ $ |#3|)) (-15 -1632 ($ |#1| |#3|)) (-15 -2855 (|#1| $)) (-15 -2866 (|#3| $)))) (-37 |#2|) (-157) (|SubsetCategory| (-661) |#2|)) (T -564)) +((-1632 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-564 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-661) *4)))) (-1632 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-564 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-661) *4)))) (-2855 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-564 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-661) *3)))) (-2866 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-661) *4)) (-5 *1 (-564 *3 *4 *2)) (-4 *3 (-37 *4))))) +(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (-15 -1632 ($ $ |#3|)) (-15 -1632 ($ |#1| |#3|)) (-15 -2855 (|#1| $)) (-15 -2866 (|#3| $)))) +((-1736 ((|#2| |#2| (-1082) (-1082)) 18))) +(((-565 |#1| |#2|) (-10 -7 (-15 -1736 (|#2| |#2| (-1082) (-1082)))) (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519))) (-13 (-1103) (-885) (-29 |#1|))) (T -565)) +((-1736 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *1 (-565 *4 *2)) (-4 *2 (-13 (-1103) (-885) (-29 *4)))))) +(-10 -7 (-15 -1736 (|#2| |#2| (-1082) (-1082)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 52)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-4021 ((|#1| $) 49)) (-3167 (((-3 $ "failed") $ $) NIL)) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-2659 (((-2 (|:| -2084 $) (|:| -2610 (-379 |#2|))) (-379 |#2|)) 97 (|has| |#1| (-335)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) 24)) (-4193 (((-3 $ "failed") $) 76)) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-3709 (((-519) $) 19)) (-1568 (((-108) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2642 (((-108) $) 36)) (-4042 (($ |#1| (-519)) 21)) (-3197 ((|#1| $) 51)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-335)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) 87 (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-2261 (((-3 $ "failed") $ $) 80)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-3129 (((-705) $) 99 (|has| |#1| (-335)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 98 (|has| |#1| (-335)))) (-2181 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-705)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-4178 (((-519) $) 34)) (-1446 (((-379 |#2|) $) 42)) (-2217 (((-790) $) 63) (($ (-519)) 32) (($ $) NIL) (($ (-379 (-519))) NIL (|has| |#1| (-959 (-379 (-519))))) (($ |#1|) 31) (($ |#2|) 22)) (-1220 ((|#1| $ (-519)) 64)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 9 T CONST)) (-3611 (($) 12 T CONST)) (-2242 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-705)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-1543 (((-108) $ $) 17)) (-1623 (($ $) 46) (($ $ $) NIL)) (-1614 (($ $ $) 77)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 26) (($ $ $) 44))) +(((-566 |#1| |#2|) (-13 (-207 |#2|) (-511) (-560 (-379 |#2|)) (-383 |#1|) (-959 |#2|) (-10 -8 (-15 -2642 ((-108) $)) (-15 -4178 ((-519) $)) (-15 -3709 ((-519) $)) (-15 -3218 ($ $)) (-15 -3197 (|#1| $)) (-15 -4021 (|#1| $)) (-15 -1220 (|#1| $ (-519))) (-15 -4042 ($ |#1| (-519))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-335)) (PROGN (-6 (-280)) (-15 -2659 ((-2 (|:| -2084 $) (|:| -2610 (-379 |#2|))) (-379 |#2|)))) |%noBranch|))) (-511) (-1139 |#1|)) (T -566)) +((-2642 (*1 *2 *1) (-12 (-4 *3 (-511)) (-5 *2 (-108)) (-5 *1 (-566 *3 *4)) (-4 *4 (-1139 *3)))) (-4178 (*1 *2 *1) (-12 (-4 *3 (-511)) (-5 *2 (-519)) (-5 *1 (-566 *3 *4)) (-4 *4 (-1139 *3)))) (-3709 (*1 *2 *1) (-12 (-4 *3 (-511)) (-5 *2 (-519)) (-5 *1 (-566 *3 *4)) (-4 *4 (-1139 *3)))) (-3218 (*1 *1 *1) (-12 (-4 *2 (-511)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1139 *2)))) (-3197 (*1 *2 *1) (-12 (-4 *2 (-511)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1139 *2)))) (-4021 (*1 *2 *1) (-12 (-4 *2 (-511)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1139 *2)))) (-1220 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *2 (-511)) (-5 *1 (-566 *2 *4)) (-4 *4 (-1139 *2)))) (-4042 (*1 *1 *2 *3) (-12 (-5 *3 (-519)) (-4 *2 (-511)) (-5 *1 (-566 *2 *4)) (-4 *4 (-1139 *2)))) (-2659 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *4 (-511)) (-4 *5 (-1139 *4)) (-5 *2 (-2 (|:| -2084 (-566 *4 *5)) (|:| -2610 (-379 *5)))) (-5 *1 (-566 *4 *5)) (-5 *3 (-379 *5))))) +(-13 (-207 |#2|) (-511) (-560 (-379 |#2|)) (-383 |#1|) (-959 |#2|) (-10 -8 (-15 -2642 ((-108) $)) (-15 -4178 ((-519) $)) (-15 -3709 ((-519) $)) (-15 -3218 ($ $)) (-15 -3197 (|#1| $)) (-15 -4021 (|#1| $)) (-15 -1220 (|#1| $ (-519))) (-15 -4042 ($ |#1| (-519))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-335)) (PROGN (-6 (-280)) (-15 -2659 ((-2 (|:| -2084 $) (|:| -2610 (-379 |#2|))) (-379 |#2|)))) |%noBranch|))) +((-2548 (((-585 |#6|) (-585 |#4|) (-108)) 47)) (-2904 ((|#6| |#6|) 40))) +(((-567 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2904 (|#6| |#6|)) (-15 -2548 ((-585 |#6|) (-585 |#4|) (-108)))) (-423) (-727) (-782) (-982 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|) (-1020 |#1| |#2| |#3| |#4|)) (T -567)) +((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 *10)) (-5 *1 (-567 *5 *6 *7 *8 *9 *10)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *10 (-1020 *5 *6 *7 *8)))) (-2904 (*1 *2 *2) (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *1 (-567 *3 *4 *5 *6 *7 *2)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *2 (-1020 *3 *4 *5 *6))))) +(-10 -7 (-15 -2904 (|#6| |#6|)) (-15 -2548 ((-585 |#6|) (-585 |#4|) (-108)))) +((-2125 (((-108) |#3| (-705) (-585 |#3|)) 23)) (-1421 (((-3 (-2 (|:| |polfac| (-585 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-585 (-1078 |#3|)))) "failed") |#3| (-585 (-1078 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3433 (-585 (-2 (|:| |irr| |#4|) (|:| -1258 (-519)))))) (-585 |#3|) (-585 |#1|) (-585 |#3|)) 52))) +(((-568 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2125 ((-108) |#3| (-705) (-585 |#3|))) (-15 -1421 ((-3 (-2 (|:| |polfac| (-585 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-585 (-1078 |#3|)))) "failed") |#3| (-585 (-1078 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3433 (-585 (-2 (|:| |irr| |#4|) (|:| -1258 (-519)))))) (-585 |#3|) (-585 |#1|) (-585 |#3|)))) (-782) (-727) (-280) (-876 |#3| |#2| |#1|)) (T -568)) +((-1421 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3433 (-585 (-2 (|:| |irr| *10) (|:| -1258 (-519))))))) (-5 *6 (-585 *3)) (-5 *7 (-585 *8)) (-4 *8 (-782)) (-4 *3 (-280)) (-4 *10 (-876 *3 *9 *8)) (-4 *9 (-727)) (-5 *2 (-2 (|:| |polfac| (-585 *10)) (|:| |correct| *3) (|:| |corrfact| (-585 (-1078 *3))))) (-5 *1 (-568 *8 *9 *3 *10)) (-5 *4 (-585 (-1078 *3))))) (-2125 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-705)) (-5 *5 (-585 *3)) (-4 *3 (-280)) (-4 *6 (-782)) (-4 *7 (-727)) (-5 *2 (-108)) (-5 *1 (-568 *6 *7 *3 *8)) (-4 *8 (-876 *3 *7 *6))))) +(-10 -7 (-15 -2125 ((-108) |#3| (-705) (-585 |#3|))) (-15 -1421 ((-3 (-2 (|:| |polfac| (-585 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-585 (-1078 |#3|)))) "failed") |#3| (-585 (-1078 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3433 (-585 (-2 (|:| |irr| |#4|) (|:| -1258 (-519)))))) (-585 |#3|) (-585 |#1|) (-585 |#3|)))) +((-1430 (((-108) $ $) NIL)) (-4096 (((-585 |#1|) $) NIL)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) NIL)) (-2260 (($ $) 67)) (-1254 (((-603 |#1| |#2|) $) 52)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 70)) (-3948 (((-585 (-267 |#2|)) $ $) 33)) (-4139 (((-1029) $) NIL)) (-3325 (($ (-603 |#1| |#2|)) 48)) (-3333 (($ $ $) NIL)) (-3190 (($ $ $) NIL)) (-2217 (((-790) $) 58) (((-1176 |#1| |#2|) $) NIL) (((-1181 |#1| |#2|) $) 66)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3611 (($) 53 T CONST)) (-2842 (((-585 (-2 (|:| |k| (-610 |#1|)) (|:| |c| |#2|))) $) 31)) (-4177 (((-585 (-603 |#1| |#2|)) (-585 |#1|)) 65)) (-3613 (((-585 (-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|))) $) 36)) (-1543 (((-108) $ $) 54)) (-1632 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ $ $) 44))) +(((-569 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -3325 ($ (-603 |#1| |#2|))) (-15 -1254 ((-603 |#1| |#2|) $)) (-15 -3613 ((-585 (-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|))) $)) (-15 -2217 ((-1176 |#1| |#2|) $)) (-15 -2217 ((-1181 |#1| |#2|) $)) (-15 -2260 ($ $)) (-15 -4096 ((-585 |#1|) $)) (-15 -4177 ((-585 (-603 |#1| |#2|)) (-585 |#1|))) (-15 -2842 ((-585 (-2 (|:| |k| (-610 |#1|)) (|:| |c| |#2|))) $)) (-15 -3948 ((-585 (-267 |#2|)) $ $)))) (-782) (-13 (-157) (-652 (-379 (-519)))) (-848)) (T -569)) +((-3325 (*1 *1 *2) (-12 (-5 *2 (-603 *3 *4)) (-4 *3 (-782)) (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-5 *1 (-569 *3 *4 *5)) (-14 *5 (-848)))) (-1254 (*1 *2 *1) (-12 (-5 *2 (-603 *3 *4)) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-820 *3)) (|:| |c| *4)))) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-569 *2 *3 *4)) (-4 *2 (-782)) (-4 *3 (-13 (-157) (-652 (-379 (-519))))) (-14 *4 (-848)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-782)) (-5 *2 (-585 (-603 *4 *5))) (-5 *1 (-569 *4 *5 *6)) (-4 *5 (-13 (-157) (-652 (-379 (-519))))) (-14 *6 (-848)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-610 *3)) (|:| |c| *4)))) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848)))) (-3948 (*1 *2 *1 *1) (-12 (-5 *2 (-585 (-267 *4))) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848))))) +(-13 (-444) (-10 -8 (-15 -3325 ($ (-603 |#1| |#2|))) (-15 -1254 ((-603 |#1| |#2|) $)) (-15 -3613 ((-585 (-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|))) $)) (-15 -2217 ((-1176 |#1| |#2|) $)) (-15 -2217 ((-1181 |#1| |#2|) $)) (-15 -2260 ($ $)) (-15 -4096 ((-585 |#1|) $)) (-15 -4177 ((-585 (-603 |#1| |#2|)) (-585 |#1|))) (-15 -2842 ((-585 (-2 (|:| |k| (-610 |#1|)) (|:| |c| |#2|))) $)) (-15 -3948 ((-585 (-267 |#2|)) $ $)))) +((-2548 (((-585 (-1053 |#1| (-491 (-792 |#2|)) (-792 |#2|) (-714 |#1| (-792 |#2|)))) (-585 (-714 |#1| (-792 |#2|))) (-108)) 71) (((-585 (-965 |#1| |#2|)) (-585 (-714 |#1| (-792 |#2|))) (-108)) 57)) (-1535 (((-108) (-585 (-714 |#1| (-792 |#2|)))) 22)) (-3363 (((-585 (-1053 |#1| (-491 (-792 |#2|)) (-792 |#2|) (-714 |#1| (-792 |#2|)))) (-585 (-714 |#1| (-792 |#2|))) (-108)) 70)) (-2832 (((-585 (-965 |#1| |#2|)) (-585 (-714 |#1| (-792 |#2|))) (-108)) 56)) (-1835 (((-585 (-714 |#1| (-792 |#2|))) (-585 (-714 |#1| (-792 |#2|)))) 26)) (-1429 (((-3 (-585 (-714 |#1| (-792 |#2|))) "failed") (-585 (-714 |#1| (-792 |#2|)))) 25))) +(((-570 |#1| |#2|) (-10 -7 (-15 -1535 ((-108) (-585 (-714 |#1| (-792 |#2|))))) (-15 -1429 ((-3 (-585 (-714 |#1| (-792 |#2|))) "failed") (-585 (-714 |#1| (-792 |#2|))))) (-15 -1835 ((-585 (-714 |#1| (-792 |#2|))) (-585 (-714 |#1| (-792 |#2|))))) (-15 -2832 ((-585 (-965 |#1| |#2|)) (-585 (-714 |#1| (-792 |#2|))) (-108))) (-15 -3363 ((-585 (-1053 |#1| (-491 (-792 |#2|)) (-792 |#2|) (-714 |#1| (-792 |#2|)))) (-585 (-714 |#1| (-792 |#2|))) (-108))) (-15 -2548 ((-585 (-965 |#1| |#2|)) (-585 (-714 |#1| (-792 |#2|))) (-108))) (-15 -2548 ((-585 (-1053 |#1| (-491 (-792 |#2|)) (-792 |#2|) (-714 |#1| (-792 |#2|)))) (-585 (-714 |#1| (-792 |#2|))) (-108)))) (-423) (-585 (-1082))) (T -570)) +((-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-714 *5 (-792 *6)))) (-5 *4 (-108)) (-4 *5 (-423)) (-14 *6 (-585 (-1082))) (-5 *2 (-585 (-1053 *5 (-491 (-792 *6)) (-792 *6) (-714 *5 (-792 *6))))) (-5 *1 (-570 *5 *6)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-714 *5 (-792 *6)))) (-5 *4 (-108)) (-4 *5 (-423)) (-14 *6 (-585 (-1082))) (-5 *2 (-585 (-965 *5 *6))) (-5 *1 (-570 *5 *6)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-714 *5 (-792 *6)))) (-5 *4 (-108)) (-4 *5 (-423)) (-14 *6 (-585 (-1082))) (-5 *2 (-585 (-1053 *5 (-491 (-792 *6)) (-792 *6) (-714 *5 (-792 *6))))) (-5 *1 (-570 *5 *6)))) (-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-714 *5 (-792 *6)))) (-5 *4 (-108)) (-4 *5 (-423)) (-14 *6 (-585 (-1082))) (-5 *2 (-585 (-965 *5 *6))) (-5 *1 (-570 *5 *6)))) (-1835 (*1 *2 *2) (-12 (-5 *2 (-585 (-714 *3 (-792 *4)))) (-4 *3 (-423)) (-14 *4 (-585 (-1082))) (-5 *1 (-570 *3 *4)))) (-1429 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-714 *3 (-792 *4)))) (-4 *3 (-423)) (-14 *4 (-585 (-1082))) (-5 *1 (-570 *3 *4)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-585 (-714 *4 (-792 *5)))) (-4 *4 (-423)) (-14 *5 (-585 (-1082))) (-5 *2 (-108)) (-5 *1 (-570 *4 *5))))) +(-10 -7 (-15 -1535 ((-108) (-585 (-714 |#1| (-792 |#2|))))) (-15 -1429 ((-3 (-585 (-714 |#1| (-792 |#2|))) "failed") (-585 (-714 |#1| (-792 |#2|))))) (-15 -1835 ((-585 (-714 |#1| (-792 |#2|))) (-585 (-714 |#1| (-792 |#2|))))) (-15 -2832 ((-585 (-965 |#1| |#2|)) (-585 (-714 |#1| (-792 |#2|))) (-108))) (-15 -3363 ((-585 (-1053 |#1| (-491 (-792 |#2|)) (-792 |#2|) (-714 |#1| (-792 |#2|)))) (-585 (-714 |#1| (-792 |#2|))) (-108))) (-15 -2548 ((-585 (-965 |#1| |#2|)) (-585 (-714 |#1| (-792 |#2|))) (-108))) (-15 -2548 ((-585 (-1053 |#1| (-491 (-792 |#2|)) (-792 |#2|) (-714 |#1| (-792 |#2|)))) (-585 (-714 |#1| (-792 |#2|))) (-108)))) +((-2958 (($ $) 38)) (-2823 (($ $) 21)) (-2934 (($ $) 37)) (-2800 (($ $) 22)) (-2981 (($ $) 36)) (-2844 (($ $) 23)) (-2888 (($) 48)) (-1254 (($ $) 45)) (-3306 (($ $) 17)) (-3647 (($ $ (-1004 $)) 7) (($ $ (-1082)) 6)) (-3325 (($ $) 46)) (-2759 (($ $) 15)) (-2788 (($ $) 16)) (-1754 (($ $) 35)) (-2854 (($ $) 24)) (-2969 (($ $) 34)) (-2834 (($ $) 25)) (-2946 (($ $) 33)) (-2812 (($ $) 26)) (-1774 (($ $) 44)) (-2886 (($ $) 32)) (-1761 (($ $) 43)) (-2865 (($ $) 31)) (-1790 (($ $) 42)) (-2910 (($ $) 30)) (-3929 (($ $) 41)) (-2922 (($ $) 29)) (-1783 (($ $) 40)) (-2898 (($ $) 28)) (-1768 (($ $) 39)) (-2875 (($ $) 27)) (-3336 (($ $) 19)) (-3981 (($ $) 20)) (-1949 (($ $) 18)) (** (($ $ $) 47))) +(((-571) (-1194)) (T -571)) +((-3981 (*1 *1 *1) (-4 *1 (-571))) (-3336 (*1 *1 *1) (-4 *1 (-571))) (-1949 (*1 *1 *1) (-4 *1 (-571))) (-3306 (*1 *1 *1) (-4 *1 (-571))) (-2788 (*1 *1 *1) (-4 *1 (-571))) (-2759 (*1 *1 *1) (-4 *1 (-571)))) +(-13 (-885) (-1103) (-10 -8 (-15 -3981 ($ $)) (-15 -3336 ($ $)) (-15 -1949 ($ $)) (-15 -3306 ($ $)) (-15 -2788 ($ $)) (-15 -2759 ($ $)))) +(((-34) . T) ((-91) . T) ((-258) . T) ((-460) . T) ((-885) . T) ((-1103) . T) ((-1106) . T)) +((-3752 (((-110) (-110)) 83)) (-3306 ((|#2| |#2|) 30)) (-3647 ((|#2| |#2| (-1004 |#2|)) 79) ((|#2| |#2| (-1082)) 52)) (-2759 ((|#2| |#2|) 29)) (-2788 ((|#2| |#2|) 31)) (-2631 (((-108) (-110)) 34)) (-3336 ((|#2| |#2|) 26)) (-3981 ((|#2| |#2|) 28)) (-1949 ((|#2| |#2|) 27))) +(((-572 |#1| |#2|) (-10 -7 (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 -3981 (|#2| |#2|)) (-15 -3336 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -2759 (|#2| |#2|)) (-15 -2788 (|#2| |#2|)) (-15 -3647 (|#2| |#2| (-1082))) (-15 -3647 (|#2| |#2| (-1004 |#2|)))) (-13 (-782) (-511)) (-13 (-402 |#1|) (-925) (-1103))) (T -572)) +((-3647 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-402 *4) (-925) (-1103))) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-572 *4 *2)))) (-3647 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-402 *4) (-925) (-1103))))) (-2788 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-402 *3) (-925) (-1103))))) (-2759 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-402 *3) (-925) (-1103))))) (-3306 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-402 *3) (-925) (-1103))))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-402 *3) (-925) (-1103))))) (-3336 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-402 *3) (-925) (-1103))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) (-4 *2 (-13 (-402 *3) (-925) (-1103))))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *4)) (-4 *4 (-13 (-402 *3) (-925) (-1103))))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) (-5 *1 (-572 *4 *5)) (-4 *5 (-13 (-402 *4) (-925) (-1103)))))) +(-10 -7 (-15 -2631 ((-108) (-110))) (-15 -3752 ((-110) (-110))) (-15 -3981 (|#2| |#2|)) (-15 -3336 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -2759 (|#2| |#2|)) (-15 -2788 (|#2| |#2|)) (-15 -3647 (|#2| |#2| (-1082))) (-15 -3647 (|#2| |#2| (-1004 |#2|)))) +((-1655 (((-451 |#1| |#2|) (-223 |#1| |#2|)) 53)) (-2826 (((-585 (-223 |#1| |#2|)) (-585 (-451 |#1| |#2|))) 68)) (-2085 (((-451 |#1| |#2|) (-585 (-451 |#1| |#2|)) (-792 |#1|)) 70) (((-451 |#1| |#2|) (-585 (-451 |#1| |#2|)) (-585 (-451 |#1| |#2|)) (-792 |#1|)) 69)) (-1966 (((-2 (|:| |gblist| (-585 (-223 |#1| |#2|))) (|:| |gvlist| (-585 (-519)))) (-585 (-451 |#1| |#2|))) 106)) (-3987 (((-585 (-451 |#1| |#2|)) (-792 |#1|) (-585 (-451 |#1| |#2|)) (-585 (-451 |#1| |#2|))) 83)) (-2321 (((-2 (|:| |glbase| (-585 (-223 |#1| |#2|))) (|:| |glval| (-585 (-519)))) (-585 (-223 |#1| |#2|))) 117)) (-2941 (((-1163 |#2|) (-451 |#1| |#2|) (-585 (-451 |#1| |#2|))) 58)) (-2224 (((-585 (-451 |#1| |#2|)) (-585 (-451 |#1| |#2|))) 39)) (-2926 (((-223 |#1| |#2|) (-223 |#1| |#2|) (-585 (-223 |#1| |#2|))) 49)) (-4014 (((-223 |#1| |#2|) (-585 |#2|) (-223 |#1| |#2|) (-585 (-223 |#1| |#2|))) 90))) +(((-573 |#1| |#2|) (-10 -7 (-15 -1966 ((-2 (|:| |gblist| (-585 (-223 |#1| |#2|))) (|:| |gvlist| (-585 (-519)))) (-585 (-451 |#1| |#2|)))) (-15 -2321 ((-2 (|:| |glbase| (-585 (-223 |#1| |#2|))) (|:| |glval| (-585 (-519)))) (-585 (-223 |#1| |#2|)))) (-15 -2826 ((-585 (-223 |#1| |#2|)) (-585 (-451 |#1| |#2|)))) (-15 -2085 ((-451 |#1| |#2|) (-585 (-451 |#1| |#2|)) (-585 (-451 |#1| |#2|)) (-792 |#1|))) (-15 -2085 ((-451 |#1| |#2|) (-585 (-451 |#1| |#2|)) (-792 |#1|))) (-15 -2224 ((-585 (-451 |#1| |#2|)) (-585 (-451 |#1| |#2|)))) (-15 -2941 ((-1163 |#2|) (-451 |#1| |#2|) (-585 (-451 |#1| |#2|)))) (-15 -4014 ((-223 |#1| |#2|) (-585 |#2|) (-223 |#1| |#2|) (-585 (-223 |#1| |#2|)))) (-15 -3987 ((-585 (-451 |#1| |#2|)) (-792 |#1|) (-585 (-451 |#1| |#2|)) (-585 (-451 |#1| |#2|)))) (-15 -2926 ((-223 |#1| |#2|) (-223 |#1| |#2|) (-585 (-223 |#1| |#2|)))) (-15 -1655 ((-451 |#1| |#2|) (-223 |#1| |#2|)))) (-585 (-1082)) (-423)) (T -573)) +((-1655 (*1 *2 *3) (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-585 (-1082))) (-4 *5 (-423)) (-5 *2 (-451 *4 *5)) (-5 *1 (-573 *4 *5)))) (-2926 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-223 *4 *5))) (-5 *2 (-223 *4 *5)) (-14 *4 (-585 (-1082))) (-4 *5 (-423)) (-5 *1 (-573 *4 *5)))) (-3987 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-585 (-451 *4 *5))) (-5 *3 (-792 *4)) (-14 *4 (-585 (-1082))) (-4 *5 (-423)) (-5 *1 (-573 *4 *5)))) (-4014 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-223 *5 *6))) (-4 *6 (-423)) (-5 *2 (-223 *5 *6)) (-14 *5 (-585 (-1082))) (-5 *1 (-573 *5 *6)))) (-2941 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-451 *5 *6))) (-5 *3 (-451 *5 *6)) (-14 *5 (-585 (-1082))) (-4 *6 (-423)) (-5 *2 (-1163 *6)) (-5 *1 (-573 *5 *6)))) (-2224 (*1 *2 *2) (-12 (-5 *2 (-585 (-451 *3 *4))) (-14 *3 (-585 (-1082))) (-4 *4 (-423)) (-5 *1 (-573 *3 *4)))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-451 *5 *6))) (-5 *4 (-792 *5)) (-14 *5 (-585 (-1082))) (-5 *2 (-451 *5 *6)) (-5 *1 (-573 *5 *6)) (-4 *6 (-423)))) (-2085 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-451 *5 *6))) (-5 *4 (-792 *5)) (-14 *5 (-585 (-1082))) (-5 *2 (-451 *5 *6)) (-5 *1 (-573 *5 *6)) (-4 *6 (-423)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-585 (-451 *4 *5))) (-14 *4 (-585 (-1082))) (-4 *5 (-423)) (-5 *2 (-585 (-223 *4 *5))) (-5 *1 (-573 *4 *5)))) (-2321 (*1 *2 *3) (-12 (-14 *4 (-585 (-1082))) (-4 *5 (-423)) (-5 *2 (-2 (|:| |glbase| (-585 (-223 *4 *5))) (|:| |glval| (-585 (-519))))) (-5 *1 (-573 *4 *5)) (-5 *3 (-585 (-223 *4 *5))))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-585 (-451 *4 *5))) (-14 *4 (-585 (-1082))) (-4 *5 (-423)) (-5 *2 (-2 (|:| |gblist| (-585 (-223 *4 *5))) (|:| |gvlist| (-585 (-519))))) (-5 *1 (-573 *4 *5))))) +(-10 -7 (-15 -1966 ((-2 (|:| |gblist| (-585 (-223 |#1| |#2|))) (|:| |gvlist| (-585 (-519)))) (-585 (-451 |#1| |#2|)))) (-15 -2321 ((-2 (|:| |glbase| (-585 (-223 |#1| |#2|))) (|:| |glval| (-585 (-519)))) (-585 (-223 |#1| |#2|)))) (-15 -2826 ((-585 (-223 |#1| |#2|)) (-585 (-451 |#1| |#2|)))) (-15 -2085 ((-451 |#1| |#2|) (-585 (-451 |#1| |#2|)) (-585 (-451 |#1| |#2|)) (-792 |#1|))) (-15 -2085 ((-451 |#1| |#2|) (-585 (-451 |#1| |#2|)) (-792 |#1|))) (-15 -2224 ((-585 (-451 |#1| |#2|)) (-585 (-451 |#1| |#2|)))) (-15 -2941 ((-1163 |#2|) (-451 |#1| |#2|) (-585 (-451 |#1| |#2|)))) (-15 -4014 ((-223 |#1| |#2|) (-585 |#2|) (-223 |#1| |#2|) (-585 (-223 |#1| |#2|)))) (-15 -3987 ((-585 (-451 |#1| |#2|)) (-792 |#1|) (-585 (-451 |#1| |#2|)) (-585 (-451 |#1| |#2|)))) (-15 -2926 ((-223 |#1| |#2|) (-223 |#1| |#2|) (-585 (-223 |#1| |#2|)))) (-15 -1655 ((-451 |#1| |#2|) (-223 |#1| |#2|)))) +((-1430 (((-108) $ $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011))))) (-1812 (($) NIL) (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))))) NIL)) (-1583 (((-1168) $ (-1065) (-1065)) NIL (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 (((-51) $ (-1065) (-51)) 16) (((-51) $ (-1082) (-51)) 17)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221)))) (-2802 (((-3 (-51) "failed") (-1065) $) NIL)) (-2249 (($) NIL T CONST)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011))))) (-2502 (($ (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-3 (-51) "failed") (-1065) $) NIL)) (-1438 (($ (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $ (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011)))) (((-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $ (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221)))) (-3865 (((-51) $ (-1065) (-51)) NIL (|has| $ (-6 -4222)))) (-3659 (((-51) $ (-1065)) NIL)) (-3844 (((-585 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-585 (-51)) $) NIL (|has| $ (-6 -4221)))) (-3401 (($ $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-1065) $) NIL (|has| (-1065) (-782)))) (-3725 (((-585 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-585 (-51)) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-51) (-1011))))) (-3890 (((-1065) $) NIL (|has| (-1065) (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4222))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1744 (($ (-360)) 9)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011))))) (-3019 (((-585 (-1065)) $) NIL)) (-4194 (((-108) (-1065) $) NIL)) (-4152 (((-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) $) NIL)) (-1846 (($ (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) $) NIL)) (-3909 (((-585 (-1065)) $) NIL)) (-1506 (((-108) (-1065) $) NIL)) (-4139 (((-1029) $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011))))) (-2331 (((-51) $) NIL (|has| (-1065) (-782)))) (-2395 (((-3 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) "failed") (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL)) (-3640 (($ $ (-51)) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) $) NIL)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011)))) (($ $ (-267 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011)))) (($ $ (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011)))) (($ $ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011)))) (($ $ (-585 (-51)) (-585 (-51))) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011)))) (($ $ (-267 (-51))) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011)))) (($ $ (-585 (-267 (-51)))) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-51) (-1011))))) (-2222 (((-585 (-51)) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 (((-51) $ (-1065)) 14) (((-51) $ (-1065) (-51)) NIL) (((-51) $ (-1082)) 15)) (-2436 (($) NIL) (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))))) NIL)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011)))) (((-705) (-51) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-51) (-1011)))) (((-705) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))))) NIL)) (-2217 (((-790) $) NIL (-3730 (|has| (-51) (-559 (-790))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-559 (-790)))))) (-3879 (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))))) NIL)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 (-51))) (-1011))))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-574) (-13 (-1094 (-1065) (-51)) (-10 -8 (-15 -1744 ($ (-360))) (-15 -3401 ($ $)) (-15 -2598 ((-51) $ (-1082))) (-15 -2421 ((-51) $ (-1082) (-51)))))) (T -574)) +((-1744 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-574)))) (-3401 (*1 *1 *1) (-5 *1 (-574))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-574)))) (-2421 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1082)) (-5 *1 (-574))))) +(-13 (-1094 (-1065) (-51)) (-10 -8 (-15 -1744 ($ (-360))) (-15 -3401 ($ $)) (-15 -2598 ((-51) $ (-1082))) (-15 -2421 ((-51) $ (-1082) (-51))))) +((-1632 (($ $ |#2|) 10))) +(((-575 |#1| |#2|) (-10 -8 (-15 -1632 (|#1| |#1| |#2|))) (-576 |#2|) (-157)) (T -575)) +NIL +(-10 -8 (-15 -1632 (|#1| |#1| |#2|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2228 (($ $ $) 29)) (-2217 (((-790) $) 11)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#1|) 28 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-576 |#1|) (-1194) (-157)) (T -576)) +((-2228 (*1 *1 *1 *1) (-12 (-4 *1 (-576 *2)) (-4 *2 (-157)))) (-1632 (*1 *1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-157)) (-4 *2 (-335))))) +(-13 (-652 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2228 ($ $ $)) (IF (|has| |t#1| (-335)) (-15 -1632 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-652 |#1|) . T) ((-974 |#1|) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3307 (((-3 $ "failed")) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-2329 (((-1163 (-625 |#1|))) NIL (|has| |#2| (-389 |#1|))) (((-1163 (-625 |#1|)) (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-2729 (((-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-2249 (($) NIL T CONST)) (-3689 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-1483 (((-3 $ "failed")) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3999 (((-625 |#1|)) NIL (|has| |#2| (-389 |#1|))) (((-625 |#1|) (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-4172 ((|#1| $) NIL (|has| |#2| (-339 |#1|)))) (-3447 (((-625 |#1|) $) NIL (|has| |#2| (-389 |#1|))) (((-625 |#1|) $ (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-2682 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-4087 (((-1078 (-879 |#1|))) NIL (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-335))))) (-1588 (($ $ (-848)) NIL)) (-4147 ((|#1| $) NIL (|has| |#2| (-339 |#1|)))) (-1370 (((-1078 |#1|) $) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-2048 ((|#1|) NIL (|has| |#2| (-389 |#1|))) ((|#1| (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-3055 (((-1078 |#1|) $) NIL (|has| |#2| (-339 |#1|)))) (-2660 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-2528 (($ (-1163 |#1|)) NIL (|has| |#2| (-389 |#1|))) (($ (-1163 |#1|) (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-4193 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3229 (((-848)) NIL (|has| |#2| (-339 |#1|)))) (-1373 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-1432 (($ $ (-848)) NIL)) (-4029 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-2061 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3288 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3780 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-2253 (((-3 $ "failed")) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-1684 (((-625 |#1|)) NIL (|has| |#2| (-389 |#1|))) (((-625 |#1|) (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-3241 ((|#1| $) NIL (|has| |#2| (-339 |#1|)))) (-3130 (((-625 |#1|) $) NIL (|has| |#2| (-389 |#1|))) (((-625 |#1|) $ (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-2076 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3540 (((-1078 (-879 |#1|))) NIL (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-335))))) (-1341 (($ $ (-848)) NIL)) (-3339 ((|#1| $) NIL (|has| |#2| (-339 |#1|)))) (-4024 (((-1078 |#1|) $) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3069 ((|#1|) NIL (|has| |#2| (-389 |#1|))) ((|#1| (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-3978 (((-1078 |#1|) $) NIL (|has| |#2| (-339 |#1|)))) (-1554 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-1266 (((-1065) $) NIL)) (-2618 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3284 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3163 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-4139 (((-1029) $) NIL)) (-1885 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-2598 ((|#1| $ (-519)) NIL (|has| |#2| (-389 |#1|)))) (-3399 (((-625 |#1|) (-1163 $)) NIL (|has| |#2| (-389 |#1|))) (((-1163 |#1|) $) NIL (|has| |#2| (-389 |#1|))) (((-625 |#1|) (-1163 $) (-1163 $)) NIL (|has| |#2| (-339 |#1|))) (((-1163 |#1|) $ (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-1446 (($ (-1163 |#1|)) NIL (|has| |#2| (-389 |#1|))) (((-1163 |#1|) $) NIL (|has| |#2| (-389 |#1|)))) (-3842 (((-585 (-879 |#1|))) NIL (|has| |#2| (-389 |#1|))) (((-585 (-879 |#1|)) (-1163 $)) NIL (|has| |#2| (-339 |#1|)))) (-3190 (($ $ $) NIL)) (-2553 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-2217 (((-790) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2070 (((-1163 $)) NIL (|has| |#2| (-389 |#1|)))) (-2219 (((-585 (-1163 |#1|))) NIL (-3730 (-12 (|has| |#2| (-339 |#1|)) (|has| |#1| (-511))) (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-511)))))) (-3645 (($ $ $ $) NIL)) (-1801 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-1627 (($ (-625 |#1|) $) NIL (|has| |#2| (-389 |#1|)))) (-2025 (($ $ $) NIL)) (-3547 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-1345 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3328 (((-108)) NIL (|has| |#2| (-339 |#1|)))) (-3602 (($) 15 T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) 17)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-577 |#1| |#2|) (-13 (-679 |#1|) (-559 |#2|) (-10 -8 (-15 -2217 ($ |#2|)) (IF (|has| |#2| (-389 |#1|)) (-6 (-389 |#1|)) |%noBranch|) (IF (|has| |#2| (-339 |#1|)) (-6 (-339 |#1|)) |%noBranch|))) (-157) (-679 |#1|)) (T -577)) +((-2217 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-577 *3 *2)) (-4 *2 (-679 *3))))) +(-13 (-679 |#1|) (-559 |#2|) (-10 -8 (-15 -2217 ($ |#2|)) (IF (|has| |#2| (-389 |#1|)) (-6 (-389 |#1|)) |%noBranch|) (IF (|has| |#2| (-339 |#1|)) (-6 (-339 |#1|)) |%noBranch|))) +((-4081 (((-3 (-775 |#2|) "failed") |#2| (-267 |#2|) (-1065)) 78) (((-3 (-775 |#2|) (-2 (|:| |leftHandLimit| (-3 (-775 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-775 |#2|) "failed"))) "failed") |#2| (-267 (-775 |#2|))) 100)) (-4187 (((-3 (-768 |#2|) "failed") |#2| (-267 (-768 |#2|))) 105))) +(((-578 |#1| |#2|) (-10 -7 (-15 -4081 ((-3 (-775 |#2|) (-2 (|:| |leftHandLimit| (-3 (-775 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-775 |#2|) "failed"))) "failed") |#2| (-267 (-775 |#2|)))) (-15 -4187 ((-3 (-768 |#2|) "failed") |#2| (-267 (-768 |#2|)))) (-15 -4081 ((-3 (-775 |#2|) "failed") |#2| (-267 |#2|) (-1065)))) (-13 (-423) (-782) (-959 (-519)) (-581 (-519))) (-13 (-27) (-1103) (-402 |#1|))) (T -578)) +((-4081 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-267 *3)) (-5 *5 (-1065)) (-4 *3 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-775 *3)) (-5 *1 (-578 *6 *3)))) (-4187 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-267 (-768 *3))) (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-768 *3)) (-5 *1 (-578 *5 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))))) (-4081 (*1 *2 *3 *4) (-12 (-5 *4 (-267 (-775 *3))) (-4 *3 (-13 (-27) (-1103) (-402 *5))) (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-3 (-775 *3) (-2 (|:| |leftHandLimit| (-3 (-775 *3) "failed")) (|:| |rightHandLimit| (-3 (-775 *3) "failed"))) "failed")) (-5 *1 (-578 *5 *3))))) +(-10 -7 (-15 -4081 ((-3 (-775 |#2|) (-2 (|:| |leftHandLimit| (-3 (-775 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-775 |#2|) "failed"))) "failed") |#2| (-267 (-775 |#2|)))) (-15 -4187 ((-3 (-768 |#2|) "failed") |#2| (-267 (-768 |#2|)))) (-15 -4081 ((-3 (-775 |#2|) "failed") |#2| (-267 |#2|) (-1065)))) +((-4081 (((-3 (-775 (-379 (-879 |#1|))) "failed") (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|))) (-1065)) 79) (((-3 (-775 (-379 (-879 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed"))) "failed") (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|)))) 18) (((-3 (-775 (-379 (-879 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed"))) "failed") (-379 (-879 |#1|)) (-267 (-775 (-879 |#1|)))) 34)) (-4187 (((-768 (-379 (-879 |#1|))) (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|)))) 21) (((-768 (-379 (-879 |#1|))) (-379 (-879 |#1|)) (-267 (-768 (-879 |#1|)))) 42))) +(((-579 |#1|) (-10 -7 (-15 -4081 ((-3 (-775 (-379 (-879 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed"))) "failed") (-379 (-879 |#1|)) (-267 (-775 (-879 |#1|))))) (-15 -4081 ((-3 (-775 (-379 (-879 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed"))) "failed") (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|))))) (-15 -4187 ((-768 (-379 (-879 |#1|))) (-379 (-879 |#1|)) (-267 (-768 (-879 |#1|))))) (-15 -4187 ((-768 (-379 (-879 |#1|))) (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|))))) (-15 -4081 ((-3 (-775 (-379 (-879 |#1|))) "failed") (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|))) (-1065)))) (-423)) (T -579)) +((-4081 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-267 (-379 (-879 *6)))) (-5 *5 (-1065)) (-5 *3 (-379 (-879 *6))) (-4 *6 (-423)) (-5 *2 (-775 *3)) (-5 *1 (-579 *6)))) (-4187 (*1 *2 *3 *4) (-12 (-5 *4 (-267 (-379 (-879 *5)))) (-5 *3 (-379 (-879 *5))) (-4 *5 (-423)) (-5 *2 (-768 *3)) (-5 *1 (-579 *5)))) (-4187 (*1 *2 *3 *4) (-12 (-5 *4 (-267 (-768 (-879 *5)))) (-4 *5 (-423)) (-5 *2 (-768 (-379 (-879 *5)))) (-5 *1 (-579 *5)) (-5 *3 (-379 (-879 *5))))) (-4081 (*1 *2 *3 *4) (-12 (-5 *4 (-267 (-379 (-879 *5)))) (-5 *3 (-379 (-879 *5))) (-4 *5 (-423)) (-5 *2 (-3 (-775 *3) (-2 (|:| |leftHandLimit| (-3 (-775 *3) "failed")) (|:| |rightHandLimit| (-3 (-775 *3) "failed"))) "failed")) (-5 *1 (-579 *5)))) (-4081 (*1 *2 *3 *4) (-12 (-5 *4 (-267 (-775 (-879 *5)))) (-4 *5 (-423)) (-5 *2 (-3 (-775 (-379 (-879 *5))) (-2 (|:| |leftHandLimit| (-3 (-775 (-379 (-879 *5))) "failed")) (|:| |rightHandLimit| (-3 (-775 (-379 (-879 *5))) "failed"))) "failed")) (-5 *1 (-579 *5)) (-5 *3 (-379 (-879 *5)))))) +(-10 -7 (-15 -4081 ((-3 (-775 (-379 (-879 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed"))) "failed") (-379 (-879 |#1|)) (-267 (-775 (-879 |#1|))))) (-15 -4081 ((-3 (-775 (-379 (-879 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-775 (-379 (-879 |#1|))) "failed"))) "failed") (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|))))) (-15 -4187 ((-768 (-379 (-879 |#1|))) (-379 (-879 |#1|)) (-267 (-768 (-879 |#1|))))) (-15 -4187 ((-768 (-379 (-879 |#1|))) (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|))))) (-15 -4081 ((-3 (-775 (-379 (-879 |#1|))) "failed") (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|))) (-1065)))) +((-2672 (((-3 (-1163 (-379 |#1|)) "failed") (-1163 |#2|) |#2|) 57 (-2445 (|has| |#1| (-335)))) (((-3 (-1163 |#1|) "failed") (-1163 |#2|) |#2|) 42 (|has| |#1| (-335)))) (-1255 (((-108) (-1163 |#2|)) 30)) (-1633 (((-3 (-1163 |#1|) "failed") (-1163 |#2|)) 33))) +(((-580 |#1| |#2|) (-10 -7 (-15 -1255 ((-108) (-1163 |#2|))) (-15 -1633 ((-3 (-1163 |#1|) "failed") (-1163 |#2|))) (IF (|has| |#1| (-335)) (-15 -2672 ((-3 (-1163 |#1|) "failed") (-1163 |#2|) |#2|)) (-15 -2672 ((-3 (-1163 (-379 |#1|)) "failed") (-1163 |#2|) |#2|)))) (-511) (-581 |#1|)) (T -580)) +((-2672 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1163 *4)) (-4 *4 (-581 *5)) (-2445 (-4 *5 (-335))) (-4 *5 (-511)) (-5 *2 (-1163 (-379 *5))) (-5 *1 (-580 *5 *4)))) (-2672 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1163 *4)) (-4 *4 (-581 *5)) (-4 *5 (-335)) (-4 *5 (-511)) (-5 *2 (-1163 *5)) (-5 *1 (-580 *5 *4)))) (-1633 (*1 *2 *3) (|partial| -12 (-5 *3 (-1163 *5)) (-4 *5 (-581 *4)) (-4 *4 (-511)) (-5 *2 (-1163 *4)) (-5 *1 (-580 *4 *5)))) (-1255 (*1 *2 *3) (-12 (-5 *3 (-1163 *5)) (-4 *5 (-581 *4)) (-4 *4 (-511)) (-5 *2 (-108)) (-5 *1 (-580 *4 *5))))) +(-10 -7 (-15 -1255 ((-108) (-1163 |#2|))) (-15 -1633 ((-3 (-1163 |#1|) "failed") (-1163 |#2|))) (IF (|has| |#1| (-335)) (-15 -2672 ((-3 (-1163 |#1|) "failed") (-1163 |#2|) |#2|)) (-15 -2672 ((-3 (-1163 (-379 |#1|)) "failed") (-1163 |#2|) |#2|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1562 (((-625 |#1|) (-625 $)) 36) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 35)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 28)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-581 |#1|) (-1194) (-968)) (T -581)) +((-1562 (*1 *2 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-581 *4)) (-4 *4 (-968)) (-5 *2 (-625 *4)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *1)) (-5 *4 (-1163 *1)) (-4 *1 (-581 *5)) (-4 *5 (-968)) (-5 *2 (-2 (|:| -2488 (-625 *5)) (|:| |vec| (-1163 *5))))))) +(-13 (-968) (-10 -8 (-15 -1562 ((-625 |t#1|) (-625 $))) (-15 -1562 ((-2 (|:| -2488 (-625 |t#1|)) (|:| |vec| (-1163 |t#1|))) (-625 $) (-1163 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 $) . T) ((-661) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-4135 ((|#2| (-585 |#1|) (-585 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-585 |#1|) (-585 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) |#2|) 17) ((|#2| (-585 |#1|) (-585 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|)) 12))) +(((-582 |#1| |#2|) (-10 -7 (-15 -4135 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|))) (-15 -4135 (|#2| (-585 |#1|) (-585 |#2|) |#1|)) (-15 -4135 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) |#2|)) (-15 -4135 (|#2| (-585 |#1|) (-585 |#2|) |#1| |#2|)) (-15 -4135 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) (-1 |#2| |#1|))) (-15 -4135 (|#2| (-585 |#1|) (-585 |#2|) |#1| (-1 |#2| |#1|)))) (-1011) (-1117)) (T -582)) +((-4135 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1011)) (-4 *2 (-1117)) (-5 *1 (-582 *5 *2)))) (-4135 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1011)) (-4 *6 (-1117)) (-5 *1 (-582 *5 *6)))) (-4135 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1011)) (-4 *2 (-1117)) (-5 *1 (-582 *5 *2)))) (-4135 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 *5)) (-4 *6 (-1011)) (-4 *5 (-1117)) (-5 *2 (-1 *5 *6)) (-5 *1 (-582 *6 *5)))) (-4135 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1011)) (-4 *2 (-1117)) (-5 *1 (-582 *5 *2)))) (-4135 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1011)) (-4 *6 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-582 *5 *6))))) +(-10 -7 (-15 -4135 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|))) (-15 -4135 (|#2| (-585 |#1|) (-585 |#2|) |#1|)) (-15 -4135 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) |#2|)) (-15 -4135 (|#2| (-585 |#1|) (-585 |#2|) |#1| |#2|)) (-15 -4135 ((-1 |#2| |#1|) (-585 |#1|) (-585 |#2|) (-1 |#2| |#1|))) (-15 -4135 (|#2| (-585 |#1|) (-585 |#2|) |#1| (-1 |#2| |#1|)))) +((-1367 (((-585 |#2|) (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|) 16)) (-3874 ((|#2| (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|) 18)) (-1405 (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 13))) +(((-583 |#1| |#2|) (-10 -7 (-15 -1367 ((-585 |#2|) (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|)) (-15 -3874 (|#2| (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|)) (-15 -1405 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)))) (-1117) (-1117)) (T -583)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-585 *6)) (-5 *1 (-583 *5 *6)))) (-3874 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-585 *5)) (-4 *5 (-1117)) (-4 *2 (-1117)) (-5 *1 (-583 *5 *2)))) (-1367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-585 *6)) (-4 *6 (-1117)) (-4 *5 (-1117)) (-5 *2 (-585 *5)) (-5 *1 (-583 *6 *5))))) +(-10 -7 (-15 -1367 ((-585 |#2|) (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|)) (-15 -3874 (|#2| (-1 |#2| |#1| |#2|) (-585 |#1|) |#2|)) (-15 -1405 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)))) +((-1405 (((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)) 13))) +(((-584 |#1| |#2| |#3|) (-10 -7 (-15 -1405 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)))) (-1117) (-1117) (-1117)) (T -584)) +((-1405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-4 *8 (-1117)) (-5 *2 (-585 *8)) (-5 *1 (-584 *6 *7 *8))))) +(-10 -7 (-15 -1405 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3493 ((|#1| $) NIL)) (-2111 ((|#1| $) NIL)) (-3847 (($ $) NIL)) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2258 (($ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) $) NIL (|has| |#1| (-782))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2078 (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| |#1| (-782)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-3276 (($ $) NIL (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-2410 ((|#1| $ |#1|) NIL (|has| $ (-6 -4222)))) (-1440 (($ $ $) NIL (|has| $ (-6 -4222)))) (-1907 ((|#1| $ |#1|) NIL (|has| $ (-6 -4222)))) (-2692 ((|#1| $ |#1|) NIL (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4222))) (($ $ "rest" $) NIL (|has| $ (-6 -4222))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) NIL (|has| $ (-6 -4222)))) (-1618 (($ $ $) 32 (|has| |#1| (-1011)))) (-1607 (($ $ $) 34 (|has| |#1| (-1011)))) (-1598 (($ $ $) 37 (|has| |#1| (-1011)))) (-2846 (($ (-1 (-108) |#1|) $) NIL)) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2098 ((|#1| $) NIL)) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2343 (($ $) NIL) (($ $ (-705)) NIL)) (-1552 (($ $) NIL (|has| |#1| (-1011)))) (-2366 (($ $) 31 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2502 (($ |#1| $) NIL (|has| |#1| (-1011))) (($ (-1 (-108) |#1|) $) NIL)) (-1438 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3865 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) NIL)) (-2303 (((-108) $) NIL)) (-3297 (((-519) |#1| $ (-519)) NIL (|has| |#1| (-1011))) (((-519) |#1| $) NIL (|has| |#1| (-1011))) (((-519) (-1 (-108) |#1|) $) NIL)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1524 (((-108) $) 9)) (-3393 (((-585 $) $) NIL)) (-3458 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-2063 (($) 7)) (-1822 (($ (-705) |#1|) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2511 (($ $ $) NIL (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2500 (($ $ $) NIL (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1592 (($ |#1|) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1281 (((-585 |#1|) $) NIL)) (-1668 (((-108) $) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1457 ((|#1| $) NIL) (($ $ (-705)) NIL)) (-1846 (($ $ $ (-519)) NIL) (($ |#1| $ (-519)) NIL)) (-1672 (($ $ $ (-519)) NIL) (($ |#1| $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2331 ((|#1| $) NIL) (($ $ (-705)) NIL)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3640 (($ $ |#1|) NIL (|has| $ (-6 -4222)))) (-3664 (((-108) $) NIL)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1130 (-519))) NIL) ((|#1| $ (-519)) 36) ((|#1| $ (-519) |#1|) NIL)) (-1763 (((-519) $ $) NIL)) (-2137 (($ $ (-1130 (-519))) NIL) (($ $ (-519)) NIL)) (-3720 (($ $ (-1130 (-519))) NIL) (($ $ (-519)) NIL)) (-3096 (((-108) $) NIL)) (-1407 (($ $) NIL)) (-2434 (($ $) NIL (|has| $ (-6 -4222)))) (-2067 (((-705) $) NIL)) (-3376 (($ $) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) 45 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) NIL)) (-3498 (($ |#1| $) 10)) (-3954 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4150 (($ $ $) 30) (($ |#1| $) NIL) (($ (-585 $)) NIL) (($ $ |#1|) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) NIL)) (-2915 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3707 (($ $ $) 11)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2761 (((-1065) $) 26 (|has| |#1| (-763))) (((-1065) $ (-108)) 27 (|has| |#1| (-763))) (((-1168) (-757) $) 28 (|has| |#1| (-763))) (((-1168) (-757) $ (-108)) 29 (|has| |#1| (-763)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-585 |#1|) (-13 (-605 |#1|) (-10 -8 (-15 -2063 ($)) (-15 -1524 ((-108) $)) (-15 -3498 ($ |#1| $)) (-15 -3707 ($ $ $)) (IF (|has| |#1| (-1011)) (PROGN (-15 -1618 ($ $ $)) (-15 -1607 ($ $ $)) (-15 -1598 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-763)) (-6 (-763)) |%noBranch|))) (-1117)) (T -585)) +((-2063 (*1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1117)))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-585 *3)) (-4 *3 (-1117)))) (-3498 (*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1117)))) (-3707 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1117)))) (-1618 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1011)) (-4 *2 (-1117)))) (-1607 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1011)) (-4 *2 (-1117)))) (-1598 (*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1011)) (-4 *2 (-1117))))) +(-13 (-605 |#1|) (-10 -8 (-15 -2063 ($)) (-15 -1524 ((-108) $)) (-15 -3498 ($ |#1| $)) (-15 -3707 ($ $ $)) (IF (|has| |#1| (-1011)) (PROGN (-15 -1618 ($ $ $)) (-15 -1607 ($ $ $)) (-15 -1598 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-763)) (-6 (-763)) |%noBranch|))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-2356 (($ |#1| |#1| $) 43)) (-1473 (((-108) $ (-705)) NIL)) (-2846 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1552 (($ $) 45)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2502 (($ |#1| $) 52 (|has| $ (-6 -4221))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4221)))) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221)))) (-3844 (((-585 |#1|) $) 9 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3850 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 37)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4152 ((|#1| $) 46)) (-1846 (($ |#1| $) 26) (($ |#1| $ (-705)) 42)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3212 ((|#1| $) 48)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 21)) (-1548 (($) 25)) (-3086 (((-108) $) 50)) (-1307 (((-585 (-2 (|:| -3100 |#1|) (|:| -4155 (-705)))) $) 59)) (-2436 (($) 23) (($ (-585 |#1|)) 18)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) 56 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) 19)) (-1446 (((-495) $) 34 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) NIL)) (-2217 (((-790) $) 14 (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) 22)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 61 (|has| |#1| (-1011)))) (-3532 (((-705) $) 16 (|has| $ (-6 -4221))))) +(((-586 |#1|) (-13 (-630 |#1|) (-10 -8 (-6 -4221) (-15 -3086 ((-108) $)) (-15 -2356 ($ |#1| |#1| $)))) (-1011)) (T -586)) +((-3086 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-586 *3)) (-4 *3 (-1011)))) (-2356 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1011))))) +(-13 (-630 |#1|) (-10 -8 (-6 -4221) (-15 -3086 ((-108) $)) (-15 -2356 ($ |#1| |#1| $)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ |#1| $) 23))) +(((-587 |#1|) (-1194) (-975)) (T -587)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-587 *2)) (-4 *2 (-975))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-2390 (((-703) $) 15)) (-3968 (($ $ |#1|) 55)) (-3797 (($ $) 32)) (-1894 (($ $) 31)) (-3220 (((-3 |#1| "failed") $) 47)) (-3402 ((|#1| $) NIL)) (-2324 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-2449 (((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517)) 45)) (-2115 ((|#1| $ (-517)) 30)) (-2395 ((|#2| $ (-517)) 29)) (-3027 (($ (-1 |#1| |#1|) $) 34)) (-1838 (($ (-1 |#2| |#2|) $) 38)) (-3470 (($) 10)) (-3936 (($ |#1| |#2|) 22)) (-3228 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|)))) 23)) (-2536 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))) $) 13)) (-1761 (($ |#1| $) 56)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2968 (((-107) $ $) 58)) (-2262 (((-787) $) 19) (($ |#1|) 16)) (-1572 (((-107) $ $) 25))) -(((-586 |#1| |#2| |#3|) (-13 (-1006) (-955 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -2536 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))) $)) (-15 -3936 ($ |#1| |#2|)) (-15 -3228 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))))) (-15 -2395 (|#2| $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1894 ($ $)) (-15 -3797 ($ $)) (-15 -2390 ((-703) $)) (-15 -3470 ($)) (-15 -3968 ($ $ |#1|)) (-15 -1761 ($ |#1| $)) (-15 -2324 ($ |#1| |#2| $)) (-15 -2324 ($ $ $)) (-15 -2968 ((-107) $ $)) (-15 -1838 ($ (-1 |#2| |#2|) $)) (-15 -3027 ($ (-1 |#1| |#1|) $)))) (-1006) (-23) |#2|) (T -586)) -((-2449 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1006)) (-4 *6 (-23)) (-14 *7 *6))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4))) (-3936 (*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-3228 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4)))) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))) (-2395 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1006)) (-14 *5 *2))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1006)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1894 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-3797 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4))) (-3470 (*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-3968 (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-1761 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2324 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2324 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2968 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4))) (-1838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)))) (-3027 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1006) (-955 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -2536 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))) $)) (-15 -3936 ($ |#1| |#2|)) (-15 -3228 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3898 |#2|))))) (-15 -2395 (|#2| $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -1894 ($ $)) (-15 -3797 ($ $)) (-15 -2390 ((-703) $)) (-15 -3470 ($)) (-15 -3968 ($ $ |#1|)) (-15 -1761 ($ |#1| $)) (-15 -2324 ($ |#1| |#2| $)) (-15 -2324 ($ $ $)) (-15 -2968 ((-107) $ $)) (-15 -1838 ($ (-1 |#2| |#2|) $)) (-15 -3027 ($ (-1 |#1| |#1|) $)))) -((-1969 (((-517) $) 24)) (-1734 (($ |#2| $ (-517)) 22) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) 12)) (-3413 (((-107) (-517) $) 15)) (-4117 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-583 $)) NIL))) -(((-587 |#1| |#2|) (-10 -8 (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -1969 ((-517) |#1|)) (-15 -1449 ((-583 (-517)) |#1|)) (-15 -3413 ((-107) (-517) |#1|))) (-588 |#2|) (-1112)) (T -587)) -NIL -(-10 -8 (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -4117 (|#1| (-583 |#1|))) (-15 -4117 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -1969 ((-517) |#1|)) (-15 -1449 ((-583 (-517)) |#1|)) (-15 -3413 ((-107) (-517) |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 70)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-588 |#1|) (-1189) (-1112)) (T -588)) -((-3204 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-4117 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112)))) (-4117 (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112)))) (-4117 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112)))) (-4117 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-3312 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-1734 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1112)))) (-1734 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1125 (-517))) (|has| *1 (-6 -4196)) (-4 *1 (-588 *2)) (-4 *2 (-1112))))) -(-13 (-550 (-517) |t#1|) (-138 |t#1|) (-10 -8 (-15 -3204 ($ (-703) |t#1|)) (-15 -4117 ($ $ |t#1|)) (-15 -4117 ($ |t#1| $)) (-15 -4117 ($ $ $)) (-15 -4117 ($ (-583 $))) (-15 -3312 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2612 ($ $ (-1125 (-517)))) (-15 -3779 ($ $ (-517))) (-15 -3779 ($ $ (-1125 (-517)))) (-15 -1734 ($ |t#1| $ (-517))) (-15 -1734 ($ $ $ (-517))) (IF (|has| $ (-6 -4196)) (-15 -2436 (|t#1| $ (-1125 (-517)) |t#1|)) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-1993 (((-3 |#2| "failed") |#3| |#2| (-1077) |#2| (-583 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) "failed") |#3| |#2| (-1077)) 43))) -(((-589 |#1| |#2| |#3|) (-10 -7 (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) "failed") |#3| |#2| (-1077))) (-15 -1993 ((-3 |#2| "failed") |#3| |#2| (-1077) |#2| (-583 |#2|)))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1098) (-882)) (-593 |#2|)) (T -589)) -((-1993 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) (-1993 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1077)) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1098) (-882))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3700 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4))))) -(-10 -7 (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) "failed") |#3| |#2| (-1077))) (-15 -1993 ((-3 |#2| "failed") |#3| |#2| (-1077) |#2| (-583 |#2|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-4012 (($ $) NIL (|has| |#1| (-333)))) (-1705 (($ $ $) NIL (|has| |#1| (-333)))) (-3745 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2948 (($ $ $) NIL (|has| |#1| (-333)))) (-2762 (($ $ $) NIL (|has| |#1| (-333)))) (-3612 (($ $ $) NIL (|has| |#1| (-333)))) (-1580 (($ $ $) NIL (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-1690 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) NIL)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3942 (((-703) $) NIL)) (-1346 (($ $ $) NIL (|has| |#1| (-333)))) (-1609 (($ $ $) NIL (|has| |#1| (-333)))) (-2882 (($ $ $) NIL (|has| |#1| (-333)))) (-1843 (($ $ $) NIL (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2612 ((|#1| $ |#1|) NIL)) (-2100 (($ $ $) NIL (|has| |#1| (-333)))) (-1191 (((-703) $) NIL)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) NIL)) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2365 ((|#1| $ |#1| |#1|) NIL)) (-1368 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($) NIL)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-590 |#1|) (-593 |#1|) (-207)) (T -590)) -NIL -(-593 |#1|) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-4012 (($ $) NIL (|has| |#1| (-333)))) (-1705 (($ $ $) NIL (|has| |#1| (-333)))) (-3745 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2948 (($ $ $) NIL (|has| |#1| (-333)))) (-2762 (($ $ $) NIL (|has| |#1| (-333)))) (-3612 (($ $ $) NIL (|has| |#1| (-333)))) (-1580 (($ $ $) NIL (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-1690 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) NIL)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3942 (((-703) $) NIL)) (-1346 (($ $ $) NIL (|has| |#1| (-333)))) (-1609 (($ $ $) NIL (|has| |#1| (-333)))) (-2882 (($ $ $) NIL (|has| |#1| (-333)))) (-1843 (($ $ $) NIL (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2612 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2100 (($ $ $) NIL (|has| |#1| (-333)))) (-1191 (((-703) $) NIL)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) NIL)) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2365 ((|#1| $ |#1| |#1|) NIL)) (-1368 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($) NIL)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-591 |#1| |#2|) (-13 (-593 |#1|) (-258 |#2| |#2|)) (-207) (-13 (-585 |#1|) (-10 -8 (-15 -2042 ($ $))))) (T -591)) -NIL -(-13 (-593 |#1|) (-258 |#2| |#2|)) -((-4012 (($ $) 27)) (-1368 (($ $) 25)) (-3348 (($) 12))) -(((-592 |#1| |#2|) (-10 -8 (-15 -4012 (|#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -3348 (|#1|))) (-593 |#2|) (-964)) (T -592)) -NIL -(-10 -8 (-15 -4012 (|#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -3348 (|#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-4012 (($ $) 82 (|has| |#1| (-333)))) (-1705 (($ $ $) 84 (|has| |#1| (-333)))) (-3745 (($ $ (-703)) 83 (|has| |#1| (-333)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2948 (($ $ $) 45 (|has| |#1| (-333)))) (-2762 (($ $ $) 46 (|has| |#1| (-333)))) (-3612 (($ $ $) 48 (|has| |#1| (-333)))) (-1580 (($ $ $) 43 (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 42 (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 47 (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) 74 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3402 (((-517) $) 75 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 68)) (-2364 (($ $) 64)) (-3550 (((-3 $ "failed") $) 34)) (-4172 (($ $) 55 (|has| |#1| (-421)))) (-1690 (((-107) $) 31)) (-2059 (($ |#1| (-703)) 62)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57 (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 58 (|has| |#1| (-509)))) (-3942 (((-703) $) 66)) (-1346 (($ $ $) 52 (|has| |#1| (-333)))) (-1609 (($ $ $) 53 (|has| |#1| (-333)))) (-2882 (($ $ $) 41 (|has| |#1| (-333)))) (-1843 (($ $ $) 50 (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 49 (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 54 (|has| |#1| (-333)))) (-2336 ((|#1| $) 65)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-2612 ((|#1| $ |#1|) 87)) (-2100 (($ $ $) 81 (|has| |#1| (-333)))) (-1191 (((-703) $) 67)) (-4094 ((|#1| $) 56 (|has| |#1| (-421)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) 70)) (-3186 (((-583 |#1|) $) 61)) (-1939 ((|#1| $ (-703)) 63)) (-1818 (((-703)) 29)) (-2365 ((|#1| $ |#1| |#1|) 60)) (-1368 (($ $) 85)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($) 86)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) -(((-593 |#1|) (-1189) (-964)) (T -593)) -((-3348 (*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)))) (-1368 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)))) (-1705 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-3745 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-964)) (-4 *3 (-333)))) (-4012 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-2100 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(-13 (-781 |t#1|) (-258 |t#1| |t#1|) (-10 -8 (-15 -3348 ($)) (-15 -1368 ($ $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -1705 ($ $ $)) (-15 -3745 ($ $ (-703))) (-15 -4012 ($ $)) (-15 -2100 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-258 |#1| |#1|) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-781 |#1|) . T)) -((-1297 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 73 (|has| |#1| (-27)))) (-3896 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 72 (|has| |#1| (-27))) (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 15))) -(((-594 |#1| |#2|) (-10 -7 (-15 -3896 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3896 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -1297 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |%noBranch|)) (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))) (-1134 |#1|)) (T -594)) -((-1297 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6)))))) -(-10 -7 (-15 -3896 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3896 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -1297 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |%noBranch|)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-4012 (($ $) NIL (|has| |#1| (-333)))) (-1705 (($ $ $) 28 (|has| |#1| (-333)))) (-3745 (($ $ (-703)) 31 (|has| |#1| (-333)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2948 (($ $ $) NIL (|has| |#1| (-333)))) (-2762 (($ $ $) NIL (|has| |#1| (-333)))) (-3612 (($ $ $) NIL (|has| |#1| (-333)))) (-1580 (($ $ $) NIL (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-1690 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) NIL)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3942 (((-703) $) NIL)) (-1346 (($ $ $) NIL (|has| |#1| (-333)))) (-1609 (($ $ $) NIL (|has| |#1| (-333)))) (-2882 (($ $ $) NIL (|has| |#1| (-333)))) (-1843 (($ $ $) NIL (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2612 ((|#1| $ |#1|) 24)) (-2100 (($ $ $) 33 (|has| |#1| (-333)))) (-1191 (((-703) $) NIL)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) 20) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) NIL)) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2365 ((|#1| $ |#1| |#1|) 23)) (-1368 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 21 T CONST)) (-3675 (($) 8 T CONST)) (-3348 (($) NIL)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-595 |#1| |#2|) (-593 |#1|) (-964) (-1 |#1| |#1|)) (T -595)) -NIL -(-593 |#1|) -((-1705 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-3745 ((|#2| |#2| (-703) (-1 |#1| |#1|)) 41)) (-2100 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62))) -(((-596 |#1| |#2|) (-10 -7 (-15 -1705 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3745 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -2100 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -596)) -((-2100 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))) (-3745 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))) (-1705 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4))))) -(-10 -7 (-15 -1705 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3745 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -2100 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3849 (($ $ $) 9))) -(((-597 |#1|) (-10 -8 (-15 -3849 (|#1| |#1| |#1|))) (-598)) (T -597)) -NIL -(-10 -8 (-15 -3849 (|#1| |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-3670 (($ $) 10)) (-3849 (($ $ $) 8)) (-1572 (((-107) $ $) 6)) (-3838 (($ $ $) 9))) -(((-598) (-1189)) (T -598)) -((-3670 (*1 *1 *1) (-4 *1 (-598))) (-3838 (*1 *1 *1 *1) (-4 *1 (-598))) (-3849 (*1 *1 *1 *1) (-4 *1 (-598)))) -(-13 (-97) (-10 -8 (-15 -3670 ($ $)) (-15 -3838 ($ $ $)) (-15 -3849 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-1642 (((-705) $) 15)) (-4104 (($ $ |#1|) 55)) (-1998 (($ $) 32)) (-1868 (($ $) 31)) (-1301 (((-3 |#1| "failed") $) 47)) (-1499 ((|#1| $) NIL)) (-2443 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-2184 (((-790) $ (-1 (-790) (-790) (-790)) (-1 (-790) (-790) (-790)) (-519)) 45)) (-4059 ((|#1| $ (-519)) 30)) (-2765 ((|#2| $ (-519)) 29)) (-3902 (($ (-1 |#1| |#1|) $) 34)) (-4082 (($ (-1 |#2| |#2|) $) 38)) (-1293 (($) 10)) (-2071 (($ |#1| |#2|) 22)) (-4052 (($ (-585 (-2 (|:| |gen| |#1|) (|:| -3325 |#2|)))) 23)) (-3187 (((-585 (-2 (|:| |gen| |#1|) (|:| -3325 |#2|))) $) 13)) (-3003 (($ |#1| $) 56)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2072 (((-108) $ $) 58)) (-2217 (((-790) $) 19) (($ |#1|) 16)) (-1543 (((-108) $ $) 25))) +(((-588 |#1| |#2| |#3|) (-13 (-1011) (-959 |#1|) (-10 -8 (-15 -2184 ((-790) $ (-1 (-790) (-790) (-790)) (-1 (-790) (-790) (-790)) (-519))) (-15 -3187 ((-585 (-2 (|:| |gen| |#1|) (|:| -3325 |#2|))) $)) (-15 -2071 ($ |#1| |#2|)) (-15 -4052 ($ (-585 (-2 (|:| |gen| |#1|) (|:| -3325 |#2|))))) (-15 -2765 (|#2| $ (-519))) (-15 -4059 (|#1| $ (-519))) (-15 -1868 ($ $)) (-15 -1998 ($ $)) (-15 -1642 ((-705) $)) (-15 -1293 ($)) (-15 -4104 ($ $ |#1|)) (-15 -3003 ($ |#1| $)) (-15 -2443 ($ |#1| |#2| $)) (-15 -2443 ($ $ $)) (-15 -2072 ((-108) $ $)) (-15 -4082 ($ (-1 |#2| |#2|) $)) (-15 -3902 ($ (-1 |#1| |#1|) $)))) (-1011) (-23) |#2|) (T -588)) +((-2184 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-790) (-790) (-790))) (-5 *4 (-519)) (-5 *2 (-790)) (-5 *1 (-588 *5 *6 *7)) (-4 *5 (-1011)) (-4 *6 (-23)) (-14 *7 *6))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 *4)))) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1011)) (-4 *4 (-23)) (-14 *5 *4))) (-2071 (*1 *1 *2 *3) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) (-14 *4 *3))) (-4052 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 *4)))) (-4 *3 (-1011)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-588 *3 *4 *5)))) (-2765 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *2 (-23)) (-5 *1 (-588 *4 *2 *5)) (-4 *4 (-1011)) (-14 *5 *2))) (-4059 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *2 (-1011)) (-5 *1 (-588 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1868 (*1 *1 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) (-14 *4 *3))) (-1998 (*1 *1 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) (-14 *4 *3))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1011)) (-4 *4 (-23)) (-14 *5 *4))) (-1293 (*1 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) (-14 *4 *3))) (-4104 (*1 *1 *1 *2) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) (-14 *4 *3))) (-3003 (*1 *1 *2 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) (-14 *4 *3))) (-2443 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) (-14 *4 *3))) (-2443 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) (-14 *4 *3))) (-2072 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1011)) (-4 *4 (-23)) (-14 *5 *4))) (-4082 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1011)))) (-3902 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1011)) (-5 *1 (-588 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1011) (-959 |#1|) (-10 -8 (-15 -2184 ((-790) $ (-1 (-790) (-790) (-790)) (-1 (-790) (-790) (-790)) (-519))) (-15 -3187 ((-585 (-2 (|:| |gen| |#1|) (|:| -3325 |#2|))) $)) (-15 -2071 ($ |#1| |#2|)) (-15 -4052 ($ (-585 (-2 (|:| |gen| |#1|) (|:| -3325 |#2|))))) (-15 -2765 (|#2| $ (-519))) (-15 -4059 (|#1| $ (-519))) (-15 -1868 ($ $)) (-15 -1998 ($ $)) (-15 -1642 ((-705) $)) (-15 -1293 ($)) (-15 -4104 ($ $ |#1|)) (-15 -3003 ($ |#1| $)) (-15 -2443 ($ |#1| |#2| $)) (-15 -2443 ($ $ $)) (-15 -2072 ((-108) $ $)) (-15 -4082 ($ (-1 |#2| |#2|) $)) (-15 -3902 ($ (-1 |#1| |#1|) $)))) +((-3890 (((-519) $) 24)) (-1672 (($ |#2| $ (-519)) 22) (($ $ $ (-519)) NIL)) (-3909 (((-585 (-519)) $) 12)) (-1506 (((-108) (-519) $) 15)) (-4150 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-585 $)) NIL))) +(((-589 |#1| |#2|) (-10 -8 (-15 -1672 (|#1| |#1| |#1| (-519))) (-15 -1672 (|#1| |#2| |#1| (-519))) (-15 -4150 (|#1| (-585 |#1|))) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4150 (|#1| |#2| |#1|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -3890 ((-519) |#1|)) (-15 -3909 ((-585 (-519)) |#1|)) (-15 -1506 ((-108) (-519) |#1|))) (-590 |#2|) (-1117)) (T -589)) +NIL +(-10 -8 (-15 -1672 (|#1| |#1| |#1| (-519))) (-15 -1672 (|#1| |#2| |#1| (-519))) (-15 -4150 (|#1| (-585 |#1|))) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4150 (|#1| |#2| |#1|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -3890 ((-519) |#1|)) (-15 -3909 ((-585 (-519)) |#1|)) (-15 -1506 ((-108) (-519) |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1583 (((-1168) $ (-519) (-519)) 40 (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) 8)) (-2421 ((|#1| $ (-519) |#1|) 52 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) 58 (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-2366 (($ $) 78 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#1| $) 77 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) 53 (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) 51)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-1822 (($ (-705) |#1|) 69)) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 43 (|has| (-519) (-782)))) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 44 (|has| (-519) (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1672 (($ |#1| $ (-519)) 60) (($ $ $ (-519)) 59)) (-3909 (((-585 (-519)) $) 46)) (-1506 (((-108) (-519) $) 47)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2331 ((|#1| $) 42 (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3640 (($ $ |#1|) 41 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) 48)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ (-519) |#1|) 50) ((|#1| $ (-519)) 49) (($ $ (-1130 (-519))) 63)) (-3720 (($ $ (-519)) 62) (($ $ (-1130 (-519))) 61)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 79 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 70)) (-4150 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-585 $)) 65)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-590 |#1|) (-1194) (-1117)) (T -590)) +((-1822 (*1 *1 *2 *3) (-12 (-5 *2 (-705)) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) (-4150 (*1 *1 *1 *2) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1117)))) (-4150 (*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1117)))) (-4150 (*1 *1 *1 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1117)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) (-1405 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-1130 (-519))) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) (-3720 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) (-3720 (*1 *1 *1 *2) (-12 (-5 *2 (-1130 (-519))) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) (-1672 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *1 (-590 *2)) (-4 *2 (-1117)))) (-1672 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) (-2421 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1130 (-519))) (|has| *1 (-6 -4222)) (-4 *1 (-590 *2)) (-4 *2 (-1117))))) +(-13 (-552 (-519) |t#1|) (-139 |t#1|) (-10 -8 (-15 -1822 ($ (-705) |t#1|)) (-15 -4150 ($ $ |t#1|)) (-15 -4150 ($ |t#1| $)) (-15 -4150 ($ $ $)) (-15 -4150 ($ (-585 $))) (-15 -1405 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2598 ($ $ (-1130 (-519)))) (-15 -3720 ($ $ (-519))) (-15 -3720 ($ $ (-1130 (-519)))) (-15 -1672 ($ |t#1| $ (-519))) (-15 -1672 ($ $ $ (-519))) (IF (|has| $ (-6 -4222)) (-15 -2421 (|t#1| $ (-1130 (-519)) |t#1|)) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-260 #0=(-519) |#1|) . T) ((-262 #0# |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-552 #0# |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-3442 (((-3 |#2| "failed") |#3| |#2| (-1082) |#2| (-585 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) "failed") |#3| |#2| (-1082)) 43))) +(((-591 |#1| |#2| |#3|) (-10 -7 (-15 -3442 ((-3 (-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) "failed") |#3| |#2| (-1082))) (-15 -3442 ((-3 |#2| "failed") |#3| |#2| (-1082) |#2| (-585 |#2|)))) (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135)) (-13 (-29 |#1|) (-1103) (-885)) (-595 |#2|)) (T -591)) +((-3442 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1103) (-885))) (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *1 (-591 *6 *2 *3)) (-4 *3 (-595 *2)))) (-3442 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1082)) (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-4 *4 (-13 (-29 *6) (-1103) (-885))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2070 (-585 *4)))) (-5 *1 (-591 *6 *4 *3)) (-4 *3 (-595 *4))))) +(-10 -7 (-15 -3442 ((-3 (-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) "failed") |#3| |#2| (-1082))) (-15 -3442 ((-3 |#2| "failed") |#3| |#2| (-1082) |#2| (-585 |#2|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2529 (($ $) NIL (|has| |#1| (-335)))) (-1950 (($ $ $) NIL (|has| |#1| (-335)))) (-1454 (($ $ (-705)) NIL (|has| |#1| (-335)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-2757 (($ $ $) NIL (|has| |#1| (-335)))) (-3473 (($ $ $) NIL (|has| |#1| (-335)))) (-3607 (($ $ $) NIL (|has| |#1| (-335)))) (-2246 (($ $ $) NIL (|has| |#1| (-335)))) (-2630 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-1939 (((-3 $ "failed") $ $) NIL (|has| |#1| (-335)))) (-2294 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) NIL)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-423)))) (-1568 (((-108) $) NIL)) (-4042 (($ |#1| (-705)) NIL)) (-2425 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-511)))) (-3973 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-511)))) (-3695 (((-705) $) NIL)) (-3387 (($ $ $) NIL (|has| |#1| (-335)))) (-2026 (($ $ $) NIL (|has| |#1| (-335)))) (-1513 (($ $ $) NIL (|has| |#1| (-335)))) (-1298 (($ $ $) NIL (|has| |#1| (-335)))) (-4126 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-4196 (((-3 $ "failed") $ $) NIL (|has| |#1| (-335)))) (-1209 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511)))) (-2598 ((|#1| $ |#1|) NIL)) (-2327 (($ $ $) NIL (|has| |#1| (-335)))) (-4178 (((-705) $) NIL)) (-3939 ((|#1| $) NIL (|has| |#1| (-423)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ (-379 (-519))) NIL (|has| |#1| (-959 (-379 (-519))))) (($ |#1|) NIL)) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-705)) NIL)) (-3594 (((-705)) NIL)) (-1627 ((|#1| $ |#1| |#1|) NIL)) (-3275 (($ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($) NIL)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-592 |#1|) (-595 |#1|) (-209)) (T -592)) +NIL +(-595 |#1|) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2529 (($ $) NIL (|has| |#1| (-335)))) (-1950 (($ $ $) NIL (|has| |#1| (-335)))) (-1454 (($ $ (-705)) NIL (|has| |#1| (-335)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-2757 (($ $ $) NIL (|has| |#1| (-335)))) (-3473 (($ $ $) NIL (|has| |#1| (-335)))) (-3607 (($ $ $) NIL (|has| |#1| (-335)))) (-2246 (($ $ $) NIL (|has| |#1| (-335)))) (-2630 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-1939 (((-3 $ "failed") $ $) NIL (|has| |#1| (-335)))) (-2294 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) NIL)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-423)))) (-1568 (((-108) $) NIL)) (-4042 (($ |#1| (-705)) NIL)) (-2425 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-511)))) (-3973 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-511)))) (-3695 (((-705) $) NIL)) (-3387 (($ $ $) NIL (|has| |#1| (-335)))) (-2026 (($ $ $) NIL (|has| |#1| (-335)))) (-1513 (($ $ $) NIL (|has| |#1| (-335)))) (-1298 (($ $ $) NIL (|has| |#1| (-335)))) (-4126 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-4196 (((-3 $ "failed") $ $) NIL (|has| |#1| (-335)))) (-1209 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511)))) (-2598 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2327 (($ $ $) NIL (|has| |#1| (-335)))) (-4178 (((-705) $) NIL)) (-3939 ((|#1| $) NIL (|has| |#1| (-423)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ (-379 (-519))) NIL (|has| |#1| (-959 (-379 (-519))))) (($ |#1|) NIL)) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-705)) NIL)) (-3594 (((-705)) NIL)) (-1627 ((|#1| $ |#1| |#1|) NIL)) (-3275 (($ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($) NIL)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-593 |#1| |#2|) (-13 (-595 |#1|) (-260 |#2| |#2|)) (-209) (-13 (-587 |#1|) (-10 -8 (-15 -2181 ($ $))))) (T -593)) +NIL +(-13 (-595 |#1|) (-260 |#2| |#2|)) +((-2529 (($ $) 27)) (-3275 (($ $) 25)) (-2242 (($) 12))) +(((-594 |#1| |#2|) (-10 -8 (-15 -2529 (|#1| |#1|)) (-15 -3275 (|#1| |#1|)) (-15 -2242 (|#1|))) (-595 |#2|) (-968)) (T -594)) +NIL +(-10 -8 (-15 -2529 (|#1| |#1|)) (-15 -3275 (|#1| |#1|)) (-15 -2242 (|#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-2529 (($ $) 82 (|has| |#1| (-335)))) (-1950 (($ $ $) 84 (|has| |#1| (-335)))) (-1454 (($ $ (-705)) 83 (|has| |#1| (-335)))) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-2757 (($ $ $) 45 (|has| |#1| (-335)))) (-3473 (($ $ $) 46 (|has| |#1| (-335)))) (-3607 (($ $ $) 48 (|has| |#1| (-335)))) (-2246 (($ $ $) 43 (|has| |#1| (-335)))) (-2630 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 42 (|has| |#1| (-335)))) (-1939 (((-3 $ "failed") $ $) 44 (|has| |#1| (-335)))) (-2294 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 47 (|has| |#1| (-335)))) (-1301 (((-3 (-519) "failed") $) 74 (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) 72 (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 69)) (-1499 (((-519) $) 75 (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) 73 (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) 68)) (-3218 (($ $) 64)) (-4193 (((-3 $ "failed") $) 34)) (-2177 (($ $) 55 (|has| |#1| (-423)))) (-1568 (((-108) $) 31)) (-4042 (($ |#1| (-705)) 62)) (-2425 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57 (|has| |#1| (-511)))) (-3973 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 58 (|has| |#1| (-511)))) (-3695 (((-705) $) 66)) (-3387 (($ $ $) 52 (|has| |#1| (-335)))) (-2026 (($ $ $) 53 (|has| |#1| (-335)))) (-1513 (($ $ $) 41 (|has| |#1| (-335)))) (-1298 (($ $ $) 50 (|has| |#1| (-335)))) (-4126 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 49 (|has| |#1| (-335)))) (-4196 (((-3 $ "failed") $ $) 51 (|has| |#1| (-335)))) (-1209 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 54 (|has| |#1| (-335)))) (-3197 ((|#1| $) 65)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2261 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-511)))) (-2598 ((|#1| $ |#1|) 87)) (-2327 (($ $ $) 81 (|has| |#1| (-335)))) (-4178 (((-705) $) 67)) (-3939 ((|#1| $) 56 (|has| |#1| (-423)))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ (-379 (-519))) 71 (|has| |#1| (-959 (-379 (-519))))) (($ |#1|) 70)) (-2988 (((-585 |#1|) $) 61)) (-1220 ((|#1| $ (-705)) 63)) (-3594 (((-705)) 29)) (-1627 ((|#1| $ |#1| |#1|) 60)) (-3275 (($ $) 85)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($) 86)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) +(((-595 |#1|) (-1194) (-968)) (T -595)) +((-2242 (*1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-968)))) (-3275 (*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-968)))) (-1950 (*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-1454 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-595 *3)) (-4 *3 (-968)) (-4 *3 (-335)))) (-2529 (*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-2327 (*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) +(-13 (-784 |t#1|) (-260 |t#1| |t#1|) (-10 -8 (-15 -2242 ($)) (-15 -3275 ($ $)) (IF (|has| |t#1| (-335)) (PROGN (-15 -1950 ($ $ $)) (-15 -1454 ($ $ (-705))) (-15 -2529 ($ $)) (-15 -2327 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-260 |#1| |#1|) . T) ((-383 |#1|) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-652 |#1|) |has| |#1| (-157)) ((-661) . T) ((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 |#1|) . T) ((-974 |#1|) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-784 |#1|) . T)) +((-2451 (((-585 (-592 (-379 |#2|))) (-592 (-379 |#2|))) 73 (|has| |#1| (-27)))) (-1921 (((-585 (-592 (-379 |#2|))) (-592 (-379 |#2|))) 72 (|has| |#1| (-27))) (((-585 (-592 (-379 |#2|))) (-592 (-379 |#2|)) (-1 (-585 |#1|) |#2|)) 15))) +(((-596 |#1| |#2|) (-10 -7 (-15 -1921 ((-585 (-592 (-379 |#2|))) (-592 (-379 |#2|)) (-1 (-585 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1921 ((-585 (-592 (-379 |#2|))) (-592 (-379 |#2|)))) (-15 -2451 ((-585 (-592 (-379 |#2|))) (-592 (-379 |#2|))))) |%noBranch|)) (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519)))) (-1139 |#1|)) (T -596)) +((-2451 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-4 *5 (-1139 *4)) (-5 *2 (-585 (-592 (-379 *5)))) (-5 *1 (-596 *4 *5)) (-5 *3 (-592 (-379 *5))))) (-1921 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-4 *5 (-1139 *4)) (-5 *2 (-585 (-592 (-379 *5)))) (-5 *1 (-596 *4 *5)) (-5 *3 (-592 (-379 *5))))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-4 *6 (-1139 *5)) (-5 *2 (-585 (-592 (-379 *6)))) (-5 *1 (-596 *5 *6)) (-5 *3 (-592 (-379 *6)))))) +(-10 -7 (-15 -1921 ((-585 (-592 (-379 |#2|))) (-592 (-379 |#2|)) (-1 (-585 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1921 ((-585 (-592 (-379 |#2|))) (-592 (-379 |#2|)))) (-15 -2451 ((-585 (-592 (-379 |#2|))) (-592 (-379 |#2|))))) |%noBranch|)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2529 (($ $) NIL (|has| |#1| (-335)))) (-1950 (($ $ $) 28 (|has| |#1| (-335)))) (-1454 (($ $ (-705)) 31 (|has| |#1| (-335)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-2757 (($ $ $) NIL (|has| |#1| (-335)))) (-3473 (($ $ $) NIL (|has| |#1| (-335)))) (-3607 (($ $ $) NIL (|has| |#1| (-335)))) (-2246 (($ $ $) NIL (|has| |#1| (-335)))) (-2630 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-1939 (((-3 $ "failed") $ $) NIL (|has| |#1| (-335)))) (-2294 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) NIL)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-423)))) (-1568 (((-108) $) NIL)) (-4042 (($ |#1| (-705)) NIL)) (-2425 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-511)))) (-3973 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-511)))) (-3695 (((-705) $) NIL)) (-3387 (($ $ $) NIL (|has| |#1| (-335)))) (-2026 (($ $ $) NIL (|has| |#1| (-335)))) (-1513 (($ $ $) NIL (|has| |#1| (-335)))) (-1298 (($ $ $) NIL (|has| |#1| (-335)))) (-4126 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-4196 (((-3 $ "failed") $ $) NIL (|has| |#1| (-335)))) (-1209 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511)))) (-2598 ((|#1| $ |#1|) 24)) (-2327 (($ $ $) 33 (|has| |#1| (-335)))) (-4178 (((-705) $) NIL)) (-3939 ((|#1| $) NIL (|has| |#1| (-423)))) (-2217 (((-790) $) 20) (($ (-519)) NIL) (($ (-379 (-519))) NIL (|has| |#1| (-959 (-379 (-519))))) (($ |#1|) NIL)) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-705)) NIL)) (-3594 (((-705)) NIL)) (-1627 ((|#1| $ |#1| |#1|) 23)) (-3275 (($ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 21 T CONST)) (-3611 (($) 8 T CONST)) (-2242 (($) NIL)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-597 |#1| |#2|) (-595 |#1|) (-968) (-1 |#1| |#1|)) (T -597)) +NIL +(-595 |#1|) +((-1950 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-1454 ((|#2| |#2| (-705) (-1 |#1| |#1|)) 41)) (-2327 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62))) +(((-598 |#1| |#2|) (-10 -7 (-15 -1950 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1454 (|#2| |#2| (-705) (-1 |#1| |#1|))) (-15 -2327 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-335) (-595 |#1|)) (T -598)) +((-2327 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-335)) (-5 *1 (-598 *4 *2)) (-4 *2 (-595 *4)))) (-1454 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-705)) (-5 *4 (-1 *5 *5)) (-4 *5 (-335)) (-5 *1 (-598 *5 *2)) (-4 *2 (-595 *5)))) (-1950 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-335)) (-5 *1 (-598 *4 *2)) (-4 *2 (-595 *4))))) +(-10 -7 (-15 -1950 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1454 (|#2| |#2| (-705) (-1 |#1| |#1|))) (-15 -2327 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2818 (($ $ $) 9))) +(((-599 |#1|) (-10 -8 (-15 -2818 (|#1| |#1| |#1|))) (-600)) (T -599)) +NIL +(-10 -8 (-15 -2818 (|#1| |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-1515 (($ $) 10)) (-2818 (($ $ $) 8)) (-1543 (((-108) $ $) 6)) (-2360 (($ $ $) 9))) +(((-600) (-1194)) (T -600)) +((-1515 (*1 *1 *1) (-4 *1 (-600))) (-2360 (*1 *1 *1 *1) (-4 *1 (-600))) (-2818 (*1 *1 *1 *1) (-4 *1 (-600)))) +(-13 (-97) (-10 -8 (-15 -1515 ($ $)) (-15 -2360 ($ $ $)) (-15 -2818 ($ $ $)))) (((-97) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 15)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3858 ((|#1| $) 21)) (-3480 (($ $ $) NIL (|has| |#1| (-723)))) (-4095 (($ $ $) NIL (|has| |#1| (-723)))) (-3232 (((-1060) $) 46)) (-4130 (((-1024) $) NIL)) (-2082 ((|#3| $) 22)) (-2262 (((-787) $) 42)) (-3663 (($) 10 T CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1572 (((-107) $ $) 20)) (-1618 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1596 (((-107) $ $) 24 (|has| |#1| (-723)))) (-1692 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1680 (($ $) 17) (($ $ $) NIL)) (-1666 (($ $ $) 27)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-599 |#1| |#2| |#3|) (-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |%noBranch|) (-15 -1692 ($ $ |#3|)) (-15 -1692 ($ |#1| |#3|)) (-15 -3858 (|#1| $)) (-15 -2082 (|#3| $)))) (-650 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -599)) -((-1692 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1692 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-3858 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-2082 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4))))) -(-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |%noBranch|) (-15 -1692 ($ $ |#3|)) (-15 -1692 ($ |#1| |#3|)) (-15 -3858 (|#1| $)) (-15 -2082 (|#3| $)))) -((-2095 (((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|)) 33))) -(((-600 |#1|) (-10 -7 (-15 -2095 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|)))) (-833)) (T -600)) -((-2095 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 *4))) (-5 *3 (-1073 *4)) (-4 *4 (-833)) (-5 *1 (-600 *4))))) -(-10 -7 (-15 -2095 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3375 (((-583 |#1|) $) 83)) (-1855 (($ $ (-703)) 91)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1586 (((-1180 |#1| |#2|) (-1180 |#1| |#2|) $) 48)) (-3220 (((-3 (-608 |#1|) "failed") $) NIL)) (-3402 (((-608 |#1|) $) NIL)) (-2364 (($ $) 90)) (-2516 (((-703) $) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ (-608 |#1|) |#2|) 69)) (-2833 (($ $) 87)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-2388 (((-1180 |#1| |#2|) (-1180 |#1| |#2|) $) 47)) (-3758 (((-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2325 (((-608 |#1|) $) NIL)) (-2336 ((|#2| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3552 (($ $ |#1| $) 30) (($ $ (-583 |#1|) (-583 $)) 32)) (-1191 (((-703) $) 89)) (-2279 (($ $ $) 20) (($ (-608 |#1|) (-608 |#1|)) 78) (($ (-608 |#1|) $) 76) (($ $ (-608 |#1|)) 77)) (-2262 (((-787) $) NIL) (($ |#1|) 75) (((-1171 |#1| |#2|) $) 59) (((-1180 |#1| |#2|) $) 41) (($ (-608 |#1|)) 25)) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-608 |#1|)) NIL)) (-1570 ((|#2| (-1180 |#1| |#2|) $) 43)) (-3663 (($) 23 T CONST)) (-1226 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1391 (((-3 $ "failed") (-1171 |#1| |#2|)) 61)) (-1590 (($ (-608 |#1|)) 14)) (-1572 (((-107) $ $) 44)) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) 67) (($ $ $) NIL)) (-1666 (($ $ $) 29)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-608 |#1|)) NIL))) -(((-601 |#1| |#2|) (-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -1391 ((-3 $ "failed") (-1171 |#1| |#2|))) (-15 -2279 ($ (-608 |#1|) (-608 |#1|))) (-15 -2279 ($ (-608 |#1|) $)) (-15 -2279 ($ $ (-608 |#1|))))) (-779) (-156)) (T -601)) -((-1391 (*1 *1 *2) (|partial| -12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) (-2279 (*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2279 (*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156))))) -(-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -1391 ((-3 $ "failed") (-1171 |#1| |#2|))) (-15 -2279 ($ (-608 |#1|) (-608 |#1|))) (-15 -2279 ($ (-608 |#1|) $)) (-15 -2279 ($ $ (-608 |#1|))))) -((-2508 (((-107) $) NIL) (((-107) (-1 (-107) |#2| |#2|) $) 50)) (-4109 (($ $) NIL) (($ (-1 (-107) |#2| |#2|) $) 11)) (-2582 (($ (-1 (-107) |#2|) $) 28)) (-3797 (($ $) 56)) (-3081 (($ $) 63)) (-1749 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 37)) (-1510 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1210 (((-517) |#2| $ (-517)) 61) (((-517) |#2| $) NIL) (((-517) (-1 (-107) |#2|) $) 47)) (-3204 (($ (-703) |#2|) 54)) (-2785 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 30)) (-3824 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 24)) (-3312 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2315 (($ |#2|) 14)) (-3439 (($ $ $ (-517)) 36) (($ |#2| $ (-517)) 34)) (-1985 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 46)) (-1921 (($ $ (-1125 (-517))) 44) (($ $ (-517)) 38)) (-1704 (($ $ $ (-517)) 60)) (-2453 (($ $) 58)) (-1596 (((-107) $ $) 65))) -(((-602 |#1| |#2|) (-10 -8 (-15 -2315 (|#1| |#2|)) (-15 -1921 (|#1| |#1| (-517))) (-15 -1921 (|#1| |#1| (-1125 (-517)))) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3439 (|#1| |#2| |#1| (-517))) (-15 -3439 (|#1| |#1| |#1| (-517))) (-15 -2785 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -3824 (|#1| |#1| |#1|)) (-15 -2508 ((-107) |#1|)) (-15 -1704 (|#1| |#1| |#1| (-517))) (-15 -3797 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3204 (|#1| (-703) |#2|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2453 (|#1| |#1|))) (-603 |#2|) (-1112)) (T -602)) -NIL -(-10 -8 (-15 -2315 (|#1| |#2|)) (-15 -1921 (|#1| |#1| (-517))) (-15 -1921 (|#1| |#1| (-1125 (-517)))) (-15 -1749 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3439 (|#1| |#2| |#1| (-517))) (-15 -3439 (|#1| |#1| |#1| (-517))) (-15 -2785 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2582 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1749 (|#1| |#2| |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -2785 (|#1| |#1| |#1|)) (-15 -3824 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2508 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1210 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -1210 ((-517) |#2| |#1|)) (-15 -1210 ((-517) |#2| |#1| (-517))) (-15 -3824 (|#1| |#1| |#1|)) (-15 -2508 ((-107) |#1|)) (-15 -1704 (|#1| |#1| |#1| (-517))) (-15 -3797 (|#1| |#1|)) (-15 -4109 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -4109 (|#1| |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1510 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1985 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3204 (|#1| (-703) |#2|)) (-15 -3312 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2453 (|#1| |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-2577 ((|#1| $) 65)) (-1529 (($ $) 67)) (-3351 (((-1163) $ (-517) (-517)) 97 (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 52 (|has| $ (-6 -4196)))) (-2508 (((-107) $) 142 (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) 136)) (-4109 (($ $) 146 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4196)))) (($ (-1 (-107) |#1| |#1|) $) 145 (|has| $ (-6 -4196)))) (-2149 (($ $) 141 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) 135)) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-1223 (($ $ $) 56 (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 58 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4196))) (($ $ "rest" $) 55 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 117 (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-2582 (($ (-1 (-107) |#1|) $) 129)) (-2317 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4195)))) (-2567 ((|#1| $) 66)) (-3038 (($) 7 T CONST)) (-3797 (($ $) 144 (|has| $ (-6 -4196)))) (-1894 (($ $) 134)) (-2429 (($ $) 73) (($ $ (-703)) 71)) (-3081 (($ $) 131 (|has| |#1| (-1006)))) (-2446 (($ $) 99 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 130 (|has| |#1| (-1006))) (($ (-1 (-107) |#1|) $) 125)) (-1423 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4195))) (($ |#1| $) 100 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2750 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 87)) (-1655 (((-107) $) 83)) (-1210 (((-517) |#1| $ (-517)) 139 (|has| |#1| (-1006))) (((-517) |#1| $) 138 (|has| |#1| (-1006))) (((-517) (-1 (-107) |#1|) $) 137)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) 108)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 95 (|has| (-517) (-779)))) (-3480 (($ $ $) 147 (|has| |#1| (-779)))) (-2785 (($ $ $) 132 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 128)) (-3824 (($ $ $) 140 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 133)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 94 (|has| (-517) (-779)))) (-4095 (($ $ $) 148 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2315 (($ |#1|) 122)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1447 ((|#1| $) 70) (($ $ (-703)) 68)) (-3439 (($ $ $ (-517)) 127) (($ |#1| $ (-517)) 126)) (-1734 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1449 (((-583 (-517)) $) 92)) (-3413 (((-107) (-517) $) 91)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 76) (($ $ (-703)) 74)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2837 (($ $ |#1|) 96 (|has| $ (-6 -4196)))) (-2611 (((-107) $) 84)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 90)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1125 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-3868 (((-517) $ $) 44)) (-1921 (($ $ (-1125 (-517))) 124) (($ $ (-517)) 123)) (-3779 (($ $ (-1125 (-517))) 114) (($ $ (-517)) 113)) (-1414 (((-107) $) 46)) (-2074 (($ $) 62)) (-4155 (($ $) 59 (|has| $ (-6 -4196)))) (-2792 (((-703) $) 63)) (-2736 (($ $) 64)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 143 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 107)) (-3495 (($ $ $) 61) (($ $ |#1|) 60)) (-4117 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 150 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 151 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) 149 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 152 (|has| |#1| (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-603 |#1|) (-1189) (-1112)) (T -603)) -((-2315 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1112))))) -(-13 (-1051 |t#1|) (-343 |t#1|) (-254 |t#1|) (-10 -8 (-15 -2315 ($ |t#1|)))) -(((-33) . T) ((-97) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-254 |#1|) . T) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-929 |#1|) . T) ((-1006) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-1051 |#1|) . T) ((-1112) . T) ((-1146 |#1|) . T)) -((-1993 (((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-583 (-583 |#1|)) (-583 (-1158 |#1|))) 21) (((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-623 |#1|) (-583 (-1158 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-583 (-583 |#1|)) (-1158 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|)) 13)) (-3778 (((-703) (-623 |#1|) (-1158 |#1|)) 29)) (-3454 (((-3 (-1158 |#1|) "failed") (-623 |#1|) (-1158 |#1|)) 23)) (-1432 (((-107) (-623 |#1|) (-1158 |#1|)) 26))) -(((-604 |#1|) (-10 -7 (-15 -1993 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|))) (-15 -1993 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-583 (-583 |#1|)) (-1158 |#1|))) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-623 |#1|) (-583 (-1158 |#1|)))) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-583 (-583 |#1|)) (-583 (-1158 |#1|)))) (-15 -3454 ((-3 (-1158 |#1|) "failed") (-623 |#1|) (-1158 |#1|))) (-15 -1432 ((-107) (-623 |#1|) (-1158 |#1|))) (-15 -3778 ((-703) (-623 |#1|) (-1158 |#1|)))) (-333)) (T -604)) -((-3778 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) (-1432 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) (-3454 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1158 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1158 *5) "failed")) (|:| -3700 (-583 (-1158 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1158 *5))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1158 *5) "failed")) (|:| -3700 (-583 (-1158 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1158 *5))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1158 *5) "failed")) (|:| -3700 (-583 (-1158 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1158 *5)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1158 *5) "failed")) (|:| -3700 (-583 (-1158 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1158 *5))))) -(-10 -7 (-15 -1993 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|))) (-15 -1993 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-583 (-583 |#1|)) (-1158 |#1|))) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-623 |#1|) (-583 (-1158 |#1|)))) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|))))) (-583 (-583 |#1|)) (-583 (-1158 |#1|)))) (-15 -3454 ((-3 (-1158 |#1|) "failed") (-623 |#1|) (-1158 |#1|))) (-15 -1432 ((-107) (-623 |#1|) (-1158 |#1|))) (-15 -3778 ((-703) (-623 |#1|) (-1158 |#1|)))) -((-1993 (((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|)))) |#4| (-583 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|) 45)) (-3778 (((-703) |#4| |#3|) 17)) (-3454 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1432 (((-107) |#4| |#3|) 13))) -(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1993 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|)) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3454 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1432 ((-107) |#4| |#3|)) (-15 -3778 ((-703) |#4| |#3|))) (-333) (-13 (-343 |#1|) (-10 -7 (-6 -4196))) (-13 (-343 |#1|) (-10 -7 (-6 -4196))) (-621 |#1| |#2| |#3|)) (T -605)) -((-3778 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-1432 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3454 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4196)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) (-1993 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3700 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) (-1993 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4))))) -(-10 -7 (-15 -1993 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|)) (-15 -1993 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3454 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1432 ((-107) |#4| |#3|)) (-15 -3778 ((-703) |#4| |#3|))) -((-1296 (((-2 (|:| |particular| (-3 (-1158 (-377 |#4|)) "failed")) (|:| -3700 (-583 (-1158 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)) 45))) -(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1296 ((-2 (|:| |particular| (-3 (-1158 (-377 |#4|)) "failed")) (|:| -3700 (-583 (-1158 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-509) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -606)) -((-1296 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1158 (-377 *8)) "failed")) (|:| -3700 (-583 (-1158 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8))))) -(-10 -7 (-15 -1296 ((-2 (|:| |particular| (-3 (-1158 (-377 |#4|)) "failed")) (|:| -3700 (-583 (-1158 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1966 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1991 ((|#2| $) NIL)) (-1912 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1158 (-623 |#2|))) NIL) (((-1158 (-623 |#2|)) (-1158 $)) NIL)) (-1256 (((-107) $) NIL)) (-4026 (((-1158 $)) 37)) (-3443 (((-107) $ (-703)) NIL)) (-1634 (($ |#2|) NIL)) (-3038 (($) NIL T CONST)) (-1197 (($ $) NIL (|has| |#2| (-278)))) (-1397 (((-214 |#1| |#2|) $ (-517)) NIL)) (-1963 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-1745 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2998 (((-623 |#2|)) NIL) (((-623 |#2|) (-1158 $)) NIL)) (-2496 ((|#2| $) NIL)) (-1793 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1158 $)) NIL)) (-3071 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-3928 (((-1073 (-876 |#2|))) NIL (|has| |#2| (-333)))) (-2823 (($ $ (-845)) NIL)) (-4132 ((|#2| $) NIL)) (-1363 (((-1073 |#2|) $) NIL (|has| |#2| (-509)))) (-3708 ((|#2|) NIL) ((|#2| (-1158 $)) NIL)) (-2740 (((-1073 |#2|) $) NIL)) (-2889 (((-107)) NIL)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) ((|#2| $) NIL)) (-3539 (($ (-1158 |#2|)) NIL) (($ (-1158 |#2|) (-1158 $)) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3778 (((-703) $) NIL (|has| |#2| (-509))) (((-845)) 38)) (-2557 ((|#2| $ (-517) (-517)) NIL)) (-3874 (((-107)) NIL)) (-1768 (($ $ (-845)) NIL)) (-1525 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL)) (-3850 (((-703) $) NIL (|has| |#2| (-509)))) (-1671 (((-583 (-214 |#1| |#2|)) $) NIL (|has| |#2| (-509)))) (-1409 (((-703) $) NIL)) (-3544 (((-107)) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-1779 ((|#2| $) NIL (|has| |#2| (-6 (-4197 "*"))))) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2362 (($ (-583 (-583 |#2|))) NIL)) (-2737 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-583 (-583 |#2|)) $) NIL)) (-4016 (((-107)) NIL)) (-1627 (((-107)) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3742 (((-3 (-2 (|:| |particular| $) (|:| -3700 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-3277 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1830 (((-623 |#2|)) NIL) (((-623 |#2|) (-1158 $)) NIL)) (-2002 ((|#2| $) NIL)) (-4044 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1158 $)) NIL)) (-2680 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-3221 (((-1073 (-876 |#2|))) NIL (|has| |#2| (-333)))) (-4119 (($ $ (-845)) NIL)) (-1249 ((|#2| $) NIL)) (-3556 (((-1073 |#2|) $) NIL (|has| |#2| (-509)))) (-1274 ((|#2|) NIL) ((|#2| (-1158 $)) NIL)) (-3570 (((-1073 |#2|) $) NIL)) (-1878 (((-107)) NIL)) (-3232 (((-1060) $) NIL)) (-2455 (((-107)) NIL)) (-4102 (((-107)) NIL)) (-2032 (((-107)) NIL)) (-2137 (((-3 $ "failed") $) NIL (|has| |#2| (-333)))) (-4130 (((-1024) $) NIL)) (-3377 (((-107)) NIL)) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3843 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) 22) ((|#2| $ (-517)) NIL)) (-2042 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1455 ((|#2| $) NIL)) (-4025 (($ (-583 |#2|)) NIL)) (-1974 (((-107) $) NIL)) (-1298 (((-214 |#1| |#2|) $) NIL)) (-2533 ((|#2| $) NIL (|has| |#2| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2453 (($ $) NIL)) (-1372 (((-623 |#2|) (-1158 $)) NIL) (((-1158 |#2|) $) NIL) (((-623 |#2|) (-1158 $) (-1158 $)) NIL) (((-1158 |#2|) $ (-1158 $)) 25)) (-3367 (($ (-1158 |#2|)) NIL) (((-1158 |#2|) $) NIL)) (-3861 (((-583 (-876 |#2|))) NIL) (((-583 (-876 |#2|)) (-1158 $)) NIL)) (-1970 (($ $ $) NIL)) (-1293 (((-107)) NIL)) (-2295 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-955 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) NIL)) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) 36)) (-3741 (((-583 (-1158 |#2|))) NIL (|has| |#2| (-509)))) (-2182 (($ $ $ $) NIL)) (-3450 (((-107)) NIL)) (-2365 (($ (-623 |#2|) $) NIL)) (-1272 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-2742 (($ $ $) NIL)) (-3014 (((-107)) NIL)) (-1901 (((-107)) NIL)) (-1555 (((-107)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) NIL) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-607 |#1| |#2|) (-13 (-1027 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|)) (-845) (-156)) (T -607)) -NIL -(-13 (-1027 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|)) -((-2105 (((-107) $ $) NIL)) (-3375 (((-583 |#1|) $) NIL)) (-3302 (($ $) 51)) (-2240 (((-107) $) NIL)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3549 (((-3 $ "failed") (-751 |#1|)) 23)) (-1246 (((-107) (-751 |#1|)) 15)) (-3424 (($ (-751 |#1|)) 24)) (-4105 (((-107) $ $) 29)) (-3728 (((-845) $) 36)) (-3287 (($ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3896 (((-583 $) (-751 |#1|)) 17)) (-2262 (((-787) $) 42) (($ |#1|) 33) (((-751 |#1|) $) 38) (((-612 |#1|) $) 43)) (-2036 (((-57 (-583 $)) (-583 |#1|) (-845)) 56)) (-3635 (((-583 $) (-583 |#1|) (-845)) 58)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 52)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 37))) -(((-608 |#1|) (-13 (-779) (-955 |#1|) (-10 -8 (-15 -2240 ((-107) $)) (-15 -3287 ($ $)) (-15 -3302 ($ $)) (-15 -3728 ((-845) $)) (-15 -4105 ((-107) $ $)) (-15 -2262 ((-751 |#1|) $)) (-15 -2262 ((-612 |#1|) $)) (-15 -3896 ((-583 $) (-751 |#1|))) (-15 -1246 ((-107) (-751 |#1|))) (-15 -3424 ($ (-751 |#1|))) (-15 -3549 ((-3 $ "failed") (-751 |#1|))) (-15 -3375 ((-583 |#1|) $)) (-15 -2036 ((-57 (-583 $)) (-583 |#1|) (-845))) (-15 -3635 ((-583 $) (-583 |#1|) (-845))))) (-779)) (T -608)) -((-2240 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3287 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-4105 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) (-1246 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))) (-3424 (*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3549 (*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2036 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-845)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))) (-3635 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-845)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5))))) -(-13 (-779) (-955 |#1|) (-10 -8 (-15 -2240 ((-107) $)) (-15 -3287 ($ $)) (-15 -3302 ($ $)) (-15 -3728 ((-845) $)) (-15 -4105 ((-107) $ $)) (-15 -2262 ((-751 |#1|) $)) (-15 -2262 ((-612 |#1|) $)) (-15 -3896 ((-583 $) (-751 |#1|))) (-15 -1246 ((-107) (-751 |#1|))) (-15 -3424 ($ (-751 |#1|))) (-15 -3549 ((-3 $ "failed") (-751 |#1|))) (-15 -3375 ((-583 |#1|) $)) (-15 -2036 ((-57 (-583 $)) (-583 |#1|) (-845))) (-15 -3635 ((-583 $) (-583 |#1|) (-845))))) -((-3112 ((|#2| $) 76)) (-1529 (($ $) 96)) (-3443 (((-107) $ (-703)) 26)) (-2429 (($ $) 85) (($ $ (-703)) 88)) (-1655 (((-107) $) 97)) (-1823 (((-583 $) $) 72)) (-1700 (((-107) $ $) 71)) (-2266 (((-107) $ (-703)) 24)) (-3531 (((-517) $) 46)) (-1969 (((-517) $) 45)) (-2328 (((-107) $ (-703)) 22)) (-3834 (((-107) $) 74)) (-1447 ((|#2| $) 89) (($ $ (-703)) 92)) (-1734 (($ $ $ (-517)) 62) (($ |#2| $ (-517)) 61)) (-1449 (((-583 (-517)) $) 44)) (-3413 (((-107) (-517) $) 42)) (-2420 ((|#2| $) NIL) (($ $ (-703)) 84)) (-3175 (($ $ (-517)) 100)) (-2611 (((-107) $) 99)) (-3843 (((-107) (-1 (-107) |#2|) $) 32)) (-2862 (((-583 |#2|) $) 33)) (-2612 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1125 (-517))) 58) ((|#2| $ (-517)) 40) ((|#2| $ (-517) |#2|) 41)) (-3868 (((-517) $ $) 70)) (-3779 (($ $ (-1125 (-517))) 57) (($ $ (-517)) 51)) (-1414 (((-107) $) 66)) (-2074 (($ $) 81)) (-2792 (((-703) $) 80)) (-2736 (($ $) 79)) (-2279 (($ (-583 |#2|)) 37)) (-2384 (($ $) 101)) (-3234 (((-583 $) $) 69)) (-3224 (((-107) $ $) 68)) (-1272 (((-107) (-1 (-107) |#2|) $) 31)) (-1572 (((-107) $ $) 18)) (-3573 (((-703) $) 29))) -(((-609 |#1| |#2|) (-10 -8 (-15 -2384 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-517))) (-15 -1655 ((-107) |#1|)) (-15 -2611 ((-107) |#1|)) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2862 ((-583 |#2|) |#1|)) (-15 -3413 ((-107) (-517) |#1|)) (-15 -1449 ((-583 (-517)) |#1|)) (-15 -1969 ((-517) |#1|)) (-15 -3531 ((-517) |#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -2074 (|#1| |#1|)) (-15 -2792 ((-703) |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -1447 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "last")) (-15 -1447 (|#2| |#1|)) (-15 -2429 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| "rest")) (-15 -2429 (|#1| |#1|)) (-15 -2420 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "first")) (-15 -2420 (|#2| |#1|)) (-15 -1700 ((-107) |#1| |#1|)) (-15 -3224 ((-107) |#1| |#1|)) (-15 -3868 ((-517) |#1| |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3112 (|#2| |#1|)) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703)))) (-610 |#2|) (-1112)) (T -609)) -NIL -(-10 -8 (-15 -2384 (|#1| |#1|)) (-15 -3175 (|#1| |#1| (-517))) (-15 -1655 ((-107) |#1|)) (-15 -2611 ((-107) |#1|)) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2862 ((-583 |#2|) |#1|)) (-15 -3413 ((-107) (-517) |#1|)) (-15 -1449 ((-583 (-517)) |#1|)) (-15 -1969 ((-517) |#1|)) (-15 -3531 ((-517) |#1|)) (-15 -2279 (|#1| (-583 |#2|))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -3779 (|#1| |#1| (-517))) (-15 -3779 (|#1| |#1| (-1125 (-517)))) (-15 -1734 (|#1| |#2| |#1| (-517))) (-15 -1734 (|#1| |#1| |#1| (-517))) (-15 -2074 (|#1| |#1|)) (-15 -2792 ((-703) |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -1447 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "last")) (-15 -1447 (|#2| |#1|)) (-15 -2429 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| "rest")) (-15 -2429 (|#1| |#1|)) (-15 -2420 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "first")) (-15 -2420 (|#2| |#1|)) (-15 -1700 ((-107) |#1| |#1|)) (-15 -3224 ((-107) |#1| |#1|)) (-15 -3868 ((-517) |#1| |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3112 (|#2| |#1|)) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3843 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703)))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-2577 ((|#1| $) 65)) (-1529 (($ $) 67)) (-3351 (((-1163) $ (-517) (-517)) 97 (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 52 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-1223 (($ $ $) 56 (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 58 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4196))) (($ $ "rest" $) 55 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 117 (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 102)) (-2567 ((|#1| $) 66)) (-3038 (($) 7 T CONST)) (-2314 (($ $) 124)) (-2429 (($ $) 73) (($ $ (-703)) 71)) (-2446 (($ $) 99 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 100 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 103)) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2750 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 87)) (-1655 (((-107) $) 83)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1813 (((-703) $) 123)) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) 108)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 95 (|has| (-517) (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 94 (|has| (-517) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3619 (($ $) 126)) (-2217 (((-107) $) 127)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1447 ((|#1| $) 70) (($ $ (-703)) 68)) (-1734 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1449 (((-583 (-517)) $) 92)) (-3413 (((-107) (-517) $) 91)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1839 ((|#1| $) 125)) (-2420 ((|#1| $) 76) (($ $ (-703)) 74)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2837 (($ $ |#1|) 96 (|has| $ (-6 -4196)))) (-3175 (($ $ (-517)) 122)) (-2611 (((-107) $) 84)) (-3500 (((-107) $) 128)) (-3847 (((-107) $) 129)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 90)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1125 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-3868 (((-517) $ $) 44)) (-3779 (($ $ (-1125 (-517))) 114) (($ $ (-517)) 113)) (-1414 (((-107) $) 46)) (-2074 (($ $) 62)) (-4155 (($ $) 59 (|has| $ (-6 -4196)))) (-2792 (((-703) $) 63)) (-2736 (($ $) 64)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 107)) (-3495 (($ $ $) 61 (|has| $ (-6 -4196))) (($ $ |#1|) 60 (|has| $ (-6 -4196)))) (-4117 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2384 (($ $) 121)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-610 |#1|) (-1189) (-1112)) (T -610)) -((-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1112)))) (-2317 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1112)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-3619 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112)))) (-2314 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112)))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1112)))) (-2384 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112))))) -(-13 (-1051 |t#1|) (-10 -8 (-15 -1423 ($ (-1 (-107) |t#1|) $)) (-15 -2317 ($ (-1 (-107) |t#1|) $)) (-15 -3847 ((-107) $)) (-15 -3500 ((-107) $)) (-15 -2217 ((-107) $)) (-15 -3619 ($ $)) (-15 -1839 (|t#1| $)) (-15 -2314 ($ $)) (-15 -1813 ((-703) $)) (-15 -3175 ($ $ (-517))) (-15 -2384 ($ $)))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1051 |#1|) . T) ((-1112) . T) ((-1146 |#1|) . T)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1196 (($ (-703) (-703) (-703)) 34 (|has| |#1| (-964)))) (-3443 (((-107) $ (-703)) NIL)) (-1756 ((|#1| $ (-703) (-703) (-703) |#1|) 29)) (-3038 (($) NIL T CONST)) (-2324 (($ $ $) 38 (|has| |#1| (-964)))) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-4030 (((-1158 (-703)) $) 10)) (-3236 (($ (-1077) $ $) 24)) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1951 (($ (-703)) 36 (|has| |#1| (-964)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-703) (-703) (-703)) 27)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2279 (($ (-583 (-583 (-583 |#1|)))) 45)) (-2262 (($ (-881 (-881 (-881 |#1|)))) 17) (((-881 (-881 (-881 |#1|))) $) 14) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-611 |#1|) (-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-964)) (PROGN (-15 -1196 ($ (-703) (-703) (-703))) (-15 -1951 ($ (-703))) (-15 -2324 ($ $ $))) |%noBranch|) (-15 -2279 ($ (-583 (-583 (-583 |#1|))))) (-15 -2612 (|#1| $ (-703) (-703) (-703))) (-15 -1756 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2262 ($ (-881 (-881 (-881 |#1|))))) (-15 -2262 ((-881 (-881 (-881 |#1|))) $)) (-15 -3236 ($ (-1077) $ $)) (-15 -4030 ((-1158 (-703)) $)))) (-1006)) (T -611)) -((-1196 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-964)) (-4 *3 (-1006)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-964)) (-4 *3 (-1006)))) (-2324 (*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-964)) (-4 *2 (-1006)))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1006)) (-5 *1 (-611 *3)))) (-2612 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1006)))) (-1756 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1006)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-881 (-881 (-881 *3)))) (-4 *3 (-1006)) (-5 *1 (-611 *3)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-881 (-881 (-881 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1006)))) (-3236 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-611 *3)) (-4 *3 (-1006)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1158 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1006))))) -(-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-964)) (PROGN (-15 -1196 ($ (-703) (-703) (-703))) (-15 -1951 ($ (-703))) (-15 -2324 ($ $ $))) |%noBranch|) (-15 -2279 ($ (-583 (-583 (-583 |#1|))))) (-15 -2612 (|#1| $ (-703) (-703) (-703))) (-15 -1756 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2262 ($ (-881 (-881 (-881 |#1|))))) (-15 -2262 ((-881 (-881 (-881 |#1|))) $)) (-15 -3236 ($ (-1077) $ $)) (-15 -4030 ((-1158 (-703)) $)))) -((-2105 (((-107) $ $) NIL)) (-3375 (((-583 |#1|) $) 14)) (-3302 (($ $) 18)) (-2240 (((-107) $) 19)) (-3220 (((-3 |#1| "failed") $) 22)) (-3402 ((|#1| $) 20)) (-2429 (($ $) 36)) (-2833 (($ $) 24)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-4105 (((-107) $ $) 42)) (-3728 (((-845) $) 38)) (-3287 (($ $) 17)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 ((|#1| $) 35)) (-2262 (((-787) $) 31) (($ |#1|) 23) (((-751 |#1|) $) 27)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 12)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 40)) (* (($ $ $) 34))) -(((-612 |#1|) (-13 (-779) (-955 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2262 ((-751 |#1|) $)) (-15 -2420 (|#1| $)) (-15 -3287 ($ $)) (-15 -3728 ((-845) $)) (-15 -4105 ((-107) $ $)) (-15 -2833 ($ $)) (-15 -2429 ($ $)) (-15 -2240 ((-107) $)) (-15 -3302 ($ $)) (-15 -3375 ((-583 |#1|) $)))) (-779)) (T -612)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-2420 (*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3287 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-4105 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-2833 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2429 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779))))) -(-13 (-779) (-955 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2262 ((-751 |#1|) $)) (-15 -2420 (|#1| $)) (-15 -3287 ($ $)) (-15 -3728 ((-845) $)) (-15 -4105 ((-107) $ $)) (-15 -2833 ($ $)) (-15 -2429 ($ $)) (-15 -2240 ((-107) $)) (-15 -3302 ($ $)) (-15 -3375 ((-583 |#1|) $)))) -((-2722 ((|#1| (-1 |#1| (-703) |#1|) (-703) |#1|) 11)) (-3827 ((|#1| (-1 |#1| |#1|) (-703) |#1|) 9))) -(((-613 |#1|) (-10 -7 (-15 -3827 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2722 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|))) (-1006)) (T -613)) -((-2722 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1006)) (-5 *1 (-613 *2)))) (-3827 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1006)) (-5 *1 (-613 *2))))) -(-10 -7 (-15 -3827 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2722 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|))) -((-1883 ((|#2| |#1| |#2|) 9)) (-1867 ((|#1| |#1| |#2|) 8))) -(((-614 |#1| |#2|) (-10 -7 (-15 -1867 (|#1| |#1| |#2|)) (-15 -1883 (|#2| |#1| |#2|))) (-1006) (-1006)) (T -614)) -((-1883 (*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) -(-10 -7 (-15 -1867 (|#1| |#1| |#2|)) (-15 -1883 (|#2| |#1| |#2|))) -((-3527 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-615 |#1| |#2| |#3|) (-10 -7 (-15 -3527 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1006) (-1006) (-1006)) (T -615)) -((-3527 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)) (-5 *1 (-615 *5 *6 *2))))) -(-10 -7 (-15 -3527 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2722 (((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)) 23)) (-3579 (((-1 |#1|) |#1|) 8)) (-3179 ((|#1| |#1|) 16)) (-2711 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2262 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-703)) 20))) -(((-616 |#1|) (-10 -7 (-15 -3579 ((-1 |#1|) |#1|)) (-15 -2262 ((-1 |#1|) |#1|)) (-15 -2711 (|#1| (-1 |#1| |#1|))) (-15 -2711 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3179 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2722 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)))) (-1006)) (T -616)) -((-2722 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1006)) (-5 *1 (-616 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1006)) (-5 *1 (-616 *4)))) (-3179 (*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1006)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1006)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1006)))) (-2262 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1006)))) (-3579 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1006))))) -(-10 -7 (-15 -3579 ((-1 |#1|) |#1|)) (-15 -2262 ((-1 |#1|) |#1|)) (-15 -2711 (|#1| (-1 |#1| |#1|))) (-15 -2711 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3179 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2722 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)))) -((-3973 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3542 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1373 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3319 (((-1 |#2| |#1|) |#2|) 11))) -(((-617 |#1| |#2|) (-10 -7 (-15 -3319 ((-1 |#2| |#1|) |#2|)) (-15 -3542 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1373 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3973 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1006) (-1006)) (T -617)) -((-3973 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1006)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1006)))) (-3542 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))) (-3319 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1006)) (-4 *3 (-1006))))) -(-10 -7 (-15 -3319 ((-1 |#2| |#1|) |#2|)) (-15 -3542 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1373 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3973 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-3784 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3088 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3856 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1574 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1208 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -3088 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3856 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1574 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1208 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3784 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1006) (-1006) (-1006)) (T -618)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))) (-1208 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1006)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1006)))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1006)) (-4 *4 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6))))) -(-10 -7 (-15 -3088 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3856 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1574 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1208 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3784 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-1510 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3312 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-619 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3312 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3312 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1510 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-964) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-964) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -619)) -((-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-964)) (-4 *2 (-964)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) (-3312 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-964)) (-4 *8 (-964)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-964)) (-4 *8 (-964)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8))))) -(-10 -7 (-15 -3312 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3312 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1510 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3904 (($ (-703) (-703)) 32)) (-2688 (($ $ $) 55)) (-1911 (($ |#3|) 51) (($ $) 52)) (-1912 (((-107) $) 27)) (-1393 (($ $ (-517) (-517)) 57)) (-3632 (($ $ (-517) (-517)) 58)) (-3031 (($ $ (-517) (-517) (-517) (-517)) 62)) (-1281 (($ $) 53)) (-1256 (((-107) $) 14)) (-3382 (($ $ (-517) (-517) $) 63)) (-2436 ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) 61)) (-1634 (($ (-703) |#2|) 37)) (-2362 (($ (-583 (-583 |#2|))) 35)) (-3468 (((-583 (-583 |#2|)) $) 56)) (-3095 (($ $ $) 54)) (-2333 (((-3 $ "failed") $ |#2|) 90)) (-2612 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517))) 60)) (-4025 (($ (-583 |#2|)) 39) (($ (-583 $)) 41)) (-1974 (((-107) $) 24)) (-2262 (($ |#4|) 46) (((-787) $) NIL)) (-3007 (((-107) $) 29)) (-1692 (($ $ |#2|) 92)) (-1680 (($ $ $) 67) (($ $) 70)) (-1666 (($ $ $) 65)) (** (($ $ (-703)) 79) (($ $ (-517)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-517) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87))) -(((-620 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1692 (|#1| |#1| |#2|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -3382 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3031 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -3632 (|#1| |#1| (-517) (-517))) (-15 -1393 (|#1| |#1| (-517) (-517))) (-15 -2436 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -2612 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3468 ((-583 (-583 |#2|)) |#1|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -1281 (|#1| |#1|)) (-15 -1911 (|#1| |#1|)) (-15 -1911 (|#1| |#3|)) (-15 -2262 (|#1| |#4|)) (-15 -4025 (|#1| (-583 |#1|))) (-15 -4025 (|#1| (-583 |#2|))) (-15 -1634 (|#1| (-703) |#2|)) (-15 -2362 (|#1| (-583 (-583 |#2|)))) (-15 -3904 (|#1| (-703) (-703))) (-15 -3007 ((-107) |#1|)) (-15 -1912 ((-107) |#1|)) (-15 -1974 ((-107) |#1|)) (-15 -1256 ((-107) |#1|)) (-15 -2436 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517)))) (-621 |#2| |#3| |#4|) (-964) (-343 |#2|) (-343 |#2|)) (T -620)) -NIL -(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1692 (|#1| |#1| |#2|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -3382 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3031 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -3632 (|#1| |#1| (-517) (-517))) (-15 -1393 (|#1| |#1| (-517) (-517))) (-15 -2436 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -2612 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3468 ((-583 (-583 |#2|)) |#1|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -1281 (|#1| |#1|)) (-15 -1911 (|#1| |#1|)) (-15 -1911 (|#1| |#3|)) (-15 -2262 (|#1| |#4|)) (-15 -4025 (|#1| (-583 |#1|))) (-15 -4025 (|#1| (-583 |#2|))) (-15 -1634 (|#1| (-703) |#2|)) (-15 -2362 (|#1| (-583 (-583 |#2|)))) (-15 -3904 (|#1| (-703) (-703))) (-15 -3007 ((-107) |#1|)) (-15 -1912 ((-107) |#1|)) (-15 -1974 ((-107) |#1|)) (-15 -1256 ((-107) |#1|)) (-15 -2436 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) (-517)))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3904 (($ (-703) (-703)) 97)) (-2688 (($ $ $) 87)) (-1911 (($ |#2|) 91) (($ $) 90)) (-1912 (((-107) $) 99)) (-1393 (($ $ (-517) (-517)) 83)) (-3632 (($ $ (-517) (-517)) 82)) (-3031 (($ $ (-517) (-517) (-517) (-517)) 81)) (-1281 (($ $) 89)) (-1256 (((-107) $) 101)) (-3443 (((-107) $ (-703)) 8)) (-3382 (($ $ (-517) (-517) $) 80)) (-2436 ((|#1| $ (-517) (-517) |#1|) 44) (($ $ (-583 (-517)) (-583 (-517)) $) 84)) (-3911 (($ $ (-517) |#2|) 42)) (-3101 (($ $ (-517) |#3|) 41)) (-1634 (($ (-703) |#1|) 95)) (-3038 (($) 7 T CONST)) (-1197 (($ $) 67 (|has| |#1| (-278)))) (-1397 ((|#2| $ (-517)) 46)) (-3778 (((-703) $) 66 (|has| |#1| (-509)))) (-2750 ((|#1| $ (-517) (-517) |#1|) 43)) (-2557 ((|#1| $ (-517) (-517)) 48)) (-1525 (((-583 |#1|) $) 30)) (-3850 (((-703) $) 65 (|has| |#1| (-509)))) (-1671 (((-583 |#3|) $) 64 (|has| |#1| (-509)))) (-1409 (((-703) $) 51)) (-3204 (($ (-703) (-703) |#1|) 57)) (-1422 (((-703) $) 50)) (-2266 (((-107) $ (-703)) 9)) (-1779 ((|#1| $) 62 (|has| |#1| (-6 (-4197 "*"))))) (-2560 (((-517) $) 55)) (-2970 (((-517) $) 53)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2413 (((-517) $) 54)) (-1718 (((-517) $) 52)) (-2362 (($ (-583 (-583 |#1|))) 96)) (-2737 (($ (-1 |#1| |#1|) $) 34)) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3468 (((-583 (-583 |#1|)) $) 86)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2137 (((-3 $ "failed") $) 61 (|has| |#1| (-333)))) (-3095 (($ $ $) 88)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) 56)) (-2333 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47) (($ $ (-583 (-517)) (-583 (-517))) 85)) (-4025 (($ (-583 |#1|)) 94) (($ (-583 $)) 93)) (-1974 (((-107) $) 100)) (-2533 ((|#1| $) 63 (|has| |#1| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2295 ((|#3| $ (-517)) 45)) (-2262 (($ |#3|) 92) (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-3007 (((-107) $) 98)) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1692 (($ $ |#1|) 68 (|has| |#1| (-333)))) (-1680 (($ $ $) 78) (($ $) 77)) (-1666 (($ $ $) 79)) (** (($ $ (-703)) 70) (($ $ (-517)) 60 (|has| |#1| (-333)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-517) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-621 |#1| |#2| |#3|) (-1189) (-964) (-343 |t#1|) (-343 |t#1|)) (T -621)) -((-1256 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1912 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3904 (*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2362 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1634 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (-1911 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (-1911 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1281 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3095 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2688 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) (-2612 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2436 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1393 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3632 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3031 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3382 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1666 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1680 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1680 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-964)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2333 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) (-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (-1197 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))) (-2137 (*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333))))) -(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4196) (-6 -4195) (-15 -1256 ((-107) $)) (-15 -1974 ((-107) $)) (-15 -1912 ((-107) $)) (-15 -3007 ((-107) $)) (-15 -3904 ($ (-703) (-703))) (-15 -2362 ($ (-583 (-583 |t#1|)))) (-15 -1634 ($ (-703) |t#1|)) (-15 -4025 ($ (-583 |t#1|))) (-15 -4025 ($ (-583 $))) (-15 -2262 ($ |t#3|)) (-15 -1911 ($ |t#2|)) (-15 -1911 ($ $)) (-15 -1281 ($ $)) (-15 -3095 ($ $ $)) (-15 -2688 ($ $ $)) (-15 -3468 ((-583 (-583 |t#1|)) $)) (-15 -2612 ($ $ (-583 (-517)) (-583 (-517)))) (-15 -2436 ($ $ (-583 (-517)) (-583 (-517)) $)) (-15 -1393 ($ $ (-517) (-517))) (-15 -3632 ($ $ (-517) (-517))) (-15 -3031 ($ $ (-517) (-517) (-517) (-517))) (-15 -3382 ($ $ (-517) (-517) $)) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -1680 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-517) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-703))) (IF (|has| |t#1| (-509)) (-15 -2333 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-333)) (-15 -1692 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-278)) (-15 -1197 ($ $)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -3778 ((-703) $)) (-15 -3850 ((-703) $)) (-15 -1671 ((-583 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4197 "*"))) (PROGN (-15 -2533 (|t#1| $)) (-15 -1779 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -2137 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-55 |#1| |#2| |#3|) . T) ((-1112) . T)) -((-1197 ((|#4| |#4|) 68 (|has| |#1| (-278)))) (-3778 (((-703) |#4|) 70 (|has| |#1| (-509)))) (-3850 (((-703) |#4|) 72 (|has| |#1| (-509)))) (-1671 (((-583 |#3|) |#4|) 79 (|has| |#1| (-509)))) (-1807 (((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|) 96 (|has| |#1| (-278)))) (-1779 ((|#1| |#4|) 34)) (-1799 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-509)))) (-2137 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-333)))) (-3966 ((|#4| |#4|) 55 (|has| |#1| (-509)))) (-1821 ((|#4| |#4| |#1| (-517) (-517)) 42)) (-3047 ((|#4| |#4| (-517) (-517)) 37)) (-3110 ((|#4| |#4| |#1| (-517) (-517)) 47)) (-2533 ((|#1| |#4|) 74)) (-1368 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-509))))) -(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2533 (|#1| |#4|)) (-15 -1779 (|#1| |#4|)) (-15 -3047 (|#4| |#4| (-517) (-517))) (-15 -1821 (|#4| |#4| |#1| (-517) (-517))) (-15 -3110 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3778 ((-703) |#4|)) (-15 -3850 ((-703) |#4|)) (-15 -1671 ((-583 |#3|) |#4|)) (-15 -3966 (|#4| |#4|)) (-15 -1799 ((-3 |#4| "failed") |#4|)) (-15 -1368 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -1197 (|#4| |#4|)) (-15 -1807 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -2137 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-156) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -622)) -((-2137 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1807 (*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) (-1197 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1368 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1799 (*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1671 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3778 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3110 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-1821 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-3047 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))) (-1779 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-2533 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5))))) -(-10 -7 (-15 -2533 (|#1| |#4|)) (-15 -1779 (|#1| |#4|)) (-15 -3047 (|#4| |#4| (-517) (-517))) (-15 -1821 (|#4| |#4| |#1| (-517) (-517))) (-15 -3110 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -3778 ((-703) |#4|)) (-15 -3850 ((-703) |#4|)) (-15 -1671 ((-583 |#3|) |#4|)) (-15 -3966 (|#4| |#4|)) (-15 -1799 ((-3 |#4| "failed") |#4|)) (-15 -1368 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -1197 (|#4| |#4|)) (-15 -1807 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -2137 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703) (-703)) 45)) (-2688 (($ $ $) NIL)) (-1911 (($ (-1158 |#1|)) NIL) (($ $) NIL)) (-1912 (((-107) $) NIL)) (-1393 (($ $ (-517) (-517)) 12)) (-3632 (($ $ (-517) (-517)) NIL)) (-3031 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-1281 (($ $) NIL)) (-1256 (((-107) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-3382 (($ $ (-517) (-517) $) NIL)) (-2436 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-3911 (($ $ (-517) (-1158 |#1|)) NIL)) (-3101 (($ $ (-517) (-1158 |#1|)) NIL)) (-1634 (($ (-703) |#1|) 22)) (-3038 (($) NIL T CONST)) (-1197 (($ $) 30 (|has| |#1| (-278)))) (-1397 (((-1158 |#1|) $ (-517)) NIL)) (-3778 (((-703) $) 32 (|has| |#1| (-509)))) (-2750 ((|#1| $ (-517) (-517) |#1|) 50)) (-2557 ((|#1| $ (-517) (-517)) NIL)) (-1525 (((-583 |#1|) $) NIL)) (-3850 (((-703) $) 34 (|has| |#1| (-509)))) (-1671 (((-583 (-1158 |#1|)) $) 37 (|has| |#1| (-509)))) (-1409 (((-703) $) 20)) (-3204 (($ (-703) (-703) |#1|) NIL)) (-1422 (((-703) $) 21)) (-2266 (((-107) $ (-703)) NIL)) (-1779 ((|#1| $) 28 (|has| |#1| (-6 (-4197 "*"))))) (-2560 (((-517) $) 9)) (-2970 (((-517) $) 10)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2413 (((-517) $) 11)) (-1718 (((-517) $) 46)) (-2362 (($ (-583 (-583 |#1|))) NIL)) (-2737 (($ (-1 |#1| |#1|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3468 (((-583 (-583 |#1|)) $) 58)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2137 (((-3 $ "failed") $) 41 (|has| |#1| (-333)))) (-3095 (($ $ $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2837 (($ $ |#1|) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-4025 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL) (($ (-1158 |#1|)) 51)) (-1974 (((-107) $) NIL)) (-2533 ((|#1| $) 26 (|has| |#1| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-3367 (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2295 (((-1158 |#1|) $ (-517)) NIL)) (-2262 (($ (-1158 |#1|)) NIL) (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $ $) NIL) (($ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) 23) (($ $ (-517)) 44 (|has| |#1| (-333)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1158 |#1|) $ (-1158 |#1|)) NIL) (((-1158 |#1|) (-1158 |#1|) $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-623 |#1|) (-13 (-621 |#1| (-1158 |#1|) (-1158 |#1|)) (-10 -8 (-15 -4025 ($ (-1158 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -2137 ((-3 $ "failed") $)) |%noBranch|))) (-964)) (T -623)) -((-2137 (*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-964)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-964)) (-5 *1 (-623 *3))))) -(-13 (-621 |#1| (-1158 |#1|) (-1158 |#1|)) (-10 -8 (-15 -4025 ($ (-1158 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |#1| (-333)) (-15 -2137 ((-3 $ "failed") $)) |%noBranch|))) -((-3459 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 25)) (-3977 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 21)) (-2148 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703)) 26)) (-2296 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 14)) (-2570 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 18) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 16)) (-1831 (((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|)) 20)) (-3789 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 12)) (** (((-623 |#1|) (-623 |#1|) (-703)) 30))) -(((-624 |#1|) (-10 -7 (-15 -3789 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2296 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2570 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2570 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1831 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -3977 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3459 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2148 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703)))) (-964)) (T -624)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-964)) (-5 *1 (-624 *4)))) (-2148 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-964)) (-5 *1 (-624 *4)))) (-3459 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-3977 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-1831 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-2570 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-2570 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-2296 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) (-3789 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3))))) -(-10 -7 (-15 -3789 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2296 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2570 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2570 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1831 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -3977 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3459 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2148 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703)))) -((-3989 ((|#2| |#2| |#4|) 25)) (-2138 (((-623 |#2|) |#3| |#4|) 31)) (-2492 (((-623 |#2|) |#2| |#4|) 30)) (-1323 (((-1158 |#2|) |#2| |#4|) 16)) (-2110 ((|#2| |#3| |#4|) 24)) (-2963 (((-623 |#2|) |#3| |#4| (-703) (-703)) 38)) (-1668 (((-623 |#2|) |#2| |#4| (-703)) 37))) -(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1323 ((-1158 |#2|) |#2| |#4|)) (-15 -2110 (|#2| |#3| |#4|)) (-15 -3989 (|#2| |#2| |#4|)) (-15 -2492 ((-623 |#2|) |#2| |#4|)) (-15 -1668 ((-623 |#2|) |#2| |#4| (-703))) (-15 -2138 ((-623 |#2|) |#3| |#4|)) (-15 -2963 ((-623 |#2|) |#3| |#4| (-703) (-703)))) (-1006) (-824 |#1|) (-343 |#2|) (-13 (-343 |#1|) (-10 -7 (-6 -4195)))) (T -625)) -((-2963 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1006)) (-4 *7 (-824 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4195)))))) (-2138 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-4 *6 (-824 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195)))))) (-1668 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1006)) (-4 *3 (-824 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4195)))))) (-2492 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-4 *3 (-824 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195)))))) (-3989 (*1 *2 *2 *3) (-12 (-4 *4 (-1006)) (-4 *2 (-824 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4195)))))) (-2110 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-4 *2 (-824 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195)))))) (-1323 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-4 *3 (-824 *5)) (-5 *2 (-1158 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195))))))) -(-10 -7 (-15 -1323 ((-1158 |#2|) |#2| |#4|)) (-15 -2110 (|#2| |#3| |#4|)) (-15 -3989 (|#2| |#2| |#4|)) (-15 -2492 ((-623 |#2|) |#2| |#4|)) (-15 -1668 ((-623 |#2|) |#2| |#4| (-703))) (-15 -2138 ((-623 |#2|) |#3| |#4|)) (-15 -2963 ((-623 |#2|) |#3| |#4| (-703) (-703)))) -((-1955 (((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)) 18)) (-1703 ((|#1| (-623 |#2|)) 9)) (-3253 (((-623 |#1|) (-623 |#2|)) 16))) -(((-626 |#1| |#2|) (-10 -7 (-15 -1703 (|#1| (-623 |#2|))) (-15 -3253 ((-623 |#1|) (-623 |#2|))) (-15 -1955 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)))) (-509) (-912 |#1|)) (T -626)) -((-1955 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-912 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-912 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4))))) -(-10 -7 (-15 -1703 (|#1| (-623 |#2|))) (-15 -3253 ((-623 |#1|) (-623 |#2|))) (-15 -1955 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1278 (((-623 (-632))) NIL) (((-623 (-632)) (-1158 $)) NIL)) (-1991 (((-632) $) NIL)) (-1636 (($ $) NIL (|has| (-632) (-1098)))) (-1482 (($ $) NIL (|has| (-632) (-1098)))) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-632) (-319)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-833))))) (-1322 (($ $) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| (-632) (-833))) (|has| (-632) (-333))))) (-3306 (((-388 $) $) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| (-632) (-833))) (|has| (-632) (-333))))) (-3908 (($ $) NIL (-12 (|has| (-632) (-921)) (|has| (-632) (-1098))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-833))))) (-1765 (((-107) $ $) NIL (|has| (-632) (-278)))) (-2390 (((-703)) NIL (|has| (-632) (-338)))) (-1612 (($ $) NIL (|has| (-632) (-1098)))) (-1459 (($ $) NIL (|has| (-632) (-1098)))) (-1659 (($ $) NIL (|has| (-632) (-1098)))) (-1508 (($ $) NIL (|has| (-632) (-1098)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-632) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-955 (-377 (-517)))))) (-3402 (((-517) $) NIL) (((-632) $) NIL) (((-377 (-517)) $) NIL (|has| (-632) (-955 (-377 (-517)))))) (-3539 (($ (-1158 (-632))) NIL) (($ (-1158 (-632)) (-1158 $)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-632) (-319)))) (-2383 (($ $ $) NIL (|has| (-632) (-278)))) (-4028 (((-623 (-632)) $) NIL) (((-623 (-632)) $ (-1158 $)) NIL)) (-2947 (((-623 (-632)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-632))) (|:| |vec| (-1158 (-632)))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-632) (-579 (-517)))) (((-623 (-517)) (-623 $)) NIL (|has| (-632) (-579 (-517))))) (-1510 (((-3 $ "failed") (-377 (-1073 (-632)))) NIL (|has| (-632) (-333))) (($ (-1073 (-632))) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3919 (((-632) $) 29)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-502)))) (-3748 (((-107) $) NIL (|has| (-632) (-502)))) (-3727 (((-377 (-517)) $) NIL (|has| (-632) (-502)))) (-3778 (((-845)) NIL)) (-2192 (($) NIL (|has| (-632) (-338)))) (-2356 (($ $ $) NIL (|has| (-632) (-278)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| (-632) (-278)))) (-4169 (($) NIL (|has| (-632) (-319)))) (-2634 (((-107) $) NIL (|has| (-632) (-319)))) (-2627 (($ $) NIL (|has| (-632) (-319))) (($ $ (-703)) NIL (|has| (-632) (-319)))) (-2022 (((-107) $) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| (-632) (-833))) (|has| (-632) (-333))))) (-2877 (((-2 (|:| |r| (-632)) (|:| |phi| (-632))) $) NIL (-12 (|has| (-632) (-973)) (|has| (-632) (-1098))))) (-2102 (($) NIL (|has| (-632) (-1098)))) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-632) (-810 (-349)))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-632) (-810 (-517))))) (-3250 (((-765 (-845)) $) NIL (|has| (-632) (-319))) (((-845) $) NIL (|has| (-632) (-319)))) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (-12 (|has| (-632) (-921)) (|has| (-632) (-1098))))) (-3522 (((-632) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-632) (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-1914 (((-1073 (-632)) $) NIL (|has| (-632) (-333)))) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3312 (($ (-1 (-632) (-632)) $) NIL)) (-4161 (((-845) $) NIL (|has| (-632) (-338)))) (-1232 (($ $) NIL (|has| (-632) (-1098)))) (-1497 (((-1073 (-632)) $) NIL)) (-2323 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| (-632) (-333)))) (-2578 (($) NIL (|has| (-632) (-319)) CONST)) (-2803 (($ (-845)) NIL (|has| (-632) (-338)))) (-1583 (($) NIL)) (-3931 (((-632) $) 31)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| (-632) (-278)))) (-2361 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-632) (-319)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-833))))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-833))))) (-3896 (((-388 $) $) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| (-632) (-833))) (|has| (-632) (-333))))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-632) (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| (-632) (-278)))) (-2333 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-632)) NIL (|has| (-632) (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-3898 (($ $) NIL (|has| (-632) (-1098)))) (-3552 (($ $ (-1077) (-632)) NIL (|has| (-632) (-478 (-1077) (-632)))) (($ $ (-583 (-1077)) (-583 (-632))) NIL (|has| (-632) (-478 (-1077) (-632)))) (($ $ (-583 (-265 (-632)))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-265 (-632))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-632) (-632)) NIL (|has| (-632) (-280 (-632)))) (($ $ (-583 (-632)) (-583 (-632))) NIL (|has| (-632) (-280 (-632))))) (-3388 (((-703) $) NIL (|has| (-632) (-278)))) (-2612 (($ $ (-632)) NIL (|has| (-632) (-258 (-632) (-632))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| (-632) (-278)))) (-3115 (((-632)) NIL) (((-632) (-1158 $)) NIL)) (-3667 (((-3 (-703) "failed") $ $) NIL (|has| (-632) (-319))) (((-703) $) NIL (|has| (-632) (-319)))) (-2042 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-1077)) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-3248 (((-623 (-632)) (-1158 $) (-1 (-632) (-632))) NIL (|has| (-632) (-333)))) (-2819 (((-1073 (-632))) NIL)) (-1670 (($ $) NIL (|has| (-632) (-1098)))) (-1521 (($ $) NIL (|has| (-632) (-1098)))) (-3718 (($) NIL (|has| (-632) (-319)))) (-1647 (($ $) NIL (|has| (-632) (-1098)))) (-1495 (($ $) NIL (|has| (-632) (-1098)))) (-1622 (($ $) NIL (|has| (-632) (-1098)))) (-1471 (($ $) NIL (|has| (-632) (-1098)))) (-1372 (((-623 (-632)) (-1158 $)) NIL) (((-1158 (-632)) $) NIL) (((-623 (-632)) (-1158 $) (-1158 $)) NIL) (((-1158 (-632)) $ (-1158 $)) NIL)) (-3367 (((-493) $) NIL (|has| (-632) (-558 (-493)))) (((-153 (-199)) $) NIL (|has| (-632) (-940))) (((-153 (-349)) $) NIL (|has| (-632) (-940))) (((-816 (-349)) $) NIL (|has| (-632) (-558 (-816 (-349))))) (((-816 (-517)) $) NIL (|has| (-632) (-558 (-816 (-517))))) (($ (-1073 (-632))) NIL) (((-1073 (-632)) $) NIL) (($ (-1158 (-632))) NIL) (((-1158 (-632)) $) NIL)) (-1853 (($ $) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| $ (-132)) (|has| (-632) (-833))) (|has| (-632) (-319))))) (-3913 (($ (-632) (-632)) 12)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-632)) NIL) (($ (-153 (-349))) 13) (($ (-153 (-517))) 19) (($ (-153 (-632))) 28) (($ (-153 (-634))) 25) (((-153 (-349)) $) 33) (($ (-377 (-517))) NIL (-3786 (|has| (-632) (-955 (-377 (-517)))) (|has| (-632) (-333))))) (-3385 (($ $) NIL (|has| (-632) (-319))) (((-3 $ "failed") $) NIL (-3786 (-12 (|has| (-632) (-278)) (|has| $ (-132)) (|has| (-632) (-833))) (|has| (-632) (-132))))) (-3848 (((-1073 (-632)) $) NIL)) (-1818 (((-703)) NIL)) (-3700 (((-1158 $)) NIL)) (-1706 (($ $) NIL (|has| (-632) (-1098)))) (-1564 (($ $) NIL (|has| (-632) (-1098)))) (-2944 (((-107) $ $) NIL)) (-1685 (($ $) NIL (|has| (-632) (-1098)))) (-1536 (($ $) NIL (|has| (-632) (-1098)))) (-3517 (($ $) NIL (|has| (-632) (-1098)))) (-1588 (($ $) NIL (|has| (-632) (-1098)))) (-2842 (((-632) $) NIL (|has| (-632) (-1098)))) (-2815 (($ $) NIL (|has| (-632) (-1098)))) (-1601 (($ $) NIL (|has| (-632) (-1098)))) (-1722 (($ $) NIL (|has| (-632) (-1098)))) (-1577 (($ $) NIL (|has| (-632) (-1098)))) (-1698 (($ $) NIL (|has| (-632) (-1098)))) (-1550 (($ $) NIL (|has| (-632) (-1098)))) (-2829 (($ $) NIL (|has| (-632) (-973)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-632) (-333)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-1077)) NIL (|has| (-632) (-824 (-1077)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL (|has| (-632) (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| (-632) (-1098))) (($ $ (-377 (-517))) NIL (-12 (|has| (-632) (-921)) (|has| (-632) (-1098)))) (($ $ (-517)) NIL (|has| (-632) (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-632) $) NIL) (($ $ (-632)) NIL) (($ (-377 (-517)) $) NIL (|has| (-632) (-333))) (($ $ (-377 (-517))) NIL (|has| (-632) (-333))))) -(((-627) (-13 (-357) (-150 (-632)) (-10 -8 (-15 -2262 ($ (-153 (-349)))) (-15 -2262 ($ (-153 (-517)))) (-15 -2262 ($ (-153 (-632)))) (-15 -2262 ($ (-153 (-634)))) (-15 -2262 ((-153 (-349)) $))))) (T -627)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627))))) -(-13 (-357) (-150 (-632)) (-10 -8 (-15 -2262 ($ (-153 (-349)))) (-15 -2262 ($ (-153 (-517)))) (-15 -2262 ($ (-153 (-632)))) (-15 -2262 ($ (-153 (-634)))) (-15 -2262 ((-153 (-349)) $)))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3081 (($ $) 62)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1907 (((-583 (-2 (|:| -1846 |#1|) (|:| -4140 (-703)))) $) 61)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-628 |#1|) (-1189) (-1006)) (T -628)) -((-3439 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1006)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1006)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1006)) (-5 *2 (-583 (-2 (|:| -1846 *3) (|:| -4140 (-703)))))))) -(-13 (-209 |t#1|) (-10 -8 (-15 -3439 ($ |t#1| $ (-703))) (-15 -3081 ($ $)) (-15 -1907 ((-583 (-2 (|:| -1846 |t#1|) (|:| -4140 (-703)))) $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-2690 (((-583 |#1|) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) (-517)) 46)) (-2344 ((|#1| |#1| (-517)) 45)) (-2361 ((|#1| |#1| |#1| (-517)) 35)) (-3896 (((-583 |#1|) |#1| (-517)) 38)) (-3298 ((|#1| |#1| (-517) |#1| (-517)) 32)) (-3496 (((-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) |#1| (-517)) 44))) -(((-629 |#1|) (-10 -7 (-15 -2361 (|#1| |#1| |#1| (-517))) (-15 -2344 (|#1| |#1| (-517))) (-15 -3896 ((-583 |#1|) |#1| (-517))) (-15 -3496 ((-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) |#1| (-517))) (-15 -2690 ((-583 |#1|) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) (-517))) (-15 -3298 (|#1| |#1| (-517) |#1| (-517)))) (-1134 (-517))) (T -629)) -((-3298 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3)))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3896 *5) (|:| -1191 (-517))))) (-5 *4 (-517)) (-4 *5 (-1134 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))) (-3496 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3896 *3) (|:| -1191 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1134 *4)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1134 *4)))) (-2344 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3)))) (-2361 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3))))) -(-10 -7 (-15 -2361 (|#1| |#1| |#1| (-517))) (-15 -2344 (|#1| |#1| (-517))) (-15 -3896 ((-583 |#1|) |#1| (-517))) (-15 -3496 ((-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) |#1| (-517))) (-15 -2690 ((-583 |#1|) (-583 (-2 (|:| -3896 |#1|) (|:| -1191 (-517)))) (-517))) (-15 -3298 (|#1| |#1| (-517) |#1| (-517)))) -((-3434 (((-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 17)) (-2008 (((-1037 (-199)) (-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236))) 38) (((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236))) 40) (((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236))) 42)) (-4074 (((-1037 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-583 (-236))) NIL)) (-1746 (((-1037 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236))) 43))) -(((-630) (-10 -7 (-15 -2008 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -2008 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -2008 ((-1037 (-199)) (-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -1746 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -4074 ((-1037 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -3434 ((-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -630)) -((-3434 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-867 (-199)) (-199) (-199))) (-5 *1 (-630)))) (-4074 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-630)))) (-1746 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-630)))) (-2008 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))) (-2008 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-630)))) (-2008 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-630))))) -(-10 -7 (-15 -2008 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -2008 ((-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -2008 ((-1037 (-199)) (-1037 (-199)) (-1 (-867 (-199)) (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -1746 ((-1037 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-1001 (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -4074 ((-1037 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-1001 (-199)) (-583 (-236)))) (-15 -3434 ((-1 (-867 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))))) -((-3896 (((-388 (-1073 |#4|)) (-1073 |#4|)) 73) (((-388 |#4|) |#4|) 217))) -(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4|)) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|)))) (-779) (-725) (-319) (-873 |#3| |#2| |#1|)) (T -631)) -((-3896 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-873 *6 *5 *4))))) -(-10 -7 (-15 -3896 ((-388 |#4|) |#4|)) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 84)) (-2964 (((-517) $) 30)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2147 (($ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL)) (-3038 (($) NIL T CONST)) (-3164 (($ $) NIL)) (-3220 (((-3 (-517) "failed") $) 73) (((-3 (-377 (-517)) "failed") $) 26) (((-3 (-349) "failed") $) 70)) (-3402 (((-517) $) 75) (((-377 (-517)) $) 67) (((-349) $) 68)) (-2383 (($ $ $) 96)) (-3550 (((-3 $ "failed") $) 87)) (-2356 (($ $ $) 95)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-3456 (((-845)) 77) (((-845) (-845)) 76)) (-2671 (((-107) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL)) (-3250 (((-517) $) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL)) (-3522 (($ $) NIL)) (-2321 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2407 (((-517) (-517)) 81) (((-517)) 82)) (-3480 (($ $ $) NIL) (($) NIL (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-1543 (((-517) (-517)) 79) (((-517)) 80)) (-4095 (($ $ $) NIL) (($) NIL (-12 (-2479 (|has| $ (-6 -4178))) (-2479 (|has| $ (-6 -4186)))))) (-3743 (((-517) $) 16)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 91)) (-2848 (((-845) (-517)) NIL (|has| $ (-6 -4186)))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL)) (-2713 (($ $) NIL)) (-3202 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-845)) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) 92)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1725 (((-517) $) 22)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 94)) (-3685 (((-845)) NIL) (((-845) (-845)) NIL (|has| $ (-6 -4186)))) (-1753 (((-845) (-517)) NIL (|has| $ (-6 -4186)))) (-3367 (((-349) $) NIL) (((-199) $) NIL) (((-816 (-349)) $) NIL)) (-2262 (((-787) $) 52) (($ (-517)) 63) (($ $) NIL) (($ (-377 (-517))) 66) (($ (-517)) 63) (($ (-377 (-517))) 66) (($ (-349)) 60) (((-349) $) 50) (($ (-634)) 55)) (-1818 (((-703)) 103)) (-3233 (($ (-517) (-517) (-845)) 44)) (-3126 (($ $) NIL)) (-2076 (((-845)) NIL) (((-845) (-845)) NIL (|has| $ (-6 -4186)))) (-4003 (((-845)) 35) (((-845) (-845)) 78)) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 32 T CONST)) (-3675 (($) 17 T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 83)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 101)) (-1692 (($ $ $) 65)) (-1680 (($ $) 99) (($ $ $) 100)) (-1666 (($ $ $) 98)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 90)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 97) (($ $ $) 88) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) -(((-632) (-13 (-374) (-357) (-333) (-955 (-349)) (-955 (-377 (-517))) (-134) (-10 -8 (-15 -3456 ((-845) (-845))) (-15 -3456 ((-845))) (-15 -4003 ((-845) (-845))) (-15 -4003 ((-845))) (-15 -1543 ((-517) (-517))) (-15 -1543 ((-517))) (-15 -2407 ((-517) (-517))) (-15 -2407 ((-517))) (-15 -2262 ((-349) $)) (-15 -2262 ($ (-634))) (-15 -3743 ((-517) $)) (-15 -1725 ((-517) $)) (-15 -3233 ($ (-517) (-517) (-845)))))) (T -632)) -((-4003 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3456 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))) (-1543 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-1543 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2407 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2407 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) (-3233 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-845)) (-5 *1 (-632))))) -(-13 (-374) (-357) (-333) (-955 (-349)) (-955 (-377 (-517))) (-134) (-10 -8 (-15 -3456 ((-845) (-845))) (-15 -3456 ((-845))) (-15 -4003 ((-845) (-845))) (-15 -4003 ((-845))) (-15 -1543 ((-517) (-517))) (-15 -1543 ((-517))) (-15 -2407 ((-517) (-517))) (-15 -2407 ((-517))) (-15 -2262 ((-349) $)) (-15 -2262 ($ (-634))) (-15 -3743 ((-517) $)) (-15 -1725 ((-517) $)) (-15 -3233 ($ (-517) (-517) (-845))))) -((-3574 (((-623 |#1|) (-623 |#1|) |#1| |#1|) 65)) (-1197 (((-623 |#1|) (-623 |#1|) |#1|) 48)) (-2444 (((-623 |#1|) (-623 |#1|) |#1|) 66)) (-2153 (((-623 |#1|) (-623 |#1|)) 49)) (-1807 (((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|) 64))) -(((-633 |#1|) (-10 -7 (-15 -2153 ((-623 |#1|) (-623 |#1|))) (-15 -1197 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2444 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3574 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -1807 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|))) (-278)) (T -633)) -((-1807 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))) (-3574 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2444 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-1197 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3))))) -(-10 -7 (-15 -2153 ((-623 |#1|) (-623 |#1|))) (-15 -1197 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2444 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -3574 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -1807 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2199 (($ $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2800 (($ $ $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL)) (-2127 (($ $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) 27)) (-3402 (((-517) $) 25)) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL)) (-3748 (((-107) $) NIL)) (-3727 (((-377 (-517)) $) NIL)) (-2192 (($ $) NIL) (($) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1214 (($ $ $ $) NIL)) (-4146 (($ $ $) NIL)) (-2671 (((-107) $) NIL)) (-3624 (($ $ $) NIL)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL)) (-1690 (((-107) $) NIL)) (-3448 (((-107) $) NIL)) (-1639 (((-3 $ "failed") $) NIL)) (-2321 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3721 (($ $ $ $) NIL)) (-3480 (($ $ $) NIL)) (-3029 (((-845) (-845)) 10) (((-845)) 9)) (-4095 (($ $ $) NIL)) (-2628 (($ $) NIL)) (-3728 (($ $) NIL)) (-2323 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-3598 (($ $ $) NIL)) (-2578 (($) NIL T CONST)) (-4022 (($ $) NIL)) (-4130 (((-1024) $) NIL) (($ $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ (-583 $)) NIL) (($ $ $) NIL)) (-2038 (($ $) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL) (($ $ (-703)) NIL)) (-2909 (($ $) NIL)) (-2453 (($ $) NIL)) (-3367 (((-199) $) NIL) (((-349) $) NIL) (((-816 (-517)) $) NIL) (((-493) $) NIL) (((-517) $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) 24) (($ $) NIL) (($ (-517)) 24) (((-286 $) (-286 (-517))) 18)) (-1818 (((-703)) NIL)) (-1638 (((-107) $ $) NIL)) (-1462 (($ $ $) NIL)) (-4003 (($) NIL)) (-2944 (((-107) $ $) NIL)) (-2006 (($ $ $ $) NIL)) (-2829 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL) (($ $ (-703)) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL))) -(((-634) (-13 (-357) (-502) (-10 -8 (-15 -3029 ((-845) (-845))) (-15 -3029 ((-845))) (-15 -2262 ((-286 $) (-286 (-517))))))) (T -634)) -((-3029 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-634)))) (-3029 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-634)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634))))) -(-13 (-357) (-502) (-10 -8 (-15 -3029 ((-845) (-845))) (-15 -3029 ((-845))) (-15 -2262 ((-286 $) (-286 (-517)))))) -((-2523 (((-1 |#4| |#2| |#3|) |#1| (-1077) (-1077)) 19)) (-2385 (((-1 |#4| |#2| |#3|) (-1077)) 12))) -(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2385 ((-1 |#4| |#2| |#3|) (-1077))) (-15 -2523 ((-1 |#4| |#2| |#3|) |#1| (-1077) (-1077)))) (-558 (-493)) (-1112) (-1112) (-1112)) (T -635)) -((-2523 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1077)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112)) (-4 *7 (-1112))))) -(-10 -7 (-15 -2385 ((-1 |#4| |#2| |#3|) (-1077))) (-15 -2523 ((-1 |#4| |#2| |#3|) |#1| (-1077) (-1077)))) -((-2105 (((-107) $ $) NIL)) (-1798 (((-1163) $ (-703)) 14)) (-1210 (((-703) $) 12)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 25)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 24))) -(((-636 |#1|) (-13 (-124) (-557 |#1|) (-10 -8 (-15 -2262 ($ |#1|)))) (-1006)) (T -636)) -((-2262 (*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1006))))) -(-13 (-124) (-557 |#1|) (-10 -8 (-15 -2262 ($ |#1|)))) -((-3982 (((-1 (-199) (-199) (-199)) |#1| (-1077) (-1077)) 33) (((-1 (-199) (-199)) |#1| (-1077)) 38))) -(((-637 |#1|) (-10 -7 (-15 -3982 ((-1 (-199) (-199)) |#1| (-1077))) (-15 -3982 ((-1 (-199) (-199) (-199)) |#1| (-1077) (-1077)))) (-558 (-493))) (T -637)) -((-3982 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1077)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) (-3982 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493)))))) -(-10 -7 (-15 -3982 ((-1 (-199) (-199)) |#1| (-1077))) (-15 -3982 ((-1 (-199) (-199) (-199)) |#1| (-1077) (-1077)))) -((-2218 (((-1077) |#1| (-1077) (-583 (-1077))) 9) (((-1077) |#1| (-1077) (-1077) (-1077)) 12) (((-1077) |#1| (-1077) (-1077)) 11) (((-1077) |#1| (-1077)) 10))) -(((-638 |#1|) (-10 -7 (-15 -2218 ((-1077) |#1| (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-1077) (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-583 (-1077))))) (-558 (-493))) (T -638)) -((-2218 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1077))) (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2218 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2218 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-2218 (*1 *2 *3 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493)))))) -(-10 -7 (-15 -2218 ((-1077) |#1| (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-1077) (-1077))) (-15 -2218 ((-1077) |#1| (-1077) (-583 (-1077))))) -((-2392 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-639 |#1| |#2|) (-10 -7 (-15 -2392 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1112) (-1112)) (T -639)) -((-2392 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112))))) -(-10 -7 (-15 -2392 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-3943 (((-1 |#3| |#2|) (-1077)) 11)) (-2523 (((-1 |#3| |#2|) |#1| (-1077)) 21))) -(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -3943 ((-1 |#3| |#2|) (-1077))) (-15 -2523 ((-1 |#3| |#2|) |#1| (-1077)))) (-558 (-493)) (-1112) (-1112)) (T -640)) -((-2523 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112))))) -(-10 -7 (-15 -3943 ((-1 |#3| |#2|) (-1077))) (-15 -2523 ((-1 |#3| |#2|) |#1| (-1077)))) -((-1475 (((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1158 (-583 (-1073 |#3|))) |#3|) 59)) (-2204 (((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|) 72)) (-2158 (((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1073 |#4|)) (-1158 (-583 (-1073 |#3|))) |#3|) 32))) -(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2158 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1073 |#4|)) (-1158 (-583 (-1073 |#3|))) |#3|)) (-15 -2204 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -1475 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1158 (-583 (-1073 |#3|))) |#3|))) (-725) (-779) (-278) (-873 |#3| |#1| |#2|)) (T -641)) -((-1475 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1073 *13))) (-5 *3 (-1073 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1158 (-583 (-1073 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-873 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))) (-2204 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1073 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-873 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1073 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1073 *12)))) (-2158 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1073 *11))) (-5 *3 (-1073 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1158 (-583 (-1073 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-873 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11))))) -(-10 -7 (-15 -2158 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1073 |#4|)) (-1158 (-583 (-1073 |#3|))) |#3|)) (-15 -2204 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -1475 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-583 |#2|) (-583 (-1073 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1158 (-583 (-1073 |#3|))) |#3|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2364 (($ $) 41)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-2059 (($ |#1| (-703)) 39)) (-3942 (((-703) $) 43)) (-2336 ((|#1| $) 42)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1191 (((-703) $) 44)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38 (|has| |#1| (-156)))) (-1939 ((|#1| $ (-703)) 40)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-642 |#1|) (-1189) (-964)) (T -642)) -((-1191 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-964)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-964)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-964)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-964))))) -(-13 (-964) (-106 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -1191 ((-703) $)) (-15 -3942 ((-703) $)) (-15 -2336 (|t#1| $)) (-15 -2364 ($ $)) (-15 -1939 (|t#1| $ (-703))) (-15 -2059 ($ |t#1| (-703))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-3312 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3312 (|#6| (-1 |#4| |#1|) |#3|))) (-509) (-1134 |#1|) (-1134 (-377 |#2|)) (-509) (-1134 |#4|) (-1134 (-377 |#5|))) (T -643)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1134 *5)) (-4 *2 (-1134 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1134 (-377 *6))) (-4 *8 (-1134 *7))))) -(-10 -7 (-15 -3312 (|#6| (-1 |#4| |#1|) |#3|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-1510 (($ |#1| |#2|) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2263 ((|#2| $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1503 (((-3 $ "failed") $ $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) ((|#1| $) NIL)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) -(((-644 |#1| |#2| |#3| |#4| |#5|) (-13 (-333) (-10 -8 (-15 -2263 (|#2| $)) (-15 -2262 (|#1| $)) (-15 -1510 ($ |#1| |#2|)) (-15 -1503 ((-3 $ "failed") $ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -644)) -((-2263 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2262 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1510 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1503 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-333) (-10 -8 (-15 -2263 (|#2| $)) (-15 -2262 (|#1| $)) (-15 -1510 ($ |#1| |#2|)) (-15 -1503 ((-3 $ "failed") $ $)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 30)) (-1335 (((-1158 |#1|) $ (-703)) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-4170 (($ (-1073 |#1|)) NIL)) (-1428 (((-1073 $) $ (-992)) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-992))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-4068 (($ $ $) NIL (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2390 (((-703)) 47 (|has| |#1| (-338)))) (-1401 (($ $ (-703)) NIL)) (-1861 (($ $ (-703)) NIL)) (-2535 ((|#2| |#2|) 44)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-992) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-992) $) NIL)) (-2133 (($ $ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $ $) NIL (|has| |#1| (-156)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) 34)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-1510 (($ |#2|) 42)) (-3550 (((-3 $ "failed") $) 85)) (-2192 (($) 51 (|has| |#1| (-338)))) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (($ $ $) NIL)) (-1554 (($ $ $) NIL (|has| |#1| (-509)))) (-1868 (((-2 (|:| -1570 |#1|) (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1332 (((-881 $)) 79)) (-1760 (($ $ |#1| (-703) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-992) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-992) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-1053)))) (-2069 (($ (-1073 |#1|) (-992)) NIL) (($ (-1073 $) (-992)) NIL)) (-2113 (($ $ (-703)) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) 77) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-992)) NIL) (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2263 ((|#2|) 45)) (-3942 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-703) (-703)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3634 (((-1073 |#1|) $) NIL)) (-1958 (((-3 (-992) "failed") $) NIL)) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-1497 ((|#2| $) 41)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) 28)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-992)) (|:| -1725 (-703))) "failed") $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) NIL (|has| |#1| (-1053)) CONST)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3593 (($ $) 78 (|has| |#1| (-319)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-992) |#1|) NIL) (($ $ (-583 (-992)) (-583 |#1|)) NIL) (($ $ (-992) $) NIL) (($ $ (-583 (-992)) (-583 $)) NIL)) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3767 (((-3 $ "failed") $ (-703)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 86 (|has| |#1| (-333)))) (-3115 (($ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2042 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1191 (((-703) $) 32) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-992) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-3278 (((-881 $)) 36)) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2262 (((-787) $) 61) (($ (-517)) NIL) (($ |#1|) 58) (($ (-992)) NIL) (($ |#2|) 68) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) 63) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 20 T CONST)) (-2477 (((-1158 |#1|) $) 75)) (-1467 (($ (-1158 |#1|)) 50)) (-3675 (($) 8 T CONST)) (-3348 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2703 (((-1158 |#1|) $) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 69)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) 72) (($ $ $) NIL)) (-1666 (($ $ $) 33)) (** (($ $ (-845)) NIL) (($ $ (-703)) 80)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 57) (($ $ $) 74) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-645 |#1| |#2|) (-13 (-1134 |#1|) (-10 -8 (-15 -2535 (|#2| |#2|)) (-15 -2263 (|#2|)) (-15 -1510 ($ |#2|)) (-15 -1497 (|#2| $)) (-15 -2262 ($ |#2|)) (-15 -2477 ((-1158 |#1|) $)) (-15 -1467 ($ (-1158 |#1|))) (-15 -2703 ((-1158 |#1|) $)) (-15 -1332 ((-881 $))) (-15 -3278 ((-881 $))) (IF (|has| |#1| (-319)) (-15 -3593 ($ $)) |%noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |%noBranch|))) (-964) (-1134 |#1|)) (T -645)) -((-2535 (*1 *2 *2) (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3)))) (-2263 (*1 *2) (-12 (-4 *2 (-1134 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-964)))) (-1510 (*1 *1 *2) (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3)))) (-1497 (*1 *2 *1) (-12 (-4 *2 (-1134 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-964)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3)))) (-2477 (*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-1158 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1134 *3)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-964)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1134 *3)))) (-2703 (*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-1158 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1134 *3)))) (-1332 (*1 *2) (-12 (-4 *3 (-964)) (-5 *2 (-881 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1134 *3)))) (-3278 (*1 *2) (-12 (-4 *3 (-964)) (-5 *2 (-881 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1134 *3)))) (-3593 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-964)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1134 *2))))) -(-13 (-1134 |#1|) (-10 -8 (-15 -2535 (|#2| |#2|)) (-15 -2263 (|#2|)) (-15 -1510 ($ |#2|)) (-15 -1497 (|#2| $)) (-15 -2262 ($ |#2|)) (-15 -2477 ((-1158 |#1|) $)) (-15 -1467 ($ (-1158 |#1|))) (-15 -2703 ((-1158 |#1|) $)) (-15 -1332 ((-881 $))) (-15 -3278 ((-881 $))) (IF (|has| |#1| (-319)) (-15 -3593 ($ $)) |%noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |%noBranch|))) -((-2105 (((-107) $ $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-2803 ((|#1| $) 13)) (-4130 (((-1024) $) NIL)) (-1725 ((|#2| $) 12)) (-2279 (($ |#1| |#2|) 16)) (-2262 (((-787) $) NIL) (($ (-2 (|:| -2803 |#1|) (|:| -1725 |#2|))) 15) (((-2 (|:| -2803 |#1|) (|:| -1725 |#2|)) $) 14)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 11))) -(((-646 |#1| |#2| |#3|) (-13 (-779) (-10 -8 (-15 -1725 (|#2| $)) (-15 -2803 (|#1| $)) (-15 -2262 ($ (-2 (|:| -2803 |#1|) (|:| -1725 |#2|)))) (-15 -2262 ((-2 (|:| -2803 |#1|) (|:| -1725 |#2|)) $)) (-15 -2279 ($ |#1| |#2|)))) (-779) (-1006) (-1 (-107) (-2 (|:| -2803 |#1|) (|:| -1725 |#2|)) (-2 (|:| -2803 |#1|) (|:| -1725 |#2|)))) (T -646)) -((-1725 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -2803 *3) (|:| -1725 *2)) (-2 (|:| -2803 *3) (|:| -1725 *2)))))) (-2803 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1006)) (-14 *4 (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *3)) (-2 (|:| -2803 *2) (|:| -1725 *3)))))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2803 *3) (|:| -1725 *4))) (-4 *3 (-779)) (-4 *4 (-1006)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2803 *3) (|:| -1725 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1006)) (-14 *5 (-1 (-107) *2 *2)))) (-2279 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1006)) (-14 *4 (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *3)) (-2 (|:| -2803 *2) (|:| -1725 *3))))))) -(-13 (-779) (-10 -8 (-15 -1725 (|#2| $)) (-15 -2803 (|#1| $)) (-15 -2262 ($ (-2 (|:| -2803 |#1|) (|:| -1725 |#2|)))) (-15 -2262 ((-2 (|:| -2803 |#1|) (|:| -1725 |#2|)) $)) (-15 -2279 ($ |#1| |#2|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 59)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 89) (((-3 (-109) "failed") $) 95)) (-3402 ((|#1| $) NIL) (((-109) $) 39)) (-3550 (((-3 $ "failed") $) 90)) (-2618 ((|#2| (-109) |#2|) 82)) (-1690 (((-107) $) NIL)) (-1902 (($ |#1| (-331 (-109))) 13)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3364 (($ $ (-1 |#2| |#2|)) 58)) (-3490 (($ $ (-1 |#2| |#2|)) 44)) (-2612 ((|#2| $ |#2|) 32)) (-3736 ((|#1| |#1|) 100 (|has| |#1| (-156)))) (-2262 (((-787) $) 66) (($ (-517)) 17) (($ |#1|) 16) (($ (-109)) 23)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) 36)) (-1368 (($ $) 99 (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-156)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 20 T CONST)) (-3675 (($) 9 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) 48) (($ $ $) NIL)) (-1666 (($ $ $) 73)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) 57)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-156))) (($ $ |#1|) 97 (|has| |#1| (-156))))) -(((-647 |#1| |#2|) (-13 (-964) (-955 |#1|) (-955 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1368 ($ $)) (-15 -1368 ($ $ $)) (-15 -3736 (|#1| |#1|))) |%noBranch|) (-15 -3490 ($ $ (-1 |#2| |#2|))) (-15 -3364 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -2618 (|#2| (-109) |#2|)) (-15 -1902 ($ |#1| (-331 (-109)))))) (-964) (-585 |#1|)) (T -647)) -((-1368 (*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-1368 (*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3736 (*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3490 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-964)) (-5 *1 (-647 *3 *4)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-964)) (-5 *1 (-647 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-964)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-964)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) (-2618 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-964)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) (-1902 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-964)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2))))) -(-13 (-964) (-955 |#1|) (-955 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1368 ($ $)) (-15 -1368 ($ $ $)) (-15 -3736 (|#1| |#1|))) |%noBranch|) (-15 -3490 ($ $ (-1 |#2| |#2|))) (-15 -3364 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -2618 (|#2| (-109) |#2|)) (-15 -1902 ($ |#1| (-331 (-109)))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 33)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1510 (($ |#1| |#2|) 25)) (-3550 (((-3 $ "failed") $) 47)) (-1690 (((-107) $) 35)) (-2263 ((|#2| $) 12)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 48)) (-4130 (((-1024) $) NIL)) (-1503 (((-3 $ "failed") $ $) 46)) (-2262 (((-787) $) 24) (($ (-517)) 19) ((|#1| $) 13)) (-1818 (((-703)) 28)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 16 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 38)) (-1680 (($ $) 43) (($ $ $) 37)) (-1666 (($ $ $) 40)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 21) (($ $ $) 20))) -(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-964) (-10 -8 (-15 -2263 (|#2| $)) (-15 -2262 (|#1| $)) (-15 -1510 ($ |#1| |#2|)) (-15 -1503 ((-3 $ "failed") $ $)) (-15 -3550 ((-3 $ "failed") $)) (-15 -2291 ($ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -648)) -((-3550 (*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2263 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2262 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1510 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1503 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2291 (*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-964) (-10 -8 (-15 -2263 (|#2| $)) (-15 -2262 (|#1| $)) (-15 -1510 ($ |#1| |#2|)) (-15 -1503 ((-3 $ "failed") $ $)) (-15 -3550 ((-3 $ "failed") $)) (-15 -2291 ($ $)))) -((* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-649 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) (-650 |#2|) (-156)) (T -649)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-650 |#1|) (-1189) (-156)) (T -650)) -NIL -(-13 (-106 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-970 |#1|) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-2127 (($ |#1|) 17) (($ $ |#1|) 20)) (-2029 (($ |#1|) 18) (($ $ |#1|) 21)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1690 (((-107) $) NIL)) (-3384 (($ |#1| |#1| |#1| |#1|) 8)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 16)) (-4130 (((-1024) $) NIL)) (-3552 ((|#1| $ |#1|) 24) (((-765 |#1|) $ (-765 |#1|)) 32)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-2262 (((-787) $) 39)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 9 T CONST)) (-1572 (((-107) $ $) 44)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 14))) -(((-651 |#1|) (-13 (-442) (-10 -8 (-15 -3384 ($ |#1| |#1| |#1| |#1|)) (-15 -2127 ($ |#1|)) (-15 -2029 ($ |#1|)) (-15 -3550 ($)) (-15 -2127 ($ $ |#1|)) (-15 -2029 ($ $ |#1|)) (-15 -3550 ($ $)) (-15 -3552 (|#1| $ |#1|)) (-15 -3552 ((-765 |#1|) $ (-765 |#1|))))) (-333)) (T -651)) -((-3384 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2127 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2029 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3550 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2029 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3550 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3552 (*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3552 (*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3))))) -(-13 (-442) (-10 -8 (-15 -3384 ($ |#1| |#1| |#1| |#1|)) (-15 -2127 ($ |#1|)) (-15 -2029 ($ |#1|)) (-15 -3550 ($)) (-15 -2127 ($ $ |#1|)) (-15 -2029 ($ $ |#1|)) (-15 -3550 ($ $)) (-15 -3552 (|#1| $ |#1|)) (-15 -3552 ((-765 |#1|) $ (-765 |#1|))))) -((-2823 (($ $ (-845)) 12)) (-4119 (($ $ (-845)) 13)) (** (($ $ (-845)) 10))) -(((-652 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-845))) (-15 -4119 (|#1| |#1| (-845))) (-15 -2823 (|#1| |#1| (-845)))) (-653)) (T -652)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-845))) (-15 -4119 (|#1| |#1| (-845))) (-15 -2823 (|#1| |#1| (-845)))) -((-2105 (((-107) $ $) 7)) (-2823 (($ $ (-845)) 15)) (-4119 (($ $ (-845)) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6)) (** (($ $ (-845)) 13)) (* (($ $ $) 16))) -(((-653) (-1189)) (T -653)) -((* (*1 *1 *1 *1) (-4 *1 (-653))) (-2823 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845)))) (-4119 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845))))) -(-13 (-1006) (-10 -8 (-15 * ($ $ $)) (-15 -2823 ($ $ (-845))) (-15 -4119 ($ $ (-845))) (-15 ** ($ $ (-845))))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2823 (($ $ (-845)) NIL) (($ $ (-703)) 17)) (-1690 (((-107) $) 10)) (-4119 (($ $ (-845)) NIL) (($ $ (-703)) 18)) (** (($ $ (-845)) NIL) (($ $ (-703)) 15))) -(((-654 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -4119 (|#1| |#1| (-703))) (-15 -2823 (|#1| |#1| (-703))) (-15 -1690 ((-107) |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 -4119 (|#1| |#1| (-845))) (-15 -2823 (|#1| |#1| (-845)))) (-655)) (T -654)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -4119 (|#1| |#1| (-703))) (-15 -2823 (|#1| |#1| (-703))) (-15 -1690 ((-107) |#1|)) (-15 ** (|#1| |#1| (-845))) (-15 -4119 (|#1| |#1| (-845))) (-15 -2823 (|#1| |#1| (-845)))) -((-2105 (((-107) $ $) 7)) (-3071 (((-3 $ "failed") $) 17)) (-2823 (($ $ (-845)) 15) (($ $ (-703)) 22)) (-3550 (((-3 $ "failed") $) 19)) (-1690 (((-107) $) 23)) (-2680 (((-3 $ "failed") $) 18)) (-4119 (($ $ (-845)) 14) (($ $ (-703)) 21)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3675 (($) 24 T CONST)) (-1572 (((-107) $ $) 6)) (** (($ $ (-845)) 13) (($ $ (-703)) 20)) (* (($ $ $) 16))) -(((-655) (-1189)) (T -655)) -((-3675 (*1 *1) (-4 *1 (-655))) (-1690 (*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) (-2823 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-4119 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-3550 (*1 *1 *1) (|partial| -4 *1 (-655))) (-2680 (*1 *1 *1) (|partial| -4 *1 (-655))) (-3071 (*1 *1 *1) (|partial| -4 *1 (-655)))) -(-13 (-653) (-10 -8 (-15 (-3675) ($) -1373) (-15 -1690 ((-107) $)) (-15 -2823 ($ $ (-703))) (-15 -4119 ($ $ (-703))) (-15 ** ($ $ (-703))) (-15 -3550 ((-3 $ "failed") $)) (-15 -2680 ((-3 $ "failed") $)) (-15 -3071 ((-3 $ "failed") $)))) -(((-97) . T) ((-557 (-787)) . T) ((-653) . T) ((-1006) . T)) -((-2390 (((-703)) 35)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 22)) (-1510 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) 45)) (-3550 (((-3 $ "failed") $) 65)) (-2192 (($) 39)) (-3522 ((|#2| $) 20)) (-1306 (($) 17)) (-2042 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-3248 (((-623 |#2|) (-1158 $) (-1 |#2| |#2|)) 60)) (-3367 (((-1158 |#2|) $) NIL) (($ (-1158 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3848 ((|#3| $) 32)) (-3700 (((-1158 $)) 29))) -(((-656 |#1| |#2| |#3|) (-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2192 (|#1|)) (-15 -2390 ((-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3248 ((-623 |#2|) (-1158 |#1|) (-1 |#2| |#2|))) (-15 -1510 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3367 (|#1| |#3|)) (-15 -1510 (|#1| |#3|)) (-15 -1306 (|#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 (|#3| |#1|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3700 ((-1158 |#1|))) (-15 -3848 (|#3| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|))) (-657 |#2| |#3|) (-156) (-1134 |#2|)) (T -656)) -((-2390 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5))))) -(-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2192 (|#1|)) (-15 -2390 ((-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3248 ((-623 |#2|) (-1158 |#1|) (-1 |#2| |#2|))) (-15 -1510 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3367 (|#1| |#3|)) (-15 -1510 (|#1| |#3|)) (-15 -1306 (|#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3367 (|#3| |#1|)) (-15 -3367 (|#1| (-1158 |#2|))) (-15 -3367 ((-1158 |#2|) |#1|)) (-15 -3700 ((-1158 |#1|))) (-15 -3848 (|#3| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -3550 ((-3 |#1| "failed") |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 93 (|has| |#1| (-333)))) (-2491 (($ $) 94 (|has| |#1| (-333)))) (-2025 (((-107) $) 96 (|has| |#1| (-333)))) (-1278 (((-623 |#1|) (-1158 $)) 46) (((-623 |#1|)) 61)) (-1991 ((|#1| $) 52)) (-2461 (((-1086 (-845) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 113 (|has| |#1| (-333)))) (-3306 (((-388 $) $) 114 (|has| |#1| (-333)))) (-1765 (((-107) $ $) 104 (|has| |#1| (-333)))) (-2390 (((-703)) 87 (|has| |#1| (-338)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 169 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3402 (((-517) $) 170 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 165)) (-3539 (($ (-1158 |#1|) (-1158 $)) 48) (($ (-1158 |#1|)) 64)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2383 (($ $ $) 108 (|has| |#1| (-333)))) (-4028 (((-623 |#1|) $ (-1158 $)) 53) (((-623 |#1|) $) 59)) (-2947 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-1510 (($ |#2|) 158) (((-3 $ "failed") (-377 |#2|)) 155 (|has| |#1| (-333)))) (-3550 (((-3 $ "failed") $) 34)) (-3778 (((-845)) 54)) (-2192 (($) 90 (|has| |#1| (-338)))) (-2356 (($ $ $) 107 (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 102 (|has| |#1| (-333)))) (-4169 (($) 149 (|has| |#1| (-319)))) (-2634 (((-107) $) 150 (|has| |#1| (-319)))) (-2627 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-2022 (((-107) $) 115 (|has| |#1| (-333)))) (-3250 (((-845) $) 152 (|has| |#1| (-319))) (((-765 (-845)) $) 138 (|has| |#1| (-319)))) (-1690 (((-107) $) 31)) (-3522 ((|#1| $) 51)) (-1639 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-333)))) (-1914 ((|#2| $) 44 (|has| |#1| (-333)))) (-4161 (((-845) $) 89 (|has| |#1| (-338)))) (-1497 ((|#2| $) 156)) (-2323 (($ (-583 $)) 100 (|has| |#1| (-333))) (($ $ $) 99 (|has| |#1| (-333)))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 116 (|has| |#1| (-333)))) (-2578 (($) 143 (|has| |#1| (-319)) CONST)) (-2803 (($ (-845)) 88 (|has| |#1| (-338)))) (-4130 (((-1024) $) 10)) (-1306 (($) 160)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 101 (|has| |#1| (-333)))) (-2361 (($ (-583 $)) 98 (|has| |#1| (-333))) (($ $ $) 97 (|has| |#1| (-333)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) 146 (|has| |#1| (-319)))) (-3896 (((-388 $) $) 112 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 109 (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ $) 92 (|has| |#1| (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-333)))) (-3388 (((-703) $) 105 (|has| |#1| (-333)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 106 (|has| |#1| (-333)))) (-3115 ((|#1| (-1158 $)) 47) ((|#1|) 60)) (-3667 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-2042 (($ $) 137 (-3786 (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 135 (-3786 (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1077)) 133 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-583 (-1077))) 132 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-1077) (-703)) 131 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 (-703))) 130 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 123 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-333)))) (-3248 (((-623 |#1|) (-1158 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2819 ((|#2|) 159)) (-3718 (($) 148 (|has| |#1| (-319)))) (-1372 (((-1158 |#1|) $ (-1158 $)) 50) (((-623 |#1|) (-1158 $) (-1158 $)) 49) (((-1158 |#1|) $) 66) (((-623 |#1|) (-1158 $)) 65)) (-3367 (((-1158 |#1|) $) 63) (($ (-1158 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 145 (|has| |#1| (-319)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-333))) (($ (-377 (-517))) 86 (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517))))))) (-3385 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3848 ((|#2| $) 45)) (-1818 (((-703)) 29)) (-3700 (((-1158 $)) 67)) (-2944 (((-107) $ $) 95 (|has| |#1| (-333)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $) 136 (-3786 (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 134 (-3786 (-4024 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1077)) 129 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-583 (-1077))) 128 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-1077) (-703)) 127 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 (-703))) 126 (-4024 (|has| |#1| (-824 (-1077))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 125 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-333)))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 121 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333))))) -(((-657 |#1| |#2|) (-1189) (-156) (-1134 |t#1|)) (T -657)) -((-1306 (*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1134 *2)))) (-2819 (*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3)))) (-1510 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1134 *3)))) (-3367 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1134 *3)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3)))) (-1510 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) (-3248 (*1 *2 *3 *4) (-12 (-5 *3 (-1158 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1134 *5)) (-5 *2 (-623 *5))))) -(-13 (-379 |t#1| |t#2|) (-156) (-558 |t#2|) (-381 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1306 ($)) (-15 -2819 (|t#2|)) (-15 -1510 ($ |t#2|)) (-15 -3367 ($ |t#2|)) (-15 -1497 (|t#2| $)) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-333)) (-6 (-205 |t#1|)) (-15 -1510 ((-3 $ "failed") (-377 |t#2|))) (-15 -3248 ((-623 |t#1|) (-1158 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-97) . T) ((-106 #0# #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3786 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#2|) . T) ((-205 |#1|) |has| |#1| (-333)) ((-207) -3786 (|has| |#1| (-319)) (-12 (|has| |#1| (-207)) (|has| |#1| (-333)))) ((-217) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-262) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-278) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-333) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3786 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| |#2|) . T) ((-379 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-509) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077)))) ((-844) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 #0#) -3786 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-970 |#1|) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| |#1| (-319)) ((-1116) -3786 (|has| |#1| (-319)) (|has| |#1| (-333)))) -((-3038 (($) 14)) (-3550 (((-3 $ "failed") $) 16)) (-1690 (((-107) $) 13)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) 9)) (** (($ $ (-845)) NIL) (($ $ (-703)) 20))) -(((-658 |#1|) (-10 -8 (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -2806 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -1690 ((-107) |#1|)) (-15 -3038 (|#1|)) (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845)))) (-659)) (T -658)) -NIL -(-10 -8 (-15 -3550 ((-3 |#1| "failed") |#1|)) (-15 -2806 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -1690 ((-107) |#1|)) (-15 -3038 (|#1|)) (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845)))) -((-2105 (((-107) $ $) 7)) (-3038 (($) 20 T CONST)) (-3550 (((-3 $ "failed") $) 16)) (-1690 (((-107) $) 19)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-845)) 13) (($ $ (-703)) 17)) (-3675 (($) 21 T CONST)) (-1572 (((-107) $ $) 6)) (** (($ $ (-845)) 14) (($ $ (-703)) 18)) (* (($ $ $) 15))) -(((-659) (-1189)) (T -659)) -((-3675 (*1 *1) (-4 *1 (-659))) (-3038 (*1 *1) (-4 *1 (-659))) (-1690 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-2806 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-3550 (*1 *1 *1) (|partial| -4 *1 (-659)))) -(-13 (-1018) (-10 -8 (-15 (-3675) ($) -1373) (-15 -3038 ($) -1373) (-15 -1690 ((-107) $)) (-15 ** ($ $ (-703))) (-15 -2806 ($ $ (-703))) (-15 -3550 ((-3 $ "failed") $)))) -(((-97) . T) ((-557 (-787)) . T) ((-1018) . T) ((-1006) . T)) -((-1669 (((-2 (|:| -1375 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1975 (((-2 (|:| -1375 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3163 ((|#2| (-377 |#2|) (-1 |#2| |#2|)) 13)) (-1784 (((-2 (|:| |poly| |#2|) (|:| -1375 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)) 47))) -(((-660 |#1| |#2|) (-10 -7 (-15 -1975 ((-2 (|:| -1375 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1669 ((-2 (|:| -1375 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3163 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -1784 ((-2 (|:| |poly| |#2|) (|:| -1375 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1134 |#1|)) (T -660)) -((-1784 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1375 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) (-3163 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1134 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))) (-1669 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -1375 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -1375 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3))))) -(-10 -7 (-15 -1975 ((-2 (|:| -1375 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1669 ((-2 (|:| -1375 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3163 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -1784 ((-2 (|:| |poly| |#2|) (|:| -1375 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)))) -((-2489 ((|#7| (-583 |#5|) |#6|) NIL)) (-3312 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3312 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2489 (|#7| (-583 |#5|) |#6|))) (-779) (-725) (-725) (-964) (-964) (-873 |#4| |#2| |#1|) (-873 |#5| |#3| |#1|)) (T -661)) -((-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-964)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-964)) (-4 *2 (-873 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-873 *8 *6 *5)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-964)) (-4 *9 (-964)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-873 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-873 *8 *6 *5))))) -(-10 -7 (-15 -3312 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2489 (|#7| (-583 |#5|) |#6|))) -((-3312 ((|#7| (-1 |#2| |#1|) |#6|) 29))) -(((-662 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3312 (|#7| (-1 |#2| |#1|) |#6|))) (-779) (-779) (-725) (-725) (-964) (-873 |#5| |#3| |#1|) (-873 |#5| |#4| |#2|)) (T -662)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-964)) (-4 *2 (-873 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-873 *9 *7 *5))))) -(-10 -7 (-15 -3312 (|#7| (-1 |#2| |#1|) |#6|))) -((-3896 (((-388 |#4|) |#4|) 39))) -(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077))))) (-278) (-873 (-876 |#3|) |#1| |#2|)) (T -663)) -((-3896 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-873 (-876 *6) *4 *5))))) -(-10 -7 (-15 -3896 ((-388 |#4|) |#4|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-789 |#1|)) $) NIL)) (-1428 (((-1073 $) $ (-789 |#1|)) NIL) (((-1073 |#2|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2491 (($ $) NIL (|has| |#2| (-509)))) (-2025 (((-107) $) NIL (|has| |#2| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL (|has| |#2| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-789 |#1|) $) NIL)) (-2133 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#2| (-833)))) (-1760 (($ $ |#2| (-489 (-789 |#1|)) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#2|) (-789 |#1|)) NIL) (($ (-1073 $) (-789 |#1|)) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#2| (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-789 |#1|)) NIL)) (-3942 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-1542 (($ (-1 (-489 (-789 |#1|)) (-489 (-789 |#1|))) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-1958 (((-3 (-789 |#1|) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#2| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -1725 (-703))) "failed") $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#2| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-833)))) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3115 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-2042 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1191 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ $) NIL (|has| |#2| (-509))) (($ (-377 (-517))) NIL (-3786 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-955 (-377 (-517))))))) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-664 |#1| |#2|) (-873 |#2| (-489 (-789 |#1|)) (-789 |#1|)) (-583 (-1077)) (-964)) (T -664)) -NIL -(-873 |#2| (-489 (-789 |#1|)) (-789 |#1|)) -((-2334 (((-2 (|:| -3505 (-876 |#3|)) (|:| -2720 (-876 |#3|))) |#4|) 13)) (-1321 ((|#4| |#4| |#2|) 30)) (-2052 ((|#4| (-377 (-876 |#3|)) |#2|) 64)) (-2629 ((|#4| (-1073 (-876 |#3|)) |#2|) 77)) (-1941 ((|#4| (-1073 |#4|) |#2|) 50)) (-2014 ((|#4| |#4| |#2|) 53)) (-3896 (((-388 |#4|) |#4|) 38))) -(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2334 ((-2 (|:| -3505 (-876 |#3|)) (|:| -2720 (-876 |#3|))) |#4|)) (-15 -2014 (|#4| |#4| |#2|)) (-15 -1941 (|#4| (-1073 |#4|) |#2|)) (-15 -1321 (|#4| |#4| |#2|)) (-15 -2629 (|#4| (-1073 (-876 |#3|)) |#2|)) (-15 -2052 (|#4| (-377 (-876 |#3|)) |#2|)) (-15 -3896 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)))) (-509) (-873 (-377 (-876 |#3|)) |#1| |#2|)) (T -665)) -((-3896 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-873 (-377 (-876 *6)) *4 *5)))) (-2052 (*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-873 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-876 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))))) (-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 (-876 *6))) (-4 *6 (-509)) (-4 *2 (-873 (-377 (-876 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))))) (-1321 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-873 (-377 (-876 *5)) *4 *3)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-1073 *2)) (-4 *2 (-873 (-377 (-876 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *6 (-509)))) (-2014 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-873 (-377 (-876 *5)) *4 *3)))) (-2334 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -3505 (-876 *6)) (|:| -2720 (-876 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-873 (-377 (-876 *6)) *4 *5))))) -(-10 -7 (-15 -2334 ((-2 (|:| -3505 (-876 |#3|)) (|:| -2720 (-876 |#3|))) |#4|)) (-15 -2014 (|#4| |#4| |#2|)) (-15 -1941 (|#4| (-1073 |#4|) |#2|)) (-15 -1321 (|#4| |#4| |#2|)) (-15 -2629 (|#4| (-1073 (-876 |#3|)) |#2|)) (-15 -2052 (|#4| (-377 (-876 |#3|)) |#2|)) (-15 -3896 ((-388 |#4|) |#4|))) -((-3896 (((-388 |#4|) |#4|) 51))) -(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4|))) (-725) (-779) (-13 (-278) (-134)) (-873 (-377 |#3|) |#1| |#2|)) (T -666)) -((-3896 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-873 (-377 *6) *4 *5))))) -(-10 -7 (-15 -3896 ((-388 |#4|) |#4|))) -((-3312 (((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)) 18))) -(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) (-964) (-964) (-659)) (T -667)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-964)) (-4 *6 (-964)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7))))) -(-10 -7 (-15 -3312 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 26)) (-3747 (((-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|))) $) 27)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703)) 20 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-3402 ((|#2| $) NIL) ((|#1| $) NIL)) (-2364 (($ $) 76 (|has| |#2| (-779)))) (-3550 (((-3 $ "failed") $) 63)) (-2192 (($) 33 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) 54)) (-1300 (((-583 $) $) 37)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| |#2|) 16)) (-3312 (($ (-1 |#1| |#1|) $) 53)) (-4161 (((-845) $) 30 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-2325 ((|#2| $) 75 (|has| |#2| (-779)))) (-2336 ((|#1| $) 74 (|has| |#2| (-779)))) (-3232 (((-1060) $) NIL)) (-2803 (($ (-845)) 25 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 73) (($ (-517)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|)))) 11)) (-3186 (((-583 |#1|) $) 39)) (-1939 ((|#1| $ |#2|) 84)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 12 T CONST)) (-3675 (($) 31 T CONST)) (-1572 (((-107) $ $) 77)) (-1680 (($ $) 46) (($ $ $) NIL)) (-1666 (($ $ $) 24)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) -(((-668 |#1| |#2|) (-13 (-964) (-955 |#2|) (-955 |#1|) (-10 -8 (-15 -2059 ($ |#1| |#2|)) (-15 -1939 (|#1| $ |#2|)) (-15 -2262 ($ (-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|))))) (-15 -3747 ((-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|))) $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (-15 -3022 ((-107) $)) (-15 -3186 ((-583 |#1|) $)) (-15 -1300 ((-583 $) $)) (-15 -2516 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -2325 (|#2| $)) (-15 -2336 (|#1| $)) (-15 -2364 ($ $))) |%noBranch|))) (-964) (-659)) (T -668)) -((-2059 (*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-964)) (-4 *3 (-659)))) (-1939 (*1 *2 *1 *3) (-12 (-4 *2 (-964)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1570 *3) (|:| -2416 *4)))) (-4 *3 (-964)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1570 *3) (|:| -2416 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659)))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659)))) (-2325 (*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-964)))) (-2336 (*1 *2 *1) (-12 (-4 *2 (-964)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-964)) (-4 *3 (-659))))) -(-13 (-964) (-955 |#2|) (-955 |#1|) (-10 -8 (-15 -2059 ($ |#1| |#2|)) (-15 -1939 (|#1| $ |#2|)) (-15 -2262 ($ (-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|))))) (-15 -3747 ((-583 (-2 (|:| -1570 |#1|) (|:| -2416 |#2|))) $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (-15 -3022 ((-107) $)) (-15 -3186 ((-583 |#1|) $)) (-15 -1300 ((-583 $) $)) (-15 -2516 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -2325 (|#2| $)) (-15 -2336 (|#1| $)) (-15 -2364 ($ $))) |%noBranch|))) -((-2105 (((-107) $ $) 19)) (-2374 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4020 (($ $ $) 72)) (-3873 (((-107) $ $) 73)) (-3443 (((-107) $ (-703)) 8)) (-1871 (($ (-583 |#1|)) 68) (($) 67)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3081 (($ $) 62)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22)) (-2187 (($ $ $) 69)) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4130 (((-1024) $) 21)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1907 (((-583 (-2 (|:| -1846 |#1|) (|:| -4140 (-703)))) $) 61)) (-1201 (($ $ |#1|) 71) (($ $ $) 70)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2262 (((-787) $) 18)) (-3066 (($ (-583 |#1|)) 66) (($) 65)) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20)) (-1596 (((-107) $ $) 64)) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-669 |#1|) (-1189) (-1006)) (T -669)) -NIL -(-13 (-628 |t#1|) (-1004 |t#1|)) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-628 |#1|) . T) ((-1004 |#1|) . T) ((-1006) . T) ((-1112) . T)) -((-2105 (((-107) $ $) NIL)) (-2374 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-4020 (($ $ $) 79)) (-3873 (((-107) $ $) 82)) (-3443 (((-107) $ (-703)) NIL)) (-1871 (($ (-583 |#1|)) 24) (($) 15)) (-2582 (($ (-1 (-107) |#1|) $) 70 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3081 (($ $) 71)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) 61 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 64 (|has| $ (-6 -4195))) (($ |#1| $ (-517)) 62) (($ (-1 (-107) |#1|) $ (-517)) 65)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (($ |#1| $ (-517)) 67) (($ (-1 (-107) |#1|) $ (-517)) 68)) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 32 (|has| $ (-6 -4195)))) (-1205 (($) 13) (($ |#1|) 26) (($ (-583 |#1|)) 21)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) 38)) (-1949 (((-107) |#1| $) 57 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 75)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2187 (($ $ $) 77)) (-2015 ((|#1| $) 54)) (-3439 (($ |#1| $) 55) (($ |#1| $ (-703)) 72)) (-4130 (((-1024) $) NIL)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1551 ((|#1| $) 53)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 49)) (-2679 (($) 12)) (-1907 (((-583 (-2 (|:| -1846 |#1|) (|:| -4140 (-703)))) $) 47)) (-1201 (($ $ |#1|) NIL) (($ $ $) 78)) (-3808 (($) 14) (($ (-583 |#1|)) 23)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) 60 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 66)) (-3367 (((-493) $) 36 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 20)) (-2262 (((-787) $) 44)) (-3066 (($ (-583 |#1|)) 25) (($) 16)) (-2729 (($ (-583 |#1|)) 22)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 80)) (-1596 (((-107) $ $) 81)) (-3573 (((-703) $) 59 (|has| $ (-6 -4195))))) -(((-670 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -1205 ($)) (-15 -1205 ($ |#1|)) (-15 -1205 ($ (-583 |#1|))) (-15 -3687 ((-583 |#1|) $)) (-15 -1423 ($ |#1| $ (-517))) (-15 -1423 ($ (-1 (-107) |#1|) $ (-517))) (-15 -1749 ($ |#1| $ (-517))) (-15 -1749 ($ (-1 (-107) |#1|) $ (-517))))) (-1006)) (T -670)) -((-1205 (*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1006)))) (-1205 (*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1006)))) (-1205 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-670 *3)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1006)))) (-1423 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1006)))) (-1423 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1006)) (-5 *1 (-670 *4)))) (-1749 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1006)))) (-1749 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1006)) (-5 *1 (-670 *4))))) -(-13 (-669 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -1205 ($)) (-15 -1205 ($ |#1|)) (-15 -1205 ($ (-583 |#1|))) (-15 -3687 ((-583 |#1|) $)) (-15 -1423 ($ |#1| $ (-517))) (-15 -1423 ($ (-1 (-107) |#1|) $ (-517))) (-15 -1749 ($ |#1| $ (-517))) (-15 -1749 ($ (-1 (-107) |#1|) $ (-517))))) -((-1350 (((-1163) (-1060)) 8))) -(((-671) (-10 -7 (-15 -1350 ((-1163) (-1060))))) (T -671)) -((-1350 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-671))))) -(-10 -7 (-15 -1350 ((-1163) (-1060)))) -((-3672 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 10))) -(((-672 |#1|) (-10 -7 (-15 -3672 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-779)) (T -672)) -((-3672 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3))))) -(-10 -7 (-15 -3672 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 |#2|) $) 136)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 129 (|has| |#1| (-509)))) (-2491 (($ $) 128 (|has| |#1| (-509)))) (-2025 (((-107) $) 126 (|has| |#1| (-509)))) (-1636 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 68 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-3908 (($ $) 67 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 84 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 69 (|has| |#1| (-37 (-377 (-517)))))) (-1659 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 70 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-2364 (($ $) 120)) (-3550 (((-3 $ "failed") $) 34)) (-2905 (((-876 |#1|) $ (-703)) 98) (((-876 |#1|) $ (-703) (-703)) 97)) (-3690 (((-107) $) 137)) (-2102 (($) 95 (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $ |#2|) 100) (((-703) $ |#2| (-703)) 99)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 66 (|has| |#1| (-37 (-377 (-517)))))) (-3022 (((-107) $) 118)) (-2059 (($ $ (-583 |#2|) (-583 (-489 |#2|))) 135) (($ $ |#2| (-489 |#2|)) 134) (($ |#1| (-489 |#2|)) 119) (($ $ |#2| (-703)) 102) (($ $ (-583 |#2|) (-583 (-703))) 101)) (-3312 (($ (-1 |#1| |#1|) $) 117)) (-1232 (($ $) 92 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 115)) (-2336 ((|#1| $) 114)) (-3232 (((-1060) $) 9)) (-3296 (($ $ |#2|) 96 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) 10)) (-3175 (($ $ (-703)) 103)) (-2333 (((-3 $ "failed") $ $) 130 (|has| |#1| (-509)))) (-3898 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (($ $ |#2| $) 111) (($ $ (-583 |#2|) (-583 $)) 110) (($ $ (-583 (-265 $))) 109) (($ $ (-265 $)) 108) (($ $ $ $) 107) (($ $ (-583 $) (-583 $)) 106)) (-2042 (($ $ |#2|) 42) (($ $ (-583 |#2|)) 41) (($ $ |#2| (-703)) 40) (($ $ (-583 |#2|) (-583 (-703))) 39)) (-1191 (((-489 |#2|) $) 116)) (-1670 (($ $) 82 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 71 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 80 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 138)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 133 (|has| |#1| (-156))) (($ $) 131 (|has| |#1| (-509))) (($ (-377 (-517))) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1939 ((|#1| $ (-489 |#2|)) 121) (($ $ |#2| (-703)) 105) (($ $ (-583 |#2|) (-583 (-703))) 104)) (-3385 (((-3 $ "failed") $) 132 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-1706 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 127 (|has| |#1| (-509)))) (-1685 (($ $) 90 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 78 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 77 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $) 88 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 76 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 75 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 86 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 74 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ |#2|) 38) (($ $ (-583 |#2|)) 37) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) 35)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 122 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ $) 94 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 65 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 125 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 124 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 113) (($ $ |#1|) 112))) -(((-673 |#1| |#2|) (-1189) (-964) (-779)) (T -673)) -((-1939 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-964)) (-4 *2 (-779)))) (-1939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-964)) (-4 *5 (-779)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-964)) (-4 *4 (-779)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-964)) (-4 *2 (-779)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-964)) (-4 *5 (-779)))) (-3250 (*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-964)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3250 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-964)) (-4 *3 (-779)))) (-2905 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-964)) (-4 *5 (-779)) (-5 *2 (-876 *4)))) (-2905 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-964)) (-4 *5 (-779)) (-5 *2 (-876 *4)))) (-3296 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-964)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517))))))) -(-13 (-824 |t#2|) (-893 |t#1| (-489 |t#2|) |t#2|) (-478 |t#2| $) (-280 $) (-10 -8 (-15 -1939 ($ $ |t#2| (-703))) (-15 -1939 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -3175 ($ $ (-703))) (-15 -2059 ($ $ |t#2| (-703))) (-15 -2059 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -3250 ((-703) $ |t#2|)) (-15 -3250 ((-703) $ |t#2| (-703))) (-15 -2905 ((-876 |t#1|) $ (-703))) (-15 -2905 ((-876 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $ |t#2|)) (-6 (-921)) (-6 (-1098))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-489 |#2|)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-262) |has| |#1| (-509)) ((-280 $) . T) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 |#2| $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-824 |#2|) . T) ((-893 |#1| #0# |#2|) . T) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-970 #1#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517))))) -((-3896 (((-388 (-1073 |#4|)) (-1073 |#4|)) 28) (((-388 |#4|) |#4|) 24))) -(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 |#4|) |#4|)) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|)))) (-779) (-725) (-13 (-278) (-134)) (-873 |#3| |#2| |#1|)) (T -674)) -((-3896 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-873 *6 *5 *4))))) -(-10 -7 (-15 -3896 ((-388 |#4|) |#4|)) (-15 -3896 ((-388 (-1073 |#4|)) (-1073 |#4|)))) -((-2793 (((-388 |#4|) |#4| |#2|) 117)) (-2990 (((-388 |#4|) |#4|) NIL)) (-3306 (((-388 (-1073 |#4|)) (-1073 |#4|)) 108) (((-388 |#4|) |#4|) 38)) (-2061 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3896 (-1073 |#4|)) (|:| -1725 (-517)))))) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 66)) (-2141 (((-1073 |#3|) (-1073 |#3|) (-517)) 134)) (-1271 (((-583 (-703)) (-1073 |#4|) (-583 |#2|) (-703)) 59)) (-1497 (((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-1073 |#3|) (-1073 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|)) 63)) (-1430 (((-2 (|:| |upol| (-1073 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517))))) (|:| |ctpol| |#3|)) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 22)) (-1834 (((-2 (|:| -2242 (-1073 |#4|)) (|:| |polval| (-1073 |#3|))) (-1073 |#4|) (-1073 |#3|) (-517)) 55)) (-3609 (((-517) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517))))) 131)) (-2222 ((|#4| (-517) (-388 |#4|)) 56)) (-1457 (((-107) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517))))) NIL))) -(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3306 ((-388 |#4|) |#4|)) (-15 -3306 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -2990 ((-388 |#4|) |#4|)) (-15 -3609 ((-517) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))))) (-15 -2793 ((-388 |#4|) |#4| |#2|)) (-15 -1834 ((-2 (|:| -2242 (-1073 |#4|)) (|:| |polval| (-1073 |#3|))) (-1073 |#4|) (-1073 |#3|) (-517))) (-15 -2061 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3896 (-1073 |#4|)) (|:| -1725 (-517)))))) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1430 ((-2 (|:| |upol| (-1073 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517))))) (|:| |ctpol| |#3|)) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2222 (|#4| (-517) (-388 |#4|))) (-15 -1457 ((-107) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))))) (-15 -1497 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-1073 |#3|) (-1073 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -1271 ((-583 (-703)) (-1073 |#4|) (-583 |#2|) (-703))) (-15 -2141 ((-1073 |#3|) (-1073 |#3|) (-517)))) (-725) (-779) (-278) (-873 |#3| |#1| |#2|)) (T -675)) -((-2141 (*1 *2 *2 *3) (-12 (-5 *2 (-1073 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))) (-1271 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))) (-1497 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1073 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-873 *11 *9 *10)) (-5 *2 (-583 (-1073 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1073 *5)))) (-1457 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3896 (-1073 *6)) (|:| -1725 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))) (-2222 (*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-873 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))) (-1430 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1073 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3896 (-1073 *8)) (|:| -1725 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))) (-2061 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-873 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3896 (-1073 *9)) (|:| -1725 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1073 *9)))) (-1834 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-873 *8 *6 *7)) (-5 *2 (-2 (|:| -2242 (-1073 *9)) (|:| |polval| (-1073 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1073 *9)) (-5 *4 (-1073 *8)))) (-2793 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-873 *6 *5 *4)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3896 (-1073 *6)) (|:| -1725 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))) (-2990 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-873 *6 *4 *5)))) (-3306 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-3306 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-873 *6 *4 *5))))) -(-10 -7 (-15 -3306 ((-388 |#4|) |#4|)) (-15 -3306 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -2990 ((-388 |#4|) |#4|)) (-15 -3609 ((-517) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))))) (-15 -2793 ((-388 |#4|) |#4| |#2|)) (-15 -1834 ((-2 (|:| -2242 (-1073 |#4|)) (|:| |polval| (-1073 |#3|))) (-1073 |#4|) (-1073 |#3|) (-517))) (-15 -2061 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3896 (-1073 |#4|)) (|:| -1725 (-517)))))) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1430 ((-2 (|:| |upol| (-1073 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517))))) (|:| |ctpol| |#3|)) (-1073 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2222 (|#4| (-517) (-388 |#4|))) (-15 -1457 ((-107) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))) (-583 (-2 (|:| -3896 (-1073 |#3|)) (|:| -1725 (-517)))))) (-15 -1497 ((-3 (-583 (-1073 |#4|)) "failed") (-1073 |#4|) (-1073 |#3|) (-1073 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -1271 ((-583 (-703)) (-1073 |#4|) (-583 |#2|) (-703))) (-15 -2141 ((-1073 |#3|) (-1073 |#3|) (-517)))) -((-1768 (($ $ (-845)) 12))) -(((-676 |#1| |#2|) (-10 -8 (-15 -1768 (|#1| |#1| (-845)))) (-677 |#2|) (-156)) (T -676)) -NIL -(-10 -8 (-15 -1768 (|#1| |#1| (-845)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2823 (($ $ (-845)) 28)) (-1768 (($ $ (-845)) 33)) (-4119 (($ $ (-845)) 29)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1970 (($ $ $) 25)) (-2262 (((-787) $) 11)) (-2182 (($ $ $ $) 26)) (-2742 (($ $ $) 24)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 30)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-677 |#1|) (-1189) (-156)) (T -677)) -((-1768 (*1 *1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-677 *3)) (-4 *3 (-156))))) -(-13 (-694) (-650 |t#1|) (-10 -8 (-15 -1768 ($ $ (-845))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-694) . T) ((-970 |#1|) . T) ((-1006) . T)) -((-3310 (((-953) (-623 (-199)) (-517) (-107) (-517)) 24)) (-3897 (((-953) (-623 (-199)) (-517) (-107) (-517)) 23))) -(((-678) (-10 -7 (-15 -3897 ((-953) (-623 (-199)) (-517) (-107) (-517))) (-15 -3310 ((-953) (-623 (-199)) (-517) (-107) (-517))))) (T -678)) -((-3310 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-953)) (-5 *1 (-678)))) (-3897 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-953)) (-5 *1 (-678))))) -(-10 -7 (-15 -3897 ((-953) (-623 (-199)) (-517) (-107) (-517))) (-15 -3310 ((-953) (-623 (-199)) (-517) (-107) (-517)))) -((-2009 (((-953) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) 43)) (-3040 (((-953) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) 39)) (-3303 (((-953) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) 32))) -(((-679) (-10 -7 (-15 -3303 ((-953) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -3040 ((-953) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2009 ((-953) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))) (T -679)) -((-2009 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-953)) (-5 *1 (-679)))) (-3040 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-953)) (-5 *1 (-679)))) (-3303 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) (-5 *1 (-679))))) -(-10 -7 (-15 -3303 ((-953) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -3040 ((-953) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2009 ((-953) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))))) -((-2669 (((-953) (-517) (-517) (-623 (-199)) (-517)) 33)) (-2208 (((-953) (-517) (-517) (-623 (-199)) (-517)) 32)) (-3481 (((-953) (-517) (-623 (-199)) (-517)) 31)) (-2166 (((-953) (-517) (-623 (-199)) (-517)) 30)) (-1641 (((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-2375 (((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-4017 (((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-1209 (((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-1854 (((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-1842 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-1324 (((-953) (-517) (-623 (-199)) (-517)) 21)) (-1252 (((-953) (-517) (-623 (-199)) (-517)) 20))) -(((-680) (-10 -7 (-15 -1252 ((-953) (-517) (-623 (-199)) (-517))) (-15 -1324 ((-953) (-517) (-623 (-199)) (-517))) (-15 -1842 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1854 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1209 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4017 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2375 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1641 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2166 ((-953) (-517) (-623 (-199)) (-517))) (-15 -3481 ((-953) (-517) (-623 (-199)) (-517))) (-15 -2208 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -2669 ((-953) (-517) (-517) (-623 (-199)) (-517))))) (T -680)) -((-2669 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-2208 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-3481 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-2166 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1641 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-2375 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-4017 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1209 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1854 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1842 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1324 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680)))) (-1252 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-680))))) -(-10 -7 (-15 -1252 ((-953) (-517) (-623 (-199)) (-517))) (-15 -1324 ((-953) (-517) (-623 (-199)) (-517))) (-15 -1842 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1854 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1209 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4017 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2375 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1641 ((-953) (-517) (-517) (-1060) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2166 ((-953) (-517) (-623 (-199)) (-517))) (-15 -3481 ((-953) (-517) (-623 (-199)) (-517))) (-15 -2208 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -2669 ((-953) (-517) (-517) (-623 (-199)) (-517)))) -((-3937 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 52)) (-3337 (((-953) (-623 (-199)) (-623 (-199)) (-517) (-517)) 51)) (-2180 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 50)) (-1420 (((-953) (-199) (-199) (-517) (-517) (-517) (-517)) 46)) (-3652 (((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 45)) (-2885 (((-953) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 44)) (-3510 (((-953) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 43)) (-4008 (((-953) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 42)) (-3530 (((-953) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) 38)) (-1726 (((-953) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) 37)) (-2778 (((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) 33)) (-1380 (((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) 32))) -(((-681) (-10 -7 (-15 -1380 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -2778 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -1726 ((-953) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -3530 ((-953) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -4008 ((-953) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3510 ((-953) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -2885 ((-953) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3652 ((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1420 ((-953) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -2180 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -3337 ((-953) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -3937 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))) (T -681)) -((-3937 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-3337 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-681)))) (-2180 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-1420 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-681)))) (-3652 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-2885 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-3510 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-4008 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-3530 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-1726 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-681)))) (-2778 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) (-5 *1 (-681)))) (-1380 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) (-5 *1 (-681))))) -(-10 -7 (-15 -1380 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -2778 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -1726 ((-953) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -3530 ((-953) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057))))) (-15 -4008 ((-953) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3510 ((-953) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -2885 ((-953) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3652 ((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -1420 ((-953) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -2180 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -3337 ((-953) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -3937 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))))) -((-2546 (((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-1406 (((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358)) 69) (((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2631 (((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) 57)) (-1738 (((-953) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 50)) (-2805 (((-953) (-199) (-517) (-517) (-1060) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2615 (((-953) (-199) (-517) (-517) (-199) (-1060) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 45)) (-3660 (((-953) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 42)) (-3032 (((-953) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 38))) -(((-682) (-10 -7 (-15 -3032 ((-953) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3660 ((-953) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -2615 ((-953) (-199) (-517) (-517) (-199) (-1060) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -2805 ((-953) (-199) (-517) (-517) (-1060) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1738 ((-953) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -2631 ((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1406 ((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1406 ((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -2546 ((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -682)) -((-2546 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))) (-1406 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-953)) (-5 *1 (-682)))) (-1406 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-953)) (-5 *1 (-682)))) (-2631 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))) (-1738 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-953)) (-5 *1 (-682)))) (-2805 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1060)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))) (-2615 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1060)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))) (-3660 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682)))) (-3032 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682))))) -(-10 -7 (-15 -3032 ((-953) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -3660 ((-953) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -2615 ((-953) (-199) (-517) (-517) (-199) (-1060) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -2805 ((-953) (-199) (-517) (-517) (-1060) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1738 ((-953) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -2631 ((-953) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1406 ((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1406 ((-953) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -2546 ((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))))) -((-3167 (((-953) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517)) 45)) (-3422 (((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1060) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) 41)) (-2402 (((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 23))) -(((-683) (-10 -7 (-15 -2402 ((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3422 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1060) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -3167 ((-953) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))) (T -683)) -((-3167 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-683)))) (-3422 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1060)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-953)) (-5 *1 (-683)))) (-2402 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-683))))) -(-10 -7 (-15 -2402 ((-953) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3422 ((-953) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1060) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -3167 ((-953) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517)))) -((-2531 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517)) 35)) (-1200 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517)) 34)) (-1611 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517)) 33)) (-3330 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-3005 (((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-2231 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517)) 27)) (-2830 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 23)) (-1501 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 22)) (-1535 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517)) 21)) (-1619 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 20))) -(((-684) (-10 -7 (-15 -1619 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1535 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1501 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2830 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2231 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -3005 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3330 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1611 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1200 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -2531 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))) (T -684)) -((-2531 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-684)))) (-1200 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-684)))) (-1611 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-684)))) (-3330 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684)))) (-3005 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684)))) (-2231 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-684)))) (-2830 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684)))) (-1501 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684)))) (-1535 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684)))) (-1619 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-684))))) -(-10 -7 (-15 -1619 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1535 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1501 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2830 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -2231 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -3005 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3330 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1611 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1200 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -2531 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517)))) -((-3852 (((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 45)) (-3015 (((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517)) 44)) (-1351 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 43)) (-2978 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 42)) (-3592 (((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517)) 41)) (-1206 (((-953) (-1060) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 40)) (-3332 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517)) 39)) (-2727 (((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517))) 38)) (-1916 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-2746 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517)) 34)) (-3641 (((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517)) 33)) (-2264 (((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 32)) (-3656 (((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517)) 31)) (-2605 (((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517)) 30)) (-3798 (((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-3832 (((-953) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517)) 28)) (-4061 (((-953) (-517) (-623 (-199)) (-199) (-517)) 24)) (-2304 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 20))) -(((-685) (-10 -7 (-15 -2304 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4061 ((-953) (-517) (-623 (-199)) (-199) (-517))) (-15 -3832 ((-953) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -3798 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -2605 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -3656 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -2264 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3641 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -2746 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1916 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2727 ((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -3332 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1206 ((-953) (-1060) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3592 ((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2978 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1351 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -3015 ((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3852 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))) (T -685)) -((-3852 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685)))) (-3015 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-1351 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685)))) (-2978 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685)))) (-3592 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-1206 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-685)))) (-3332 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-685)))) (-2727 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-685)))) (-1916 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685)))) (-2746 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-3641 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-2264 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685)))) (-3656 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-2605 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-3798 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-3832 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-4061 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-953)) (-5 *1 (-685)))) (-2304 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-685))))) -(-10 -7 (-15 -2304 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4061 ((-953) (-517) (-623 (-199)) (-199) (-517))) (-15 -3832 ((-953) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -3798 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -2605 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -3656 ((-953) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -2264 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3641 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -2746 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1916 ((-953) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2727 ((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -3332 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1206 ((-953) (-1060) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3592 ((-953) (-1060) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2978 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1351 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -3015 ((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3852 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)))) -((-3618 (((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517)) 63)) (-1965 (((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 62)) (-3451 (((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) 58)) (-3064 (((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517)) 51)) (-4039 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3152 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2986 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2421 (((-953) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 38))) -(((-686) (-10 -7 (-15 -2421 ((-953) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -2986 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -3152 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -4039 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -3064 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -3451 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1965 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -3618 ((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))) (T -686)) -((-3618 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-686)))) (-1965 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-686)))) (-3451 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-686)))) (-3064 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-953)) (-5 *1 (-686)))) (-4039 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-953)) (-5 *1 (-686)))) (-3152 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-953)) (-5 *1 (-686)))) (-2986 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-953)) (-5 *1 (-686)))) (-2421 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-686))))) -(-10 -7 (-15 -2421 ((-953) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -2986 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -3152 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -4039 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -3064 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -3451 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1965 ((-953) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -3618 ((-953) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517)))) -((-1621 (((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 46)) (-1544 (((-953) (-1060) (-1060) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517)) 45)) (-2056 (((-953) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 44)) (-3150 (((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 40)) (-2640 (((-953) (-1060) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517)) 39)) (-3761 (((-953) (-517) (-517) (-517) (-623 (-199)) (-517)) 36)) (-3978 (((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517)) 35)) (-1806 (((-953) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517)) 34)) (-3948 (((-953) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517)) 33)) (-3910 (((-953) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517)) 32))) -(((-687) (-10 -7 (-15 -3910 ((-953) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -3948 ((-953) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1806 ((-953) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -3978 ((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -3761 ((-953) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -2640 ((-953) (-1060) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -3150 ((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2056 ((-953) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1544 ((-953) (-1060) (-1060) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1621 ((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -687)) -((-1621 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-953)) (-5 *1 (-687)))) (-1544 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-953)) (-5 *1 (-687)))) (-2056 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-953)) (-5 *1 (-687)))) (-3150 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-687)))) (-2640 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-687)))) (-3761 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-687)))) (-3978 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-687)))) (-1806 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-687)))) (-3948 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-953)) (-5 *1 (-687)))) (-3910 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-953)) (-5 *1 (-687))))) -(-10 -7 (-15 -3910 ((-953) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -3948 ((-953) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1806 ((-953) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -3978 ((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -3761 ((-953) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -2640 ((-953) (-1060) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -3150 ((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2056 ((-953) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1544 ((-953) (-1060) (-1060) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -1621 ((-953) (-1060) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)))) -((-2559 (((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 64)) (-2418 (((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 60)) (-2188 (((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358)) 56) (((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) 55)) (-1716 (((-953) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 37)) (-2073 (((-953) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517)) 33)) (-3030 (((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-1923 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-3482 (((-953) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-3208 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-3056 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517)) 25)) (-4004 (((-953) (-517) (-517) (-623 (-199)) (-517)) 24)) (-1359 (((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-2593 (((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-1265 (((-953) (-623 (-199)) (-517) (-517) (-517) (-517)) 21)) (-3446 (((-953) (-517) (-517) (-623 (-199)) (-517)) 20))) -(((-688) (-10 -7 (-15 -3446 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -1265 ((-953) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -2593 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1359 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4004 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -3056 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3208 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3482 ((-953) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1923 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3030 ((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -2073 ((-953) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -1716 ((-953) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2188 ((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -2188 ((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -2418 ((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2559 ((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -688)) -((-2559 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-953)) (-5 *1 (-688)))) (-2418 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-2188 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688)))) (-2188 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688)))) (-1716 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688)))) (-2073 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688)))) (-3030 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-688)))) (-1923 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-3482 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-3208 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-3056 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-4004 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-1359 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-2593 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688)))) (-1265 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-688)))) (-3446 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-688))))) -(-10 -7 (-15 -3446 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -1265 ((-953) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -2593 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1359 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4004 ((-953) (-517) (-517) (-623 (-199)) (-517))) (-15 -3056 ((-953) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3208 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3482 ((-953) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1923 ((-953) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3030 ((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -2073 ((-953) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -1716 ((-953) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2188 ((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -2188 ((-953) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -2418 ((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2559 ((-953) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)))) -((-3990 (((-953) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) 60)) (-2518 (((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517)) 56)) (-2142 (((-953) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) 55)) (-1747 (((-953) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 36)) (-4066 (((-953) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-3004 (((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 31)) (-1890 (((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199))) 30)) (-1981 (((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517)) 26)) (-3969 (((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 25)) (-2696 (((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 24)) (-2646 (((-953) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 20))) -(((-689) (-10 -7 (-15 -2646 ((-953) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2696 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3969 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1981 ((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -1890 ((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3004 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4066 ((-953) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1747 ((-953) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -2142 ((-953) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -2518 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3990 ((-953) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))) (T -689)) -((-3990 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-689)))) (-2518 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-689)))) (-2142 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-953)) (-5 *1 (-689)))) (-1747 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-689)))) (-4066 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-689)))) (-3004 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-689)))) (-1890 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-689)))) (-1981 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-689)))) (-3969 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-689)))) (-2696 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-689)))) (-2646 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-953)) (-5 *1 (-689))))) -(-10 -7 (-15 -2646 ((-953) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -2696 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3969 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1981 ((-953) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -1890 ((-953) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3004 ((-953) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -4066 ((-953) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1747 ((-953) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -2142 ((-953) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -2518 ((-953) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3990 ((-953) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))))) -((-2925 (((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199))) 28)) (-2666 (((-953) (-1060) (-517) (-517) (-623 (-199))) 27)) (-1376 (((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199))) 26)) (-4064 (((-953) (-517) (-517) (-517) (-623 (-199))) 20))) -(((-690) (-10 -7 (-15 -4064 ((-953) (-517) (-517) (-517) (-623 (-199)))) (-15 -1376 ((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -2666 ((-953) (-1060) (-517) (-517) (-623 (-199)))) (-15 -2925 ((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))) (T -690)) -((-2925 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-690)))) (-2666 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-690)))) (-1376 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-690)))) (-4064 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) (-5 *1 (-690))))) -(-10 -7 (-15 -4064 ((-953) (-517) (-517) (-517) (-623 (-199)))) (-15 -1376 ((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -2666 ((-953) (-1060) (-517) (-517) (-623 (-199)))) (-15 -2925 ((-953) (-1060) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199))))) -((-3046 (((-953) (-199) (-199) (-199) (-199) (-517)) 62)) (-1292 (((-953) (-199) (-199) (-199) (-517)) 61)) (-2670 (((-953) (-199) (-199) (-199) (-517)) 60)) (-3763 (((-953) (-199) (-199) (-517)) 59)) (-3072 (((-953) (-199) (-517)) 58)) (-2714 (((-953) (-199) (-517)) 57)) (-2167 (((-953) (-199) (-517)) 56)) (-3934 (((-953) (-199) (-517)) 55)) (-3087 (((-953) (-199) (-517)) 54)) (-3703 (((-953) (-199) (-517)) 53)) (-4018 (((-953) (-199) (-153 (-199)) (-517) (-1060) (-517)) 52)) (-3730 (((-953) (-199) (-153 (-199)) (-517) (-1060) (-517)) 51)) (-2484 (((-953) (-199) (-517)) 50)) (-4006 (((-953) (-199) (-517)) 49)) (-3265 (((-953) (-199) (-517)) 48)) (-1683 (((-953) (-199) (-517)) 47)) (-2896 (((-953) (-517) (-199) (-153 (-199)) (-517) (-1060) (-517)) 46)) (-3769 (((-953) (-1060) (-153 (-199)) (-1060) (-517)) 45)) (-3308 (((-953) (-1060) (-153 (-199)) (-1060) (-517)) 44)) (-3227 (((-953) (-199) (-153 (-199)) (-517) (-1060) (-517)) 43)) (-3059 (((-953) (-199) (-153 (-199)) (-517) (-1060) (-517)) 42)) (-2895 (((-953) (-199) (-517)) 39)) (-3241 (((-953) (-199) (-517)) 38)) (-1546 (((-953) (-199) (-517)) 37)) (-2549 (((-953) (-199) (-517)) 36)) (-3753 (((-953) (-199) (-517)) 35)) (-2355 (((-953) (-199) (-517)) 34)) (-3245 (((-953) (-199) (-517)) 33)) (-2197 (((-953) (-199) (-517)) 32)) (-2663 (((-953) (-199) (-517)) 31)) (-3130 (((-953) (-199) (-517)) 30)) (-3853 (((-953) (-199) (-199) (-199) (-517)) 29)) (-1207 (((-953) (-199) (-517)) 28)) (-1651 (((-953) (-199) (-517)) 27)) (-2759 (((-953) (-199) (-517)) 26)) (-2920 (((-953) (-199) (-517)) 25)) (-2193 (((-953) (-199) (-517)) 24)) (-1891 (((-953) (-153 (-199)) (-517)) 20))) -(((-691) (-10 -7 (-15 -1891 ((-953) (-153 (-199)) (-517))) (-15 -2193 ((-953) (-199) (-517))) (-15 -2920 ((-953) (-199) (-517))) (-15 -2759 ((-953) (-199) (-517))) (-15 -1651 ((-953) (-199) (-517))) (-15 -1207 ((-953) (-199) (-517))) (-15 -3853 ((-953) (-199) (-199) (-199) (-517))) (-15 -3130 ((-953) (-199) (-517))) (-15 -2663 ((-953) (-199) (-517))) (-15 -2197 ((-953) (-199) (-517))) (-15 -3245 ((-953) (-199) (-517))) (-15 -2355 ((-953) (-199) (-517))) (-15 -3753 ((-953) (-199) (-517))) (-15 -2549 ((-953) (-199) (-517))) (-15 -1546 ((-953) (-199) (-517))) (-15 -3241 ((-953) (-199) (-517))) (-15 -2895 ((-953) (-199) (-517))) (-15 -3059 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3227 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3308 ((-953) (-1060) (-153 (-199)) (-1060) (-517))) (-15 -3769 ((-953) (-1060) (-153 (-199)) (-1060) (-517))) (-15 -2896 ((-953) (-517) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -1683 ((-953) (-199) (-517))) (-15 -3265 ((-953) (-199) (-517))) (-15 -4006 ((-953) (-199) (-517))) (-15 -2484 ((-953) (-199) (-517))) (-15 -3730 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -4018 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3703 ((-953) (-199) (-517))) (-15 -3087 ((-953) (-199) (-517))) (-15 -3934 ((-953) (-199) (-517))) (-15 -2167 ((-953) (-199) (-517))) (-15 -2714 ((-953) (-199) (-517))) (-15 -3072 ((-953) (-199) (-517))) (-15 -3763 ((-953) (-199) (-199) (-517))) (-15 -2670 ((-953) (-199) (-199) (-199) (-517))) (-15 -1292 ((-953) (-199) (-199) (-199) (-517))) (-15 -3046 ((-953) (-199) (-199) (-199) (-199) (-517))))) (T -691)) -((-3046 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1292 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2670 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3763 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2167 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-4018 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3730 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-4006 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1683 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2896 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1060)) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3769 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1060)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3308 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1060)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3227 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3059 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2549 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3753 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2197 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3130 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-3853 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1207 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691)))) (-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(-10 -7 (-15 -1891 ((-953) (-153 (-199)) (-517))) (-15 -2193 ((-953) (-199) (-517))) (-15 -2920 ((-953) (-199) (-517))) (-15 -2759 ((-953) (-199) (-517))) (-15 -1651 ((-953) (-199) (-517))) (-15 -1207 ((-953) (-199) (-517))) (-15 -3853 ((-953) (-199) (-199) (-199) (-517))) (-15 -3130 ((-953) (-199) (-517))) (-15 -2663 ((-953) (-199) (-517))) (-15 -2197 ((-953) (-199) (-517))) (-15 -3245 ((-953) (-199) (-517))) (-15 -2355 ((-953) (-199) (-517))) (-15 -3753 ((-953) (-199) (-517))) (-15 -2549 ((-953) (-199) (-517))) (-15 -1546 ((-953) (-199) (-517))) (-15 -3241 ((-953) (-199) (-517))) (-15 -2895 ((-953) (-199) (-517))) (-15 -3059 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3227 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3308 ((-953) (-1060) (-153 (-199)) (-1060) (-517))) (-15 -3769 ((-953) (-1060) (-153 (-199)) (-1060) (-517))) (-15 -2896 ((-953) (-517) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -1683 ((-953) (-199) (-517))) (-15 -3265 ((-953) (-199) (-517))) (-15 -4006 ((-953) (-199) (-517))) (-15 -2484 ((-953) (-199) (-517))) (-15 -3730 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -4018 ((-953) (-199) (-153 (-199)) (-517) (-1060) (-517))) (-15 -3703 ((-953) (-199) (-517))) (-15 -3087 ((-953) (-199) (-517))) (-15 -3934 ((-953) (-199) (-517))) (-15 -2167 ((-953) (-199) (-517))) (-15 -2714 ((-953) (-199) (-517))) (-15 -3072 ((-953) (-199) (-517))) (-15 -3763 ((-953) (-199) (-199) (-517))) (-15 -2670 ((-953) (-199) (-199) (-199) (-517))) (-15 -1292 ((-953) (-199) (-199) (-199) (-517))) (-15 -3046 ((-953) (-199) (-199) (-199) (-199) (-517)))) -((-2813 (((-1163)) 18)) (-2081 (((-1060)) 22)) (-1415 (((-1060)) 21)) (-2705 (((-1010) (-1077) (-623 (-517))) 35) (((-1010) (-1077) (-623 (-199))) 31)) (-3516 (((-107)) 16)) (-2129 (((-1060) (-1060)) 25))) -(((-692) (-10 -7 (-15 -1415 ((-1060))) (-15 -2081 ((-1060))) (-15 -2129 ((-1060) (-1060))) (-15 -2705 ((-1010) (-1077) (-623 (-199)))) (-15 -2705 ((-1010) (-1077) (-623 (-517)))) (-15 -3516 ((-107))) (-15 -2813 ((-1163))))) (T -692)) -((-2813 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-692)))) (-3516 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-623 (-517))) (-5 *2 (-1010)) (-5 *1 (-692)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-623 (-199))) (-5 *2 (-1010)) (-5 *1 (-692)))) (-2129 (*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692)))) (-2081 (*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692)))) (-1415 (*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692))))) -(-10 -7 (-15 -1415 ((-1060))) (-15 -2081 ((-1060))) (-15 -2129 ((-1060) (-1060))) (-15 -2705 ((-1010) (-1077) (-623 (-199)))) (-15 -2705 ((-1010) (-1077) (-623 (-517)))) (-15 -3516 ((-107))) (-15 -2813 ((-1163)))) -((-1970 (($ $ $) 10)) (-2182 (($ $ $ $) 9)) (-2742 (($ $ $) 12))) -(((-693 |#1|) (-10 -8 (-15 -2742 (|#1| |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -2182 (|#1| |#1| |#1| |#1|))) (-694)) (T -693)) -NIL -(-10 -8 (-15 -2742 (|#1| |#1| |#1|)) (-15 -1970 (|#1| |#1| |#1|)) (-15 -2182 (|#1| |#1| |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2823 (($ $ (-845)) 28)) (-4119 (($ $ (-845)) 29)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1970 (($ $ $) 25)) (-2262 (((-787) $) 11)) (-2182 (($ $ $ $) 26)) (-2742 (($ $ $) 24)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 30)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27))) -(((-694) (-1189)) (T -694)) -((-2182 (*1 *1 *1 *1 *1) (-4 *1 (-694))) (-1970 (*1 *1 *1 *1) (-4 *1 (-694))) (-2742 (*1 *1 *1 *1) (-4 *1 (-694)))) -(-13 (-21) (-653) (-10 -8 (-15 -2182 ($ $ $ $)) (-15 -1970 ($ $ $)) (-15 -2742 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-1006) . T)) -((-2262 (((-787) $) NIL) (($ (-517)) 10))) -(((-695 |#1|) (-10 -8 (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-696)) (T -695)) -NIL -(-10 -8 (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3071 (((-3 $ "failed") $) 40)) (-2823 (($ $ (-845)) 28) (($ $ (-703)) 35)) (-3550 (((-3 $ "failed") $) 38)) (-1690 (((-107) $) 34)) (-2680 (((-3 $ "failed") $) 39)) (-4119 (($ $ (-845)) 29) (($ $ (-703)) 36)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1970 (($ $ $) 25)) (-2262 (((-787) $) 11) (($ (-517)) 31)) (-1818 (((-703)) 32)) (-2182 (($ $ $ $) 26)) (-2742 (($ $ $) 24)) (-3663 (($) 18 T CONST)) (-3675 (($) 33 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 30) (($ $ (-703)) 37)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27))) -(((-696) (-1189)) (T -696)) -((-1818 (*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696))))) -(-13 (-694) (-655) (-10 -8 (-15 -1818 ((-703))) (-15 -2262 ($ (-517))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-655) . T) ((-694) . T) ((-1006) . T)) -((-3464 (((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|) 27)) (-1202 (((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|) 19)) (-3848 (((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1077)) 16) (((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517))))) 15))) -(((-697 |#1|) (-10 -7 (-15 -3848 ((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3848 ((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1077))) (-15 -1202 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -3464 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|))) (-13 (-333) (-777))) (T -697)) -((-3464 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-1202 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1077)) (-5 *2 (-876 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-876 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777)))))) -(-10 -7 (-15 -3848 ((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3848 ((-876 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1077))) (-15 -1202 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -3464 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|))) -((-1309 (((-157 (-517)) |#1|) 25))) -(((-698 |#1|) (-10 -7 (-15 -1309 ((-157 (-517)) |#1|))) (-374)) (T -698)) -((-1309 (*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374))))) -(-10 -7 (-15 -1309 ((-157 (-517)) |#1|))) -((-1346 ((|#1| |#1| |#1|) 25)) (-1609 ((|#1| |#1| |#1|) 24)) (-2882 ((|#1| |#1| |#1|) 32)) (-1843 ((|#1| |#1| |#1|) 28)) (-1664 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2097 (((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|) 23))) -(((-699 |#1| |#2|) (-10 -7 (-15 -2097 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1609 (|#1| |#1| |#1|)) (-15 -1346 (|#1| |#1| |#1|)) (-15 -1664 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|))) (-642 |#2|) (-333)) (T -699)) -((-2882 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1843 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1664 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1346 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1609 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-2097 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4))))) -(-10 -7 (-15 -2097 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1609 (|#1| |#1| |#1|)) (-15 -1346 (|#1| |#1| |#1|)) (-15 -1664 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -2882 (|#1| |#1| |#1|))) -((-1486 (((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)) 58)) (-2734 (((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) 56)) (-3115 (((-517)) 68))) -(((-700 |#1| |#2|) (-10 -7 (-15 -3115 ((-517))) (-15 -2734 ((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -1486 ((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)))) (-1134 (-517)) (-379 (-517) |#1|)) (T -700)) -((-1486 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1134 *3)) (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2734 (*1 *2) (-12 (-4 *3 (-1134 (-517))) (-5 *2 (-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) (-3115 (*1 *2) (-12 (-4 *3 (-1134 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3))))) -(-10 -7 (-15 -3115 ((-517))) (-15 -2734 ((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -1486 ((-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)))) -((-2105 (((-107) $ $) NIL)) (-3402 (((-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $) 15)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 14) (($ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) 12)) (-1572 (((-107) $ $) NIL))) -(((-701) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))) (T -701)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701))))) -(-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-3 (|:| |nia| (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $)))) -((-3105 (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|))) 14) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077))) 13)) (-1993 (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|))) 16) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077))) 15))) -(((-702 |#1|) (-10 -7 (-15 -3105 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -3105 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|))))) (-509)) (T -702)) -((-1993 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-702 *4)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-702 *5)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-702 *4)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-702 *5))))) -(-10 -7 (-15 -3105 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -3105 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-876 |#1|))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3505 (($ $ $) 8)) (-1783 (((-3 $ "failed") $ $) 11)) (-2127 (($ $ (-517)) 9)) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($ $) NIL)) (-2356 (($ $ $) NIL)) (-1690 (((-107) $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2361 (($ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2262 (((-787) $) NIL)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ (-703) $) NIL) (($ (-845) $) NIL) (($ $ $) NIL))) -(((-703) (-13 (-725) (-659) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2361 ($ $ $)) (-15 -2018 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2333 ((-3 $ "failed") $ $)) (-15 -2127 ($ $ (-517))) (-15 -2192 ($ $)) (-6 (-4197 "*"))))) (T -703)) -((-2356 (*1 *1 *1 *1) (-5 *1 (-703))) (-2383 (*1 *1 *1 *1) (-5 *1 (-703))) (-2361 (*1 *1 *1 *1) (-5 *1 (-703))) (-2018 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2773 (-703)) (|:| -3292 (-703)))) (-5 *1 (-703)))) (-2333 (*1 *1 *1 *1) (|partial| -5 *1 (-703))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))) (-2192 (*1 *1 *1) (-5 *1 (-703)))) -(-13 (-725) (-659) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2361 ($ $ $)) (-15 -2018 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2333 ((-3 $ "failed") $ $)) (-15 -2127 ($ $ (-517))) (-15 -2192 ($ $)) (-6 (-4197 "*")))) -((-1993 (((-3 |#2| "failed") |#2| |#2| (-109) (-1077)) 35))) -(((-704 |#1| |#2|) (-10 -7 (-15 -1993 ((-3 |#2| "failed") |#2| |#2| (-109) (-1077)))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1098) (-882))) (T -704)) -((-1993 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1077)) (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1098) (-882)))))) -(-10 -7 (-15 -1993 ((-3 |#2| "failed") |#2| |#2| (-109) (-1077)))) -((-2262 (((-706) |#1|) 8))) -(((-705 |#1|) (-10 -7 (-15 -2262 ((-706) |#1|))) (-1112)) (T -705)) -((-2262 (*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1112))))) -(-10 -7 (-15 -2262 ((-706) |#1|))) -((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 7)) (-1572 (((-107) $ $) 9))) -(((-706) (-1006)) (T -706)) -NIL -(-1006) -((-3522 ((|#2| |#4|) 35))) -(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3522 (|#2| |#4|))) (-421) (-1134 |#1|) (-657 |#1| |#2|) (-1134 |#3|)) (T -707)) -((-3522 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1134 *5))))) -(-10 -7 (-15 -3522 (|#2| |#4|))) -((-3550 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1370 (((-1163) (-1060) (-1060) |#4| |#5|) 33)) (-3716 ((|#4| |#4| |#5|) 73)) (-1450 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|) 77)) (-1548 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|) 15))) -(((-708 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3550 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3716 (|#4| |#4| |#5|)) (-15 -1450 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1370 ((-1163) (-1060) (-1060) |#4| |#5|)) (-15 -1548 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -708)) -((-1548 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1370 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1060)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1163)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-983 *6 *7 *8 *4)))) (-1450 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3716 (*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2)))) (-3550 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(-10 -7 (-15 -3550 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3716 (|#4| |#4| |#5|)) (-15 -1450 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1370 ((-1163) (-1060) (-1060) |#4| |#5|)) (-15 -1548 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|))) -((-3220 (((-3 (-1073 (-1073 |#1|)) "failed") |#4|) 44)) (-1942 (((-583 |#4|) |#4|) 15)) (-4115 ((|#4| |#4|) 11))) -(((-709 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1942 ((-583 |#4|) |#4|)) (-15 -3220 ((-3 (-1073 (-1073 |#1|)) "failed") |#4|)) (-15 -4115 (|#4| |#4|))) (-319) (-299 |#1|) (-1134 |#2|) (-1134 |#3|) (-845)) (T -709)) -((-4115 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1134 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1134 *5)) (-14 *6 (-845)))) (-3220 (*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1134 *5)) (-5 *2 (-1073 (-1073 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1134 *6)) (-14 *7 (-845)))) (-1942 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1134 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1134 *6)) (-14 *7 (-845))))) -(-10 -7 (-15 -1942 ((-583 |#4|) |#4|)) (-15 -3220 ((-3 (-1073 (-1073 |#1|)) "failed") |#4|)) (-15 -4115 (|#4| |#4|))) -((-3083 (((-2 (|:| |deter| (-583 (-1073 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1073 |#5|) (-583 |#1|) (-583 |#5|)) 53)) (-1427 (((-583 (-703)) |#1|) 12))) -(((-710 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3083 ((-2 (|:| |deter| (-583 (-1073 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1073 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -1427 ((-583 (-703)) |#1|))) (-1134 |#4|) (-725) (-779) (-278) (-873 |#4| |#2| |#3|)) (T -710)) -((-1427 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1134 *6)) (-4 *7 (-873 *6 *4 *5)))) (-3083 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1134 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-873 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1073 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1073 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10))))) -(-10 -7 (-15 -3083 ((-2 (|:| |deter| (-583 (-1073 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1073 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -1427 ((-583 (-703)) |#1|))) -((-2976 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|) 27)) (-4014 (((-583 |#1|) (-623 (-377 (-517))) |#1|) 19)) (-3848 (((-876 (-377 (-517))) (-623 (-377 (-517))) (-1077)) 16) (((-876 (-377 (-517))) (-623 (-377 (-517)))) 15))) -(((-711 |#1|) (-10 -7 (-15 -3848 ((-876 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3848 ((-876 (-377 (-517))) (-623 (-377 (-517))) (-1077))) (-15 -4014 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2976 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|))) (-13 (-333) (-777))) (T -711)) -((-2976 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1077)) (-5 *2 (-876 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-876 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777)))))) -(-10 -7 (-15 -3848 ((-876 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3848 ((-876 (-377 (-517))) (-623 (-377 (-517))) (-1077))) (-15 -4014 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2976 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 34)) (-2080 (((-583 |#2|) $) NIL)) (-1428 (((-1073 $) $ |#2|) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 |#2|)) NIL)) (-1529 (($ $) 28)) (-2660 (((-107) $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-4068 (($ $ $) 93 (|has| |#1| (-509)))) (-3770 (((-583 $) $ $) 106 (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-876 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077))))) (((-3 $ "failed") (-876 (-517))) NIL (-3786 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077)))))) (((-3 $ "failed") (-876 |#1|)) NIL (-3786 (-12 (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-912 (-517))))))) (((-3 (-1029 |#1| |#2|) "failed") $) 18)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) ((|#2| $) NIL) (($ (-876 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077))))) (($ (-876 (-517))) NIL (-3786 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077)))))) (($ (-876 |#1|)) NIL (-3786 (-12 (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-912 (-517))))))) (((-1029 |#1| |#2|) $) NIL)) (-2133 (($ $ $ |#2|) NIL (|has| |#1| (-156))) (($ $ $) 104 (|has| |#1| (-509)))) (-2364 (($ $) NIL) (($ $ |#2|) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3639 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-1727 (((-107) $) NIL)) (-1868 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 70)) (-3589 (($ $) 119 (|has| |#1| (-421)))) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-3345 (($ $) NIL (|has| |#1| (-509)))) (-3869 (($ $) NIL (|has| |#1| (-509)))) (-3092 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3156 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1760 (($ $ |#1| (-489 |#2|) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| |#1| (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| |#1| (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-3142 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-1576 (($ $ $ $ $) 90 (|has| |#1| (-509)))) (-2772 ((|#2| $) 19)) (-2069 (($ (-1073 |#1|) |#2|) NIL) (($ (-1073 $) |#2|) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2561 (($ $ $) 60)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#2|) NIL)) (-1837 (((-107) $) NIL)) (-3942 (((-489 |#2|) $) NIL) (((-703) $ |#2|) NIL) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-2213 (((-703) $) 20)) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1958 (((-3 |#2| "failed") $) NIL)) (-3801 (($ $) NIL (|has| |#1| (-421)))) (-2768 (($ $) NIL (|has| |#1| (-421)))) (-1330 (((-583 $) $) NIL)) (-2655 (($ $) 37)) (-1604 (($ $) NIL (|has| |#1| (-421)))) (-3620 (((-583 $) $) 41)) (-2841 (($ $) 39)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1732 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1762 (-703))) $ $) 82)) (-3028 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $) 67) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $ |#2|) NIL)) (-1650 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $) NIL) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $ |#2|) NIL)) (-1530 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-1962 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3232 (((-1060) $) NIL)) (-1504 (($ $ $) 108 (|has| |#1| (-509)))) (-3497 (((-583 $) $) 30)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| |#2|) (|:| -1725 (-703))) "failed") $) NIL)) (-1568 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-2930 (($ $ $) NIL)) (-2578 (($ $) 21)) (-1579 (((-107) $ $) NIL)) (-2788 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3877 (($ $ $) NIL)) (-2415 (($ $) 23)) (-4130 (((-1024) $) NIL)) (-3249 (((-2 (|:| -2361 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-509)))) (-1850 (((-2 (|:| -2361 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-509)))) (-2301 (((-107) $) 52)) (-2311 ((|#1| $) 55)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 ((|#1| |#1| $) 116 (|has| |#1| (-421))) (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-1567 (((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-509)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-509)))) (-2353 (($ $ |#1|) 112 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3084 (($ $ |#1|) 111 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-583 |#2|) (-583 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-583 |#2|) (-583 $)) NIL)) (-3115 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2042 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1191 (((-489 |#2|) $) NIL) (((-703) $ |#2|) 43) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-1216 (($ $) NIL)) (-2858 (($ $) 33)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493))))) (($ (-876 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077))))) (($ (-876 (-517))) NIL (-3786 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1077))) (-2479 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1077)))))) (($ (-876 |#1|)) NIL (|has| |#2| (-558 (-1077)))) (((-1060) $) NIL (-12 (|has| |#1| (-955 (-517))) (|has| |#2| (-558 (-1077))))) (((-876 |#1|) $) NIL (|has| |#2| (-558 (-1077))))) (-4094 ((|#1| $) 115 (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-876 |#1|) $) NIL (|has| |#2| (-558 (-1077)))) (((-1029 |#1| |#2|) $) 15) (($ (-1029 |#1| |#2|)) 16) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) 44) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 13 T CONST)) (-4093 (((-3 (-107) "failed") $ $) NIL)) (-3675 (($) 35 T CONST)) (-3828 (($ $ $ $ (-703)) 88 (|has| |#1| (-509)))) (-2494 (($ $ $ (-703)) 87 (|has| |#1| (-509)))) (-3348 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 54)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) 64)) (-1666 (($ $ $) 74)) (** (($ $ (-845)) NIL) (($ $ (-703)) 61)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-712 |#1| |#2|) (-13 (-978 |#1| (-489 |#2|) |#2|) (-557 (-1029 |#1| |#2|)) (-955 (-1029 |#1| |#2|))) (-964) (-779)) (T -712)) -NIL -(-13 (-978 |#1| (-489 |#2|) |#2|) (-557 (-1029 |#1| |#2|)) (-955 (-1029 |#1| |#2|))) -((-3312 (((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)) 13))) -(((-713 |#1| |#2|) (-10 -7 (-15 -3312 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)))) (-964) (-964)) (T -713)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6))))) -(-10 -7 (-15 -3312 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 12)) (-1335 (((-1158 |#1|) $ (-703)) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-4170 (($ (-1073 |#1|)) NIL)) (-1428 (((-1073 $) $ (-992)) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-992))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2143 (((-583 $) $ $) 39 (|has| |#1| (-509)))) (-4068 (($ $ $) 35 (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1401 (($ $ (-703)) NIL)) (-1861 (($ $ (-703)) NIL)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-992) "failed") $) NIL) (((-3 (-1073 |#1|) "failed") $) 10)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-992) $) NIL) (((-1073 |#1|) $) NIL)) (-2133 (($ $ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $ $) 43 (|has| |#1| (-156)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (($ $ $) NIL)) (-1554 (($ $ $) 71 (|has| |#1| (-509)))) (-1868 (((-2 (|:| -1570 |#1|) (|:| -2773 $) (|:| -3292 $)) $ $) 70 (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-703) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-992) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-992) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-1053)))) (-2069 (($ (-1073 |#1|) (-992)) NIL) (($ (-1073 $) (-992)) NIL)) (-2113 (($ $ (-703)) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-2561 (($ $ $) 20)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-992)) NIL) (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3942 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-703) (-703)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3634 (((-1073 |#1|) $) NIL)) (-1958 (((-3 (-992) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1732 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1762 (-703))) $ $) 26)) (-2004 (($ $ $) 29)) (-2758 (($ $ $) 32)) (-3028 (((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $) 31)) (-3232 (((-1060) $) NIL)) (-1504 (($ $ $) 41 (|has| |#1| (-509)))) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-992)) (|:| -1725 (-703))) "failed") $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) NIL (|has| |#1| (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-3249 (((-2 (|:| -2361 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-509)))) (-1850 (((-2 (|:| -2361 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-509)))) (-1225 (((-2 (|:| -2133 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-509)))) (-3956 (((-2 (|:| -2133 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-509)))) (-2301 (((-107) $) 13)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2555 (($ $ (-703) |#1| $) 19)) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-1567 (((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-509)))) (-3892 (((-2 (|:| -2133 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-509)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-992) |#1|) NIL) (($ $ (-583 (-992)) (-583 |#1|)) NIL) (($ $ (-992) $) NIL) (($ $ (-583 (-992)) (-583 $)) NIL)) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3767 (((-3 $ "failed") $ (-703)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-3115 (($ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2042 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1191 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-992) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-992)) NIL) (((-1073 |#1|) $) 7) (($ (-1073 |#1|)) 8) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 21 T CONST)) (-3675 (($) 24 T CONST)) (-3348 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) 28) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-714 |#1|) (-13 (-1134 |#1|) (-557 (-1073 |#1|)) (-955 (-1073 |#1|)) (-10 -8 (-15 -2555 ($ $ (-703) |#1| $)) (-15 -2561 ($ $ $)) (-15 -1732 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1762 (-703))) $ $)) (-15 -2004 ($ $ $)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2758 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2143 ((-583 $) $ $)) (-15 -1504 ($ $ $)) (-15 -1567 ((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1850 ((-2 (|:| -2361 $) (|:| |coef1| $)) $ $)) (-15 -3249 ((-2 (|:| -2361 $) (|:| |coef2| $)) $ $)) (-15 -3892 ((-2 (|:| -2133 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3956 ((-2 (|:| -2133 |#1|) (|:| |coef1| $)) $ $)) (-15 -1225 ((-2 (|:| -2133 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-964)) (T -714)) -((-2555 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-964)))) (-2561 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964)))) (-1732 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1762 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-964)))) (-2004 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964)))) (-3028 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1570 *3) (|:| |gap| (-703)) (|:| -2773 (-714 *3)) (|:| -3292 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-964)))) (-2758 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964)))) (-2143 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-1504 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-964)))) (-1567 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2361 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-1850 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2361 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-3249 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2361 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-3892 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2133 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-3956 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2133 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) (-1225 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2133 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964))))) -(-13 (-1134 |#1|) (-557 (-1073 |#1|)) (-955 (-1073 |#1|)) (-10 -8 (-15 -2555 ($ $ (-703) |#1| $)) (-15 -2561 ($ $ $)) (-15 -1732 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1762 (-703))) $ $)) (-15 -2004 ($ $ $)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2758 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2143 ((-583 $) $ $)) (-15 -1504 ($ $ $)) (-15 -1567 ((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1850 ((-2 (|:| -2361 $) (|:| |coef1| $)) $ $)) (-15 -3249 ((-2 (|:| -2361 $) (|:| |coef2| $)) $ $)) (-15 -3892 ((-2 (|:| -2133 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3956 ((-2 (|:| -2133 |#1|) (|:| |coef1| $)) $ $)) (-15 -1225 ((-2 (|:| -2133 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-1978 ((|#1| (-703) |#1|) 33 (|has| |#1| (-37 (-377 (-517)))))) (-3585 ((|#1| (-703) |#1|) 23)) (-2649 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517))))))) -(((-715 |#1|) (-10 -7 (-15 -3585 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2649 (|#1| (-703) |#1|)) (-15 -1978 (|#1| (-703) |#1|))) |%noBranch|)) (-156)) (T -715)) -((-1978 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2649 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-3585 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156))))) -(-10 -7 (-15 -3585 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2649 (|#1| (-703) |#1|)) (-15 -1978 (|#1| (-703) |#1|))) |%noBranch|)) -((-2105 (((-107) $ $) 7)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) 85)) (-3246 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) 101) (((-107) $) 97)) (-3710 ((|#4| |#4| $) 92)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 126)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 79)) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2429 (((-3 $ "failed") $) 82)) (-2195 ((|#4| |#4| $) 89)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4142 ((|#4| |#4| $) 87)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) 105)) (-3901 (((-107) |#4| $) 136)) (-1426 (((-107) |#4| $) 133)) (-3403 (((-107) |#4| $) 137) (((-107) $) 134)) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) 104) (((-107) $) 103)) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 127)) (-1447 (((-3 |#4| "failed") $) 83)) (-1243 (((-583 $) |#4| $) 129)) (-3398 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2187 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2642 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3846 (((-583 |#4|) $) 107)) (-1568 (((-107) |#4| $) 99) (((-107) $) 95)) (-2930 ((|#4| |#4| $) 90)) (-1579 (((-107) $ $) 110)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) 100) (((-107) $) 96)) (-3877 ((|#4| |#4| $) 91)) (-4130 (((-1024) $) 10)) (-2420 (((-3 |#4| "failed") $) 84)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-4059 (((-3 $ "failed") $ |#4|) 78)) (-3175 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-1191 (((-703) $) 106)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-4158 (($ $) 88)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3192 (((-703) $) 76 (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2709 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) 81)) (-2525 (((-107) |#4| $) 135)) (-3275 (((-107) |#3| $) 80)) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195))))) -(((-716 |#1| |#2| |#3| |#4|) (-1189) (-421) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -716)) -NIL -(-13 (-983 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-896 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1106 |#1| |#2| |#3| |#4|) . T) ((-1112) . T)) -((-1383 (((-3 (-349) "failed") (-286 |#1|) (-845)) 60 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-286 |#1|)) 52 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-377 (-876 |#1|)) (-845)) 39 (|has| |#1| (-509))) (((-3 (-349) "failed") (-377 (-876 |#1|))) 35 (|has| |#1| (-509))) (((-3 (-349) "failed") (-876 |#1|) (-845)) 30 (|has| |#1| (-964))) (((-3 (-349) "failed") (-876 |#1|)) 24 (|has| |#1| (-964)))) (-3104 (((-349) (-286 |#1|) (-845)) 92 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-286 |#1|)) 87 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-377 (-876 |#1|)) (-845)) 84 (|has| |#1| (-509))) (((-349) (-377 (-876 |#1|))) 81 (|has| |#1| (-509))) (((-349) (-876 |#1|) (-845)) 80 (|has| |#1| (-964))) (((-349) (-876 |#1|)) 77 (|has| |#1| (-964))) (((-349) |#1| (-845)) 73) (((-349) |#1|) 22)) (-3829 (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-845)) 68 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|))) 58 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|) (-845)) 61 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|)) 59 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|))) (-845)) 44 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|)))) 43 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-876 |#1|)) (-845)) 38 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-876 |#1|))) 37 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-876 |#1|) (-845)) 28 (|has| |#1| (-964))) (((-3 (-153 (-349)) "failed") (-876 |#1|)) 26 (|has| |#1| (-964))) (((-3 (-153 (-349)) "failed") (-876 (-153 |#1|)) (-845)) 17 (|has| |#1| (-156))) (((-3 (-153 (-349)) "failed") (-876 (-153 |#1|))) 14 (|has| |#1| (-156)))) (-1388 (((-153 (-349)) (-286 (-153 |#1|)) (-845)) 95 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 (-153 |#1|))) 94 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|) (-845)) 93 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|)) 91 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-377 (-876 (-153 |#1|))) (-845)) 86 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-876 (-153 |#1|)))) 85 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-876 |#1|)) (-845)) 83 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-876 |#1|))) 82 (|has| |#1| (-509))) (((-153 (-349)) (-876 |#1|) (-845)) 79 (|has| |#1| (-964))) (((-153 (-349)) (-876 |#1|)) 78 (|has| |#1| (-964))) (((-153 (-349)) (-876 (-153 |#1|)) (-845)) 75 (|has| |#1| (-156))) (((-153 (-349)) (-876 (-153 |#1|))) 74 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|) (-845)) 16 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|)) 12 (|has| |#1| (-156))) (((-153 (-349)) |#1| (-845)) 27) (((-153 (-349)) |#1|) 25))) -(((-717 |#1|) (-10 -7 (-15 -3104 ((-349) |#1|)) (-15 -3104 ((-349) |#1| (-845))) (-15 -1388 ((-153 (-349)) |#1|)) (-15 -1388 ((-153 (-349)) |#1| (-845))) (IF (|has| |#1| (-156)) (PROGN (-15 -1388 ((-153 (-349)) (-153 |#1|))) (-15 -1388 ((-153 (-349)) (-153 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-876 (-153 |#1|)))) (-15 -1388 ((-153 (-349)) (-876 (-153 |#1|)) (-845)))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-15 -3104 ((-349) (-876 |#1|))) (-15 -3104 ((-349) (-876 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-876 |#1|))) (-15 -1388 ((-153 (-349)) (-876 |#1|) (-845)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3104 ((-349) (-377 (-876 |#1|)))) (-15 -3104 ((-349) (-377 (-876 |#1|)) (-845))) (-15 -1388 ((-153 (-349)) (-377 (-876 |#1|)))) (-15 -1388 ((-153 (-349)) (-377 (-876 |#1|)) (-845))) (-15 -1388 ((-153 (-349)) (-377 (-876 (-153 |#1|))))) (-15 -1388 ((-153 (-349)) (-377 (-876 (-153 |#1|))) (-845))) (IF (|has| |#1| (-779)) (PROGN (-15 -3104 ((-349) (-286 |#1|))) (-15 -3104 ((-349) (-286 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-286 |#1|))) (-15 -1388 ((-153 (-349)) (-286 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -1388 ((-153 (-349)) (-286 (-153 |#1|)) (-845)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 (-153 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 (-153 |#1|)) (-845)))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-876 |#1|))) (-15 -1383 ((-3 (-349) "failed") (-876 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 |#1|))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 |#1|) (-845)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-377 (-876 |#1|)))) (-15 -1383 ((-3 (-349) "failed") (-377 (-876 |#1|)) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 |#1|)) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|))))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|))) (-845))) (IF (|has| |#1| (-779)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-286 |#1|))) (-15 -1383 ((-3 (-349) "failed") (-286 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-845)))) |%noBranch|)) |%noBranch|)) (-558 (-349))) (T -717)) -((-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1383 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-1383 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-876 (-153 *5)))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-876 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1383 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-1383 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1383 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-1383 (*1 *2 *3) (|partial| -12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-3829 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-876 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-3829 (*1 *2 *3) (|partial| -12 (-5 *3 (-876 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 (-153 *5)))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-876 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-845)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-1388 (*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-3104 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) (-3104 (*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2))))) -(-10 -7 (-15 -3104 ((-349) |#1|)) (-15 -3104 ((-349) |#1| (-845))) (-15 -1388 ((-153 (-349)) |#1|)) (-15 -1388 ((-153 (-349)) |#1| (-845))) (IF (|has| |#1| (-156)) (PROGN (-15 -1388 ((-153 (-349)) (-153 |#1|))) (-15 -1388 ((-153 (-349)) (-153 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-876 (-153 |#1|)))) (-15 -1388 ((-153 (-349)) (-876 (-153 |#1|)) (-845)))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-15 -3104 ((-349) (-876 |#1|))) (-15 -3104 ((-349) (-876 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-876 |#1|))) (-15 -1388 ((-153 (-349)) (-876 |#1|) (-845)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3104 ((-349) (-377 (-876 |#1|)))) (-15 -3104 ((-349) (-377 (-876 |#1|)) (-845))) (-15 -1388 ((-153 (-349)) (-377 (-876 |#1|)))) (-15 -1388 ((-153 (-349)) (-377 (-876 |#1|)) (-845))) (-15 -1388 ((-153 (-349)) (-377 (-876 (-153 |#1|))))) (-15 -1388 ((-153 (-349)) (-377 (-876 (-153 |#1|))) (-845))) (IF (|has| |#1| (-779)) (PROGN (-15 -3104 ((-349) (-286 |#1|))) (-15 -3104 ((-349) (-286 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-286 |#1|))) (-15 -1388 ((-153 (-349)) (-286 |#1|) (-845))) (-15 -1388 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -1388 ((-153 (-349)) (-286 (-153 |#1|)) (-845)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 (-153 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 (-153 |#1|)) (-845)))) |%noBranch|) (IF (|has| |#1| (-964)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-876 |#1|))) (-15 -1383 ((-3 (-349) "failed") (-876 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 |#1|))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-876 |#1|) (-845)))) |%noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-377 (-876 |#1|)))) (-15 -1383 ((-3 (-349) "failed") (-377 (-876 |#1|)) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 |#1|)) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|))))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-377 (-876 (-153 |#1|))) (-845))) (IF (|has| |#1| (-779)) (PROGN (-15 -1383 ((-3 (-349) "failed") (-286 |#1|))) (-15 -1383 ((-3 (-349) "failed") (-286 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-845))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -3829 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-845)))) |%noBranch|)) |%noBranch|)) -((-1676 (((-845) (-1060)) 64)) (-3465 (((-3 (-349) "failed") (-1060)) 33)) (-3918 (((-349) (-1060)) 31)) (-3992 (((-845) (-1060)) 54)) (-2016 (((-1060) (-845)) 55)) (-1649 (((-1060) (-845)) 53))) -(((-718) (-10 -7 (-15 -1649 ((-1060) (-845))) (-15 -3992 ((-845) (-1060))) (-15 -2016 ((-1060) (-845))) (-15 -1676 ((-845) (-1060))) (-15 -3918 ((-349) (-1060))) (-15 -3465 ((-3 (-349) "failed") (-1060))))) (T -718)) -((-3465 (*1 *2 *3) (|partial| -12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-718)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-718)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-845)) (-5 *1 (-718)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1060)) (-5 *1 (-718)))) (-3992 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-845)) (-5 *1 (-718)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1060)) (-5 *1 (-718))))) -(-10 -7 (-15 -1649 ((-1060) (-845))) (-15 -3992 ((-845) (-1060))) (-15 -2016 ((-1060) (-845))) (-15 -1676 ((-845) (-1060))) (-15 -3918 ((-349) (-1060))) (-15 -3465 ((-3 (-349) "failed") (-1060)))) -((-2105 (((-107) $ $) 7)) (-2043 (((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 15) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953)) 13)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 16) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6))) -(((-719) (-1189)) (T -719)) -((-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953)))))) (-2043 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-953)) (-5 *3 (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953)))))) (-2043 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-953)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) -(-13 (-1006) (-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2043 ((-953) (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) (|:| |extra| (-953))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2043 ((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-953))))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-3644 (((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349))) 44) (((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349))) 43)) (-3473 (((-1163) (-1158 (-349)) (-517) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349))) 50)) (-2377 (((-1163) (-1158 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349))) 41)) (-2779 (((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349))) 52) (((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349))) 51))) -(((-720) (-10 -7 (-15 -2779 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -2779 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)))) (-15 -2377 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -3644 ((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -3644 ((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)))) (-15 -3473 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))))) (T -720)) -((-3473 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720)))) (-3644 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349)))) (-5 *7 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720)))) (-3644 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349)))) (-5 *7 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720)))) (-2377 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720)))) (-2779 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720)))) (-2779 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) (-5 *1 (-720))))) -(-10 -7 (-15 -2779 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -2779 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)))) (-15 -2377 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -3644 ((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)))) (-15 -3644 ((-1163) (-1158 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349))) (-349) (-1158 (-349)) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)) (-1158 (-349)))) (-15 -3473 ((-1163) (-1158 (-349)) (-517) (-349) (-349) (-517) (-1 (-1163) (-1158 (-349)) (-1158 (-349)) (-349))))) -((-3521 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 53)) (-2157 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 30)) (-1892 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 52)) (-1518 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 28)) (-2551 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 51)) (-3792 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 18)) (-3400 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 31)) (-2045 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 29)) (-2422 (((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 27))) -(((-721) (-10 -7 (-15 -2422 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -2045 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3400 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3792 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1518 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2157 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2551 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1892 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3521 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))) (T -721)) -((-3521 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1892 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2551 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2157 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1518 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3792 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3400 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2045 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2422 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517))))) -(-10 -7 (-15 -2422 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -2045 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3400 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3792 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1518 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2157 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2551 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1892 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -3521 ((-2 (|:| -3112 (-349)) (|:| -3113 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)))) -((-3062 (((-1108 |#1|) |#1| (-199) (-517)) 45))) -(((-722 |#1|) (-10 -7 (-15 -3062 ((-1108 |#1|) |#1| (-199) (-517)))) (-894)) (T -722)) -((-3062 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1108 *3)) (-5 *1 (-722 *3)) (-4 *3 (-894))))) -(-10 -7 (-15 -3062 ((-1108 |#1|) |#1| (-199) (-517)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-1783 (((-3 $ "failed") $ $) 26)) (-3038 (($) 23 T CONST)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 22 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1680 (($ $ $) 28) (($ $) 27)) (-1666 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-845) $) 21) (($ (-517) $) 29))) -(((-723) (-1189)) (T -723)) -NIL -(-13 (-727) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1006) . T)) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-3038 (($) 23 T CONST)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 22 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1666 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-845) $) 21))) -(((-724) (-1189)) (T -724)) -NIL -(-13 (-726) (-23)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-726) . T) ((-779) . T) ((-1006) . T)) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-3505 (($ $ $) 27)) (-1783 (((-3 $ "failed") $ $) 26)) (-3038 (($) 23 T CONST)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 22 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1666 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-845) $) 21))) -(((-725) (-1189)) (T -725)) -((-3505 (*1 *1 *1 *1) (-4 *1 (-725)))) -(-13 (-727) (-10 -8 (-15 -3505 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1006) . T)) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-3038 (($) 23 T CONST)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 22 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1666 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-845) $) 21))) -(((-726) (-1189)) (T -726)) -NIL -(-13 (-779) (-23)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1006) . T)) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-1783 (((-3 $ "failed") $ $) 26)) (-3038 (($) 23 T CONST)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 22 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1666 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-845) $) 21))) -(((-727) (-1189)) (T -727)) -NIL -(-13 (-724) (-123)) -(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-779) . T) ((-1006) . T)) -((-1992 (((-107) $) 41)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 42)) (-3389 (((-3 (-377 (-517)) "failed") $) 78)) (-3748 (((-107) $) 72)) (-3727 (((-377 (-517)) $) 76)) (-3522 ((|#2| $) 26)) (-3312 (($ (-1 |#2| |#2|) $) 23)) (-2291 (($ $) 61)) (-3367 (((-493) $) 67)) (-1853 (($ $) 21)) (-2262 (((-787) $) 56) (($ (-517)) 39) (($ |#2|) 37) (($ (-377 (-517))) NIL)) (-1818 (((-703)) 10)) (-2829 ((|#2| $) 71)) (-1572 (((-107) $ $) 29)) (-1596 (((-107) $ $) 69)) (-1680 (($ $) 31) (($ $ $) NIL)) (-1666 (($ $ $) 30)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-728 |#1| |#2|) (-10 -8 (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2829 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-729 |#2|) (-156)) (T -728)) -((-1818 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4))))) -(-10 -8 (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -2291 (|#1| |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2829 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-2390 (((-703)) 53 (|has| |#1| (-338)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 94 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 92 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 90)) (-3402 (((-517) $) 95 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 93 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 89)) (-3550 (((-3 $ "failed") $) 34)) (-3919 ((|#1| $) 79)) (-3389 (((-3 (-377 (-517)) "failed") $) 66 (|has| |#1| (-502)))) (-3748 (((-107) $) 68 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 67 (|has| |#1| (-502)))) (-2192 (($) 56 (|has| |#1| (-338)))) (-1690 (((-107) $) 31)) (-1487 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-3522 ((|#1| $) 71)) (-3480 (($ $ $) 62 (|has| |#1| (-779)))) (-4095 (($ $ $) 61 (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) 81)) (-4161 (((-845) $) 55 (|has| |#1| (-338)))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 65 (|has| |#1| (-333)))) (-2803 (($ (-845)) 54 (|has| |#1| (-338)))) (-1739 ((|#1| $) 76)) (-1238 ((|#1| $) 77)) (-1937 ((|#1| $) 78)) (-3840 ((|#1| $) 72)) (-3061 ((|#1| $) 73)) (-1273 ((|#1| $) 74)) (-3623 ((|#1| $) 75)) (-4130 (((-1024) $) 10)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) 87 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 85 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 84 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 83 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) 82 (|has| |#1| (-478 (-1077) |#1|)))) (-2612 (($ $ |#1|) 88 (|has| |#1| (-258 |#1| |#1|)))) (-3367 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-1853 (($ $) 80)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 91 (|has| |#1| (-955 (-377 (-517)))))) (-3385 (((-3 $ "failed") $) 64 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2829 ((|#1| $) 69 (|has| |#1| (-973)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 59 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 58 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 60 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 57 (|has| |#1| (-779)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) -(((-729 |#1|) (-1189) (-156)) (T -729)) -((-1853 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1238 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1273 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1487 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-973)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-3389 (*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-2291 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333))))) -(-13 (-37 |t#1|) (-381 |t#1|) (-308 |t#1|) (-10 -8 (-15 -1853 ($ $)) (-15 -3919 (|t#1| $)) (-15 -1937 (|t#1| $)) (-15 -1238 (|t#1| $)) (-15 -1739 (|t#1| $)) (-15 -3623 (|t#1| $)) (-15 -1273 (|t#1| $)) (-15 -3061 (|t#1| $)) (-15 -3840 (|t#1| $)) (-15 -3522 (|t#1| $)) (-15 -1487 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -2829 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-333)) (-15 -2291 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-338) |has| |#1| (-338)) ((-308 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-3312 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|))) (-729 |#2|) (-156) (-729 |#4|) (-156)) (T -730)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5))))) -(-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-918 |#1|) "failed") $) 35) (((-3 (-517) "failed") $) NIL (-3786 (|has| (-918 |#1|) (-955 (-517))) (|has| |#1| (-955 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL (-3786 (|has| (-918 |#1|) (-955 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3402 ((|#1| $) NIL) (((-918 |#1|) $) 33) (((-517) $) NIL (-3786 (|has| (-918 |#1|) (-955 (-517))) (|has| |#1| (-955 (-517))))) (((-377 (-517)) $) NIL (-3786 (|has| (-918 |#1|) (-955 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3550 (((-3 $ "failed") $) NIL)) (-3919 ((|#1| $) 16)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-3748 (((-107) $) NIL (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2192 (($) NIL (|has| |#1| (-338)))) (-1690 (((-107) $) NIL)) (-1487 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-918 |#1|) (-918 |#1|)) 29)) (-3522 ((|#1| $) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-1739 ((|#1| $) 22)) (-1238 ((|#1| $) 20)) (-1937 ((|#1| $) 18)) (-3840 ((|#1| $) 26)) (-3061 ((|#1| $) 25)) (-1273 ((|#1| $) 24)) (-3623 ((|#1| $) 23)) (-4130 (((-1024) $) NIL)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-478 (-1077) |#1|)))) (-2612 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1853 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-918 |#1|)) 30) (($ (-377 (-517))) NIL (-3786 (|has| (-918 |#1|) (-955 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-2829 ((|#1| $) NIL (|has| |#1| (-973)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 8 T CONST)) (-3675 (($) 12 T CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-731 |#1|) (-13 (-729 |#1|) (-381 (-918 |#1|)) (-10 -8 (-15 -1487 ($ (-918 |#1|) (-918 |#1|))))) (-156)) (T -731)) -((-1487 (*1 *1 *2 *2) (-12 (-5 *2 (-918 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3))))) -(-13 (-729 |#1|) (-381 (-918 |#1|)) (-10 -8 (-15 -1487 ($ (-918 |#1|) (-918 |#1|))))) -((-2105 (((-107) $ $) 7)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3582 (((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 13)) (-1572 (((-107) $ $) 6))) -(((-732) (-1189)) (T -732)) -((-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) (-3582 (*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-953))))) -(-13 (-1006) (-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3582 ((-953) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-1282 (((-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#3| |#2| (-1077)) 19))) -(((-733 |#1| |#2| |#3|) (-10 -7 (-15 -1282 ((-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#3| |#2| (-1077)))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1098) (-882)) (-593 |#2|)) (T -733)) -((-1282 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1077)) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1098) (-882))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3700 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4))))) -(-10 -7 (-15 -1282 ((-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#3| |#2| (-1077)))) -((-1993 (((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)) 26) (((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1077)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1077)) 17) (((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1077)) 22) (((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1077)) 24) (((-3 (-583 (-1158 |#2|)) "failed") (-623 |#2|) (-1077)) 36) (((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-623 |#2|) (-1158 |#2|) (-1077)) 34))) -(((-734 |#1| |#2|) (-10 -7 (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-623 |#2|) (-1158 |#2|) (-1077))) (-15 -1993 ((-3 (-583 (-1158 |#2|)) "failed") (-623 |#2|) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1077))) (-15 -1993 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1993 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1098) (-882))) (T -734)) -((-1993 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) (-1993 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1098) (-882))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))))) (-1993 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1077)) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3700 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1098) (-882))))) (-1993 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3700 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) (-1993 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7))))) (-5 *1 (-734 *6 *7)))) (-1993 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7))))) (-5 *1 (-734 *6 *7)))) (-1993 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1077)) (-4 *6 (-13 (-29 *5) (-1098) (-882))) (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1158 *6))) (-5 *1 (-734 *5 *6)))) (-1993 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882))) (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1158 *7))))) -(-10 -7 (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-623 |#2|) (-1158 |#2|) (-1077))) (-15 -1993 ((-3 (-583 (-1158 |#2|)) "failed") (-623 |#2|) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#2|)) (|:| -3700 (-583 (-1158 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1077))) (-15 -1993 ((-3 (-2 (|:| |particular| |#2|) (|:| -3700 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1077))) (-15 -1993 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1993 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)))) -((-2974 (($) 9)) (-2904 (((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-1869 (((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 23)) (-3439 (($ (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) 20)) (-2117 (($ (-583 (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) 18)) (-3962 (((-1163)) 12))) -(((-735) (-10 -8 (-15 -2974 ($)) (-15 -3962 ((-1163))) (-15 -1869 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2117 ($ (-583 (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -3439 ($ (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2904 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -735)) -((-2904 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))) (-3439 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) (-2117 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))) (-3962 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-735)))) (-2974 (*1 *1) (-5 *1 (-735)))) -(-10 -8 (-15 -2974 ($)) (-15 -3962 ((-1163))) (-15 -1869 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2117 ($ (-583 (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -3439 ($ (-2 (|:| -2576 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1846 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2904 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) -((-3462 ((|#2| |#2| (-1077)) 15)) (-3961 ((|#2| |#2| (-1077)) 47)) (-2903 (((-1 |#2| |#2|) (-1077)) 11))) -(((-736 |#1| |#2|) (-10 -7 (-15 -3462 (|#2| |#2| (-1077))) (-15 -3961 (|#2| |#2| (-1077))) (-15 -2903 ((-1 |#2| |#2|) (-1077)))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1098) (-882))) (T -736)) -((-2903 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1098) (-882))))) (-3961 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1098) (-882))))) (-3462 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1098) (-882)))))) -(-10 -7 (-15 -3462 (|#2| |#2| (-1077))) (-15 -3961 (|#2| |#2| (-1077))) (-15 -2903 ((-1 |#2| |#2|) (-1077)))) -((-1993 (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349)) 114) (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349)) 115) (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349)) 117) (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349)) 118) (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349)) 119) (((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349))) 120) (((-953) (-740) (-976)) 105) (((-953) (-740)) 106)) (-3661 (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740) (-976)) 71) (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740)) 73))) -(((-737) (-10 -7 (-15 -1993 ((-953) (-740))) (-15 -1993 ((-953) (-740) (-976))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740) (-976))))) (T -737)) -((-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-976)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-737)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-737)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-953)) (-5 *1 (-737))))) -(-10 -7 (-15 -1993 ((-953) (-740))) (-15 -1993 ((-953) (-740) (-976))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1993 ((-953) (-1158 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-740) (-976)))) -((-3692 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3700 (-583 |#4|))) (-590 |#4|) |#4|) 32))) -(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3692 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3700 (-583 |#4|))) (-590 |#4|) |#4|))) (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -738)) -((-3692 (*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4))))) -(-10 -7 (-15 -3692 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3700 (-583 |#4|))) (-590 |#4|) |#4|))) -((-1955 (((-2 (|:| -3817 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))) 52)) (-3581 (((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4| |#2|) 60) (((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4|) 59) (((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3| |#2|) 20) (((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3|) 21)) (-2071 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2357 ((|#2| |#3| (-583 (-377 |#2|))) 94) (((-3 |#2| "failed") |#3| (-377 |#2|)) 91))) -(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2357 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -2357 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3| |#2|)) (-15 -2071 (|#2| |#3| |#1|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4| |#2|)) (-15 -2071 (|#2| |#4| |#1|)) (-15 -1955 ((-2 (|:| -3817 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))))) (-13 (-333) (-134) (-955 (-377 (-517)))) (-1134 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -739)) -((-1955 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-2 (|:| -3817 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) (-2071 (*1 *2 *3 *4) (-12 (-4 *2 (-1134 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))) (-3581 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *4 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -3605 *4) (|:| -2960 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-2 (|:| -3605 *5) (|:| -2960 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) (-2071 (*1 *2 *3 *4) (-12 (-4 *2 (-1134 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) (-3581 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *4 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -3605 *4) (|:| -2960 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-2 (|:| -3605 *5) (|:| -2960 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-2357 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1134 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))) (-2357 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1134 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4))))) -(-10 -7 (-15 -2357 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -2357 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#3| |#2|)) (-15 -2071 (|#2| |#3| |#1|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4|)) (-15 -3581 ((-583 (-2 (|:| -3605 |#2|) (|:| -2960 |#2|))) |#4| |#2|)) (-15 -2071 (|#2| |#4| |#1|)) (-15 -1955 ((-2 (|:| -3817 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))))) -((-2105 (((-107) $ $) NIL)) (-3402 (((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $) 9)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 11) (($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8)) (-1572 (((-107) $ $) NIL))) -(((-740) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))) (T -740)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740))))) -(-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $)))) -((-1693 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1073 |#2|)) (-1 (-388 |#2|) |#2|)) 117)) (-1235 (((-583 (-2 (|:| |poly| |#2|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 45)) (-2630 (((-583 (-2 (|:| |deg| (-703)) (|:| -3817 |#2|))) |#3|) 94)) (-4096 ((|#2| |#3|) 37)) (-2481 (((-583 (-2 (|:| -1373 |#1|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 81)) (-2580 ((|#3| |#3| (-377 |#2|)) 62) ((|#3| |#3| |#2|) 78))) -(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4096 (|#2| |#3|)) (-15 -2630 ((-583 (-2 (|:| |deg| (-703)) (|:| -3817 |#2|))) |#3|)) (-15 -2481 ((-583 (-2 (|:| -1373 |#1|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1235 ((-583 (-2 (|:| |poly| |#2|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1693 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1073 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2580 (|#3| |#3| |#2|)) (-15 -2580 (|#3| |#3| (-377 |#2|)))) (-13 (-333) (-134) (-955 (-377 (-517)))) (-1134 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -741)) -((-2580 (*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))) (-2580 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-1134 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) (-1693 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1073 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1134 *6)) (-4 *6 (-13 (-333) (-134) (-955 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -3817 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) (-1235 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3817 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-2481 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -1373 *5) (|:| -3817 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3817 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-4096 (*1 *2 *3) (-12 (-4 *2 (-1134 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2)))))) -(-10 -7 (-15 -4096 (|#2| |#3|)) (-15 -2630 ((-583 (-2 (|:| |deg| (-703)) (|:| -3817 |#2|))) |#3|)) (-15 -2481 ((-583 (-2 (|:| -1373 |#1|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1235 ((-583 (-2 (|:| |poly| |#2|) (|:| -3817 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -1693 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1073 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2580 (|#3| |#3| |#2|)) (-15 -2580 (|#3| |#3| (-377 |#2|)))) -((-3405 (((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|))) 118) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|)) 117) (((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|))) 112) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|)) 110)) (-3445 ((|#2| (-591 |#2| (-377 |#2|))) 77) ((|#2| (-590 (-377 |#2|))) 81))) -(((-742 |#1| |#2|) (-10 -7 (-15 -3405 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -3405 ((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3405 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -3405 ((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3445 (|#2| (-590 (-377 |#2|)))) (-15 -3445 (|#2| (-591 |#2| (-377 |#2|))))) (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))) (-1134 |#1|)) (T -742)) -((-3445 (*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1134 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))))) (-3445 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1134 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-2 (|:| -3700 (-583 (-377 *6))) (|:| -3725 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-742 *5 *6)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-2 (|:| -3700 (-583 (-377 *6))) (|:| -3725 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-742 *5 *6))))) -(-10 -7 (-15 -3405 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -3405 ((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3405 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -3700 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -3405 ((-2 (|:| -3700 (-583 (-377 |#2|))) (|:| -3725 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -3445 (|#2| (-590 (-377 |#2|)))) (-15 -3445 (|#2| (-591 |#2| (-377 |#2|))))) -((-3561 (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) |#5| |#4|) 47))) -(((-743 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3561 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) |#5| |#4|))) (-333) (-593 |#1|) (-1134 |#1|) (-657 |#1| |#3|) (-593 |#4|)) (T -743)) -((-3561 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1134 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -3725 (-623 *6)) (|:| |vec| (-1158 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4))))) -(-10 -7 (-15 -3561 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) |#5| |#4|))) -((-1693 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 43)) (-1585 (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|))) 135 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|))) 137 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 36) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 37) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 34) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 35)) (-1235 (((-583 (-2 (|:| |poly| |#2|) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 81))) -(((-744 |#1| |#2|) (-10 -7 (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1693 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1235 ((-583 (-2 (|:| |poly| |#2|) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |%noBranch|)) (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))) (-1134 |#1|)) (T -744)) -((-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1134 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1134 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-1235 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3817 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-1693 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -3817 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-1585 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *7 (-1134 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1585 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *7 (-1134 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))) -(-10 -7 (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1693 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1235 ((-583 (-2 (|:| |poly| |#2|) (|:| -3817 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -1585 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -1585 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |%noBranch|)) -((-4049 (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) (-623 |#2|) (-1158 |#1|)) 85) (((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)) (|:| -3817 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1158 |#1|)) 14)) (-3105 (((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#2|) (-1158 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3700 (-583 |#1|))) |#2| |#1|)) 91)) (-1993 (((-3 (-2 (|:| |particular| (-1158 |#1|)) (|:| -3700 (-623 |#1|))) "failed") (-623 |#1|) (-1158 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed") |#2| |#1|)) 44))) -(((-745 |#1| |#2|) (-10 -7 (-15 -4049 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)) (|:| -3817 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1158 |#1|))) (-15 -4049 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) (-623 |#2|) (-1158 |#1|))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#1|)) (|:| -3700 (-623 |#1|))) "failed") (-623 |#1|) (-1158 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -3105 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#2|) (-1158 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3700 (-583 |#1|))) |#2| |#1|)))) (-333) (-593 |#1|)) (T -745)) -((-3105 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3700 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1158 *6) "failed")) (|:| -3700 (-583 (-1158 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1158 *6)))) (-1993 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3700 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1158 *6)) (|:| -3700 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1158 *6)))) (-4049 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -3725 (-623 *6)) (|:| |vec| (-1158 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1158 *5)))) (-4049 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1158 *5)) (|:| -3817 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)) (-4 *6 (-593 *5))))) -(-10 -7 (-15 -4049 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)) (|:| -3817 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1158 |#1|))) (-15 -4049 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#1|))) (-623 |#2|) (-1158 |#1|))) (-15 -1993 ((-3 (-2 (|:| |particular| (-1158 |#1|)) (|:| -3700 (-623 |#1|))) "failed") (-623 |#1|) (-1158 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3700 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -3105 ((-2 (|:| |particular| (-3 (-1158 |#1|) "failed")) (|:| -3700 (-583 (-1158 |#1|)))) (-623 |#2|) (-1158 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3700 (-583 |#1|))) |#2| |#1|)))) -((-2320 (((-623 |#1|) (-583 |#1|) (-703)) 13) (((-623 |#1|) (-583 |#1|)) 14)) (-3601 (((-3 (-1158 |#1|) "failed") |#2| |#1| (-583 |#1|)) 34)) (-3454 (((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 42))) -(((-746 |#1| |#2|) (-10 -7 (-15 -2320 ((-623 |#1|) (-583 |#1|))) (-15 -2320 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -3601 ((-3 (-1158 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -3454 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -746)) -((-3454 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) (-3601 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1158 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))) (-2320 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4))))) -(-10 -7 (-15 -2320 ((-623 |#1|) (-583 |#1|))) (-15 -2320 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -3601 ((-3 (-1158 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -3454 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) -((-2105 (((-107) $ $) NIL (|has| |#2| (-1006)))) (-1992 (((-107) $) NIL (|has| |#2| (-123)))) (-3622 (($ (-845)) NIL (|has| |#2| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) NIL (|has| |#2| (-725)))) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#2| (-338)))) (-3502 (((-517) $) NIL (|has| |#2| (-777)))) (-2436 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1006)))) (-3402 (((-517) $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) ((|#2| $) NIL (|has| |#2| (-1006)))) (-2947 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-964)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL (|has| |#2| (-964))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-964)))) (-3550 (((-3 $ "failed") $) NIL (|has| |#2| (-964)))) (-2192 (($) NIL (|has| |#2| (-338)))) (-2750 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ (-517)) NIL)) (-2671 (((-107) $) NIL (|has| |#2| (-777)))) (-1525 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#2| (-964)))) (-2321 (((-107) $) NIL (|has| |#2| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-3687 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2737 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#2| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#2| (-1006)))) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#2| (-338)))) (-4130 (((-1024) $) NIL (|has| |#2| (-1006)))) (-2420 ((|#2| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3912 ((|#2| $ $) NIL (|has| |#2| (-964)))) (-3935 (($ (-1158 |#2|)) NIL)) (-1470 (((-125)) NIL (|has| |#2| (-333)))) (-2042 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-4140 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#2|) $) NIL) (($ (-517)) NIL (-3786 (-12 (|has| |#2| (-955 (-517))) (|has| |#2| (-1006))) (|has| |#2| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-955 (-377 (-517)))) (|has| |#2| (-1006)))) (($ |#2|) NIL (|has| |#2| (-1006))) (((-787) $) NIL (|has| |#2| (-557 (-787))))) (-1818 (((-703)) NIL (|has| |#2| (-964)))) (-1272 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#2| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (-3663 (($) NIL (|has| |#2| (-123)) CONST)) (-3675 (($) NIL (|has| |#2| (-964)) CONST)) (-3348 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#2| (-824 (-1077))) (|has| |#2| (-964)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-964))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-964)))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) NIL (|has| |#2| (-1006)))) (-1618 (((-107) $ $) NIL (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1596 (((-107) $ $) 11 (-3786 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $ $) NIL (|has| |#2| (-964))) (($ $) NIL (|has| |#2| (-964)))) (-1666 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-964))) (($ $ (-845)) NIL (|has| |#2| (-964)))) (* (($ $ $) NIL (|has| |#2| (-964))) (($ (-517) $) NIL (|has| |#2| (-964))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-845) $) NIL (|has| |#2| (-25)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-747 |#1| |#2| |#3|) (-212 |#1| |#2|) (-703) (-725) (-1 (-107) (-1158 |#2|) (-1158 |#2|))) (T -747)) -NIL -(-212 |#1| |#2|) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3974 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1077)) NIL)) (-3546 (((-703) $) NIL) (((-703) $ (-1077)) NIL)) (-2080 (((-583 (-750 (-1077))) $) NIL)) (-1428 (((-1073 $) $ (-750 (-1077))) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-750 (-1077)))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-2588 (($ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-750 (-1077)) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL) (((-3 (-1029 |#1| (-1077)) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-750 (-1077)) $) NIL) (((-1077) $) NIL) (((-1029 |#1| (-1077)) $) NIL)) (-2133 (($ $ $ (-750 (-1077))) NIL (|has| |#1| (-156)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1077))) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-489 (-750 (-1077))) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-750 (-1077)) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-750 (-1077)) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ (-1077)) NIL) (((-703) $) NIL)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#1|) (-750 (-1077))) NIL) (($ (-1073 $) (-750 (-1077))) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-489 (-750 (-1077)))) NIL) (($ $ (-750 (-1077)) (-703)) NIL) (($ $ (-583 (-750 (-1077))) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-750 (-1077))) NIL)) (-3942 (((-489 (-750 (-1077))) $) NIL) (((-703) $ (-750 (-1077))) NIL) (((-583 (-703)) $ (-583 (-750 (-1077)))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 (-750 (-1077))) (-489 (-750 (-1077)))) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1203 (((-1 $ (-703)) (-1077)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1958 (((-3 (-750 (-1077)) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3293 (((-750 (-1077)) $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1724 (((-107) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-750 (-1077))) (|:| -1725 (-703))) "failed") $) NIL)) (-2617 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-750 (-1077)) |#1|) NIL) (($ $ (-583 (-750 (-1077))) (-583 |#1|)) NIL) (($ $ (-750 (-1077)) $) NIL) (($ $ (-583 (-750 (-1077))) (-583 $)) NIL) (($ $ (-1077) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1077)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3115 (($ $ (-750 (-1077))) NIL (|has| |#1| (-156)))) (-2042 (($ $ (-750 (-1077))) NIL) (($ $ (-583 (-750 (-1077)))) NIL) (($ $ (-750 (-1077)) (-703)) NIL) (($ $ (-583 (-750 (-1077))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2125 (((-583 (-1077)) $) NIL)) (-1191 (((-489 (-750 (-1077))) $) NIL) (((-703) $ (-750 (-1077))) NIL) (((-583 (-703)) $ (-583 (-750 (-1077)))) NIL) (((-703) $ (-1077)) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-750 (-1077)) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-750 (-1077)) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-750 (-1077)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1077))) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-750 (-1077))) NIL) (($ (-1077)) NIL) (($ (-1029 |#1| (-1077))) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-489 (-750 (-1077)))) NIL) (($ $ (-750 (-1077)) (-703)) NIL) (($ $ (-583 (-750 (-1077))) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-750 (-1077))) NIL) (($ $ (-583 (-750 (-1077)))) NIL) (($ $ (-750 (-1077)) (-703)) NIL) (($ $ (-583 (-750 (-1077))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-748 |#1|) (-13 (-226 |#1| (-1077) (-750 (-1077)) (-489 (-750 (-1077)))) (-955 (-1029 |#1| (-1077)))) (-964)) (T -748)) -NIL -(-13 (-226 |#1| (-1077) (-750 (-1077)) (-489 (-750 (-1077)))) (-955 (-1029 |#1| (-1077)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-333)))) (-2491 (($ $) NIL (|has| |#2| (-333)))) (-2025 (((-107) $) NIL (|has| |#2| (-333)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#2| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-333)))) (-1765 (((-107) $ $) NIL (|has| |#2| (-333)))) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL (|has| |#2| (-333)))) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#2| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-2022 (((-107) $) NIL (|has| |#2| (-333)))) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-2323 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 20 (|has| |#2| (-333)))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#2| (-333)))) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3388 (((-703) $) NIL (|has| |#2| (-333)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-333)))) (-2042 (($ $ (-703)) NIL) (($ $) 13)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-377 (-517))) NIL (|has| |#2| (-333))) (($ $) NIL (|has| |#2| (-333)))) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) 15 (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL) (($ $ (-517)) 18 (|has| |#2| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) NIL (|has| |#2| (-333))) (($ $ (-377 (-517))) NIL (|has| |#2| (-333))))) -(((-749 |#1| |#2| |#3|) (-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |%noBranch|) (-15 -2262 ($ |#2|)) (-15 -2262 (|#2| $)))) (-1006) (-824 |#1|) |#1|) (T -749)) -((-2262 (*1 *1 *2) (-12 (-4 *3 (-1006)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-824 *3)))) (-2262 (*1 *2 *1) (-12 (-4 *2 (-824 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1006)) (-14 *4 *3)))) -(-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |%noBranch|) (-15 -2262 ($ |#2|)) (-15 -2262 (|#2| $)))) -((-2105 (((-107) $ $) NIL)) (-3546 (((-703) $) NIL)) (-3791 ((|#1| $) 10)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3250 (((-703) $) 11)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-1203 (($ |#1| (-703)) 9)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2042 (($ $) NIL) (($ $ (-703)) NIL)) (-2262 (((-787) $) NIL) (($ |#1|) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL))) -(((-750 |#1|) (-239 |#1|) (-779)) (T -750)) -NIL -(-239 |#1|) -((-2105 (((-107) $ $) NIL)) (-3375 (((-583 |#1|) $) 29)) (-2390 (((-703) $) NIL)) (-3038 (($) NIL T CONST)) (-1586 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-2429 (($ $) 31)) (-3550 (((-3 $ "failed") $) NIL)) (-3997 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1690 (((-107) $) NIL)) (-2115 ((|#1| $ (-517)) NIL)) (-2395 (((-703) $ (-517)) NIL)) (-2833 (($ $) 36)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-2388 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-4105 (((-107) $ $) 34)) (-3728 (((-703) $) 25)) (-3232 (((-1060) $) NIL)) (-4045 (($ $ $) NIL)) (-3759 (($ $ $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 ((|#1| $) 30)) (-2283 (((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $) NIL)) (-2345 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2262 (((-787) $) NIL) (($ |#1|) NIL)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3675 (($) 14 T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 35)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL) (($ |#1| (-703)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-751 |#1|) (-13 (-775) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2420 (|#1| $)) (-15 -2429 ($ $)) (-15 -2833 ($ $)) (-15 -4105 ((-107) $ $)) (-15 -3759 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -2388 ((-3 $ "failed") $ $)) (-15 -1586 ((-3 $ "failed") $ $)) (-15 -2388 ((-3 $ "failed") $ |#1|)) (-15 -1586 ((-3 $ "failed") $ |#1|)) (-15 -2345 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3997 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2390 ((-703) $)) (-15 -2395 ((-703) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $)) (-15 -3728 ((-703) $)) (-15 -3375 ((-583 |#1|) $)))) (-779)) (T -751)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2420 (*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2429 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2833 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-4105 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3759 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-4045 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2388 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1586 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2388 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1586 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2345 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3997 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2395 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779))))) -(-13 (-775) (-955 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2420 (|#1| $)) (-15 -2429 ($ $)) (-15 -2833 ($ $)) (-15 -4105 ((-107) $ $)) (-15 -3759 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -2388 ((-3 $ "failed") $ $)) (-15 -1586 ((-3 $ "failed") $ $)) (-15 -2388 ((-3 $ "failed") $ |#1|)) (-15 -1586 ((-3 $ "failed") $ |#1|)) (-15 -2345 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3997 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2390 ((-703) $)) (-15 -2395 ((-703) $ (-517))) (-15 -2115 (|#1| $ (-517))) (-15 -2283 ((-583 (-2 (|:| |gen| |#1|) (|:| -3898 (-703)))) $)) (-15 -3728 ((-703) $)) (-15 -3375 ((-583 |#1|) $)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3502 (((-517) $) 53)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-2671 (((-107) $) 51)) (-1690 (((-107) $) 31)) (-2321 (((-107) $) 52)) (-3480 (($ $ $) 50)) (-4095 (($ $ $) 49)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ $) 42)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2829 (($ $) 54)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 47)) (-1606 (((-107) $ $) 46)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 48)) (-1596 (((-107) $ $) 45)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-752) (-1189)) (T -752)) -NIL -(-13 (-509) (-777)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-3610 (($ (-1024)) 7)) (-2048 (((-107) $ (-1060) (-1024)) 15)) (-3870 (((-754) $) 12)) (-2250 (((-754) $) 11)) (-2761 (((-1163) $) 9)) (-2292 (((-107) $ (-1024)) 16))) -(((-753) (-10 -8 (-15 -3610 ($ (-1024))) (-15 -2761 ((-1163) $)) (-15 -2250 ((-754) $)) (-15 -3870 ((-754) $)) (-15 -2048 ((-107) $ (-1060) (-1024))) (-15 -2292 ((-107) $ (-1024))))) (T -753)) -((-2292 (*1 *2 *1 *3) (-12 (-5 *3 (-1024)) (-5 *2 (-107)) (-5 *1 (-753)))) (-2048 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-1024)) (-5 *2 (-107)) (-5 *1 (-753)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-753)))) (-3610 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-753))))) -(-10 -8 (-15 -3610 ($ (-1024))) (-15 -2761 ((-1163) $)) (-15 -2250 ((-754) $)) (-15 -3870 ((-754) $)) (-15 -2048 ((-107) $ (-1060) (-1024))) (-15 -2292 ((-107) $ (-1024)))) -((-3583 (((-1163) $ (-755)) 12)) (-2265 (((-1163) $ (-1077)) 32)) (-3534 (((-1163) $ (-1060) (-1060)) 34)) (-3373 (((-1163) $ (-1060)) 33)) (-3065 (((-1163) $) 19)) (-4080 (((-1163) $ (-517)) 28)) (-3290 (((-1163) $ (-199)) 30)) (-3411 (((-1163) $) 18)) (-1972 (((-1163) $) 26)) (-1386 (((-1163) $) 25)) (-2001 (((-1163) $) 23)) (-3894 (((-1163) $) 24)) (-3222 (((-1163) $) 22)) (-2695 (((-1163) $) 21)) (-2373 (((-1163) $) 20)) (-2942 (((-1163) $) 16)) (-3560 (((-1163) $) 17)) (-3256 (((-1163) $) 15)) (-2647 (((-1163) $) 14)) (-3551 (((-1163) $) 13)) (-3513 (($ (-1060) (-755)) 9)) (-2054 (($ (-1060) (-1060) (-755)) 8)) (-1917 (((-1077) $) 51)) (-2108 (((-1077) $) 55)) (-3408 (((-2 (|:| |cd| (-1060)) (|:| -2981 (-1060))) $) 54)) (-2668 (((-1060) $) 52)) (-4005 (((-1163) $) 41)) (-2237 (((-517) $) 49)) (-3339 (((-199) $) 50)) (-1416 (((-1163) $) 40)) (-1562 (((-1163) $) 48)) (-4010 (((-1163) $) 47)) (-2299 (((-1163) $) 45)) (-3474 (((-1163) $) 46)) (-2203 (((-1163) $) 44)) (-2162 (((-1163) $) 43)) (-4037 (((-1163) $) 42)) (-3252 (((-1163) $) 38)) (-2072 (((-1163) $) 39)) (-1934 (((-1163) $) 37)) (-2871 (((-1163) $) 36)) (-1240 (((-1163) $) 35)) (-3230 (((-1163) $) 11))) -(((-754) (-10 -8 (-15 -2054 ($ (-1060) (-1060) (-755))) (-15 -3513 ($ (-1060) (-755))) (-15 -3230 ((-1163) $)) (-15 -3583 ((-1163) $ (-755))) (-15 -3551 ((-1163) $)) (-15 -2647 ((-1163) $)) (-15 -3256 ((-1163) $)) (-15 -2942 ((-1163) $)) (-15 -3560 ((-1163) $)) (-15 -3411 ((-1163) $)) (-15 -3065 ((-1163) $)) (-15 -2373 ((-1163) $)) (-15 -2695 ((-1163) $)) (-15 -3222 ((-1163) $)) (-15 -2001 ((-1163) $)) (-15 -3894 ((-1163) $)) (-15 -1386 ((-1163) $)) (-15 -1972 ((-1163) $)) (-15 -4080 ((-1163) $ (-517))) (-15 -3290 ((-1163) $ (-199))) (-15 -2265 ((-1163) $ (-1077))) (-15 -3373 ((-1163) $ (-1060))) (-15 -3534 ((-1163) $ (-1060) (-1060))) (-15 -1240 ((-1163) $)) (-15 -2871 ((-1163) $)) (-15 -1934 ((-1163) $)) (-15 -3252 ((-1163) $)) (-15 -2072 ((-1163) $)) (-15 -1416 ((-1163) $)) (-15 -4005 ((-1163) $)) (-15 -4037 ((-1163) $)) (-15 -2162 ((-1163) $)) (-15 -2203 ((-1163) $)) (-15 -2299 ((-1163) $)) (-15 -3474 ((-1163) $)) (-15 -4010 ((-1163) $)) (-15 -1562 ((-1163) $)) (-15 -2237 ((-517) $)) (-15 -3339 ((-199) $)) (-15 -1917 ((-1077) $)) (-15 -2668 ((-1060) $)) (-15 -3408 ((-2 (|:| |cd| (-1060)) (|:| -2981 (-1060))) $)) (-15 -2108 ((-1077) $)))) (T -754)) -((-2108 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-754)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1060)) (|:| -2981 (-1060)))) (-5 *1 (-754)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-754)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-754)))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-1240 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3534 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-3373 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-2265 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-3290 (*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-1972 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3583 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1163)) (-5 *1 (-754)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754)))) (-3513 (*1 *1 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-755)) (-5 *1 (-754)))) (-2054 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-755)) (-5 *1 (-754))))) -(-10 -8 (-15 -2054 ($ (-1060) (-1060) (-755))) (-15 -3513 ($ (-1060) (-755))) (-15 -3230 ((-1163) $)) (-15 -3583 ((-1163) $ (-755))) (-15 -3551 ((-1163) $)) (-15 -2647 ((-1163) $)) (-15 -3256 ((-1163) $)) (-15 -2942 ((-1163) $)) (-15 -3560 ((-1163) $)) (-15 -3411 ((-1163) $)) (-15 -3065 ((-1163) $)) (-15 -2373 ((-1163) $)) (-15 -2695 ((-1163) $)) (-15 -3222 ((-1163) $)) (-15 -2001 ((-1163) $)) (-15 -3894 ((-1163) $)) (-15 -1386 ((-1163) $)) (-15 -1972 ((-1163) $)) (-15 -4080 ((-1163) $ (-517))) (-15 -3290 ((-1163) $ (-199))) (-15 -2265 ((-1163) $ (-1077))) (-15 -3373 ((-1163) $ (-1060))) (-15 -3534 ((-1163) $ (-1060) (-1060))) (-15 -1240 ((-1163) $)) (-15 -2871 ((-1163) $)) (-15 -1934 ((-1163) $)) (-15 -3252 ((-1163) $)) (-15 -2072 ((-1163) $)) (-15 -1416 ((-1163) $)) (-15 -4005 ((-1163) $)) (-15 -4037 ((-1163) $)) (-15 -2162 ((-1163) $)) (-15 -2203 ((-1163) $)) (-15 -2299 ((-1163) $)) (-15 -3474 ((-1163) $)) (-15 -4010 ((-1163) $)) (-15 -1562 ((-1163) $)) (-15 -2237 ((-517) $)) (-15 -3339 ((-199) $)) (-15 -1917 ((-1077) $)) (-15 -2668 ((-1060) $)) (-15 -3408 ((-2 (|:| |cd| (-1060)) (|:| -2981 (-1060))) $)) (-15 -2108 ((-1077) $))) -((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 12)) (-3885 (($) 15)) (-2543 (($) 13)) (-2955 (($) 16)) (-2378 (($) 14)) (-1572 (((-107) $ $) 8))) -(((-755) (-13 (-1006) (-10 -8 (-15 -2543 ($)) (-15 -3885 ($)) (-15 -2955 ($)) (-15 -2378 ($))))) (T -755)) -((-2543 (*1 *1) (-5 *1 (-755))) (-3885 (*1 *1) (-5 *1 (-755))) (-2955 (*1 *1) (-5 *1 (-755))) (-2378 (*1 *1) (-5 *1 (-755)))) -(-13 (-1006) (-10 -8 (-15 -2543 ($)) (-15 -3885 ($)) (-15 -2955 ($)) (-15 -2378 ($)))) -((-2105 (((-107) $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 21) (($ (-1077)) 17)) (-4031 (((-107) $) 10)) (-3396 (((-107) $) 9)) (-3508 (((-107) $) 11)) (-3981 (((-107) $) 8)) (-1572 (((-107) $ $) 19))) -(((-756) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-1077))) (-15 -3981 ((-107) $)) (-15 -3396 ((-107) $)) (-15 -4031 ((-107) $)) (-15 -3508 ((-107) $))))) (T -756)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-756)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) -(-13 (-1006) (-10 -8 (-15 -2262 ($ (-1077))) (-15 -3981 ((-107) $)) (-15 -3396 ((-107) $)) (-15 -4031 ((-107) $)) (-15 -3508 ((-107) $)))) -((-2105 (((-107) $ $) NIL)) (-3751 (($ (-756) (-583 (-1077))) 24)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2121 (((-756) $) 25)) (-3362 (((-583 (-1077)) $) 26)) (-2262 (((-787) $) 23)) (-1572 (((-107) $ $) NIL))) -(((-757) (-13 (-1006) (-10 -8 (-15 -2121 ((-756) $)) (-15 -3362 ((-583 (-1077)) $)) (-15 -3751 ($ (-756) (-583 (-1077))))))) (T -757)) -((-2121 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-757)))) (-3751 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1077))) (-5 *1 (-757))))) -(-13 (-1006) (-10 -8 (-15 -2121 ((-756) $)) (-15 -3362 ((-583 (-1077)) $)) (-15 -3751 ($ (-756) (-583 (-1077)))))) -((-2514 (((-1163) (-754) (-286 |#1|) (-107)) 22) (((-1163) (-754) (-286 |#1|)) 76) (((-1060) (-286 |#1|) (-107)) 75) (((-1060) (-286 |#1|)) 74))) -(((-758 |#1|) (-10 -7 (-15 -2514 ((-1060) (-286 |#1|))) (-15 -2514 ((-1060) (-286 |#1|) (-107))) (-15 -2514 ((-1163) (-754) (-286 |#1|))) (-15 -2514 ((-1163) (-754) (-286 |#1|) (-107)))) (-13 (-760) (-779) (-964))) (T -758)) -((-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-964))) (-5 *2 (-1163)) (-5 *1 (-758 *6)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-964))) (-5 *2 (-1163)) (-5 *1 (-758 *5)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-964))) (-5 *2 (-1060)) (-5 *1 (-758 *5)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-964))) (-5 *2 (-1060)) (-5 *1 (-758 *4))))) -(-10 -7 (-15 -2514 ((-1060) (-286 |#1|))) (-15 -2514 ((-1060) (-286 |#1|) (-107))) (-15 -2514 ((-1163) (-754) (-286 |#1|))) (-15 -2514 ((-1163) (-754) (-286 |#1|) (-107)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-1512 ((|#1| $) 10)) (-1395 (($ |#1|) 9)) (-1690 (((-107) $) NIL)) (-2059 (($ |#2| (-703)) NIL)) (-3942 (((-703) $) NIL)) (-2336 ((|#2| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2042 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1191 (((-703) $) NIL)) (-2262 (((-787) $) 17) (($ (-517)) NIL) (($ |#2|) NIL (|has| |#2| (-156)))) (-1939 ((|#2| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-759 |#1| |#2|) (-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |%noBranch|) (-15 -1395 ($ |#1|)) (-15 -1512 (|#1| $)))) (-642 |#2|) (-964)) (T -759)) -((-1395 (*1 *1 *2) (-12 (-4 *3 (-964)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))) (-1512 (*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-964))))) -(-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |%noBranch|) (-15 -1395 ($ |#1|)) (-15 -1512 (|#1| $)))) -((-2514 (((-1163) (-754) $ (-107)) 9) (((-1163) (-754) $) 8) (((-1060) $ (-107)) 7) (((-1060) $) 6))) -(((-760) (-1189)) (T -760)) -((-2514 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1163)))) (-2514 (*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1163)))) (-2514 (*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1060)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1060))))) -(-13 (-10 -8 (-15 -2514 ((-1060) $)) (-15 -2514 ((-1060) $ (-107))) (-15 -2514 ((-1163) (-754) $)) (-15 -2514 ((-1163) (-754) $ (-107))))) -((-3435 (((-282) (-1060) (-1060)) 12)) (-4087 (((-107) (-1060) (-1060)) 34)) (-3717 (((-107) (-1060)) 33)) (-3336 (((-51) (-1060)) 25)) (-1211 (((-51) (-1060)) 23)) (-2894 (((-51) (-754)) 17)) (-3146 (((-583 (-1060)) (-1060)) 28)) (-2723 (((-583 (-1060))) 27))) -(((-761) (-10 -7 (-15 -2894 ((-51) (-754))) (-15 -1211 ((-51) (-1060))) (-15 -3336 ((-51) (-1060))) (-15 -2723 ((-583 (-1060)))) (-15 -3146 ((-583 (-1060)) (-1060))) (-15 -3717 ((-107) (-1060))) (-15 -4087 ((-107) (-1060) (-1060))) (-15 -3435 ((-282) (-1060) (-1060))))) (T -761)) -((-3435 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-761)))) (-4087 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-761)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-761)))) (-3146 (*1 *2 *3) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-761)) (-5 *3 (-1060)))) (-2723 (*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-761)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-761)))) (-1211 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-761)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761))))) -(-10 -7 (-15 -2894 ((-51) (-754))) (-15 -1211 ((-51) (-1060))) (-15 -3336 ((-51) (-1060))) (-15 -2723 ((-583 (-1060)))) (-15 -3146 ((-583 (-1060)) (-1060))) (-15 -3717 ((-107) (-1060))) (-15 -4087 ((-107) (-1060) (-1060))) (-15 -3435 ((-282) (-1060) (-1060)))) -((-2105 (((-107) $ $) 19)) (-2374 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-4020 (($ $ $) 72)) (-3873 (((-107) $ $) 73)) (-3443 (((-107) $ (-703)) 8)) (-1871 (($ (-583 |#1|)) 68) (($) 67)) (-2582 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3081 (($ $) 62)) (-2446 (($ $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ |#1| $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3480 ((|#1| $) 78)) (-2785 (($ $ $) 81)) (-3824 (($ $ $) 80)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-4095 ((|#1| $) 79)) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22)) (-2187 (($ $ $) 69)) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-4130 (((-1024) $) 21)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1907 (((-583 (-2 (|:| -1846 |#1|) (|:| -4140 (-703)))) $) 61)) (-1201 (($ $ |#1|) 71) (($ $ $) 70)) (-3808 (($) 49) (($ (-583 |#1|)) 48)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 50)) (-2262 (((-787) $) 18)) (-3066 (($ (-583 |#1|)) 66) (($) 65)) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20)) (-1596 (((-107) $ $) 64)) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-762 |#1|) (-1189) (-779)) (T -762)) -((-3480 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779))))) -(-13 (-669 |t#1|) (-889 |t#1|) (-10 -8 (-15 -3480 (|t#1| $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-628 |#1|) . T) ((-669 |#1|) . T) ((-889 |#1|) . T) ((-1004 |#1|) . T) ((-1006) . T) ((-1112) . T)) -((-3076 (((-1163) (-1024) (-1024)) 47)) (-1563 (((-1163) (-753) (-51)) 44)) (-3320 (((-51) (-753)) 16))) -(((-763) (-10 -7 (-15 -3320 ((-51) (-753))) (-15 -1563 ((-1163) (-753) (-51))) (-15 -3076 ((-1163) (-1024) (-1024))))) (T -763)) -((-3076 (*1 *2 *3 *3) (-12 (-5 *3 (-1024)) (-5 *2 (-1163)) (-5 *1 (-763)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1163)) (-5 *1 (-763)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763))))) -(-10 -7 (-15 -3320 ((-51) (-753))) (-15 -1563 ((-1163) (-753) (-51))) (-15 -3076 ((-1163) (-1024) (-1024)))) -((-3312 (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)) 12) (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)) 13))) -(((-764 |#1| |#2|) (-10 -7 (-15 -3312 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -3312 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)))) (-1006) (-1006)) (T -764)) -((-3312 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *1 (-764 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6))))) -(-10 -7 (-15 -3312 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -3312 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL (|has| |#1| (-21)))) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3502 (((-517) $) NIL (|has| |#1| (-777)))) (-3038 (($) NIL (|has| |#1| (-21)) CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 15)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 9)) (-3550 (((-3 $ "failed") $) 40 (|has| |#1| (-777)))) (-3389 (((-3 (-377 (-517)) "failed") $) 48 (|has| |#1| (-502)))) (-3748 (((-107) $) 43 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 45 (|has| |#1| (-502)))) (-2671 (((-107) $) NIL (|has| |#1| (-777)))) (-1690 (((-107) $) NIL (|has| |#1| (-777)))) (-2321 (((-107) $) NIL (|has| |#1| (-777)))) (-3480 (($ $ $) NIL (|has| |#1| (-777)))) (-4095 (($ $ $) NIL (|has| |#1| (-777)))) (-3232 (((-1060) $) NIL)) (-2111 (($) 13)) (-1729 (((-107) $) 12)) (-4130 (((-1024) $) NIL)) (-2005 (((-107) $) 11)) (-2262 (((-787) $) 18) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3786 (|has| |#1| (-777)) (|has| |#1| (-955 (-517)))))) (-1818 (((-703)) 34 (|has| |#1| (-777)))) (-2829 (($ $) NIL (|has| |#1| (-777)))) (-2806 (($ $ (-845)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-3663 (($) 22 (|has| |#1| (-21)) CONST)) (-3675 (($) 31 (|has| |#1| (-777)) CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) 20)) (-1618 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1596 (((-107) $ $) 42 (|has| |#1| (-777)))) (-1680 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1666 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-845)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 37 (|has| |#1| (-777))) (($ (-517) $) 25 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-845) $) NIL (|has| |#1| (-21))))) -(((-765 |#1|) (-13 (-1006) (-381 |#1|) (-10 -8 (-15 -2111 ($)) (-15 -2005 ((-107) $)) (-15 -1729 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) (-1006)) (T -765)) -((-2111 (*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1006)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1006)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1006)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))) (-3389 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1006))))) -(-13 (-1006) (-381 |#1|) (-10 -8 (-15 -2111 ($)) (-15 -2005 ((-107) $)) (-15 -1729 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-109) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-109) $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2618 ((|#1| (-109) |#1|) NIL)) (-1690 (((-107) $) NIL)) (-1902 (($ |#1| (-331 (-109))) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3364 (($ $ (-1 |#1| |#1|)) NIL)) (-3490 (($ $ (-1 |#1| |#1|)) NIL)) (-2612 ((|#1| $ |#1|) NIL)) (-3736 ((|#1| |#1|) NIL (|has| |#1| (-156)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-109)) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-1368 (($ $) NIL (|has| |#1| (-156))) (($ $ $) NIL (|has| |#1| (-156)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) -(((-766 |#1|) (-13 (-964) (-955 |#1|) (-955 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1368 ($ $)) (-15 -1368 ($ $ $)) (-15 -3736 (|#1| |#1|))) |%noBranch|) (-15 -3490 ($ $ (-1 |#1| |#1|))) (-15 -3364 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -2618 (|#1| (-109) |#1|)) (-15 -1902 ($ |#1| (-331 (-109)))))) (-964)) (T -766)) -((-1368 (*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964)))) (-1368 (*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964)))) (-3736 (*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964)))) (-3490 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-766 *3)))) (-3364 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-766 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-964)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-964)))) (-2618 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-964)))) (-1902 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-964))))) -(-13 (-964) (-955 |#1|) (-955 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -1368 ($ $)) (-15 -1368 ($ $ $)) (-15 -3736 (|#1| |#1|))) |%noBranch|) (-15 -3490 ($ $ (-1 |#1| |#1|))) (-15 -3364 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -2618 (|#1| (-109) |#1|)) (-15 -1902 ($ |#1| (-331 (-109)))))) -((-3096 (((-189 (-467)) (-1060)) 8))) -(((-767) (-10 -7 (-15 -3096 ((-189 (-467)) (-1060))))) (T -767)) -((-3096 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-189 (-467))) (-5 *1 (-767))))) -(-10 -7 (-15 -3096 ((-189 (-467)) (-1060)))) -((-2105 (((-107) $ $) 7)) (-3857 (((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 14) (((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 13)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 16) (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 15)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6))) -(((-768) (-1189)) (T -768)) -((-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) (-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) (-3857 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) (-5 *2 (-953)))) (-3857 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-953))))) -(-13 (-1006) (-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -3857 ((-953) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -3857 ((-953) (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2782 (((-953) (-583 (-286 (-349))) (-583 (-349))) 143) (((-953) (-286 (-349)) (-583 (-349))) 141) (((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349)))) 140) (((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349)))) 139) (((-953) (-770)) 112) (((-953) (-770) (-976)) 111)) (-3661 (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770) (-976)) 76) (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770)) 78)) (-2527 (((-953) (-583 (-286 (-349))) (-583 (-349))) 144) (((-953) (-770)) 128))) -(((-769) (-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770) (-976))) (-15 -2782 ((-953) (-770) (-976))) (-15 -2782 ((-953) (-770))) (-15 -2527 ((-953) (-770))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)))) (-15 -2782 ((-953) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2527 ((-953) (-583 (-286 (-349))) (-583 (-349)))))) (T -769)) -((-2527 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-953)) (-5 *1 (-769)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-953)) (-5 *1 (-769)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-769)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-976)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-769)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-769))))) -(-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-770) (-976))) (-15 -2782 ((-953) (-770) (-976))) (-15 -2782 ((-953) (-770))) (-15 -2527 ((-953) (-770))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2782 ((-953) (-286 (-349)) (-583 (-349)))) (-15 -2782 ((-953) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2527 ((-953) (-583 (-286 (-349))) (-583 (-349))))) -((-2105 (((-107) $ $) NIL)) (-3402 (((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) $) 15)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 14) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 8) (($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))))) 12)) (-1572 (((-107) $ $) NIL))) -(((-770) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2262 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -2262 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) $))))) (T -770)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) (-5 *1 (-770)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))))) (-5 *1 (-770)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))))) (-5 *1 (-770))))) -(-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2262 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) (-15 -2262 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199)))))) $)))) -((-3312 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)) 13) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 14))) -(((-771 |#1| |#2|) (-10 -7 (-15 -3312 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3312 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)))) (-1006) (-1006)) (T -771)) -((-3312 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *1 (-771 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6))))) -(-10 -7 (-15 -3312 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -3312 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL (|has| |#1| (-21)))) (-3733 (((-1024) $) 24)) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3502 (((-517) $) NIL (|has| |#1| (-777)))) (-3038 (($) NIL (|has| |#1| (-21)) CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 16)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 9)) (-3550 (((-3 $ "failed") $) 47 (|has| |#1| (-777)))) (-3389 (((-3 (-377 (-517)) "failed") $) 54 (|has| |#1| (-502)))) (-3748 (((-107) $) 49 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 52 (|has| |#1| (-502)))) (-2671 (((-107) $) NIL (|has| |#1| (-777)))) (-3135 (($) 13)) (-1690 (((-107) $) NIL (|has| |#1| (-777)))) (-2321 (((-107) $) NIL (|has| |#1| (-777)))) (-3147 (($) 14)) (-3480 (($ $ $) NIL (|has| |#1| (-777)))) (-4095 (($ $ $) NIL (|has| |#1| (-777)))) (-3232 (((-1060) $) NIL)) (-1729 (((-107) $) 12)) (-4130 (((-1024) $) NIL)) (-2005 (((-107) $) 11)) (-2262 (((-787) $) 22) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3786 (|has| |#1| (-777)) (|has| |#1| (-955 (-517)))))) (-1818 (((-703)) 41 (|has| |#1| (-777)))) (-2829 (($ $) NIL (|has| |#1| (-777)))) (-2806 (($ $ (-845)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-3663 (($) 29 (|has| |#1| (-21)) CONST)) (-3675 (($) 38 (|has| |#1| (-777)) CONST)) (-1630 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) 27)) (-1618 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1596 (((-107) $ $) 48 (|has| |#1| (-777)))) (-1680 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1666 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-845)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 44 (|has| |#1| (-777))) (($ (-517) $) 32 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-845) $) NIL (|has| |#1| (-21))))) -(((-772 |#1|) (-13 (-1006) (-381 |#1|) (-10 -8 (-15 -3135 ($)) (-15 -3147 ($)) (-15 -2005 ((-107) $)) (-15 -1729 ((-107) $)) (-15 -3733 ((-1024) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) (-1006)) (T -772)) -((-3135 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1006)))) (-3147 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1006)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1006)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1006)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-772 *3)) (-4 *3 (-1006)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))) (-3389 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1006))))) -(-13 (-1006) (-381 |#1|) (-10 -8 (-15 -3135 ($)) (-15 -3147 ($)) (-15 -2005 ((-107) $)) (-15 -1729 ((-107) $)) (-15 -3733 ((-1024) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |%noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) -((-2105 (((-107) $ $) 7)) (-2390 (((-703)) 20)) (-2192 (($) 23)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-4161 (((-845) $) 22)) (-3232 (((-1060) $) 9)) (-2803 (($ (-845)) 21)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18))) -(((-773) (-1189)) (T -773)) -NIL -(-13 (-779) (-338)) -(((-97) . T) ((-557 (-787)) . T) ((-338) . T) ((-779) . T) ((-1006) . T)) -((-3259 (((-107) (-1158 |#2|) (-1158 |#2|)) 17)) (-1615 (((-107) (-1158 |#2|) (-1158 |#2|)) 18)) (-1730 (((-107) (-1158 |#2|) (-1158 |#2|)) 14))) -(((-774 |#1| |#2|) (-10 -7 (-15 -1730 ((-107) (-1158 |#2|) (-1158 |#2|))) (-15 -3259 ((-107) (-1158 |#2|) (-1158 |#2|))) (-15 -1615 ((-107) (-1158 |#2|) (-1158 |#2|)))) (-703) (-724)) (T -774)) -((-1615 (*1 *2 *3 *3) (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-3259 (*1 *2 *3 *3) (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-1730 (*1 *2 *3 *3) (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703))))) -(-10 -7 (-15 -1730 ((-107) (-1158 |#2|) (-1158 |#2|))) (-15 -3259 ((-107) (-1158 |#2|) (-1158 |#2|))) (-15 -1615 ((-107) (-1158 |#2|) (-1158 |#2|)))) -((-2105 (((-107) $ $) 7)) (-3038 (($) 24 T CONST)) (-3550 (((-3 $ "failed") $) 28)) (-1690 (((-107) $) 25)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-703)) 27) (($ $ (-845)) 22)) (-3675 (($) 23 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (** (($ $ (-703)) 26) (($ $ (-845)) 21)) (* (($ $ $) 20))) -(((-775) (-1189)) (T -775)) -NIL -(-13 (-779) (-659)) -(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-779) . T) ((-1018) . T) ((-1006) . T)) -((-3502 (((-517) $) 17)) (-2671 (((-107) $) 10)) (-2321 (((-107) $) 11)) (-2829 (($ $) 19))) -(((-776 |#1|) (-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -3502 ((-517) |#1|)) (-15 -2321 ((-107) |#1|)) (-15 -2671 ((-107) |#1|))) (-777)) (T -776)) -NIL -(-10 -8 (-15 -2829 (|#1| |#1|)) (-15 -3502 ((-517) |#1|)) (-15 -2321 ((-107) |#1|)) (-15 -2671 ((-107) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 24)) (-1783 (((-3 $ "failed") $ $) 26)) (-3502 (((-517) $) 33)) (-3038 (($) 23 T CONST)) (-3550 (((-3 $ "failed") $) 39)) (-2671 (((-107) $) 35)) (-1690 (((-107) $) 42)) (-2321 (((-107) $) 34)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 45)) (-1818 (((-703)) 44)) (-2829 (($ $) 32)) (-2806 (($ $ (-703)) 40) (($ $ (-845)) 36)) (-3663 (($) 22 T CONST)) (-3675 (($) 43 T CONST)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18)) (-1680 (($ $ $) 28) (($ $) 27)) (-1666 (($ $ $) 20)) (** (($ $ (-703)) 41) (($ $ (-845)) 37)) (* (($ (-703) $) 25) (($ (-845) $) 21) (($ (-517) $) 29) (($ $ $) 38))) -(((-777) (-1189)) (T -777)) -((-2671 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) (-2829 (*1 *1 *1) (-4 *1 (-777)))) -(-13 (-723) (-964) (-659) (-10 -8 (-15 -2671 ((-107) $)) (-15 -2321 ((-107) $)) (-15 -3502 ((-517) $)) (-15 -2829 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-3480 (($ $ $) 10)) (-4095 (($ $ $) 9)) (-1630 (((-107) $ $) 13)) (-1606 (((-107) $ $) 11)) (-1618 (((-107) $ $) 14))) -(((-778 |#1|) (-10 -8 (-15 -3480 (|#1| |#1| |#1|)) (-15 -4095 (|#1| |#1| |#1|)) (-15 -1618 ((-107) |#1| |#1|)) (-15 -1630 ((-107) |#1| |#1|)) (-15 -1606 ((-107) |#1| |#1|))) (-779)) (T -778)) -NIL -(-10 -8 (-15 -3480 (|#1| |#1| |#1|)) (-15 -4095 (|#1| |#1| |#1|)) (-15 -1618 ((-107) |#1| |#1|)) (-15 -1630 ((-107) |#1| |#1|)) (-15 -1606 ((-107) |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-3480 (($ $ $) 13)) (-4095 (($ $ $) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1630 (((-107) $ $) 16)) (-1606 (((-107) $ $) 17)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 15)) (-1596 (((-107) $ $) 18))) -(((-779) (-1189)) (T -779)) -((-1596 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1630 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1618 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-4095 (*1 *1 *1 *1) (-4 *1 (-779))) (-3480 (*1 *1 *1 *1) (-4 *1 (-779)))) -(-13 (-1006) (-10 -8 (-15 -1596 ((-107) $ $)) (-15 -1606 ((-107) $ $)) (-15 -1630 ((-107) $ $)) (-15 -1618 ((-107) $ $)) (-15 -4095 ($ $ $)) (-15 -3480 ($ $ $)))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2948 (($ $ $) 46)) (-2762 (($ $ $) 45)) (-3612 (($ $ $) 43)) (-1580 (($ $ $) 52)) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 47)) (-3184 (((-3 $ "failed") $ $) 50)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-4172 (($ $) 36)) (-1346 (($ $ $) 40)) (-1609 (($ $ $) 39)) (-2882 (($ $ $) 48)) (-1843 (($ $ $) 54)) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 42)) (-1664 (((-3 $ "failed") $ $) 49)) (-2333 (((-3 $ "failed") $ |#2|) 29)) (-4094 ((|#2| $) 33)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#2|) 12)) (-3186 (((-583 |#2|) $) 19)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23))) -(((-780 |#1| |#2|) (-10 -8 (-15 -2882 (|#1| |#1| |#1|)) (-15 -2200 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -1580 (|#1| |#1| |#1|)) (-15 -3184 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -2762 (|#1| |#1| |#1|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -2926 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -1664 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1346 (|#1| |#1| |#1|)) (-15 -1609 (|#1| |#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3186 ((-583 |#2|) |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -2262 ((-787) |#1|))) (-781 |#2|) (-964)) (T -780)) -NIL -(-10 -8 (-15 -2882 (|#1| |#1| |#1|)) (-15 -2200 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -1580 (|#1| |#1| |#1|)) (-15 -3184 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2948 (|#1| |#1| |#1|)) (-15 -2762 (|#1| |#1| |#1|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -2926 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1306 |#1|)) |#1| |#1|)) (-15 -1843 (|#1| |#1| |#1|)) (-15 -1664 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1346 (|#1| |#1| |#1|)) (-15 -1609 (|#1| |#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2333 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3186 ((-583 |#2|) |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2948 (($ $ $) 45 (|has| |#1| (-333)))) (-2762 (($ $ $) 46 (|has| |#1| (-333)))) (-3612 (($ $ $) 48 (|has| |#1| (-333)))) (-1580 (($ $ $) 43 (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 42 (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 47 (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) 74 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3402 (((-517) $) 75 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 68)) (-2364 (($ $) 64)) (-3550 (((-3 $ "failed") $) 34)) (-4172 (($ $) 55 (|has| |#1| (-421)))) (-1690 (((-107) $) 31)) (-2059 (($ |#1| (-703)) 62)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57 (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 58 (|has| |#1| (-509)))) (-3942 (((-703) $) 66)) (-1346 (($ $ $) 52 (|has| |#1| (-333)))) (-1609 (($ $ $) 53 (|has| |#1| (-333)))) (-2882 (($ $ $) 41 (|has| |#1| (-333)))) (-1843 (($ $ $) 50 (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 49 (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 54 (|has| |#1| (-333)))) (-2336 ((|#1| $) 65)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-1191 (((-703) $) 67)) (-4094 ((|#1| $) 56 (|has| |#1| (-421)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) 70)) (-3186 (((-583 |#1|) $) 61)) (-1939 ((|#1| $ (-703)) 63)) (-1818 (((-703)) 29)) (-2365 ((|#1| $ |#1| |#1|) 60)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) -(((-781 |#1|) (-1189) (-964)) (T -781)) -((-1191 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-964)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-964)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-583 *3)))) (-2365 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)))) (-2333 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-509)))) (-3860 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) (-3390 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-421)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-421)))) (-2097 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) (-1609 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-1346 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-1664 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-1843 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-2926 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-964)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1))) (-4 *1 (-781 *3)))) (-3612 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-3602 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) (-2762 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-2948 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-3184 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-1580 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-2200 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-964)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1))) (-4 *1 (-781 *3)))) (-2882 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(-13 (-964) (-106 |t#1| |t#1|) (-381 |t#1|) (-10 -8 (-15 -1191 ((-703) $)) (-15 -3942 ((-703) $)) (-15 -2336 (|t#1| $)) (-15 -2364 ($ $)) (-15 -1939 (|t#1| $ (-703))) (-15 -2059 ($ |t#1| (-703))) (-15 -3186 ((-583 |t#1|) $)) (-15 -2365 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2333 ((-3 $ "failed") $ |t#1|)) (-15 -3860 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -3390 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -4094 (|t#1| $)) (-15 -4172 ($ $))) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -2097 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -1609 ($ $ $)) (-15 -1346 ($ $ $)) (-15 -1664 ((-3 $ "failed") $ $)) (-15 -1843 ($ $ $)) (-15 -2926 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $)) (-15 -3612 ($ $ $)) (-15 -3602 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2762 ($ $ $)) (-15 -2948 ($ $ $)) (-15 -3184 ((-3 $ "failed") $ $)) (-15 -1580 ($ $ $)) (-15 -2200 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $)) (-15 -2882 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2376 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-3602 (((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-333)))) (-3390 (((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-509)))) (-2097 (((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-333)))) (-2365 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32))) -(((-782 |#1| |#2|) (-10 -7 (-15 -2376 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2365 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -3860 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3390 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2097 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3602 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-964) (-781 |#1|)) (T -782)) -((-3602 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-964)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2097 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-964)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-3390 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-964)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-3860 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-964)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2365 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-964)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))) (-2376 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-964)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5))))) -(-10 -7 (-15 -2376 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -2365 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -3860 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3390 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2097 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3602 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2948 (($ $ $) NIL (|has| |#1| (-333)))) (-2762 (($ $ $) NIL (|has| |#1| (-333)))) (-3612 (($ $ $) NIL (|has| |#1| (-333)))) (-1580 (($ $ $) NIL (|has| |#1| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3184 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 25 (|has| |#1| (-333)))) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-2449 (((-787) $ (-787)) NIL)) (-1690 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) NIL)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 21 (|has| |#1| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 19 (|has| |#1| (-509)))) (-3942 (((-703) $) NIL)) (-1346 (($ $ $) NIL (|has| |#1| (-333)))) (-1609 (($ $ $) NIL (|has| |#1| (-333)))) (-2882 (($ $ $) NIL (|has| |#1| (-333)))) (-1843 (($ $ $) NIL (|has| |#1| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-1664 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 23 (|has| |#1| (-333)))) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1191 (((-703) $) NIL)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-955 (-377 (-517))))) (($ |#1|) NIL)) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2365 ((|#1| $ |#1| |#1|) 15)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-783 |#1| |#2| |#3|) (-13 (-781 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-787))))) (-964) (-94 |#1|) (-1 |#1| |#1|)) (T -783)) -((-2449 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-781 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-787))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-2948 (($ $ $) NIL (|has| |#2| (-333)))) (-2762 (($ $ $) NIL (|has| |#2| (-333)))) (-3612 (($ $ $) NIL (|has| |#2| (-333)))) (-1580 (($ $ $) NIL (|has| |#2| (-333)))) (-2200 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#2| (-333)))) (-3184 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-3602 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-333)))) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) ((|#2| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-421)))) (-1690 (((-107) $) NIL)) (-2059 (($ |#2| (-703)) 16)) (-3390 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-509)))) (-3860 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-509)))) (-3942 (((-703) $) NIL)) (-1346 (($ $ $) NIL (|has| |#2| (-333)))) (-1609 (($ $ $) NIL (|has| |#2| (-333)))) (-2882 (($ $ $) NIL (|has| |#2| (-333)))) (-1843 (($ $ $) NIL (|has| |#2| (-333)))) (-2926 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#2| (-333)))) (-1664 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-2097 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-333)))) (-2336 ((|#2| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-1191 (((-703) $) NIL)) (-4094 ((|#2| $) NIL (|has| |#2| (-421)))) (-2262 (((-787) $) 23) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-955 (-377 (-517))))) (($ |#2|) NIL) (($ (-1154 |#1|)) 18)) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-703)) NIL)) (-1818 (((-703)) NIL)) (-2365 ((|#2| $ |#2| |#2|) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) 13 T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-784 |#1| |#2| |#3| |#4|) (-13 (-781 |#2|) (-10 -8 (-15 -2262 ($ (-1154 |#1|))))) (-1077) (-964) (-94 |#2|) (-1 |#2| |#2|)) (T -784)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-14 *3 (-1077)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-964)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-781 |#2|) (-10 -8 (-15 -2262 ($ (-1154 |#1|))))) -((-2901 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))) (-3313 ((|#1| (-703) (-703) |#1|) 27) ((|#1| (-703) |#1|) 20)) (-2312 ((|#1| (-703) |#1|) 31)) (-4078 ((|#1| (-703) |#1|) 29)) (-2855 ((|#1| (-703) |#1|) 28))) -(((-785 |#1|) (-10 -7 (-15 -2855 (|#1| (-703) |#1|)) (-15 -4078 (|#1| (-703) |#1|)) (-15 -2312 (|#1| (-703) |#1|)) (-15 -3313 (|#1| (-703) |#1|)) (-15 -3313 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2901 (|#1| (-703) |#1|)) |%noBranch|)) (-156)) (T -785)) -((-2901 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-3313 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-3313 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2312 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-4078 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2855 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))) -(-10 -7 (-15 -2855 (|#1| (-703) |#1|)) (-15 -4078 (|#1| (-703) |#1|)) (-15 -2312 (|#1| (-703) |#1|)) (-15 -3313 (|#1| (-703) |#1|)) (-15 -3313 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2901 (|#1| (-703) |#1|)) |%noBranch|)) -((-2105 (((-107) $ $) NIL)) (-3112 (((-517) $) 12)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 18) (($ (-517)) 11)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 8)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 9))) -(((-786) (-13 (-779) (-10 -8 (-15 -2262 ($ (-517))) (-15 -3112 ((-517) $))))) (T -786)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786))))) -(-13 (-779) (-10 -8 (-15 -2262 ($ (-517))) (-15 -3112 ((-517) $)))) -((-2105 (((-107) $ $) NIL)) (-2340 (($ $ $) 115)) (-3436 (((-517) $) 30) (((-517)) 35)) (-1657 (($ (-517)) 44)) (-1787 (($ $ $) 45) (($ (-583 $)) 76)) (-4111 (($ $ (-583 $)) 74)) (-3833 (((-517) $) 33)) (-4053 (($ $ $) 63)) (-3476 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2184 (((-517) $) 32)) (-1800 (($ $ $) 62)) (-1507 (($ $) 105)) (-2456 (($ $ $) 119)) (-2245 (($ (-583 $)) 52)) (-3738 (($ $ (-583 $)) 69)) (-3291 (($ (-517) (-517)) 46)) (-2902 (($ $) 116) (($ $ $) 117)) (-3302 (($ $ (-517)) 40) (($ $) 43)) (-2383 (($ $ $) 89)) (-4027 (($ $ $) 122)) (-3307 (($ $) 106)) (-2356 (($ $ $) 90)) (-3633 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3421 (((-1163) $) 8)) (-3374 (($ $) 109) (($ $ (-703)) 112)) (-3049 (($ $ $) 65)) (-1710 (($ $ $) 64)) (-4041 (($ $ (-583 $)) 100)) (-3378 (($ $ $) 104)) (-3425 (($ (-583 $)) 50)) (-3314 (($ $) 60) (($ (-583 $)) 61)) (-2923 (($ $ $) 113)) (-3111 (($ $) 107)) (-3257 (($ $ $) 118)) (-2449 (($ (-517)) 20) (($ (-1077)) 22) (($ (-1060)) 29) (($ (-199)) 24)) (-4011 (($ $ $) 93)) (-2479 (($ $) 94)) (-4047 (((-1163) (-1060)) 14)) (-2933 (($ (-1060)) 13)) (-2362 (($ (-583 (-583 $))) 48)) (-3287 (($ $ (-517)) 39) (($ $) 42)) (-3232 (((-1060) $) NIL)) (-3017 (($ $ $) 121)) (-3462 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-2620 (((-107) $) 98)) (-2924 (($ $ (-583 $)) 102) (($ $ $ $) 103)) (-3218 (($ (-517)) 36)) (-1795 (((-517) $) 31) (((-517)) 34)) (-2760 (($ $ $) 37) (($ (-583 $)) 75)) (-4130 (((-1024) $) NIL)) (-2333 (($ $ $) 91)) (-2679 (($) 12)) (-2612 (($ $ (-583 $)) 99)) (-3912 (($ $) 108) (($ $ (-703)) 111)) (-2345 (($ $ $) 88)) (-2042 (($ $ (-703)) 127)) (-2363 (($ (-583 $)) 51)) (-2262 (((-787) $) 18)) (-3605 (($ $ (-517)) 38) (($ $) 41)) (-3925 (($ $) 58) (($ (-583 $)) 59)) (-3066 (($ $) 56) (($ (-583 $)) 57)) (-3488 (($ $) 114)) (-3358 (($ (-583 $)) 55)) (-1462 (($ $ $) 97)) (-1587 (($ $ $) 120)) (-4024 (($ $ $) 92)) (-2471 (($ $ $) 77)) (-1594 (($ $ $) 95) (($ $) 96)) (-1630 (($ $ $) 81)) (-1606 (($ $ $) 79)) (-1572 (((-107) $ $) 15) (($ $ $) 16)) (-1618 (($ $ $) 80)) (-1596 (($ $ $) 78)) (-1692 (($ $ $) 86)) (-1680 (($ $ $) 83) (($ $) 84)) (-1666 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-787) (-13 (-1006) (-10 -8 (-15 -3421 ((-1163) $)) (-15 -2933 ($ (-1060))) (-15 -4047 ((-1163) (-1060))) (-15 -2449 ($ (-517))) (-15 -2449 ($ (-1077))) (-15 -2449 ($ (-1060))) (-15 -2449 ($ (-199))) (-15 -2679 ($)) (-15 -3436 ((-517) $)) (-15 -1795 ((-517) $)) (-15 -3436 ((-517))) (-15 -1795 ((-517))) (-15 -2184 ((-517) $)) (-15 -3833 ((-517) $)) (-15 -3218 ($ (-517))) (-15 -1657 ($ (-517))) (-15 -3291 ($ (-517) (-517))) (-15 -3287 ($ $ (-517))) (-15 -3302 ($ $ (-517))) (-15 -3605 ($ $ (-517))) (-15 -3287 ($ $)) (-15 -3302 ($ $)) (-15 -3605 ($ $)) (-15 -2760 ($ $ $)) (-15 -1787 ($ $ $)) (-15 -2760 ($ (-583 $))) (-15 -1787 ($ (-583 $))) (-15 -4041 ($ $ (-583 $))) (-15 -2924 ($ $ (-583 $))) (-15 -2924 ($ $ $ $)) (-15 -3378 ($ $ $)) (-15 -2620 ((-107) $)) (-15 -2612 ($ $ (-583 $))) (-15 -1507 ($ $)) (-15 -3017 ($ $ $)) (-15 -3488 ($ $)) (-15 -2362 ($ (-583 (-583 $)))) (-15 -2340 ($ $ $)) (-15 -2902 ($ $)) (-15 -2902 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2456 ($ $ $)) (-15 -1587 ($ $ $)) (-15 -4027 ($ $ $)) (-15 -2042 ($ $ (-703))) (-15 -1462 ($ $ $)) (-15 -1800 ($ $ $)) (-15 -4053 ($ $ $)) (-15 -1710 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3738 ($ $ (-583 $))) (-15 -4111 ($ $ (-583 $))) (-15 -3307 ($ $)) (-15 -3912 ($ $)) (-15 -3912 ($ $ (-703))) (-15 -3374 ($ $)) (-15 -3374 ($ $ (-703))) (-15 -3111 ($ $)) (-15 -2923 ($ $ $)) (-15 -3476 ($ $)) (-15 -3476 ($ $ $)) (-15 -3476 ($ $ $ $)) (-15 -3633 ($ $)) (-15 -3633 ($ $ $)) (-15 -3633 ($ $ $ $)) (-15 -3462 ($ $)) (-15 -3462 ($ $ $)) (-15 -3462 ($ $ $ $)) (-15 -3066 ($ $)) (-15 -3066 ($ (-583 $))) (-15 -3925 ($ $)) (-15 -3925 ($ (-583 $))) (-15 -3314 ($ $)) (-15 -3314 ($ (-583 $))) (-15 -3425 ($ (-583 $))) (-15 -2363 ($ (-583 $))) (-15 -2245 ($ (-583 $))) (-15 -3358 ($ (-583 $))) (-15 -1572 ($ $ $)) (-15 -2471 ($ $ $)) (-15 -1596 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -1618 ($ $ $)) (-15 -1630 ($ $ $)) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -1680 ($ $)) (-15 * ($ $ $)) (-15 -1692 ($ $ $)) (-15 ** ($ $ $)) (-15 -2345 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -2479 ($ $)) (-15 -1594 ($ $ $)) (-15 -1594 ($ $))))) (T -787)) -((-3421 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-787)))) (-2933 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-787)))) (-4047 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-787)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-787)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-787)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) (-2679 (*1 *1) (-5 *1 (-787))) (-3436 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3436 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1795 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1657 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3291 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3287 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3302 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3605 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3287 (*1 *1 *1) (-5 *1 (-787))) (-3302 (*1 *1 *1) (-5 *1 (-787))) (-3605 (*1 *1 *1) (-5 *1 (-787))) (-2760 (*1 *1 *1 *1) (-5 *1 (-787))) (-1787 (*1 *1 *1 *1) (-5 *1 (-787))) (-2760 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1787 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4041 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2924 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3378 (*1 *1 *1 *1) (-5 *1 (-787))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1507 (*1 *1 *1) (-5 *1 (-787))) (-3017 (*1 *1 *1 *1) (-5 *1 (-787))) (-3488 (*1 *1 *1) (-5 *1 (-787))) (-2362 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) (-2340 (*1 *1 *1 *1) (-5 *1 (-787))) (-2902 (*1 *1 *1) (-5 *1 (-787))) (-2902 (*1 *1 *1 *1) (-5 *1 (-787))) (-3257 (*1 *1 *1 *1) (-5 *1 (-787))) (-2456 (*1 *1 *1 *1) (-5 *1 (-787))) (-1587 (*1 *1 *1 *1) (-5 *1 (-787))) (-4027 (*1 *1 *1 *1) (-5 *1 (-787))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-1462 (*1 *1 *1 *1) (-5 *1 (-787))) (-1800 (*1 *1 *1 *1) (-5 *1 (-787))) (-4053 (*1 *1 *1 *1) (-5 *1 (-787))) (-1710 (*1 *1 *1 *1) (-5 *1 (-787))) (-3049 (*1 *1 *1 *1) (-5 *1 (-787))) (-3738 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3307 (*1 *1 *1) (-5 *1 (-787))) (-3912 (*1 *1 *1) (-5 *1 (-787))) (-3912 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-3374 (*1 *1 *1) (-5 *1 (-787))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-3111 (*1 *1 *1) (-5 *1 (-787))) (-2923 (*1 *1 *1 *1) (-5 *1 (-787))) (-3476 (*1 *1 *1) (-5 *1 (-787))) (-3476 (*1 *1 *1 *1) (-5 *1 (-787))) (-3476 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3633 (*1 *1 *1) (-5 *1 (-787))) (-3633 (*1 *1 *1 *1) (-5 *1 (-787))) (-3633 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3462 (*1 *1 *1) (-5 *1 (-787))) (-3462 (*1 *1 *1 *1) (-5 *1 (-787))) (-3462 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3066 (*1 *1 *1) (-5 *1 (-787))) (-3066 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3925 (*1 *1 *1) (-5 *1 (-787))) (-3925 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3314 (*1 *1 *1) (-5 *1 (-787))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2363 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2245 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3358 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1572 (*1 *1 *1 *1) (-5 *1 (-787))) (-2471 (*1 *1 *1 *1) (-5 *1 (-787))) (-1596 (*1 *1 *1 *1) (-5 *1 (-787))) (-1606 (*1 *1 *1 *1) (-5 *1 (-787))) (-1618 (*1 *1 *1 *1) (-5 *1 (-787))) (-1630 (*1 *1 *1 *1) (-5 *1 (-787))) (-1666 (*1 *1 *1 *1) (-5 *1 (-787))) (-1680 (*1 *1 *1 *1) (-5 *1 (-787))) (-1680 (*1 *1 *1) (-5 *1 (-787))) (* (*1 *1 *1 *1) (-5 *1 (-787))) (-1692 (*1 *1 *1 *1) (-5 *1 (-787))) (** (*1 *1 *1 *1) (-5 *1 (-787))) (-2345 (*1 *1 *1 *1) (-5 *1 (-787))) (-2383 (*1 *1 *1 *1) (-5 *1 (-787))) (-2356 (*1 *1 *1 *1) (-5 *1 (-787))) (-2333 (*1 *1 *1 *1) (-5 *1 (-787))) (-4024 (*1 *1 *1 *1) (-5 *1 (-787))) (-4011 (*1 *1 *1 *1) (-5 *1 (-787))) (-2479 (*1 *1 *1) (-5 *1 (-787))) (-1594 (*1 *1 *1 *1) (-5 *1 (-787))) (-1594 (*1 *1 *1) (-5 *1 (-787)))) -(-13 (-1006) (-10 -8 (-15 -3421 ((-1163) $)) (-15 -2933 ($ (-1060))) (-15 -4047 ((-1163) (-1060))) (-15 -2449 ($ (-517))) (-15 -2449 ($ (-1077))) (-15 -2449 ($ (-1060))) (-15 -2449 ($ (-199))) (-15 -2679 ($)) (-15 -3436 ((-517) $)) (-15 -1795 ((-517) $)) (-15 -3436 ((-517))) (-15 -1795 ((-517))) (-15 -2184 ((-517) $)) (-15 -3833 ((-517) $)) (-15 -3218 ($ (-517))) (-15 -1657 ($ (-517))) (-15 -3291 ($ (-517) (-517))) (-15 -3287 ($ $ (-517))) (-15 -3302 ($ $ (-517))) (-15 -3605 ($ $ (-517))) (-15 -3287 ($ $)) (-15 -3302 ($ $)) (-15 -3605 ($ $)) (-15 -2760 ($ $ $)) (-15 -1787 ($ $ $)) (-15 -2760 ($ (-583 $))) (-15 -1787 ($ (-583 $))) (-15 -4041 ($ $ (-583 $))) (-15 -2924 ($ $ (-583 $))) (-15 -2924 ($ $ $ $)) (-15 -3378 ($ $ $)) (-15 -2620 ((-107) $)) (-15 -2612 ($ $ (-583 $))) (-15 -1507 ($ $)) (-15 -3017 ($ $ $)) (-15 -3488 ($ $)) (-15 -2362 ($ (-583 (-583 $)))) (-15 -2340 ($ $ $)) (-15 -2902 ($ $)) (-15 -2902 ($ $ $)) (-15 -3257 ($ $ $)) (-15 -2456 ($ $ $)) (-15 -1587 ($ $ $)) (-15 -4027 ($ $ $)) (-15 -2042 ($ $ (-703))) (-15 -1462 ($ $ $)) (-15 -1800 ($ $ $)) (-15 -4053 ($ $ $)) (-15 -1710 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3738 ($ $ (-583 $))) (-15 -4111 ($ $ (-583 $))) (-15 -3307 ($ $)) (-15 -3912 ($ $)) (-15 -3912 ($ $ (-703))) (-15 -3374 ($ $)) (-15 -3374 ($ $ (-703))) (-15 -3111 ($ $)) (-15 -2923 ($ $ $)) (-15 -3476 ($ $)) (-15 -3476 ($ $ $)) (-15 -3476 ($ $ $ $)) (-15 -3633 ($ $)) (-15 -3633 ($ $ $)) (-15 -3633 ($ $ $ $)) (-15 -3462 ($ $)) (-15 -3462 ($ $ $)) (-15 -3462 ($ $ $ $)) (-15 -3066 ($ $)) (-15 -3066 ($ (-583 $))) (-15 -3925 ($ $)) (-15 -3925 ($ (-583 $))) (-15 -3314 ($ $)) (-15 -3314 ($ (-583 $))) (-15 -3425 ($ (-583 $))) (-15 -2363 ($ (-583 $))) (-15 -2245 ($ (-583 $))) (-15 -3358 ($ (-583 $))) (-15 -1572 ($ $ $)) (-15 -2471 ($ $ $)) (-15 -1596 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -1618 ($ $ $)) (-15 -1630 ($ $ $)) (-15 -1666 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -1680 ($ $)) (-15 * ($ $ $)) (-15 -1692 ($ $ $)) (-15 ** ($ $ $)) (-15 -2345 ($ $ $)) (-15 -2383 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -2479 ($ $)) (-15 -1594 ($ $ $)) (-15 -1594 ($ $)))) -((-3214 (((-1163) (-583 (-51))) 24)) (-2256 (((-1163) (-1060) (-787)) 14) (((-1163) (-787)) 9) (((-1163) (-1060)) 11))) -(((-788) (-10 -7 (-15 -2256 ((-1163) (-1060))) (-15 -2256 ((-1163) (-787))) (-15 -2256 ((-1163) (-1060) (-787))) (-15 -3214 ((-1163) (-583 (-51)))))) (T -788)) -((-3214 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1163)) (-5 *1 (-788)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-787)) (-5 *2 (-1163)) (-5 *1 (-788)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-788)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-788))))) -(-10 -7 (-15 -2256 ((-1163) (-1060))) (-15 -2256 ((-1163) (-787))) (-15 -2256 ((-1163) (-1060) (-787))) (-15 -3214 ((-1163) (-583 (-51))))) -((-2105 (((-107) $ $) NIL)) (-3791 (((-3 $ "failed") (-1077)) 32)) (-2390 (((-703)) 30)) (-2192 (($) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-4161 (((-845) $) 28)) (-3232 (((-1060) $) 38)) (-2803 (($ (-845)) 27)) (-4130 (((-1024) $) NIL)) (-3367 (((-1077) $) 13) (((-493) $) 19) (((-816 (-349)) $) 25) (((-816 (-517)) $) 22)) (-2262 (((-787) $) 16)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 35)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 34))) -(((-789 |#1|) (-13 (-773) (-558 (-1077)) (-558 (-493)) (-558 (-816 (-349))) (-558 (-816 (-517))) (-10 -8 (-15 -3791 ((-3 $ "failed") (-1077))))) (-583 (-1077))) (T -789)) -((-3791 (*1 *1 *2) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2))))) -(-13 (-773) (-558 (-1077)) (-558 (-493)) (-558 (-816 (-349))) (-558 (-816 (-517))) (-10 -8 (-15 -3791 ((-3 $ "failed") (-1077))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (((-876 |#1|) $) NIL) (($ (-876 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-156)))) (-1818 (((-703)) NIL)) (-3018 (((-1163) (-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) -(((-790 |#1| |#2| |#3| |#4|) (-13 (-964) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2262 ((-876 |#1|) $)) (-15 -2262 ($ (-876 |#1|))) (IF (|has| |#1| (-333)) (-15 -1692 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3018 ((-1163) (-703))))) (-964) (-583 (-1077)) (-583 (-703)) (-703)) (T -790)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-876 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-964)) (-14 *4 (-583 (-1077))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1077))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-1692 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-964)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-964)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 *3)) (-14 *7 *3)))) -(-13 (-964) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2262 ((-876 |#1|) $)) (-15 -2262 ($ (-876 |#1|))) (IF (|has| |#1| (-333)) (-15 -1692 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3018 ((-1163) (-703))))) -((-3785 (((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|) 31)) (-3011 (((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|) 24))) -(((-791 |#1| |#2| |#3|) (-10 -7 (-15 -3011 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3785 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|))) (-333) (-1149 |#1|) (-1134 |#1|)) (T -791)) -((-3785 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1149 *5)) (-4 *6 (-1134 *5)))) (-3011 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1149 *5)) (-4 *6 (-1134 *5))))) -(-10 -7 (-15 -3011 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3785 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|))) -((-3011 (((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|)) 28) (((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) 26))) -(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -3011 ((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (-15 -3011 ((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|)))) (-333) (-1077) |#1|) (T -792)) -((-3011 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1150 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1077)) (-14 *7 *5) (-5 *2 (-377 (-1131 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) (-3011 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1150 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1077)) (-14 *7 *5) (-5 *2 (-377 (-1131 *6 *5))) (-5 *1 (-792 *5 *6 *7))))) -(-10 -7 (-15 -3011 ((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (-15 -3011 ((-3 (-377 (-1131 |#2| |#1|)) "failed") (-703) (-703) (-1150 |#1| |#2| |#3|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3908 (($ $ (-517)) 62)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-2902 (($ (-1073 (-517)) (-517)) 61)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-4021 (($ $) 64)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-3250 (((-703) $) 69)) (-1690 (((-107) $) 31)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2263 (((-517)) 66)) (-3907 (((-517) $) 65)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3175 (($ $ (-517)) 68)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3685 (((-1058 (-517)) $) 70)) (-2384 (($ $) 67)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2194 (((-517) $ (-517)) 63)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-793 |#1|) (-1189) (-517)) (T -793)) -((-3685 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1058 (-517))))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-2384 (*1 *1 *1) (-4 *1 (-793 *2))) (-2263 (*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-4021 (*1 *1 *1) (-4 *1 (-793 *2))) (-2194 (*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3908 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-2902 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4))))) -(-13 (-278) (-134) (-10 -8 (-15 -3685 ((-1058 (-517)) $)) (-15 -3250 ((-703) $)) (-15 -3175 ($ $ (-517))) (-15 -2384 ($ $)) (-15 -2263 ((-517))) (-15 -3907 ((-517) $)) (-15 -4021 ($ $)) (-15 -2194 ((-517) $ (-517))) (-15 -3908 ($ $ (-517))) (-15 -2902 ($ (-1073 (-517)) (-517))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $ (-517)) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2902 (($ (-1073 (-517)) (-517)) NIL)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4021 (($ $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-3250 (((-703) $) NIL)) (-1690 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2263 (((-517)) NIL)) (-3907 (((-517) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3175 (($ $ (-517)) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3685 (((-1058 (-517)) $) NIL)) (-2384 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2194 (((-517) $ (-517)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL))) -(((-794 |#1|) (-793 |#1|) (-517)) (T -794)) -NIL -(-793 |#1|) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-794 |#1|) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-794 |#1|) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-794 |#1|) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-794 |#1|) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| (-794 |#1|) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-794 |#1|) (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-794 |#1|) (-955 (-517))))) (-3402 (((-794 |#1|) $) NIL) (((-1077) $) NIL (|has| (-794 |#1|) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-794 |#1|) (-955 (-517)))) (((-517) $) NIL (|has| (-794 |#1|) (-955 (-517))))) (-2419 (($ $) NIL) (($ (-517) $) NIL)) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-794 |#1|))) (|:| |vec| (-1158 (-794 |#1|)))) (-623 $) (-1158 $)) NIL) (((-623 (-794 |#1|)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-794 |#1|) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-794 |#1|) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-794 |#1|) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-794 |#1|) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| (-794 |#1|) (-1053)))) (-2321 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-4095 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-3312 (($ (-1 (-794 |#1|) (-794 |#1|)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-794 |#1|) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-794 |#1|) (-278)))) (-2713 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-794 |#1|) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-794 |#1|) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-794 |#1|)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-794 |#1|) (-794 |#1|)) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-265 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-265 (-794 |#1|)))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-1077)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-478 (-1077) (-794 |#1|)))) (($ $ (-1077) (-794 |#1|)) NIL (|has| (-794 |#1|) (-478 (-1077) (-794 |#1|))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-794 |#1|)) NIL (|has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1077)) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-794 |#1|) $) NIL)) (-3367 (((-816 (-517)) $) NIL (|has| (-794 |#1|) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-794 |#1|) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-794 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-794 |#1|) (-940))) (((-199) $) NIL (|has| (-794 |#1|) (-940)))) (-1309 (((-157 (-377 (-517))) $) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-794 |#1|)) NIL) (($ (-1077)) NIL (|has| (-794 |#1|) (-955 (-1077))))) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-833))) (|has| (-794 |#1|) (-132))))) (-1818 (((-703)) NIL)) (-3126 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-2944 (((-107) $ $) NIL)) (-2194 (((-377 (-517)) $ (-517)) NIL)) (-2829 (($ $) NIL (|has| (-794 |#1|) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1077)) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-794 |#1|) (-824 (-1077)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1692 (($ $ $) NIL) (($ (-794 |#1|) (-794 |#1|)) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-794 |#1|) $) NIL) (($ $ (-794 |#1|)) NIL))) -(((-795 |#1|) (-13 (-912 (-794 |#1|)) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $)))) (-517)) (T -795)) -((-2194 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) (-2419 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) (-2419 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2)))) -(-13 (-912 (-794 |#1|)) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 ((|#2| $) NIL (|has| |#2| (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| |#2| (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (|has| |#2| (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517))))) (-3402 ((|#2| $) NIL) (((-1077) $) NIL (|has| |#2| (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-517)))) (((-517) $) NIL (|has| |#2| (-955 (-517))))) (-2419 (($ $) 31) (($ (-517) $) 32)) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) 53)) (-2192 (($) NIL (|has| |#2| (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) NIL (|has| |#2| (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| |#2| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| |#2| (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 ((|#2| $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#2| (-1053)))) (-2321 (((-107) $) NIL (|has| |#2| (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 49)) (-2578 (($) NIL (|has| |#2| (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| |#2| (-278)))) (-2713 ((|#2| $) NIL (|has| |#2| (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-280 |#2|))) (($ $ (-265 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-265 |#2|))) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-1077)) (-583 |#2|)) NIL (|has| |#2| (-478 (-1077) |#2|))) (($ $ (-1077) |#2|) NIL (|has| |#2| (-478 (-1077) |#2|)))) (-3388 (((-703) $) NIL)) (-2612 (($ $ |#2|) NIL (|has| |#2| (-258 |#2| |#2|)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1463 (($ $) NIL)) (-2082 ((|#2| $) NIL)) (-3367 (((-816 (-517)) $) NIL (|has| |#2| (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| |#2| (-558 (-816 (-349))))) (((-493) $) NIL (|has| |#2| (-558 (-493)))) (((-349) $) NIL (|has| |#2| (-940))) (((-199) $) NIL (|has| |#2| (-940)))) (-1309 (((-157 (-377 (-517))) $) 68)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-2262 (((-787) $) 86) (($ (-517)) 19) (($ $) NIL) (($ (-377 (-517))) 24) (($ |#2|) 18) (($ (-1077)) NIL (|has| |#2| (-955 (-1077))))) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-3126 ((|#2| $) NIL (|has| |#2| (-502)))) (-2944 (((-107) $ $) NIL)) (-2194 (((-377 (-517)) $ (-517)) 60)) (-2829 (($ $) NIL (|has| |#2| (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 14 T CONST)) (-3675 (($) 16 T CONST)) (-3348 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) 35)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1680 (($ $) 39) (($ $ $) 41)) (-1666 (($ $ $) 37)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 50)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 42) (($ $ $) 44) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-796 |#1| |#2|) (-13 (-912 |#2|) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $)))) (-517) (-793 |#1|)) (T -796)) -((-2194 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) (-1309 (*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) (-2419 (*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) (-2419 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3))))) -(-13 (-912 |#2|) (-10 -8 (-15 -2194 ((-377 (-517)) $ (-517))) (-15 -1309 ((-157 (-377 (-517))) $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $)))) -((-2105 (((-107) $ $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))))) (-2567 ((|#2| $) 12)) (-2844 (($ |#1| |#2|) 9)) (-3232 (((-1060) $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))))) (-4130 (((-1024) $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#1| $) 11)) (-2279 (($ |#1| |#2|) 10)) (-2262 (((-787) $) 18 (-3786 (-12 (|has| |#1| (-557 (-787))) (|has| |#2| (-557 (-787)))) (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006)))))) (-1572 (((-107) $ $) 22 (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006)))))) -(((-797 |#1| |#2|) (-13 (-1112) (-10 -8 (IF (|has| |#1| (-557 (-787))) (IF (|has| |#2| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1006)) (IF (|has| |#2| (-1006)) (-6 (-1006)) |%noBranch|) |%noBranch|) (-15 -2844 ($ |#1| |#2|)) (-15 -2279 ($ |#1| |#2|)) (-15 -2420 (|#1| $)) (-15 -2567 (|#2| $)))) (-1112) (-1112)) (T -797)) -((-2844 (*1 *1 *2 *3) (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-2279 (*1 *1 *2 *3) (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) (-2420 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-797 *2 *3)) (-4 *3 (-1112)))) (-2567 (*1 *2 *1) (-12 (-4 *2 (-1112)) (-5 *1 (-797 *3 *2)) (-4 *3 (-1112))))) -(-13 (-1112) (-10 -8 (IF (|has| |#1| (-557 (-787))) (IF (|has| |#2| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1006)) (IF (|has| |#2| (-1006)) (-6 (-1006)) |%noBranch|) |%noBranch|) (-15 -2844 ($ |#1| |#2|)) (-15 -2279 ($ |#1| |#2|)) (-15 -2420 (|#1| $)) (-15 -2567 (|#2| $)))) -((-2105 (((-107) $ $) NIL)) (-4154 (((-517) $) 15)) (-1557 (($ (-142)) 11)) (-2128 (($ (-142)) 12)) (-3232 (((-1060) $) NIL)) (-2623 (((-142) $) 13)) (-4130 (((-1024) $) NIL)) (-3124 (($ (-142)) 9)) (-1602 (($ (-142)) 8)) (-2262 (((-787) $) 23) (($ (-142)) 16)) (-3519 (($ (-142)) 10)) (-1572 (((-107) $ $) NIL))) -(((-798) (-13 (-1006) (-10 -8 (-15 -1602 ($ (-142))) (-15 -3124 ($ (-142))) (-15 -3519 ($ (-142))) (-15 -1557 ($ (-142))) (-15 -2128 ($ (-142))) (-15 -2623 ((-142) $)) (-15 -4154 ((-517) $)) (-15 -2262 ($ (-142)))))) (T -798)) -((-1602 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-3519 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-798)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798))))) -(-13 (-1006) (-10 -8 (-15 -1602 ($ (-142))) (-15 -3124 ($ (-142))) (-15 -3519 ($ (-142))) (-15 -1557 ($ (-142))) (-15 -2128 ($ (-142))) (-15 -2623 ((-142) $)) (-15 -4154 ((-517) $)) (-15 -2262 ($ (-142))))) -((-2262 (((-286 (-517)) (-377 (-876 (-47)))) 21) (((-286 (-517)) (-876 (-47))) 16))) -(((-799) (-10 -7 (-15 -2262 ((-286 (-517)) (-876 (-47)))) (-15 -2262 ((-286 (-517)) (-377 (-876 (-47))))))) (T -799)) -((-2262 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-799)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-876 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-799))))) -(-10 -7 (-15 -2262 ((-286 (-517)) (-876 (-47)))) (-15 -2262 ((-286 (-517)) (-377 (-876 (-47)))))) -((-3312 (((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)) 14))) -(((-800 |#1| |#2|) (-10 -7 (-15 -3312 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) (-1112) (-1112)) (T -800)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-801 *6)) (-5 *1 (-800 *5 *6))))) -(-10 -7 (-15 -3312 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) -((-1290 (($ |#1| |#1|) 8)) (-1295 ((|#1| $ (-703)) 10))) -(((-801 |#1|) (-10 -8 (-15 -1290 ($ |#1| |#1|)) (-15 -1295 (|#1| $ (-703)))) (-1112)) (T -801)) -((-1295 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-801 *2)) (-4 *2 (-1112)))) (-1290 (*1 *1 *2 *2) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1112))))) -(-10 -8 (-15 -1290 ($ |#1| |#1|)) (-15 -1295 (|#1| $ (-703)))) -((-3312 (((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)) 14))) -(((-802 |#1| |#2|) (-10 -7 (-15 -3312 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)))) (-1112) (-1112)) (T -802)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-803 *6)) (-5 *1 (-802 *5 *6))))) -(-10 -7 (-15 -3312 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)))) -((-1290 (($ |#1| |#1| |#1|) 8)) (-1295 ((|#1| $ (-703)) 10))) -(((-803 |#1|) (-10 -8 (-15 -1290 ($ |#1| |#1| |#1|)) (-15 -1295 (|#1| $ (-703)))) (-1112)) (T -803)) -((-1295 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-803 *2)) (-4 *2 (-1112)))) (-1290 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1112))))) -(-10 -8 (-15 -1290 ($ |#1| |#1| |#1|)) (-15 -1295 (|#1| $ (-703)))) -((-1469 (((-583 (-1082)) (-1060)) 8))) -(((-804) (-10 -7 (-15 -1469 ((-583 (-1082)) (-1060))))) (T -804)) -((-1469 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-583 (-1082))) (-5 *1 (-804))))) -(-10 -7 (-15 -1469 ((-583 (-1082)) (-1060)))) -((-3312 (((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)) 14))) -(((-805 |#1| |#2|) (-10 -7 (-15 -3312 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)))) (-1112) (-1112)) (T -805)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6))))) -(-10 -7 (-15 -3312 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)))) -((-2034 (($ |#1| |#1| |#1|) 8)) (-1295 ((|#1| $ (-703)) 10))) -(((-806 |#1|) (-10 -8 (-15 -2034 ($ |#1| |#1| |#1|)) (-15 -1295 (|#1| $ (-703)))) (-1112)) (T -806)) -((-1295 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-806 *2)) (-4 *2 (-1112)))) (-2034 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1112))))) -(-10 -8 (-15 -2034 ($ |#1| |#1| |#1|)) (-15 -1295 (|#1| $ (-703)))) -((-3052 (((-1058 (-583 (-517))) (-583 (-517)) (-1058 (-583 (-517)))) 32)) (-1687 (((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517))) 28)) (-1251 (((-1058 (-583 (-517))) (-583 (-517))) 41) (((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517))) 40)) (-2632 (((-1058 (-583 (-517))) (-517)) 42)) (-2380 (((-1058 (-583 (-517))) (-517) (-517)) 22) (((-1058 (-583 (-517))) (-517)) 16) (((-1058 (-583 (-517))) (-517) (-517) (-517)) 12)) (-2951 (((-1058 (-583 (-517))) (-1058 (-583 (-517)))) 26)) (-1853 (((-583 (-517)) (-583 (-517))) 25))) -(((-807) (-10 -7 (-15 -2380 ((-1058 (-583 (-517))) (-517) (-517) (-517))) (-15 -2380 ((-1058 (-583 (-517))) (-517))) (-15 -2380 ((-1058 (-583 (-517))) (-517) (-517))) (-15 -1853 ((-583 (-517)) (-583 (-517)))) (-15 -2951 ((-1058 (-583 (-517))) (-1058 (-583 (-517))))) (-15 -1687 ((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3052 ((-1058 (-583 (-517))) (-583 (-517)) (-1058 (-583 (-517))))) (-15 -1251 ((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1251 ((-1058 (-583 (-517))) (-583 (-517)))) (-15 -2632 ((-1058 (-583 (-517))) (-517))))) (T -807)) -((-2632 (*1 *2 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517)))) (-1251 (*1 *2 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-583 (-517))))) (-1251 (*1 *2 *3 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-583 (-517))))) (-3052 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-807)))) (-1687 (*1 *2 *3 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-583 (-517))))) (-2951 (*1 *2 *2) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-807)))) (-2380 (*1 *2 *3 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517)))) (-2380 (*1 *2 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517)))) (-2380 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517))))) -(-10 -7 (-15 -2380 ((-1058 (-583 (-517))) (-517) (-517) (-517))) (-15 -2380 ((-1058 (-583 (-517))) (-517))) (-15 -2380 ((-1058 (-583 (-517))) (-517) (-517))) (-15 -1853 ((-583 (-517)) (-583 (-517)))) (-15 -2951 ((-1058 (-583 (-517))) (-1058 (-583 (-517))))) (-15 -1687 ((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -3052 ((-1058 (-583 (-517))) (-583 (-517)) (-1058 (-583 (-517))))) (-15 -1251 ((-1058 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1251 ((-1058 (-583 (-517))) (-583 (-517)))) (-15 -2632 ((-1058 (-583 (-517))) (-517)))) -((-3367 (((-816 (-349)) $) 9 (|has| |#1| (-558 (-816 (-349))))) (((-816 (-517)) $) 8 (|has| |#1| (-558 (-816 (-517))))))) -(((-808 |#1|) (-1189) (-1112)) (T -808)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-558 (-816 (-517)))) (-6 (-558 (-816 (-517)))) |%noBranch|) (IF (|has| |t#1| (-558 (-816 (-349)))) (-6 (-558 (-816 (-349)))) |%noBranch|))) -(((-558 (-816 (-349))) |has| |#1| (-558 (-816 (-349)))) ((-558 (-816 (-517))) |has| |#1| (-558 (-816 (-517))))) -((-2105 (((-107) $ $) NIL)) (-3204 (($) 14)) (-3078 (($ (-813 |#1| |#2|) (-813 |#1| |#3|)) 27)) (-3162 (((-813 |#1| |#3|) $) 16)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2521 (((-107) $) 22)) (-3212 (($) 19)) (-2262 (((-787) $) 30)) (-1364 (((-813 |#1| |#2|) $) 15)) (-1572 (((-107) $ $) 25))) -(((-809 |#1| |#2| |#3|) (-13 (-1006) (-10 -8 (-15 -2521 ((-107) $)) (-15 -3212 ($)) (-15 -3204 ($)) (-15 -3078 ($ (-813 |#1| |#2|) (-813 |#1| |#3|))) (-15 -1364 ((-813 |#1| |#2|) $)) (-15 -3162 ((-813 |#1| |#3|) $)))) (-1006) (-1006) (-603 |#2|)) (T -809)) -((-2521 (*1 *2 *1) (-12 (-4 *4 (-1006)) (-5 *2 (-107)) (-5 *1 (-809 *3 *4 *5)) (-4 *3 (-1006)) (-4 *5 (-603 *4)))) (-3212 (*1 *1) (-12 (-4 *3 (-1006)) (-5 *1 (-809 *2 *3 *4)) (-4 *2 (-1006)) (-4 *4 (-603 *3)))) (-3204 (*1 *1) (-12 (-4 *3 (-1006)) (-5 *1 (-809 *2 *3 *4)) (-4 *2 (-1006)) (-4 *4 (-603 *3)))) (-3078 (*1 *1 *2 *3) (-12 (-5 *2 (-813 *4 *5)) (-5 *3 (-813 *4 *6)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-603 *5)) (-5 *1 (-809 *4 *5 *6)))) (-1364 (*1 *2 *1) (-12 (-4 *4 (-1006)) (-5 *2 (-813 *3 *4)) (-5 *1 (-809 *3 *4 *5)) (-4 *3 (-1006)) (-4 *5 (-603 *4)))) (-3162 (*1 *2 *1) (-12 (-4 *4 (-1006)) (-5 *2 (-813 *3 *5)) (-5 *1 (-809 *3 *4 *5)) (-4 *3 (-1006)) (-4 *5 (-603 *4))))) -(-13 (-1006) (-10 -8 (-15 -2521 ((-107) $)) (-15 -3212 ($)) (-15 -3204 ($)) (-15 -3078 ($ (-813 |#1| |#2|) (-813 |#1| |#3|))) (-15 -1364 ((-813 |#1| |#2|) $)) (-15 -3162 ((-813 |#1| |#3|) $)))) -((-2105 (((-107) $ $) 7)) (-2939 (((-813 |#1| $) $ (-816 |#1|) (-813 |#1| $)) 13)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6))) -(((-810 |#1|) (-1189) (-1006)) (T -810)) -((-2939 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-813 *4 *1)) (-5 *3 (-816 *4)) (-4 *1 (-810 *4)) (-4 *4 (-1006))))) -(-13 (-1006) (-10 -8 (-15 -2939 ((-813 |t#1| $) $ (-816 |t#1|) (-813 |t#1| $))))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-3731 (((-107) (-583 |#2|) |#3|) 23) (((-107) |#2| |#3|) 18)) (-2057 (((-813 |#1| |#2|) |#2| |#3|) 43 (-12 (-2479 (|has| |#2| (-955 (-1077)))) (-2479 (|has| |#2| (-964))))) (((-583 (-265 (-876 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-964)) (-2479 (|has| |#2| (-955 (-1077)))))) (((-583 (-265 |#2|)) |#2| |#3|) 35 (|has| |#2| (-955 (-1077)))) (((-809 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 21))) -(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -3731 ((-107) |#2| |#3|)) (-15 -3731 ((-107) (-583 |#2|) |#3|)) (-15 -2057 ((-809 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-955 (-1077))) (-15 -2057 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-964)) (-15 -2057 ((-583 (-265 (-876 |#2|))) |#2| |#3|)) (-15 -2057 ((-813 |#1| |#2|) |#2| |#3|))))) (-1006) (-810 |#1|) (-558 (-816 |#1|))) (T -811)) -((-2057 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-813 *5 *3)) (-5 *1 (-811 *5 *3 *4)) (-2479 (-4 *3 (-955 (-1077)))) (-2479 (-4 *3 (-964))) (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5))))) (-2057 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-583 (-265 (-876 *3)))) (-5 *1 (-811 *5 *3 *4)) (-4 *3 (-964)) (-2479 (-4 *3 (-955 (-1077)))) (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5))))) (-2057 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-811 *5 *3 *4)) (-4 *3 (-955 (-1077))) (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5))))) (-2057 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-4 *6 (-810 *5)) (-5 *2 (-809 *5 *6 (-583 *6))) (-5 *1 (-811 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-816 *5))))) (-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-810 *5)) (-4 *5 (-1006)) (-5 *2 (-107)) (-5 *1 (-811 *5 *6 *4)) (-4 *4 (-558 (-816 *5))))) (-3731 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-107)) (-5 *1 (-811 *5 *3 *4)) (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5)))))) -(-10 -7 (-15 -3731 ((-107) |#2| |#3|)) (-15 -3731 ((-107) (-583 |#2|) |#3|)) (-15 -2057 ((-809 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-955 (-1077))) (-15 -2057 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-964)) (-15 -2057 ((-583 (-265 (-876 |#2|))) |#2| |#3|)) (-15 -2057 ((-813 |#1| |#2|) |#2| |#3|))))) -((-3312 (((-813 |#1| |#3|) (-1 |#3| |#2|) (-813 |#1| |#2|)) 21))) -(((-812 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-813 |#1| |#3|) (-1 |#3| |#2|) (-813 |#1| |#2|)))) (-1006) (-1006) (-1006)) (T -812)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-813 *5 *6)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-813 *5 *7)) (-5 *1 (-812 *5 *6 *7))))) -(-10 -7 (-15 -3312 ((-813 |#1| |#3|) (-1 |#3| |#2|) (-813 |#1| |#2|)))) -((-2105 (((-107) $ $) NIL)) (-2374 (($ $ $) 37)) (-3867 (((-3 (-107) "failed") $ (-816 |#1|)) 34)) (-3204 (($) 11)) (-3232 (((-1060) $) NIL)) (-1757 (($ (-816 |#1|) |#2| $) 20)) (-4130 (((-1024) $) NIL)) (-1632 (((-3 |#2| "failed") (-816 |#1|) $) 48)) (-2521 (((-107) $) 14)) (-3212 (($) 12)) (-3964 (((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|))) $) 25)) (-2279 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|)))) 23)) (-2262 (((-787) $) 42)) (-1527 (($ (-816 |#1|) |#2| $ |#2|) 46)) (-3795 (($ (-816 |#1|) |#2| $) 45)) (-1572 (((-107) $ $) 39))) -(((-813 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -2521 ((-107) $)) (-15 -3212 ($)) (-15 -3204 ($)) (-15 -2374 ($ $ $)) (-15 -1632 ((-3 |#2| "failed") (-816 |#1|) $)) (-15 -3795 ($ (-816 |#1|) |#2| $)) (-15 -1757 ($ (-816 |#1|) |#2| $)) (-15 -1527 ($ (-816 |#1|) |#2| $ |#2|)) (-15 -3964 ((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|))) $)) (-15 -2279 ($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|))))) (-15 -3867 ((-3 (-107) "failed") $ (-816 |#1|))))) (-1006) (-1006)) (T -813)) -((-2521 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-813 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-3212 (*1 *1) (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-3204 (*1 *1) (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-2374 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-1632 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-4 *2 (-1006)) (-5 *1 (-813 *4 *2)))) (-3795 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3)) (-4 *3 (-1006)))) (-1757 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3)) (-4 *3 (-1006)))) (-1527 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3)) (-4 *3 (-1006)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 *4)))) (-5 *1 (-813 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 *4)))) (-4 *4 (-1006)) (-5 *1 (-813 *3 *4)) (-4 *3 (-1006)))) (-3867 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-107)) (-5 *1 (-813 *4 *5)) (-4 *5 (-1006))))) -(-13 (-1006) (-10 -8 (-15 -2521 ((-107) $)) (-15 -3212 ($)) (-15 -3204 ($)) (-15 -2374 ($ $ $)) (-15 -1632 ((-3 |#2| "failed") (-816 |#1|) $)) (-15 -3795 ($ (-816 |#1|) |#2| $)) (-15 -1757 ($ (-816 |#1|) |#2| $)) (-15 -1527 ($ (-816 |#1|) |#2| $ |#2|)) (-15 -3964 ((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|))) $)) (-15 -2279 ($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 |#2|))))) (-15 -3867 ((-3 (-107) "failed") $ (-816 |#1|))))) -((-3594 (((-816 |#1|) (-816 |#1|) (-583 (-1077)) (-1 (-107) (-583 |#2|))) 30) (((-816 |#1|) (-816 |#1|) (-583 (-1 (-107) |#2|))) 42) (((-816 |#1|) (-816 |#1|) (-1 (-107) |#2|)) 33)) (-3867 (((-107) (-583 |#2|) (-816 |#1|)) 39) (((-107) |#2| (-816 |#1|)) 35)) (-1678 (((-1 (-107) |#2|) (-816 |#1|)) 14)) (-3631 (((-583 |#2|) (-816 |#1|)) 23)) (-1537 (((-816 |#1|) (-816 |#1|) |#2|) 19))) -(((-814 |#1| |#2|) (-10 -7 (-15 -3594 ((-816 |#1|) (-816 |#1|) (-1 (-107) |#2|))) (-15 -3594 ((-816 |#1|) (-816 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3594 ((-816 |#1|) (-816 |#1|) (-583 (-1077)) (-1 (-107) (-583 |#2|)))) (-15 -1678 ((-1 (-107) |#2|) (-816 |#1|))) (-15 -3867 ((-107) |#2| (-816 |#1|))) (-15 -3867 ((-107) (-583 |#2|) (-816 |#1|))) (-15 -1537 ((-816 |#1|) (-816 |#1|) |#2|)) (-15 -3631 ((-583 |#2|) (-816 |#1|)))) (-1006) (-1112)) (T -814)) -((-3631 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-583 *5)) (-5 *1 (-814 *4 *5)) (-4 *5 (-1112)))) (-1537 (*1 *2 *2 *3) (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-814 *4 *3)) (-4 *3 (-1112)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-4 *6 (-1112)) (-5 *2 (-107)) (-5 *1 (-814 *5 *6)))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-5 *2 (-107)) (-5 *1 (-814 *5 *3)) (-4 *3 (-1112)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-814 *4 *5)) (-4 *5 (-1112)))) (-3594 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-816 *5)) (-5 *3 (-583 (-1077))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1006)) (-4 *6 (-1112)) (-5 *1 (-814 *5 *6)))) (-3594 (*1 *2 *2 *3) (-12 (-5 *2 (-816 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1006)) (-4 *5 (-1112)) (-5 *1 (-814 *4 *5)))) (-3594 (*1 *2 *2 *3) (-12 (-5 *2 (-816 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1006)) (-4 *5 (-1112)) (-5 *1 (-814 *4 *5))))) -(-10 -7 (-15 -3594 ((-816 |#1|) (-816 |#1|) (-1 (-107) |#2|))) (-15 -3594 ((-816 |#1|) (-816 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3594 ((-816 |#1|) (-816 |#1|) (-583 (-1077)) (-1 (-107) (-583 |#2|)))) (-15 -1678 ((-1 (-107) |#2|) (-816 |#1|))) (-15 -3867 ((-107) |#2| (-816 |#1|))) (-15 -3867 ((-107) (-583 |#2|) (-816 |#1|))) (-15 -1537 ((-816 |#1|) (-816 |#1|) |#2|)) (-15 -3631 ((-583 |#2|) (-816 |#1|)))) -((-3312 (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)) 17))) -(((-815 |#1| |#2|) (-10 -7 (-15 -3312 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)))) (-1006) (-1006)) (T -815)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6))))) -(-10 -7 (-15 -3312 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)))) -((-2105 (((-107) $ $) NIL)) (-2423 (($ $ (-583 (-51))) 63)) (-2080 (((-583 $) $) 117)) (-1413 (((-2 (|:| |var| (-583 (-1077))) (|:| |pred| (-51))) $) 23)) (-2798 (((-107) $) 30)) (-3859 (($ $ (-583 (-1077)) (-51)) 25)) (-3021 (($ $ (-583 (-51))) 62)) (-3220 (((-3 |#1| "failed") $) 60) (((-3 (-1077) "failed") $) 139)) (-3402 ((|#1| $) 56) (((-1077) $) NIL)) (-1478 (($ $) 107)) (-3762 (((-107) $) 46)) (-1541 (((-583 (-51)) $) 44)) (-3983 (($ (-1077) (-107) (-107) (-107)) 64)) (-1479 (((-3 (-583 $) "failed") (-583 $)) 71)) (-1485 (((-107) $) 49)) (-3697 (((-107) $) 48)) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) 35)) (-1742 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-1481 (((-3 (-2 (|:| |val| $) (|:| -1725 $)) "failed") $) 82)) (-1442 (((-3 (-583 $) "failed") $) 32)) (-1694 (((-3 (-583 $) "failed") $ (-109)) 106) (((-3 (-2 (|:| -1395 (-109)) (|:| |arg| (-583 $))) "failed") $) 94)) (-2692 (((-3 (-583 $) "failed") $) 36)) (-3044 (((-3 (-2 (|:| |val| $) (|:| -1725 (-703))) "failed") $) 39)) (-1193 (((-107) $) 29)) (-4130 (((-1024) $) NIL)) (-3475 (((-107) $) 21)) (-1989 (((-107) $) 45)) (-2753 (((-583 (-51)) $) 110)) (-3647 (((-107) $) 47)) (-2612 (($ (-109) (-583 $)) 91)) (-3137 (((-703) $) 28)) (-2453 (($ $) 61)) (-3367 (($ (-583 $)) 58)) (-1968 (((-107) $) 26)) (-2262 (((-787) $) 51) (($ |#1|) 18) (($ (-1077)) 65)) (-1537 (($ $ (-51)) 109)) (-3663 (($) 90 T CONST)) (-3675 (($) 72 T CONST)) (-1572 (((-107) $ $) 78)) (-1692 (($ $ $) 99)) (-1666 (($ $ $) 103)) (** (($ $ (-703)) 98) (($ $ $) 52)) (* (($ $ $) 104))) -(((-816 |#1|) (-13 (-1006) (-955 |#1|) (-955 (-1077)) (-10 -8 (-15 0 ($) -1373) (-15 1 ($) -1373) (-15 -1442 ((-3 (-583 $) "failed") $)) (-15 -1743 ((-3 (-583 $) "failed") $)) (-15 -1694 ((-3 (-583 $) "failed") $ (-109))) (-15 -1694 ((-3 (-2 (|:| -1395 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3044 ((-3 (-2 (|:| |val| $) (|:| -1725 (-703))) "failed") $)) (-15 -1742 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2692 ((-3 (-583 $) "failed") $)) (-15 -1481 ((-3 (-2 (|:| |val| $) (|:| -1725 $)) "failed") $)) (-15 -2612 ($ (-109) (-583 $))) (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1692 ($ $ $)) (-15 -3137 ((-703) $)) (-15 -3367 ($ (-583 $))) (-15 -2453 ($ $)) (-15 -1193 ((-107) $)) (-15 -3762 ((-107) $)) (-15 -2798 ((-107) $)) (-15 -1968 ((-107) $)) (-15 -3647 ((-107) $)) (-15 -3697 ((-107) $)) (-15 -1485 ((-107) $)) (-15 -1989 ((-107) $)) (-15 -1541 ((-583 (-51)) $)) (-15 -3021 ($ $ (-583 (-51)))) (-15 -2423 ($ $ (-583 (-51)))) (-15 -3983 ($ (-1077) (-107) (-107) (-107))) (-15 -3859 ($ $ (-583 (-1077)) (-51))) (-15 -1413 ((-2 (|:| |var| (-583 (-1077))) (|:| |pred| (-51))) $)) (-15 -3475 ((-107) $)) (-15 -1478 ($ $)) (-15 -1537 ($ $ (-51))) (-15 -2753 ((-583 (-51)) $)) (-15 -2080 ((-583 $) $)) (-15 -1479 ((-3 (-583 $) "failed") (-583 $))))) (-1006)) (T -816)) -((-3663 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-3675 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-1442 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1743 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1694 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-816 *4))) (-5 *1 (-816 *4)) (-4 *4 (-1006)))) (-1694 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1395 (-109)) (|:| |arg| (-583 (-816 *3))))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3044 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-816 *3)) (|:| -1725 (-703)))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1742 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-816 *3)) (|:| |den| (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2692 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1481 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-816 *3)) (|:| -1725 (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2612 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-816 *4))) (-5 *1 (-816 *4)) (-4 *4 (-1006)))) (-1666 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-1692 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2453 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-1193 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3021 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2423 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3983 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-107)) (-5 *1 (-816 *4)) (-4 *4 (-1006)))) (-3859 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-51)) (-5 *1 (-816 *4)) (-4 *4 (-1006)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1077))) (|:| |pred| (-51)))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1478 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) (-1537 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) (-1479 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(-13 (-1006) (-955 |#1|) (-955 (-1077)) (-10 -8 (-15 (-3663) ($) -1373) (-15 (-3675) ($) -1373) (-15 -1442 ((-3 (-583 $) "failed") $)) (-15 -1743 ((-3 (-583 $) "failed") $)) (-15 -1694 ((-3 (-583 $) "failed") $ (-109))) (-15 -1694 ((-3 (-2 (|:| -1395 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3044 ((-3 (-2 (|:| |val| $) (|:| -1725 (-703))) "failed") $)) (-15 -1742 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2692 ((-3 (-583 $) "failed") $)) (-15 -1481 ((-3 (-2 (|:| |val| $) (|:| -1725 $)) "failed") $)) (-15 -2612 ($ (-109) (-583 $))) (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1692 ($ $ $)) (-15 -3137 ((-703) $)) (-15 -3367 ($ (-583 $))) (-15 -2453 ($ $)) (-15 -1193 ((-107) $)) (-15 -3762 ((-107) $)) (-15 -2798 ((-107) $)) (-15 -1968 ((-107) $)) (-15 -3647 ((-107) $)) (-15 -3697 ((-107) $)) (-15 -1485 ((-107) $)) (-15 -1989 ((-107) $)) (-15 -1541 ((-583 (-51)) $)) (-15 -3021 ($ $ (-583 (-51)))) (-15 -2423 ($ $ (-583 (-51)))) (-15 -3983 ($ (-1077) (-107) (-107) (-107))) (-15 -3859 ($ $ (-583 (-1077)) (-51))) (-15 -1413 ((-2 (|:| |var| (-583 (-1077))) (|:| |pred| (-51))) $)) (-15 -3475 ((-107) $)) (-15 -1478 ($ $)) (-15 -1537 ($ $ (-51))) (-15 -2753 ((-583 (-51)) $)) (-15 -2080 ((-583 $) $)) (-15 -1479 ((-3 (-583 $) "failed") (-583 $))))) -((-2105 (((-107) $ $) NIL)) (-3375 (((-583 |#1|) $) 16)) (-2240 (((-107) $) 38)) (-3220 (((-3 (-608 |#1|) "failed") $) 41)) (-3402 (((-608 |#1|) $) 39)) (-2429 (($ $) 18)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3728 (((-703) $) 45)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-608 |#1|) $) 17)) (-2262 (((-787) $) 37) (($ (-608 |#1|)) 21) (((-751 |#1|) $) 27) (($ |#1|) 20)) (-3675 (($) 8 T CONST)) (-1226 (((-583 (-608 |#1|)) $) 23)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 11)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 48))) -(((-817 |#1|) (-13 (-779) (-955 (-608 |#1|)) (-10 -8 (-15 1 ($) -1373) (-15 -2262 ((-751 |#1|) $)) (-15 -2262 ($ |#1|)) (-15 -2420 ((-608 |#1|) $)) (-15 -3728 ((-703) $)) (-15 -1226 ((-583 (-608 |#1|)) $)) (-15 -2429 ($ $)) (-15 -2240 ((-107) $)) (-15 -3375 ((-583 |#1|) $)))) (-779)) (T -817)) -((-3675 (*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) (-2262 (*1 *1 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) (-1226 (*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-817 *3)) (-4 *3 (-779)))) (-2429 (*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779))))) -(-13 (-779) (-955 (-608 |#1|)) (-10 -8 (-15 (-3675) ($) -1373) (-15 -2262 ((-751 |#1|) $)) (-15 -2262 ($ |#1|)) (-15 -2420 ((-608 |#1|) $)) (-15 -3728 ((-703) $)) (-15 -1226 ((-583 (-608 |#1|)) $)) (-15 -2429 ($ $)) (-15 -2240 ((-107) $)) (-15 -3375 ((-583 |#1|) $)))) -((-4077 ((|#1| |#1| |#1|) 20))) -(((-818 |#1| |#2|) (-10 -7 (-15 -4077 (|#1| |#1| |#1|))) (-1134 |#2|) (-964)) (T -818)) -((-4077 (*1 *2 *2 *2) (-12 (-4 *3 (-964)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1134 *3))))) -(-10 -7 (-15 -4077 (|#1| |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-3661 (((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 14)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-4147 (((-953) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 13)) (-1572 (((-107) $ $) 6))) -(((-819) (-1189)) (T -819)) -((-3661 (*1 *2 *3 *4) (-12 (-4 *1 (-819)) (-5 *3 (-976)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) (-4147 (*1 *2 *3) (-12 (-4 *1 (-819)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) (-5 *2 (-953))))) -(-13 (-1006) (-10 -7 (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| |explanations| (-1060))) (-976) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))))) (-15 -4147 ((-953) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))))))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-3001 ((|#1| |#1| (-703)) 24)) (-3120 (((-3 |#1| "failed") |#1| |#1|) 23)) (-1784 (((-3 (-2 (|:| -3287 |#1|) (|:| -3302 |#1|)) "failed") |#1| (-703) (-703)) 27) (((-583 |#1|) |#1|) 29))) -(((-820 |#1| |#2|) (-10 -7 (-15 -1784 ((-583 |#1|) |#1|)) (-15 -1784 ((-3 (-2 (|:| -3287 |#1|) (|:| -3302 |#1|)) "failed") |#1| (-703) (-703))) (-15 -3120 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3001 (|#1| |#1| (-703)))) (-1134 |#2|) (-333)) (T -820)) -((-3001 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-820 *2 *4)) (-4 *2 (-1134 *4)))) (-3120 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-820 *2 *3)) (-4 *2 (-1134 *3)))) (-1784 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3287 *3) (|:| -3302 *3))) (-5 *1 (-820 *3 *5)) (-4 *3 (-1134 *5)))) (-1784 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-820 *3 *4)) (-4 *3 (-1134 *4))))) -(-10 -7 (-15 -1784 ((-583 |#1|) |#1|)) (-15 -1784 ((-3 (-2 (|:| -3287 |#1|) (|:| -3302 |#1|)) "failed") |#1| (-703) (-703))) (-15 -3120 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3001 (|#1| |#1| (-703)))) -((-1993 (((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060)) 92) (((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060) (-199)) 87) (((-953) (-822) (-976)) 76) (((-953) (-822)) 77)) (-3661 (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822) (-976)) 50) (((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822)) 52))) -(((-821) (-10 -7 (-15 -1993 ((-953) (-822))) (-15 -1993 ((-953) (-822) (-976))) (-15 -1993 ((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060) (-199))) (-15 -1993 ((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822) (-976))))) (T -821)) -((-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-976)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-821)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060))))) (-5 *1 (-821)))) (-1993 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1060)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-953)) (-5 *1 (-821)))) (-1993 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1060)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-953)) (-5 *1 (-821)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-821)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-953)) (-5 *1 (-821))))) -(-10 -7 (-15 -1993 ((-953) (-822))) (-15 -1993 ((-953) (-822) (-976))) (-15 -1993 ((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060) (-199))) (-15 -1993 ((-953) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1060))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822))) (-15 -3661 ((-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) (|:| |explanations| (-583 (-1060)))) (-822) (-976)))) -((-2105 (((-107) $ $) NIL)) (-3402 (((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))) $) 10)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 12) (($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) 9)) (-1572 (((-107) $ $) NIL))) -(((-822) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))) $))))) (T -822)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-822)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) (-5 *1 (-822)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199)))) (-5 *1 (-822))))) -(-13 (-1006) (-10 -8 (-15 -2262 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))))) (-15 -2262 ((-787) $)) (-15 -3402 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) (|:| |tol| (-199))) $)))) -((-2042 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) 10) (($ $ |#2| (-703)) 12) (($ $ (-583 |#2|) (-583 (-703))) 15)) (-3348 (($ $ |#2|) 16) (($ $ (-583 |#2|)) 18) (($ $ |#2| (-703)) 19) (($ $ (-583 |#2|) (-583 (-703))) 21))) -(((-823 |#1| |#2|) (-10 -8 (-15 -3348 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3348 (|#1| |#1| |#2| (-703))) (-15 -3348 (|#1| |#1| (-583 |#2|))) (-15 -3348 (|#1| |#1| |#2|)) (-15 -2042 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2042 (|#1| |#1| |#2| (-703))) (-15 -2042 (|#1| |#1| (-583 |#2|))) (-15 -2042 (|#1| |#1| |#2|))) (-824 |#2|) (-1006)) (T -823)) -NIL -(-10 -8 (-15 -3348 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3348 (|#1| |#1| |#2| (-703))) (-15 -3348 (|#1| |#1| (-583 |#2|))) (-15 -3348 (|#1| |#1| |#2|)) (-15 -2042 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2042 (|#1| |#1| |#2| (-703))) (-15 -2042 (|#1| |#1| (-583 |#2|))) (-15 -2042 (|#1| |#1| |#2|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2042 (($ $ |#1|) 42) (($ $ (-583 |#1|)) 41) (($ $ |#1| (-703)) 40) (($ $ (-583 |#1|) (-583 (-703))) 39)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ |#1|) 38) (($ $ (-583 |#1|)) 37) (($ $ |#1| (-703)) 36) (($ $ (-583 |#1|) (-583 (-703))) 35)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-824 |#1|) (-1189) (-1006)) (T -824)) -((-2042 (*1 *1 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1006)))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-824 *3)) (-4 *3 (-1006)))) (-2042 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-824 *2)) (-4 *2 (-1006)))) (-2042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-824 *4)) (-4 *4 (-1006)))) (-3348 (*1 *1 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1006)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-824 *3)) (-4 *3 (-1006)))) (-3348 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-824 *2)) (-4 *2 (-1006)))) (-3348 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-824 *4)) (-4 *4 (-1006))))) -(-13 (-964) (-10 -8 (-15 -2042 ($ $ |t#1|)) (-15 -2042 ($ $ (-583 |t#1|))) (-15 -2042 ($ $ |t#1| (-703))) (-15 -2042 ($ $ (-583 |t#1|) (-583 (-703)))) (-15 -3348 ($ $ |t#1|)) (-15 -3348 ($ $ (-583 |t#1|))) (-15 -3348 ($ $ |t#1| (-703))) (-15 -3348 ($ $ (-583 |t#1|) (-583 (-703)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) 26)) (-3443 (((-107) $ (-703)) NIL)) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-3149 (($ $ $) NIL (|has| $ (-6 -4196)))) (-4174 (($ $ $) NIL (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) (($ $ "left" $) NIL (|has| $ (-6 -4196))) (($ $ "right" $) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3302 (($ $) 25)) (-2399 (($ |#1|) 12) (($ $ $) 17)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3287 (($ $) 23)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) 20)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1099 |#1|) $) 9) (((-787) $) 29 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 21 (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-825 |#1|) (-13 (-114 |#1|) (-10 -8 (-15 -2399 ($ |#1|)) (-15 -2399 ($ $ $)) (-15 -2262 ((-1099 |#1|) $)))) (-1006)) (T -825)) -((-2399 (*1 *1 *2) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1006)))) (-2399 (*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1006)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1099 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1006))))) -(-13 (-114 |#1|) (-10 -8 (-15 -2399 ($ |#1|)) (-15 -2399 ($ $ $)) (-15 -2262 ((-1099 |#1|) $)))) -((-1723 ((|#2| (-1044 |#1| |#2|)) 41))) -(((-826 |#1| |#2|) (-10 -7 (-15 -1723 (|#2| (-1044 |#1| |#2|)))) (-845) (-13 (-964) (-10 -7 (-6 (-4197 "*"))))) (T -826)) -((-1723 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 *2)) (-14 *4 (-845)) (-4 *2 (-13 (-964) (-10 -7 (-6 (-4197 "*"))))) (-5 *1 (-826 *4 *2))))) -(-10 -7 (-15 -1723 (|#2| (-1044 |#1| |#2|)))) -((-2105 (((-107) $ $) 7)) (-3038 (($) 20 T CONST)) (-3550 (((-3 $ "failed") $) 16)) (-1259 (((-1008 |#1|) $ |#1|) 35)) (-1690 (((-107) $) 19)) (-3480 (($ $ $) 33 (-3786 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-4095 (($ $ $) 32 (-3786 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 27)) (-4130 (((-1024) $) 10)) (-3552 ((|#1| $ |#1|) 37)) (-2612 ((|#1| $ |#1|) 36)) (-3318 (($ (-583 (-583 |#1|))) 38)) (-2927 (($ (-583 |#1|)) 39)) (-1853 (($ $ $) 23)) (-1970 (($ $ $) 22)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-845)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-3675 (($) 21 T CONST)) (-1630 (((-107) $ $) 30 (-3786 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1606 (((-107) $ $) 29 (-3786 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 31 (-3786 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1596 (((-107) $ $) 34)) (-1692 (($ $ $) 26)) (** (($ $ (-845)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15))) -(((-827 |#1|) (-1189) (-1006)) (T -827)) -((-2927 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-827 *3)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-4 *1 (-827 *3)))) (-3552 (*1 *2 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1006)))) (-2612 (*1 *2 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1006)))) (-1259 (*1 *2 *1 *3) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1006)) (-5 *2 (-1008 *3)))) (-1596 (*1 *2 *1 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1006)) (-5 *2 (-107))))) -(-13 (-442) (-10 -8 (-15 -2927 ($ (-583 |t#1|))) (-15 -3318 ($ (-583 (-583 |t#1|)))) (-15 -3552 (|t#1| $ |t#1|)) (-15 -2612 (|t#1| $ |t#1|)) (-15 -1259 ((-1008 |t#1|) $ |t#1|)) (-15 -1596 ((-107) $ $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-779)) |%noBranch|))) -(((-97) . T) ((-557 (-787)) . T) ((-442) . T) ((-659) . T) ((-779) -3786 (|has| |#1| (-779)) (|has| |#1| (-338))) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1575 (((-583 (-583 (-703))) $) 108)) (-3417 (((-583 (-703)) (-829 |#1|) $) 130)) (-1688 (((-583 (-703)) (-829 |#1|) $) 131)) (-3342 (((-583 (-829 |#1|)) $) 98)) (-2192 (((-829 |#1|) $ (-517)) 103) (((-829 |#1|) $) 104)) (-4110 (($ (-583 (-829 |#1|))) 110)) (-3250 (((-703) $) 105)) (-2573 (((-1008 (-1008 |#1|)) $) 128)) (-1259 (((-1008 |#1|) $ |#1|) 121) (((-1008 (-1008 |#1|)) $ (-1008 |#1|)) 139) (((-1008 (-583 |#1|)) $ (-583 |#1|)) 142)) (-1772 (((-1008 |#1|) $) 101)) (-1949 (((-107) (-829 |#1|) $) 92)) (-3232 (((-1060) $) NIL)) (-1357 (((-1163) $) 95) (((-1163) $ (-517) (-517)) 143)) (-4130 (((-1024) $) NIL)) (-2433 (((-583 (-829 |#1|)) $) 96)) (-2612 (((-829 |#1|) $ (-703)) 99)) (-1191 (((-703) $) 106)) (-2262 (((-787) $) 119) (((-583 (-829 |#1|)) $) 22) (($ (-583 (-829 |#1|))) 109)) (-4003 (((-583 |#1|) $) 107)) (-1572 (((-107) $ $) 136)) (-1618 (((-107) $ $) 134)) (-1596 (((-107) $ $) 133))) -(((-828 |#1|) (-13 (-1006) (-10 -8 (-15 -2262 ((-583 (-829 |#1|)) $)) (-15 -2433 ((-583 (-829 |#1|)) $)) (-15 -2612 ((-829 |#1|) $ (-703))) (-15 -2192 ((-829 |#1|) $ (-517))) (-15 -2192 ((-829 |#1|) $)) (-15 -3250 ((-703) $)) (-15 -1191 ((-703) $)) (-15 -4003 ((-583 |#1|) $)) (-15 -3342 ((-583 (-829 |#1|)) $)) (-15 -1575 ((-583 (-583 (-703))) $)) (-15 -2262 ($ (-583 (-829 |#1|)))) (-15 -4110 ($ (-583 (-829 |#1|)))) (-15 -1259 ((-1008 |#1|) $ |#1|)) (-15 -2573 ((-1008 (-1008 |#1|)) $)) (-15 -1259 ((-1008 (-1008 |#1|)) $ (-1008 |#1|))) (-15 -1259 ((-1008 (-583 |#1|)) $ (-583 |#1|))) (-15 -1949 ((-107) (-829 |#1|) $)) (-15 -3417 ((-583 (-703)) (-829 |#1|) $)) (-15 -1688 ((-583 (-703)) (-829 |#1|) $)) (-15 -1772 ((-1008 |#1|) $)) (-15 -1596 ((-107) $ $)) (-15 -1618 ((-107) $ $)) (-15 -1357 ((-1163) $)) (-15 -1357 ((-1163) $ (-517) (-517))))) (-1006)) (T -828)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-829 *4)) (-5 *1 (-828 *4)) (-4 *4 (-1006)))) (-2192 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-829 *4)) (-5 *1 (-828 *4)) (-4 *4 (-1006)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1191 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-829 *3))) (-4 *3 (-1006)) (-5 *1 (-828 *3)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-583 (-829 *3))) (-4 *3 (-1006)) (-5 *1 (-828 *3)))) (-1259 (*1 *2 *1 *3) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-1008 (-1008 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1259 (*1 *2 *1 *3) (-12 (-4 *4 (-1006)) (-5 *2 (-1008 (-1008 *4))) (-5 *1 (-828 *4)) (-5 *3 (-1008 *4)))) (-1259 (*1 *2 *1 *3) (-12 (-4 *4 (-1006)) (-5 *2 (-1008 (-583 *4))) (-5 *1 (-828 *4)) (-5 *3 (-583 *4)))) (-1949 (*1 *2 *3 *1) (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-107)) (-5 *1 (-828 *4)))) (-3417 (*1 *2 *3 *1) (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-583 (-703))) (-5 *1 (-828 *4)))) (-1688 (*1 *2 *3 *1) (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-583 (-703))) (-5 *1 (-828 *4)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1596 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1618 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) (-1357 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-828 *4)) (-4 *4 (-1006))))) -(-13 (-1006) (-10 -8 (-15 -2262 ((-583 (-829 |#1|)) $)) (-15 -2433 ((-583 (-829 |#1|)) $)) (-15 -2612 ((-829 |#1|) $ (-703))) (-15 -2192 ((-829 |#1|) $ (-517))) (-15 -2192 ((-829 |#1|) $)) (-15 -3250 ((-703) $)) (-15 -1191 ((-703) $)) (-15 -4003 ((-583 |#1|) $)) (-15 -3342 ((-583 (-829 |#1|)) $)) (-15 -1575 ((-583 (-583 (-703))) $)) (-15 -2262 ($ (-583 (-829 |#1|)))) (-15 -4110 ($ (-583 (-829 |#1|)))) (-15 -1259 ((-1008 |#1|) $ |#1|)) (-15 -2573 ((-1008 (-1008 |#1|)) $)) (-15 -1259 ((-1008 (-1008 |#1|)) $ (-1008 |#1|))) (-15 -1259 ((-1008 (-583 |#1|)) $ (-583 |#1|))) (-15 -1949 ((-107) (-829 |#1|) $)) (-15 -3417 ((-583 (-703)) (-829 |#1|) $)) (-15 -1688 ((-583 (-703)) (-829 |#1|) $)) (-15 -1772 ((-1008 |#1|) $)) (-15 -1596 ((-107) $ $)) (-15 -1618 ((-107) $ $)) (-15 -1357 ((-1163) $)) (-15 -1357 ((-1163) $ (-517) (-517))))) -((-2105 (((-107) $ $) NIL)) (-2149 (((-583 $) (-583 $)) 77)) (-3502 (((-517) $) 60)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-3250 (((-703) $) 58)) (-1259 (((-1008 |#1|) $ |#1|) 49)) (-1690 (((-107) $) NIL)) (-3448 (((-107) $) 63)) (-3803 (((-703) $) 61)) (-1772 (((-1008 |#1|) $) 42)) (-3480 (($ $ $) NIL (-3786 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-4095 (($ $ $) NIL (-3786 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-2428 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 36)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 93)) (-4130 (((-1024) $) NIL)) (-1952 (((-1008 |#1|) $) 99 (|has| |#1| (-338)))) (-2278 (((-107) $) 59)) (-3552 ((|#1| $ |#1|) 47)) (-2612 ((|#1| $ |#1|) 94)) (-1191 (((-703) $) 44)) (-3318 (($ (-583 (-583 |#1|))) 85)) (-2500 (((-891) $) 53)) (-2927 (($ (-583 |#1|)) 21)) (-1853 (($ $ $) NIL)) (-1970 (($ $ $) NIL)) (-3985 (($ (-583 (-583 |#1|))) 39)) (-3893 (($ (-583 (-583 |#1|))) 88)) (-3975 (($ (-583 |#1|)) 96)) (-2262 (((-787) $) 84) (($ (-583 (-583 |#1|))) 66) (($ (-583 |#1|)) 67)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3675 (($) 16 T CONST)) (-1630 (((-107) $ $) NIL (-3786 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1572 (((-107) $ $) 45)) (-1618 (((-107) $ $) NIL (-3786 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1596 (((-107) $ $) 65)) (-1692 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 22))) -(((-829 |#1|) (-13 (-827 |#1|) (-10 -8 (-15 -2428 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -3985 ($ (-583 (-583 |#1|)))) (-15 -2262 ($ (-583 (-583 |#1|)))) (-15 -2262 ($ (-583 |#1|))) (-15 -3893 ($ (-583 (-583 |#1|)))) (-15 -1191 ((-703) $)) (-15 -1772 ((-1008 |#1|) $)) (-15 -2500 ((-891) $)) (-15 -3250 ((-703) $)) (-15 -3803 ((-703) $)) (-15 -3502 ((-517) $)) (-15 -2278 ((-107) $)) (-15 -3448 ((-107) $)) (-15 -2149 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -1952 ((-1008 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-502)) (-15 -3975 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -3975 ($ (-583 |#1|))) |%noBranch|)))) (-1006)) (T -829)) -((-2428 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-829 *3)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3)))) (-1191 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-891)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-2149 (*1 *2 *2) (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-829 *3)) (-4 *3 (-338)) (-4 *3 (-1006)))) (-3975 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-829 *3))))) -(-13 (-827 |#1|) (-10 -8 (-15 -2428 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -3985 ($ (-583 (-583 |#1|)))) (-15 -2262 ($ (-583 (-583 |#1|)))) (-15 -2262 ($ (-583 |#1|))) (-15 -3893 ($ (-583 (-583 |#1|)))) (-15 -1191 ((-703) $)) (-15 -1772 ((-1008 |#1|) $)) (-15 -2500 ((-891) $)) (-15 -3250 ((-703) $)) (-15 -3803 ((-703) $)) (-15 -3502 ((-517) $)) (-15 -2278 ((-107) $)) (-15 -3448 ((-107) $)) (-15 -2149 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -1952 ((-1008 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-502)) (-15 -3975 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -3975 ($ (-583 |#1|))) |%noBranch|)))) -((-2701 (((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|)) 128)) (-3526 ((|#1|) 76)) (-1301 (((-388 (-1073 |#4|)) (-1073 |#4|)) 137)) (-2807 (((-388 (-1073 |#4|)) (-583 |#3|) (-1073 |#4|)) 68)) (-2996 (((-388 (-1073 |#4|)) (-1073 |#4|)) 147)) (-2845 (((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|) |#3|) 92))) -(((-830 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2701 ((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|))) (-15 -2996 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -1301 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -3526 (|#1|)) (-15 -2845 ((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|) |#3|)) (-15 -2807 ((-388 (-1073 |#4|)) (-583 |#3|) (-1073 |#4|)))) (-833) (-725) (-779) (-873 |#1| |#2| |#3|)) (T -830)) -((-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-833)) (-4 *6 (-725)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-388 (-1073 *8))) (-5 *1 (-830 *5 *6 *7 *8)) (-5 *4 (-1073 *8)))) (-2845 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1073 *7))) (-5 *3 (-1073 *7)) (-4 *7 (-873 *5 *6 *4)) (-4 *5 (-833)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-830 *5 *6 *4 *7)))) (-3526 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-833)) (-5 *1 (-830 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-830 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-2996 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-388 (-1073 *7))) (-5 *1 (-830 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) (-2701 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 *7))) (-5 *3 (-1073 *7)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-833)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-830 *4 *5 *6 *7))))) -(-10 -7 (-15 -2701 ((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|))) (-15 -2996 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -1301 ((-388 (-1073 |#4|)) (-1073 |#4|))) (-15 -3526 (|#1|)) (-15 -2845 ((-3 (-583 (-1073 |#4|)) "failed") (-583 (-1073 |#4|)) (-1073 |#4|) |#3|)) (-15 -2807 ((-388 (-1073 |#4|)) (-583 |#3|) (-1073 |#4|)))) -((-2701 (((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|)) 36)) (-3526 ((|#1|) 54)) (-1301 (((-388 (-1073 |#2|)) (-1073 |#2|)) 102)) (-2807 (((-388 (-1073 |#2|)) (-1073 |#2|)) 89)) (-2996 (((-388 (-1073 |#2|)) (-1073 |#2|)) 113))) -(((-831 |#1| |#2|) (-10 -7 (-15 -2701 ((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|))) (-15 -2996 ((-388 (-1073 |#2|)) (-1073 |#2|))) (-15 -1301 ((-388 (-1073 |#2|)) (-1073 |#2|))) (-15 -3526 (|#1|)) (-15 -2807 ((-388 (-1073 |#2|)) (-1073 |#2|)))) (-833) (-1134 |#1|)) (T -831)) -((-2807 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5))) (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5)))) (-3526 (*1 *2) (-12 (-4 *2 (-833)) (-5 *1 (-831 *2 *3)) (-4 *3 (-1134 *2)))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5))) (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5)))) (-2996 (*1 *2 *3) (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5))) (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5)))) (-2701 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 *5))) (-5 *3 (-1073 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-833)) (-5 *1 (-831 *4 *5))))) -(-10 -7 (-15 -2701 ((-3 (-583 (-1073 |#2|)) "failed") (-583 (-1073 |#2|)) (-1073 |#2|))) (-15 -2996 ((-388 (-1073 |#2|)) (-1073 |#2|))) (-15 -1301 ((-388 (-1073 |#2|)) (-1073 |#2|))) (-15 -3526 (|#1|)) (-15 -2807 ((-388 (-1073 |#2|)) (-1073 |#2|)))) -((-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 39)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 18)) (-3385 (((-3 $ "failed") $) 33))) -(((-832 |#1|) (-10 -8 (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)))) (-833)) (T -832)) -NIL -(-10 -8 (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 60)) (-1322 (($ $) 51)) (-3306 (((-388 $) $) 52)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 57)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-2022 (((-107) $) 53)) (-1690 (((-107) $) 31)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3835 (((-388 (-1073 $)) (-1073 $)) 58)) (-1195 (((-388 (-1073 $)) (-1073 $)) 59)) (-3896 (((-388 $) $) 50)) (-2333 (((-3 $ "failed") $ $) 42)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 56 (|has| $ (-132)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-3385 (((-3 $ "failed") $) 55 (|has| $ (-132)))) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-833) (-1189)) (T -833)) -((-2664 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-833)))) (-1453 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1)))) (-1195 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1)))) (-3835 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1)))) (-3862 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1073 *1))) (-5 *3 (-1073 *1)) (-4 *1 (-833)))) (-2767 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-833)) (-5 *2 (-1158 *1)))) (-3385 (*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-833))))) -(-13 (-1116) (-10 -8 (-15 -1453 ((-388 (-1073 $)) (-1073 $))) (-15 -1195 ((-388 (-1073 $)) (-1073 $))) (-15 -3835 ((-388 (-1073 $)) (-1073 $))) (-15 -2664 ((-1073 $) (-1073 $) (-1073 $))) (-15 -3862 ((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $))) (IF (|has| $ (-132)) (PROGN (-15 -2767 ((-3 (-1158 $) "failed") (-623 $))) (-15 -3385 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2090 (((-107) $) NIL)) (-3578 (((-703)) NIL)) (-1991 (($ $ (-845)) NIL (|has| $ (-338))) (($ $) NIL)) (-2461 (((-1086 (-845) (-703)) (-517)) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-2390 (((-703)) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 $ "failed") $) NIL)) (-3402 (($ $) NIL)) (-3539 (($ (-1158 $)) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-4169 (($) NIL)) (-2634 (((-107) $) NIL)) (-2627 (($ $) NIL) (($ $ (-703)) NIL)) (-2022 (((-107) $) NIL)) (-3250 (((-765 (-845)) $) NIL) (((-845) $) NIL)) (-1690 (((-107) $) NIL)) (-1222 (($) NIL (|has| $ (-338)))) (-3715 (((-107) $) NIL (|has| $ (-338)))) (-3522 (($ $ (-845)) NIL (|has| $ (-338))) (($ $) NIL)) (-1639 (((-3 $ "failed") $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1914 (((-1073 $) $ (-845)) NIL (|has| $ (-338))) (((-1073 $) $) NIL)) (-4161 (((-845) $) NIL)) (-3905 (((-1073 $) $) NIL (|has| $ (-338)))) (-3211 (((-3 (-1073 $) "failed") $ $) NIL (|has| $ (-338))) (((-1073 $) $) NIL (|has| $ (-338)))) (-3063 (($ $ (-1073 $)) NIL (|has| $ (-338)))) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL T CONST)) (-2803 (($ (-845)) NIL)) (-1333 (((-107) $) NIL)) (-4130 (((-1024) $) NIL)) (-1306 (($) NIL (|has| $ (-338)))) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL)) (-3896 (((-388 $) $) NIL)) (-2177 (((-845)) NIL) (((-765 (-845))) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3667 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-1470 (((-125)) NIL)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-1191 (((-845) $) NIL) (((-765 (-845)) $) NIL)) (-2819 (((-1073 $)) NIL)) (-3718 (($) NIL)) (-3297 (($) NIL (|has| $ (-338)))) (-1372 (((-623 $) (-1158 $)) NIL) (((-1158 $) $) NIL)) (-3367 (((-517) $) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL)) (-3385 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1818 (((-703)) NIL)) (-3700 (((-1158 $) (-845)) NIL) (((-1158 $)) NIL)) (-2944 (((-107) $ $) NIL)) (-3275 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-4115 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) -(((-834 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-845)) (T -834)) -NIL -(-13 (-319) (-299 $) (-558 (-517))) -((-2754 (((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)) 76)) (-2109 (((-107) (-306 |#2| |#3| |#4| |#5|)) 16)) (-3250 (((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|)) 14))) -(((-835 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3250 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -2109 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -2754 ((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)))) (-13 (-779) (-509) (-955 (-517))) (-400 |#1|) (-1134 |#2|) (-1134 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -835)) -((-2754 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-2 (|:| -3250 (-703)) (|:| -2218 *8))) (-5 *1 (-835 *4 *5 *6 *7 *8)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-107)) (-5 *1 (-835 *4 *5 *6 *7 *8)))) (-3250 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-703)) (-5 *1 (-835 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3250 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -2109 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -2754 ((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)))) -((-2754 (((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 56)) (-2109 (((-107) (-306 (-377 (-517)) |#1| |#2| |#3|)) 13)) (-3250 (((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 11))) -(((-836 |#1| |#2| |#3|) (-10 -7 (-15 -3250 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -2109 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -2754 ((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)))) (-1134 (-377 (-517))) (-1134 (-377 |#1|)) (-312 (-377 (-517)) |#1| |#2|)) (T -836)) -((-2754 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -3250 (-703)) (|:| -2218 *6))) (-5 *1 (-836 *4 *5 *6)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-836 *4 *5 *6)))) (-3250 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-836 *4 *5 *6))))) -(-10 -7 (-15 -3250 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -2109 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -2754 ((-3 (-2 (|:| -3250 (-703)) (|:| -2218 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)))) -((-3509 ((|#2| |#2|) 25)) (-2011 (((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) 15)) (-1999 (((-845) (-517)) 35)) (-1310 (((-517) |#2|) 42)) (-3279 (((-517) |#2|) 21) (((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|) 20))) -(((-837 |#1| |#2|) (-10 -7 (-15 -1999 ((-845) (-517))) (-15 -3279 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -3279 ((-517) |#2|)) (-15 -2011 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -1310 ((-517) |#2|)) (-15 -3509 (|#2| |#2|))) (-1134 (-377 (-517))) (-1134 (-377 |#1|))) (T -837)) -((-3509 (*1 *2 *2) (-12 (-4 *3 (-1134 (-377 (-517)))) (-5 *1 (-837 *3 *2)) (-4 *2 (-1134 (-377 *3))))) (-1310 (*1 *2 *3) (-12 (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *3)) (-4 *3 (-1134 (-377 *4))))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *5)) (-4 *5 (-1134 (-377 *4))))) (-3279 (*1 *2 *3) (-12 (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *3)) (-4 *3 (-1134 (-377 *4))))) (-3279 (*1 *2 *3) (-12 (-4 *3 (-1134 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-837 *3 *4)) (-4 *4 (-1134 (-377 *3))))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1134 (-377 *3))) (-5 *2 (-845)) (-5 *1 (-837 *4 *5)) (-4 *5 (-1134 (-377 *4)))))) -(-10 -7 (-15 -1999 ((-845) (-517))) (-15 -3279 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -3279 ((-517) |#2|)) (-15 -2011 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -1310 ((-517) |#2|)) (-15 -3509 (|#2| |#2|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 ((|#1| $) 81)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-2383 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $) 75)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2468 (($ |#1| (-388 |#1|)) 73)) (-2513 (((-1073 |#1|) |#1| |#1|) 40)) (-1773 (($ $) 49)) (-1690 (((-107) $) NIL)) (-1377 (((-517) $) 78)) (-1569 (($ $ (-517)) 80)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1316 ((|#1| $) 77)) (-2065 (((-388 |#1|) $) 76)) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) 74)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3674 (($ $) 38)) (-2262 (((-787) $) 99) (($ (-517)) 54) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 30) (((-377 |#1|) $) 59) (($ (-377 (-388 |#1|))) 67)) (-1818 (((-703)) 52)) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 23 T CONST)) (-3675 (($) 11 T CONST)) (-1572 (((-107) $ $) 68)) (-1692 (($ $ $) NIL)) (-1680 (($ $) 88) (($ $ $) NIL)) (-1666 (($ $ $) 37)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 90) (($ $ $) 36) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-838 |#1|) (-13 (-333) (-37 |#1|) (-10 -8 (-15 -2262 ((-377 |#1|) $)) (-15 -2262 ($ (-377 (-388 |#1|)))) (-15 -3674 ($ $)) (-15 -2065 ((-388 |#1|) $)) (-15 -1316 (|#1| $)) (-15 -1569 ($ $ (-517))) (-15 -1377 ((-517) $)) (-15 -2513 ((-1073 |#1|) |#1| |#1|)) (-15 -1773 ($ $)) (-15 -2468 ($ |#1| (-388 |#1|))) (-15 -2964 (|#1| $)))) (-278)) (T -838)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-838 *3)))) (-3674 (*1 *1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278)))) (-1316 (*1 *2 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278)))) (-1569 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-838 *3)) (-4 *3 (-278)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-838 *3)) (-4 *3 (-278)))) (-2513 (*1 *2 *3 *3) (-12 (-5 *2 (-1073 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278)))) (-1773 (*1 *1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278)))) (-2468 (*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-838 *2)))) (-2964 (*1 *2 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278))))) -(-13 (-333) (-37 |#1|) (-10 -8 (-15 -2262 ((-377 |#1|) $)) (-15 -2262 ($ (-377 (-388 |#1|)))) (-15 -3674 ($ $)) (-15 -2065 ((-388 |#1|) $)) (-15 -1316 (|#1| $)) (-15 -1569 ($ $ (-517))) (-15 -1377 ((-517) $)) (-15 -2513 ((-1073 |#1|) |#1| |#1|)) (-15 -1773 ($ $)) (-15 -2468 ($ |#1| (-388 |#1|))) (-15 -2964 (|#1| $)))) -((-2468 (((-51) (-876 |#1|) (-388 (-876 |#1|)) (-1077)) 16) (((-51) (-377 (-876 |#1|)) (-1077)) 17))) -(((-839 |#1|) (-10 -7 (-15 -2468 ((-51) (-377 (-876 |#1|)) (-1077))) (-15 -2468 ((-51) (-876 |#1|) (-388 (-876 |#1|)) (-1077)))) (-13 (-278) (-134))) (T -839)) -((-2468 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-876 *6))) (-5 *5 (-1077)) (-5 *3 (-876 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-839 *6)))) (-2468 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-839 *5))))) -(-10 -7 (-15 -2468 ((-51) (-377 (-876 |#1|)) (-1077))) (-15 -2468 ((-51) (-876 |#1|) (-388 (-876 |#1|)) (-1077)))) -((-3669 ((|#4| (-583 |#4|)) 119) (((-1073 |#4|) (-1073 |#4|) (-1073 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-2361 (((-1073 |#4|) (-583 (-1073 |#4|))) 112) (((-1073 |#4|) (-1073 |#4|) (-1073 |#4|)) 49) ((|#4| (-583 |#4|)) 54) ((|#4| |#4| |#4|) 83))) -(((-840 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2361 (|#4| |#4| |#4|)) (-15 -2361 (|#4| (-583 |#4|))) (-15 -2361 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -2361 ((-1073 |#4|) (-583 (-1073 |#4|)))) (-15 -3669 (|#4| |#4| |#4|)) (-15 -3669 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -3669 (|#4| (-583 |#4|)))) (-725) (-779) (-278) (-873 |#3| |#1| |#2|)) (T -840)) -((-3669 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *6 *4 *5)) (-5 *1 (-840 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-3669 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *6)))) (-3669 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *2)) (-4 *2 (-873 *5 *3 *4)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1073 *7)) (-5 *1 (-840 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))) (-2361 (*1 *2 *2 *2) (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *6)))) (-2361 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *6 *4 *5)) (-5 *1 (-840 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-2361 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *2)) (-4 *2 (-873 *5 *3 *4))))) -(-10 -7 (-15 -2361 (|#4| |#4| |#4|)) (-15 -2361 (|#4| (-583 |#4|))) (-15 -2361 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -2361 ((-1073 |#4|) (-583 (-1073 |#4|)))) (-15 -3669 (|#4| |#4| |#4|)) (-15 -3669 ((-1073 |#4|) (-1073 |#4|) (-1073 |#4|))) (-15 -3669 (|#4| (-583 |#4|)))) -((-3946 (((-828 (-517)) (-891)) 22) (((-828 (-517)) (-583 (-517))) 19)) (-3720 (((-828 (-517)) (-583 (-517))) 46) (((-828 (-517)) (-845)) 47)) (-3529 (((-828 (-517))) 23)) (-2545 (((-828 (-517))) 36) (((-828 (-517)) (-583 (-517))) 35)) (-1241 (((-828 (-517))) 34) (((-828 (-517)) (-583 (-517))) 33)) (-2003 (((-828 (-517))) 32) (((-828 (-517)) (-583 (-517))) 31)) (-2062 (((-828 (-517))) 30) (((-828 (-517)) (-583 (-517))) 29)) (-4054 (((-828 (-517))) 28) (((-828 (-517)) (-583 (-517))) 27)) (-3819 (((-828 (-517))) 38) (((-828 (-517)) (-583 (-517))) 37)) (-3082 (((-828 (-517)) (-583 (-517))) 50) (((-828 (-517)) (-845)) 51)) (-3820 (((-828 (-517)) (-583 (-517))) 48) (((-828 (-517)) (-845)) 49)) (-3658 (((-828 (-517)) (-583 (-517))) 43) (((-828 (-517)) (-845)) 45)) (-4088 (((-828 (-517)) (-583 (-845))) 40))) -(((-841) (-10 -7 (-15 -3720 ((-828 (-517)) (-845))) (-15 -3720 ((-828 (-517)) (-583 (-517)))) (-15 -3658 ((-828 (-517)) (-845))) (-15 -3658 ((-828 (-517)) (-583 (-517)))) (-15 -4088 ((-828 (-517)) (-583 (-845)))) (-15 -3820 ((-828 (-517)) (-845))) (-15 -3820 ((-828 (-517)) (-583 (-517)))) (-15 -3082 ((-828 (-517)) (-845))) (-15 -3082 ((-828 (-517)) (-583 (-517)))) (-15 -4054 ((-828 (-517)) (-583 (-517)))) (-15 -4054 ((-828 (-517)))) (-15 -2062 ((-828 (-517)) (-583 (-517)))) (-15 -2062 ((-828 (-517)))) (-15 -2003 ((-828 (-517)) (-583 (-517)))) (-15 -2003 ((-828 (-517)))) (-15 -1241 ((-828 (-517)) (-583 (-517)))) (-15 -1241 ((-828 (-517)))) (-15 -2545 ((-828 (-517)) (-583 (-517)))) (-15 -2545 ((-828 (-517)))) (-15 -3819 ((-828 (-517)) (-583 (-517)))) (-15 -3819 ((-828 (-517)))) (-15 -3529 ((-828 (-517)))) (-15 -3946 ((-828 (-517)) (-583 (-517)))) (-15 -3946 ((-828 (-517)) (-891))))) (T -841)) -((-3946 (*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3529 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3819 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2545 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-1241 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-1241 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2003 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2062 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-4054 (*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-583 (-845))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(-10 -7 (-15 -3720 ((-828 (-517)) (-845))) (-15 -3720 ((-828 (-517)) (-583 (-517)))) (-15 -3658 ((-828 (-517)) (-845))) (-15 -3658 ((-828 (-517)) (-583 (-517)))) (-15 -4088 ((-828 (-517)) (-583 (-845)))) (-15 -3820 ((-828 (-517)) (-845))) (-15 -3820 ((-828 (-517)) (-583 (-517)))) (-15 -3082 ((-828 (-517)) (-845))) (-15 -3082 ((-828 (-517)) (-583 (-517)))) (-15 -4054 ((-828 (-517)) (-583 (-517)))) (-15 -4054 ((-828 (-517)))) (-15 -2062 ((-828 (-517)) (-583 (-517)))) (-15 -2062 ((-828 (-517)))) (-15 -2003 ((-828 (-517)) (-583 (-517)))) (-15 -2003 ((-828 (-517)))) (-15 -1241 ((-828 (-517)) (-583 (-517)))) (-15 -1241 ((-828 (-517)))) (-15 -2545 ((-828 (-517)) (-583 (-517)))) (-15 -2545 ((-828 (-517)))) (-15 -3819 ((-828 (-517)) (-583 (-517)))) (-15 -3819 ((-828 (-517)))) (-15 -3529 ((-828 (-517)))) (-15 -3946 ((-828 (-517)) (-583 (-517)))) (-15 -3946 ((-828 (-517)) (-891)))) -((-1905 (((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077))) 10)) (-2547 (((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077))) 9))) -(((-842 |#1|) (-10 -7 (-15 -2547 ((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -1905 ((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077))))) (-421)) (T -842)) -((-1905 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-876 *4))) (-5 *3 (-583 (-1077))) (-4 *4 (-421)) (-5 *1 (-842 *4)))) (-2547 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-876 *4))) (-5 *3 (-583 (-1077))) (-4 *4 (-421)) (-5 *1 (-842 *4))))) -(-10 -7 (-15 -2547 ((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -1905 ((-583 (-876 |#1|)) (-583 (-876 |#1|)) (-583 (-1077))))) -((-2262 (((-286 |#1|) (-446)) 15))) -(((-843 |#1|) (-10 -7 (-15 -2262 ((-286 |#1|) (-446)))) (-13 (-779) (-509))) (T -843)) -((-2262 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-843 *4)) (-4 *4 (-13 (-779) (-509)))))) -(-10 -7 (-15 -2262 ((-286 |#1|) (-446)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-1690 (((-107) $) 31)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-844) (-1189)) (T -844)) -((-3106 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *2 (-2 (|:| -1570 (-583 *1)) (|:| -1306 *1))) (-5 *3 (-583 *1)))) (-2677 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-844))))) -(-13 (-421) (-10 -8 (-15 -3106 ((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $))) (-15 -2677 ((-3 (-583 $) "failed") (-583 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2361 (($ $ $) NIL)) (-2262 (((-787) $) NIL)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3675 (($) NIL T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ (-845) $) NIL) (($ $ $) NIL))) -(((-845) (-13 (-25) (-779) (-659) (-10 -8 (-15 -2361 ($ $ $)) (-6 (-4197 "*"))))) (T -845)) -((-2361 (*1 *1 *1 *1) (-5 *1 (-845)))) -(-13 (-25) (-779) (-659) (-10 -8 (-15 -2361 ($ $ $)) (-6 (-4197 "*")))) -((-2771 ((|#2| (-583 |#1|) (-583 |#1|)) 24))) -(((-846 |#1| |#2|) (-10 -7 (-15 -2771 (|#2| (-583 |#1|) (-583 |#1|)))) (-333) (-1134 |#1|)) (T -846)) -((-2771 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1134 *4)) (-5 *1 (-846 *4 *2))))) -(-10 -7 (-15 -2771 (|#2| (-583 |#1|) (-583 |#1|)))) -((-2086 (((-1073 |#2|) (-583 |#2|) (-583 |#2|)) 17) (((-1131 |#1| |#2|) (-1131 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13))) -(((-847 |#1| |#2|) (-10 -7 (-15 -2086 ((-1131 |#1| |#2|) (-1131 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -2086 ((-1073 |#2|) (-583 |#2|) (-583 |#2|)))) (-1077) (-333)) (T -847)) -((-2086 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1073 *5)) (-5 *1 (-847 *4 *5)) (-14 *4 (-1077)))) (-2086 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1131 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1077)) (-4 *5 (-333)) (-5 *1 (-847 *4 *5))))) -(-10 -7 (-15 -2086 ((-1131 |#1| |#2|) (-1131 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -2086 ((-1073 |#2|) (-583 |#2|) (-583 |#2|)))) -((-2980 (((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060)) 138)) (-2012 ((|#4| |#4|) 154)) (-2686 (((-583 (-377 (-876 |#1|))) (-583 (-1077))) 117)) (-2440 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517)) 73)) (-1682 (((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-583 |#4|)) 57)) (-3019 (((-623 |#4|) (-623 |#4|) (-583 |#4|)) 53)) (-3493 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060)) 150)) (-2751 (((-517) (-623 |#4|) (-845) (-1060)) 131) (((-517) (-623 |#4|) (-583 (-1077)) (-845) (-1060)) 130) (((-517) (-623 |#4|) (-583 |#4|) (-845) (-1060)) 129) (((-517) (-623 |#4|) (-1060)) 126) (((-517) (-623 |#4|) (-583 (-1077)) (-1060)) 125) (((-517) (-623 |#4|) (-583 |#4|) (-1060)) 124) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-845)) 123) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077)) (-845)) 122) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-845)) 121) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|)) 119) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077))) 118) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|)) 115)) (-1874 ((|#4| (-876 |#1|)) 66)) (-1957 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 151)) (-1461 (((-583 (-583 (-517))) (-517) (-517)) 128)) (-4040 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 85)) (-2626 (((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 83)) (-2556 (((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 82)) (-2601 (((-107) (-583 (-876 |#1|))) 17) (((-107) (-583 |#4|)) 13)) (-4058 (((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 69)) (-1221 (((-583 |#4|) |#4|) 47)) (-2828 (((-583 (-377 (-876 |#1|))) (-583 |#4|)) 113) (((-623 (-377 (-876 |#1|))) (-623 |#4|)) 54) (((-377 (-876 |#1|)) |#4|) 110)) (-3343 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-703) (-1060) (-517)) 89)) (-4019 (((-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703)) 81)) (-3099 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703)) 98)) (-2358 (((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| -3725 (-623 (-377 (-876 |#1|)))) (|:| |vec| (-583 (-377 (-876 |#1|)))) (|:| -3778 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) 46))) -(((-848 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077)))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-845))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077)) (-845))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-845))) (-15 -2751 ((-517) (-623 |#4|) (-583 |#4|) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 (-1077)) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 |#4|) (-845) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 (-1077)) (-845) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-845) (-1060))) (-15 -2980 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060))) (-15 -3493 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060))) (-15 -3343 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-703) (-1060) (-517))) (-15 -2828 ((-377 (-876 |#1|)) |#4|)) (-15 -2828 ((-623 (-377 (-876 |#1|))) (-623 |#4|))) (-15 -2828 ((-583 (-377 (-876 |#1|))) (-583 |#4|))) (-15 -2686 ((-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -1874 (|#4| (-876 |#1|))) (-15 -4058 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -4019 ((-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -1682 ((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-583 |#4|))) (-15 -2358 ((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| -3725 (-623 (-377 (-876 |#1|)))) (|:| |vec| (-583 (-377 (-876 |#1|)))) (|:| -3778 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -1221 ((-583 |#4|) |#4|)) (-15 -2556 ((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2626 ((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -4040 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -1461 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1957 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3099 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3019 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2440 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -2012 (|#4| |#4|)) (-15 -2601 ((-107) (-583 |#4|))) (-15 -2601 ((-107) (-583 (-876 |#1|))))) (-13 (-278) (-134)) (-13 (-779) (-558 (-1077))) (-725) (-873 |#1| |#3| |#2|)) (T -848)) -((-2601 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-848 *4 *5 *6 *7)))) (-2012 (*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1077)))) (-4 *5 (-725)) (-5 *1 (-848 *3 *4 *5 *2)) (-4 *2 (-873 *3 *5 *4)))) (-2440 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-876 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-873 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1077)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-876 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *9)))) (|:| -3700 (-583 (-1158 (-377 (-876 *9))))))))) (-5 *1 (-848 *9 *10 *11 *12)))) (-3019 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *1 (-848 *4 *5 *6 *7)))) (-3099 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-848 *5 *6 *7 *8)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-848 *5 *6 *7 *8)))) (-1461 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-873 *4 *6 *5)))) (-4040 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-873 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1077)))) (-4 *5 (-725)) (-5 *1 (-848 *3 *4 *5 *6)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-848 *4 *5 *6 *7)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-848 *4 *5 *6 *7)))) (-1221 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-848 *4 *5 *6 *3)) (-4 *3 (-873 *4 *6 *5)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3725 (-623 (-377 (-876 *4)))) (|:| |vec| (-583 (-377 (-876 *4)))) (|:| -3778 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) (|:| -3700 (-583 (-1158 (-377 (-876 *4))))))) (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5)))) (-1682 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) (|:| -3700 (-583 (-1158 (-377 (-876 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-873 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *1 (-848 *4 *5 *6 *7)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-848 *5 *6 *7 *8)) (-5 *4 (-703)))) (-4058 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-4 *7 (-873 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-876 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-873 *4 *6 *5)) (-5 *1 (-848 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-876 *4)))) (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-876 *4)))) (-5 *1 (-848 *4 *5 *6 *7)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-876 *4)))) (-5 *1 (-848 *4 *5 *6 *7)))) (-2828 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-377 (-876 *4))) (-5 *1 (-848 *4 *5 *6 *3)) (-4 *3 (-873 *4 *6 *5)))) (-3343 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-876 *8)))) (-5 *5 (-703)) (-5 *6 (-1060)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-873 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1077)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-876 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *8)))) (|:| -3700 (-583 (-1158 (-377 (-876 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-848 *8 *9 *10 *11)) (-5 *7 (-517)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-876 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) (|:| -3700 (-583 (-1158 (-377 (-876 *4)))))))))) (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5)))) (-2980 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-876 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) (-5 *4 (-1060)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-873 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *5 *6 *7 *8)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-845)) (-5 *5 (-1060)) (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *6 *7 *8 *9)))) (-2751 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1077))) (-5 *5 (-845)) (-5 *6 (-1060)) (-4 *10 (-873 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1077)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *7 *8 *9 *10)))) (-2751 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-845)) (-5 *6 (-1060)) (-4 *10 (-873 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1077)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *7 *8 *9 *10)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1060)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *5 *6 *7 *8)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1077))) (-5 *5 (-1060)) (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *6 *7 *8 *9)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1060)) (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *6 *7 *8 *9)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-845)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-876 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) (-5 *1 (-848 *5 *6 *7 *8)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1077))) (-5 *5 (-845)) (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-876 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *6)))) (|:| -3700 (-583 (-1158 (-377 (-876 *6)))))))))) (-5 *1 (-848 *6 *7 *8 *9)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-845)) (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-876 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *6)))) (|:| -3700 (-583 (-1158 (-377 (-876 *6)))))))))) (-5 *1 (-848 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-876 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) (|:| -3700 (-583 (-1158 (-377 (-876 *4)))))))))) (-5 *1 (-848 *4 *5 *6 *7)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1077))) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-876 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) (-5 *1 (-848 *5 *6 *7 *8)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-876 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) (-5 *1 (-848 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) -(-10 -7 (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077)))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-845))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-583 (-1077)) (-845))) (-15 -2751 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-623 |#4|) (-845))) (-15 -2751 ((-517) (-623 |#4|) (-583 |#4|) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 (-1077)) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 |#4|) (-845) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-583 (-1077)) (-845) (-1060))) (-15 -2751 ((-517) (-623 |#4|) (-845) (-1060))) (-15 -2980 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060))) (-15 -3493 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|))))))))) (-1060))) (-15 -3343 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-703) (-1060) (-517))) (-15 -2828 ((-377 (-876 |#1|)) |#4|)) (-15 -2828 ((-623 (-377 (-876 |#1|))) (-623 |#4|))) (-15 -2828 ((-583 (-377 (-876 |#1|))) (-583 |#4|))) (-15 -2686 ((-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -1874 (|#4| (-876 |#1|))) (-15 -4058 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -4019 ((-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -1682 ((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-583 |#4|))) (-15 -2358 ((-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))) (-2 (|:| -3725 (-623 (-377 (-876 |#1|)))) (|:| |vec| (-583 (-377 (-876 |#1|)))) (|:| -3778 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -1221 ((-583 |#4|) |#4|)) (-15 -2556 ((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2626 ((-703) (-583 (-2 (|:| -3778 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -4040 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -1461 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1957 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3099 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3019 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2440 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-876 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1158 (-377 (-876 |#1|)))) (|:| -3700 (-583 (-1158 (-377 (-876 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-876 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -2012 (|#4| |#4|)) (-15 -2601 ((-107) (-583 |#4|))) (-15 -2601 ((-107) (-583 (-876 |#1|))))) -((-2962 (((-851) |#1| (-1077)) 16) (((-851) |#1| (-1077) (-1001 (-199))) 20)) (-1645 (((-851) |#1| |#1| (-1077) (-1001 (-199))) 18) (((-851) |#1| (-1077) (-1001 (-199))) 14))) -(((-849 |#1|) (-10 -7 (-15 -1645 ((-851) |#1| (-1077) (-1001 (-199)))) (-15 -1645 ((-851) |#1| |#1| (-1077) (-1001 (-199)))) (-15 -2962 ((-851) |#1| (-1077) (-1001 (-199)))) (-15 -2962 ((-851) |#1| (-1077)))) (-558 (-493))) (T -849)) -((-2962 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-5 *2 (-851)) (-5 *1 (-849 *3)) (-4 *3 (-558 (-493))))) (-2962 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851)) (-5 *1 (-849 *3)) (-4 *3 (-558 (-493))))) (-1645 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851)) (-5 *1 (-849 *3)) (-4 *3 (-558 (-493))))) (-1645 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851)) (-5 *1 (-849 *3)) (-4 *3 (-558 (-493)))))) -(-10 -7 (-15 -1645 ((-851) |#1| (-1077) (-1001 (-199)))) (-15 -1645 ((-851) |#1| |#1| (-1077) (-1001 (-199)))) (-15 -2962 ((-851) |#1| (-1077) (-1001 (-199)))) (-15 -2962 ((-851) |#1| (-1077)))) -((-2954 (($ $ (-1001 (-199)) (-1001 (-199)) (-1001 (-199))) 69)) (-2724 (((-1001 (-199)) $) 40)) (-2712 (((-1001 (-199)) $) 39)) (-2700 (((-1001 (-199)) $) 38)) (-1943 (((-583 (-583 (-199))) $) 43)) (-1491 (((-1001 (-199)) $) 41)) (-2064 (((-517) (-517)) 32)) (-2191 (((-517) (-517)) 28)) (-2699 (((-517) (-517)) 30)) (-1735 (((-107) (-107)) 35)) (-2017 (((-517)) 31)) (-2104 (($ $ (-1001 (-199))) 72) (($ $) 73)) (-2952 (($ (-1 (-867 (-199)) (-199)) (-1001 (-199))) 77) (($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199))) 78)) (-1645 (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199))) 80) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199))) 81) (($ $ (-1001 (-199))) 75)) (-3886 (((-517)) 36)) (-3603 (((-517)) 27)) (-2691 (((-517)) 29)) (-1515 (((-583 (-583 (-867 (-199)))) $) 93)) (-3625 (((-107) (-107)) 37)) (-2262 (((-787) $) 92)) (-3678 (((-107)) 34))) -(((-850) (-13 (-894) (-10 -8 (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ $ (-1001 (-199)))) (-15 -2954 ($ $ (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2104 ($ $ (-1001 (-199)))) (-15 -2104 ($ $)) (-15 -1491 ((-1001 (-199)) $)) (-15 -1943 ((-583 (-583 (-199))) $)) (-15 -3603 ((-517))) (-15 -2191 ((-517) (-517))) (-15 -2691 ((-517))) (-15 -2699 ((-517) (-517))) (-15 -2017 ((-517))) (-15 -2064 ((-517) (-517))) (-15 -3678 ((-107))) (-15 -1735 ((-107) (-107))) (-15 -3886 ((-517))) (-15 -3625 ((-107) (-107)))))) (T -850)) -((-2952 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-850)))) (-2952 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-850)))) (-1645 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-850)))) (-1645 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-850)))) (-1645 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) (-2954 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) (-2104 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) (-2104 (*1 *1 *1) (-5 *1 (-850))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-850)))) (-3603 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2191 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2691 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2017 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-2064 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-3678 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850)))) (-3886 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850))))) -(-13 (-894) (-10 -8 (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ $ (-1001 (-199)))) (-15 -2954 ($ $ (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2104 ($ $ (-1001 (-199)))) (-15 -2104 ($ $)) (-15 -1491 ((-1001 (-199)) $)) (-15 -1943 ((-583 (-583 (-199))) $)) (-15 -3603 ((-517))) (-15 -2191 ((-517) (-517))) (-15 -2691 ((-517))) (-15 -2699 ((-517) (-517))) (-15 -2017 ((-517))) (-15 -2064 ((-517) (-517))) (-15 -3678 ((-107))) (-15 -1735 ((-107) (-107))) (-15 -3886 ((-517))) (-15 -3625 ((-107) (-107))))) -((-2954 (($ $ (-1001 (-199))) 70) (($ $ (-1001 (-199)) (-1001 (-199))) 71)) (-2712 (((-1001 (-199)) $) 43)) (-2700 (((-1001 (-199)) $) 42)) (-1491 (((-1001 (-199)) $) 44)) (-3136 (((-517) (-517)) 36)) (-1675 (((-517) (-517)) 32)) (-3787 (((-517) (-517)) 34)) (-3863 (((-107) (-107)) 38)) (-2305 (((-517)) 35)) (-2104 (($ $ (-1001 (-199))) 74) (($ $) 75)) (-2952 (($ (-1 (-867 (-199)) (-199)) (-1001 (-199))) 84) (($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199))) 85)) (-2962 (($ (-1 (-199) (-199)) (-1001 (-199))) 92) (($ (-1 (-199) (-199))) 95)) (-1645 (($ (-1 (-199) (-199)) (-1001 (-199))) 79) (($ (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199))) 80) (($ (-583 (-1 (-199) (-199))) (-1001 (-199))) 87) (($ (-583 (-1 (-199) (-199))) (-1001 (-199)) (-1001 (-199))) 88) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199))) 81) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199))) 82) (($ $ (-1001 (-199))) 76)) (-2271 (((-107) $) 39)) (-3945 (((-517)) 40)) (-1931 (((-517)) 31)) (-2876 (((-517)) 33)) (-1515 (((-583 (-583 (-867 (-199)))) $) 22)) (-1352 (((-107) (-107)) 41)) (-2262 (((-787) $) 106)) (-3575 (((-107)) 37))) -(((-851) (-13 (-878) (-10 -8 (-15 -1645 ($ (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-583 (-1 (-199) (-199))) (-1001 (-199)))) (-15 -1645 ($ (-583 (-1 (-199) (-199))) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2962 ($ (-1 (-199) (-199)) (-1001 (-199)))) (-15 -2962 ($ (-1 (-199) (-199)))) (-15 -1645 ($ $ (-1001 (-199)))) (-15 -2271 ((-107) $)) (-15 -2954 ($ $ (-1001 (-199)))) (-15 -2954 ($ $ (-1001 (-199)) (-1001 (-199)))) (-15 -2104 ($ $ (-1001 (-199)))) (-15 -2104 ($ $)) (-15 -1491 ((-1001 (-199)) $)) (-15 -1931 ((-517))) (-15 -1675 ((-517) (-517))) (-15 -2876 ((-517))) (-15 -3787 ((-517) (-517))) (-15 -2305 ((-517))) (-15 -3136 ((-517) (-517))) (-15 -3575 ((-107))) (-15 -3863 ((-107) (-107))) (-15 -3945 ((-517))) (-15 -1352 ((-107) (-107)))))) (T -851)) -((-1645 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-2952 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-2952 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-2962 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) (-5 *1 (-851)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-851)))) (-1645 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-851)))) (-2954 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) (-2954 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) (-2104 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) (-2104 (*1 *1 *1) (-5 *1 (-851))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) (-1931 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-1675 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-2876 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-2305 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-3136 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-3575 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851)))) (-3945 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851))))) -(-13 (-878) (-10 -8 (-15 -1645 ($ (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-583 (-1 (-199) (-199))) (-1001 (-199)))) (-15 -1645 ($ (-583 (-1 (-199) (-199))) (-1001 (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)))) (-15 -1645 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)))) (-15 -2952 ($ (-1 (-867 (-199)) (-199)) (-1001 (-199)) (-1001 (-199)) (-1001 (-199)))) (-15 -2962 ($ (-1 (-199) (-199)) (-1001 (-199)))) (-15 -2962 ($ (-1 (-199) (-199)))) (-15 -1645 ($ $ (-1001 (-199)))) (-15 -2271 ((-107) $)) (-15 -2954 ($ $ (-1001 (-199)))) (-15 -2954 ($ $ (-1001 (-199)) (-1001 (-199)))) (-15 -2104 ($ $ (-1001 (-199)))) (-15 -2104 ($ $)) (-15 -1491 ((-1001 (-199)) $)) (-15 -1931 ((-517))) (-15 -1675 ((-517) (-517))) (-15 -2876 ((-517))) (-15 -3787 ((-517) (-517))) (-15 -2305 ((-517))) (-15 -3136 ((-517) (-517))) (-15 -3575 ((-107))) (-15 -3863 ((-107) (-107))) (-15 -3945 ((-517))) (-15 -1352 ((-107) (-107))))) -((-1836 (((-583 (-1001 (-199))) (-583 (-583 (-867 (-199))))) 23))) -(((-852) (-10 -7 (-15 -1836 ((-583 (-1001 (-199))) (-583 (-583 (-867 (-199)))))))) (T -852)) -((-1836 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *2 (-583 (-1001 (-199)))) (-5 *1 (-852))))) -(-10 -7 (-15 -1836 ((-583 (-1001 (-199))) (-583 (-583 (-867 (-199))))))) -((-3469 ((|#2| |#2|) 25)) (-3533 ((|#2| |#2|) 26)) (-1373 ((|#2| |#2|) 24)) (-3125 ((|#2| |#2| (-1060)) 23))) -(((-853 |#1| |#2|) (-10 -7 (-15 -3125 (|#2| |#2| (-1060))) (-15 -1373 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -3533 (|#2| |#2|))) (-779) (-400 |#1|)) (T -853)) -((-3533 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3)))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3)))) (-3125 (*1 *2 *2 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-779)) (-5 *1 (-853 *4 *2)) (-4 *2 (-400 *4))))) -(-10 -7 (-15 -3125 (|#2| |#2| (-1060))) (-15 -1373 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -3533 (|#2| |#2|))) -((-3469 (((-286 (-517)) (-1077)) 15)) (-3533 (((-286 (-517)) (-1077)) 13)) (-1373 (((-286 (-517)) (-1077)) 11)) (-3125 (((-286 (-517)) (-1077) (-1060)) 18))) -(((-854) (-10 -7 (-15 -3125 ((-286 (-517)) (-1077) (-1060))) (-15 -1373 ((-286 (-517)) (-1077))) (-15 -3469 ((-286 (-517)) (-1077))) (-15 -3533 ((-286 (-517)) (-1077))))) (T -854)) -((-3533 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-1060)) (-5 *2 (-286 (-517))) (-5 *1 (-854))))) -(-10 -7 (-15 -3125 ((-286 (-517)) (-1077) (-1060))) (-15 -1373 ((-286 (-517)) (-1077))) (-15 -3469 ((-286 (-517)) (-1077))) (-15 -3533 ((-286 (-517)) (-1077)))) -((-2939 (((-813 |#1| |#3|) |#2| (-816 |#1|) (-813 |#1| |#3|)) 24)) (-3627 (((-1 (-107) |#2|) (-1 (-107) |#3|)) 12))) -(((-855 |#1| |#2| |#3|) (-10 -7 (-15 -3627 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -2939 ((-813 |#1| |#3|) |#2| (-816 |#1|) (-813 |#1| |#3|)))) (-1006) (-810 |#1|) (-13 (-1006) (-955 |#2|))) (T -855)) -((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *6)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-4 *6 (-13 (-1006) (-955 *3))) (-4 *3 (-810 *5)) (-5 *1 (-855 *5 *3 *6)))) (-3627 (*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1006) (-955 *5))) (-4 *5 (-810 *4)) (-4 *4 (-1006)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-855 *4 *5 *6))))) -(-10 -7 (-15 -3627 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -2939 ((-813 |#1| |#3|) |#2| (-816 |#1|) (-813 |#1| |#3|)))) -((-2939 (((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)) 29))) -(((-856 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)))) (-1006) (-13 (-509) (-779) (-810 |#1|)) (-13 (-400 |#2|) (-558 (-816 |#1|)) (-810 |#1|) (-955 (-556 $)))) (T -856)) -((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-13 (-400 *6) (-558 *4) (-810 *5) (-955 (-556 $)))) (-5 *4 (-816 *5)) (-4 *6 (-13 (-509) (-779) (-810 *5))) (-5 *1 (-856 *5 *6 *3))))) -(-10 -7 (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)))) -((-2939 (((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|)) 12))) -(((-857 |#1|) (-10 -7 (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|)))) (-502)) (T -857)) -((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 (-517) *3)) (-5 *4 (-816 (-517))) (-4 *3 (-502)) (-5 *1 (-857 *3))))) -(-10 -7 (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|)))) -((-2939 (((-813 |#1| |#2|) (-556 |#2|) (-816 |#1|) (-813 |#1| |#2|)) 52))) -(((-858 |#1| |#2|) (-10 -7 (-15 -2939 ((-813 |#1| |#2|) (-556 |#2|) (-816 |#1|) (-813 |#1| |#2|)))) (-1006) (-13 (-779) (-955 (-556 $)) (-558 (-816 |#1|)) (-810 |#1|))) (T -858)) -((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1006)) (-4 *6 (-13 (-779) (-955 (-556 $)) (-558 *4) (-810 *5))) (-5 *4 (-816 *5)) (-5 *1 (-858 *5 *6))))) -(-10 -7 (-15 -2939 ((-813 |#1| |#2|) (-556 |#2|) (-816 |#1|) (-813 |#1| |#2|)))) -((-2939 (((-809 |#1| |#2| |#3|) |#3| (-816 |#1|) (-809 |#1| |#2| |#3|)) 14))) -(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-809 |#1| |#2| |#3|) |#3| (-816 |#1|) (-809 |#1| |#2| |#3|)))) (-1006) (-810 |#1|) (-603 |#2|)) (T -859)) -((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-809 *5 *6 *3)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-4 *6 (-810 *5)) (-4 *3 (-603 *6)) (-5 *1 (-859 *5 *6 *3))))) -(-10 -7 (-15 -2939 ((-809 |#1| |#2| |#3|) |#3| (-816 |#1|) (-809 |#1| |#2| |#3|)))) -((-2939 (((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|)) 17 (|has| |#3| (-810 |#1|))) (((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|) (-1 (-813 |#1| |#5|) |#3| (-816 |#1|) (-813 |#1| |#5|))) 16))) -(((-860 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2939 ((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|) (-1 (-813 |#1| |#5|) |#3| (-816 |#1|) (-813 |#1| |#5|)))) (IF (|has| |#3| (-810 |#1|)) (-15 -2939 ((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|))) |%noBranch|)) (-1006) (-725) (-779) (-13 (-964) (-779) (-810 |#1|)) (-13 (-873 |#4| |#2| |#3|) (-558 (-816 |#1|)))) (T -860)) -((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-13 (-873 *8 *6 *7) (-558 *4))) (-5 *4 (-816 *5)) (-4 *7 (-810 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-964) (-779) (-810 *5))) (-5 *1 (-860 *5 *6 *7 *8 *3)))) (-2939 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-813 *6 *3) *8 (-816 *6) (-813 *6 *3))) (-4 *8 (-779)) (-5 *2 (-813 *6 *3)) (-5 *4 (-816 *6)) (-4 *6 (-1006)) (-4 *3 (-13 (-873 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-964) (-779) (-810 *6))) (-5 *1 (-860 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2939 ((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|) (-1 (-813 |#1| |#5|) |#3| (-816 |#1|) (-813 |#1| |#5|)))) (IF (|has| |#3| (-810 |#1|)) (-15 -2939 ((-813 |#1| |#5|) |#5| (-816 |#1|) (-813 |#1| |#5|))) |%noBranch|)) -((-3594 ((|#2| |#2| (-583 (-1 (-107) |#3|))) 11) ((|#2| |#2| (-1 (-107) |#3|)) 12))) -(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -3594 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3594 (|#2| |#2| (-583 (-1 (-107) |#3|))))) (-779) (-400 |#1|) (-1112)) (T -861)) -((-3594 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1112)) (-4 *4 (-779)) (-5 *1 (-861 *4 *2 *5)) (-4 *2 (-400 *4)))) (-3594 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1112)) (-4 *4 (-779)) (-5 *1 (-861 *4 *2 *5)) (-4 *2 (-400 *4))))) -(-10 -7 (-15 -3594 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3594 (|#2| |#2| (-583 (-1 (-107) |#3|))))) -((-3594 (((-286 (-517)) (-1077) (-583 (-1 (-107) |#1|))) 16) (((-286 (-517)) (-1077) (-1 (-107) |#1|)) 13))) -(((-862 |#1|) (-10 -7 (-15 -3594 ((-286 (-517)) (-1077) (-1 (-107) |#1|))) (-15 -3594 ((-286 (-517)) (-1077) (-583 (-1 (-107) |#1|))))) (-1112)) (T -862)) -((-3594 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1112)) (-5 *2 (-286 (-517))) (-5 *1 (-862 *5)))) (-3594 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1112)) (-5 *2 (-286 (-517))) (-5 *1 (-862 *5))))) -(-10 -7 (-15 -3594 ((-286 (-517)) (-1077) (-1 (-107) |#1|))) (-15 -3594 ((-286 (-517)) (-1077) (-583 (-1 (-107) |#1|))))) -((-2939 (((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)) 25))) -(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)))) (-1006) (-13 (-509) (-810 |#1|) (-558 (-816 |#1|))) (-912 |#2|)) (T -863)) -((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-912 *6)) (-4 *6 (-13 (-509) (-810 *5) (-558 *4))) (-5 *4 (-816 *5)) (-5 *1 (-863 *5 *6 *3))))) -(-10 -7 (-15 -2939 ((-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)))) -((-2939 (((-813 |#1| (-1077)) (-1077) (-816 |#1|) (-813 |#1| (-1077))) 17))) -(((-864 |#1|) (-10 -7 (-15 -2939 ((-813 |#1| (-1077)) (-1077) (-816 |#1|) (-813 |#1| (-1077))))) (-1006)) (T -864)) -((-2939 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 (-1077))) (-5 *3 (-1077)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-5 *1 (-864 *5))))) -(-10 -7 (-15 -2939 ((-813 |#1| (-1077)) (-1077) (-816 |#1|) (-813 |#1| (-1077))))) -((-1737 (((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))) 33)) (-2939 (((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-1 |#3| (-583 |#3|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))) 32))) -(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-1 |#3| (-583 |#3|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)))) (-15 -1737 ((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))))) (-1006) (-13 (-964) (-779)) (-13 (-964) (-558 (-816 |#1|)) (-955 |#2|))) (T -865)) -((-1737 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-816 *6))) (-5 *5 (-1 (-813 *6 *8) *8 (-816 *6) (-813 *6 *8))) (-4 *6 (-1006)) (-4 *8 (-13 (-964) (-558 (-816 *6)) (-955 *7))) (-5 *2 (-813 *6 *8)) (-4 *7 (-13 (-964) (-779))) (-5 *1 (-865 *6 *7 *8)))) (-2939 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-816 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-813 *7 *9) *9 (-816 *7) (-813 *7 *9))) (-4 *7 (-1006)) (-4 *9 (-13 (-964) (-558 (-816 *7)) (-955 *8))) (-5 *2 (-813 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-964) (-779))) (-5 *1 (-865 *7 *8 *9))))) -(-10 -7 (-15 -2939 ((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-1 |#3| (-583 |#3|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|)))) (-15 -1737 ((-813 |#1| |#3|) (-583 |#3|) (-583 (-816 |#1|)) (-813 |#1| |#3|) (-1 (-813 |#1| |#3|) |#3| (-816 |#1|) (-813 |#1| |#3|))))) -((-1895 (((-1073 (-377 (-517))) (-517)) 62)) (-3709 (((-1073 (-517)) (-517)) 65)) (-1686 (((-1073 (-517)) (-517)) 59)) (-3116 (((-517) (-1073 (-517))) 54)) (-1796 (((-1073 (-377 (-517))) (-517)) 48)) (-3585 (((-1073 (-517)) (-517)) 37)) (-4078 (((-1073 (-517)) (-517)) 67)) (-2855 (((-1073 (-517)) (-517)) 66)) (-3132 (((-1073 (-377 (-517))) (-517)) 50))) -(((-866) (-10 -7 (-15 -3132 ((-1073 (-377 (-517))) (-517))) (-15 -2855 ((-1073 (-517)) (-517))) (-15 -4078 ((-1073 (-517)) (-517))) (-15 -3585 ((-1073 (-517)) (-517))) (-15 -1796 ((-1073 (-377 (-517))) (-517))) (-15 -3116 ((-517) (-1073 (-517)))) (-15 -1686 ((-1073 (-517)) (-517))) (-15 -3709 ((-1073 (-517)) (-517))) (-15 -1895 ((-1073 (-377 (-517))) (-517))))) (T -866)) -((-1895 (*1 *2 *3) (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517)))) (-3709 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))) (-1686 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-1073 (-517))) (-5 *2 (-517)) (-5 *1 (-866)))) (-1796 (*1 *2 *3) (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517)))) (-3585 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))) (-4078 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))) (-2855 (*1 *2 *3) (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))) (-3132 (*1 *2 *3) (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517))))) -(-10 -7 (-15 -3132 ((-1073 (-377 (-517))) (-517))) (-15 -2855 ((-1073 (-517)) (-517))) (-15 -4078 ((-1073 (-517)) (-517))) (-15 -3585 ((-1073 (-517)) (-517))) (-15 -1796 ((-1073 (-377 (-517))) (-517))) (-15 -3116 ((-517) (-1073 (-517)))) (-15 -1686 ((-1073 (-517)) (-517))) (-15 -3709 ((-1073 (-517)) (-517))) (-15 -1895 ((-1073 (-377 (-517))) (-517)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703)) NIL (|has| |#1| (-23)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-3432 (($ (-583 |#1|)) 13)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2681 (((-623 |#1|) $ $) NIL (|has| |#1| (-964)))) (-3204 (($ (-703) |#1|) 8)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 10 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1492 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-2328 (((-107) $ (-703)) NIL)) (-3728 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-3175 (($ $ (-583 |#1|)) 24)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 18) (($ $ (-1125 (-517))) NIL)) (-3912 ((|#1| $ $) NIL (|has| |#1| (-964)))) (-1470 (((-845) $) 16)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-1305 (($ $ $) 22)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 17)) (-2279 (($ (-583 |#1|)) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1680 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1666 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3573 (((-703) $) 14 (|has| $ (-6 -4195))))) -(((-867 |#1|) (-900 |#1|) (-964)) (T -867)) -NIL -(-900 |#1|) -((-2435 (((-449 |#1| |#2|) (-876 |#2|)) 17)) (-1822 (((-221 |#1| |#2|) (-876 |#2|)) 29)) (-3381 (((-876 |#2|) (-449 |#1| |#2|)) 22)) (-1848 (((-221 |#1| |#2|) (-449 |#1| |#2|)) 53)) (-2000 (((-876 |#2|) (-221 |#1| |#2|)) 26)) (-1438 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 44))) -(((-868 |#1| |#2|) (-10 -7 (-15 -1438 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -1848 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2435 ((-449 |#1| |#2|) (-876 |#2|))) (-15 -3381 ((-876 |#2|) (-449 |#1| |#2|))) (-15 -2000 ((-876 |#2|) (-221 |#1| |#2|))) (-15 -1822 ((-221 |#1| |#2|) (-876 |#2|)))) (-583 (-1077)) (-964)) (T -868)) -((-1822 (*1 *2 *3) (-12 (-5 *3 (-876 *5)) (-4 *5 (-964)) (-5 *2 (-221 *4 *5)) (-5 *1 (-868 *4 *5)) (-14 *4 (-583 (-1077))))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) (-5 *2 (-876 *5)) (-5 *1 (-868 *4 *5)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) (-5 *2 (-876 *5)) (-5 *1 (-868 *4 *5)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-876 *5)) (-4 *5 (-964)) (-5 *2 (-449 *4 *5)) (-5 *1 (-868 *4 *5)) (-14 *4 (-583 (-1077))))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) (-5 *2 (-221 *4 *5)) (-5 *1 (-868 *4 *5)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) (-5 *2 (-449 *4 *5)) (-5 *1 (-868 *4 *5))))) -(-10 -7 (-15 -1438 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -1848 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2435 ((-449 |#1| |#2|) (-876 |#2|))) (-15 -3381 ((-876 |#2|) (-449 |#1| |#2|))) (-15 -2000 ((-876 |#2|) (-221 |#1| |#2|))) (-15 -1822 ((-221 |#1| |#2|) (-876 |#2|)))) -((-3642 (((-583 |#2|) |#2| |#2|) 10)) (-2259 (((-703) (-583 |#1|)) 38 (|has| |#1| (-777)))) (-3811 (((-583 |#2|) |#2|) 11)) (-3895 (((-703) (-583 |#1|) (-517) (-517)) 37 (|has| |#1| (-777)))) (-2366 ((|#1| |#2|) 33 (|has| |#1| (-777))))) -(((-869 |#1| |#2|) (-10 -7 (-15 -3642 ((-583 |#2|) |#2| |#2|)) (-15 -3811 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -2366 (|#1| |#2|)) (-15 -2259 ((-703) (-583 |#1|))) (-15 -3895 ((-703) (-583 |#1|) (-517) (-517)))) |%noBranch|)) (-333) (-1134 |#1|)) (T -869)) -((-3895 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-869 *5 *6)) (-4 *6 (-1134 *5)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-869 *4 *5)) (-4 *5 (-1134 *4)))) (-2366 (*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1134 *2)))) (-3811 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-869 *4 *3)) (-4 *3 (-1134 *4)))) (-3642 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-869 *4 *3)) (-4 *3 (-1134 *4))))) -(-10 -7 (-15 -3642 ((-583 |#2|) |#2| |#2|)) (-15 -3811 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -2366 (|#1| |#2|)) (-15 -2259 ((-703) (-583 |#1|))) (-15 -3895 ((-703) (-583 |#1|) (-517) (-517)))) |%noBranch|)) -((-3312 (((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)) 18))) -(((-870 |#1| |#2|) (-10 -7 (-15 -3312 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)))) (-964) (-964)) (T -870)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-5 *2 (-876 *6)) (-5 *1 (-870 *5 *6))))) -(-10 -7 (-15 -3312 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)))) -((-1428 (((-1131 |#1| (-876 |#2|)) (-876 |#2|) (-1154 |#1|)) 18))) -(((-871 |#1| |#2|) (-10 -7 (-15 -1428 ((-1131 |#1| (-876 |#2|)) (-876 |#2|) (-1154 |#1|)))) (-1077) (-964)) (T -871)) -((-1428 (*1 *2 *3 *4) (-12 (-5 *4 (-1154 *5)) (-14 *5 (-1077)) (-4 *6 (-964)) (-5 *2 (-1131 *5 (-876 *6))) (-5 *1 (-871 *5 *6)) (-5 *3 (-876 *6))))) -(-10 -7 (-15 -1428 ((-1131 |#1| (-876 |#2|)) (-876 |#2|) (-1154 |#1|)))) -((-2675 (((-703) $) 70) (((-703) $ (-583 |#4|)) 73)) (-1322 (($ $) 170)) (-3306 (((-388 $) $) 162)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 113)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) 58)) (-2133 (($ $ $ |#4|) 75)) (-2947 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 103) (((-623 |#2|) (-623 $)) 96)) (-4172 (($ $) 177) (($ $ |#4|) 180)) (-2350 (((-583 $) $) 62)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 195) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 189)) (-1300 (((-583 $) $) 28)) (-2059 (($ |#2| |#3|) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) 56)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#4|) 159)) (-1743 (((-3 (-583 $) "failed") $) 42)) (-1442 (((-3 (-583 $) "failed") $) 31)) (-3044 (((-3 (-2 (|:| |var| |#4|) (|:| -1725 (-703))) "failed") $) 46)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 106)) (-3835 (((-388 (-1073 $)) (-1073 $)) 119)) (-1195 (((-388 (-1073 $)) (-1073 $)) 117)) (-3896 (((-388 $) $) 137)) (-3552 (($ $ (-583 (-265 $))) 20) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL)) (-3115 (($ $ |#4|) 77)) (-3367 (((-816 (-349)) $) 209) (((-816 (-517)) $) 202) (((-493) $) 217)) (-4094 ((|#2| $) NIL) (($ $ |#4|) 172)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 151)) (-1939 ((|#2| $ |#3|) NIL) (($ $ |#4| (-703)) 51) (($ $ (-583 |#4|) (-583 (-703))) 54)) (-3385 (((-3 $ "failed") $) 153)) (-1596 (((-107) $ $) 183))) -(((-872 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -2767 ((-3 (-1158 |#1|) "failed") (-623 |#1|))) (-15 -4172 (|#1| |#1| |#4|)) (-15 -4094 (|#1| |#1| |#4|)) (-15 -3115 (|#1| |#1| |#4|)) (-15 -2133 (|#1| |#1| |#1| |#4|)) (-15 -2350 ((-583 |#1|) |#1|)) (-15 -2675 ((-703) |#1| (-583 |#4|))) (-15 -2675 ((-703) |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| |#4|) (|:| -1725 (-703))) "failed") |#1|)) (-15 -1743 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1442 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2059 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2059 (|#1| |#1| |#4| (-703))) (-15 -2302 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -1300 ((-583 |#1|) |#1|)) (-15 -1939 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1939 (|#1| |#1| |#4| (-703))) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#4| |#1|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#4| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#4| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2059 (|#1| |#2| |#3|)) (-15 -1939 (|#2| |#1| |#3|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -4172 (|#1| |#1|))) (-873 |#2| |#3| |#4|) (-964) (-725) (-779)) (T -872)) -NIL -(-10 -8 (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -3385 ((-3 |#1| "failed") |#1|)) (-15 -1596 ((-107) |#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -2767 ((-3 (-1158 |#1|) "failed") (-623 |#1|))) (-15 -4172 (|#1| |#1| |#4|)) (-15 -4094 (|#1| |#1| |#4|)) (-15 -3115 (|#1| |#1| |#4|)) (-15 -2133 (|#1| |#1| |#1| |#4|)) (-15 -2350 ((-583 |#1|) |#1|)) (-15 -2675 ((-703) |#1| (-583 |#4|))) (-15 -2675 ((-703) |#1|)) (-15 -3044 ((-3 (-2 (|:| |var| |#4|) (|:| -1725 (-703))) "failed") |#1|)) (-15 -1743 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1442 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2059 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2059 (|#1| |#1| |#4| (-703))) (-15 -2302 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -1300 ((-583 |#1|) |#1|)) (-15 -1939 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1939 (|#1| |#1| |#4| (-703))) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#4| |#1|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#4| |#1|)) (-15 -3552 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3552 (|#1| |#1| |#4| |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2059 (|#1| |#2| |#3|)) (-15 -1939 (|#2| |#1| |#3|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -4172 (|#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 |#3|) $) 110)) (-1428 (((-1073 $) $ |#3|) 125) (((-1073 |#1|) $) 124)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2491 (($ $) 88 (|has| |#1| (-509)))) (-2025 (((-107) $) 90 (|has| |#1| (-509)))) (-2675 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 100 (|has| |#1| (-833)))) (-1322 (($ $) 98 (|has| |#1| (-421)))) (-3306 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 103 (|has| |#1| (-833)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-955 (-517)))) (((-3 |#3| "failed") $) 136)) (-3402 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-955 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-955 (-517)))) ((|#3| $) 135)) (-2133 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-2364 (($ $) 154)) (-2947 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3550 (((-3 $ "failed") $) 34)) (-4172 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2350 (((-583 $) $) 109)) (-2022 (((-107) $) 96 (|has| |#1| (-833)))) (-1760 (($ $ |#1| |#2| $) 172)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 84 (-12 (|has| |#3| (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 83 (-12 (|has| |#3| (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-1690 (((-107) $) 31)) (-2516 (((-703) $) 169)) (-2069 (($ (-1073 |#1|) |#3|) 117) (($ (-1073 $) |#3|) 116)) (-1300 (((-583 $) $) 126)) (-3022 (((-107) $) 152)) (-2059 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#3|) 120)) (-3942 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3480 (($ $ $) 79 (|has| |#1| (-779)))) (-4095 (($ $ $) 78 (|has| |#1| (-779)))) (-1542 (($ (-1 |#2| |#2|) $) 171)) (-3312 (($ (-1 |#1| |#1|) $) 151)) (-1958 (((-3 |#3| "failed") $) 123)) (-2325 (($ $) 149)) (-2336 ((|#1| $) 148)) (-2323 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3232 (((-1060) $) 9)) (-1743 (((-3 (-583 $) "failed") $) 114)) (-1442 (((-3 (-583 $) "failed") $) 115)) (-3044 (((-3 (-2 (|:| |var| |#3|) (|:| -1725 (-703))) "failed") $) 113)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 166)) (-2311 ((|#1| $) 167)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 95 (|has| |#1| (-421)))) (-2361 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 102 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 101 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 99 (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3115 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2042 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-1191 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-3367 (((-816 (-349)) $) 82 (-12 (|has| |#3| (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) 81 (-12 (|has| |#3| (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 104 (-4024 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-509))) (($ (-377 (-517))) 72 (-3786 (|has| |#1| (-955 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-3186 (((-583 |#1|) $) 168)) (-1939 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-3385 (((-3 $ "failed") $) 73 (-3786 (-4024 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 29)) (-2308 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1630 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-873 |#1| |#2| |#3|) (-1189) (-964) (-725) (-779)) (T -873)) -((-4172 (*1 *1 *1) (-12 (-4 *1 (-873 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1191 (*1 *2 *1 *3) (-12 (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-1191 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-1939 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-873 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *2 (-779)))) (-1939 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)))) (-1300 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5)))) (-1428 (*1 *2 *1 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1073 *1)) (-4 *1 (-873 *4 *5 *3)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1073 *3)))) (-1958 (*1 *2 *1) (|partial| -12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3942 (*1 *2 *1 *3) (-12 (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3942 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-2302 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-873 *4 *5 *3)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-873 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *2 (-779)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)))) (-2069 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 *4)) (-4 *4 (-964)) (-4 *1 (-873 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) (-2069 (*1 *1 *2 *3) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)))) (-1442 (*1 *2 *1) (|partial| -12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5)))) (-1743 (*1 *2 *1) (|partial| -12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5)))) (-3044 (*1 *2 *1) (|partial| -12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -1725 (-703)))))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-2675 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-2350 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5)))) (-2133 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3115 (*1 *1 *1 *2) (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-4094 (*1 *1 *1 *2) (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-4172 (*1 *1 *1 *2) (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-1322 (*1 *1 *1) (-12 (-4 *1 (-873 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3306 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-873 *3 *4 *5))))) -(-13 (-824 |t#3|) (-296 |t#1| |t#2|) (-280 $) (-478 |t#3| |t#1|) (-478 |t#3| $) (-955 |t#3|) (-347 |t#1|) (-10 -8 (-15 -1191 ((-703) $ |t#3|)) (-15 -1191 ((-583 (-703)) $ (-583 |t#3|))) (-15 -1939 ($ $ |t#3| (-703))) (-15 -1939 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -1300 ((-583 $) $)) (-15 -1428 ((-1073 $) $ |t#3|)) (-15 -1428 ((-1073 |t#1|) $)) (-15 -1958 ((-3 |t#3| "failed") $)) (-15 -3942 ((-703) $ |t#3|)) (-15 -3942 ((-583 (-703)) $ (-583 |t#3|))) (-15 -2302 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |t#3|)) (-15 -2059 ($ $ |t#3| (-703))) (-15 -2059 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -2069 ($ (-1073 |t#1|) |t#3|)) (-15 -2069 ($ (-1073 $) |t#3|)) (-15 -1442 ((-3 (-583 $) "failed") $)) (-15 -1743 ((-3 (-583 $) "failed") $)) (-15 -3044 ((-3 (-2 (|:| |var| |t#3|) (|:| -1725 (-703))) "failed") $)) (-15 -2675 ((-703) $)) (-15 -2675 ((-703) $ (-583 |t#3|))) (-15 -2080 ((-583 |t#3|) $)) (-15 -2350 ((-583 $) $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (IF (|has| |t#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-558 (-816 (-517)))) (IF (|has| |t#3| (-558 (-816 (-517)))) (-6 (-558 (-816 (-517)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-558 (-816 (-349)))) (IF (|has| |t#3| (-558 (-816 (-349)))) (-6 (-558 (-816 (-349)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-810 (-517))) (IF (|has| |t#3| (-810 (-517))) (-6 (-810 (-517))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-810 (-349))) (IF (|has| |t#3| (-810 (-349))) (-6 (-810 (-349))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -2133 ($ $ $ |t#3|)) (-15 -3115 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-6 (-421)) (-15 -4094 ($ $ |t#3|)) (-15 -4172 ($ $)) (-15 -4172 ($ $ |t#3|)) (-15 -3306 ((-388 $) $)) (-15 -1322 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4193)) (-6 -4193) |%noBranch|) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#3| (-558 (-816 (-349))))) ((-558 (-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#3| (-558 (-816 (-517))))) ((-262) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-833)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 |#3|) . T) ((-810 (-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#3| (-810 (-349)))) ((-810 (-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#3| (-810 (-517)))) ((-833) |has| |#1| (-833)) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-955 |#3|) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) |has| |#1| (-833))) -((-2080 (((-583 |#2|) |#5|) 36)) (-1428 (((-1073 |#5|) |#5| |#2| (-1073 |#5|)) 23) (((-377 (-1073 |#5|)) |#5| |#2|) 16)) (-2069 ((|#5| (-377 (-1073 |#5|)) |#2|) 30)) (-1958 (((-3 |#2| "failed") |#5|) 61)) (-1743 (((-3 (-583 |#5|) "failed") |#5|) 55)) (-1481 (((-3 (-2 (|:| |val| |#5|) (|:| -1725 (-517))) "failed") |#5|) 45)) (-1442 (((-3 (-583 |#5|) "failed") |#5|) 57)) (-3044 (((-3 (-2 (|:| |var| |#2|) (|:| -1725 (-517))) "failed") |#5|) 48))) -(((-874 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2080 ((-583 |#2|) |#5|)) (-15 -1958 ((-3 |#2| "failed") |#5|)) (-15 -1428 ((-377 (-1073 |#5|)) |#5| |#2|)) (-15 -2069 (|#5| (-377 (-1073 |#5|)) |#2|)) (-15 -1428 ((-1073 |#5|) |#5| |#2| (-1073 |#5|))) (-15 -1442 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -1743 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3044 ((-3 (-2 (|:| |var| |#2|) (|:| -1725 (-517))) "failed") |#5|)) (-15 -1481 ((-3 (-2 (|:| |val| |#5|) (|:| -1725 (-517))) "failed") |#5|))) (-725) (-779) (-964) (-873 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -2262 ($ |#4|)) (-15 -3858 (|#4| $)) (-15 -2082 (|#4| $))))) (T -874)) -((-1481 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1725 (-517)))) (-5 *1 (-874 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) (-3044 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1725 (-517)))) (-5 *1 (-874 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) (-1743 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-874 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) (-1442 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-874 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) (-1428 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))) (-4 *7 (-873 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-964)) (-5 *1 (-874 *5 *4 *6 *7 *3)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1073 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-964)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))) (-5 *1 (-874 *5 *4 *6 *7 *2)) (-4 *7 (-873 *6 *5 *4)))) (-1428 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-377 (-1073 *3))) (-5 *1 (-874 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) (-1958 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-964)) (-4 *6 (-873 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-874 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *6)) (-15 -3858 (*6 $)) (-15 -2082 (*6 $))))))) (-2080 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-874 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $)))))))) -(-10 -7 (-15 -2080 ((-583 |#2|) |#5|)) (-15 -1958 ((-3 |#2| "failed") |#5|)) (-15 -1428 ((-377 (-1073 |#5|)) |#5| |#2|)) (-15 -2069 (|#5| (-377 (-1073 |#5|)) |#2|)) (-15 -1428 ((-1073 |#5|) |#5| |#2| (-1073 |#5|))) (-15 -1442 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -1743 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3044 ((-3 (-2 (|:| |var| |#2|) (|:| -1725 (-517))) "failed") |#5|)) (-15 -1481 ((-3 (-2 (|:| |val| |#5|) (|:| -1725 (-517))) "failed") |#5|))) -((-3312 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-875 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3312 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-725) (-779) (-964) (-873 |#3| |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (T -875)) -((-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-964)) (-4 *6 (-725)) (-4 *2 (-13 (-1006) (-10 -8 (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-875 *6 *7 *8 *5 *2)) (-4 *5 (-873 *8 *6 *7))))) -(-10 -7 (-15 -3312 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-1077)) $) 15)) (-1428 (((-1073 $) $ (-1077)) 21) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-1077))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 8) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-1077) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-1077) $) NIL)) (-2133 (($ $ $ (-1077)) NIL (|has| |#1| (-156)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ (-1077)) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-489 (-1077)) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-1077) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-1077) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#1|) (-1077)) NIL) (($ (-1073 $) (-1077)) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-489 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-1077)) NIL)) (-3942 (((-489 (-1077)) $) NIL) (((-703) $ (-1077)) NIL) (((-583 (-703)) $ (-583 (-1077))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 (-1077)) (-489 (-1077))) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1958 (((-3 (-1077) "failed") $) 19)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-1077)) (|:| -1725 (-703))) "failed") $) NIL)) (-3296 (($ $ (-1077)) 29 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-1077) |#1|) NIL) (($ $ (-583 (-1077)) (-583 |#1|)) NIL) (($ $ (-1077) $) NIL) (($ $ (-583 (-1077)) (-583 $)) NIL)) (-3115 (($ $ (-1077)) NIL (|has| |#1| (-156)))) (-2042 (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-1191 (((-489 (-1077)) $) NIL) (((-703) $ (-1077)) NIL) (((-583 (-703)) $ (-583 (-1077))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-1077) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-1077) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-1077) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-1077)) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 25) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-1077)) 27) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-489 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-876 |#1|) (-13 (-873 |#1| (-489 (-1077)) (-1077)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1077))) |%noBranch|))) (-964)) (T -876)) -((-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-876 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964))))) -(-13 (-873 |#1| (-489 (-1077)) (-1077)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1077))) |%noBranch|))) -((-2802 (((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#3| (-703)) 37)) (-1598 (((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703)) 33)) (-1261 (((-2 (|:| -1725 (-703)) (|:| -1570 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)) 52)) (-4127 (((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#5| (-703)) 62 (|has| |#3| (-421))))) -(((-877 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2802 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -1598 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -4127 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |%noBranch|) (-15 -1261 ((-2 (|:| -1725 (-703)) (|:| -1570 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)))) (-725) (-779) (-509) (-873 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -3858 (|#4| $)) (-15 -2082 (|#4| $)) (-15 -2262 ($ |#4|))))) (T -877)) -((-1261 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-873 *7 *5 *6)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-877 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -3858 (*3 $)) (-15 -2082 (*3 $)) (-15 -2262 ($ *3))))))) (-4127 (*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-873 *7 *5 *6)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| *3))) (-5 *1 (-877 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -3858 (*8 $)) (-15 -2082 (*8 $)) (-15 -2262 ($ *8))))))) (-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-873 *7 *5 *6)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *9) (|:| |radicand| *9))) (-5 *1 (-877 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -3858 (*8 $)) (-15 -2082 (*8 $)) (-15 -2262 ($ *8))))))) (-2802 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-873 *3 *5 *6)) (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *8) (|:| |radicand| *8))) (-5 *1 (-877 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -3858 (*7 $)) (-15 -2082 (*7 $)) (-15 -2262 ($ *7)))))))) -(-10 -7 (-15 -2802 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -1598 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -4127 ((-2 (|:| -1725 (-703)) (|:| -1570 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |%noBranch|) (-15 -1261 ((-2 (|:| -1725 (-703)) (|:| -1570 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)))) -((-2712 (((-1001 (-199)) $) 8)) (-2700 (((-1001 (-199)) $) 9)) (-1515 (((-583 (-583 (-867 (-199)))) $) 10)) (-2262 (((-787) $) 6))) -(((-878) (-1189)) (T -878)) -((-1515 (*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-583 (-583 (-867 (-199))))))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-1001 (-199))))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-1001 (-199)))))) -(-13 (-557 (-787)) (-10 -8 (-15 -1515 ((-583 (-583 (-867 (-199)))) $)) (-15 -2700 ((-1001 (-199)) $)) (-15 -2712 ((-1001 (-199)) $)))) -(((-557 (-787)) . T)) -((-2635 (((-3 (-623 |#1|) "failed") |#2| (-845)) 14))) -(((-879 |#1| |#2|) (-10 -7 (-15 -2635 ((-3 (-623 |#1|) "failed") |#2| (-845)))) (-509) (-593 |#1|)) (T -879)) -((-2635 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-845)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-879 *5 *3)) (-4 *3 (-593 *5))))) -(-10 -7 (-15 -2635 ((-3 (-623 |#1|) "failed") |#2| (-845)))) -((-1250 (((-881 |#2|) (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|) 16)) (-1510 ((|#2| (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|) 18)) (-3312 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 13))) -(((-880 |#1| |#2|) (-10 -7 (-15 -1250 ((-881 |#2|) (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|)) (-15 -3312 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-1112) (-1112)) (T -880)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-881 *5)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-880 *5 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-881 *6)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-5 *2 (-881 *5)) (-5 *1 (-880 *6 *5))))) -(-10 -7 (-15 -1250 ((-881 |#2|) (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-881 |#1|) |#2|)) (-15 -3312 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) 17 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 16 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 14)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) |#1|) 13)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) 10 (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) 12 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) 11)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 15) (($ $ (-1125 (-517))) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) NIL)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-3573 (((-703) $) 8 (|has| $ (-6 -4195))))) -(((-881 |#1|) (-19 |#1|) (-1112)) (T -881)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 15)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-2855 ((|#1| $) 21)) (-2864 (($ $ $) NIL (|has| |#1| (-725)))) (-2489 (($ $ $) NIL (|has| |#1| (-725)))) (-1266 (((-1065) $) 46)) (-4139 (((-1029) $) NIL)) (-2866 ((|#3| $) 22)) (-2217 (((-790) $) 42)) (-3602 (($) 10 T CONST)) (-1586 (((-108) $ $) NIL (|has| |#1| (-725)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-725)))) (-1543 (((-108) $ $) 20)) (-1578 (((-108) $ $) NIL (|has| |#1| (-725)))) (-1561 (((-108) $ $) 24 (|has| |#1| (-725)))) (-1632 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1623 (($ $) 17) (($ $ $) NIL)) (-1614 (($ $ $) 27)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-601 |#1| |#2| |#3|) (-13 (-652 |#2|) (-10 -8 (IF (|has| |#1| (-725)) (-6 (-725)) |%noBranch|) (-15 -1632 ($ $ |#3|)) (-15 -1632 ($ |#1| |#3|)) (-15 -2855 (|#1| $)) (-15 -2866 (|#3| $)))) (-652 |#2|) (-157) (|SubsetCategory| (-661) |#2|)) (T -601)) +((-1632 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-652 *4)) (-4 *2 (|SubsetCategory| (-661) *4)))) (-1632 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-601 *2 *4 *3)) (-4 *2 (-652 *4)) (-4 *3 (|SubsetCategory| (-661) *4)))) (-2855 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-652 *3)) (-5 *1 (-601 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-661) *3)))) (-2866 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-661) *4)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-652 *4))))) +(-13 (-652 |#2|) (-10 -8 (IF (|has| |#1| (-725)) (-6 (-725)) |%noBranch|) (-15 -1632 ($ $ |#3|)) (-15 -1632 ($ |#1| |#3|)) (-15 -2855 (|#1| $)) (-15 -2866 (|#3| $)))) +((-1275 (((-3 (-585 (-1078 |#1|)) "failed") (-585 (-1078 |#1|)) (-1078 |#1|)) 33))) +(((-602 |#1|) (-10 -7 (-15 -1275 ((-3 (-585 (-1078 |#1|)) "failed") (-585 (-1078 |#1|)) (-1078 |#1|)))) (-836)) (T -602)) +((-1275 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1078 *4))) (-5 *3 (-1078 *4)) (-4 *4 (-836)) (-5 *1 (-602 *4))))) +(-10 -7 (-15 -1275 ((-3 (-585 (-1078 |#1|)) "failed") (-585 (-1078 |#1|)) (-1078 |#1|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4096 (((-585 |#1|) $) 83)) (-1851 (($ $ (-705)) 91)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-1927 (((-1185 |#1| |#2|) (-1185 |#1| |#2|) $) 48)) (-1301 (((-3 (-610 |#1|) "failed") $) NIL)) (-1499 (((-610 |#1|) $) NIL)) (-3218 (($ $) 90)) (-3798 (((-705) $) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-2569 (($ (-610 |#1|) |#2|) 69)) (-2260 (($ $) 87)) (-1405 (($ (-1 |#2| |#2|) $) NIL)) (-3550 (((-1185 |#1| |#2|) (-1185 |#1| |#2|) $) 47)) (-2352 (((-2 (|:| |k| (-610 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3185 (((-610 |#1|) $) NIL)) (-3197 ((|#2| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2324 (($ $ |#1| $) 30) (($ $ (-585 |#1|) (-585 $)) 32)) (-4178 (((-705) $) 89)) (-2228 (($ $ $) 20) (($ (-610 |#1|) (-610 |#1|)) 78) (($ (-610 |#1|) $) 76) (($ $ (-610 |#1|)) 77)) (-2217 (((-790) $) NIL) (($ |#1|) 75) (((-1176 |#1| |#2|) $) 59) (((-1185 |#1| |#2|) $) 41) (($ (-610 |#1|)) 25)) (-2988 (((-585 |#2|) $) NIL)) (-1220 ((|#2| $ (-610 |#1|)) NIL)) (-3031 ((|#2| (-1185 |#1| |#2|) $) 43)) (-3602 (($) 23 T CONST)) (-3613 (((-585 (-2 (|:| |k| (-610 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2038 (((-3 $ "failed") (-1176 |#1| |#2|)) 61)) (-4016 (($ (-610 |#1|)) 14)) (-1543 (((-108) $ $) 44)) (-1632 (($ $ |#2|) NIL (|has| |#2| (-335)))) (-1623 (($ $) 67) (($ $ $) NIL)) (-1614 (($ $ $) 29)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-610 |#1|)) NIL))) +(((-603 |#1| |#2|) (-13 (-346 |#1| |#2|) (-354 |#2| (-610 |#1|)) (-10 -8 (-15 -2038 ((-3 $ "failed") (-1176 |#1| |#2|))) (-15 -2228 ($ (-610 |#1|) (-610 |#1|))) (-15 -2228 ($ (-610 |#1|) $)) (-15 -2228 ($ $ (-610 |#1|))))) (-782) (-157)) (T -603)) +((-2038 (*1 *1 *2) (|partial| -12 (-5 *2 (-1176 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) (-5 *1 (-603 *3 *4)))) (-2228 (*1 *1 *2 *2) (-12 (-5 *2 (-610 *3)) (-4 *3 (-782)) (-5 *1 (-603 *3 *4)) (-4 *4 (-157)))) (-2228 (*1 *1 *2 *1) (-12 (-5 *2 (-610 *3)) (-4 *3 (-782)) (-5 *1 (-603 *3 *4)) (-4 *4 (-157)))) (-2228 (*1 *1 *1 *2) (-12 (-5 *2 (-610 *3)) (-4 *3 (-782)) (-5 *1 (-603 *3 *4)) (-4 *4 (-157))))) +(-13 (-346 |#1| |#2|) (-354 |#2| (-610 |#1|)) (-10 -8 (-15 -2038 ((-3 $ "failed") (-1176 |#1| |#2|))) (-15 -2228 ($ (-610 |#1|) (-610 |#1|))) (-15 -2228 ($ (-610 |#1|) $)) (-15 -2228 ($ $ (-610 |#1|))))) +((-2629 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-2078 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 11)) (-2846 (($ (-1 (-108) |#2|) $) 28)) (-1998 (($ $) 56)) (-1552 (($ $) 63)) (-2502 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-3874 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3297 (((-519) |#2| $ (-519)) 61) (((-519) |#2| $) NIL) (((-519) (-1 (-108) |#2|) $) 47)) (-1822 (($ (-705) |#2|) 54)) (-2511 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-2500 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-1405 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1592 (($ |#2|) 14)) (-1846 (($ $ $ (-519)) 36) (($ |#2| $ (-519)) 34)) (-2395 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-2137 (($ $ (-1130 (-519))) 44) (($ $ (-519)) 38)) (-2584 (($ $ $ (-519)) 60)) (-2449 (($ $) 58)) (-1561 (((-108) $ $) 65))) +(((-604 |#1| |#2|) (-10 -8 (-15 -1592 (|#1| |#2|)) (-15 -2137 (|#1| |#1| (-519))) (-15 -2137 (|#1| |#1| (-1130 (-519)))) (-15 -2502 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1846 (|#1| |#2| |#1| (-519))) (-15 -1846 (|#1| |#1| |#1| (-519))) (-15 -2511 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2846 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2502 (|#1| |#2| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -2511 (|#1| |#1| |#1|)) (-15 -2500 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2629 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3297 ((-519) (-1 (-108) |#2|) |#1|)) (-15 -3297 ((-519) |#2| |#1|)) (-15 -3297 ((-519) |#2| |#1| (-519))) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2629 ((-108) |#1|)) (-15 -2584 (|#1| |#1| |#1| (-519))) (-15 -1998 (|#1| |#1|)) (-15 -2078 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2078 (|#1| |#1|)) (-15 -1561 ((-108) |#1| |#1|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2395 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1822 (|#1| (-705) |#2|)) (-15 -1405 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 (|#1| |#1|))) (-605 |#2|) (-1117)) (T -604)) +NIL +(-10 -8 (-15 -1592 (|#1| |#2|)) (-15 -2137 (|#1| |#1| (-519))) (-15 -2137 (|#1| |#1| (-1130 (-519)))) (-15 -2502 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1846 (|#1| |#2| |#1| (-519))) (-15 -1846 (|#1| |#1| |#1| (-519))) (-15 -2511 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2846 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2502 (|#1| |#2| |#1|)) (-15 -1552 (|#1| |#1|)) (-15 -2511 (|#1| |#1| |#1|)) (-15 -2500 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2629 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3297 ((-519) (-1 (-108) |#2|) |#1|)) (-15 -3297 ((-519) |#2| |#1|)) (-15 -3297 ((-519) |#2| |#1| (-519))) (-15 -2500 (|#1| |#1| |#1|)) (-15 -2629 ((-108) |#1|)) (-15 -2584 (|#1| |#1| |#1| (-519))) (-15 -1998 (|#1| |#1|)) (-15 -2078 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2078 (|#1| |#1|)) (-15 -1561 ((-108) |#1| |#1|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3874 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2395 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1822 (|#1| (-705) |#2|)) (-15 -1405 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2449 (|#1| |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3493 ((|#1| $) 48)) (-2111 ((|#1| $) 65)) (-3847 (($ $) 67)) (-1583 (((-1168) $ (-519) (-519)) 97 (|has| $ (-6 -4222)))) (-2258 (($ $ (-519)) 52 (|has| $ (-6 -4222)))) (-2629 (((-108) $) 142 (|has| |#1| (-782))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-2078 (($ $) 146 (-12 (|has| |#1| (-782)) (|has| $ (-6 -4222)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4222)))) (-3276 (($ $) 141 (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-1473 (((-108) $ (-705)) 8)) (-2410 ((|#1| $ |#1|) 39 (|has| $ (-6 -4222)))) (-1440 (($ $ $) 56 (|has| $ (-6 -4222)))) (-1907 ((|#1| $ |#1|) 54 (|has| $ (-6 -4222)))) (-2692 ((|#1| $ |#1|) 58 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4222))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4222))) (($ $ "rest" $) 55 (|has| $ (-6 -4222))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) 117 (|has| $ (-6 -4222))) ((|#1| $ (-519) |#1|) 86 (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) 41 (|has| $ (-6 -4222)))) (-2846 (($ (-1 (-108) |#1|) $) 129)) (-1640 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4221)))) (-2098 ((|#1| $) 66)) (-2249 (($) 7 T CONST)) (-1998 (($ $) 144 (|has| $ (-6 -4222)))) (-1868 (($ $) 134)) (-2343 (($ $) 73) (($ $ (-705)) 71)) (-1552 (($ $) 131 (|has| |#1| (-1011)))) (-2366 (($ $) 99 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2502 (($ |#1| $) 130 (|has| |#1| (-1011))) (($ (-1 (-108) |#1|) $) 125)) (-1438 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4221))) (($ |#1| $) 100 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3865 ((|#1| $ (-519) |#1|) 85 (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) 87)) (-2303 (((-108) $) 83)) (-3297 (((-519) |#1| $ (-519)) 139 (|has| |#1| (-1011))) (((-519) |#1| $) 138 (|has| |#1| (-1011))) (((-519) (-1 (-108) |#1|) $) 137)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) 50)) (-3458 (((-108) $ $) 42 (|has| |#1| (-1011)))) (-1822 (($ (-705) |#1|) 108)) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 95 (|has| (-519) (-782)))) (-2864 (($ $ $) 147 (|has| |#1| (-782)))) (-2511 (($ $ $) 132 (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-2500 (($ $ $) 140 (|has| |#1| (-782))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 94 (|has| (-519) (-782)))) (-2489 (($ $ $) 148 (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1592 (($ |#1|) 122)) (-2768 (((-108) $ (-705)) 10)) (-1281 (((-585 |#1|) $) 45)) (-1668 (((-108) $) 49)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1457 ((|#1| $) 70) (($ $ (-705)) 68)) (-1846 (($ $ $ (-519)) 127) (($ |#1| $ (-519)) 126)) (-1672 (($ $ $ (-519)) 116) (($ |#1| $ (-519)) 115)) (-3909 (((-585 (-519)) $) 92)) (-1506 (((-108) (-519) $) 91)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2331 ((|#1| $) 76) (($ $ (-705)) 74)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-3640 (($ $ |#1|) 96 (|has| $ (-6 -4222)))) (-3664 (((-108) $) 84)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) 90)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1130 (-519))) 112) ((|#1| $ (-519)) 89) ((|#1| $ (-519) |#1|) 88)) (-1763 (((-519) $ $) 44)) (-2137 (($ $ (-1130 (-519))) 124) (($ $ (-519)) 123)) (-3720 (($ $ (-1130 (-519))) 114) (($ $ (-519)) 113)) (-3096 (((-108) $) 46)) (-1407 (($ $) 62)) (-2434 (($ $) 59 (|has| $ (-6 -4222)))) (-2067 (((-705) $) 63)) (-3376 (($ $) 64)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2584 (($ $ $ (-519)) 143 (|has| $ (-6 -4222)))) (-2449 (($ $) 13)) (-1446 (((-495) $) 98 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 107)) (-3954 (($ $ $) 61) (($ $ |#1|) 60)) (-4150 (($ $ $) 78) (($ |#1| $) 77) (($ (-585 $)) 110) (($ $ |#1|) 109)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) 51)) (-2915 (((-108) $ $) 43 (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) 150 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 151 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-1578 (((-108) $ $) 149 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 152 (|has| |#1| (-782)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-605 |#1|) (-1194) (-1117)) (T -605)) +((-1592 (*1 *1 *2) (-12 (-4 *1 (-605 *2)) (-4 *2 (-1117))))) +(-13 (-1056 |t#1|) (-345 |t#1|) (-256 |t#1|) (-10 -8 (-15 -1592 ($ |t#1|)))) +(((-33) . T) ((-97) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782))) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-260 #0=(-519) |#1|) . T) ((-262 #0# |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-256 |#1|) . T) ((-345 |#1|) . T) ((-458 |#1|) . T) ((-552 #0# |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-590 |#1|) . T) ((-782) |has| |#1| (-782)) ((-933 |#1|) . T) ((-1011) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782))) ((-1056 |#1|) . T) ((-1117) . T) ((-1151 |#1|) . T)) +((-3442 (((-585 (-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|))))) (-585 (-585 |#1|)) (-585 (-1163 |#1|))) 21) (((-585 (-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|))))) (-625 |#1|) (-585 (-1163 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|)))) (-585 (-585 |#1|)) (-1163 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|)))) (-625 |#1|) (-1163 |#1|)) 13)) (-3229 (((-705) (-625 |#1|) (-1163 |#1|)) 29)) (-1591 (((-3 (-1163 |#1|) "failed") (-625 |#1|) (-1163 |#1|)) 23)) (-3698 (((-108) (-625 |#1|) (-1163 |#1|)) 26))) +(((-606 |#1|) (-10 -7 (-15 -3442 ((-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|)))) (-625 |#1|) (-1163 |#1|))) (-15 -3442 ((-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|)))) (-585 (-585 |#1|)) (-1163 |#1|))) (-15 -3442 ((-585 (-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|))))) (-625 |#1|) (-585 (-1163 |#1|)))) (-15 -3442 ((-585 (-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|))))) (-585 (-585 |#1|)) (-585 (-1163 |#1|)))) (-15 -1591 ((-3 (-1163 |#1|) "failed") (-625 |#1|) (-1163 |#1|))) (-15 -3698 ((-108) (-625 |#1|) (-1163 |#1|))) (-15 -3229 ((-705) (-625 |#1|) (-1163 |#1|)))) (-335)) (T -606)) +((-3229 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-335)) (-5 *2 (-705)) (-5 *1 (-606 *5)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-335)) (-5 *2 (-108)) (-5 *1 (-606 *5)))) (-1591 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1163 *4)) (-5 *3 (-625 *4)) (-4 *4 (-335)) (-5 *1 (-606 *4)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-335)) (-5 *2 (-585 (-2 (|:| |particular| (-3 (-1163 *5) "failed")) (|:| -2070 (-585 (-1163 *5)))))) (-5 *1 (-606 *5)) (-5 *4 (-585 (-1163 *5))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-4 *5 (-335)) (-5 *2 (-585 (-2 (|:| |particular| (-3 (-1163 *5) "failed")) (|:| -2070 (-585 (-1163 *5)))))) (-5 *1 (-606 *5)) (-5 *4 (-585 (-1163 *5))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-335)) (-5 *2 (-2 (|:| |particular| (-3 (-1163 *5) "failed")) (|:| -2070 (-585 (-1163 *5))))) (-5 *1 (-606 *5)) (-5 *4 (-1163 *5)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-4 *5 (-335)) (-5 *2 (-2 (|:| |particular| (-3 (-1163 *5) "failed")) (|:| -2070 (-585 (-1163 *5))))) (-5 *1 (-606 *5)) (-5 *4 (-1163 *5))))) +(-10 -7 (-15 -3442 ((-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|)))) (-625 |#1|) (-1163 |#1|))) (-15 -3442 ((-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|)))) (-585 (-585 |#1|)) (-1163 |#1|))) (-15 -3442 ((-585 (-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|))))) (-625 |#1|) (-585 (-1163 |#1|)))) (-15 -3442 ((-585 (-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|))))) (-585 (-585 |#1|)) (-585 (-1163 |#1|)))) (-15 -1591 ((-3 (-1163 |#1|) "failed") (-625 |#1|) (-1163 |#1|))) (-15 -3698 ((-108) (-625 |#1|) (-1163 |#1|))) (-15 -3229 ((-705) (-625 |#1|) (-1163 |#1|)))) +((-3442 (((-585 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2070 (-585 |#3|)))) |#4| (-585 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2070 (-585 |#3|))) |#4| |#3|) 45)) (-3229 (((-705) |#4| |#3|) 17)) (-1591 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3698 (((-108) |#4| |#3|) 13))) +(((-607 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3442 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2070 (-585 |#3|))) |#4| |#3|)) (-15 -3442 ((-585 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2070 (-585 |#3|)))) |#4| (-585 |#3|))) (-15 -1591 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3698 ((-108) |#4| |#3|)) (-15 -3229 ((-705) |#4| |#3|))) (-335) (-13 (-345 |#1|) (-10 -7 (-6 -4222))) (-13 (-345 |#1|) (-10 -7 (-6 -4222))) (-623 |#1| |#2| |#3|)) (T -607)) +((-3229 (*1 *2 *3 *4) (-12 (-4 *5 (-335)) (-4 *6 (-13 (-345 *5) (-10 -7 (-6 -4222)))) (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4222)))) (-5 *2 (-705)) (-5 *1 (-607 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4)))) (-3698 (*1 *2 *3 *4) (-12 (-4 *5 (-335)) (-4 *6 (-13 (-345 *5) (-10 -7 (-6 -4222)))) (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4222)))) (-5 *2 (-108)) (-5 *1 (-607 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4)))) (-1591 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-335)) (-4 *5 (-13 (-345 *4) (-10 -7 (-6 -4222)))) (-4 *2 (-13 (-345 *4) (-10 -7 (-6 -4222)))) (-5 *1 (-607 *4 *5 *2 *3)) (-4 *3 (-623 *4 *5 *2)))) (-3442 (*1 *2 *3 *4) (-12 (-4 *5 (-335)) (-4 *6 (-13 (-345 *5) (-10 -7 (-6 -4222)))) (-4 *7 (-13 (-345 *5) (-10 -7 (-6 -4222)))) (-5 *2 (-585 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2070 (-585 *7))))) (-5 *1 (-607 *5 *6 *7 *3)) (-5 *4 (-585 *7)) (-4 *3 (-623 *5 *6 *7)))) (-3442 (*1 *2 *3 *4) (-12 (-4 *5 (-335)) (-4 *6 (-13 (-345 *5) (-10 -7 (-6 -4222)))) (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4222)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) (-5 *1 (-607 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4))))) +(-10 -7 (-15 -3442 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2070 (-585 |#3|))) |#4| |#3|)) (-15 -3442 ((-585 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2070 (-585 |#3|)))) |#4| (-585 |#3|))) (-15 -1591 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3698 ((-108) |#4| |#3|)) (-15 -3229 ((-705) |#4| |#3|))) +((-2763 (((-2 (|:| |particular| (-3 (-1163 (-379 |#4|)) "failed")) (|:| -2070 (-585 (-1163 (-379 |#4|))))) (-585 |#4|) (-585 |#3|)) 45))) +(((-608 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2763 ((-2 (|:| |particular| (-3 (-1163 (-379 |#4|)) "failed")) (|:| -2070 (-585 (-1163 (-379 |#4|))))) (-585 |#4|) (-585 |#3|)))) (-511) (-727) (-782) (-876 |#1| |#2| |#3|)) (T -608)) +((-2763 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *7)) (-4 *7 (-782)) (-4 *8 (-876 *5 *6 *7)) (-4 *5 (-511)) (-4 *6 (-727)) (-5 *2 (-2 (|:| |particular| (-3 (-1163 (-379 *8)) "failed")) (|:| -2070 (-585 (-1163 (-379 *8)))))) (-5 *1 (-608 *5 *6 *7 *8))))) +(-10 -7 (-15 -2763 ((-2 (|:| |particular| (-3 (-1163 (-379 |#4|)) "failed")) (|:| -2070 (-585 (-1163 (-379 |#4|))))) (-585 |#4|) (-585 |#3|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3307 (((-3 $ "failed")) NIL (|has| |#2| (-511)))) (-1871 ((|#2| $) NIL)) (-3411 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2329 (((-1163 (-625 |#2|))) NIL) (((-1163 (-625 |#2|)) (-1163 $)) NIL)) (-1413 (((-108) $) NIL)) (-2729 (((-1163 $)) 37)) (-1473 (((-108) $ (-705)) NIL)) (-1889 (($ |#2|) NIL)) (-2249 (($) NIL T CONST)) (-3196 (($ $) NIL (|has| |#2| (-280)))) (-4159 (((-216 |#1| |#2|) $ (-519)) NIL)) (-3689 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) NIL (|has| |#2| (-511)))) (-1483 (((-3 $ "failed")) NIL (|has| |#2| (-511)))) (-3999 (((-625 |#2|)) NIL) (((-625 |#2|) (-1163 $)) NIL)) (-4172 ((|#2| $) NIL)) (-3447 (((-625 |#2|) $) NIL) (((-625 |#2|) $ (-1163 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL (|has| |#2| (-511)))) (-4087 (((-1078 (-879 |#2|))) NIL (|has| |#2| (-335)))) (-1588 (($ $ (-848)) NIL)) (-4147 ((|#2| $) NIL)) (-1370 (((-1078 |#2|) $) NIL (|has| |#2| (-511)))) (-2048 ((|#2|) NIL) ((|#2| (-1163 $)) NIL)) (-3055 (((-1078 |#2|) $) NIL)) (-2660 (((-108)) NIL)) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#2| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-3 |#2| "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| |#2| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#2| (-959 (-379 (-519))))) ((|#2| $) NIL)) (-2528 (($ (-1163 |#2|)) NIL) (($ (-1163 |#2|) (-1163 $)) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL) (((-625 |#2|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3229 (((-705) $) NIL (|has| |#2| (-511))) (((-848)) 38)) (-3659 ((|#2| $ (-519) (-519)) NIL)) (-1373 (((-108)) NIL)) (-1432 (($ $ (-848)) NIL)) (-3844 (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1568 (((-108) $) NIL)) (-2518 (((-705) $) NIL (|has| |#2| (-511)))) (-3885 (((-585 (-216 |#1| |#2|)) $) NIL (|has| |#2| (-511)))) (-1426 (((-705) $) NIL)) (-4029 (((-108)) NIL)) (-1437 (((-705) $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2749 ((|#2| $) NIL (|has| |#2| (-6 (-4223 "*"))))) (-4161 (((-519) $) NIL)) (-2918 (((-519) $) NIL)) (-3725 (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-1238 (((-519) $) NIL)) (-2012 (((-519) $) NIL)) (-1377 (($ (-585 (-585 |#2|))) NIL)) (-3850 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2723 (((-585 (-585 |#2|)) $) NIL)) (-2061 (((-108)) NIL)) (-3288 (((-108)) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-3780 (((-3 (-2 (|:| |particular| $) (|:| -2070 (-585 $))) "failed")) NIL (|has| |#2| (-511)))) (-2253 (((-3 $ "failed")) NIL (|has| |#2| (-511)))) (-1684 (((-625 |#2|)) NIL) (((-625 |#2|) (-1163 $)) NIL)) (-3241 ((|#2| $) NIL)) (-3130 (((-625 |#2|) $) NIL) (((-625 |#2|) $ (-1163 $)) NIL)) (-2076 (((-3 $ "failed") $) NIL (|has| |#2| (-511)))) (-3540 (((-1078 (-879 |#2|))) NIL (|has| |#2| (-335)))) (-1341 (($ $ (-848)) NIL)) (-3339 ((|#2| $) NIL)) (-4024 (((-1078 |#2|) $) NIL (|has| |#2| (-511)))) (-3069 ((|#2|) NIL) ((|#2| (-1163 $)) NIL)) (-3978 (((-1078 |#2|) $) NIL)) (-1554 (((-108)) NIL)) (-1266 (((-1065) $) NIL)) (-2618 (((-108)) NIL)) (-3284 (((-108)) NIL)) (-3163 (((-108)) NIL)) (-1452 (((-3 $ "failed") $) NIL (|has| |#2| (-335)))) (-4139 (((-1029) $) NIL)) (-1885 (((-108)) NIL)) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-511)))) (-2379 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#2| $ (-519) (-519) |#2|) NIL) ((|#2| $ (-519) (-519)) 22) ((|#2| $ (-519)) NIL)) (-2181 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-705)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-3619 ((|#2| $) NIL)) (-1757 (($ (-585 |#2|)) NIL)) (-2464 (((-108) $) NIL)) (-1472 (((-216 |#1| |#2|) $) NIL)) (-3406 ((|#2| $) NIL (|has| |#2| (-6 (-4223 "*"))))) (-4155 (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2449 (($ $) NIL)) (-3399 (((-625 |#2|) (-1163 $)) NIL) (((-1163 |#2|) $) NIL) (((-625 |#2|) (-1163 $) (-1163 $)) NIL) (((-1163 |#2|) $ (-1163 $)) 25)) (-1446 (($ (-1163 |#2|)) NIL) (((-1163 |#2|) $) NIL)) (-3842 (((-585 (-879 |#2|))) NIL) (((-585 (-879 |#2|)) (-1163 $)) NIL)) (-3190 (($ $ $) NIL)) (-2553 (((-108)) NIL)) (-3067 (((-216 |#1| |#2|) $ (-519)) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ (-379 (-519))) NIL (|has| |#2| (-959 (-379 (-519))))) (($ |#2|) NIL) (((-625 |#2|) $) NIL)) (-3594 (((-705)) NIL)) (-2070 (((-1163 $)) 36)) (-2219 (((-585 (-1163 |#2|))) NIL (|has| |#2| (-511)))) (-3645 (($ $ $ $) NIL)) (-1801 (((-108)) NIL)) (-1627 (($ (-625 |#2|) $) NIL)) (-1778 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-3238 (((-108) $) NIL)) (-2025 (($ $ $) NIL)) (-3547 (((-108)) NIL)) (-1345 (((-108)) NIL)) (-3328 (((-108)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-705)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ |#2|) NIL (|has| |#2| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#2| (-335)))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-216 |#1| |#2|) $ (-216 |#1| |#2|)) NIL) (((-216 |#1| |#2|) (-216 |#1| |#2|) $) NIL)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-609 |#1| |#2|) (-13 (-1032 |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) (-559 (-625 |#2|)) (-389 |#2|)) (-848) (-157)) (T -609)) +NIL +(-13 (-1032 |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) (-559 (-625 |#2|)) (-389 |#2|)) +((-1430 (((-108) $ $) NIL)) (-4096 (((-585 |#1|) $) NIL)) (-1931 (($ $) 51)) (-2465 (((-108) $) NIL)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-2599 (((-3 $ "failed") (-754 |#1|)) 23)) (-3461 (((-108) (-754 |#1|)) 15)) (-1752 (($ (-754 |#1|)) 24)) (-1493 (((-108) $ $) 29)) (-2568 (((-848) $) 36)) (-1917 (($ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1921 (((-585 $) (-754 |#1|)) 17)) (-2217 (((-790) $) 42) (($ |#1|) 33) (((-754 |#1|) $) 38) (((-614 |#1|) $) 43)) (-3853 (((-57 (-585 $)) (-585 |#1|) (-848)) 56)) (-3140 (((-585 $) (-585 |#1|) (-848)) 58)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 52)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 37))) +(((-610 |#1|) (-13 (-782) (-959 |#1|) (-10 -8 (-15 -2465 ((-108) $)) (-15 -1917 ($ $)) (-15 -1931 ($ $)) (-15 -2568 ((-848) $)) (-15 -1493 ((-108) $ $)) (-15 -2217 ((-754 |#1|) $)) (-15 -2217 ((-614 |#1|) $)) (-15 -1921 ((-585 $) (-754 |#1|))) (-15 -3461 ((-108) (-754 |#1|))) (-15 -1752 ($ (-754 |#1|))) (-15 -2599 ((-3 $ "failed") (-754 |#1|))) (-15 -4096 ((-585 |#1|) $)) (-15 -3853 ((-57 (-585 $)) (-585 |#1|) (-848))) (-15 -3140 ((-585 $) (-585 |#1|) (-848))))) (-782)) (T -610)) +((-2465 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) (-1917 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-782)))) (-1931 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-782)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) (-1493 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-754 *3)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-754 *4)) (-4 *4 (-782)) (-5 *2 (-585 (-610 *4))) (-5 *1 (-610 *4)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-754 *4)) (-4 *4 (-782)) (-5 *2 (-108)) (-5 *1 (-610 *4)))) (-1752 (*1 *1 *2) (-12 (-5 *2 (-754 *3)) (-4 *3 (-782)) (-5 *1 (-610 *3)))) (-2599 (*1 *1 *2) (|partial| -12 (-5 *2 (-754 *3)) (-4 *3 (-782)) (-5 *1 (-610 *3)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-848)) (-4 *5 (-782)) (-5 *2 (-57 (-585 (-610 *5)))) (-5 *1 (-610 *5)))) (-3140 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-848)) (-4 *5 (-782)) (-5 *2 (-585 (-610 *5))) (-5 *1 (-610 *5))))) +(-13 (-782) (-959 |#1|) (-10 -8 (-15 -2465 ((-108) $)) (-15 -1917 ($ $)) (-15 -1931 ($ $)) (-15 -2568 ((-848) $)) (-15 -1493 ((-108) $ $)) (-15 -2217 ((-754 |#1|) $)) (-15 -2217 ((-614 |#1|) $)) (-15 -1921 ((-585 $) (-754 |#1|))) (-15 -3461 ((-108) (-754 |#1|))) (-15 -1752 ($ (-754 |#1|))) (-15 -2599 ((-3 $ "failed") (-754 |#1|))) (-15 -4096 ((-585 |#1|) $)) (-15 -3853 ((-57 (-585 $)) (-585 |#1|) (-848))) (-15 -3140 ((-585 $) (-585 |#1|) (-848))))) +((-3493 ((|#2| $) 76)) (-3847 (($ $) 96)) (-1473 (((-108) $ (-705)) 26)) (-2343 (($ $) 85) (($ $ (-705)) 88)) (-2303 (((-108) $) 97)) (-3393 (((-585 $) $) 72)) (-3458 (((-108) $ $) 71)) (-3878 (((-108) $ (-705)) 24)) (-2737 (((-519) $) 46)) (-3890 (((-519) $) 45)) (-2768 (((-108) $ (-705)) 22)) (-1668 (((-108) $) 74)) (-1457 ((|#2| $) 89) (($ $ (-705)) 92)) (-1672 (($ $ $ (-519)) 62) (($ |#2| $ (-519)) 61)) (-3909 (((-585 (-519)) $) 44)) (-1506 (((-108) (-519) $) 42)) (-2331 ((|#2| $) NIL) (($ $ (-705)) 84)) (-3881 (($ $ (-519)) 100)) (-3664 (((-108) $) 99)) (-2379 (((-108) (-1 (-108) |#2|) $) 32)) (-2222 (((-585 |#2|) $) 33)) (-2598 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1130 (-519))) 58) ((|#2| $ (-519)) 40) ((|#2| $ (-519) |#2|) 41)) (-1763 (((-519) $ $) 70)) (-3720 (($ $ (-1130 (-519))) 57) (($ $ (-519)) 51)) (-3096 (((-108) $) 66)) (-1407 (($ $) 81)) (-2067 (((-705) $) 80)) (-3376 (($ $) 79)) (-2228 (($ (-585 |#2|)) 37)) (-1508 (($ $) 101)) (-2018 (((-585 $) $) 69)) (-2915 (((-108) $ $) 68)) (-1778 (((-108) (-1 (-108) |#2|) $) 31)) (-1543 (((-108) $ $) 18)) (-3532 (((-705) $) 29))) +(((-611 |#1| |#2|) (-10 -8 (-15 -1508 (|#1| |#1|)) (-15 -3881 (|#1| |#1| (-519))) (-15 -2303 ((-108) |#1|)) (-15 -3664 ((-108) |#1|)) (-15 -2598 (|#2| |#1| (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519))) (-15 -2222 ((-585 |#2|) |#1|)) (-15 -1506 ((-108) (-519) |#1|)) (-15 -3909 ((-585 (-519)) |#1|)) (-15 -3890 ((-519) |#1|)) (-15 -2737 ((-519) |#1|)) (-15 -2228 (|#1| (-585 |#2|))) (-15 -2598 (|#1| |#1| (-1130 (-519)))) (-15 -3720 (|#1| |#1| (-519))) (-15 -3720 (|#1| |#1| (-1130 (-519)))) (-15 -1672 (|#1| |#2| |#1| (-519))) (-15 -1672 (|#1| |#1| |#1| (-519))) (-15 -1407 (|#1| |#1|)) (-15 -2067 ((-705) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1457 (|#1| |#1| (-705))) (-15 -2598 (|#2| |#1| "last")) (-15 -1457 (|#2| |#1|)) (-15 -2343 (|#1| |#1| (-705))) (-15 -2598 (|#1| |#1| "rest")) (-15 -2343 (|#1| |#1|)) (-15 -2331 (|#1| |#1| (-705))) (-15 -2598 (|#2| |#1| "first")) (-15 -2331 (|#2| |#1|)) (-15 -3458 ((-108) |#1| |#1|)) (-15 -2915 ((-108) |#1| |#1|)) (-15 -1763 ((-519) |#1| |#1|)) (-15 -3096 ((-108) |#1|)) (-15 -2598 (|#2| |#1| "value")) (-15 -3493 (|#2| |#1|)) (-15 -1668 ((-108) |#1|)) (-15 -3393 ((-585 |#1|) |#1|)) (-15 -2018 ((-585 |#1|) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -2379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3532 ((-705) |#1|)) (-15 -1473 ((-108) |#1| (-705))) (-15 -3878 ((-108) |#1| (-705))) (-15 -2768 ((-108) |#1| (-705)))) (-612 |#2|) (-1117)) (T -611)) +NIL +(-10 -8 (-15 -1508 (|#1| |#1|)) (-15 -3881 (|#1| |#1| (-519))) (-15 -2303 ((-108) |#1|)) (-15 -3664 ((-108) |#1|)) (-15 -2598 (|#2| |#1| (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519))) (-15 -2222 ((-585 |#2|) |#1|)) (-15 -1506 ((-108) (-519) |#1|)) (-15 -3909 ((-585 (-519)) |#1|)) (-15 -3890 ((-519) |#1|)) (-15 -2737 ((-519) |#1|)) (-15 -2228 (|#1| (-585 |#2|))) (-15 -2598 (|#1| |#1| (-1130 (-519)))) (-15 -3720 (|#1| |#1| (-519))) (-15 -3720 (|#1| |#1| (-1130 (-519)))) (-15 -1672 (|#1| |#2| |#1| (-519))) (-15 -1672 (|#1| |#1| |#1| (-519))) (-15 -1407 (|#1| |#1|)) (-15 -2067 ((-705) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1457 (|#1| |#1| (-705))) (-15 -2598 (|#2| |#1| "last")) (-15 -1457 (|#2| |#1|)) (-15 -2343 (|#1| |#1| (-705))) (-15 -2598 (|#1| |#1| "rest")) (-15 -2343 (|#1| |#1|)) (-15 -2331 (|#1| |#1| (-705))) (-15 -2598 (|#2| |#1| "first")) (-15 -2331 (|#2| |#1|)) (-15 -3458 ((-108) |#1| |#1|)) (-15 -2915 ((-108) |#1| |#1|)) (-15 -1763 ((-519) |#1| |#1|)) (-15 -3096 ((-108) |#1|)) (-15 -2598 (|#2| |#1| "value")) (-15 -3493 (|#2| |#1|)) (-15 -1668 ((-108) |#1|)) (-15 -3393 ((-585 |#1|) |#1|)) (-15 -2018 ((-585 |#1|) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -2379 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3532 ((-705) |#1|)) (-15 -1473 ((-108) |#1| (-705))) (-15 -3878 ((-108) |#1| (-705))) (-15 -2768 ((-108) |#1| (-705)))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3493 ((|#1| $) 48)) (-2111 ((|#1| $) 65)) (-3847 (($ $) 67)) (-1583 (((-1168) $ (-519) (-519)) 97 (|has| $ (-6 -4222)))) (-2258 (($ $ (-519)) 52 (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) 8)) (-2410 ((|#1| $ |#1|) 39 (|has| $ (-6 -4222)))) (-1440 (($ $ $) 56 (|has| $ (-6 -4222)))) (-1907 ((|#1| $ |#1|) 54 (|has| $ (-6 -4222)))) (-2692 ((|#1| $ |#1|) 58 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4222))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4222))) (($ $ "rest" $) 55 (|has| $ (-6 -4222))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) 117 (|has| $ (-6 -4222))) ((|#1| $ (-519) |#1|) 86 (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) 41 (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) 102)) (-2098 ((|#1| $) 66)) (-2249 (($) 7 T CONST)) (-3332 (($ $) 124)) (-2343 (($ $) 73) (($ $ (-705)) 71)) (-2366 (($ $) 99 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#1| $) 100 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 103)) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3865 ((|#1| $ (-519) |#1|) 85 (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) 87)) (-2303 (((-108) $) 83)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-1496 (((-705) $) 123)) (-3393 (((-585 $) $) 50)) (-3458 (((-108) $ $) 42 (|has| |#1| (-1011)))) (-1822 (($ (-705) |#1|) 108)) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 95 (|has| (-519) (-782)))) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 94 (|has| (-519) (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2768 (((-108) $ (-705)) 10)) (-1281 (((-585 |#1|) $) 45)) (-1668 (((-108) $) 49)) (-3396 (($ $) 126)) (-3969 (((-108) $) 127)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1457 ((|#1| $) 70) (($ $ (-705)) 68)) (-1672 (($ $ $ (-519)) 116) (($ |#1| $ (-519)) 115)) (-3909 (((-585 (-519)) $) 92)) (-1506 (((-108) (-519) $) 91)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2348 ((|#1| $) 125)) (-2331 ((|#1| $) 76) (($ $ (-705)) 74)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-3640 (($ $ |#1|) 96 (|has| $ (-6 -4222)))) (-3881 (($ $ (-519)) 122)) (-3664 (((-108) $) 84)) (-3918 (((-108) $) 128)) (-3631 (((-108) $) 129)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) 90)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1130 (-519))) 112) ((|#1| $ (-519)) 89) ((|#1| $ (-519) |#1|) 88)) (-1763 (((-519) $ $) 44)) (-3720 (($ $ (-1130 (-519))) 114) (($ $ (-519)) 113)) (-3096 (((-108) $) 46)) (-1407 (($ $) 62)) (-2434 (($ $) 59 (|has| $ (-6 -4222)))) (-2067 (((-705) $) 63)) (-3376 (($ $) 64)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 98 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 107)) (-3954 (($ $ $) 61 (|has| $ (-6 -4222))) (($ $ |#1|) 60 (|has| $ (-6 -4222)))) (-4150 (($ $ $) 78) (($ |#1| $) 77) (($ (-585 $)) 110) (($ $ |#1|) 109)) (-1508 (($ $) 121)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) 51)) (-2915 (((-108) $ $) 43 (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-612 |#1|) (-1194) (-1117)) (T -612)) +((-1438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-612 *3)) (-4 *3 (-1117)))) (-1640 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-612 *3)) (-4 *3 (-1117)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1117)) (-5 *2 (-108)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1117)) (-5 *2 (-108)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1117)) (-5 *2 (-108)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1117)))) (-2348 (*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1117)))) (-3332 (*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1117)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1117)) (-5 *2 (-705)))) (-3881 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-612 *3)) (-4 *3 (-1117)))) (-1508 (*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1117))))) +(-13 (-1056 |t#1|) (-10 -8 (-15 -1438 ($ (-1 (-108) |t#1|) $)) (-15 -1640 ($ (-1 (-108) |t#1|) $)) (-15 -3631 ((-108) $)) (-15 -3918 ((-108) $)) (-15 -3969 ((-108) $)) (-15 -3396 ($ $)) (-15 -2348 (|t#1| $)) (-15 -3332 ($ $)) (-15 -1496 ((-705) $)) (-15 -3881 ($ $ (-519))) (-15 -1508 ($ $)))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-260 #0=(-519) |#1|) . T) ((-262 #0# |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-552 #0# |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-590 |#1|) . T) ((-933 |#1|) . T) ((-1011) |has| |#1| (-1011)) ((-1056 |#1|) . T) ((-1117) . T) ((-1151 |#1|) . T)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1549 (($ (-705) (-705) (-705)) 34 (|has| |#1| (-968)))) (-1473 (((-108) $ (-705)) NIL)) (-1894 ((|#1| $ (-705) (-705) (-705) |#1|) 29)) (-2249 (($) NIL T CONST)) (-2443 (($ $ $) 38 (|has| |#1| (-968)))) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-4149 (((-1163 (-705)) $) 10)) (-1836 (($ (-1082) $ $) 24)) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1330 (($ (-705)) 36 (|has| |#1| (-968)))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ (-705) (-705) (-705)) 27)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-2228 (($ (-585 (-585 (-585 |#1|)))) 45)) (-2217 (($ (-884 (-884 (-884 |#1|)))) 17) (((-884 (-884 (-884 |#1|))) $) 14) (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-613 |#1|) (-13 (-458 |#1|) (-10 -8 (IF (|has| |#1| (-968)) (PROGN (-15 -1549 ($ (-705) (-705) (-705))) (-15 -1330 ($ (-705))) (-15 -2443 ($ $ $))) |%noBranch|) (-15 -2228 ($ (-585 (-585 (-585 |#1|))))) (-15 -2598 (|#1| $ (-705) (-705) (-705))) (-15 -1894 (|#1| $ (-705) (-705) (-705) |#1|)) (-15 -2217 ($ (-884 (-884 (-884 |#1|))))) (-15 -2217 ((-884 (-884 (-884 |#1|))) $)) (-15 -1836 ($ (-1082) $ $)) (-15 -4149 ((-1163 (-705)) $)))) (-1011)) (T -613)) +((-1549 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-705)) (-5 *1 (-613 *3)) (-4 *3 (-968)) (-4 *3 (-1011)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-613 *3)) (-4 *3 (-968)) (-4 *3 (-1011)))) (-2443 (*1 *1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-968)) (-4 *2 (-1011)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-585 *3)))) (-4 *3 (-1011)) (-5 *1 (-613 *3)))) (-2598 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-705)) (-5 *1 (-613 *2)) (-4 *2 (-1011)))) (-1894 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-613 *2)) (-4 *2 (-1011)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-884 (-884 (-884 *3)))) (-4 *3 (-1011)) (-5 *1 (-613 *3)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-884 (-884 (-884 *3)))) (-5 *1 (-613 *3)) (-4 *3 (-1011)))) (-1836 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-613 *3)) (-4 *3 (-1011)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-1163 (-705))) (-5 *1 (-613 *3)) (-4 *3 (-1011))))) +(-13 (-458 |#1|) (-10 -8 (IF (|has| |#1| (-968)) (PROGN (-15 -1549 ($ (-705) (-705) (-705))) (-15 -1330 ($ (-705))) (-15 -2443 ($ $ $))) |%noBranch|) (-15 -2228 ($ (-585 (-585 (-585 |#1|))))) (-15 -2598 (|#1| $ (-705) (-705) (-705))) (-15 -1894 (|#1| $ (-705) (-705) (-705) |#1|)) (-15 -2217 ($ (-884 (-884 (-884 |#1|))))) (-15 -2217 ((-884 (-884 (-884 |#1|))) $)) (-15 -1836 ($ (-1082) $ $)) (-15 -4149 ((-1163 (-705)) $)))) +((-1430 (((-108) $ $) NIL)) (-4096 (((-585 |#1|) $) 14)) (-1931 (($ $) 18)) (-2465 (((-108) $) 19)) (-1301 (((-3 |#1| "failed") $) 22)) (-1499 ((|#1| $) 20)) (-2343 (($ $) 36)) (-2260 (($ $) 24)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1493 (((-108) $ $) 42)) (-2568 (((-848) $) 38)) (-1917 (($ $) 17)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 ((|#1| $) 35)) (-2217 (((-790) $) 31) (($ |#1|) 23) (((-754 |#1|) $) 27)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 12)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 40)) (* (($ $ $) 34))) +(((-614 |#1|) (-13 (-782) (-959 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2217 ((-754 |#1|) $)) (-15 -2331 (|#1| $)) (-15 -1917 ($ $)) (-15 -2568 ((-848) $)) (-15 -1493 ((-108) $ $)) (-15 -2260 ($ $)) (-15 -2343 ($ $)) (-15 -2465 ((-108) $)) (-15 -1931 ($ $)) (-15 -4096 ((-585 |#1|) $)))) (-782)) (T -614)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-754 *3)) (-5 *1 (-614 *3)) (-4 *3 (-782)))) (-2331 (*1 *2 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) (-1917 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-614 *3)) (-4 *3 (-782)))) (-1493 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-782)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) (-2343 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-782)))) (-1931 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-614 *3)) (-4 *3 (-782))))) +(-13 (-782) (-959 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2217 ((-754 |#1|) $)) (-15 -2331 (|#1| $)) (-15 -1917 ($ $)) (-15 -2568 ((-848) $)) (-15 -1493 ((-108) $ $)) (-15 -2260 ($ $)) (-15 -2343 ($ $)) (-15 -2465 ((-108) $)) (-15 -1931 ($ $)) (-15 -4096 ((-585 |#1|) $)))) +((-3759 ((|#1| (-1 |#1| (-705) |#1|) (-705) |#1|) 11)) (-3268 ((|#1| (-1 |#1| |#1|) (-705) |#1|) 9))) +(((-615 |#1|) (-10 -7 (-15 -3268 (|#1| (-1 |#1| |#1|) (-705) |#1|)) (-15 -3759 (|#1| (-1 |#1| (-705) |#1|) (-705) |#1|))) (-1011)) (T -615)) +((-3759 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-705) *2)) (-5 *4 (-705)) (-4 *2 (-1011)) (-5 *1 (-615 *2)))) (-3268 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-705)) (-4 *2 (-1011)) (-5 *1 (-615 *2))))) +(-10 -7 (-15 -3268 (|#1| (-1 |#1| |#1|) (-705) |#1|)) (-15 -3759 (|#1| (-1 |#1| (-705) |#1|) (-705) |#1|))) +((-4089 ((|#2| |#1| |#2|) 9)) (-4074 ((|#1| |#1| |#2|) 8))) +(((-616 |#1| |#2|) (-10 -7 (-15 -4074 (|#1| |#1| |#2|)) (-15 -4089 (|#2| |#1| |#2|))) (-1011) (-1011)) (T -616)) +((-4089 (*1 *2 *3 *2) (-12 (-5 *1 (-616 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011)))) (-4074 (*1 *2 *2 *3) (-12 (-5 *1 (-616 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011))))) +(-10 -7 (-15 -4074 (|#1| |#1| |#2|)) (-15 -4089 (|#2| |#1| |#2|))) +((-3623 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-617 |#1| |#2| |#3|) (-10 -7 (-15 -3623 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1011) (-1011) (-1011)) (T -617)) +((-3623 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011)) (-5 *1 (-617 *5 *6 *2))))) +(-10 -7 (-15 -3623 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3759 (((-1 |#1| (-705) |#1|) (-1 |#1| (-705) |#1|)) 23)) (-3740 (((-1 |#1|) |#1|) 8)) (-1794 ((|#1| |#1|) 16)) (-2820 (((-585 |#1|) (-1 (-585 |#1|) (-585 |#1|)) (-519)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2217 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-705)) 20))) +(((-618 |#1|) (-10 -7 (-15 -3740 ((-1 |#1|) |#1|)) (-15 -2217 ((-1 |#1|) |#1|)) (-15 -2820 (|#1| (-1 |#1| |#1|))) (-15 -2820 ((-585 |#1|) (-1 (-585 |#1|) (-585 |#1|)) (-519))) (-15 -1794 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-705))) (-15 -3759 ((-1 |#1| (-705) |#1|) (-1 |#1| (-705) |#1|)))) (-1011)) (T -618)) +((-3759 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-705) *3)) (-4 *3 (-1011)) (-5 *1 (-618 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-705)) (-4 *4 (-1011)) (-5 *1 (-618 *4)))) (-1794 (*1 *2 *2) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1011)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-585 *5) (-585 *5))) (-5 *4 (-519)) (-5 *2 (-585 *5)) (-5 *1 (-618 *5)) (-4 *5 (-1011)))) (-2820 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-618 *2)) (-4 *2 (-1011)))) (-2217 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1011)))) (-3740 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1011))))) +(-10 -7 (-15 -3740 ((-1 |#1|) |#1|)) (-15 -2217 ((-1 |#1|) |#1|)) (-15 -2820 (|#1| (-1 |#1| |#1|))) (-15 -2820 ((-585 |#1|) (-1 (-585 |#1|) (-585 |#1|)) (-519))) (-15 -1794 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-705))) (-15 -3759 ((-1 |#1| (-705) |#1|) (-1 |#1| (-705) |#1|)))) +((-2090 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2860 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2730 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3880 (((-1 |#2| |#1|) |#2|) 11))) +(((-619 |#1| |#2|) (-10 -7 (-15 -3880 ((-1 |#2| |#1|) |#2|)) (-15 -2860 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2730 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2090 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1011) (-1011)) (T -619)) +((-2090 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-5 *2 (-1 *5 *4)) (-5 *1 (-619 *4 *5)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1011)) (-5 *2 (-1 *5 *4)) (-5 *1 (-619 *4 *5)) (-4 *4 (-1011)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-5 *2 (-1 *5)) (-5 *1 (-619 *4 *5)))) (-3880 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-619 *4 *3)) (-4 *4 (-1011)) (-4 *3 (-1011))))) +(-10 -7 (-15 -3880 ((-1 |#2| |#1|) |#2|)) (-15 -2860 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2730 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2090 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2720 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2124 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4004 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4166 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4138 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-620 |#1| |#2| |#3|) (-10 -7 (-15 -2124 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4004 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4166 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4138 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2720 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1011) (-1011) (-1011)) (T -620)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-1 *7 *5)) (-5 *1 (-620 *5 *6 *7)))) (-2720 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-620 *4 *5 *6)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-620 *4 *5 *6)) (-4 *4 (-1011)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1011)) (-4 *6 (-1011)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-620 *4 *5 *6)) (-4 *5 (-1011)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *4 *5 *6)))) (-2124 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1011)) (-4 *4 (-1011)) (-4 *6 (-1011)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *4 *6))))) +(-10 -7 (-15 -2124 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4004 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4166 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4138 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2720 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3874 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1405 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-621 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1405 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1405 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3874 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-968) (-345 |#1|) (-345 |#1|) (-623 |#1| |#2| |#3|) (-968) (-345 |#5|) (-345 |#5|) (-623 |#5| |#6| |#7|)) (T -621)) +((-3874 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-968)) (-4 *2 (-968)) (-4 *6 (-345 *5)) (-4 *7 (-345 *5)) (-4 *8 (-345 *2)) (-4 *9 (-345 *2)) (-5 *1 (-621 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-623 *5 *6 *7)) (-4 *10 (-623 *2 *8 *9)))) (-1405 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-968)) (-4 *8 (-968)) (-4 *6 (-345 *5)) (-4 *7 (-345 *5)) (-4 *2 (-623 *8 *9 *10)) (-5 *1 (-621 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-623 *5 *6 *7)) (-4 *9 (-345 *8)) (-4 *10 (-345 *8)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-968)) (-4 *8 (-968)) (-4 *6 (-345 *5)) (-4 *7 (-345 *5)) (-4 *2 (-623 *8 *9 *10)) (-5 *1 (-621 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-623 *5 *6 *7)) (-4 *9 (-345 *8)) (-4 *10 (-345 *8))))) +(-10 -7 (-15 -1405 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1405 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3874 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3535 (($ (-705) (-705)) 32)) (-2339 (($ $ $) 55)) (-3635 (($ |#3|) 51) (($ $) 52)) (-3411 (((-108) $) 27)) (-3273 (($ $ (-519) (-519)) 57)) (-3991 (($ $ (-519) (-519)) 58)) (-3432 (($ $ (-519) (-519) (-519) (-519)) 62)) (-3166 (($ $) 53)) (-1413 (((-108) $) 14)) (-3515 (($ $ (-519) (-519) $) 63)) (-2421 ((|#2| $ (-519) (-519) |#2|) NIL) (($ $ (-585 (-519)) (-585 (-519)) $) 61)) (-1889 (($ (-705) |#2|) 37)) (-1377 (($ (-585 (-585 |#2|))) 35)) (-2723 (((-585 (-585 |#2|)) $) 56)) (-3627 (($ $ $) 54)) (-2261 (((-3 $ "failed") $ |#2|) 90)) (-2598 ((|#2| $ (-519) (-519)) NIL) ((|#2| $ (-519) (-519) |#2|) NIL) (($ $ (-585 (-519)) (-585 (-519))) 60)) (-1757 (($ (-585 |#2|)) 39) (($ (-585 $)) 41)) (-2464 (((-108) $) 24)) (-2217 (($ |#4|) 46) (((-790) $) NIL)) (-3238 (((-108) $) 29)) (-1632 (($ $ |#2|) 92)) (-1623 (($ $ $) 67) (($ $) 70)) (-1614 (($ $ $) 65)) (** (($ $ (-705)) 79) (($ $ (-519)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-519) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87))) +(((-622 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2217 ((-790) |#1|)) (-15 ** (|#1| |#1| (-519))) (-15 -1632 (|#1| |#1| |#2|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-705))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -3515 (|#1| |#1| (-519) (-519) |#1|)) (-15 -3432 (|#1| |#1| (-519) (-519) (-519) (-519))) (-15 -3991 (|#1| |#1| (-519) (-519))) (-15 -3273 (|#1| |#1| (-519) (-519))) (-15 -2421 (|#1| |#1| (-585 (-519)) (-585 (-519)) |#1|)) (-15 -2598 (|#1| |#1| (-585 (-519)) (-585 (-519)))) (-15 -2723 ((-585 (-585 |#2|)) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -3627 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3635 (|#1| |#3|)) (-15 -2217 (|#1| |#4|)) (-15 -1757 (|#1| (-585 |#1|))) (-15 -1757 (|#1| (-585 |#2|))) (-15 -1889 (|#1| (-705) |#2|)) (-15 -1377 (|#1| (-585 (-585 |#2|)))) (-15 -3535 (|#1| (-705) (-705))) (-15 -3238 ((-108) |#1|)) (-15 -3411 ((-108) |#1|)) (-15 -2464 ((-108) |#1|)) (-15 -1413 ((-108) |#1|)) (-15 -2421 (|#2| |#1| (-519) (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519) (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519) (-519)))) (-623 |#2| |#3| |#4|) (-968) (-345 |#2|) (-345 |#2|)) (T -622)) +NIL +(-10 -8 (-15 -2217 ((-790) |#1|)) (-15 ** (|#1| |#1| (-519))) (-15 -1632 (|#1| |#1| |#2|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-705))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -3515 (|#1| |#1| (-519) (-519) |#1|)) (-15 -3432 (|#1| |#1| (-519) (-519) (-519) (-519))) (-15 -3991 (|#1| |#1| (-519) (-519))) (-15 -3273 (|#1| |#1| (-519) (-519))) (-15 -2421 (|#1| |#1| (-585 (-519)) (-585 (-519)) |#1|)) (-15 -2598 (|#1| |#1| (-585 (-519)) (-585 (-519)))) (-15 -2723 ((-585 (-585 |#2|)) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -3627 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3635 (|#1| |#3|)) (-15 -2217 (|#1| |#4|)) (-15 -1757 (|#1| (-585 |#1|))) (-15 -1757 (|#1| (-585 |#2|))) (-15 -1889 (|#1| (-705) |#2|)) (-15 -1377 (|#1| (-585 (-585 |#2|)))) (-15 -3535 (|#1| (-705) (-705))) (-15 -3238 ((-108) |#1|)) (-15 -3411 ((-108) |#1|)) (-15 -2464 ((-108) |#1|)) (-15 -1413 ((-108) |#1|)) (-15 -2421 (|#2| |#1| (-519) (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519) (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519) (-519)))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3535 (($ (-705) (-705)) 97)) (-2339 (($ $ $) 87)) (-3635 (($ |#2|) 91) (($ $) 90)) (-3411 (((-108) $) 99)) (-3273 (($ $ (-519) (-519)) 83)) (-3991 (($ $ (-519) (-519)) 82)) (-3432 (($ $ (-519) (-519) (-519) (-519)) 81)) (-3166 (($ $) 89)) (-1413 (((-108) $) 101)) (-1473 (((-108) $ (-705)) 8)) (-3515 (($ $ (-519) (-519) $) 80)) (-2421 ((|#1| $ (-519) (-519) |#1|) 44) (($ $ (-585 (-519)) (-585 (-519)) $) 84)) (-4054 (($ $ (-519) |#2|) 42)) (-3281 (($ $ (-519) |#3|) 41)) (-1889 (($ (-705) |#1|) 95)) (-2249 (($) 7 T CONST)) (-3196 (($ $) 67 (|has| |#1| (-280)))) (-4159 ((|#2| $ (-519)) 46)) (-3229 (((-705) $) 66 (|has| |#1| (-511)))) (-3865 ((|#1| $ (-519) (-519) |#1|) 43)) (-3659 ((|#1| $ (-519) (-519)) 48)) (-3844 (((-585 |#1|) $) 30)) (-2518 (((-705) $) 65 (|has| |#1| (-511)))) (-3885 (((-585 |#3|) $) 64 (|has| |#1| (-511)))) (-1426 (((-705) $) 51)) (-1822 (($ (-705) (-705) |#1|) 57)) (-1437 (((-705) $) 50)) (-3878 (((-108) $ (-705)) 9)) (-2749 ((|#1| $) 62 (|has| |#1| (-6 (-4223 "*"))))) (-4161 (((-519) $) 55)) (-2918 (((-519) $) 53)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-1238 (((-519) $) 54)) (-2012 (((-519) $) 52)) (-1377 (($ (-585 (-585 |#1|))) 96)) (-3850 (($ (-1 |#1| |#1|) $) 34)) (-1405 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2723 (((-585 (-585 |#1|)) $) 86)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1452 (((-3 $ "failed") $) 61 (|has| |#1| (-335)))) (-3627 (($ $ $) 88)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-3640 (($ $ |#1|) 56)) (-2261 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-511)))) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ (-519) (-519)) 49) ((|#1| $ (-519) (-519) |#1|) 47) (($ $ (-585 (-519)) (-585 (-519))) 85)) (-1757 (($ (-585 |#1|)) 94) (($ (-585 $)) 93)) (-2464 (((-108) $) 100)) (-3406 ((|#1| $) 63 (|has| |#1| (-6 (-4223 "*"))))) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-3067 ((|#3| $ (-519)) 45)) (-2217 (($ |#3|) 92) (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-3238 (((-108) $) 98)) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-1632 (($ $ |#1|) 68 (|has| |#1| (-335)))) (-1623 (($ $ $) 78) (($ $) 77)) (-1614 (($ $ $) 79)) (** (($ $ (-705)) 70) (($ $ (-519)) 60 (|has| |#1| (-335)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-519) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-623 |#1| |#2| |#3|) (-1194) (-968) (-345 |t#1|) (-345 |t#1|)) (T -623)) +((-1413 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-108)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-108)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-108)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-108)))) (-3535 (*1 *1 *2 *2) (-12 (-5 *2 (-705)) (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-1889 (*1 *1 *2 *3) (-12 (-5 *2 (-705)) (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-1757 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-1757 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *2)) (-4 *4 (-345 *3)) (-4 *2 (-345 *3)))) (-3635 (*1 *1 *2) (-12 (-4 *3 (-968)) (-4 *1 (-623 *3 *2 *4)) (-4 *2 (-345 *3)) (-4 *4 (-345 *3)))) (-3635 (*1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)))) (-3166 (*1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)))) (-3627 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)))) (-2339 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-585 (-585 *3))))) (-2598 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-585 (-519))) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-2421 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-585 (-519))) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-3273 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-3991 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-3432 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-3515 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-1614 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)))) (-1623 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)))) (-1623 (*1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-623 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *2 (-345 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-623 *3 *2 *4)) (-4 *3 (-968)) (-4 *2 (-345 *3)) (-4 *4 (-345 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) (-2261 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)) (-4 *2 (-511)))) (-1632 (*1 *1 *1 *2) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)) (-4 *2 (-335)))) (-3196 (*1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)) (-4 *2 (-280)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-4 *3 (-511)) (-5 *2 (-705)))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-4 *3 (-511)) (-5 *2 (-705)))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-4 *3 (-511)) (-5 *2 (-585 *5)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)) (|has| *2 (-6 (-4223 "*"))) (-4 *2 (-968)))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)) (|has| *2 (-6 (-4223 "*"))) (-4 *2 (-968)))) (-1452 (*1 *1 *1) (|partial| -12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)) (-4 *2 (-335)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-4 *3 (-335))))) +(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4222) (-6 -4221) (-15 -1413 ((-108) $)) (-15 -2464 ((-108) $)) (-15 -3411 ((-108) $)) (-15 -3238 ((-108) $)) (-15 -3535 ($ (-705) (-705))) (-15 -1377 ($ (-585 (-585 |t#1|)))) (-15 -1889 ($ (-705) |t#1|)) (-15 -1757 ($ (-585 |t#1|))) (-15 -1757 ($ (-585 $))) (-15 -2217 ($ |t#3|)) (-15 -3635 ($ |t#2|)) (-15 -3635 ($ $)) (-15 -3166 ($ $)) (-15 -3627 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2723 ((-585 (-585 |t#1|)) $)) (-15 -2598 ($ $ (-585 (-519)) (-585 (-519)))) (-15 -2421 ($ $ (-585 (-519)) (-585 (-519)) $)) (-15 -3273 ($ $ (-519) (-519))) (-15 -3991 ($ $ (-519) (-519))) (-15 -3432 ($ $ (-519) (-519) (-519) (-519))) (-15 -3515 ($ $ (-519) (-519) $)) (-15 -1614 ($ $ $)) (-15 -1623 ($ $ $)) (-15 -1623 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-519) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-705))) (IF (|has| |t#1| (-511)) (-15 -2261 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-335)) (-15 -1632 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-280)) (-15 -3196 ($ $)) |%noBranch|) (IF (|has| |t#1| (-511)) (PROGN (-15 -3229 ((-705) $)) (-15 -2518 ((-705) $)) (-15 -3885 ((-585 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4223 "*"))) (PROGN (-15 -3406 (|t#1| $)) (-15 -2749 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-335)) (PROGN (-15 -1452 ((-3 $ "failed") $)) (-15 ** ($ $ (-519)))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-55 |#1| |#2| |#3|) . T) ((-1117) . T)) +((-3196 ((|#4| |#4|) 68 (|has| |#1| (-280)))) (-3229 (((-705) |#4|) 70 (|has| |#1| (-511)))) (-2518 (((-705) |#4|) 72 (|has| |#1| (-511)))) (-3885 (((-585 |#3|) |#4|) 79 (|has| |#1| (-511)))) (-2976 (((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|) 96 (|has| |#1| (-280)))) (-2749 ((|#1| |#4|) 34)) (-1538 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-511)))) (-1452 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-335)))) (-3098 ((|#4| |#4|) 55 (|has| |#1| (-511)))) (-1635 ((|#4| |#4| |#1| (-519) (-519)) 42)) (-3810 ((|#4| |#4| (-519) (-519)) 37)) (-3274 ((|#4| |#4| |#1| (-519) (-519)) 47)) (-3406 ((|#1| |#4|) 74)) (-3275 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-511))))) +(((-624 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3406 (|#1| |#4|)) (-15 -2749 (|#1| |#4|)) (-15 -3810 (|#4| |#4| (-519) (-519))) (-15 -1635 (|#4| |#4| |#1| (-519) (-519))) (-15 -3274 (|#4| |#4| |#1| (-519) (-519))) (IF (|has| |#1| (-511)) (PROGN (-15 -3229 ((-705) |#4|)) (-15 -2518 ((-705) |#4|)) (-15 -3885 ((-585 |#3|) |#4|)) (-15 -3098 (|#4| |#4|)) (-15 -1538 ((-3 |#4| "failed") |#4|)) (-15 -3275 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-280)) (PROGN (-15 -3196 (|#4| |#4|)) (-15 -2976 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-335)) (-15 -1452 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-157) (-345 |#1|) (-345 |#1|) (-623 |#1| |#2| |#3|)) (T -624)) +((-1452 (*1 *2 *2) (|partial| -12 (-4 *3 (-335)) (-4 *3 (-157)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-2976 (*1 *2 *3 *3) (-12 (-4 *3 (-280)) (-4 *3 (-157)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-624 *3 *4 *5 *6)) (-4 *6 (-623 *3 *4 *5)))) (-3196 (*1 *2 *2) (-12 (-4 *3 (-280)) (-4 *3 (-157)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-3275 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *4 (-157)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-1538 (*1 *2 *2) (|partial| -12 (-4 *3 (-511)) (-4 *3 (-157)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-3098 (*1 *2 *2) (-12 (-4 *3 (-511)) (-4 *3 (-157)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-3885 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *4 (-157)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-5 *2 (-585 *6)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-2518 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *4 (-157)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-5 *2 (-705)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-3229 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *4 (-157)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-5 *2 (-705)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-3274 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-519)) (-4 *3 (-157)) (-4 *5 (-345 *3)) (-4 *6 (-345 *3)) (-5 *1 (-624 *3 *5 *6 *2)) (-4 *2 (-623 *3 *5 *6)))) (-1635 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-519)) (-4 *3 (-157)) (-4 *5 (-345 *3)) (-4 *6 (-345 *3)) (-5 *1 (-624 *3 *5 *6 *2)) (-4 *2 (-623 *3 *5 *6)))) (-3810 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-519)) (-4 *4 (-157)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-5 *1 (-624 *4 *5 *6 *2)) (-4 *2 (-623 *4 *5 *6)))) (-2749 (*1 *2 *3) (-12 (-4 *4 (-345 *2)) (-4 *5 (-345 *2)) (-4 *2 (-157)) (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5)))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-345 *2)) (-4 *5 (-345 *2)) (-4 *2 (-157)) (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5))))) +(-10 -7 (-15 -3406 (|#1| |#4|)) (-15 -2749 (|#1| |#4|)) (-15 -3810 (|#4| |#4| (-519) (-519))) (-15 -1635 (|#4| |#4| |#1| (-519) (-519))) (-15 -3274 (|#4| |#4| |#1| (-519) (-519))) (IF (|has| |#1| (-511)) (PROGN (-15 -3229 ((-705) |#4|)) (-15 -2518 ((-705) |#4|)) (-15 -3885 ((-585 |#3|) |#4|)) (-15 -3098 (|#4| |#4|)) (-15 -1538 ((-3 |#4| "failed") |#4|)) (-15 -3275 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-280)) (PROGN (-15 -3196 (|#4| |#4|)) (-15 -2976 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-335)) (-15 -1452 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3535 (($ (-705) (-705)) 45)) (-2339 (($ $ $) NIL)) (-3635 (($ (-1163 |#1|)) NIL) (($ $) NIL)) (-3411 (((-108) $) NIL)) (-3273 (($ $ (-519) (-519)) 12)) (-3991 (($ $ (-519) (-519)) NIL)) (-3432 (($ $ (-519) (-519) (-519) (-519)) NIL)) (-3166 (($ $) NIL)) (-1413 (((-108) $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-3515 (($ $ (-519) (-519) $) NIL)) (-2421 ((|#1| $ (-519) (-519) |#1|) NIL) (($ $ (-585 (-519)) (-585 (-519)) $) NIL)) (-4054 (($ $ (-519) (-1163 |#1|)) NIL)) (-3281 (($ $ (-519) (-1163 |#1|)) NIL)) (-1889 (($ (-705) |#1|) 22)) (-2249 (($) NIL T CONST)) (-3196 (($ $) 30 (|has| |#1| (-280)))) (-4159 (((-1163 |#1|) $ (-519)) NIL)) (-3229 (((-705) $) 32 (|has| |#1| (-511)))) (-3865 ((|#1| $ (-519) (-519) |#1|) 50)) (-3659 ((|#1| $ (-519) (-519)) NIL)) (-3844 (((-585 |#1|) $) NIL)) (-2518 (((-705) $) 34 (|has| |#1| (-511)))) (-3885 (((-585 (-1163 |#1|)) $) 37 (|has| |#1| (-511)))) (-1426 (((-705) $) 20)) (-1822 (($ (-705) (-705) |#1|) NIL)) (-1437 (((-705) $) 21)) (-3878 (((-108) $ (-705)) NIL)) (-2749 ((|#1| $) 28 (|has| |#1| (-6 (-4223 "*"))))) (-4161 (((-519) $) 9)) (-2918 (((-519) $) 10)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1238 (((-519) $) 11)) (-2012 (((-519) $) 46)) (-1377 (($ (-585 (-585 |#1|))) NIL)) (-3850 (($ (-1 |#1| |#1|) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2723 (((-585 (-585 |#1|)) $) 58)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1452 (((-3 $ "failed") $) 41 (|has| |#1| (-335)))) (-3627 (($ $ $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-3640 (($ $ |#1|) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ (-519) (-519)) NIL) ((|#1| $ (-519) (-519) |#1|) NIL) (($ $ (-585 (-519)) (-585 (-519))) NIL)) (-1757 (($ (-585 |#1|)) NIL) (($ (-585 $)) NIL) (($ (-1163 |#1|)) 51)) (-2464 (((-108) $) NIL)) (-3406 ((|#1| $) 26 (|has| |#1| (-6 (-4223 "*"))))) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-1446 (((-495) $) 62 (|has| |#1| (-560 (-495))))) (-3067 (((-1163 |#1|) $ (-519)) NIL)) (-2217 (($ (-1163 |#1|)) NIL) (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3238 (((-108) $) NIL)) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $ $) NIL) (($ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-705)) 23) (($ $ (-519)) 44 (|has| |#1| (-335)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-519) $) NIL) (((-1163 |#1|) $ (-1163 |#1|)) NIL) (((-1163 |#1|) (-1163 |#1|) $) NIL)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-625 |#1|) (-13 (-623 |#1| (-1163 |#1|) (-1163 |#1|)) (-10 -8 (-15 -1757 ($ (-1163 |#1|))) (IF (|has| |#1| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|) (IF (|has| |#1| (-335)) (-15 -1452 ((-3 $ "failed") $)) |%noBranch|))) (-968)) (T -625)) +((-1452 (*1 *1 *1) (|partial| -12 (-5 *1 (-625 *2)) (-4 *2 (-335)) (-4 *2 (-968)))) (-1757 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-968)) (-5 *1 (-625 *3))))) +(-13 (-623 |#1| (-1163 |#1|) (-1163 |#1|)) (-10 -8 (-15 -1757 ($ (-1163 |#1|))) (IF (|has| |#1| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|) (IF (|has| |#1| (-335)) (-15 -1452 ((-3 $ "failed") $)) |%noBranch|))) +((-3663 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|)) 25)) (-2156 (((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|) 21)) (-4169 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-705)) 26)) (-3560 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|)) 14)) (-2750 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|)) 18) (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 16)) (-3012 (((-625 |#1|) (-625 |#1|) |#1| (-625 |#1|)) 20)) (-1398 (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 12)) (** (((-625 |#1|) (-625 |#1|) (-705)) 30))) +(((-626 |#1|) (-10 -7 (-15 -1398 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -3560 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2750 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2750 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -3012 ((-625 |#1|) (-625 |#1|) |#1| (-625 |#1|))) (-15 -2156 ((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|)) (-15 -3663 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -4169 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-705))) (-15 ** ((-625 |#1|) (-625 |#1|) (-705)))) (-968)) (T -626)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-705)) (-4 *4 (-968)) (-5 *1 (-626 *4)))) (-4169 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-705)) (-4 *4 (-968)) (-5 *1 (-626 *4)))) (-3663 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3)))) (-2156 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3)))) (-3012 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3)))) (-2750 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3)))) (-2750 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3)))) (-3560 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3)))) (-1398 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3))))) +(-10 -7 (-15 -1398 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -3560 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2750 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2750 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -3012 ((-625 |#1|) (-625 |#1|) |#1| (-625 |#1|))) (-15 -2156 ((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|)) (-15 -3663 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -4169 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-705))) (-15 ** ((-625 |#1|) (-625 |#1|) (-705)))) +((-1669 ((|#2| |#2| |#4|) 25)) (-3294 (((-625 |#2|) |#3| |#4|) 31)) (-2838 (((-625 |#2|) |#2| |#4|) 30)) (-2139 (((-1163 |#2|) |#2| |#4|) 16)) (-1507 ((|#2| |#3| |#4|) 24)) (-4110 (((-625 |#2|) |#3| |#4| (-705) (-705)) 38)) (-1968 (((-625 |#2|) |#2| |#4| (-705)) 37))) +(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2139 ((-1163 |#2|) |#2| |#4|)) (-15 -1507 (|#2| |#3| |#4|)) (-15 -1669 (|#2| |#2| |#4|)) (-15 -2838 ((-625 |#2|) |#2| |#4|)) (-15 -1968 ((-625 |#2|) |#2| |#4| (-705))) (-15 -3294 ((-625 |#2|) |#3| |#4|)) (-15 -4110 ((-625 |#2|) |#3| |#4| (-705) (-705)))) (-1011) (-827 |#1|) (-345 |#2|) (-13 (-345 |#1|) (-10 -7 (-6 -4221)))) (T -627)) +((-4110 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-705)) (-4 *6 (-1011)) (-4 *7 (-827 *6)) (-5 *2 (-625 *7)) (-5 *1 (-627 *6 *7 *3 *4)) (-4 *3 (-345 *7)) (-4 *4 (-13 (-345 *6) (-10 -7 (-6 -4221)))))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-1011)) (-4 *6 (-827 *5)) (-5 *2 (-625 *6)) (-5 *1 (-627 *5 *6 *3 *4)) (-4 *3 (-345 *6)) (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4221)))))) (-1968 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-705)) (-4 *6 (-1011)) (-4 *3 (-827 *6)) (-5 *2 (-625 *3)) (-5 *1 (-627 *6 *3 *7 *4)) (-4 *7 (-345 *3)) (-4 *4 (-13 (-345 *6) (-10 -7 (-6 -4221)))))) (-2838 (*1 *2 *3 *4) (-12 (-4 *5 (-1011)) (-4 *3 (-827 *5)) (-5 *2 (-625 *3)) (-5 *1 (-627 *5 *3 *6 *4)) (-4 *6 (-345 *3)) (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4221)))))) (-1669 (*1 *2 *2 *3) (-12 (-4 *4 (-1011)) (-4 *2 (-827 *4)) (-5 *1 (-627 *4 *2 *5 *3)) (-4 *5 (-345 *2)) (-4 *3 (-13 (-345 *4) (-10 -7 (-6 -4221)))))) (-1507 (*1 *2 *3 *4) (-12 (-4 *5 (-1011)) (-4 *2 (-827 *5)) (-5 *1 (-627 *5 *2 *3 *4)) (-4 *3 (-345 *2)) (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4221)))))) (-2139 (*1 *2 *3 *4) (-12 (-4 *5 (-1011)) (-4 *3 (-827 *5)) (-5 *2 (-1163 *3)) (-5 *1 (-627 *5 *3 *6 *4)) (-4 *6 (-345 *3)) (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4221))))))) +(-10 -7 (-15 -2139 ((-1163 |#2|) |#2| |#4|)) (-15 -1507 (|#2| |#3| |#4|)) (-15 -1669 (|#2| |#2| |#4|)) (-15 -2838 ((-625 |#2|) |#2| |#4|)) (-15 -1968 ((-625 |#2|) |#2| |#4| (-705))) (-15 -3294 ((-625 |#2|) |#3| |#4|)) (-15 -4110 ((-625 |#2|) |#3| |#4| (-705) (-705)))) +((-2107 (((-2 (|:| |num| (-625 |#1|)) (|:| |den| |#1|)) (-625 |#2|)) 18)) (-3770 ((|#1| (-625 |#2|)) 9)) (-2307 (((-625 |#1|) (-625 |#2|)) 16))) +(((-628 |#1| |#2|) (-10 -7 (-15 -3770 (|#1| (-625 |#2|))) (-15 -2307 ((-625 |#1|) (-625 |#2|))) (-15 -2107 ((-2 (|:| |num| (-625 |#1|)) (|:| |den| |#1|)) (-625 |#2|)))) (-511) (-916 |#1|)) (T -628)) +((-2107 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-916 *4)) (-4 *4 (-511)) (-5 *2 (-2 (|:| |num| (-625 *4)) (|:| |den| *4))) (-5 *1 (-628 *4 *5)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-916 *4)) (-4 *4 (-511)) (-5 *2 (-625 *4)) (-5 *1 (-628 *4 *5)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-916 *2)) (-4 *2 (-511)) (-5 *1 (-628 *2 *4))))) +(-10 -7 (-15 -3770 (|#1| (-625 |#2|))) (-15 -2307 ((-625 |#1|) (-625 |#2|))) (-15 -2107 ((-2 (|:| |num| (-625 |#1|)) (|:| |den| |#1|)) (-625 |#2|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-2935 (((-625 (-634))) NIL) (((-625 (-634)) (-1163 $)) NIL)) (-1871 (((-634) $) NIL)) (-2958 (($ $) NIL (|has| (-634) (-1103)))) (-2823 (($ $) NIL (|has| (-634) (-1103)))) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| (-634) (-321)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-634) (-280)) (|has| (-634) (-836))))) (-4043 (($ $) NIL (-3730 (-12 (|has| (-634) (-280)) (|has| (-634) (-836))) (|has| (-634) (-335))))) (-3093 (((-390 $) $) NIL (-3730 (-12 (|has| (-634) (-280)) (|has| (-634) (-836))) (|has| (-634) (-335))))) (-1934 (($ $) NIL (-12 (|has| (-634) (-925)) (|has| (-634) (-1103))))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-634) (-280)) (|has| (-634) (-836))))) (-3409 (((-108) $ $) NIL (|has| (-634) (-280)))) (-1642 (((-705)) NIL (|has| (-634) (-340)))) (-2934 (($ $) NIL (|has| (-634) (-1103)))) (-2800 (($ $) NIL (|has| (-634) (-1103)))) (-2981 (($ $) NIL (|has| (-634) (-1103)))) (-2844 (($ $) NIL (|has| (-634) (-1103)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL) (((-3 (-634) "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| (-634) (-959 (-379 (-519)))))) (-1499 (((-519) $) NIL) (((-634) $) NIL) (((-379 (-519)) $) NIL (|has| (-634) (-959 (-379 (-519)))))) (-2528 (($ (-1163 (-634))) NIL) (($ (-1163 (-634)) (-1163 $)) NIL)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-634) (-321)))) (-2311 (($ $ $) NIL (|has| (-634) (-280)))) (-3771 (((-625 (-634)) $) NIL) (((-625 (-634)) $ (-1163 $)) NIL)) (-1562 (((-625 (-634)) (-625 $)) NIL) (((-2 (|:| -2488 (-625 (-634))) (|:| |vec| (-1163 (-634)))) (-625 $) (-1163 $)) NIL) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| (-634) (-581 (-519)))) (((-625 (-519)) (-625 $)) NIL (|has| (-634) (-581 (-519))))) (-3874 (((-3 $ "failed") (-379 (-1078 (-634)))) NIL (|has| (-634) (-335))) (($ (-1078 (-634))) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-1944 (((-634) $) 29)) (-1631 (((-3 (-379 (-519)) "failed") $) NIL (|has| (-634) (-504)))) (-2102 (((-108) $) NIL (|has| (-634) (-504)))) (-2506 (((-379 (-519)) $) NIL (|has| (-634) (-504)))) (-3229 (((-848)) NIL)) (-3314 (($) NIL (|has| (-634) (-340)))) (-2286 (($ $ $) NIL (|has| (-634) (-280)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| (-634) (-280)))) (-1625 (($) NIL (|has| (-634) (-321)))) (-4156 (((-108) $) NIL (|has| (-634) (-321)))) (-3824 (($ $) NIL (|has| (-634) (-321))) (($ $ (-705)) NIL (|has| (-634) (-321)))) (-1320 (((-108) $) NIL (-3730 (-12 (|has| (-634) (-280)) (|has| (-634) (-836))) (|has| (-634) (-335))))) (-3322 (((-2 (|:| |r| (-634)) (|:| |phi| (-634))) $) NIL (-12 (|has| (-634) (-977)) (|has| (-634) (-1103))))) (-2888 (($) NIL (|has| (-634) (-1103)))) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (|has| (-634) (-813 (-351)))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (|has| (-634) (-813 (-519))))) (-3709 (((-768 (-848)) $) NIL (|has| (-634) (-321))) (((-848) $) NIL (|has| (-634) (-321)))) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL (-12 (|has| (-634) (-925)) (|has| (-634) (-1103))))) (-3681 (((-634) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| (-634) (-321)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| (-634) (-280)))) (-3437 (((-1078 (-634)) $) NIL (|has| (-634) (-335)))) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1405 (($ (-1 (-634) (-634)) $) NIL)) (-3334 (((-848) $) NIL (|has| (-634) (-340)))) (-1254 (($ $) NIL (|has| (-634) (-1103)))) (-3860 (((-1078 (-634)) $) NIL)) (-2254 (($ (-585 $)) NIL (|has| (-634) (-280))) (($ $ $) NIL (|has| (-634) (-280)))) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL (|has| (-634) (-335)))) (-3816 (($) NIL (|has| (-634) (-321)) CONST)) (-2770 (($ (-848)) NIL (|has| (-634) (-340)))) (-3315 (($) NIL)) (-1956 (((-634) $) 31)) (-4139 (((-1029) $) NIL)) (-1397 (($) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| (-634) (-280)))) (-2292 (($ (-585 $)) NIL (|has| (-634) (-280))) (($ $ $) NIL (|has| (-634) (-280)))) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| (-634) (-321)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-634) (-280)) (|has| (-634) (-836))))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-634) (-280)) (|has| (-634) (-836))))) (-1921 (((-390 $) $) NIL (-3730 (-12 (|has| (-634) (-280)) (|has| (-634) (-836))) (|has| (-634) (-335))))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-634) (-280))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| (-634) (-280)))) (-2261 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-634)) NIL (|has| (-634) (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| (-634) (-280)))) (-3325 (($ $) NIL (|has| (-634) (-1103)))) (-2324 (($ $ (-1082) (-634)) NIL (|has| (-634) (-480 (-1082) (-634)))) (($ $ (-585 (-1082)) (-585 (-634))) NIL (|has| (-634) (-480 (-1082) (-634)))) (($ $ (-585 (-267 (-634)))) NIL (|has| (-634) (-282 (-634)))) (($ $ (-267 (-634))) NIL (|has| (-634) (-282 (-634)))) (($ $ (-634) (-634)) NIL (|has| (-634) (-282 (-634)))) (($ $ (-585 (-634)) (-585 (-634))) NIL (|has| (-634) (-282 (-634))))) (-3129 (((-705) $) NIL (|has| (-634) (-280)))) (-2598 (($ $ (-634)) NIL (|has| (-634) (-260 (-634) (-634))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| (-634) (-280)))) (-3677 (((-634)) NIL) (((-634) (-1163 $)) NIL)) (-2867 (((-3 (-705) "failed") $ $) NIL (|has| (-634) (-321))) (((-705) $) NIL (|has| (-634) (-321)))) (-2181 (($ $ (-1 (-634) (-634))) NIL) (($ $ (-1 (-634) (-634)) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-634) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-634) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-634) (-827 (-1082)))) (($ $ (-1082)) NIL (|has| (-634) (-827 (-1082)))) (($ $ (-705)) NIL (|has| (-634) (-209))) (($ $) NIL (|has| (-634) (-209)))) (-1611 (((-625 (-634)) (-1163 $) (-1 (-634) (-634))) NIL (|has| (-634) (-335)))) (-1462 (((-1078 (-634))) NIL)) (-1754 (($ $) NIL (|has| (-634) (-1103)))) (-2854 (($ $) NIL (|has| (-634) (-1103)))) (-3132 (($) NIL (|has| (-634) (-321)))) (-2969 (($ $) NIL (|has| (-634) (-1103)))) (-2834 (($ $) NIL (|has| (-634) (-1103)))) (-2946 (($ $) NIL (|has| (-634) (-1103)))) (-2812 (($ $) NIL (|has| (-634) (-1103)))) (-3399 (((-625 (-634)) (-1163 $)) NIL) (((-1163 (-634)) $) NIL) (((-625 (-634)) (-1163 $) (-1163 $)) NIL) (((-1163 (-634)) $ (-1163 $)) NIL)) (-1446 (((-495) $) NIL (|has| (-634) (-560 (-495)))) (((-154 (-201)) $) NIL (|has| (-634) (-944))) (((-154 (-351)) $) NIL (|has| (-634) (-944))) (((-819 (-351)) $) NIL (|has| (-634) (-560 (-819 (-351))))) (((-819 (-519)) $) NIL (|has| (-634) (-560 (-819 (-519))))) (($ (-1078 (-634))) NIL) (((-1078 (-634)) $) NIL) (($ (-1163 (-634))) NIL) (((-1163 (-634)) $) NIL)) (-3333 (($ $) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-3730 (-12 (|has| (-634) (-280)) (|has| $ (-133)) (|has| (-634) (-836))) (|has| (-634) (-321))))) (-3916 (($ (-634) (-634)) 12)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-519)) NIL) (($ (-634)) NIL) (($ (-154 (-351))) 13) (($ (-154 (-519))) 19) (($ (-154 (-634))) 28) (($ (-154 (-636))) 25) (((-154 (-351)) $) 33) (($ (-379 (-519))) NIL (-3730 (|has| (-634) (-959 (-379 (-519)))) (|has| (-634) (-335))))) (-3773 (($ $) NIL (|has| (-634) (-321))) (((-3 $ "failed") $) NIL (-3730 (-12 (|has| (-634) (-280)) (|has| $ (-133)) (|has| (-634) (-836))) (|has| (-634) (-133))))) (-2165 (((-1078 (-634)) $) NIL)) (-3594 (((-705)) NIL)) (-2070 (((-1163 $)) NIL)) (-1774 (($ $) NIL (|has| (-634) (-1103)))) (-2886 (($ $) NIL (|has| (-634) (-1103)))) (-1617 (((-108) $ $) NIL)) (-1761 (($ $) NIL (|has| (-634) (-1103)))) (-2865 (($ $) NIL (|has| (-634) (-1103)))) (-1790 (($ $) NIL (|has| (-634) (-1103)))) (-2910 (($ $) NIL (|has| (-634) (-1103)))) (-3867 (((-634) $) NIL (|has| (-634) (-1103)))) (-3929 (($ $) NIL (|has| (-634) (-1103)))) (-2922 (($ $) NIL (|has| (-634) (-1103)))) (-1783 (($ $) NIL (|has| (-634) (-1103)))) (-2898 (($ $) NIL (|has| (-634) (-1103)))) (-1768 (($ $) NIL (|has| (-634) (-1103)))) (-2875 (($ $) NIL (|has| (-634) (-1103)))) (-1478 (($ $) NIL (|has| (-634) (-977)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| (-634) (-335)))) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-1 (-634) (-634))) NIL) (($ $ (-1 (-634) (-634)) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-634) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-634) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-634) (-827 (-1082)))) (($ $ (-1082)) NIL (|has| (-634) (-827 (-1082)))) (($ $ (-705)) NIL (|has| (-634) (-209))) (($ $) NIL (|has| (-634) (-209)))) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL (|has| (-634) (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ $) NIL (|has| (-634) (-1103))) (($ $ (-379 (-519))) NIL (-12 (|has| (-634) (-925)) (|has| (-634) (-1103)))) (($ $ (-519)) NIL (|has| (-634) (-335)))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ (-634) $) NIL) (($ $ (-634)) NIL) (($ (-379 (-519)) $) NIL (|has| (-634) (-335))) (($ $ (-379 (-519))) NIL (|has| (-634) (-335))))) +(((-629) (-13 (-359) (-151 (-634)) (-10 -8 (-15 -2217 ($ (-154 (-351)))) (-15 -2217 ($ (-154 (-519)))) (-15 -2217 ($ (-154 (-634)))) (-15 -2217 ($ (-154 (-636)))) (-15 -2217 ((-154 (-351)) $))))) (T -629)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-154 (-351))) (-5 *1 (-629)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-154 (-519))) (-5 *1 (-629)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-154 (-634))) (-5 *1 (-629)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-154 (-636))) (-5 *1 (-629)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-154 (-351))) (-5 *1 (-629))))) +(-13 (-359) (-151 (-634)) (-10 -8 (-15 -2217 ($ (-154 (-351)))) (-15 -2217 ($ (-154 (-519)))) (-15 -2217 ($ (-154 (-634)))) (-15 -2217 ($ (-154 (-636)))) (-15 -2217 ((-154 (-351)) $)))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) 8)) (-2846 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-1552 (($ $) 62)) (-2366 (($ $) 58 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2502 (($ |#1| $) 47 (|has| $ (-6 -4221))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4221)))) (-1438 (($ |#1| $) 57 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4221)))) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4152 ((|#1| $) 39)) (-1846 (($ |#1| $) 40) (($ |#1| $ (-705)) 63)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3212 ((|#1| $) 41)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-1307 (((-585 (-2 (|:| -3100 |#1|) (|:| -4155 (-705)))) $) 61)) (-2436 (($) 49) (($ (-585 |#1|)) 48)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 59 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 50)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) 42)) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-630 |#1|) (-1194) (-1011)) (T -630)) +((-1846 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-705)) (-4 *1 (-630 *2)) (-4 *2 (-1011)))) (-1552 (*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1011)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-630 *3)) (-4 *3 (-1011)) (-5 *2 (-585 (-2 (|:| -3100 *3) (|:| -4155 (-705)))))))) +(-13 (-211 |t#1|) (-10 -8 (-15 -1846 ($ |t#1| $ (-705))) (-15 -1552 ($ $)) (-15 -1307 ((-585 (-2 (|:| -3100 |t#1|) (|:| -4155 (-705)))) $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-211 |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-2104 (((-585 |#1|) (-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519)))) (-519)) 46)) (-2644 ((|#1| |#1| (-519)) 45)) (-2292 ((|#1| |#1| |#1| (-519)) 35)) (-1921 (((-585 |#1|) |#1| (-519)) 38)) (-1707 ((|#1| |#1| (-519) |#1| (-519)) 32)) (-1246 (((-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519)))) |#1| (-519)) 44))) +(((-631 |#1|) (-10 -7 (-15 -2292 (|#1| |#1| |#1| (-519))) (-15 -2644 (|#1| |#1| (-519))) (-15 -1921 ((-585 |#1|) |#1| (-519))) (-15 -1246 ((-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519)))) |#1| (-519))) (-15 -2104 ((-585 |#1|) (-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519)))) (-519))) (-15 -1707 (|#1| |#1| (-519) |#1| (-519)))) (-1139 (-519))) (T -631)) +((-1707 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-631 *2)) (-4 *2 (-1139 *3)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| -1921 *5) (|:| -4178 (-519))))) (-5 *4 (-519)) (-4 *5 (-1139 *4)) (-5 *2 (-585 *5)) (-5 *1 (-631 *5)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *4 (-519)) (-5 *2 (-585 (-2 (|:| -1921 *3) (|:| -4178 *4)))) (-5 *1 (-631 *3)) (-4 *3 (-1139 *4)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-519)) (-5 *2 (-585 *3)) (-5 *1 (-631 *3)) (-4 *3 (-1139 *4)))) (-2644 (*1 *2 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-631 *2)) (-4 *2 (-1139 *3)))) (-2292 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-631 *2)) (-4 *2 (-1139 *3))))) +(-10 -7 (-15 -2292 (|#1| |#1| |#1| (-519))) (-15 -2644 (|#1| |#1| (-519))) (-15 -1921 ((-585 |#1|) |#1| (-519))) (-15 -1246 ((-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519)))) |#1| (-519))) (-15 -2104 ((-585 |#1|) (-585 (-2 (|:| -1921 |#1|) (|:| -4178 (-519)))) (-519))) (-15 -1707 (|#1| |#1| (-519) |#1| (-519)))) +((-3701 (((-1 (-870 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201) (-201))) 17)) (-3957 (((-1042 (-201)) (-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-585 (-238))) 38) (((-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-585 (-238))) 40) (((-1042 (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1006 (-201)) (-1006 (-201)) (-585 (-238))) 42)) (-1240 (((-1042 (-201)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-585 (-238))) NIL)) (-3953 (((-1042 (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1006 (-201)) (-1006 (-201)) (-585 (-238))) 43))) +(((-632) (-10 -7 (-15 -3957 ((-1042 (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1006 (-201)) (-1006 (-201)) (-585 (-238)))) (-15 -3957 ((-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-585 (-238)))) (-15 -3957 ((-1042 (-201)) (-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-585 (-238)))) (-15 -3953 ((-1042 (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1006 (-201)) (-1006 (-201)) (-585 (-238)))) (-15 -1240 ((-1042 (-201)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-585 (-238)))) (-15 -3701 ((-1 (-870 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201) (-201)))))) (T -632)) +((-3701 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1 (-201) (-201) (-201) (-201))) (-5 *2 (-1 (-870 (-201)) (-201) (-201))) (-5 *1 (-632)))) (-1240 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-288 (-519))) (-5 *4 (-1 (-201) (-201))) (-5 *5 (-1006 (-201))) (-5 *6 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-632)))) (-3953 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-3 (-1 (-201) (-201) (-201) (-201)) "undefined")) (-5 *5 (-1006 (-201))) (-5 *6 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-632)))) (-3957 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1042 (-201))) (-5 *3 (-1 (-870 (-201)) (-201) (-201))) (-5 *4 (-1006 (-201))) (-5 *5 (-585 (-238))) (-5 *1 (-632)))) (-3957 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-870 (-201)) (-201) (-201))) (-5 *4 (-1006 (-201))) (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-632)))) (-3957 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-3 (-1 (-201) (-201) (-201) (-201)) "undefined")) (-5 *5 (-1006 (-201))) (-5 *6 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-632))))) +(-10 -7 (-15 -3957 ((-1042 (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1006 (-201)) (-1006 (-201)) (-585 (-238)))) (-15 -3957 ((-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-585 (-238)))) (-15 -3957 ((-1042 (-201)) (-1042 (-201)) (-1 (-870 (-201)) (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-585 (-238)))) (-15 -3953 ((-1042 (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1006 (-201)) (-1006 (-201)) (-585 (-238)))) (-15 -1240 ((-1042 (-201)) (-288 (-519)) (-288 (-519)) (-288 (-519)) (-1 (-201) (-201)) (-1006 (-201)) (-585 (-238)))) (-15 -3701 ((-1 (-870 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201) (-201))))) +((-1921 (((-390 (-1078 |#4|)) (-1078 |#4|)) 73) (((-390 |#4|) |#4|) 217))) +(((-633 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1921 ((-390 |#4|) |#4|)) (-15 -1921 ((-390 (-1078 |#4|)) (-1078 |#4|)))) (-782) (-727) (-321) (-876 |#3| |#2| |#1|)) (T -633)) +((-1921 (*1 *2 *3) (-12 (-4 *4 (-782)) (-4 *5 (-727)) (-4 *6 (-321)) (-4 *7 (-876 *6 *5 *4)) (-5 *2 (-390 (-1078 *7))) (-5 *1 (-633 *4 *5 *6 *7)) (-5 *3 (-1078 *7)))) (-1921 (*1 *2 *3) (-12 (-4 *4 (-782)) (-4 *5 (-727)) (-4 *6 (-321)) (-5 *2 (-390 *3)) (-5 *1 (-633 *4 *5 *6 *3)) (-4 *3 (-876 *6 *5 *4))))) +(-10 -7 (-15 -1921 ((-390 |#4|) |#4|)) (-15 -1921 ((-390 (-1078 |#4|)) (-1078 |#4|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 84)) (-2157 (((-519) $) 30)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-4057 (($ $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-1934 (($ $) NIL)) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL)) (-2249 (($) NIL T CONST)) (-3925 (($ $) NIL)) (-1301 (((-3 (-519) "failed") $) 73) (((-3 (-379 (-519)) "failed") $) 26) (((-3 (-351) "failed") $) 70)) (-1499 (((-519) $) 75) (((-379 (-519)) $) 67) (((-351) $) 68)) (-2311 (($ $ $) 96)) (-4193 (((-3 $ "failed") $) 87)) (-2286 (($ $ $) 95)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-2199 (((-848)) 77) (((-848) (-848)) 76)) (-3419 (((-108) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL)) (-3709 (((-519) $) NIL)) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL)) (-3681 (($ $) NIL)) (-2143 (((-108) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1481 (((-519) (-519)) 81) (((-519)) 82)) (-2864 (($ $ $) NIL) (($) NIL (-12 (-2445 (|has| $ (-6 -4204))) (-2445 (|has| $ (-6 -4212)))))) (-3407 (((-519) (-519)) 79) (((-519)) 80)) (-2489 (($ $ $) NIL) (($) NIL (-12 (-2445 (|has| $ (-6 -4204))) (-2445 (|has| $ (-6 -4212)))))) (-3417 (((-519) $) 16)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 91)) (-3747 (((-848) (-519)) NIL (|has| $ (-6 -4212)))) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) NIL)) (-1525 (($ $) NIL)) (-3123 (($ (-519) (-519)) NIL) (($ (-519) (-519) (-848)) NIL)) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) 92)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1690 (((-519) $) 22)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 94)) (-3084 (((-848)) NIL) (((-848) (-848)) NIL (|has| $ (-6 -4212)))) (-4037 (((-848) (-519)) NIL (|has| $ (-6 -4212)))) (-1446 (((-351) $) NIL) (((-201) $) NIL) (((-819 (-351)) $) NIL)) (-2217 (((-790) $) 52) (($ (-519)) 63) (($ $) NIL) (($ (-379 (-519))) 66) (($ (-519)) 63) (($ (-379 (-519))) 66) (($ (-351)) 60) (((-351) $) 50) (($ (-636)) 55)) (-3594 (((-705)) 103)) (-4090 (($ (-519) (-519) (-848)) 44)) (-3617 (($ $) NIL)) (-1858 (((-848)) NIL) (((-848) (-848)) NIL (|has| $ (-6 -4212)))) (-3414 (((-848)) 35) (((-848) (-848)) 78)) (-1617 (((-108) $ $) NIL)) (-1478 (($ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 32 T CONST)) (-3611 (($) 17 T CONST)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 83)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 101)) (-1632 (($ $ $) 65)) (-1623 (($ $) 99) (($ $ $) 100)) (-1614 (($ $ $) 98)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL) (($ $ (-379 (-519))) 90)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 97) (($ $ $) 88) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL))) +(((-634) (-13 (-376) (-359) (-335) (-959 (-351)) (-959 (-379 (-519))) (-135) (-10 -8 (-15 -2199 ((-848) (-848))) (-15 -2199 ((-848))) (-15 -3414 ((-848) (-848))) (-15 -3414 ((-848))) (-15 -3407 ((-519) (-519))) (-15 -3407 ((-519))) (-15 -1481 ((-519) (-519))) (-15 -1481 ((-519))) (-15 -2217 ((-351) $)) (-15 -2217 ($ (-636))) (-15 -3417 ((-519) $)) (-15 -1690 ((-519) $)) (-15 -4090 ($ (-519) (-519) (-848)))))) (T -634)) +((-3414 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-634)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-634)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-634)))) (-2199 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-634)))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-634)))) (-3414 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-634)))) (-3407 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-634)))) (-3407 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-634)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-634)))) (-1481 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-634)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-351)) (-5 *1 (-634)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-636)) (-5 *1 (-634)))) (-4090 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-848)) (-5 *1 (-634))))) +(-13 (-376) (-359) (-335) (-959 (-351)) (-959 (-379 (-519))) (-135) (-10 -8 (-15 -2199 ((-848) (-848))) (-15 -2199 ((-848))) (-15 -3414 ((-848) (-848))) (-15 -3414 ((-848))) (-15 -3407 ((-519) (-519))) (-15 -3407 ((-519))) (-15 -1481 ((-519) (-519))) (-15 -1481 ((-519))) (-15 -2217 ((-351) $)) (-15 -2217 ($ (-636))) (-15 -3417 ((-519) $)) (-15 -1690 ((-519) $)) (-15 -4090 ($ (-519) (-519) (-848))))) +((-2322 (((-625 |#1|) (-625 |#1|) |#1| |#1|) 65)) (-3196 (((-625 |#1|) (-625 |#1|) |#1|) 48)) (-3694 (((-625 |#1|) (-625 |#1|) |#1|) 66)) (-4022 (((-625 |#1|) (-625 |#1|)) 49)) (-2976 (((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|) 64))) +(((-635 |#1|) (-10 -7 (-15 -4022 ((-625 |#1|) (-625 |#1|))) (-15 -3196 ((-625 |#1|) (-625 |#1|) |#1|)) (-15 -3694 ((-625 |#1|) (-625 |#1|) |#1|)) (-15 -2322 ((-625 |#1|) (-625 |#1|) |#1| |#1|)) (-15 -2976 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|))) (-280)) (T -635)) +((-2976 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-635 *3)) (-4 *3 (-280)))) (-2322 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-280)) (-5 *1 (-635 *3)))) (-3694 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-280)) (-5 *1 (-635 *3)))) (-3196 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-280)) (-5 *1 (-635 *3)))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-280)) (-5 *1 (-635 *3))))) +(-10 -7 (-15 -4022 ((-625 |#1|) (-625 |#1|))) (-15 -3196 ((-625 |#1|) (-625 |#1|) |#1|)) (-15 -3694 ((-625 |#1|) (-625 |#1|) |#1|)) (-15 -2322 ((-625 |#1|) (-625 |#1|) |#1| |#1|)) (-15 -2976 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3133 (($ $ $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2131 (($ $ $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL)) (-1674 (($ $ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) 27)) (-1499 (((-519) $) 25)) (-2311 (($ $ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-1631 (((-3 (-379 (-519)) "failed") $) NIL)) (-2102 (((-108) $) NIL)) (-2506 (((-379 (-519)) $) NIL)) (-3314 (($ $) NIL) (($) NIL)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3504 (($ $ $ $) NIL)) (-2233 (($ $ $) NIL)) (-3419 (((-108) $) NIL)) (-3449 (($ $ $) NIL)) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL)) (-1568 (((-108) $) NIL)) (-3164 (((-108) $) NIL)) (-1675 (((-3 $ "failed") $) NIL)) (-2143 (((-108) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1843 (($ $ $ $) NIL)) (-2864 (($ $ $) NIL)) (-3374 (((-848) (-848)) 10) (((-848)) 9)) (-2489 (($ $ $) NIL)) (-3900 (($ $) NIL)) (-2568 (($ $) NIL)) (-2254 (($ (-585 $)) NIL) (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-2691 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-3011 (($ $) NIL)) (-4139 (((-1029) $) NIL) (($ $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ (-585 $)) NIL) (($ $ $) NIL)) (-1314 (($ $) NIL)) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1295 (((-108) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2181 (($ $) NIL) (($ $ (-705)) NIL)) (-3104 (($ $) NIL)) (-2449 (($ $) NIL)) (-1446 (((-201) $) NIL) (((-351) $) NIL) (((-819 (-519)) $) NIL) (((-495) $) NIL) (((-519) $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) 24) (($ $) NIL) (($ (-519)) 24) (((-288 $) (-288 (-519))) 18)) (-3594 (((-705)) NIL)) (-4200 (((-108) $ $) NIL)) (-3563 (($ $ $) NIL)) (-3414 (($) NIL)) (-1617 (((-108) $ $) NIL)) (-1748 (($ $ $ $) NIL)) (-1478 (($ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $) NIL) (($ $ (-705)) NIL)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL))) +(((-636) (-13 (-359) (-504) (-10 -8 (-15 -3374 ((-848) (-848))) (-15 -3374 ((-848))) (-15 -2217 ((-288 $) (-288 (-519))))))) (T -636)) +((-3374 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-636)))) (-3374 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-636)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-288 (-519))) (-5 *2 (-288 (-636))) (-5 *1 (-636))))) +(-13 (-359) (-504) (-10 -8 (-15 -3374 ((-848) (-848))) (-15 -3374 ((-848))) (-15 -2217 ((-288 $) (-288 (-519)))))) +((-1738 (((-1 |#4| |#2| |#3|) |#1| (-1082) (-1082)) 19)) (-1807 (((-1 |#4| |#2| |#3|) (-1082)) 12))) +(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1807 ((-1 |#4| |#2| |#3|) (-1082))) (-15 -1738 ((-1 |#4| |#2| |#3|) |#1| (-1082) (-1082)))) (-560 (-495)) (-1117) (-1117) (-1117)) (T -637)) +((-1738 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-637 *3 *5 *6 *7)) (-4 *3 (-560 (-495))) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-637 *4 *5 *6 *7)) (-4 *4 (-560 (-495))) (-4 *5 (-1117)) (-4 *6 (-1117)) (-4 *7 (-1117))))) +(-10 -7 (-15 -1807 ((-1 |#4| |#2| |#3|) (-1082))) (-15 -1738 ((-1 |#4| |#2| |#3|) |#1| (-1082) (-1082)))) +((-1430 (((-108) $ $) NIL)) (-2873 (((-1168) $ (-705)) 14)) (-3297 (((-705) $) 12)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 25)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 24))) +(((-638 |#1|) (-13 (-125) (-559 |#1|) (-10 -8 (-15 -2217 ($ |#1|)))) (-1011)) (T -638)) +((-2217 (*1 *1 *2) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1011))))) +(-13 (-125) (-559 |#1|) (-10 -8 (-15 -2217 ($ |#1|)))) +((-2550 (((-1 (-201) (-201) (-201)) |#1| (-1082) (-1082)) 33) (((-1 (-201) (-201)) |#1| (-1082)) 38))) +(((-639 |#1|) (-10 -7 (-15 -2550 ((-1 (-201) (-201)) |#1| (-1082))) (-15 -2550 ((-1 (-201) (-201) (-201)) |#1| (-1082) (-1082)))) (-560 (-495))) (T -639)) +((-2550 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1082)) (-5 *2 (-1 (-201) (-201) (-201))) (-5 *1 (-639 *3)) (-4 *3 (-560 (-495))))) (-2550 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-5 *2 (-1 (-201) (-201))) (-5 *1 (-639 *3)) (-4 *3 (-560 (-495)))))) +(-10 -7 (-15 -2550 ((-1 (-201) (-201)) |#1| (-1082))) (-15 -2550 ((-1 (-201) (-201) (-201)) |#1| (-1082) (-1082)))) +((-2112 (((-1082) |#1| (-1082) (-585 (-1082))) 9) (((-1082) |#1| (-1082) (-1082) (-1082)) 12) (((-1082) |#1| (-1082) (-1082)) 11) (((-1082) |#1| (-1082)) 10))) +(((-640 |#1|) (-10 -7 (-15 -2112 ((-1082) |#1| (-1082))) (-15 -2112 ((-1082) |#1| (-1082) (-1082))) (-15 -2112 ((-1082) |#1| (-1082) (-1082) (-1082))) (-15 -2112 ((-1082) |#1| (-1082) (-585 (-1082))))) (-560 (-495))) (T -640)) +((-2112 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-585 (-1082))) (-5 *2 (-1082)) (-5 *1 (-640 *3)) (-4 *3 (-560 (-495))))) (-2112 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-640 *3)) (-4 *3 (-560 (-495))))) (-2112 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-640 *3)) (-4 *3 (-560 (-495))))) (-2112 (*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-640 *3)) (-4 *3 (-560 (-495)))))) +(-10 -7 (-15 -2112 ((-1082) |#1| (-1082))) (-15 -2112 ((-1082) |#1| (-1082) (-1082))) (-15 -2112 ((-1082) |#1| (-1082) (-1082) (-1082))) (-15 -2112 ((-1082) |#1| (-1082) (-585 (-1082))))) +((-1687 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-641 |#1| |#2|) (-10 -7 (-15 -1687 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1117) (-1117)) (T -641)) +((-1687 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-641 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117))))) +(-10 -7 (-15 -1687 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3410 (((-1 |#3| |#2|) (-1082)) 11)) (-1738 (((-1 |#3| |#2|) |#1| (-1082)) 21))) +(((-642 |#1| |#2| |#3|) (-10 -7 (-15 -3410 ((-1 |#3| |#2|) (-1082))) (-15 -1738 ((-1 |#3| |#2|) |#1| (-1082)))) (-560 (-495)) (-1117) (-1117)) (T -642)) +((-1738 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *3 *5 *6)) (-4 *3 (-560 (-495))) (-4 *5 (-1117)) (-4 *6 (-1117)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *4 *5 *6)) (-4 *4 (-560 (-495))) (-4 *5 (-1117)) (-4 *6 (-1117))))) +(-10 -7 (-15 -3410 ((-1 |#3| |#2|) (-1082))) (-15 -1738 ((-1 |#3| |#2|) |#1| (-1082)))) +((-1482 (((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-585 |#2|) (-585 (-1078 |#4|)) (-585 |#3|) (-585 |#4|) (-585 (-585 (-2 (|:| -4128 (-705)) (|:| |pcoef| |#4|)))) (-585 (-705)) (-1163 (-585 (-1078 |#3|))) |#3|) 59)) (-2897 (((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-585 |#2|) (-585 (-1078 |#3|)) (-585 |#3|) (-585 |#4|) (-585 (-705)) |#3|) 72)) (-2159 (((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-585 |#2|) (-585 |#3|) (-585 (-705)) (-585 (-1078 |#4|)) (-1163 (-585 (-1078 |#3|))) |#3|) 32))) +(((-643 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2159 ((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-585 |#2|) (-585 |#3|) (-585 (-705)) (-585 (-1078 |#4|)) (-1163 (-585 (-1078 |#3|))) |#3|)) (-15 -2897 ((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-585 |#2|) (-585 (-1078 |#3|)) (-585 |#3|) (-585 |#4|) (-585 (-705)) |#3|)) (-15 -1482 ((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-585 |#2|) (-585 (-1078 |#4|)) (-585 |#3|) (-585 |#4|) (-585 (-585 (-2 (|:| -4128 (-705)) (|:| |pcoef| |#4|)))) (-585 (-705)) (-1163 (-585 (-1078 |#3|))) |#3|))) (-727) (-782) (-280) (-876 |#3| |#1| |#2|)) (T -643)) +((-1482 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-585 (-1078 *13))) (-5 *3 (-1078 *13)) (-5 *4 (-585 *12)) (-5 *5 (-585 *10)) (-5 *6 (-585 *13)) (-5 *7 (-585 (-585 (-2 (|:| -4128 (-705)) (|:| |pcoef| *13))))) (-5 *8 (-585 (-705))) (-5 *9 (-1163 (-585 (-1078 *10)))) (-4 *12 (-782)) (-4 *10 (-280)) (-4 *13 (-876 *10 *11 *12)) (-4 *11 (-727)) (-5 *1 (-643 *11 *12 *10 *13)))) (-2897 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-585 *11)) (-5 *5 (-585 (-1078 *9))) (-5 *6 (-585 *9)) (-5 *7 (-585 *12)) (-5 *8 (-585 (-705))) (-4 *11 (-782)) (-4 *9 (-280)) (-4 *12 (-876 *9 *10 *11)) (-4 *10 (-727)) (-5 *2 (-585 (-1078 *12))) (-5 *1 (-643 *10 *11 *9 *12)) (-5 *3 (-1078 *12)))) (-2159 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-585 (-1078 *11))) (-5 *3 (-1078 *11)) (-5 *4 (-585 *10)) (-5 *5 (-585 *8)) (-5 *6 (-585 (-705))) (-5 *7 (-1163 (-585 (-1078 *8)))) (-4 *10 (-782)) (-4 *8 (-280)) (-4 *11 (-876 *8 *9 *10)) (-4 *9 (-727)) (-5 *1 (-643 *9 *10 *8 *11))))) +(-10 -7 (-15 -2159 ((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-585 |#2|) (-585 |#3|) (-585 (-705)) (-585 (-1078 |#4|)) (-1163 (-585 (-1078 |#3|))) |#3|)) (-15 -2897 ((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-585 |#2|) (-585 (-1078 |#3|)) (-585 |#3|) (-585 |#4|) (-585 (-705)) |#3|)) (-15 -1482 ((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-585 |#2|) (-585 (-1078 |#4|)) (-585 |#3|) (-585 |#4|) (-585 (-585 (-2 (|:| -4128 (-705)) (|:| |pcoef| |#4|)))) (-585 (-705)) (-1163 (-585 (-1078 |#3|))) |#3|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-3218 (($ $) 41)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-4042 (($ |#1| (-705)) 39)) (-3695 (((-705) $) 43)) (-3197 ((|#1| $) 42)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-4178 (((-705) $) 44)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 38 (|has| |#1| (-157)))) (-1220 ((|#1| $ (-705)) 40)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-644 |#1|) (-1194) (-968)) (T -644)) +((-4178 (*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-968)) (-5 *2 (-705)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-968)) (-5 *2 (-705)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-968)))) (-3218 (*1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-968)))) (-1220 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-4 *1 (-644 *2)) (-4 *2 (-968)))) (-4042 (*1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-644 *2)) (-4 *2 (-968))))) +(-13 (-968) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -4178 ((-705) $)) (-15 -3695 ((-705) $)) (-15 -3197 (|t#1| $)) (-15 -3218 ($ $)) (-15 -1220 (|t#1| $ (-705))) (-15 -4042 ($ |t#1| (-705))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-652 |#1|) |has| |#1| (-157)) ((-661) . T) ((-974 |#1|) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1405 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-645 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1405 (|#6| (-1 |#4| |#1|) |#3|))) (-511) (-1139 |#1|) (-1139 (-379 |#2|)) (-511) (-1139 |#4|) (-1139 (-379 |#5|))) (T -645)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-511)) (-4 *7 (-511)) (-4 *6 (-1139 *5)) (-4 *2 (-1139 (-379 *8))) (-5 *1 (-645 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1139 (-379 *6))) (-4 *8 (-1139 *7))))) +(-10 -7 (-15 -1405 (|#6| (-1 |#4| |#1|) |#3|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-2311 (($ $ $) NIL)) (-3874 (($ |#1| |#2|) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-1568 (((-108) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2205 ((|#2| $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) ((|#1| $) NIL)) (-3594 (((-705)) NIL)) (-1617 (((-108) $ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL))) +(((-646 |#1| |#2| |#3| |#4| |#5|) (-13 (-335) (-10 -8 (-15 -2205 (|#2| $)) (-15 -2217 (|#1| $)) (-15 -3874 ($ |#1| |#2|)) (-15 -3551 ((-3 $ "failed") $ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -646)) +((-2205 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-646 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2217 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3874 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3551 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-335) (-10 -8 (-15 -2205 (|#2| $)) (-15 -2217 (|#1| $)) (-15 -3874 ($ |#1| |#2|)) (-15 -3551 ((-3 $ "failed") $ $)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 30)) (-3500 (((-1163 |#1|) $ (-705)) NIL)) (-4083 (((-585 (-996)) $) NIL)) (-4100 (($ (-1078 |#1|)) NIL)) (-1283 (((-1078 $) $ (-996)) NIL) (((-1078 |#1|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 (-996))) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1218 (($ $ $) NIL (|has| |#1| (-511)))) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-4043 (($ $) NIL (|has| |#1| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-1642 (((-705)) 47 (|has| |#1| (-340)))) (-1706 (($ $ (-705)) NIL)) (-3007 (($ $ (-705)) NIL)) (-3200 ((|#2| |#2|) 44)) (-2659 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-423)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-996) "failed") $) NIL)) (-1499 ((|#1| $) NIL) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-996) $) NIL)) (-1286 (($ $ $ (-996)) NIL (|has| |#1| (-157))) ((|#1| $ $) NIL (|has| |#1| (-157)))) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) 34)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-3874 (($ |#2|) 42)) (-4193 (((-3 $ "failed") $) 85)) (-3314 (($) 51 (|has| |#1| (-340)))) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-2229 (($ $ $) NIL)) (-3259 (($ $ $) NIL (|has| |#1| (-511)))) (-2964 (((-2 (|:| -3031 |#1|) (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-511)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-2177 (($ $) NIL (|has| |#1| (-423))) (($ $ (-996)) NIL (|has| |#1| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#1| (-836)))) (-1258 (((-884 $)) 79)) (-4015 (($ $ |#1| (-705) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-996) (-813 (-351))) (|has| |#1| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-996) (-813 (-519))) (|has| |#1| (-813 (-519)))))) (-3709 (((-705) $ $) NIL (|has| |#1| (-511)))) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-1058)))) (-4066 (($ (-1078 |#1|) (-996)) NIL) (($ (-1078 $) (-996)) NIL)) (-1855 (($ $ (-705)) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-705)) 77) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-996)) NIL) (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2205 ((|#2|) 45)) (-3695 (((-705) $) NIL) (((-705) $ (-996)) NIL) (((-585 (-705)) $ (-585 (-996))) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3737 (($ (-1 (-705) (-705)) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-1270 (((-1078 |#1|) $) NIL)) (-2635 (((-3 (-996) "failed") $) NIL)) (-3334 (((-848) $) NIL (|has| |#1| (-340)))) (-3860 ((|#2| $) 41)) (-3185 (($ $) NIL)) (-3197 ((|#1| $) 28)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1266 (((-1065) $) NIL)) (-1296 (((-2 (|:| -3573 $) (|:| -1354 $)) $ (-705)) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| (-996)) (|:| -1690 (-705))) "failed") $) NIL)) (-4142 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3816 (($) NIL (|has| |#1| (-1058)) CONST)) (-2770 (($ (-848)) NIL (|has| |#1| (-340)))) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) NIL)) (-3173 ((|#1| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-3675 (($ $) 78 (|has| |#1| (-321)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-836)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-996) |#1|) NIL) (($ $ (-585 (-996)) (-585 |#1|)) NIL) (($ $ (-996) $) NIL) (($ $ (-585 (-996)) (-585 $)) NIL)) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-2598 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-379 $) (-379 $) (-379 $)) NIL (|has| |#1| (-511))) ((|#1| (-379 $) |#1|) NIL (|has| |#1| (-335))) (((-379 $) $ (-379 $)) NIL (|has| |#1| (-511)))) (-2340 (((-3 $ "failed") $ (-705)) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 86 (|has| |#1| (-335)))) (-3677 (($ $ (-996)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2181 (($ $ (-996)) NIL) (($ $ (-585 (-996))) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL) (($ $ (-705)) NIL) (($ $) NIL) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4178 (((-705) $) 32) (((-705) $ (-996)) NIL) (((-585 (-705)) $ (-585 (-996))) NIL)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| (-996) (-560 (-819 (-351)))) (|has| |#1| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| (-996) (-560 (-819 (-519)))) (|has| |#1| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| (-996) (-560 (-495))) (|has| |#1| (-560 (-495)))))) (-3939 ((|#1| $) NIL (|has| |#1| (-423))) (($ $ (-996)) NIL (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-836))))) (-3603 (((-884 $)) 36)) (-2030 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511))) (((-3 (-379 $) "failed") (-379 $) $) NIL (|has| |#1| (-511)))) (-2217 (((-790) $) 61) (($ (-519)) NIL) (($ |#1|) 58) (($ (-996)) NIL) (($ |#2|) 68) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#1| (-511)))) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-705)) 63) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#1| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 20 T CONST)) (-2716 (((-1163 |#1|) $) 75)) (-3965 (($ (-1163 |#1|)) 50)) (-3611 (($) 8 T CONST)) (-2242 (($ $ (-996)) NIL) (($ $ (-585 (-996))) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL) (($ $ (-705)) NIL) (($ $) NIL) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3112 (((-1163 |#1|) $) NIL)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) 69)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) 72) (($ $ $) NIL)) (-1614 (($ $ $) 33)) (** (($ $ (-848)) NIL) (($ $ (-705)) 80)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 57) (($ $ $) 74) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-647 |#1| |#2|) (-13 (-1139 |#1|) (-10 -8 (-15 -3200 (|#2| |#2|)) (-15 -2205 (|#2|)) (-15 -3874 ($ |#2|)) (-15 -3860 (|#2| $)) (-15 -2217 ($ |#2|)) (-15 -2716 ((-1163 |#1|) $)) (-15 -3965 ($ (-1163 |#1|))) (-15 -3112 ((-1163 |#1|) $)) (-15 -1258 ((-884 $))) (-15 -3603 ((-884 $))) (IF (|has| |#1| (-321)) (-15 -3675 ($ $)) |%noBranch|) (IF (|has| |#1| (-340)) (-6 (-340)) |%noBranch|))) (-968) (-1139 |#1|)) (T -647)) +((-3200 (*1 *2 *2) (-12 (-4 *3 (-968)) (-5 *1 (-647 *3 *2)) (-4 *2 (-1139 *3)))) (-2205 (*1 *2) (-12 (-4 *2 (-1139 *3)) (-5 *1 (-647 *3 *2)) (-4 *3 (-968)))) (-3874 (*1 *1 *2) (-12 (-4 *3 (-968)) (-5 *1 (-647 *3 *2)) (-4 *2 (-1139 *3)))) (-3860 (*1 *2 *1) (-12 (-4 *2 (-1139 *3)) (-5 *1 (-647 *3 *2)) (-4 *3 (-968)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-968)) (-5 *1 (-647 *3 *2)) (-4 *2 (-1139 *3)))) (-2716 (*1 *2 *1) (-12 (-4 *3 (-968)) (-5 *2 (-1163 *3)) (-5 *1 (-647 *3 *4)) (-4 *4 (-1139 *3)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-968)) (-5 *1 (-647 *3 *4)) (-4 *4 (-1139 *3)))) (-3112 (*1 *2 *1) (-12 (-4 *3 (-968)) (-5 *2 (-1163 *3)) (-5 *1 (-647 *3 *4)) (-4 *4 (-1139 *3)))) (-1258 (*1 *2) (-12 (-4 *3 (-968)) (-5 *2 (-884 (-647 *3 *4))) (-5 *1 (-647 *3 *4)) (-4 *4 (-1139 *3)))) (-3603 (*1 *2) (-12 (-4 *3 (-968)) (-5 *2 (-884 (-647 *3 *4))) (-5 *1 (-647 *3 *4)) (-4 *4 (-1139 *3)))) (-3675 (*1 *1 *1) (-12 (-4 *2 (-321)) (-4 *2 (-968)) (-5 *1 (-647 *2 *3)) (-4 *3 (-1139 *2))))) +(-13 (-1139 |#1|) (-10 -8 (-15 -3200 (|#2| |#2|)) (-15 -2205 (|#2|)) (-15 -3874 ($ |#2|)) (-15 -3860 (|#2| $)) (-15 -2217 ($ |#2|)) (-15 -2716 ((-1163 |#1|) $)) (-15 -3965 ($ (-1163 |#1|))) (-15 -3112 ((-1163 |#1|) $)) (-15 -1258 ((-884 $))) (-15 -3603 ((-884 $))) (IF (|has| |#1| (-321)) (-15 -3675 ($ $)) |%noBranch|) (IF (|has| |#1| (-340)) (-6 (-340)) |%noBranch|))) +((-1430 (((-108) $ $) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-2770 ((|#1| $) 13)) (-4139 (((-1029) $) NIL)) (-1690 ((|#2| $) 12)) (-2228 (($ |#1| |#2|) 16)) (-2217 (((-790) $) NIL) (($ (-2 (|:| -2770 |#1|) (|:| -1690 |#2|))) 15) (((-2 (|:| -2770 |#1|) (|:| -1690 |#2|)) $) 14)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 11))) +(((-648 |#1| |#2| |#3|) (-13 (-782) (-10 -8 (-15 -1690 (|#2| $)) (-15 -2770 (|#1| $)) (-15 -2217 ($ (-2 (|:| -2770 |#1|) (|:| -1690 |#2|)))) (-15 -2217 ((-2 (|:| -2770 |#1|) (|:| -1690 |#2|)) $)) (-15 -2228 ($ |#1| |#2|)))) (-782) (-1011) (-1 (-108) (-2 (|:| -2770 |#1|) (|:| -1690 |#2|)) (-2 (|:| -2770 |#1|) (|:| -1690 |#2|)))) (T -648)) +((-1690 (*1 *2 *1) (-12 (-4 *2 (-1011)) (-5 *1 (-648 *3 *2 *4)) (-4 *3 (-782)) (-14 *4 (-1 (-108) (-2 (|:| -2770 *3) (|:| -1690 *2)) (-2 (|:| -2770 *3) (|:| -1690 *2)))))) (-2770 (*1 *2 *1) (-12 (-4 *2 (-782)) (-5 *1 (-648 *2 *3 *4)) (-4 *3 (-1011)) (-14 *4 (-1 (-108) (-2 (|:| -2770 *2) (|:| -1690 *3)) (-2 (|:| -2770 *2) (|:| -1690 *3)))))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2770 *3) (|:| -1690 *4))) (-4 *3 (-782)) (-4 *4 (-1011)) (-5 *1 (-648 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2770 *3) (|:| -1690 *4))) (-5 *1 (-648 *3 *4 *5)) (-4 *3 (-782)) (-4 *4 (-1011)) (-14 *5 (-1 (-108) *2 *2)))) (-2228 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4)) (-4 *2 (-782)) (-4 *3 (-1011)) (-14 *4 (-1 (-108) (-2 (|:| -2770 *2) (|:| -1690 *3)) (-2 (|:| -2770 *2) (|:| -1690 *3))))))) +(-13 (-782) (-10 -8 (-15 -1690 (|#2| $)) (-15 -2770 (|#1| $)) (-15 -2217 ($ (-2 (|:| -2770 |#1|) (|:| -1690 |#2|)))) (-15 -2217 ((-2 (|:| -2770 |#1|) (|:| -1690 |#2|)) $)) (-15 -2228 ($ |#1| |#2|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 59)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-1499 ((|#1| $) NIL) (((-110) $) 39)) (-4193 (((-3 $ "failed") $) 90)) (-2678 ((|#2| (-110) |#2|) 82)) (-1568 (((-108) $) NIL)) (-1274 (($ |#1| (-333 (-110))) 13)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2375 (($ $ (-1 |#2| |#2|)) 58)) (-3289 (($ $ (-1 |#2| |#2|)) 44)) (-2598 ((|#2| $ |#2|) 32)) (-2697 ((|#1| |#1|) 100 (|has| |#1| (-157)))) (-2217 (((-790) $) 66) (($ (-519)) 17) (($ |#1|) 16) (($ (-110)) 23)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) 36)) (-3275 (($ $) 99 (|has| |#1| (-157))) (($ $ $) 103 (|has| |#1| (-157)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 20 T CONST)) (-3611 (($) 9 T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) 48) (($ $ $) NIL)) (-1614 (($ $ $) 73)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ (-110) (-519)) NIL) (($ $ (-519)) 57)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-157))) (($ $ |#1|) 97 (|has| |#1| (-157))))) +(((-649 |#1| |#2|) (-13 (-968) (-959 |#1|) (-959 (-110)) (-260 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3275 ($ $)) (-15 -3275 ($ $ $)) (-15 -2697 (|#1| |#1|))) |%noBranch|) (-15 -3289 ($ $ (-1 |#2| |#2|))) (-15 -2375 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-519))) (-15 ** ($ $ (-519))) (-15 -2678 (|#2| (-110) |#2|)) (-15 -1274 ($ |#1| (-333 (-110)))))) (-968) (-587 |#1|)) (T -649)) +((-3275 (*1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-968)) (-5 *1 (-649 *2 *3)) (-4 *3 (-587 *2)))) (-3275 (*1 *1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-968)) (-5 *1 (-649 *2 *3)) (-4 *3 (-587 *2)))) (-2697 (*1 *2 *2) (-12 (-4 *2 (-157)) (-4 *2 (-968)) (-5 *1 (-649 *2 *3)) (-4 *3 (-587 *2)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-587 *3)) (-4 *3 (-968)) (-5 *1 (-649 *3 *4)))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-587 *3)) (-4 *3 (-968)) (-5 *1 (-649 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-519)) (-4 *4 (-968)) (-5 *1 (-649 *4 *5)) (-4 *5 (-587 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *3 (-968)) (-5 *1 (-649 *3 *4)) (-4 *4 (-587 *3)))) (-2678 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-968)) (-5 *1 (-649 *4 *2)) (-4 *2 (-587 *4)))) (-1274 (*1 *1 *2 *3) (-12 (-5 *3 (-333 (-110))) (-4 *2 (-968)) (-5 *1 (-649 *2 *4)) (-4 *4 (-587 *2))))) +(-13 (-968) (-959 |#1|) (-959 (-110)) (-260 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3275 ($ $)) (-15 -3275 ($ $ $)) (-15 -2697 (|#1| |#1|))) |%noBranch|) (-15 -3289 ($ $ (-1 |#2| |#2|))) (-15 -2375 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-519))) (-15 ** ($ $ (-519))) (-15 -2678 (|#2| (-110) |#2|)) (-15 -1274 ($ |#1| (-333 (-110)))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 33)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-3874 (($ |#1| |#2|) 25)) (-4193 (((-3 $ "failed") $) 47)) (-1568 (((-108) $) 35)) (-2205 ((|#2| $) 12)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 48)) (-4139 (((-1029) $) NIL)) (-3551 (((-3 $ "failed") $ $) 46)) (-2217 (((-790) $) 24) (($ (-519)) 19) ((|#1| $) 13)) (-3594 (((-705)) 28)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 16 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 38)) (-1623 (($ $) 43) (($ $ $) 37)) (-1614 (($ $ $) 40)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 21) (($ $ $) 20))) +(((-650 |#1| |#2| |#3| |#4| |#5|) (-13 (-968) (-10 -8 (-15 -2205 (|#2| $)) (-15 -2217 (|#1| $)) (-15 -3874 ($ |#1| |#2|)) (-15 -3551 ((-3 $ "failed") $ $)) (-15 -4193 ((-3 $ "failed") $)) (-15 -3151 ($ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -650)) +((-4193 (*1 *1 *1) (|partial| -12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2205 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-650 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2217 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3874 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3551 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3151 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-968) (-10 -8 (-15 -2205 (|#2| $)) (-15 -2217 (|#1| $)) (-15 -3874 ($ |#1| |#2|)) (-15 -3551 ((-3 $ "failed") $ $)) (-15 -4193 ((-3 $ "failed") $)) (-15 -3151 ($ $)))) +((* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-651 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|))) (-652 |#2|) (-157)) (T -651)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-652 |#1|) (-1194) (-157)) (T -652)) +NIL +(-13 (-107 |t#1| |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-974 |#1|) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-1674 (($ |#1|) 17) (($ $ |#1|) 20)) (-1422 (($ |#1|) 18) (($ $ |#1|) 21)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1568 (((-108) $) NIL)) (-2330 (($ |#1| |#1| |#1| |#1|) 8)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 16)) (-4139 (((-1029) $) NIL)) (-2324 ((|#1| $ |#1|) 24) (((-768 |#1|) $ (-768 |#1|)) 32)) (-3333 (($ $ $) NIL)) (-3190 (($ $ $) NIL)) (-2217 (((-790) $) 39)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3611 (($) 9 T CONST)) (-1543 (((-108) $ $) 44)) (-1632 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ $ $) 14))) +(((-653 |#1|) (-13 (-444) (-10 -8 (-15 -2330 ($ |#1| |#1| |#1| |#1|)) (-15 -1674 ($ |#1|)) (-15 -1422 ($ |#1|)) (-15 -4193 ($)) (-15 -1674 ($ $ |#1|)) (-15 -1422 ($ $ |#1|)) (-15 -4193 ($ $)) (-15 -2324 (|#1| $ |#1|)) (-15 -2324 ((-768 |#1|) $ (-768 |#1|))))) (-335)) (T -653)) +((-2330 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) (-1674 (*1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) (-1422 (*1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) (-4193 (*1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) (-1674 (*1 *1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) (-1422 (*1 *1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) (-4193 (*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) (-2324 (*1 *2 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) (-2324 (*1 *2 *1 *2) (-12 (-5 *2 (-768 *3)) (-4 *3 (-335)) (-5 *1 (-653 *3))))) +(-13 (-444) (-10 -8 (-15 -2330 ($ |#1| |#1| |#1| |#1|)) (-15 -1674 ($ |#1|)) (-15 -1422 ($ |#1|)) (-15 -4193 ($)) (-15 -1674 ($ $ |#1|)) (-15 -1422 ($ $ |#1|)) (-15 -4193 ($ $)) (-15 -2324 (|#1| $ |#1|)) (-15 -2324 ((-768 |#1|) $ (-768 |#1|))))) +((-1588 (($ $ (-848)) 12)) (-1341 (($ $ (-848)) 13)) (** (($ $ (-848)) 10))) +(((-654 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-848))) (-15 -1341 (|#1| |#1| (-848))) (-15 -1588 (|#1| |#1| (-848)))) (-655)) (T -654)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-848))) (-15 -1341 (|#1| |#1| (-848))) (-15 -1588 (|#1| |#1| (-848)))) +((-1430 (((-108) $ $) 7)) (-1588 (($ $ (-848)) 15)) (-1341 (($ $ (-848)) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1543 (((-108) $ $) 6)) (** (($ $ (-848)) 13)) (* (($ $ $) 16))) +(((-655) (-1194)) (T -655)) +((* (*1 *1 *1 *1) (-4 *1 (-655))) (-1588 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-848)))) (-1341 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-848)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-848))))) +(-13 (-1011) (-10 -8 (-15 * ($ $ $)) (-15 -1588 ($ $ (-848))) (-15 -1341 ($ $ (-848))) (-15 ** ($ $ (-848))))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-1588 (($ $ (-848)) NIL) (($ $ (-705)) 17)) (-1568 (((-108) $) 10)) (-1341 (($ $ (-848)) NIL) (($ $ (-705)) 18)) (** (($ $ (-848)) NIL) (($ $ (-705)) 15))) +(((-656 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-705))) (-15 -1341 (|#1| |#1| (-705))) (-15 -1588 (|#1| |#1| (-705))) (-15 -1568 ((-108) |#1|)) (-15 ** (|#1| |#1| (-848))) (-15 -1341 (|#1| |#1| (-848))) (-15 -1588 (|#1| |#1| (-848)))) (-657)) (T -656)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-705))) (-15 -1341 (|#1| |#1| (-705))) (-15 -1588 (|#1| |#1| (-705))) (-15 -1568 ((-108) |#1|)) (-15 ** (|#1| |#1| (-848))) (-15 -1341 (|#1| |#1| (-848))) (-15 -1588 (|#1| |#1| (-848)))) +((-1430 (((-108) $ $) 7)) (-2682 (((-3 $ "failed") $) 17)) (-1588 (($ $ (-848)) 15) (($ $ (-705)) 22)) (-4193 (((-3 $ "failed") $) 19)) (-1568 (((-108) $) 23)) (-2076 (((-3 $ "failed") $) 18)) (-1341 (($ $ (-848)) 14) (($ $ (-705)) 21)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3611 (($) 24 T CONST)) (-1543 (((-108) $ $) 6)) (** (($ $ (-848)) 13) (($ $ (-705)) 20)) (* (($ $ $) 16))) +(((-657) (-1194)) (T -657)) +((-3611 (*1 *1) (-4 *1 (-657))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-657)) (-5 *2 (-108)))) (-1588 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-705)))) (-1341 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-705)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-705)))) (-4193 (*1 *1 *1) (|partial| -4 *1 (-657))) (-2076 (*1 *1 *1) (|partial| -4 *1 (-657))) (-2682 (*1 *1 *1) (|partial| -4 *1 (-657)))) +(-13 (-655) (-10 -8 (-15 (-3611) ($) -2730) (-15 -1568 ((-108) $)) (-15 -1588 ($ $ (-705))) (-15 -1341 ($ $ (-705))) (-15 ** ($ $ (-705))) (-15 -4193 ((-3 $ "failed") $)) (-15 -2076 ((-3 $ "failed") $)) (-15 -2682 ((-3 $ "failed") $)))) +(((-97) . T) ((-559 (-790)) . T) ((-655) . T) ((-1011) . T)) +((-1642 (((-705)) 35)) (-1301 (((-3 (-519) "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1499 (((-519) $) NIL) (((-379 (-519)) $) NIL) ((|#2| $) 22)) (-3874 (($ |#3|) NIL) (((-3 $ "failed") (-379 |#3|)) 45)) (-4193 (((-3 $ "failed") $) 65)) (-3314 (($) 39)) (-3681 ((|#2| $) 20)) (-1397 (($) 17)) (-2181 (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082)) NIL) (($ $ (-705)) NIL) (($ $) NIL)) (-1611 (((-625 |#2|) (-1163 $) (-1 |#2| |#2|)) 60)) (-1446 (((-1163 |#2|) $) NIL) (($ (-1163 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2165 ((|#3| $) 32)) (-2070 (((-1163 $)) 29))) +(((-658 |#1| |#2| |#3|) (-10 -8 (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -3314 (|#1|)) (-15 -1642 ((-705))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -1611 ((-625 |#2|) (-1163 |#1|) (-1 |#2| |#2|))) (-15 -3874 ((-3 |#1| "failed") (-379 |#3|))) (-15 -1446 (|#1| |#3|)) (-15 -3874 (|#1| |#3|)) (-15 -1397 (|#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1446 (|#3| |#1|)) (-15 -1446 (|#1| (-1163 |#2|))) (-15 -1446 ((-1163 |#2|) |#1|)) (-15 -2070 ((-1163 |#1|))) (-15 -2165 (|#3| |#1|)) (-15 -3681 (|#2| |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1|))) (-659 |#2| |#3|) (-157) (-1139 |#2|)) (T -658)) +((-1642 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1139 *4)) (-5 *2 (-705)) (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-659 *4 *5))))) +(-10 -8 (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -3314 (|#1|)) (-15 -1642 ((-705))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -1611 ((-625 |#2|) (-1163 |#1|) (-1 |#2| |#2|))) (-15 -3874 ((-3 |#1| "failed") (-379 |#3|))) (-15 -1446 (|#1| |#3|)) (-15 -3874 (|#1| |#3|)) (-15 -1397 (|#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1446 (|#3| |#1|)) (-15 -1446 (|#1| (-1163 |#2|))) (-15 -1446 ((-1163 |#2|) |#1|)) (-15 -2070 ((-1163 |#1|))) (-15 -2165 (|#3| |#1|)) (-15 -3681 (|#2| |#1|)) (-15 -4193 ((-3 |#1| "failed") |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 93 (|has| |#1| (-335)))) (-1410 (($ $) 94 (|has| |#1| (-335)))) (-3060 (((-108) $) 96 (|has| |#1| (-335)))) (-2935 (((-625 |#1|) (-1163 $)) 46) (((-625 |#1|)) 61)) (-1871 ((|#1| $) 52)) (-3263 (((-1091 (-848) (-705)) (-519)) 147 (|has| |#1| (-321)))) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 113 (|has| |#1| (-335)))) (-3093 (((-390 $) $) 114 (|has| |#1| (-335)))) (-3409 (((-108) $ $) 104 (|has| |#1| (-335)))) (-1642 (((-705)) 87 (|has| |#1| (-340)))) (-2249 (($) 17 T CONST)) (-1301 (((-3 (-519) "failed") $) 169 (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) 167 (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 166)) (-1499 (((-519) $) 170 (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) 168 (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) 165)) (-2528 (($ (-1163 |#1|) (-1163 $)) 48) (($ (-1163 |#1|)) 64)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-321)))) (-2311 (($ $ $) 108 (|has| |#1| (-335)))) (-3771 (((-625 |#1|) $ (-1163 $)) 53) (((-625 |#1|) $) 59)) (-1562 (((-625 (-519)) (-625 $)) 164 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 163 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 162) (((-625 |#1|) (-625 $)) 161)) (-3874 (($ |#2|) 158) (((-3 $ "failed") (-379 |#2|)) 155 (|has| |#1| (-335)))) (-4193 (((-3 $ "failed") $) 34)) (-3229 (((-848)) 54)) (-3314 (($) 90 (|has| |#1| (-340)))) (-2286 (($ $ $) 107 (|has| |#1| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 102 (|has| |#1| (-335)))) (-1625 (($) 149 (|has| |#1| (-321)))) (-4156 (((-108) $) 150 (|has| |#1| (-321)))) (-3824 (($ $ (-705)) 141 (|has| |#1| (-321))) (($ $) 140 (|has| |#1| (-321)))) (-1320 (((-108) $) 115 (|has| |#1| (-335)))) (-3709 (((-848) $) 152 (|has| |#1| (-321))) (((-768 (-848)) $) 138 (|has| |#1| (-321)))) (-1568 (((-108) $) 31)) (-3681 ((|#1| $) 51)) (-1675 (((-3 $ "failed") $) 142 (|has| |#1| (-321)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 111 (|has| |#1| (-335)))) (-3437 ((|#2| $) 44 (|has| |#1| (-335)))) (-3334 (((-848) $) 89 (|has| |#1| (-340)))) (-3860 ((|#2| $) 156)) (-2254 (($ (-585 $)) 100 (|has| |#1| (-335))) (($ $ $) 99 (|has| |#1| (-335)))) (-1266 (((-1065) $) 9)) (-3151 (($ $) 116 (|has| |#1| (-335)))) (-3816 (($) 143 (|has| |#1| (-321)) CONST)) (-2770 (($ (-848)) 88 (|has| |#1| (-340)))) (-4139 (((-1029) $) 10)) (-1397 (($) 160)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 101 (|has| |#1| (-335)))) (-2292 (($ (-585 $)) 98 (|has| |#1| (-335))) (($ $ $) 97 (|has| |#1| (-335)))) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) 146 (|has| |#1| (-321)))) (-1921 (((-390 $) $) 112 (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 109 (|has| |#1| (-335)))) (-2261 (((-3 $ "failed") $ $) 92 (|has| |#1| (-335)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 103 (|has| |#1| (-335)))) (-3129 (((-705) $) 105 (|has| |#1| (-335)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 106 (|has| |#1| (-335)))) (-3677 ((|#1| (-1163 $)) 47) ((|#1|) 60)) (-2867 (((-705) $) 151 (|has| |#1| (-321))) (((-3 (-705) "failed") $ $) 139 (|has| |#1| (-321)))) (-2181 (($ $) 137 (-3730 (-4012 (|has| |#1| (-209)) (|has| |#1| (-335))) (|has| |#1| (-321)))) (($ $ (-705)) 135 (-3730 (-4012 (|has| |#1| (-209)) (|has| |#1| (-335))) (|has| |#1| (-321)))) (($ $ (-1082)) 133 (-4012 (|has| |#1| (-827 (-1082))) (|has| |#1| (-335)))) (($ $ (-585 (-1082))) 132 (-4012 (|has| |#1| (-827 (-1082))) (|has| |#1| (-335)))) (($ $ (-1082) (-705)) 131 (-4012 (|has| |#1| (-827 (-1082))) (|has| |#1| (-335)))) (($ $ (-585 (-1082)) (-585 (-705))) 130 (-4012 (|has| |#1| (-827 (-1082))) (|has| |#1| (-335)))) (($ $ (-1 |#1| |#1|) (-705)) 123 (|has| |#1| (-335))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-335)))) (-1611 (((-625 |#1|) (-1163 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-335)))) (-1462 ((|#2|) 159)) (-3132 (($) 148 (|has| |#1| (-321)))) (-3399 (((-1163 |#1|) $ (-1163 $)) 50) (((-625 |#1|) (-1163 $) (-1163 $)) 49) (((-1163 |#1|) $) 66) (((-625 |#1|) (-1163 $)) 65)) (-1446 (((-1163 |#1|) $) 63) (($ (-1163 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 145 (|has| |#1| (-321)))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-335))) (($ (-379 (-519))) 86 (-3730 (|has| |#1| (-335)) (|has| |#1| (-959 (-379 (-519))))))) (-3773 (($ $) 144 (|has| |#1| (-321))) (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2165 ((|#2| $) 45)) (-3594 (((-705)) 29)) (-2070 (((-1163 $)) 67)) (-1617 (((-108) $ $) 95 (|has| |#1| (-335)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 117 (|has| |#1| (-335)))) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $) 136 (-3730 (-4012 (|has| |#1| (-209)) (|has| |#1| (-335))) (|has| |#1| (-321)))) (($ $ (-705)) 134 (-3730 (-4012 (|has| |#1| (-209)) (|has| |#1| (-335))) (|has| |#1| (-321)))) (($ $ (-1082)) 129 (-4012 (|has| |#1| (-827 (-1082))) (|has| |#1| (-335)))) (($ $ (-585 (-1082))) 128 (-4012 (|has| |#1| (-827 (-1082))) (|has| |#1| (-335)))) (($ $ (-1082) (-705)) 127 (-4012 (|has| |#1| (-827 (-1082))) (|has| |#1| (-335)))) (($ $ (-585 (-1082)) (-585 (-705))) 126 (-4012 (|has| |#1| (-827 (-1082))) (|has| |#1| (-335)))) (($ $ (-1 |#1| |#1|) (-705)) 125 (|has| |#1| (-335))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-335)))) (-1543 (((-108) $ $) 6)) (-1632 (($ $ $) 121 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 118 (|has| |#1| (-335)))) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-379 (-519)) $) 120 (|has| |#1| (-335))) (($ $ (-379 (-519))) 119 (|has| |#1| (-335))))) +(((-659 |#1| |#2|) (-1194) (-157) (-1139 |t#1|)) (T -659)) +((-1397 (*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-659 *2 *3)) (-4 *3 (-1139 *2)))) (-1462 (*1 *2) (-12 (-4 *1 (-659 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1139 *3)))) (-3874 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-659 *3 *2)) (-4 *2 (-1139 *3)))) (-1446 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-659 *3 *2)) (-4 *2 (-1139 *3)))) (-3860 (*1 *2 *1) (-12 (-4 *1 (-659 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1139 *3)))) (-3874 (*1 *1 *2) (|partial| -12 (-5 *2 (-379 *4)) (-4 *4 (-1139 *3)) (-4 *3 (-335)) (-4 *3 (-157)) (-4 *1 (-659 *3 *4)))) (-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-1163 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-335)) (-4 *1 (-659 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1139 *5)) (-5 *2 (-625 *5))))) +(-13 (-381 |t#1| |t#2|) (-157) (-560 |t#2|) (-383 |t#1|) (-349 |t#1|) (-10 -8 (-15 -1397 ($)) (-15 -1462 (|t#2|)) (-15 -3874 ($ |t#2|)) (-15 -1446 ($ |t#2|)) (-15 -3860 (|t#2| $)) (IF (|has| |t#1| (-340)) (-6 (-340)) |%noBranch|) (IF (|has| |t#1| (-335)) (PROGN (-6 (-335)) (-6 (-207 |t#1|)) (-15 -3874 ((-3 $ "failed") (-379 |t#2|))) (-15 -1611 ((-625 |t#1|) (-1163 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-321)) (-6 (-321)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-37 |#1|) . T) ((-37 $) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-97) . T) ((-107 #0# #0#) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3730 (|has| |#1| (-321)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) . T) ((-560 |#2|) . T) ((-207 |#1|) |has| |#1| (-335)) ((-209) -3730 (|has| |#1| (-321)) (-12 (|has| |#1| (-209)) (|has| |#1| (-335)))) ((-219) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-264) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-280) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-335) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-374) |has| |#1| (-321)) ((-340) -3730 (|has| |#1| (-340)) (|has| |#1| (-321))) ((-321) |has| |#1| (-321)) ((-342 |#1| |#2|) . T) ((-381 |#1| |#2|) . T) ((-349 |#1|) . T) ((-383 |#1|) . T) ((-423) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-511) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-587 #0#) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-587 |#1|) . T) ((-587 $) . T) ((-581 (-519)) |has| |#1| (-581 (-519))) ((-581 |#1|) . T) ((-652 #0#) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-652 |#1|) . T) ((-652 $) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-661) . T) ((-827 (-1082)) -12 (|has| |#1| (-335)) (|has| |#1| (-827 (-1082)))) ((-847) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 |#1|) . T) ((-974 #0#) -3730 (|has| |#1| (-321)) (|has| |#1| (-335))) ((-974 |#1|) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1058) |has| |#1| (-321)) ((-1121) -3730 (|has| |#1| (-321)) (|has| |#1| (-335)))) +((-2249 (($) 14)) (-4193 (((-3 $ "failed") $) 16)) (-1568 (((-108) $) 13)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) 9)) (** (($ $ (-848)) NIL) (($ $ (-705)) 20))) +(((-660 |#1|) (-10 -8 (-15 -4193 ((-3 |#1| "failed") |#1|)) (-15 -3559 (|#1| |#1| (-705))) (-15 ** (|#1| |#1| (-705))) (-15 -1568 ((-108) |#1|)) (-15 -2249 (|#1|)) (-15 -3559 (|#1| |#1| (-848))) (-15 ** (|#1| |#1| (-848)))) (-661)) (T -660)) +NIL +(-10 -8 (-15 -4193 ((-3 |#1| "failed") |#1|)) (-15 -3559 (|#1| |#1| (-705))) (-15 ** (|#1| |#1| (-705))) (-15 -1568 ((-108) |#1|)) (-15 -2249 (|#1|)) (-15 -3559 (|#1| |#1| (-848))) (-15 ** (|#1| |#1| (-848)))) +((-1430 (((-108) $ $) 7)) (-2249 (($) 20 T CONST)) (-4193 (((-3 $ "failed") $) 16)) (-1568 (((-108) $) 19)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3559 (($ $ (-848)) 13) (($ $ (-705)) 17)) (-3611 (($) 21 T CONST)) (-1543 (((-108) $ $) 6)) (** (($ $ (-848)) 14) (($ $ (-705)) 18)) (* (($ $ $) 15))) +(((-661) (-1194)) (T -661)) +((-3611 (*1 *1) (-4 *1 (-661))) (-2249 (*1 *1) (-4 *1 (-661))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-661)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-705)))) (-3559 (*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-705)))) (-4193 (*1 *1 *1) (|partial| -4 *1 (-661)))) +(-13 (-1023) (-10 -8 (-15 (-3611) ($) -2730) (-15 -2249 ($) -2730) (-15 -1568 ((-108) $)) (-15 ** ($ $ (-705))) (-15 -3559 ($ $ (-705))) (-15 -4193 ((-3 $ "failed") $)))) +(((-97) . T) ((-559 (-790)) . T) ((-1023) . T) ((-1011) . T)) +((-3321 (((-2 (|:| -3688 (-390 |#2|)) (|:| |special| (-390 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2482 (((-2 (|:| -3688 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1207 ((|#2| (-379 |#2|) (-1 |#2| |#2|)) 13)) (-2285 (((-2 (|:| |poly| |#2|) (|:| -3688 (-379 |#2|)) (|:| |special| (-379 |#2|))) (-379 |#2|) (-1 |#2| |#2|)) 47))) +(((-662 |#1| |#2|) (-10 -7 (-15 -2482 ((-2 (|:| -3688 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3321 ((-2 (|:| -3688 (-390 |#2|)) (|:| |special| (-390 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1207 (|#2| (-379 |#2|) (-1 |#2| |#2|))) (-15 -2285 ((-2 (|:| |poly| |#2|) (|:| -3688 (-379 |#2|)) (|:| |special| (-379 |#2|))) (-379 |#2|) (-1 |#2| |#2|)))) (-335) (-1139 |#1|)) (T -662)) +((-2285 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3688 (-379 *6)) (|:| |special| (-379 *6)))) (-5 *1 (-662 *5 *6)) (-5 *3 (-379 *6)))) (-1207 (*1 *2 *3 *4) (-12 (-5 *3 (-379 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1139 *5)) (-5 *1 (-662 *5 *2)) (-4 *5 (-335)))) (-3321 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1139 *5)) (-4 *5 (-335)) (-5 *2 (-2 (|:| -3688 (-390 *3)) (|:| |special| (-390 *3)))) (-5 *1 (-662 *5 *3)))) (-2482 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1139 *5)) (-4 *5 (-335)) (-5 *2 (-2 (|:| -3688 *3) (|:| |special| *3))) (-5 *1 (-662 *5 *3))))) +(-10 -7 (-15 -2482 ((-2 (|:| -3688 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3321 ((-2 (|:| -3688 (-390 |#2|)) (|:| |special| (-390 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1207 (|#2| (-379 |#2|) (-1 |#2| |#2|))) (-15 -2285 ((-2 (|:| |poly| |#2|) (|:| -3688 (-379 |#2|)) (|:| |special| (-379 |#2|))) (-379 |#2|) (-1 |#2| |#2|)))) +((-3189 ((|#7| (-585 |#5|) |#6|) NIL)) (-1405 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-663 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1405 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3189 (|#7| (-585 |#5|) |#6|))) (-782) (-727) (-727) (-968) (-968) (-876 |#4| |#2| |#1|) (-876 |#5| |#3| |#1|)) (T -663)) +((-3189 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *9)) (-4 *9 (-968)) (-4 *5 (-782)) (-4 *6 (-727)) (-4 *8 (-968)) (-4 *2 (-876 *9 *7 *5)) (-5 *1 (-663 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-727)) (-4 *4 (-876 *8 *6 *5)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-968)) (-4 *9 (-968)) (-4 *5 (-782)) (-4 *6 (-727)) (-4 *2 (-876 *9 *7 *5)) (-5 *1 (-663 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-727)) (-4 *4 (-876 *8 *6 *5))))) +(-10 -7 (-15 -1405 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3189 (|#7| (-585 |#5|) |#6|))) +((-1405 ((|#7| (-1 |#2| |#1|) |#6|) 29))) +(((-664 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1405 (|#7| (-1 |#2| |#1|) |#6|))) (-782) (-782) (-727) (-727) (-968) (-876 |#5| |#3| |#1|) (-876 |#5| |#4| |#2|)) (T -664)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-782)) (-4 *6 (-782)) (-4 *7 (-727)) (-4 *9 (-968)) (-4 *2 (-876 *9 *8 *6)) (-5 *1 (-664 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-727)) (-4 *4 (-876 *9 *7 *5))))) +(-10 -7 (-15 -1405 (|#7| (-1 |#2| |#1|) |#6|))) +((-1921 (((-390 |#4|) |#4|) 39))) +(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1921 ((-390 |#4|) |#4|))) (-727) (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)) (-15 -1622 ((-3 $ "failed") (-1082))))) (-280) (-876 (-879 |#3|) |#1| |#2|)) (T -665)) +((-1921 (*1 *2 *3) (-12 (-4 *4 (-727)) (-4 *5 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)) (-15 -1622 ((-3 $ "failed") (-1082)))))) (-4 *6 (-280)) (-5 *2 (-390 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-876 (-879 *6) *4 *5))))) +(-10 -7 (-15 -1921 ((-390 |#4|) |#4|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 (-792 |#1|)) $) NIL)) (-1283 (((-1078 $) $ (-792 |#1|)) NIL) (((-1078 |#2|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#2| (-511)))) (-1410 (($ $) NIL (|has| |#2| (-511)))) (-3060 (((-108) $) NIL (|has| |#2| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 (-792 |#1|))) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-4043 (($ $) NIL (|has| |#2| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#2| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#2| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#2| (-959 (-519)))) (((-3 (-792 |#1|) "failed") $) NIL)) (-1499 ((|#2| $) NIL) (((-379 (-519)) $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#2| (-959 (-519)))) (((-792 |#1|) $) NIL)) (-1286 (($ $ $ (-792 |#1|)) NIL (|has| |#2| (-157)))) (-3218 (($ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL) (((-625 |#2|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#2| (-423))) (($ $ (-792 |#1|)) NIL (|has| |#2| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#2| (-836)))) (-4015 (($ $ |#2| (-491 (-792 |#1|)) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-792 |#1|) (-813 (-351))) (|has| |#2| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-792 |#1|) (-813 (-519))) (|has| |#2| (-813 (-519)))))) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-4066 (($ (-1078 |#2|) (-792 |#1|)) NIL) (($ (-1078 $) (-792 |#1|)) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#2| (-491 (-792 |#1|))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-792 |#1|)) NIL)) (-3695 (((-491 (-792 |#1|)) $) NIL) (((-705) $ (-792 |#1|)) NIL) (((-585 (-705)) $ (-585 (-792 |#1|))) NIL)) (-2864 (($ $ $) NIL (|has| |#2| (-782)))) (-2489 (($ $ $) NIL (|has| |#2| (-782)))) (-3737 (($ (-1 (-491 (-792 |#1|)) (-491 (-792 |#1|))) $) NIL)) (-1405 (($ (-1 |#2| |#2|) $) NIL)) (-2635 (((-3 (-792 |#1|) "failed") $) NIL)) (-3185 (($ $) NIL)) (-3197 ((|#2| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#2| (-423))) (($ $ $) NIL (|has| |#2| (-423)))) (-1266 (((-1065) $) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| (-792 |#1|)) (|:| -1690 (-705))) "failed") $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) NIL)) (-3173 ((|#2| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#2| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#2| (-423))) (($ $ $) NIL (|has| |#2| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#2| (-836)))) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-511))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-511)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-792 |#1|) |#2|) NIL) (($ $ (-585 (-792 |#1|)) (-585 |#2|)) NIL) (($ $ (-792 |#1|) $) NIL) (($ $ (-585 (-792 |#1|)) (-585 $)) NIL)) (-3677 (($ $ (-792 |#1|)) NIL (|has| |#2| (-157)))) (-2181 (($ $ (-792 |#1|)) NIL) (($ $ (-585 (-792 |#1|))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-4178 (((-491 (-792 |#1|)) $) NIL) (((-705) $ (-792 |#1|)) NIL) (((-585 (-705)) $ (-585 (-792 |#1|))) NIL)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| (-792 |#1|) (-560 (-819 (-351)))) (|has| |#2| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| (-792 |#1|) (-560 (-819 (-519)))) (|has| |#2| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| (-792 |#1|) (-560 (-495))) (|has| |#2| (-560 (-495)))))) (-3939 ((|#2| $) NIL (|has| |#2| (-423))) (($ $ (-792 |#1|)) NIL (|has| |#2| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#2|) NIL) (($ (-792 |#1|)) NIL) (($ $) NIL (|has| |#2| (-511))) (($ (-379 (-519))) NIL (-3730 (|has| |#2| (-37 (-379 (-519)))) (|has| |#2| (-959 (-379 (-519))))))) (-2988 (((-585 |#2|) $) NIL)) (-1220 ((|#2| $ (-491 (-792 |#1|))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#2| (-836))) (|has| |#2| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#2| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#2| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-792 |#1|)) NIL) (($ $ (-585 (-792 |#1|))) NIL) (($ $ (-792 |#1|) (-705)) NIL) (($ $ (-585 (-792 |#1|)) (-585 (-705))) NIL)) (-1586 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1632 (($ $ |#2|) NIL (|has| |#2| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL (|has| |#2| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#2| (-37 (-379 (-519))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-666 |#1| |#2|) (-876 |#2| (-491 (-792 |#1|)) (-792 |#1|)) (-585 (-1082)) (-968)) (T -666)) +NIL +(-876 |#2| (-491 (-792 |#1|)) (-792 |#1|)) +((-3018 (((-2 (|:| -2494 (-879 |#3|)) (|:| -3600 (-879 |#3|))) |#4|) 13)) (-4065 ((|#4| |#4| |#2|) 30)) (-1403 ((|#4| (-379 (-879 |#3|)) |#2|) 64)) (-2994 ((|#4| (-1078 (-879 |#3|)) |#2|) 77)) (-4111 ((|#4| (-1078 |#4|) |#2|) 50)) (-2257 ((|#4| |#4| |#2|) 53)) (-1921 (((-390 |#4|) |#4|) 38))) +(((-667 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3018 ((-2 (|:| -2494 (-879 |#3|)) (|:| -3600 (-879 |#3|))) |#4|)) (-15 -2257 (|#4| |#4| |#2|)) (-15 -4111 (|#4| (-1078 |#4|) |#2|)) (-15 -4065 (|#4| |#4| |#2|)) (-15 -2994 (|#4| (-1078 (-879 |#3|)) |#2|)) (-15 -1403 (|#4| (-379 (-879 |#3|)) |#2|)) (-15 -1921 ((-390 |#4|) |#4|))) (-727) (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)))) (-511) (-876 (-379 (-879 |#3|)) |#1| |#2|)) (T -667)) +((-1921 (*1 *2 *3) (-12 (-4 *4 (-727)) (-4 *5 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))) (-4 *6 (-511)) (-5 *2 (-390 *3)) (-5 *1 (-667 *4 *5 *6 *3)) (-4 *3 (-876 (-379 (-879 *6)) *4 *5)))) (-1403 (*1 *2 *3 *4) (-12 (-4 *6 (-511)) (-4 *2 (-876 *3 *5 *4)) (-5 *1 (-667 *5 *4 *6 *2)) (-5 *3 (-379 (-879 *6))) (-4 *5 (-727)) (-4 *4 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))))) (-2994 (*1 *2 *3 *4) (-12 (-5 *3 (-1078 (-879 *6))) (-4 *6 (-511)) (-4 *2 (-876 (-379 (-879 *6)) *5 *4)) (-5 *1 (-667 *5 *4 *6 *2)) (-4 *5 (-727)) (-4 *4 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))))) (-4065 (*1 *2 *2 *3) (-12 (-4 *4 (-727)) (-4 *3 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))) (-4 *5 (-511)) (-5 *1 (-667 *4 *3 *5 *2)) (-4 *2 (-876 (-379 (-879 *5)) *4 *3)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-1078 *2)) (-4 *2 (-876 (-379 (-879 *6)) *5 *4)) (-5 *1 (-667 *5 *4 *6 *2)) (-4 *5 (-727)) (-4 *4 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))) (-4 *6 (-511)))) (-2257 (*1 *2 *2 *3) (-12 (-4 *4 (-727)) (-4 *3 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))) (-4 *5 (-511)) (-5 *1 (-667 *4 *3 *5 *2)) (-4 *2 (-876 (-379 (-879 *5)) *4 *3)))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-727)) (-4 *5 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))) (-4 *6 (-511)) (-5 *2 (-2 (|:| -2494 (-879 *6)) (|:| -3600 (-879 *6)))) (-5 *1 (-667 *4 *5 *6 *3)) (-4 *3 (-876 (-379 (-879 *6)) *4 *5))))) +(-10 -7 (-15 -3018 ((-2 (|:| -2494 (-879 |#3|)) (|:| -3600 (-879 |#3|))) |#4|)) (-15 -2257 (|#4| |#4| |#2|)) (-15 -4111 (|#4| (-1078 |#4|) |#2|)) (-15 -4065 (|#4| |#4| |#2|)) (-15 -2994 (|#4| (-1078 (-879 |#3|)) |#2|)) (-15 -1403 (|#4| (-379 (-879 |#3|)) |#2|)) (-15 -1921 ((-390 |#4|) |#4|))) +((-1921 (((-390 |#4|) |#4|) 51))) +(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1921 ((-390 |#4|) |#4|))) (-727) (-782) (-13 (-280) (-135)) (-876 (-379 |#3|) |#1| |#2|)) (T -668)) +((-1921 (*1 *2 *3) (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-13 (-280) (-135))) (-5 *2 (-390 *3)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-876 (-379 *6) *4 *5))))) +(-10 -7 (-15 -1921 ((-390 |#4|) |#4|))) +((-1405 (((-670 |#2| |#3|) (-1 |#2| |#1|) (-670 |#1| |#3|)) 18))) +(((-669 |#1| |#2| |#3|) (-10 -7 (-15 -1405 ((-670 |#2| |#3|) (-1 |#2| |#1|) (-670 |#1| |#3|)))) (-968) (-968) (-661)) (T -669)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-670 *5 *7)) (-4 *5 (-968)) (-4 *6 (-968)) (-4 *7 (-661)) (-5 *2 (-670 *6 *7)) (-5 *1 (-669 *5 *6 *7))))) +(-10 -7 (-15 -1405 ((-670 |#2| |#3|) (-1 |#2| |#1|) (-670 |#1| |#3|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 26)) (-3088 (((-585 (-2 (|:| -3031 |#1|) (|:| -2569 |#2|))) $) 27)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1642 (((-705)) 20 (-12 (|has| |#2| (-340)) (|has| |#1| (-340))))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-1499 ((|#2| $) NIL) ((|#1| $) NIL)) (-3218 (($ $) 76 (|has| |#2| (-782)))) (-4193 (((-3 $ "failed") $) 63)) (-3314 (($) 33 (-12 (|has| |#2| (-340)) (|has| |#1| (-340))))) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) 54)) (-2089 (((-585 $) $) 37)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| |#2|) 16)) (-1405 (($ (-1 |#1| |#1|) $) 53)) (-3334 (((-848) $) 30 (-12 (|has| |#2| (-340)) (|has| |#1| (-340))))) (-3185 ((|#2| $) 75 (|has| |#2| (-782)))) (-3197 ((|#1| $) 74 (|has| |#2| (-782)))) (-1266 (((-1065) $) NIL)) (-2770 (($ (-848)) 25 (-12 (|has| |#2| (-340)) (|has| |#1| (-340))))) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 73) (($ (-519)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-585 (-2 (|:| -3031 |#1|) (|:| -2569 |#2|)))) 11)) (-2988 (((-585 |#1|) $) 39)) (-1220 ((|#1| $ |#2|) 84)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 12 T CONST)) (-3611 (($) 31 T CONST)) (-1543 (((-108) $ $) 77)) (-1623 (($ $) 46) (($ $ $) NIL)) (-1614 (($ $ $) 24)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))))) +(((-670 |#1| |#2|) (-13 (-968) (-959 |#2|) (-959 |#1|) (-10 -8 (-15 -4042 ($ |#1| |#2|)) (-15 -1220 (|#1| $ |#2|)) (-15 -2217 ($ (-585 (-2 (|:| -3031 |#1|) (|:| -2569 |#2|))))) (-15 -3088 ((-585 (-2 (|:| -3031 |#1|) (|:| -2569 |#2|))) $)) (-15 -1405 ($ (-1 |#1| |#1|) $)) (-15 -2642 ((-108) $)) (-15 -2988 ((-585 |#1|) $)) (-15 -2089 ((-585 $) $)) (-15 -3798 ((-705) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-340)) (IF (|has| |#2| (-340)) (-6 (-340)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-782)) (PROGN (-15 -3185 (|#2| $)) (-15 -3197 (|#1| $)) (-15 -3218 ($ $))) |%noBranch|))) (-968) (-661)) (T -670)) +((-4042 (*1 *1 *2 *3) (-12 (-5 *1 (-670 *2 *3)) (-4 *2 (-968)) (-4 *3 (-661)))) (-1220 (*1 *2 *1 *3) (-12 (-4 *2 (-968)) (-5 *1 (-670 *2 *3)) (-4 *3 (-661)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -3031 *3) (|:| -2569 *4)))) (-4 *3 (-968)) (-4 *4 (-661)) (-5 *1 (-670 *3 *4)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -3031 *3) (|:| -2569 *4)))) (-5 *1 (-670 *3 *4)) (-4 *3 (-968)) (-4 *4 (-661)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-670 *3 *4)) (-4 *4 (-661)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-670 *3 *4)) (-4 *3 (-968)) (-4 *4 (-661)))) (-2988 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-670 *3 *4)) (-4 *3 (-968)) (-4 *4 (-661)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-585 (-670 *3 *4))) (-5 *1 (-670 *3 *4)) (-4 *3 (-968)) (-4 *4 (-661)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-670 *3 *4)) (-4 *3 (-968)) (-4 *4 (-661)))) (-3185 (*1 *2 *1) (-12 (-4 *2 (-661)) (-4 *2 (-782)) (-5 *1 (-670 *3 *2)) (-4 *3 (-968)))) (-3197 (*1 *2 *1) (-12 (-4 *2 (-968)) (-5 *1 (-670 *2 *3)) (-4 *3 (-782)) (-4 *3 (-661)))) (-3218 (*1 *1 *1) (-12 (-5 *1 (-670 *2 *3)) (-4 *3 (-782)) (-4 *2 (-968)) (-4 *3 (-661))))) +(-13 (-968) (-959 |#2|) (-959 |#1|) (-10 -8 (-15 -4042 ($ |#1| |#2|)) (-15 -1220 (|#1| $ |#2|)) (-15 -2217 ($ (-585 (-2 (|:| -3031 |#1|) (|:| -2569 |#2|))))) (-15 -3088 ((-585 (-2 (|:| -3031 |#1|) (|:| -2569 |#2|))) $)) (-15 -1405 ($ (-1 |#1| |#1|) $)) (-15 -2642 ((-108) $)) (-15 -2988 ((-585 |#1|) $)) (-15 -2089 ((-585 $) $)) (-15 -3798 ((-705) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-340)) (IF (|has| |#2| (-340)) (-6 (-340)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-782)) (PROGN (-15 -3185 (|#2| $)) (-15 -3197 (|#1| $)) (-15 -3218 ($ $))) |%noBranch|))) +((-1430 (((-108) $ $) 19)) (-2304 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1415 (($ $ $) 72)) (-3466 (((-108) $ $) 73)) (-1473 (((-108) $ (-705)) 8)) (-1780 (($ (-585 |#1|)) 68) (($) 67)) (-2846 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-1552 (($ $) 62)) (-2366 (($ $) 58 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2502 (($ |#1| $) 47 (|has| $ (-6 -4221))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4221)))) (-1438 (($ |#1| $) 57 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4221)))) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22)) (-3766 (($ $ $) 69)) (-4152 ((|#1| $) 39)) (-1846 (($ |#1| $) 40) (($ |#1| $ (-705)) 63)) (-4139 (((-1029) $) 21)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3212 ((|#1| $) 41)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-1307 (((-585 (-2 (|:| -3100 |#1|) (|:| -4155 (-705)))) $) 61)) (-2019 (($ $ |#1|) 71) (($ $ $) 70)) (-2436 (($) 49) (($ (-585 |#1|)) 48)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 59 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 50)) (-2217 (((-790) $) 18)) (-3451 (($ (-585 |#1|)) 66) (($) 65)) (-3879 (($ (-585 |#1|)) 42)) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20)) (-1561 (((-108) $ $) 64)) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-671 |#1|) (-1194) (-1011)) (T -671)) +NIL +(-13 (-630 |t#1|) (-1009 |t#1|)) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-559 (-790)) . T) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-211 |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-630 |#1|) . T) ((-1009 |#1|) . T) ((-1011) . T) ((-1117) . T)) +((-1430 (((-108) $ $) NIL)) (-2304 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1415 (($ $ $) 79)) (-3466 (((-108) $ $) 82)) (-1473 (((-108) $ (-705)) NIL)) (-1780 (($ (-585 |#1|)) 24) (($) 15)) (-2846 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1552 (($ $) 71)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2502 (($ |#1| $) 61 (|has| $ (-6 -4221))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4221))) (($ |#1| $ (-519)) 62) (($ (-1 (-108) |#1|) $ (-519)) 65)) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (($ |#1| $ (-519)) 67) (($ (-1 (-108) |#1|) $ (-519)) 68)) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221)))) (-3844 (((-585 |#1|) $) 32 (|has| $ (-6 -4221)))) (-1490 (($) 13) (($ |#1|) 26) (($ (-585 |#1|)) 21)) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) 38)) (-1933 (((-108) |#1| $) 57 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3850 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 75)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-3766 (($ $ $) 77)) (-4152 ((|#1| $) 54)) (-1846 (($ |#1| $) 55) (($ |#1| $ (-705)) 72)) (-4139 (((-1029) $) NIL)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3212 ((|#1| $) 53)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 49)) (-1548 (($) 12)) (-1307 (((-585 (-2 (|:| -3100 |#1|) (|:| -4155 (-705)))) $) 47)) (-2019 (($ $ |#1|) NIL) (($ $ $) 78)) (-2436 (($) 14) (($ (-585 |#1|)) 23)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) 60 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) 66)) (-1446 (((-495) $) 36 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 20)) (-2217 (((-790) $) 44)) (-3451 (($ (-585 |#1|)) 25) (($) 16)) (-3879 (($ (-585 |#1|)) 22)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 80)) (-1561 (((-108) $ $) 81)) (-3532 (((-705) $) 59 (|has| $ (-6 -4221))))) +(((-672 |#1|) (-13 (-671 |#1|) (-10 -8 (-6 -4221) (-6 -4222) (-15 -1490 ($)) (-15 -1490 ($ |#1|)) (-15 -1490 ($ (-585 |#1|))) (-15 -3725 ((-585 |#1|) $)) (-15 -1438 ($ |#1| $ (-519))) (-15 -1438 ($ (-1 (-108) |#1|) $ (-519))) (-15 -2502 ($ |#1| $ (-519))) (-15 -2502 ($ (-1 (-108) |#1|) $ (-519))))) (-1011)) (T -672)) +((-1490 (*1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-1011)))) (-1490 (*1 *1 *2) (-12 (-5 *1 (-672 *2)) (-4 *2 (-1011)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-672 *3)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1011)))) (-1438 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *1 (-672 *2)) (-4 *2 (-1011)))) (-1438 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-519)) (-4 *4 (-1011)) (-5 *1 (-672 *4)))) (-2502 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *1 (-672 *2)) (-4 *2 (-1011)))) (-2502 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-519)) (-4 *4 (-1011)) (-5 *1 (-672 *4))))) +(-13 (-671 |#1|) (-10 -8 (-6 -4221) (-6 -4222) (-15 -1490 ($)) (-15 -1490 ($ |#1|)) (-15 -1490 ($ (-585 |#1|))) (-15 -3725 ((-585 |#1|) $)) (-15 -1438 ($ |#1| $ (-519))) (-15 -1438 ($ (-1 (-108) |#1|) $ (-519))) (-15 -2502 ($ |#1| $ (-519))) (-15 -2502 ($ (-1 (-108) |#1|) $ (-519))))) +((-3667 (((-1168) (-1065)) 8))) +(((-673) (-10 -7 (-15 -3667 ((-1168) (-1065))))) (T -673)) +((-3667 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-673))))) +(-10 -7 (-15 -3667 ((-1168) (-1065)))) +((-3788 (((-585 |#1|) (-585 |#1|) (-585 |#1|)) 10))) +(((-674 |#1|) (-10 -7 (-15 -3788 ((-585 |#1|) (-585 |#1|) (-585 |#1|)))) (-782)) (T -674)) +((-3788 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-674 *3))))) +(-10 -7 (-15 -3788 ((-585 |#1|) (-585 |#1|) (-585 |#1|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4083 (((-585 |#2|) $) 136)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 129 (|has| |#1| (-511)))) (-1410 (($ $) 128 (|has| |#1| (-511)))) (-3060 (((-108) $) 126 (|has| |#1| (-511)))) (-2958 (($ $) 85 (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) 68 (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) 19)) (-1934 (($ $) 67 (|has| |#1| (-37 (-379 (-519)))))) (-2934 (($ $) 84 (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) 69 (|has| |#1| (-37 (-379 (-519)))))) (-2981 (($ $) 83 (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) 70 (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) 17 T CONST)) (-3218 (($ $) 120)) (-4193 (((-3 $ "failed") $) 34)) (-2227 (((-879 |#1|) $ (-705)) 98) (((-879 |#1|) $ (-705) (-705)) 97)) (-3943 (((-108) $) 137)) (-2888 (($) 95 (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-705) $ |#2|) 100) (((-705) $ |#2| (-705)) 99)) (-1568 (((-108) $) 31)) (-1517 (($ $ (-519)) 66 (|has| |#1| (-37 (-379 (-519)))))) (-2642 (((-108) $) 118)) (-4042 (($ $ (-585 |#2|) (-585 (-491 |#2|))) 135) (($ $ |#2| (-491 |#2|)) 134) (($ |#1| (-491 |#2|)) 119) (($ $ |#2| (-705)) 102) (($ $ (-585 |#2|) (-585 (-705))) 101)) (-1405 (($ (-1 |#1| |#1|) $) 117)) (-1254 (($ $) 92 (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) 115)) (-3197 ((|#1| $) 114)) (-1266 (((-1065) $) 9)) (-4142 (($ $ |#2|) 96 (|has| |#1| (-37 (-379 (-519)))))) (-4139 (((-1029) $) 10)) (-3881 (($ $ (-705)) 103)) (-2261 (((-3 $ "failed") $ $) 130 (|has| |#1| (-511)))) (-3325 (($ $) 93 (|has| |#1| (-37 (-379 (-519)))))) (-2324 (($ $ |#2| $) 111) (($ $ (-585 |#2|) (-585 $)) 110) (($ $ (-585 (-267 $))) 109) (($ $ (-267 $)) 108) (($ $ $ $) 107) (($ $ (-585 $) (-585 $)) 106)) (-2181 (($ $ |#2|) 42) (($ $ (-585 |#2|)) 41) (($ $ |#2| (-705)) 40) (($ $ (-585 |#2|) (-585 (-705))) 39)) (-4178 (((-491 |#2|) $) 116)) (-1754 (($ $) 82 (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) 71 (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) 81 (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) 72 (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) 80 (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) 73 (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) 138)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 133 (|has| |#1| (-157))) (($ $) 131 (|has| |#1| (-511))) (($ (-379 (-519))) 123 (|has| |#1| (-37 (-379 (-519)))))) (-1220 ((|#1| $ (-491 |#2|)) 121) (($ $ |#2| (-705)) 105) (($ $ (-585 |#2|) (-585 (-705))) 104)) (-3773 (((-3 $ "failed") $) 132 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1774 (($ $) 91 (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) 79 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) 127 (|has| |#1| (-511)))) (-1761 (($ $) 90 (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) 78 (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) 89 (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) 77 (|has| |#1| (-37 (-379 (-519)))))) (-3929 (($ $) 88 (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) 76 (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) 87 (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) 75 (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) 86 (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) 74 (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ |#2|) 38) (($ $ (-585 |#2|)) 37) (($ $ |#2| (-705)) 36) (($ $ (-585 |#2|) (-585 (-705))) 35)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#1|) 122 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ $) 94 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 65 (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 125 (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) 124 (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) 113) (($ $ |#1|) 112))) +(((-675 |#1| |#2|) (-1194) (-968) (-782)) (T -675)) +((-1220 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-675 *4 *2)) (-4 *4 (-968)) (-4 *2 (-782)))) (-1220 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-705))) (-4 *1 (-675 *4 *5)) (-4 *4 (-968)) (-4 *5 (-782)))) (-3881 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-675 *3 *4)) (-4 *3 (-968)) (-4 *4 (-782)))) (-4042 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-675 *4 *2)) (-4 *4 (-968)) (-4 *2 (-782)))) (-4042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-705))) (-4 *1 (-675 *4 *5)) (-4 *4 (-968)) (-4 *5 (-782)))) (-3709 (*1 *2 *1 *3) (-12 (-4 *1 (-675 *4 *3)) (-4 *4 (-968)) (-4 *3 (-782)) (-5 *2 (-705)))) (-3709 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-705)) (-4 *1 (-675 *4 *3)) (-4 *4 (-968)) (-4 *3 (-782)))) (-2227 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-4 *1 (-675 *4 *5)) (-4 *4 (-968)) (-4 *5 (-782)) (-5 *2 (-879 *4)))) (-2227 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-705)) (-4 *1 (-675 *4 *5)) (-4 *4 (-968)) (-4 *5 (-782)) (-5 *2 (-879 *4)))) (-4142 (*1 *1 *1 *2) (-12 (-4 *1 (-675 *3 *2)) (-4 *3 (-968)) (-4 *2 (-782)) (-4 *3 (-37 (-379 (-519))))))) +(-13 (-827 |t#2|) (-897 |t#1| (-491 |t#2|) |t#2|) (-480 |t#2| $) (-282 $) (-10 -8 (-15 -1220 ($ $ |t#2| (-705))) (-15 -1220 ($ $ (-585 |t#2|) (-585 (-705)))) (-15 -3881 ($ $ (-705))) (-15 -4042 ($ $ |t#2| (-705))) (-15 -4042 ($ $ (-585 |t#2|) (-585 (-705)))) (-15 -3709 ((-705) $ |t#2|)) (-15 -3709 ((-705) $ |t#2| (-705))) (-15 -2227 ((-879 |t#1|) $ (-705))) (-15 -2227 ((-879 |t#1|) $ (-705) (-705))) (IF (|has| |t#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ($ $ |t#2|)) (-6 (-925)) (-6 (-1103))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-491 |#2|)) . T) ((-25) . T) ((-37 #1=(-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-511)) ((-34) |has| |#1| (-37 (-379 (-519)))) ((-91) |has| |#1| (-37 (-379 (-519)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-379 (-519)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-258) |has| |#1| (-37 (-379 (-519)))) ((-264) |has| |#1| (-511)) ((-282 $) . T) ((-460) |has| |#1| (-37 (-379 (-519)))) ((-480 |#2| $) . T) ((-480 $ $) . T) ((-511) |has| |#1| (-511)) ((-587 #1#) |has| |#1| (-37 (-379 (-519)))) ((-587 |#1|) . T) ((-587 $) . T) ((-652 #1#) |has| |#1| (-37 (-379 (-519)))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) |has| |#1| (-511)) ((-661) . T) ((-827 |#2|) . T) ((-897 |#1| #0# |#2|) . T) ((-925) |has| |#1| (-37 (-379 (-519)))) ((-974 #1#) |has| |#1| (-37 (-379 (-519)))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1103) |has| |#1| (-37 (-379 (-519)))) ((-1106) |has| |#1| (-37 (-379 (-519))))) +((-1921 (((-390 (-1078 |#4|)) (-1078 |#4|)) 28) (((-390 |#4|) |#4|) 24))) +(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1921 ((-390 |#4|) |#4|)) (-15 -1921 ((-390 (-1078 |#4|)) (-1078 |#4|)))) (-782) (-727) (-13 (-280) (-135)) (-876 |#3| |#2| |#1|)) (T -676)) +((-1921 (*1 *2 *3) (-12 (-4 *4 (-782)) (-4 *5 (-727)) (-4 *6 (-13 (-280) (-135))) (-4 *7 (-876 *6 *5 *4)) (-5 *2 (-390 (-1078 *7))) (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1078 *7)))) (-1921 (*1 *2 *3) (-12 (-4 *4 (-782)) (-4 *5 (-727)) (-4 *6 (-13 (-280) (-135))) (-5 *2 (-390 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-876 *6 *5 *4))))) +(-10 -7 (-15 -1921 ((-390 |#4|) |#4|)) (-15 -1921 ((-390 (-1078 |#4|)) (-1078 |#4|)))) +((-3779 (((-390 |#4|) |#4| |#2|) 117)) (-2634 (((-390 |#4|) |#4|) NIL)) (-3093 (((-390 (-1078 |#4|)) (-1078 |#4|)) 108) (((-390 |#4|) |#4|) 38)) (-3027 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-585 (-2 (|:| -1921 (-1078 |#4|)) (|:| -1690 (-519)))))) (-1078 |#4|) (-585 |#2|) (-585 (-585 |#3|))) 66)) (-3530 (((-1078 |#3|) (-1078 |#3|) (-519)) 134)) (-3524 (((-585 (-705)) (-1078 |#4|) (-585 |#2|) (-705)) 59)) (-3860 (((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-1078 |#3|) (-1078 |#3|) |#4| (-585 |#2|) (-585 (-705)) (-585 |#3|)) 63)) (-3392 (((-2 (|:| |upol| (-1078 |#3|)) (|:| |Lval| (-585 |#3|)) (|:| |Lfact| (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519))))) (|:| |ctpol| |#3|)) (-1078 |#4|) (-585 |#2|) (-585 (-585 |#3|))) 22)) (-2148 (((-2 (|:| -2714 (-1078 |#4|)) (|:| |polval| (-1078 |#3|))) (-1078 |#4|) (-1078 |#3|) (-519)) 55)) (-2997 (((-519) (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519))))) 131)) (-2417 ((|#4| (-519) (-390 |#4|)) 56)) (-2191 (((-108) (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519)))) (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519))))) NIL))) +(((-677 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3093 ((-390 |#4|) |#4|)) (-15 -3093 ((-390 (-1078 |#4|)) (-1078 |#4|))) (-15 -2634 ((-390 |#4|) |#4|)) (-15 -2997 ((-519) (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519)))))) (-15 -3779 ((-390 |#4|) |#4| |#2|)) (-15 -2148 ((-2 (|:| -2714 (-1078 |#4|)) (|:| |polval| (-1078 |#3|))) (-1078 |#4|) (-1078 |#3|) (-519))) (-15 -3027 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-585 (-2 (|:| -1921 (-1078 |#4|)) (|:| -1690 (-519)))))) (-1078 |#4|) (-585 |#2|) (-585 (-585 |#3|)))) (-15 -3392 ((-2 (|:| |upol| (-1078 |#3|)) (|:| |Lval| (-585 |#3|)) (|:| |Lfact| (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519))))) (|:| |ctpol| |#3|)) (-1078 |#4|) (-585 |#2|) (-585 (-585 |#3|)))) (-15 -2417 (|#4| (-519) (-390 |#4|))) (-15 -2191 ((-108) (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519)))) (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519)))))) (-15 -3860 ((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-1078 |#3|) (-1078 |#3|) |#4| (-585 |#2|) (-585 (-705)) (-585 |#3|))) (-15 -3524 ((-585 (-705)) (-1078 |#4|) (-585 |#2|) (-705))) (-15 -3530 ((-1078 |#3|) (-1078 |#3|) (-519)))) (-727) (-782) (-280) (-876 |#3| |#1| |#2|)) (T -677)) +((-3530 (*1 *2 *2 *3) (-12 (-5 *2 (-1078 *6)) (-5 *3 (-519)) (-4 *6 (-280)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-677 *4 *5 *6 *7)) (-4 *7 (-876 *6 *4 *5)))) (-3524 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1078 *9)) (-5 *4 (-585 *7)) (-4 *7 (-782)) (-4 *9 (-876 *8 *6 *7)) (-4 *6 (-727)) (-4 *8 (-280)) (-5 *2 (-585 (-705))) (-5 *1 (-677 *6 *7 *8 *9)) (-5 *5 (-705)))) (-3860 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1078 *11)) (-5 *6 (-585 *10)) (-5 *7 (-585 (-705))) (-5 *8 (-585 *11)) (-4 *10 (-782)) (-4 *11 (-280)) (-4 *9 (-727)) (-4 *5 (-876 *11 *9 *10)) (-5 *2 (-585 (-1078 *5))) (-5 *1 (-677 *9 *10 *11 *5)) (-5 *3 (-1078 *5)))) (-2191 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-2 (|:| -1921 (-1078 *6)) (|:| -1690 (-519))))) (-4 *6 (-280)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) (-5 *1 (-677 *4 *5 *6 *7)) (-4 *7 (-876 *6 *4 *5)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-519)) (-5 *4 (-390 *2)) (-4 *2 (-876 *7 *5 *6)) (-5 *1 (-677 *5 *6 *7 *2)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-280)))) (-3392 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1078 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-782)) (-4 *8 (-280)) (-4 *9 (-876 *8 *6 *7)) (-4 *6 (-727)) (-5 *2 (-2 (|:| |upol| (-1078 *8)) (|:| |Lval| (-585 *8)) (|:| |Lfact| (-585 (-2 (|:| -1921 (-1078 *8)) (|:| -1690 (-519))))) (|:| |ctpol| *8))) (-5 *1 (-677 *6 *7 *8 *9)))) (-3027 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-782)) (-4 *8 (-280)) (-4 *6 (-727)) (-4 *9 (-876 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-585 (-2 (|:| -1921 (-1078 *9)) (|:| -1690 (-519))))))) (-5 *1 (-677 *6 *7 *8 *9)) (-5 *3 (-1078 *9)))) (-2148 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-519)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-280)) (-4 *9 (-876 *8 *6 *7)) (-5 *2 (-2 (|:| -2714 (-1078 *9)) (|:| |polval| (-1078 *8)))) (-5 *1 (-677 *6 *7 *8 *9)) (-5 *3 (-1078 *9)) (-5 *4 (-1078 *8)))) (-3779 (*1 *2 *3 *4) (-12 (-4 *5 (-727)) (-4 *4 (-782)) (-4 *6 (-280)) (-5 *2 (-390 *3)) (-5 *1 (-677 *5 *4 *6 *3)) (-4 *3 (-876 *6 *5 *4)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -1921 (-1078 *6)) (|:| -1690 (-519))))) (-4 *6 (-280)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-519)) (-5 *1 (-677 *4 *5 *6 *7)) (-4 *7 (-876 *6 *4 *5)))) (-2634 (*1 *2 *3) (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-280)) (-5 *2 (-390 *3)) (-5 *1 (-677 *4 *5 *6 *3)) (-4 *3 (-876 *6 *4 *5)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-280)) (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-390 (-1078 *7))) (-5 *1 (-677 *4 *5 *6 *7)) (-5 *3 (-1078 *7)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-280)) (-5 *2 (-390 *3)) (-5 *1 (-677 *4 *5 *6 *3)) (-4 *3 (-876 *6 *4 *5))))) +(-10 -7 (-15 -3093 ((-390 |#4|) |#4|)) (-15 -3093 ((-390 (-1078 |#4|)) (-1078 |#4|))) (-15 -2634 ((-390 |#4|) |#4|)) (-15 -2997 ((-519) (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519)))))) (-15 -3779 ((-390 |#4|) |#4| |#2|)) (-15 -2148 ((-2 (|:| -2714 (-1078 |#4|)) (|:| |polval| (-1078 |#3|))) (-1078 |#4|) (-1078 |#3|) (-519))) (-15 -3027 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-585 (-2 (|:| -1921 (-1078 |#4|)) (|:| -1690 (-519)))))) (-1078 |#4|) (-585 |#2|) (-585 (-585 |#3|)))) (-15 -3392 ((-2 (|:| |upol| (-1078 |#3|)) (|:| |Lval| (-585 |#3|)) (|:| |Lfact| (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519))))) (|:| |ctpol| |#3|)) (-1078 |#4|) (-585 |#2|) (-585 (-585 |#3|)))) (-15 -2417 (|#4| (-519) (-390 |#4|))) (-15 -2191 ((-108) (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519)))) (-585 (-2 (|:| -1921 (-1078 |#3|)) (|:| -1690 (-519)))))) (-15 -3860 ((-3 (-585 (-1078 |#4|)) "failed") (-1078 |#4|) (-1078 |#3|) (-1078 |#3|) |#4| (-585 |#2|) (-585 (-705)) (-585 |#3|))) (-15 -3524 ((-585 (-705)) (-1078 |#4|) (-585 |#2|) (-705))) (-15 -3530 ((-1078 |#3|) (-1078 |#3|) (-519)))) +((-1432 (($ $ (-848)) 12))) +(((-678 |#1| |#2|) (-10 -8 (-15 -1432 (|#1| |#1| (-848)))) (-679 |#2|) (-157)) (T -678)) +NIL +(-10 -8 (-15 -1432 (|#1| |#1| (-848)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1588 (($ $ (-848)) 28)) (-1432 (($ $ (-848)) 33)) (-1341 (($ $ (-848)) 29)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-3190 (($ $ $) 25)) (-2217 (((-790) $) 11)) (-3645 (($ $ $ $) 26)) (-2025 (($ $ $) 24)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 30)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-679 |#1|) (-1194) (-157)) (T -679)) +((-1432 (*1 *1 *1 *2) (-12 (-5 *2 (-848)) (-4 *1 (-679 *3)) (-4 *3 (-157))))) +(-13 (-696) (-652 |t#1|) (-10 -8 (-15 -1432 ($ $ (-848))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-652 |#1|) . T) ((-655) . T) ((-696) . T) ((-974 |#1|) . T) ((-1011) . T)) +((-2039 (((-957) (-625 (-201)) (-519) (-108) (-519)) 24)) (-2440 (((-957) (-625 (-201)) (-519) (-108) (-519)) 23))) +(((-680) (-10 -7 (-15 -2440 ((-957) (-625 (-201)) (-519) (-108) (-519))) (-15 -2039 ((-957) (-625 (-201)) (-519) (-108) (-519))))) (T -680)) +((-2039 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *5 (-108)) (-5 *2 (-957)) (-5 *1 (-680)))) (-2440 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *5 (-108)) (-5 *2 (-957)) (-5 *1 (-680))))) +(-10 -7 (-15 -2440 ((-957) (-625 (-201)) (-519) (-108) (-519))) (-15 -2039 ((-957) (-625 (-201)) (-519) (-108) (-519)))) +((-1967 (((-957) (-519) (-519) (-519) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-72 FCN)))) 43)) (-3792 (((-957) (-519) (-519) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-79 FCN)))) 39)) (-2133 (((-957) (-201) (-201) (-201) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) 32))) +(((-681) (-10 -7 (-15 -2133 ((-957) (-201) (-201) (-201) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048))))) (-15 -3792 ((-957) (-519) (-519) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-79 FCN))))) (-15 -1967 ((-957) (-519) (-519) (-519) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-72 FCN))))))) (T -681)) +((-1967 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-72 FCN)))) (-5 *2 (-957)) (-5 *1 (-681)))) (-3792 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-79 FCN)))) (-5 *2 (-957)) (-5 *1 (-681)))) (-2133 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) (-5 *2 (-957)) (-5 *1 (-681))))) +(-10 -7 (-15 -2133 ((-957) (-201) (-201) (-201) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048))))) (-15 -3792 ((-957) (-519) (-519) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-79 FCN))))) (-15 -1967 ((-957) (-519) (-519) (-519) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-72 FCN)))))) +((-3367 (((-957) (-519) (-519) (-625 (-201)) (-519)) 33)) (-3993 (((-957) (-519) (-519) (-625 (-201)) (-519)) 32)) (-2532 (((-957) (-519) (-625 (-201)) (-519)) 31)) (-1399 (((-957) (-519) (-625 (-201)) (-519)) 30)) (-3495 (((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519)) 29)) (-3467 (((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519)) 28)) (-3142 (((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-519)) 27)) (-1203 (((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-519)) 26)) (-2990 (((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519)) 23)) (-3261 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-519)) 22)) (-2186 (((-957) (-519) (-625 (-201)) (-519)) 21)) (-3320 (((-957) (-519) (-625 (-201)) (-519)) 20))) +(((-682) (-10 -7 (-15 -3320 ((-957) (-519) (-625 (-201)) (-519))) (-15 -2186 ((-957) (-519) (-625 (-201)) (-519))) (-15 -3261 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2990 ((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1203 ((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3142 ((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3467 ((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3495 ((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1399 ((-957) (-519) (-625 (-201)) (-519))) (-15 -2532 ((-957) (-519) (-625 (-201)) (-519))) (-15 -3993 ((-957) (-519) (-519) (-625 (-201)) (-519))) (-15 -3367 ((-957) (-519) (-519) (-625 (-201)) (-519))))) (T -682)) +((-3367 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682)))) (-3993 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682)))) (-2532 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682)))) (-1399 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682)))) (-3495 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *4 (-1065)) (-5 *5 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682)))) (-3467 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *4 (-1065)) (-5 *5 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682)))) (-3142 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *4 (-1065)) (-5 *5 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682)))) (-1203 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *4 (-1065)) (-5 *5 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682)))) (-2990 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682)))) (-3261 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682)))) (-2186 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682)))) (-3320 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-682))))) +(-10 -7 (-15 -3320 ((-957) (-519) (-625 (-201)) (-519))) (-15 -2186 ((-957) (-519) (-625 (-201)) (-519))) (-15 -3261 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2990 ((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1203 ((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3142 ((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3467 ((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3495 ((-957) (-519) (-519) (-1065) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1399 ((-957) (-519) (-625 (-201)) (-519))) (-15 -2532 ((-957) (-519) (-625 (-201)) (-519))) (-15 -3993 ((-957) (-519) (-519) (-625 (-201)) (-519))) (-15 -3367 ((-957) (-519) (-519) (-625 (-201)) (-519)))) +((-3330 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-519) (-201) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1250 (((-957) (-625 (-201)) (-625 (-201)) (-519) (-519)) 51)) (-1363 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-519) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3552 (((-957) (-201) (-201) (-519) (-519) (-519) (-519)) 46)) (-1406 (((-957) (-201) (-201) (-519) (-201) (-519) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) 45)) (-2043 (((-957) (-201) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) 44)) (-3972 (((-957) (-201) (-201) (-201) (-201) (-519) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) 43)) (-2949 (((-957) (-201) (-201) (-201) (-519) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) 42)) (-2913 (((-957) (-201) (-519) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) 38)) (-3531 (((-957) (-201) (-201) (-519) (-625 (-201)) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) 37)) (-3304 (((-957) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) 33)) (-2615 (((-957) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) 32))) +(((-683) (-10 -7 (-15 -2615 ((-957) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048))))) (-15 -3304 ((-957) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048))))) (-15 -3531 ((-957) (-201) (-201) (-519) (-625 (-201)) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048))))) (-15 -2913 ((-957) (-201) (-519) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048))))) (-15 -2949 ((-957) (-201) (-201) (-201) (-519) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G))))) (-15 -3972 ((-957) (-201) (-201) (-201) (-201) (-519) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G))))) (-15 -2043 ((-957) (-201) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G))))) (-15 -1406 ((-957) (-201) (-201) (-519) (-201) (-519) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G))))) (-15 -3552 ((-957) (-201) (-201) (-519) (-519) (-519) (-519))) (-15 -1363 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-76 FUNCTN))))) (-15 -1250 ((-957) (-625 (-201)) (-625 (-201)) (-519) (-519))) (-15 -3330 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519) (-201) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-76 FUNCTN))))))) (T -683)) +((-3330 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-957)) (-5 *1 (-683)))) (-1250 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-683)))) (-1363 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-957)) (-5 *1 (-683)))) (-3552 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-683)))) (-1406 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) (-5 *2 (-957)) (-5 *1 (-683)))) (-2043 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) (-5 *2 (-957)) (-5 *1 (-683)))) (-3972 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) (-5 *2 (-957)) (-5 *1 (-683)))) (-2949 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) (-5 *2 (-957)) (-5 *1 (-683)))) (-2913 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) (-5 *2 (-957)) (-5 *1 (-683)))) (-3531 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-519)) (-5 *5 (-625 (-201))) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-683)))) (-3304 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) (-5 *2 (-957)) (-5 *1 (-683)))) (-2615 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) (-5 *2 (-957)) (-5 *1 (-683))))) +(-10 -7 (-15 -2615 ((-957) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048))))) (-15 -3304 ((-957) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048))))) (-15 -3531 ((-957) (-201) (-201) (-519) (-625 (-201)) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048))))) (-15 -2913 ((-957) (-201) (-519) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048))))) (-15 -2949 ((-957) (-201) (-201) (-201) (-519) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G))))) (-15 -3972 ((-957) (-201) (-201) (-201) (-201) (-519) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G))))) (-15 -2043 ((-957) (-201) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G))))) (-15 -1406 ((-957) (-201) (-201) (-519) (-201) (-519) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G))))) (-15 -3552 ((-957) (-201) (-201) (-519) (-519) (-519) (-519))) (-15 -1363 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519) (-201) (-519) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-76 FUNCTN))))) (-15 -1250 ((-957) (-625 (-201)) (-625 (-201)) (-519) (-519))) (-15 -3330 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519) (-201) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-76 FUNCTN)))))) +((-2840 (((-957) (-519) (-519) (-519) (-519) (-201) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-360)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2574 (((-957) (-625 (-201)) (-519) (-519) (-201) (-519) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-85 BDYVAL))) (-360) (-360)) 69) (((-957) (-625 (-201)) (-519) (-519) (-201) (-519) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-85 BDYVAL)))) 68)) (-3528 (((-957) (-201) (-201) (-519) (-201) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-360)) (|:| |fp| (-83 FCNG)))) 57)) (-2703 (((-957) (-625 (-201)) (-625 (-201)) (-519) (-201) (-201) (-201) (-519) (-519) (-519) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) 50)) (-2470 (((-957) (-201) (-519) (-519) (-1065) (-519) (-201) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT)))) 49)) (-1199 (((-957) (-201) (-519) (-519) (-201) (-1065) (-201) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2586 (((-957) (-201) (-519) (-519) (-201) (-201) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) 42)) (-2281 (((-957) (-201) (-519) (-519) (-519) (-201) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT)))) 38))) +(((-684) (-10 -7 (-15 -2281 ((-957) (-201) (-519) (-519) (-519) (-201) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT))))) (-15 -2586 ((-957) (-201) (-519) (-519) (-201) (-201) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))))) (-15 -1199 ((-957) (-201) (-519) (-519) (-201) (-1065) (-201) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT))))) (-15 -2470 ((-957) (-201) (-519) (-519) (-1065) (-519) (-201) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT))))) (-15 -2703 ((-957) (-625 (-201)) (-625 (-201)) (-519) (-201) (-201) (-201) (-519) (-519) (-519) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))))) (-15 -3528 ((-957) (-201) (-201) (-519) (-201) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-360)) (|:| |fp| (-83 FCNG))))) (-15 -2574 ((-957) (-625 (-201)) (-519) (-519) (-201) (-519) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-85 BDYVAL))))) (-15 -2574 ((-957) (-625 (-201)) (-519) (-519) (-201) (-519) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-85 BDYVAL))) (-360) (-360))) (-15 -2840 ((-957) (-519) (-519) (-519) (-519) (-201) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-360)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -684)) +((-2840 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-684)))) (-2574 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-360)) (-5 *2 (-957)) (-5 *1 (-684)))) (-2574 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-957)) (-5 *1 (-684)))) (-3528 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-519)) (-5 *5 (-625 (-201))) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-684)))) (-2703 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) (-5 *2 (-957)) (-5 *1 (-684)))) (-2470 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-519)) (-5 *5 (-1065)) (-5 *6 (-625 (-201))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-360)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-684)))) (-1199 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-519)) (-5 *5 (-1065)) (-5 *6 (-625 (-201))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-684)))) (-2586 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-519)) (-5 *5 (-625 (-201))) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-684)))) (-2281 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-519)) (-5 *5 (-625 (-201))) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-684))))) +(-10 -7 (-15 -2281 ((-957) (-201) (-519) (-519) (-519) (-201) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT))))) (-15 -2586 ((-957) (-201) (-519) (-519) (-201) (-201) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))))) (-15 -1199 ((-957) (-201) (-519) (-519) (-201) (-1065) (-201) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT))))) (-15 -2470 ((-957) (-201) (-519) (-519) (-1065) (-519) (-201) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT))))) (-15 -2703 ((-957) (-625 (-201)) (-625 (-201)) (-519) (-201) (-201) (-201) (-519) (-519) (-519) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN))))) (-15 -3528 ((-957) (-201) (-201) (-519) (-201) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-360)) (|:| |fp| (-83 FCNG))))) (-15 -2574 ((-957) (-625 (-201)) (-519) (-519) (-201) (-519) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-85 BDYVAL))))) (-15 -2574 ((-957) (-625 (-201)) (-519) (-519) (-201) (-519) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-85 BDYVAL))) (-360) (-360))) (-15 -2840 ((-957) (-519) (-519) (-519) (-519) (-201) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-360)) (|:| |fp| (-74 G JACOBG JACGEP)))))) +((-2621 (((-957) (-201) (-201) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-201) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-201) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-613 (-201)) (-519)) 45)) (-4097 (((-957) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-1065) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-360)) (|:| |fp| (-81 BNDY)))) 41)) (-1319 (((-957) (-519) (-519) (-519) (-519) (-201) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519)) 23))) +(((-685) (-10 -7 (-15 -1319 ((-957) (-519) (-519) (-519) (-519) (-201) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -4097 ((-957) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-1065) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-360)) (|:| |fp| (-81 BNDY))))) (-15 -2621 ((-957) (-201) (-201) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-201) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-201) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-613 (-201)) (-519))))) (T -685)) +((-2621 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-519)) (-5 *5 (-625 (-201))) (-5 *6 (-613 (-201))) (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-685)))) (-4097 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *5 (-1065)) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-957)) (-5 *1 (-685)))) (-1319 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-685))))) +(-10 -7 (-15 -1319 ((-957) (-519) (-519) (-519) (-519) (-201) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -4097 ((-957) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-1065) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-360)) (|:| |fp| (-81 BNDY))))) (-15 -2621 ((-957) (-201) (-201) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-201) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-201) (-519) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-613 (-201)) (-519)))) +((-1316 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-625 (-201)) (-201) (-201) (-519)) 35)) (-2588 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-201) (-201) (-519)) 34)) (-2334 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-625 (-201)) (-201) (-201) (-519)) 33)) (-1722 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519)) 29)) (-3468 (((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519)) 28)) (-3204 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-201) (-519)) 27)) (-3357 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-519)) 23)) (-1999 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-519)) 22)) (-3826 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-519)) 21)) (-2358 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-519) (-519) (-519)) 20))) +(((-686) (-10 -7 (-15 -2358 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519) (-519) (-519))) (-15 -3826 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1999 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-519))) (-15 -3357 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-519))) (-15 -3204 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-201) (-519))) (-15 -3468 ((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1722 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2334 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-625 (-201)) (-201) (-201) (-519))) (-15 -2588 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-201) (-201) (-519))) (-15 -1316 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-625 (-201)) (-201) (-201) (-519))))) (T -686)) +((-1316 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) (-5 *2 (-957)) (-5 *1 (-686)))) (-2588 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) (-5 *2 (-957)) (-5 *1 (-686)))) (-2334 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *6 (-201)) (-5 *3 (-519)) (-5 *2 (-957)) (-5 *1 (-686)))) (-1722 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-686)))) (-3468 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-686)))) (-3204 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) (-5 *2 (-957)) (-5 *1 (-686)))) (-3357 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-686)))) (-1999 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-686)))) (-3826 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-686)))) (-2358 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-686))))) +(-10 -7 (-15 -2358 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519) (-519) (-519))) (-15 -3826 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1999 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-519))) (-15 -3357 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-519))) (-15 -3204 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-201) (-519))) (-15 -3468 ((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1722 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2334 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-625 (-201)) (-201) (-201) (-519))) (-15 -2588 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-201) (-201) (-519))) (-15 -1316 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-625 (-201)) (-201) (-201) (-519)))) +((-1657 (((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-519) (-519) (-519)) 45)) (-2082 (((-957) (-519) (-519) (-519) (-201) (-625 (-201)) (-625 (-201)) (-519)) 44)) (-3034 (((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-519)) 43)) (-3280 (((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519)) 42)) (-3469 (((-957) (-1065) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-519)) 41)) (-2270 (((-957) (-1065) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-519)) 40)) (-3590 (((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-519) (-519) (-519) (-201) (-625 (-201)) (-519)) 39)) (-3220 (((-957) (-1065) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-519))) 38)) (-2722 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-519)) 35)) (-1900 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519)) 34)) (-1555 (((-957) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519)) 33)) (-2404 (((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519)) 32)) (-1872 (((-957) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-201) (-519)) 31)) (-1942 (((-957) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-201) (-519) (-519) (-519)) 30)) (-3095 (((-957) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-519) (-519) (-519)) 29)) (-3186 (((-957) (-519) (-519) (-519) (-201) (-201) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-519) (-625 (-519)) (-519) (-519) (-519)) 28)) (-2374 (((-957) (-519) (-625 (-201)) (-201) (-519)) 24)) (-1380 (((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519)) 20))) +(((-687) (-10 -7 (-15 -1380 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2374 ((-957) (-519) (-625 (-201)) (-201) (-519))) (-15 -3186 ((-957) (-519) (-519) (-519) (-201) (-201) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-519) (-625 (-519)) (-519) (-519) (-519))) (-15 -3095 ((-957) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-519) (-519) (-519))) (-15 -1942 ((-957) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-201) (-519) (-519) (-519))) (-15 -1872 ((-957) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-201) (-519))) (-15 -2404 ((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1555 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519))) (-15 -1900 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519))) (-15 -2722 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3220 ((-957) (-1065) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-519)))) (-15 -3590 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-519) (-519) (-519) (-201) (-625 (-201)) (-519))) (-15 -2270 ((-957) (-1065) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-519))) (-15 -3469 ((-957) (-1065) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3280 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3034 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-519))) (-15 -2082 ((-957) (-519) (-519) (-519) (-201) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1657 ((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-519) (-519) (-519))))) (T -687)) +((-1657 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-687)))) (-2082 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-687)))) (-3034 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-687)))) (-3280 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-687)))) (-3469 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-201))) (-5 *6 (-201)) (-5 *2 (-957)) (-5 *1 (-687)))) (-2270 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1065)) (-5 *5 (-625 (-201))) (-5 *6 (-201)) (-5 *7 (-625 (-519))) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-687)))) (-3590 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *6 (-201)) (-5 *3 (-519)) (-5 *2 (-957)) (-5 *1 (-687)))) (-3220 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1065)) (-5 *5 (-625 (-201))) (-5 *6 (-201)) (-5 *7 (-625 (-519))) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-687)))) (-2722 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-687)))) (-1900 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) (-5 *2 (-957)) (-5 *1 (-687)))) (-1555 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) (-5 *2 (-957)) (-5 *1 (-687)))) (-2404 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-687)))) (-1872 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-687)))) (-1942 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-687)))) (-3095 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-687)))) (-3186 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-625 (-201))) (-5 *6 (-625 (-519))) (-5 *3 (-519)) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-687)))) (-2374 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) (-5 *2 (-957)) (-5 *1 (-687)))) (-1380 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-687))))) +(-10 -7 (-15 -1380 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2374 ((-957) (-519) (-625 (-201)) (-201) (-519))) (-15 -3186 ((-957) (-519) (-519) (-519) (-201) (-201) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-519) (-625 (-519)) (-519) (-519) (-519))) (-15 -3095 ((-957) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-519) (-519) (-519))) (-15 -1942 ((-957) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-201) (-519) (-519) (-519))) (-15 -1872 ((-957) (-519) (-201) (-201) (-625 (-201)) (-519) (-519) (-201) (-519))) (-15 -2404 ((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1555 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519))) (-15 -1900 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519))) (-15 -2722 ((-957) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3220 ((-957) (-1065) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-519)))) (-15 -3590 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-519) (-519) (-519) (-201) (-625 (-201)) (-519))) (-15 -2270 ((-957) (-1065) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-519))) (-15 -3469 ((-957) (-1065) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-201) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3280 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3034 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-519))) (-15 -2082 ((-957) (-519) (-519) (-519) (-201) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1657 ((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519) (-625 (-201)) (-625 (-201)) (-519) (-519) (-519)))) +((-3915 (((-957) (-519) (-519) (-519) (-201) (-625 (-201)) (-519) (-625 (-201)) (-519)) 63)) (-1833 (((-957) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-108) (-201) (-519) (-201) (-201) (-108) (-201) (-201) (-201) (-201) (-108) (-519) (-519) (-519) (-519) (-519) (-201) (-201) (-201) (-519) (-519) (-519) (-519) (-519) (-625 (-519)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-75 OBJFUN)))) 62)) (-2235 (((-957) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-201) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-108) (-108) (-108) (-519) (-519) (-625 (-201)) (-625 (-519)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-63 QPHESS)))) 58)) (-1951 (((-957) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-108) (-519) (-519) (-625 (-201)) (-519)) 51)) (-3228 (((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3293 (((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2208 (((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2357 (((-957) (-519) (-201) (-201) (-519) (-201) (-108) (-201) (-201) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-75 OBJFUN)))) 38))) +(((-688) (-10 -7 (-15 -2357 ((-957) (-519) (-201) (-201) (-519) (-201) (-108) (-201) (-201) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-75 OBJFUN))))) (-15 -2208 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-77 LSFUN1))))) (-15 -3293 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-61 LSFUN2))))) (-15 -3228 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-64 FUNCT1))))) (-15 -1951 ((-957) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-108) (-519) (-519) (-625 (-201)) (-519))) (-15 -2235 ((-957) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-201) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-108) (-108) (-108) (-519) (-519) (-625 (-201)) (-625 (-519)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-63 QPHESS))))) (-15 -1833 ((-957) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-108) (-201) (-519) (-201) (-201) (-108) (-201) (-201) (-201) (-201) (-108) (-519) (-519) (-519) (-519) (-519) (-201) (-201) (-201) (-519) (-519) (-519) (-519) (-519) (-625 (-519)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-75 OBJFUN))))) (-15 -3915 ((-957) (-519) (-519) (-519) (-201) (-625 (-201)) (-519) (-625 (-201)) (-519))))) (T -688)) +((-3915 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-688)))) (-1833 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-625 (-201))) (-5 *5 (-108)) (-5 *6 (-201)) (-5 *7 (-625 (-519))) (-5 *8 (-3 (|:| |fn| (-360)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-360)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-519)) (-5 *2 (-957)) (-5 *1 (-688)))) (-2235 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-625 (-201))) (-5 *6 (-108)) (-5 *7 (-625 (-519))) (-5 *8 (-3 (|:| |fn| (-360)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-519)) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-688)))) (-1951 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-108)) (-5 *2 (-957)) (-5 *1 (-688)))) (-3228 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-957)) (-5 *1 (-688)))) (-3293 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-957)) (-5 *1 (-688)))) (-2208 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-957)) (-5 *1 (-688)))) (-2357 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-519)) (-5 *5 (-108)) (-5 *6 (-625 (-201))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-688))))) +(-10 -7 (-15 -2357 ((-957) (-519) (-201) (-201) (-519) (-201) (-108) (-201) (-201) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-75 OBJFUN))))) (-15 -2208 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-77 LSFUN1))))) (-15 -3293 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-61 LSFUN2))))) (-15 -3228 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-64 FUNCT1))))) (-15 -1951 ((-957) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-108) (-519) (-519) (-625 (-201)) (-519))) (-15 -2235 ((-957) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-201) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-108) (-108) (-108) (-519) (-519) (-625 (-201)) (-625 (-519)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-63 QPHESS))))) (-15 -1833 ((-957) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-519) (-108) (-201) (-519) (-201) (-201) (-108) (-201) (-201) (-201) (-201) (-108) (-519) (-519) (-519) (-519) (-519) (-201) (-201) (-201) (-519) (-519) (-519) (-519) (-519) (-625 (-519)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-360)) (|:| |fp| (-75 OBJFUN))))) (-15 -3915 ((-957) (-519) (-519) (-519) (-201) (-625 (-201)) (-519) (-625 (-201)) (-519)))) +((-3857 (((-957) (-1065) (-519) (-519) (-519) (-519) (-625 (-154 (-201))) (-625 (-154 (-201))) (-519)) 46)) (-1328 (((-957) (-1065) (-1065) (-519) (-519) (-625 (-154 (-201))) (-519) (-625 (-154 (-201))) (-519) (-519) (-625 (-154 (-201))) (-519)) 45)) (-3470 (((-957) (-519) (-519) (-519) (-625 (-154 (-201))) (-519)) 44)) (-1852 (((-957) (-1065) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519)) 40)) (-1787 (((-957) (-1065) (-1065) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-519) (-519) (-625 (-201)) (-519)) 39)) (-1366 (((-957) (-519) (-519) (-519) (-625 (-201)) (-519)) 36)) (-1786 (((-957) (-519) (-625 (-201)) (-519) (-625 (-519)) (-519)) 35)) (-2680 (((-957) (-519) (-519) (-519) (-519) (-585 (-108)) (-625 (-201)) (-625 (-519)) (-625 (-519)) (-201) (-201) (-519)) 34)) (-1751 (((-957) (-519) (-519) (-519) (-625 (-519)) (-625 (-519)) (-625 (-519)) (-625 (-519)) (-108) (-201) (-108) (-625 (-519)) (-625 (-201)) (-519)) 33)) (-3855 (((-957) (-519) (-519) (-519) (-519) (-201) (-108) (-108) (-585 (-108)) (-625 (-201)) (-625 (-519)) (-625 (-519)) (-519)) 32))) +(((-689) (-10 -7 (-15 -3855 ((-957) (-519) (-519) (-519) (-519) (-201) (-108) (-108) (-585 (-108)) (-625 (-201)) (-625 (-519)) (-625 (-519)) (-519))) (-15 -1751 ((-957) (-519) (-519) (-519) (-625 (-519)) (-625 (-519)) (-625 (-519)) (-625 (-519)) (-108) (-201) (-108) (-625 (-519)) (-625 (-201)) (-519))) (-15 -2680 ((-957) (-519) (-519) (-519) (-519) (-585 (-108)) (-625 (-201)) (-625 (-519)) (-625 (-519)) (-201) (-201) (-519))) (-15 -1786 ((-957) (-519) (-625 (-201)) (-519) (-625 (-519)) (-519))) (-15 -1366 ((-957) (-519) (-519) (-519) (-625 (-201)) (-519))) (-15 -1787 ((-957) (-1065) (-1065) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-519) (-519) (-625 (-201)) (-519))) (-15 -1852 ((-957) (-1065) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3470 ((-957) (-519) (-519) (-519) (-625 (-154 (-201))) (-519))) (-15 -1328 ((-957) (-1065) (-1065) (-519) (-519) (-625 (-154 (-201))) (-519) (-625 (-154 (-201))) (-519) (-519) (-625 (-154 (-201))) (-519))) (-15 -3857 ((-957) (-1065) (-519) (-519) (-519) (-519) (-625 (-154 (-201))) (-625 (-154 (-201))) (-519))))) (T -689)) +((-3857 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-154 (-201)))) (-5 *2 (-957)) (-5 *1 (-689)))) (-1328 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-154 (-201)))) (-5 *2 (-957)) (-5 *1 (-689)))) (-3470 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-154 (-201)))) (-5 *2 (-957)) (-5 *1 (-689)))) (-1852 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-689)))) (-1787 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-689)))) (-1366 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-689)))) (-1786 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *3 (-519)) (-5 *2 (-957)) (-5 *1 (-689)))) (-2680 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-585 (-108))) (-5 *5 (-625 (-201))) (-5 *6 (-625 (-519))) (-5 *7 (-201)) (-5 *3 (-519)) (-5 *2 (-957)) (-5 *1 (-689)))) (-1751 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-625 (-519))) (-5 *5 (-108)) (-5 *7 (-625 (-201))) (-5 *3 (-519)) (-5 *6 (-201)) (-5 *2 (-957)) (-5 *1 (-689)))) (-3855 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-585 (-108))) (-5 *7 (-625 (-201))) (-5 *8 (-625 (-519))) (-5 *3 (-519)) (-5 *4 (-201)) (-5 *5 (-108)) (-5 *2 (-957)) (-5 *1 (-689))))) +(-10 -7 (-15 -3855 ((-957) (-519) (-519) (-519) (-519) (-201) (-108) (-108) (-585 (-108)) (-625 (-201)) (-625 (-519)) (-625 (-519)) (-519))) (-15 -1751 ((-957) (-519) (-519) (-519) (-625 (-519)) (-625 (-519)) (-625 (-519)) (-625 (-519)) (-108) (-201) (-108) (-625 (-519)) (-625 (-201)) (-519))) (-15 -2680 ((-957) (-519) (-519) (-519) (-519) (-585 (-108)) (-625 (-201)) (-625 (-519)) (-625 (-519)) (-201) (-201) (-519))) (-15 -1786 ((-957) (-519) (-625 (-201)) (-519) (-625 (-519)) (-519))) (-15 -1366 ((-957) (-519) (-519) (-519) (-625 (-201)) (-519))) (-15 -1787 ((-957) (-1065) (-1065) (-519) (-519) (-625 (-201)) (-519) (-625 (-201)) (-519) (-519) (-625 (-201)) (-519))) (-15 -1852 ((-957) (-1065) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3470 ((-957) (-519) (-519) (-519) (-625 (-154 (-201))) (-519))) (-15 -1328 ((-957) (-1065) (-1065) (-519) (-519) (-625 (-154 (-201))) (-519) (-625 (-154 (-201))) (-519) (-519) (-625 (-154 (-201))) (-519))) (-15 -3857 ((-957) (-1065) (-519) (-519) (-519) (-519) (-625 (-154 (-201))) (-625 (-154 (-201))) (-519)))) +((-3250 (((-957) (-519) (-519) (-519) (-519) (-519) (-108) (-519) (-108) (-519) (-625 (-154 (-201))) (-625 (-154 (-201))) (-519)) 64)) (-1297 (((-957) (-519) (-519) (-519) (-519) (-519) (-108) (-519) (-108) (-519) (-625 (-201)) (-625 (-201)) (-519)) 60)) (-2827 (((-957) (-519) (-519) (-201) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-360)) (|:| |fp| (-66 IMAGE))) (-360)) 56) (((-957) (-519) (-519) (-201) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-360)) (|:| |fp| (-66 IMAGE)))) 55)) (-2709 (((-957) (-519) (-519) (-519) (-201) (-108) (-519) (-625 (-201)) (-625 (-201)) (-519)) 37)) (-4179 (((-957) (-519) (-519) (-201) (-201) (-519) (-519) (-625 (-201)) (-519)) 33)) (-3714 (((-957) (-625 (-201)) (-519) (-625 (-201)) (-519) (-519) (-519) (-519) (-519)) 29)) (-2744 (((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519)) 28)) (-2031 (((-957) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519)) 27)) (-4030 (((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519)) 26)) (-2560 (((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-519)) 25)) (-1439 (((-957) (-519) (-519) (-625 (-201)) (-519)) 24)) (-3546 (((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519)) 23)) (-2000 (((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519)) 22)) (-3341 (((-957) (-625 (-201)) (-519) (-519) (-519) (-519)) 21)) (-3742 (((-957) (-519) (-519) (-625 (-201)) (-519)) 20))) +(((-690) (-10 -7 (-15 -3742 ((-957) (-519) (-519) (-625 (-201)) (-519))) (-15 -3341 ((-957) (-625 (-201)) (-519) (-519) (-519) (-519))) (-15 -2000 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3546 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1439 ((-957) (-519) (-519) (-625 (-201)) (-519))) (-15 -2560 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-519))) (-15 -4030 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2031 ((-957) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2744 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3714 ((-957) (-625 (-201)) (-519) (-625 (-201)) (-519) (-519) (-519) (-519) (-519))) (-15 -4179 ((-957) (-519) (-519) (-201) (-201) (-519) (-519) (-625 (-201)) (-519))) (-15 -2709 ((-957) (-519) (-519) (-519) (-201) (-108) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2827 ((-957) (-519) (-519) (-201) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-360)) (|:| |fp| (-66 IMAGE))))) (-15 -2827 ((-957) (-519) (-519) (-201) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-360)) (|:| |fp| (-66 IMAGE))) (-360))) (-15 -1297 ((-957) (-519) (-519) (-519) (-519) (-519) (-108) (-519) (-108) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3250 ((-957) (-519) (-519) (-519) (-519) (-519) (-108) (-519) (-108) (-519) (-625 (-154 (-201))) (-625 (-154 (-201))) (-519))))) (T -690)) +((-3250 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *4 (-108)) (-5 *5 (-625 (-154 (-201)))) (-5 *2 (-957)) (-5 *1 (-690)))) (-1297 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *4 (-108)) (-5 *5 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-690)))) (-2827 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-360)) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-690)))) (-2827 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-690)))) (-2709 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-519)) (-5 *5 (-108)) (-5 *6 (-625 (-201))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-690)))) (-4179 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-690)))) (-3714 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-690)))) (-2744 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-690)))) (-2031 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-690)))) (-4030 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-690)))) (-2560 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-690)))) (-1439 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-690)))) (-3546 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-690)))) (-2000 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-690)))) (-3341 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-690)))) (-3742 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-690))))) +(-10 -7 (-15 -3742 ((-957) (-519) (-519) (-625 (-201)) (-519))) (-15 -3341 ((-957) (-625 (-201)) (-519) (-519) (-519) (-519))) (-15 -2000 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3546 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -1439 ((-957) (-519) (-519) (-625 (-201)) (-519))) (-15 -2560 ((-957) (-519) (-519) (-519) (-519) (-625 (-201)) (-519))) (-15 -4030 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2031 ((-957) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2744 ((-957) (-519) (-519) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3714 ((-957) (-625 (-201)) (-519) (-625 (-201)) (-519) (-519) (-519) (-519) (-519))) (-15 -4179 ((-957) (-519) (-519) (-201) (-201) (-519) (-519) (-625 (-201)) (-519))) (-15 -2709 ((-957) (-519) (-519) (-519) (-201) (-108) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2827 ((-957) (-519) (-519) (-201) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-360)) (|:| |fp| (-66 IMAGE))))) (-15 -2827 ((-957) (-519) (-519) (-201) (-519) (-519) (-519) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-360)) (|:| |fp| (-66 IMAGE))) (-360))) (-15 -1297 ((-957) (-519) (-519) (-519) (-519) (-519) (-108) (-519) (-108) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -3250 ((-957) (-519) (-519) (-519) (-519) (-519) (-108) (-519) (-108) (-519) (-625 (-154 (-201))) (-625 (-154 (-201))) (-519)))) +((-1759 (((-957) (-519) (-519) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-68 APROD)))) 60)) (-2530 (((-957) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-519)) (-519) (-625 (-201)) (-519) (-519) (-519) (-519)) 56)) (-2150 (((-957) (-519) (-625 (-201)) (-108) (-201) (-519) (-519) (-519) (-519) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-360)) (|:| |fp| (-71 MSOLVE)))) 55)) (-2541 (((-957) (-519) (-519) (-625 (-201)) (-519) (-625 (-519)) (-519) (-625 (-519)) (-625 (-201)) (-625 (-519)) (-625 (-519)) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-519)) 36)) (-2843 (((-957) (-519) (-519) (-519) (-201) (-519) (-625 (-201)) (-625 (-201)) (-519)) 35)) (-2850 (((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519)) 31)) (-4125 (((-957) (-519) (-625 (-201)) (-519) (-625 (-519)) (-625 (-519)) (-519) (-625 (-519)) (-625 (-201))) 30)) (-3750 (((-957) (-625 (-201)) (-519) (-625 (-201)) (-519) (-519) (-519)) 26)) (-3845 (((-957) (-519) (-625 (-201)) (-519) (-625 (-201)) (-519)) 25)) (-2405 (((-957) (-519) (-625 (-201)) (-519) (-625 (-201)) (-519)) 24)) (-2272 (((-957) (-519) (-625 (-154 (-201))) (-519) (-519) (-519) (-519) (-625 (-154 (-201))) (-519)) 20))) +(((-691) (-10 -7 (-15 -2272 ((-957) (-519) (-625 (-154 (-201))) (-519) (-519) (-519) (-519) (-625 (-154 (-201))) (-519))) (-15 -2405 ((-957) (-519) (-625 (-201)) (-519) (-625 (-201)) (-519))) (-15 -3845 ((-957) (-519) (-625 (-201)) (-519) (-625 (-201)) (-519))) (-15 -3750 ((-957) (-625 (-201)) (-519) (-625 (-201)) (-519) (-519) (-519))) (-15 -4125 ((-957) (-519) (-625 (-201)) (-519) (-625 (-519)) (-625 (-519)) (-519) (-625 (-519)) (-625 (-201)))) (-15 -2850 ((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2843 ((-957) (-519) (-519) (-519) (-201) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2541 ((-957) (-519) (-519) (-625 (-201)) (-519) (-625 (-519)) (-519) (-625 (-519)) (-625 (-201)) (-625 (-519)) (-625 (-519)) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-519))) (-15 -2150 ((-957) (-519) (-625 (-201)) (-108) (-201) (-519) (-519) (-519) (-519) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-360)) (|:| |fp| (-71 MSOLVE))))) (-15 -2530 ((-957) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-519)) (-519) (-625 (-201)) (-519) (-519) (-519) (-519))) (-15 -1759 ((-957) (-519) (-519) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-68 APROD))))))) (T -691)) +((-1759 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-68 APROD)))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-691)))) (-2530 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *3 (-519)) (-5 *2 (-957)) (-5 *1 (-691)))) (-2150 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-108)) (-5 *6 (-201)) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-360)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-957)) (-5 *1 (-691)))) (-2541 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *3 (-519)) (-5 *2 (-957)) (-5 *1 (-691)))) (-2843 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-691)))) (-2850 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-691)))) (-4125 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *3 (-519)) (-5 *2 (-957)) (-5 *1 (-691)))) (-3750 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-691)))) (-3845 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-691)))) (-2405 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-691)))) (-2272 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-154 (-201)))) (-5 *2 (-957)) (-5 *1 (-691))))) +(-10 -7 (-15 -2272 ((-957) (-519) (-625 (-154 (-201))) (-519) (-519) (-519) (-519) (-625 (-154 (-201))) (-519))) (-15 -2405 ((-957) (-519) (-625 (-201)) (-519) (-625 (-201)) (-519))) (-15 -3845 ((-957) (-519) (-625 (-201)) (-519) (-625 (-201)) (-519))) (-15 -3750 ((-957) (-625 (-201)) (-519) (-625 (-201)) (-519) (-519) (-519))) (-15 -4125 ((-957) (-519) (-625 (-201)) (-519) (-625 (-519)) (-625 (-519)) (-519) (-625 (-519)) (-625 (-201)))) (-15 -2850 ((-957) (-519) (-519) (-625 (-201)) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2843 ((-957) (-519) (-519) (-519) (-201) (-519) (-625 (-201)) (-625 (-201)) (-519))) (-15 -2541 ((-957) (-519) (-519) (-625 (-201)) (-519) (-625 (-519)) (-519) (-625 (-519)) (-625 (-201)) (-625 (-519)) (-625 (-519)) (-625 (-201)) (-625 (-201)) (-625 (-519)) (-519))) (-15 -2150 ((-957) (-519) (-625 (-201)) (-108) (-201) (-519) (-519) (-519) (-519) (-201) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-360)) (|:| |fp| (-71 MSOLVE))))) (-15 -2530 ((-957) (-519) (-625 (-201)) (-519) (-625 (-201)) (-625 (-519)) (-519) (-625 (-201)) (-519) (-519) (-519) (-519))) (-15 -1759 ((-957) (-519) (-519) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-519) (-625 (-201)) (-519) (-3 (|:| |fn| (-360)) (|:| |fp| (-68 APROD)))))) +((-1665 (((-957) (-1065) (-519) (-519) (-625 (-201)) (-519) (-519) (-625 (-201))) 28)) (-4088 (((-957) (-1065) (-519) (-519) (-625 (-201))) 27)) (-1828 (((-957) (-1065) (-519) (-519) (-625 (-201)) (-519) (-625 (-519)) (-519) (-625 (-201))) 26)) (-1567 (((-957) (-519) (-519) (-519) (-625 (-201))) 20))) +(((-692) (-10 -7 (-15 -1567 ((-957) (-519) (-519) (-519) (-625 (-201)))) (-15 -1828 ((-957) (-1065) (-519) (-519) (-625 (-201)) (-519) (-625 (-519)) (-519) (-625 (-201)))) (-15 -4088 ((-957) (-1065) (-519) (-519) (-625 (-201)))) (-15 -1665 ((-957) (-1065) (-519) (-519) (-625 (-201)) (-519) (-519) (-625 (-201)))))) (T -692)) +((-1665 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-692)))) (-4088 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-692)))) (-1828 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1065)) (-5 *5 (-625 (-201))) (-5 *6 (-625 (-519))) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-692)))) (-1567 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) (-5 *1 (-692))))) +(-10 -7 (-15 -1567 ((-957) (-519) (-519) (-519) (-625 (-201)))) (-15 -1828 ((-957) (-1065) (-519) (-519) (-625 (-201)) (-519) (-625 (-519)) (-519) (-625 (-201)))) (-15 -4088 ((-957) (-1065) (-519) (-519) (-625 (-201)))) (-15 -1665 ((-957) (-1065) (-519) (-519) (-625 (-201)) (-519) (-519) (-625 (-201))))) +((-2401 (((-957) (-201) (-201) (-201) (-201) (-519)) 62)) (-2754 (((-957) (-201) (-201) (-201) (-519)) 61)) (-2538 (((-957) (-201) (-201) (-201) (-519)) 60)) (-1819 (((-957) (-201) (-201) (-519)) 59)) (-1374 (((-957) (-201) (-519)) 58)) (-2314 (((-957) (-201) (-519)) 57)) (-1271 (((-957) (-201) (-519)) 56)) (-1409 (((-957) (-201) (-519)) 55)) (-1975 (((-957) (-201) (-519)) 54)) (-2852 (((-957) (-201) (-519)) 53)) (-2942 (((-957) (-201) (-154 (-201)) (-519) (-1065) (-519)) 52)) (-2320 (((-957) (-201) (-154 (-201)) (-519) (-1065) (-519)) 51)) (-2369 (((-957) (-201) (-519)) 50)) (-3397 (((-957) (-201) (-519)) 49)) (-2858 (((-957) (-201) (-519)) 48)) (-2015 (((-957) (-201) (-519)) 47)) (-3859 (((-957) (-519) (-201) (-154 (-201)) (-519) (-1065) (-519)) 46)) (-3589 (((-957) (-1065) (-154 (-201)) (-1065) (-519)) 45)) (-1743 (((-957) (-1065) (-154 (-201)) (-1065) (-519)) 44)) (-3907 (((-957) (-201) (-154 (-201)) (-519) (-1065) (-519)) 43)) (-2452 (((-957) (-201) (-154 (-201)) (-519) (-1065) (-519)) 42)) (-3368 (((-957) (-201) (-519)) 39)) (-1714 (((-957) (-201) (-519)) 38)) (-2992 (((-957) (-201) (-519)) 37)) (-1731 (((-957) (-201) (-519)) 36)) (-4019 (((-957) (-201) (-519)) 35)) (-2389 (((-957) (-201) (-519)) 34)) (-3761 (((-957) (-201) (-519)) 33)) (-3335 (((-957) (-201) (-519)) 32)) (-2033 (((-957) (-201) (-519)) 31)) (-3784 (((-957) (-201) (-519)) 30)) (-3568 (((-957) (-201) (-201) (-201) (-519)) 29)) (-3783 (((-957) (-201) (-519)) 28)) (-3342 (((-957) (-201) (-519)) 27)) (-2232 (((-957) (-201) (-519)) 26)) (-2154 (((-957) (-201) (-519)) 25)) (-3457 (((-957) (-201) (-519)) 24)) (-1521 (((-957) (-154 (-201)) (-519)) 20))) +(((-693) (-10 -7 (-15 -1521 ((-957) (-154 (-201)) (-519))) (-15 -3457 ((-957) (-201) (-519))) (-15 -2154 ((-957) (-201) (-519))) (-15 -2232 ((-957) (-201) (-519))) (-15 -3342 ((-957) (-201) (-519))) (-15 -3783 ((-957) (-201) (-519))) (-15 -3568 ((-957) (-201) (-201) (-201) (-519))) (-15 -3784 ((-957) (-201) (-519))) (-15 -2033 ((-957) (-201) (-519))) (-15 -3335 ((-957) (-201) (-519))) (-15 -3761 ((-957) (-201) (-519))) (-15 -2389 ((-957) (-201) (-519))) (-15 -4019 ((-957) (-201) (-519))) (-15 -1731 ((-957) (-201) (-519))) (-15 -2992 ((-957) (-201) (-519))) (-15 -1714 ((-957) (-201) (-519))) (-15 -3368 ((-957) (-201) (-519))) (-15 -2452 ((-957) (-201) (-154 (-201)) (-519) (-1065) (-519))) (-15 -3907 ((-957) (-201) (-154 (-201)) (-519) (-1065) (-519))) (-15 -1743 ((-957) (-1065) (-154 (-201)) (-1065) (-519))) (-15 -3589 ((-957) (-1065) (-154 (-201)) (-1065) (-519))) (-15 -3859 ((-957) (-519) (-201) (-154 (-201)) (-519) (-1065) (-519))) (-15 -2015 ((-957) (-201) (-519))) (-15 -2858 ((-957) (-201) (-519))) (-15 -3397 ((-957) (-201) (-519))) (-15 -2369 ((-957) (-201) (-519))) (-15 -2320 ((-957) (-201) (-154 (-201)) (-519) (-1065) (-519))) (-15 -2942 ((-957) (-201) (-154 (-201)) (-519) (-1065) (-519))) (-15 -2852 ((-957) (-201) (-519))) (-15 -1975 ((-957) (-201) (-519))) (-15 -1409 ((-957) (-201) (-519))) (-15 -1271 ((-957) (-201) (-519))) (-15 -2314 ((-957) (-201) (-519))) (-15 -1374 ((-957) (-201) (-519))) (-15 -1819 ((-957) (-201) (-201) (-519))) (-15 -2538 ((-957) (-201) (-201) (-201) (-519))) (-15 -2754 ((-957) (-201) (-201) (-201) (-519))) (-15 -2401 ((-957) (-201) (-201) (-201) (-201) (-519))))) (T -693)) +((-2401 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2754 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2538 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-1819 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-1374 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2314 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-1271 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2942 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-201))) (-5 *5 (-519)) (-5 *6 (-1065)) (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2320 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-201))) (-5 *5 (-519)) (-5 *6 (-1065)) (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2369 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3859 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-519)) (-5 *5 (-154 (-201))) (-5 *6 (-1065)) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3589 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1065)) (-5 *4 (-154 (-201))) (-5 *5 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-1743 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1065)) (-5 *4 (-154 (-201))) (-5 *5 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3907 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-201))) (-5 *5 (-519)) (-5 *6 (-1065)) (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2452 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-201))) (-5 *5 (-519)) (-5 *6 (-1065)) (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-1714 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2992 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-1731 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3568 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2232 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-3457 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693)))) (-1521 (*1 *2 *3 *4) (-12 (-5 *3 (-154 (-201))) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(-10 -7 (-15 -1521 ((-957) (-154 (-201)) (-519))) (-15 -3457 ((-957) (-201) (-519))) (-15 -2154 ((-957) (-201) (-519))) (-15 -2232 ((-957) (-201) (-519))) (-15 -3342 ((-957) (-201) (-519))) (-15 -3783 ((-957) (-201) (-519))) (-15 -3568 ((-957) (-201) (-201) (-201) (-519))) (-15 -3784 ((-957) (-201) (-519))) (-15 -2033 ((-957) (-201) (-519))) (-15 -3335 ((-957) (-201) (-519))) (-15 -3761 ((-957) (-201) (-519))) (-15 -2389 ((-957) (-201) (-519))) (-15 -4019 ((-957) (-201) (-519))) (-15 -1731 ((-957) (-201) (-519))) (-15 -2992 ((-957) (-201) (-519))) (-15 -1714 ((-957) (-201) (-519))) (-15 -3368 ((-957) (-201) (-519))) (-15 -2452 ((-957) (-201) (-154 (-201)) (-519) (-1065) (-519))) (-15 -3907 ((-957) (-201) (-154 (-201)) (-519) (-1065) (-519))) (-15 -1743 ((-957) (-1065) (-154 (-201)) (-1065) (-519))) (-15 -3589 ((-957) (-1065) (-154 (-201)) (-1065) (-519))) (-15 -3859 ((-957) (-519) (-201) (-154 (-201)) (-519) (-1065) (-519))) (-15 -2015 ((-957) (-201) (-519))) (-15 -2858 ((-957) (-201) (-519))) (-15 -3397 ((-957) (-201) (-519))) (-15 -2369 ((-957) (-201) (-519))) (-15 -2320 ((-957) (-201) (-154 (-201)) (-519) (-1065) (-519))) (-15 -2942 ((-957) (-201) (-154 (-201)) (-519) (-1065) (-519))) (-15 -2852 ((-957) (-201) (-519))) (-15 -1975 ((-957) (-201) (-519))) (-15 -1409 ((-957) (-201) (-519))) (-15 -1271 ((-957) (-201) (-519))) (-15 -2314 ((-957) (-201) (-519))) (-15 -1374 ((-957) (-201) (-519))) (-15 -1819 ((-957) (-201) (-201) (-519))) (-15 -2538 ((-957) (-201) (-201) (-201) (-519))) (-15 -2754 ((-957) (-201) (-201) (-201) (-519))) (-15 -2401 ((-957) (-201) (-201) (-201) (-201) (-519)))) +((-3317 (((-1168)) 18)) (-1760 (((-1065)) 22)) (-1494 (((-1065)) 21)) (-3052 (((-1015) (-1082) (-625 (-519))) 35) (((-1015) (-1082) (-625 (-201))) 31)) (-1612 (((-108)) 16)) (-2861 (((-1065) (-1065)) 25))) +(((-694) (-10 -7 (-15 -1494 ((-1065))) (-15 -1760 ((-1065))) (-15 -2861 ((-1065) (-1065))) (-15 -3052 ((-1015) (-1082) (-625 (-201)))) (-15 -3052 ((-1015) (-1082) (-625 (-519)))) (-15 -1612 ((-108))) (-15 -3317 ((-1168))))) (T -694)) +((-3317 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-694)))) (-1612 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-694)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-625 (-519))) (-5 *2 (-1015)) (-5 *1 (-694)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-625 (-201))) (-5 *2 (-1015)) (-5 *1 (-694)))) (-2861 (*1 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-694)))) (-1760 (*1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-694)))) (-1494 (*1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-694))))) +(-10 -7 (-15 -1494 ((-1065))) (-15 -1760 ((-1065))) (-15 -2861 ((-1065) (-1065))) (-15 -3052 ((-1015) (-1082) (-625 (-201)))) (-15 -3052 ((-1015) (-1082) (-625 (-519)))) (-15 -1612 ((-108))) (-15 -3317 ((-1168)))) +((-3190 (($ $ $) 10)) (-3645 (($ $ $ $) 9)) (-2025 (($ $ $) 12))) +(((-695 |#1|) (-10 -8 (-15 -2025 (|#1| |#1| |#1|)) (-15 -3190 (|#1| |#1| |#1|)) (-15 -3645 (|#1| |#1| |#1| |#1|))) (-696)) (T -695)) +NIL +(-10 -8 (-15 -2025 (|#1| |#1| |#1|)) (-15 -3190 (|#1| |#1| |#1|)) (-15 -3645 (|#1| |#1| |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1588 (($ $ (-848)) 28)) (-1341 (($ $ (-848)) 29)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-3190 (($ $ $) 25)) (-2217 (((-790) $) 11)) (-3645 (($ $ $ $) 26)) (-2025 (($ $ $) 24)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 30)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 27))) +(((-696) (-1194)) (T -696)) +((-3645 (*1 *1 *1 *1 *1) (-4 *1 (-696))) (-3190 (*1 *1 *1 *1) (-4 *1 (-696))) (-2025 (*1 *1 *1 *1) (-4 *1 (-696)))) +(-13 (-21) (-655) (-10 -8 (-15 -3645 ($ $ $ $)) (-15 -3190 ($ $ $)) (-15 -2025 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-655) . T) ((-1011) . T)) +((-2217 (((-790) $) NIL) (($ (-519)) 10))) +(((-697 |#1|) (-10 -8 (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) (-698)) (T -697)) +NIL +(-10 -8 (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 40)) (-1588 (($ $ (-848)) 28) (($ $ (-705)) 35)) (-4193 (((-3 $ "failed") $) 38)) (-1568 (((-108) $) 34)) (-2076 (((-3 $ "failed") $) 39)) (-1341 (($ $ (-848)) 29) (($ $ (-705)) 36)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-3190 (($ $ $) 25)) (-2217 (((-790) $) 11) (($ (-519)) 31)) (-3594 (((-705)) 32)) (-3645 (($ $ $ $) 26)) (-2025 (($ $ $) 24)) (-3602 (($) 18 T CONST)) (-3611 (($) 33 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 30) (($ $ (-705)) 37)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 27))) +(((-698) (-1194)) (T -698)) +((-3594 (*1 *2) (-12 (-4 *1 (-698)) (-5 *2 (-705)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-698))))) +(-13 (-696) (-657) (-10 -8 (-15 -3594 ((-705))) (-15 -2217 ($ (-519))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-655) . T) ((-657) . T) ((-696) . T) ((-1011) . T)) +((-2387 (((-585 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 (-154 |#1|)))))) (-625 (-154 (-379 (-519)))) |#1|) 27)) (-1848 (((-585 (-154 |#1|)) (-625 (-154 (-379 (-519)))) |#1|) 19)) (-2165 (((-879 (-154 (-379 (-519)))) (-625 (-154 (-379 (-519)))) (-1082)) 16) (((-879 (-154 (-379 (-519)))) (-625 (-154 (-379 (-519))))) 15))) +(((-699 |#1|) (-10 -7 (-15 -2165 ((-879 (-154 (-379 (-519)))) (-625 (-154 (-379 (-519)))))) (-15 -2165 ((-879 (-154 (-379 (-519)))) (-625 (-154 (-379 (-519)))) (-1082))) (-15 -1848 ((-585 (-154 |#1|)) (-625 (-154 (-379 (-519)))) |#1|)) (-15 -2387 ((-585 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 (-154 |#1|)))))) (-625 (-154 (-379 (-519)))) |#1|))) (-13 (-335) (-780))) (T -699)) +((-2387 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-154 (-379 (-519))))) (-5 *2 (-585 (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 (-154 *4))))))) (-5 *1 (-699 *4)) (-4 *4 (-13 (-335) (-780))))) (-1848 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-154 (-379 (-519))))) (-5 *2 (-585 (-154 *4))) (-5 *1 (-699 *4)) (-4 *4 (-13 (-335) (-780))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-154 (-379 (-519))))) (-5 *4 (-1082)) (-5 *2 (-879 (-154 (-379 (-519))))) (-5 *1 (-699 *5)) (-4 *5 (-13 (-335) (-780))))) (-2165 (*1 *2 *3) (-12 (-5 *3 (-625 (-154 (-379 (-519))))) (-5 *2 (-879 (-154 (-379 (-519))))) (-5 *1 (-699 *4)) (-4 *4 (-13 (-335) (-780)))))) +(-10 -7 (-15 -2165 ((-879 (-154 (-379 (-519)))) (-625 (-154 (-379 (-519)))))) (-15 -2165 ((-879 (-154 (-379 (-519)))) (-625 (-154 (-379 (-519)))) (-1082))) (-15 -1848 ((-585 (-154 |#1|)) (-625 (-154 (-379 (-519)))) |#1|)) (-15 -2387 ((-585 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 (-154 |#1|)))))) (-625 (-154 (-379 (-519)))) |#1|))) +((-2859 (((-158 (-519)) |#1|) 25))) +(((-700 |#1|) (-10 -7 (-15 -2859 ((-158 (-519)) |#1|))) (-376)) (T -700)) +((-2859 (*1 *2 *3) (-12 (-5 *2 (-158 (-519))) (-5 *1 (-700 *3)) (-4 *3 (-376))))) +(-10 -7 (-15 -2859 ((-158 (-519)) |#1|))) +((-3387 ((|#1| |#1| |#1|) 25)) (-2026 ((|#1| |#1| |#1|) 24)) (-1513 ((|#1| |#1| |#1|) 32)) (-1298 ((|#1| |#1| |#1|) 28)) (-4196 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1209 (((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|) 23))) +(((-701 |#1| |#2|) (-10 -7 (-15 -1209 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -2026 (|#1| |#1| |#1|)) (-15 -3387 (|#1| |#1| |#1|)) (-15 -4196 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1298 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#1| |#1|))) (-644 |#2|) (-335)) (T -701)) +((-1513 (*1 *2 *2 *2) (-12 (-4 *3 (-335)) (-5 *1 (-701 *2 *3)) (-4 *2 (-644 *3)))) (-1298 (*1 *2 *2 *2) (-12 (-4 *3 (-335)) (-5 *1 (-701 *2 *3)) (-4 *2 (-644 *3)))) (-4196 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-335)) (-5 *1 (-701 *2 *3)) (-4 *2 (-644 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-335)) (-5 *1 (-701 *2 *3)) (-4 *2 (-644 *3)))) (-2026 (*1 *2 *2 *2) (-12 (-4 *3 (-335)) (-5 *1 (-701 *2 *3)) (-4 *2 (-644 *3)))) (-1209 (*1 *2 *3 *3) (-12 (-4 *4 (-335)) (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-701 *3 *4)) (-4 *3 (-644 *4))))) +(-10 -7 (-15 -1209 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -2026 (|#1| |#1| |#1|)) (-15 -3387 (|#1| |#1| |#1|)) (-15 -4196 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1298 (|#1| |#1| |#1|)) (-15 -1513 (|#1| |#1| |#1|))) +((-2902 (((-2 (|:| -2070 (-625 (-519))) (|:| |basisDen| (-519)) (|:| |basisInv| (-625 (-519)))) (-519)) 58)) (-3668 (((-2 (|:| -2070 (-625 (-519))) (|:| |basisDen| (-519)) (|:| |basisInv| (-625 (-519))))) 56)) (-3677 (((-519)) 68))) +(((-702 |#1| |#2|) (-10 -7 (-15 -3677 ((-519))) (-15 -3668 ((-2 (|:| -2070 (-625 (-519))) (|:| |basisDen| (-519)) (|:| |basisInv| (-625 (-519)))))) (-15 -2902 ((-2 (|:| -2070 (-625 (-519))) (|:| |basisDen| (-519)) (|:| |basisInv| (-625 (-519)))) (-519)))) (-1139 (-519)) (-381 (-519) |#1|)) (T -702)) +((-2902 (*1 *2 *3) (-12 (-5 *3 (-519)) (-4 *4 (-1139 *3)) (-5 *2 (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-702 *4 *5)) (-4 *5 (-381 *3 *4)))) (-3668 (*1 *2) (-12 (-4 *3 (-1139 (-519))) (-5 *2 (-2 (|:| -2070 (-625 (-519))) (|:| |basisDen| (-519)) (|:| |basisInv| (-625 (-519))))) (-5 *1 (-702 *3 *4)) (-4 *4 (-381 (-519) *3)))) (-3677 (*1 *2) (-12 (-4 *3 (-1139 *2)) (-5 *2 (-519)) (-5 *1 (-702 *3 *4)) (-4 *4 (-381 *2 *3))))) +(-10 -7 (-15 -3677 ((-519))) (-15 -3668 ((-2 (|:| -2070 (-625 (-519))) (|:| |basisDen| (-519)) (|:| |basisInv| (-625 (-519)))))) (-15 -2902 ((-2 (|:| -2070 (-625 (-519))) (|:| |basisDen| (-519)) (|:| |basisInv| (-625 (-519)))) (-519)))) +((-1430 (((-108) $ $) NIL)) (-1499 (((-3 (|:| |nia| (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) $) 15)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 14) (($ (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 8) (($ (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) 12)) (-1543 (((-108) $ $) NIL))) +(((-703) (-13 (-1011) (-10 -8 (-15 -2217 ($ (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2217 ($ (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2217 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (-15 -2217 ((-790) $)) (-15 -1499 ((-3 (|:| |nia| (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) $))))) (T -703)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-703)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *1 (-703)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *1 (-703)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) (-5 *1 (-703)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) (-5 *1 (-703))))) +(-13 (-1011) (-10 -8 (-15 -2217 ($ (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2217 ($ (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2217 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (-15 -2217 ((-790) $)) (-15 -1499 ((-3 (|:| |nia| (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) $)))) +((-1952 (((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|))) 14) (((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|)) (-585 (-1082))) 13)) (-3442 (((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|))) 16) (((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|)) (-585 (-1082))) 15))) +(((-704 |#1|) (-10 -7 (-15 -1952 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|)) (-585 (-1082)))) (-15 -1952 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|)))) (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|)) (-585 (-1082)))) (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|))))) (-511)) (T -704)) +((-3442 (*1 *2 *3) (-12 (-5 *3 (-585 (-879 *4))) (-4 *4 (-511)) (-5 *2 (-585 (-585 (-267 (-379 (-879 *4)))))) (-5 *1 (-704 *4)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-585 (-1082))) (-4 *5 (-511)) (-5 *2 (-585 (-585 (-267 (-379 (-879 *5)))))) (-5 *1 (-704 *5)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-585 (-879 *4))) (-4 *4 (-511)) (-5 *2 (-585 (-585 (-267 (-379 (-879 *4)))))) (-5 *1 (-704 *4)))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-585 (-1082))) (-4 *5 (-511)) (-5 *2 (-585 (-585 (-267 (-379 (-879 *5)))))) (-5 *1 (-704 *5))))) +(-10 -7 (-15 -1952 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|)) (-585 (-1082)))) (-15 -1952 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|)))) (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|)) (-585 (-1082)))) (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-879 |#1|))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2494 (($ $ $) 8)) (-3167 (((-3 $ "failed") $ $) 11)) (-1674 (($ $ (-519)) 9)) (-2249 (($) NIL T CONST)) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($ $) NIL)) (-2286 (($ $ $) NIL)) (-1568 (((-108) $) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2292 (($ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2217 (((-790) $) NIL)) (-3559 (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (* (($ (-705) $) NIL) (($ (-848) $) NIL) (($ $ $) NIL))) +(((-705) (-13 (-727) (-661) (-10 -8 (-15 -2286 ($ $ $)) (-15 -2311 ($ $ $)) (-15 -2292 ($ $ $)) (-15 -1745 ((-2 (|:| -3573 $) (|:| -1354 $)) $ $)) (-15 -2261 ((-3 $ "failed") $ $)) (-15 -1674 ($ $ (-519))) (-15 -3314 ($ $)) (-6 (-4223 "*"))))) (T -705)) +((-2286 (*1 *1 *1 *1) (-5 *1 (-705))) (-2311 (*1 *1 *1 *1) (-5 *1 (-705))) (-2292 (*1 *1 *1 *1) (-5 *1 (-705))) (-1745 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3573 (-705)) (|:| -1354 (-705)))) (-5 *1 (-705)))) (-2261 (*1 *1 *1 *1) (|partial| -5 *1 (-705))) (-1674 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-705)))) (-3314 (*1 *1 *1) (-5 *1 (-705)))) +(-13 (-727) (-661) (-10 -8 (-15 -2286 ($ $ $)) (-15 -2311 ($ $ $)) (-15 -2292 ($ $ $)) (-15 -1745 ((-2 (|:| -3573 $) (|:| -1354 $)) $ $)) (-15 -2261 ((-3 $ "failed") $ $)) (-15 -1674 ($ $ (-519))) (-15 -3314 ($ $)) (-6 (-4223 "*")))) +((-3442 (((-3 |#2| "failed") |#2| |#2| (-110) (-1082)) 35))) +(((-706 |#1| |#2|) (-10 -7 (-15 -3442 ((-3 |#2| "failed") |#2| |#2| (-110) (-1082)))) (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135)) (-13 (-29 |#1|) (-1103) (-885))) (T -706)) +((-3442 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1082)) (-4 *5 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *1 (-706 *5 *2)) (-4 *2 (-13 (-29 *5) (-1103) (-885)))))) +(-10 -7 (-15 -3442 ((-3 |#2| "failed") |#2| |#2| (-110) (-1082)))) +((-2217 (((-708) |#1|) 8))) +(((-707 |#1|) (-10 -7 (-15 -2217 ((-708) |#1|))) (-1117)) (T -707)) +((-2217 (*1 *2 *3) (-12 (-5 *2 (-708)) (-5 *1 (-707 *3)) (-4 *3 (-1117))))) +(-10 -7 (-15 -2217 ((-708) |#1|))) +((-1430 (((-108) $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 7)) (-1543 (((-108) $ $) 9))) +(((-708) (-1011)) (T -708)) +NIL +(-1011) +((-3681 ((|#2| |#4|) 35))) +(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3681 (|#2| |#4|))) (-423) (-1139 |#1|) (-659 |#1| |#2|) (-1139 |#3|)) (T -709)) +((-3681 (*1 *2 *3) (-12 (-4 *4 (-423)) (-4 *5 (-659 *4 *2)) (-4 *2 (-1139 *4)) (-5 *1 (-709 *4 *2 *5 *3)) (-4 *3 (-1139 *5))))) +(-10 -7 (-15 -3681 (|#2| |#4|))) +((-4193 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3061 (((-1168) (-1065) (-1065) |#4| |#5|) 33)) (-2059 ((|#4| |#4| |#5|) 73)) (-3161 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#5|) 77)) (-1705 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|) 15))) +(((-710 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4193 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2059 (|#4| |#4| |#5|)) (-15 -3161 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#5|)) (-15 -3061 ((-1168) (-1065) (-1065) |#4| |#5|)) (-15 -1705 ((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|))) (-423) (-727) (-782) (-982 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -710)) +((-1705 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *4)))) (-5 *1 (-710 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3061 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1065)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *4 (-982 *6 *7 *8)) (-5 *2 (-1168)) (-5 *1 (-710 *6 *7 *8 *4 *5)) (-4 *5 (-987 *6 *7 *8 *4)))) (-3161 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) (-5 *1 (-710 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-2059 (*1 *2 *2 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *2 (-982 *4 *5 *6)) (-5 *1 (-710 *4 *5 *6 *2 *3)) (-4 *3 (-987 *4 *5 *6 *2)))) (-4193 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-710 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(-10 -7 (-15 -4193 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2059 (|#4| |#4| |#5|)) (-15 -3161 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#5|)) (-15 -3061 ((-1168) (-1065) (-1065) |#4| |#5|)) (-15 -1705 ((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|))) +((-1301 (((-3 (-1078 (-1078 |#1|)) "failed") |#4|) 44)) (-1979 (((-585 |#4|) |#4|) 15)) (-3706 ((|#4| |#4|) 11))) +(((-711 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1979 ((-585 |#4|) |#4|)) (-15 -1301 ((-3 (-1078 (-1078 |#1|)) "failed") |#4|)) (-15 -3706 (|#4| |#4|))) (-321) (-301 |#1|) (-1139 |#2|) (-1139 |#3|) (-848)) (T -711)) +((-3706 (*1 *2 *2) (-12 (-4 *3 (-321)) (-4 *4 (-301 *3)) (-4 *5 (-1139 *4)) (-5 *1 (-711 *3 *4 *5 *2 *6)) (-4 *2 (-1139 *5)) (-14 *6 (-848)))) (-1301 (*1 *2 *3) (|partial| -12 (-4 *4 (-321)) (-4 *5 (-301 *4)) (-4 *6 (-1139 *5)) (-5 *2 (-1078 (-1078 *4))) (-5 *1 (-711 *4 *5 *6 *3 *7)) (-4 *3 (-1139 *6)) (-14 *7 (-848)))) (-1979 (*1 *2 *3) (-12 (-4 *4 (-321)) (-4 *5 (-301 *4)) (-4 *6 (-1139 *5)) (-5 *2 (-585 *3)) (-5 *1 (-711 *4 *5 *6 *3 *7)) (-4 *3 (-1139 *6)) (-14 *7 (-848))))) +(-10 -7 (-15 -1979 ((-585 |#4|) |#4|)) (-15 -1301 ((-3 (-1078 (-1078 |#1|)) "failed") |#4|)) (-15 -3706 (|#4| |#4|))) +((-2341 (((-2 (|:| |deter| (-585 (-1078 |#5|))) (|:| |dterm| (-585 (-585 (-2 (|:| -4128 (-705)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-585 |#1|)) (|:| |nlead| (-585 |#5|))) (-1078 |#5|) (-585 |#1|) (-585 |#5|)) 53)) (-2145 (((-585 (-705)) |#1|) 12))) +(((-712 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2341 ((-2 (|:| |deter| (-585 (-1078 |#5|))) (|:| |dterm| (-585 (-585 (-2 (|:| -4128 (-705)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-585 |#1|)) (|:| |nlead| (-585 |#5|))) (-1078 |#5|) (-585 |#1|) (-585 |#5|))) (-15 -2145 ((-585 (-705)) |#1|))) (-1139 |#4|) (-727) (-782) (-280) (-876 |#4| |#2| |#3|)) (T -712)) +((-2145 (*1 *2 *3) (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-280)) (-5 *2 (-585 (-705))) (-5 *1 (-712 *3 *4 *5 *6 *7)) (-4 *3 (-1139 *6)) (-4 *7 (-876 *6 *4 *5)))) (-2341 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1139 *9)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *9 (-280)) (-4 *10 (-876 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-585 (-1078 *10))) (|:| |dterm| (-585 (-585 (-2 (|:| -4128 (-705)) (|:| |pcoef| *10))))) (|:| |nfacts| (-585 *6)) (|:| |nlead| (-585 *10)))) (-5 *1 (-712 *6 *7 *8 *9 *10)) (-5 *3 (-1078 *10)) (-5 *4 (-585 *6)) (-5 *5 (-585 *10))))) +(-10 -7 (-15 -2341 ((-2 (|:| |deter| (-585 (-1078 |#5|))) (|:| |dterm| (-585 (-585 (-2 (|:| -4128 (-705)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-585 |#1|)) (|:| |nlead| (-585 |#5|))) (-1078 |#5|) (-585 |#1|) (-585 |#5|))) (-15 -2145 ((-585 (-705)) |#1|))) +((-3489 (((-585 (-2 (|:| |outval| |#1|) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 |#1|))))) (-625 (-379 (-519))) |#1|) 27)) (-3693 (((-585 |#1|) (-625 (-379 (-519))) |#1|) 19)) (-2165 (((-879 (-379 (-519))) (-625 (-379 (-519))) (-1082)) 16) (((-879 (-379 (-519))) (-625 (-379 (-519)))) 15))) +(((-713 |#1|) (-10 -7 (-15 -2165 ((-879 (-379 (-519))) (-625 (-379 (-519))))) (-15 -2165 ((-879 (-379 (-519))) (-625 (-379 (-519))) (-1082))) (-15 -3693 ((-585 |#1|) (-625 (-379 (-519))) |#1|)) (-15 -3489 ((-585 (-2 (|:| |outval| |#1|) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 |#1|))))) (-625 (-379 (-519))) |#1|))) (-13 (-335) (-780))) (T -713)) +((-3489 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-379 (-519)))) (-5 *2 (-585 (-2 (|:| |outval| *4) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 *4)))))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-335) (-780))))) (-3693 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-379 (-519)))) (-5 *2 (-585 *4)) (-5 *1 (-713 *4)) (-4 *4 (-13 (-335) (-780))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-379 (-519)))) (-5 *4 (-1082)) (-5 *2 (-879 (-379 (-519)))) (-5 *1 (-713 *5)) (-4 *5 (-13 (-335) (-780))))) (-2165 (*1 *2 *3) (-12 (-5 *3 (-625 (-379 (-519)))) (-5 *2 (-879 (-379 (-519)))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-335) (-780)))))) +(-10 -7 (-15 -2165 ((-879 (-379 (-519))) (-625 (-379 (-519))))) (-15 -2165 ((-879 (-379 (-519))) (-625 (-379 (-519))) (-1082))) (-15 -3693 ((-585 |#1|) (-625 (-379 (-519))) |#1|)) (-15 -3489 ((-585 (-2 (|:| |outval| |#1|) (|:| |outmult| (-519)) (|:| |outvect| (-585 (-625 |#1|))))) (-625 (-379 (-519))) |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 34)) (-4083 (((-585 |#2|) $) NIL)) (-1283 (((-1078 $) $ |#2|) NIL) (((-1078 |#1|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 |#2|)) NIL)) (-3847 (($ $) 28)) (-1343 (((-108) $ $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1218 (($ $ $) 93 (|has| |#1| (-511)))) (-2565 (((-585 $) $ $) 106 (|has| |#1| (-511)))) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-4043 (($ $) NIL (|has| |#1| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-879 (-379 (-519)))) NIL (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#2| (-560 (-1082))))) (((-3 $ "failed") (-879 (-519))) NIL (-3730 (-12 (|has| |#1| (-37 (-519))) (|has| |#2| (-560 (-1082))) (-2445 (|has| |#1| (-37 (-379 (-519)))))) (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#2| (-560 (-1082)))))) (((-3 $ "failed") (-879 |#1|)) NIL (-3730 (-12 (|has| |#2| (-560 (-1082))) (-2445 (|has| |#1| (-37 (-379 (-519))))) (-2445 (|has| |#1| (-37 (-519))))) (-12 (|has| |#1| (-37 (-519))) (|has| |#2| (-560 (-1082))) (-2445 (|has| |#1| (-37 (-379 (-519))))) (-2445 (|has| |#1| (-504)))) (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#2| (-560 (-1082))) (-2445 (|has| |#1| (-916 (-519))))))) (((-3 (-1034 |#1| |#2|) "failed") $) 18)) (-1499 ((|#1| $) NIL) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#1| (-959 (-519)))) ((|#2| $) NIL) (($ (-879 (-379 (-519)))) NIL (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#2| (-560 (-1082))))) (($ (-879 (-519))) NIL (-3730 (-12 (|has| |#1| (-37 (-519))) (|has| |#2| (-560 (-1082))) (-2445 (|has| |#1| (-37 (-379 (-519)))))) (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#2| (-560 (-1082)))))) (($ (-879 |#1|)) NIL (-3730 (-12 (|has| |#2| (-560 (-1082))) (-2445 (|has| |#1| (-37 (-379 (-519))))) (-2445 (|has| |#1| (-37 (-519))))) (-12 (|has| |#1| (-37 (-519))) (|has| |#2| (-560 (-1082))) (-2445 (|has| |#1| (-37 (-379 (-519))))) (-2445 (|has| |#1| (-504)))) (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#2| (-560 (-1082))) (-2445 (|has| |#1| (-916 (-519))))))) (((-1034 |#1| |#2|) $) NIL)) (-1286 (($ $ $ |#2|) NIL (|has| |#1| (-157))) (($ $ $) 104 (|has| |#1| (-511)))) (-3218 (($ $) NIL) (($ $ |#2|) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-2459 (((-108) $ $) NIL) (((-108) $ (-585 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2460 (((-108) $) NIL)) (-2964 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 70)) (-3754 (($ $) 119 (|has| |#1| (-423)))) (-2177 (($ $) NIL (|has| |#1| (-423))) (($ $ |#2|) NIL (|has| |#1| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#1| (-836)))) (-2179 (($ $) NIL (|has| |#1| (-511)))) (-1312 (($ $) NIL (|has| |#1| (-511)))) (-3234 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-2079 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-4015 (($ $ |#1| (-491 |#2|) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| |#1| (-813 (-351))) (|has| |#2| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| |#1| (-813 (-519))) (|has| |#2| (-813 (-519)))))) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-3507 (((-108) $ $) NIL) (((-108) $ (-585 $)) NIL)) (-3542 (($ $ $ $ $) 90 (|has| |#1| (-511)))) (-4086 ((|#2| $) 19)) (-4066 (($ (-1078 |#1|) |#2|) NIL) (($ (-1078 $) |#2|) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-491 |#2|)) NIL) (($ $ |#2| (-705)) 36) (($ $ (-585 |#2|) (-585 (-705))) NIL)) (-3391 (($ $ $) 60)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ |#2|) NIL)) (-2734 (((-108) $) NIL)) (-3695 (((-491 |#2|) $) NIL) (((-705) $ |#2|) NIL) (((-585 (-705)) $ (-585 |#2|)) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-1925 (((-705) $) 20)) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3737 (($ (-1 (-491 |#2|) (-491 |#2|)) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2635 (((-3 |#2| "failed") $) NIL)) (-3683 (($ $) NIL (|has| |#1| (-423)))) (-3356 (($ $) NIL (|has| |#1| (-423)))) (-3199 (((-585 $) $) NIL)) (-3883 (($ $) 37)) (-3811 (($ $) NIL (|has| |#1| (-423)))) (-3323 (((-585 $) $) 41)) (-1573 (($ $) 39)) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-3478 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1860 (-705))) $ $) 82)) (-1660 (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -3573 $) (|:| -1354 $)) $ $) 67) (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -3573 $) (|:| -1354 $)) $ $ |#2|) NIL)) (-3533 (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -1354 $)) $ $) NIL) (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -1354 $)) $ $ |#2|) NIL)) (-4005 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-1712 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1266 (((-1065) $) NIL)) (-3296 (($ $ $) 108 (|has| |#1| (-511)))) (-2685 (((-585 $) $) 30)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| |#2|) (|:| -1690 (-705))) "failed") $) NIL)) (-2921 (((-108) $ $) NIL) (((-108) $ (-585 $)) NIL)) (-3369 (($ $ $) NIL)) (-3816 (($ $) 21)) (-3291 (((-108) $ $) NIL)) (-3300 (((-108) $ $) NIL) (((-108) $ (-585 $)) NIL)) (-1867 (($ $ $) NIL)) (-3048 (($ $) 23)) (-4139 (((-1029) $) NIL)) (-1358 (((-2 (|:| -2292 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-511)))) (-2202 (((-2 (|:| -2292 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-511)))) (-3162 (((-108) $) 52)) (-3173 ((|#1| $) 55)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-423)))) (-2292 ((|#1| |#1| $) 116 (|has| |#1| (-423))) (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-836)))) (-2758 (((-2 (|:| -2292 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-511)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-511)))) (-1854 (($ $ |#1|) 112 (|has| |#1| (-511))) (($ $ $) NIL (|has| |#1| (-511)))) (-1857 (($ $ |#1|) 111 (|has| |#1| (-511))) (($ $ $) NIL (|has| |#1| (-511)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-585 |#2|) (-585 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-585 |#2|) (-585 $)) NIL)) (-3677 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2181 (($ $ |#2|) NIL) (($ $ (-585 |#2|)) NIL) (($ $ |#2| (-705)) NIL) (($ $ (-585 |#2|) (-585 (-705))) NIL)) (-4178 (((-491 |#2|) $) NIL) (((-705) $ |#2|) 43) (((-585 (-705)) $ (-585 |#2|)) NIL)) (-3127 (($ $) NIL)) (-3553 (($ $) 33)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| |#1| (-560 (-819 (-351)))) (|has| |#2| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| |#1| (-560 (-819 (-519)))) (|has| |#2| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| |#1| (-560 (-495))) (|has| |#2| (-560 (-495))))) (($ (-879 (-379 (-519)))) NIL (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#2| (-560 (-1082))))) (($ (-879 (-519))) NIL (-3730 (-12 (|has| |#1| (-37 (-519))) (|has| |#2| (-560 (-1082))) (-2445 (|has| |#1| (-37 (-379 (-519)))))) (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#2| (-560 (-1082)))))) (($ (-879 |#1|)) NIL (|has| |#2| (-560 (-1082)))) (((-1065) $) NIL (-12 (|has| |#1| (-959 (-519))) (|has| |#2| (-560 (-1082))))) (((-879 |#1|) $) NIL (|has| |#2| (-560 (-1082))))) (-3939 ((|#1| $) 115 (|has| |#1| (-423))) (($ $ |#2|) NIL (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-879 |#1|) $) NIL (|has| |#2| (-560 (-1082)))) (((-1034 |#1| |#2|) $) 15) (($ (-1034 |#1| |#2|)) 16) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#1| (-511)))) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-491 |#2|)) NIL) (($ $ |#2| (-705)) 44) (($ $ (-585 |#2|) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#1| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 13 T CONST)) (-2594 (((-3 (-108) "failed") $ $) NIL)) (-3611 (($) 35 T CONST)) (-3080 (($ $ $ $ (-705)) 88 (|has| |#1| (-511)))) (-3118 (($ $ $ (-705)) 87 (|has| |#1| (-511)))) (-2242 (($ $ |#2|) NIL) (($ $ (-585 |#2|)) NIL) (($ $ |#2| (-705)) NIL) (($ $ (-585 |#2|) (-585 (-705))) NIL)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) 54)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) 64)) (-1614 (($ $ $) 74)) (** (($ $ (-848)) NIL) (($ $ (-705)) 61)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 59) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-714 |#1| |#2|) (-13 (-982 |#1| (-491 |#2|) |#2|) (-559 (-1034 |#1| |#2|)) (-959 (-1034 |#1| |#2|))) (-968) (-782)) (T -714)) +NIL +(-13 (-982 |#1| (-491 |#2|) |#2|) (-559 (-1034 |#1| |#2|)) (-959 (-1034 |#1| |#2|))) +((-1405 (((-716 |#2|) (-1 |#2| |#1|) (-716 |#1|)) 13))) +(((-715 |#1| |#2|) (-10 -7 (-15 -1405 ((-716 |#2|) (-1 |#2| |#1|) (-716 |#1|)))) (-968) (-968)) (T -715)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-716 *5)) (-4 *5 (-968)) (-4 *6 (-968)) (-5 *2 (-716 *6)) (-5 *1 (-715 *5 *6))))) +(-10 -7 (-15 -1405 ((-716 |#2|) (-1 |#2| |#1|) (-716 |#1|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 12)) (-3500 (((-1163 |#1|) $ (-705)) NIL)) (-4083 (((-585 (-996)) $) NIL)) (-4100 (($ (-1078 |#1|)) NIL)) (-1283 (((-1078 $) $ (-996)) NIL) (((-1078 |#1|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 (-996))) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2995 (((-585 $) $ $) 39 (|has| |#1| (-511)))) (-1218 (($ $ $) 35 (|has| |#1| (-511)))) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-4043 (($ $) NIL (|has| |#1| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-1706 (($ $ (-705)) NIL)) (-3007 (($ $ (-705)) NIL)) (-2659 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-423)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-996) "failed") $) NIL) (((-3 (-1078 |#1|) "failed") $) 10)) (-1499 ((|#1| $) NIL) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-996) $) NIL) (((-1078 |#1|) $) NIL)) (-1286 (($ $ $ (-996)) NIL (|has| |#1| (-157))) ((|#1| $ $) 43 (|has| |#1| (-157)))) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-2229 (($ $ $) NIL)) (-3259 (($ $ $) 71 (|has| |#1| (-511)))) (-2964 (((-2 (|:| -3031 |#1|) (|:| -3573 $) (|:| -1354 $)) $ $) 70 (|has| |#1| (-511)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-2177 (($ $) NIL (|has| |#1| (-423))) (($ $ (-996)) NIL (|has| |#1| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#1| (-836)))) (-4015 (($ $ |#1| (-705) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-996) (-813 (-351))) (|has| |#1| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-996) (-813 (-519))) (|has| |#1| (-813 (-519)))))) (-3709 (((-705) $ $) NIL (|has| |#1| (-511)))) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-1058)))) (-4066 (($ (-1078 |#1|) (-996)) NIL) (($ (-1078 $) (-996)) NIL)) (-1855 (($ $ (-705)) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-705)) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL)) (-3391 (($ $ $) 20)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-996)) NIL) (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-3695 (((-705) $) NIL) (((-705) $ (-996)) NIL) (((-585 (-705)) $ (-585 (-996))) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3737 (($ (-1 (-705) (-705)) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-1270 (((-1078 |#1|) $) NIL)) (-2635 (((-3 (-996) "failed") $) NIL)) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-3478 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1860 (-705))) $ $) 26)) (-1651 (($ $ $) 29)) (-3586 (($ $ $) 32)) (-1660 (((-2 (|:| -3031 |#1|) (|:| |gap| (-705)) (|:| -3573 $) (|:| -1354 $)) $ $) 31)) (-1266 (((-1065) $) NIL)) (-3296 (($ $ $) 41 (|has| |#1| (-511)))) (-1296 (((-2 (|:| -3573 $) (|:| -1354 $)) $ (-705)) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| (-996)) (|:| -1690 (-705))) "failed") $) NIL)) (-4142 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3816 (($) NIL (|has| |#1| (-1058)) CONST)) (-4139 (((-1029) $) NIL)) (-1358 (((-2 (|:| -2292 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-511)))) (-2202 (((-2 (|:| -2292 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-511)))) (-3063 (((-2 (|:| -1286 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-511)))) (-2172 (((-2 (|:| -1286 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-511)))) (-3162 (((-108) $) 13)) (-3173 ((|#1| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1339 (($ $ (-705) |#1| $) 19)) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-836)))) (-2758 (((-2 (|:| -2292 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-511)))) (-2791 (((-2 (|:| -1286 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-511)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-996) |#1|) NIL) (($ $ (-585 (-996)) (-585 |#1|)) NIL) (($ $ (-996) $) NIL) (($ $ (-585 (-996)) (-585 $)) NIL)) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-2598 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-379 $) (-379 $) (-379 $)) NIL (|has| |#1| (-511))) ((|#1| (-379 $) |#1|) NIL (|has| |#1| (-335))) (((-379 $) $ (-379 $)) NIL (|has| |#1| (-511)))) (-2340 (((-3 $ "failed") $ (-705)) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-3677 (($ $ (-996)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2181 (($ $ (-996)) NIL) (($ $ (-585 (-996))) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL) (($ $ (-705)) NIL) (($ $) NIL) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4178 (((-705) $) NIL) (((-705) $ (-996)) NIL) (((-585 (-705)) $ (-585 (-996))) NIL)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| (-996) (-560 (-819 (-351)))) (|has| |#1| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| (-996) (-560 (-819 (-519)))) (|has| |#1| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| (-996) (-560 (-495))) (|has| |#1| (-560 (-495)))))) (-3939 ((|#1| $) NIL (|has| |#1| (-423))) (($ $ (-996)) NIL (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-836))))) (-2030 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511))) (((-3 (-379 $) "failed") (-379 $) $) NIL (|has| |#1| (-511)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL) (($ (-996)) NIL) (((-1078 |#1|) $) 7) (($ (-1078 |#1|)) 8) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#1| (-511)))) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-705)) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#1| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 21 T CONST)) (-3611 (($) 24 T CONST)) (-2242 (($ $ (-996)) NIL) (($ $ (-585 (-996))) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL) (($ $ (-705)) NIL) (($ $) NIL) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) 28) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-716 |#1|) (-13 (-1139 |#1|) (-559 (-1078 |#1|)) (-959 (-1078 |#1|)) (-10 -8 (-15 -1339 ($ $ (-705) |#1| $)) (-15 -3391 ($ $ $)) (-15 -3478 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1860 (-705))) $ $)) (-15 -1651 ($ $ $)) (-15 -1660 ((-2 (|:| -3031 |#1|) (|:| |gap| (-705)) (|:| -3573 $) (|:| -1354 $)) $ $)) (-15 -3586 ($ $ $)) (IF (|has| |#1| (-511)) (PROGN (-15 -2995 ((-585 $) $ $)) (-15 -3296 ($ $ $)) (-15 -2758 ((-2 (|:| -2292 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2202 ((-2 (|:| -2292 $) (|:| |coef1| $)) $ $)) (-15 -1358 ((-2 (|:| -2292 $) (|:| |coef2| $)) $ $)) (-15 -2791 ((-2 (|:| -1286 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2172 ((-2 (|:| -1286 |#1|) (|:| |coef1| $)) $ $)) (-15 -3063 ((-2 (|:| -1286 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-968)) (T -716)) +((-1339 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-705)) (-5 *1 (-716 *3)) (-4 *3 (-968)))) (-3391 (*1 *1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-968)))) (-3478 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-716 *3)) (|:| |polden| *3) (|:| -1860 (-705)))) (-5 *1 (-716 *3)) (-4 *3 (-968)))) (-1651 (*1 *1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-968)))) (-1660 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3031 *3) (|:| |gap| (-705)) (|:| -3573 (-716 *3)) (|:| -1354 (-716 *3)))) (-5 *1 (-716 *3)) (-4 *3 (-968)))) (-3586 (*1 *1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-968)))) (-2995 (*1 *2 *1 *1) (-12 (-5 *2 (-585 (-716 *3))) (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968)))) (-3296 (*1 *1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-511)) (-4 *2 (-968)))) (-2758 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2292 (-716 *3)) (|:| |coef1| (-716 *3)) (|:| |coef2| (-716 *3)))) (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968)))) (-2202 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2292 (-716 *3)) (|:| |coef1| (-716 *3)))) (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968)))) (-1358 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2292 (-716 *3)) (|:| |coef2| (-716 *3)))) (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968)))) (-2791 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1286 *3) (|:| |coef1| (-716 *3)) (|:| |coef2| (-716 *3)))) (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968)))) (-2172 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1286 *3) (|:| |coef1| (-716 *3)))) (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968)))) (-3063 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1286 *3) (|:| |coef2| (-716 *3)))) (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968))))) +(-13 (-1139 |#1|) (-559 (-1078 |#1|)) (-959 (-1078 |#1|)) (-10 -8 (-15 -1339 ($ $ (-705) |#1| $)) (-15 -3391 ($ $ $)) (-15 -3478 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1860 (-705))) $ $)) (-15 -1651 ($ $ $)) (-15 -1660 ((-2 (|:| -3031 |#1|) (|:| |gap| (-705)) (|:| -3573 $) (|:| -1354 $)) $ $)) (-15 -3586 ($ $ $)) (IF (|has| |#1| (-511)) (PROGN (-15 -2995 ((-585 $) $ $)) (-15 -3296 ($ $ $)) (-15 -2758 ((-2 (|:| -2292 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2202 ((-2 (|:| -2292 $) (|:| |coef1| $)) $ $)) (-15 -1358 ((-2 (|:| -2292 $) (|:| |coef2| $)) $ $)) (-15 -2791 ((-2 (|:| -1286 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2172 ((-2 (|:| -1286 |#1|) (|:| |coef1| $)) $ $)) (-15 -3063 ((-2 (|:| -1286 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-1823 ((|#1| (-705) |#1|) 33 (|has| |#1| (-37 (-379 (-519)))))) (-2828 ((|#1| (-705) |#1|) 23)) (-2115 ((|#1| (-705) |#1|) 35 (|has| |#1| (-37 (-379 (-519))))))) +(((-717 |#1|) (-10 -7 (-15 -2828 (|#1| (-705) |#1|)) (IF (|has| |#1| (-37 (-379 (-519)))) (PROGN (-15 -2115 (|#1| (-705) |#1|)) (-15 -1823 (|#1| (-705) |#1|))) |%noBranch|)) (-157)) (T -717)) +((-1823 (*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-717 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-157)))) (-2115 (*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-717 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-157)))) (-2828 (*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-717 *2)) (-4 *2 (-157))))) +(-10 -7 (-15 -2828 (|#1| (-705) |#1|)) (IF (|has| |#1| (-37 (-379 (-519)))) (PROGN (-15 -2115 (|#1| (-705) |#1|)) (-15 -1823 (|#1| (-705) |#1|))) |%noBranch|)) +((-1430 (((-108) $ $) 7)) (-3106 (((-585 (-2 (|:| -1664 $) (|:| -1556 (-585 |#4|)))) (-585 |#4|)) 85)) (-2548 (((-585 $) (-585 |#4|)) 86) (((-585 $) (-585 |#4|) (-108)) 111)) (-4083 (((-585 |#3|) $) 33)) (-2968 (((-108) $) 26)) (-3146 (((-108) $) 17 (|has| |#1| (-511)))) (-2943 (((-108) |#4| $) 101) (((-108) $) 97)) (-4145 ((|#4| |#4| $) 92)) (-4043 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| $) 126)) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#3|) 27)) (-1473 (((-108) $ (-705)) 44)) (-1640 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4221))) (((-3 |#4| "failed") $ |#3|) 79)) (-2249 (($) 45 T CONST)) (-3266 (((-108) $) 22 (|has| |#1| (-511)))) (-2542 (((-108) $ $) 24 (|has| |#1| (-511)))) (-3609 (((-108) $ $) 23 (|has| |#1| (-511)))) (-1276 (((-108) $) 25 (|has| |#1| (-511)))) (-4117 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1456 (((-585 |#4|) (-585 |#4|) $) 18 (|has| |#1| (-511)))) (-3596 (((-585 |#4|) (-585 |#4|) $) 19 (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 |#4|)) 36)) (-1499 (($ (-585 |#4|)) 35)) (-2343 (((-3 $ "failed") $) 82)) (-1570 ((|#4| |#4| $) 89)) (-2366 (($ $) 68 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#4| $) 67 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-511)))) (-2459 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3805 ((|#4| |#4| $) 87)) (-3874 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4221))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4221))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2109 (((-2 (|:| -1664 (-585 |#4|)) (|:| -1556 (-585 |#4|))) $) 105)) (-2674 (((-108) |#4| $) 136)) (-2051 (((-108) |#4| $) 133)) (-2167 (((-108) |#4| $) 137) (((-108) $) 134)) (-3844 (((-585 |#4|) $) 52 (|has| $ (-6 -4221)))) (-3507 (((-108) |#4| $) 104) (((-108) $) 103)) (-4086 ((|#3| $) 34)) (-3878 (((-108) $ (-705)) 43)) (-3725 (((-585 |#4|) $) 53 (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) 47)) (-1360 (((-585 |#3|) $) 32)) (-1219 (((-108) |#3| $) 31)) (-2768 (((-108) $ (-705)) 42)) (-1266 (((-1065) $) 9)) (-1196 (((-3 |#4| (-585 $)) |#4| |#4| $) 128)) (-3296 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| |#4| $) 127)) (-1457 (((-3 |#4| "failed") $) 83)) (-2975 (((-585 $) |#4| $) 129)) (-3422 (((-3 (-108) (-585 $)) |#4| $) 132)) (-2575 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3766 (((-585 $) |#4| $) 125) (((-585 $) (-585 |#4|) $) 124) (((-585 $) (-585 |#4|) (-585 $)) 123) (((-585 $) |#4| (-585 $)) 122)) (-3772 (($ |#4| $) 117) (($ (-585 |#4|) $) 116)) (-4092 (((-585 |#4|) $) 107)) (-2921 (((-108) |#4| $) 99) (((-108) $) 95)) (-3369 ((|#4| |#4| $) 90)) (-3291 (((-108) $ $) 110)) (-2573 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-511)))) (-3300 (((-108) |#4| $) 100) (((-108) $) 96)) (-1867 ((|#4| |#4| $) 91)) (-4139 (((-1029) $) 10)) (-2331 (((-3 |#4| "failed") $) 84)) (-2395 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2781 (((-3 $ "failed") $ |#4|) 78)) (-3881 (($ $ |#4|) 77) (((-585 $) |#4| $) 115) (((-585 $) |#4| (-585 $)) 114) (((-585 $) (-585 |#4|) $) 113) (((-585 $) (-585 |#4|) (-585 $)) 112)) (-2379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#4|) (-585 |#4|)) 59 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) 57 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 (-267 |#4|))) 56 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) 38)) (-3108 (((-108) $) 41)) (-1548 (($) 40)) (-4178 (((-705) $) 106)) (-4155 (((-705) |#4| $) 54 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4221)))) (-2449 (($ $) 39)) (-1446 (((-495) $) 69 (|has| |#4| (-560 (-495))))) (-2228 (($ (-585 |#4|)) 60)) (-4175 (($ $ |#3|) 28)) (-1982 (($ $ |#3|) 30)) (-3282 (($ $) 88)) (-1272 (($ $ |#3|) 29)) (-2217 (((-790) $) 11) (((-585 |#4|) $) 37)) (-3156 (((-705) $) 76 (|has| |#3| (-340)))) (-3541 (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3735 (((-108) $ (-1 (-108) |#4| (-585 |#4|))) 98)) (-3249 (((-585 $) |#4| $) 121) (((-585 $) |#4| (-585 $)) 120) (((-585 $) (-585 |#4|) $) 119) (((-585 $) (-585 |#4|) (-585 $)) 118)) (-1778 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4221)))) (-3059 (((-585 |#3|) $) 81)) (-3736 (((-108) |#4| $) 135)) (-3980 (((-108) |#3| $) 80)) (-1543 (((-108) $ $) 6)) (-3532 (((-705) $) 46 (|has| $ (-6 -4221))))) +(((-718 |#1| |#2| |#3| |#4|) (-1194) (-423) (-727) (-782) (-982 |t#1| |t#2| |t#3|)) (T -718)) +NIL +(-13 (-987 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-559 (-585 |#4|)) . T) ((-559 (-790)) . T) ((-139 |#4|) . T) ((-560 (-495)) |has| |#4| (-560 (-495))) ((-282 |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-458 |#4|) . T) ((-480 |#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-900 |#1| |#2| |#3| |#4|) . T) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1011) . T) ((-1111 |#1| |#2| |#3| |#4|) . T) ((-1117) . T)) +((-2894 (((-3 (-351) "failed") (-288 |#1|) (-848)) 60 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-3 (-351) "failed") (-288 |#1|)) 52 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-3 (-351) "failed") (-379 (-879 |#1|)) (-848)) 39 (|has| |#1| (-511))) (((-3 (-351) "failed") (-379 (-879 |#1|))) 35 (|has| |#1| (-511))) (((-3 (-351) "failed") (-879 |#1|) (-848)) 30 (|has| |#1| (-968))) (((-3 (-351) "failed") (-879 |#1|)) 24 (|has| |#1| (-968)))) (-2428 (((-351) (-288 |#1|) (-848)) 92 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-351) (-288 |#1|)) 87 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-351) (-379 (-879 |#1|)) (-848)) 84 (|has| |#1| (-511))) (((-351) (-379 (-879 |#1|))) 81 (|has| |#1| (-511))) (((-351) (-879 |#1|) (-848)) 80 (|has| |#1| (-968))) (((-351) (-879 |#1|)) 77 (|has| |#1| (-968))) (((-351) |#1| (-848)) 73) (((-351) |#1|) 22)) (-2895 (((-3 (-154 (-351)) "failed") (-288 (-154 |#1|)) (-848)) 68 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-3 (-154 (-351)) "failed") (-288 (-154 |#1|))) 58 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-3 (-154 (-351)) "failed") (-288 |#1|) (-848)) 61 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-3 (-154 (-351)) "failed") (-288 |#1|)) 59 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-3 (-154 (-351)) "failed") (-379 (-879 (-154 |#1|))) (-848)) 44 (|has| |#1| (-511))) (((-3 (-154 (-351)) "failed") (-379 (-879 (-154 |#1|)))) 43 (|has| |#1| (-511))) (((-3 (-154 (-351)) "failed") (-379 (-879 |#1|)) (-848)) 38 (|has| |#1| (-511))) (((-3 (-154 (-351)) "failed") (-379 (-879 |#1|))) 37 (|has| |#1| (-511))) (((-3 (-154 (-351)) "failed") (-879 |#1|) (-848)) 28 (|has| |#1| (-968))) (((-3 (-154 (-351)) "failed") (-879 |#1|)) 26 (|has| |#1| (-968))) (((-3 (-154 (-351)) "failed") (-879 (-154 |#1|)) (-848)) 17 (|has| |#1| (-157))) (((-3 (-154 (-351)) "failed") (-879 (-154 |#1|))) 14 (|has| |#1| (-157)))) (-1243 (((-154 (-351)) (-288 (-154 |#1|)) (-848)) 95 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-154 (-351)) (-288 (-154 |#1|))) 94 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-154 (-351)) (-288 |#1|) (-848)) 93 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-154 (-351)) (-288 |#1|)) 91 (-12 (|has| |#1| (-511)) (|has| |#1| (-782)))) (((-154 (-351)) (-379 (-879 (-154 |#1|))) (-848)) 86 (|has| |#1| (-511))) (((-154 (-351)) (-379 (-879 (-154 |#1|)))) 85 (|has| |#1| (-511))) (((-154 (-351)) (-379 (-879 |#1|)) (-848)) 83 (|has| |#1| (-511))) (((-154 (-351)) (-379 (-879 |#1|))) 82 (|has| |#1| (-511))) (((-154 (-351)) (-879 |#1|) (-848)) 79 (|has| |#1| (-968))) (((-154 (-351)) (-879 |#1|)) 78 (|has| |#1| (-968))) (((-154 (-351)) (-879 (-154 |#1|)) (-848)) 75 (|has| |#1| (-157))) (((-154 (-351)) (-879 (-154 |#1|))) 74 (|has| |#1| (-157))) (((-154 (-351)) (-154 |#1|) (-848)) 16 (|has| |#1| (-157))) (((-154 (-351)) (-154 |#1|)) 12 (|has| |#1| (-157))) (((-154 (-351)) |#1| (-848)) 27) (((-154 (-351)) |#1|) 25))) +(((-719 |#1|) (-10 -7 (-15 -2428 ((-351) |#1|)) (-15 -2428 ((-351) |#1| (-848))) (-15 -1243 ((-154 (-351)) |#1|)) (-15 -1243 ((-154 (-351)) |#1| (-848))) (IF (|has| |#1| (-157)) (PROGN (-15 -1243 ((-154 (-351)) (-154 |#1|))) (-15 -1243 ((-154 (-351)) (-154 |#1|) (-848))) (-15 -1243 ((-154 (-351)) (-879 (-154 |#1|)))) (-15 -1243 ((-154 (-351)) (-879 (-154 |#1|)) (-848)))) |%noBranch|) (IF (|has| |#1| (-968)) (PROGN (-15 -2428 ((-351) (-879 |#1|))) (-15 -2428 ((-351) (-879 |#1|) (-848))) (-15 -1243 ((-154 (-351)) (-879 |#1|))) (-15 -1243 ((-154 (-351)) (-879 |#1|) (-848)))) |%noBranch|) (IF (|has| |#1| (-511)) (PROGN (-15 -2428 ((-351) (-379 (-879 |#1|)))) (-15 -2428 ((-351) (-379 (-879 |#1|)) (-848))) (-15 -1243 ((-154 (-351)) (-379 (-879 |#1|)))) (-15 -1243 ((-154 (-351)) (-379 (-879 |#1|)) (-848))) (-15 -1243 ((-154 (-351)) (-379 (-879 (-154 |#1|))))) (-15 -1243 ((-154 (-351)) (-379 (-879 (-154 |#1|))) (-848))) (IF (|has| |#1| (-782)) (PROGN (-15 -2428 ((-351) (-288 |#1|))) (-15 -2428 ((-351) (-288 |#1|) (-848))) (-15 -1243 ((-154 (-351)) (-288 |#1|))) (-15 -1243 ((-154 (-351)) (-288 |#1|) (-848))) (-15 -1243 ((-154 (-351)) (-288 (-154 |#1|)))) (-15 -1243 ((-154 (-351)) (-288 (-154 |#1|)) (-848)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -2895 ((-3 (-154 (-351)) "failed") (-879 (-154 |#1|)))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-879 (-154 |#1|)) (-848)))) |%noBranch|) (IF (|has| |#1| (-968)) (PROGN (-15 -2894 ((-3 (-351) "failed") (-879 |#1|))) (-15 -2894 ((-3 (-351) "failed") (-879 |#1|) (-848))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-879 |#1|))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-879 |#1|) (-848)))) |%noBranch|) (IF (|has| |#1| (-511)) (PROGN (-15 -2894 ((-3 (-351) "failed") (-379 (-879 |#1|)))) (-15 -2894 ((-3 (-351) "failed") (-379 (-879 |#1|)) (-848))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-379 (-879 |#1|)))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-379 (-879 |#1|)) (-848))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-379 (-879 (-154 |#1|))))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-379 (-879 (-154 |#1|))) (-848))) (IF (|has| |#1| (-782)) (PROGN (-15 -2894 ((-3 (-351) "failed") (-288 |#1|))) (-15 -2894 ((-3 (-351) "failed") (-288 |#1|) (-848))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-288 |#1|))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-288 |#1|) (-848))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-288 (-154 |#1|)))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-288 (-154 |#1|)) (-848)))) |%noBranch|)) |%noBranch|)) (-560 (-351))) (T -719)) +((-2895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-288 (-154 *5))) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-782)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-2895 (*1 *2 *3) (|partial| -12 (-5 *3 (-288 (-154 *4))) (-4 *4 (-511)) (-4 *4 (-782)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-2895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-288 *5)) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-782)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-2895 (*1 *2 *3) (|partial| -12 (-5 *3 (-288 *4)) (-4 *4 (-511)) (-4 *4 (-782)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-2894 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-288 *5)) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-782)) (-4 *5 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *5)))) (-2894 (*1 *2 *3) (|partial| -12 (-5 *3 (-288 *4)) (-4 *4 (-511)) (-4 *4 (-782)) (-4 *4 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *4)))) (-2895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-379 (-879 (-154 *5)))) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-2895 (*1 *2 *3) (|partial| -12 (-5 *3 (-379 (-879 (-154 *4)))) (-4 *4 (-511)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-2895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-2895 (*1 *2 *3) (|partial| -12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-2894 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *5)))) (-2894 (*1 *2 *3) (|partial| -12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) (-4 *4 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *4)))) (-2895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-879 *5)) (-5 *4 (-848)) (-4 *5 (-968)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-2895 (*1 *2 *3) (|partial| -12 (-5 *3 (-879 *4)) (-4 *4 (-968)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-2894 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-879 *5)) (-5 *4 (-848)) (-4 *5 (-968)) (-4 *5 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *5)))) (-2894 (*1 *2 *3) (|partial| -12 (-5 *3 (-879 *4)) (-4 *4 (-968)) (-4 *4 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *4)))) (-2895 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-879 (-154 *5))) (-5 *4 (-848)) (-4 *5 (-157)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-2895 (*1 *2 *3) (|partial| -12 (-5 *3 (-879 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-154 *5))) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-782)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-288 (-154 *4))) (-4 *4 (-511)) (-4 *4 (-782)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-288 *5)) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-782)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-288 *4)) (-4 *4 (-511)) (-4 *4 (-782)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-2428 (*1 *2 *3 *4) (-12 (-5 *3 (-288 *5)) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-782)) (-4 *5 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *5)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-288 *4)) (-4 *4 (-511)) (-4 *4 (-782)) (-4 *4 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 (-154 *5)))) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-379 (-879 (-154 *4)))) (-4 *4 (-511)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-2428 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *5)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) (-4 *4 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-848)) (-4 *5 (-968)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-879 *4)) (-4 *4 (-968)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-2428 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-848)) (-4 *5 (-968)) (-4 *5 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *5)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-879 *4)) (-4 *4 (-968)) (-4 *4 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-154 *5))) (-5 *4 (-848)) (-4 *5 (-157)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-879 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-154 *5)) (-5 *4 (-848)) (-4 *5 (-157)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *4 (-848)) (-5 *2 (-154 (-351))) (-5 *1 (-719 *3)) (-4 *3 (-560 (-351))))) (-1243 (*1 *2 *3) (-12 (-5 *2 (-154 (-351))) (-5 *1 (-719 *3)) (-4 *3 (-560 (-351))))) (-2428 (*1 *2 *3 *4) (-12 (-5 *4 (-848)) (-5 *2 (-351)) (-5 *1 (-719 *3)) (-4 *3 (-560 *2)))) (-2428 (*1 *2 *3) (-12 (-5 *2 (-351)) (-5 *1 (-719 *3)) (-4 *3 (-560 *2))))) +(-10 -7 (-15 -2428 ((-351) |#1|)) (-15 -2428 ((-351) |#1| (-848))) (-15 -1243 ((-154 (-351)) |#1|)) (-15 -1243 ((-154 (-351)) |#1| (-848))) (IF (|has| |#1| (-157)) (PROGN (-15 -1243 ((-154 (-351)) (-154 |#1|))) (-15 -1243 ((-154 (-351)) (-154 |#1|) (-848))) (-15 -1243 ((-154 (-351)) (-879 (-154 |#1|)))) (-15 -1243 ((-154 (-351)) (-879 (-154 |#1|)) (-848)))) |%noBranch|) (IF (|has| |#1| (-968)) (PROGN (-15 -2428 ((-351) (-879 |#1|))) (-15 -2428 ((-351) (-879 |#1|) (-848))) (-15 -1243 ((-154 (-351)) (-879 |#1|))) (-15 -1243 ((-154 (-351)) (-879 |#1|) (-848)))) |%noBranch|) (IF (|has| |#1| (-511)) (PROGN (-15 -2428 ((-351) (-379 (-879 |#1|)))) (-15 -2428 ((-351) (-379 (-879 |#1|)) (-848))) (-15 -1243 ((-154 (-351)) (-379 (-879 |#1|)))) (-15 -1243 ((-154 (-351)) (-379 (-879 |#1|)) (-848))) (-15 -1243 ((-154 (-351)) (-379 (-879 (-154 |#1|))))) (-15 -1243 ((-154 (-351)) (-379 (-879 (-154 |#1|))) (-848))) (IF (|has| |#1| (-782)) (PROGN (-15 -2428 ((-351) (-288 |#1|))) (-15 -2428 ((-351) (-288 |#1|) (-848))) (-15 -1243 ((-154 (-351)) (-288 |#1|))) (-15 -1243 ((-154 (-351)) (-288 |#1|) (-848))) (-15 -1243 ((-154 (-351)) (-288 (-154 |#1|)))) (-15 -1243 ((-154 (-351)) (-288 (-154 |#1|)) (-848)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -2895 ((-3 (-154 (-351)) "failed") (-879 (-154 |#1|)))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-879 (-154 |#1|)) (-848)))) |%noBranch|) (IF (|has| |#1| (-968)) (PROGN (-15 -2894 ((-3 (-351) "failed") (-879 |#1|))) (-15 -2894 ((-3 (-351) "failed") (-879 |#1|) (-848))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-879 |#1|))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-879 |#1|) (-848)))) |%noBranch|) (IF (|has| |#1| (-511)) (PROGN (-15 -2894 ((-3 (-351) "failed") (-379 (-879 |#1|)))) (-15 -2894 ((-3 (-351) "failed") (-379 (-879 |#1|)) (-848))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-379 (-879 |#1|)))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-379 (-879 |#1|)) (-848))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-379 (-879 (-154 |#1|))))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-379 (-879 (-154 |#1|))) (-848))) (IF (|has| |#1| (-782)) (PROGN (-15 -2894 ((-3 (-351) "failed") (-288 |#1|))) (-15 -2894 ((-3 (-351) "failed") (-288 |#1|) (-848))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-288 |#1|))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-288 |#1|) (-848))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-288 (-154 |#1|)))) (-15 -2895 ((-3 (-154 (-351)) "failed") (-288 (-154 |#1|)) (-848)))) |%noBranch|)) |%noBranch|)) +((-2336 (((-848) (-1065)) 64)) (-1280 (((-3 (-351) "failed") (-1065)) 33)) (-1317 (((-351) (-1065)) 31)) (-1213 (((-848) (-1065)) 54)) (-2147 (((-1065) (-848)) 55)) (-3699 (((-1065) (-848)) 53))) +(((-720) (-10 -7 (-15 -3699 ((-1065) (-848))) (-15 -1213 ((-848) (-1065))) (-15 -2147 ((-1065) (-848))) (-15 -2336 ((-848) (-1065))) (-15 -1317 ((-351) (-1065))) (-15 -1280 ((-3 (-351) "failed") (-1065))))) (T -720)) +((-1280 (*1 *2 *3) (|partial| -12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-720)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-720)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-848)) (-5 *1 (-720)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1065)) (-5 *1 (-720)))) (-1213 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-848)) (-5 *1 (-720)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1065)) (-5 *1 (-720))))) +(-10 -7 (-15 -3699 ((-1065) (-848))) (-15 -1213 ((-848) (-1065))) (-15 -2147 ((-1065) (-848))) (-15 -2336 ((-848) (-1065))) (-15 -1317 ((-351) (-1065))) (-15 -1280 ((-3 (-351) "failed") (-1065)))) +((-1430 (((-108) $ $) 7)) (-1767 (((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 15) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957)) 13)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 16) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1543 (((-108) $ $) 6))) +(((-721) (-1194)) (T -721)) +((-1809 (*1 *2 *3 *4) (-12 (-4 *1 (-721)) (-5 *3 (-980)) (-5 *4 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957)))))) (-1767 (*1 *2 *3 *2) (-12 (-4 *1 (-721)) (-5 *2 (-957)) (-5 *3 (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) (-1809 (*1 *2 *3 *4) (-12 (-4 *1 (-721)) (-5 *3 (-980)) (-5 *4 (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957)))))) (-1767 (*1 *2 *3 *2) (-12 (-4 *1 (-721)) (-5 *2 (-957)) (-5 *3 (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) +(-13 (-1011) (-10 -7 (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1767 ((-957) (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) (|:| |extra| (-957))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1767 ((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-957))))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-4031 (((-1168) (-1163 (-351)) (-519) (-351) (-2 (|:| |try| (-351)) (|:| |did| (-351)) (|:| -3650 (-351))) (-351) (-1163 (-351)) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351))) 44) (((-1168) (-1163 (-351)) (-519) (-351) (-2 (|:| |try| (-351)) (|:| |did| (-351)) (|:| -3650 (-351))) (-351) (-1163 (-351)) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351))) 43)) (-2047 (((-1168) (-1163 (-351)) (-519) (-351) (-351) (-519) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351))) 50)) (-1284 (((-1168) (-1163 (-351)) (-519) (-351) (-351) (-351) (-351) (-519) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351))) 41)) (-2200 (((-1168) (-1163 (-351)) (-519) (-351) (-351) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351))) 52) (((-1168) (-1163 (-351)) (-519) (-351) (-351) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351))) 51))) +(((-722) (-10 -7 (-15 -2200 ((-1168) (-1163 (-351)) (-519) (-351) (-351) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)))) (-15 -2200 ((-1168) (-1163 (-351)) (-519) (-351) (-351) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)))) (-15 -1284 ((-1168) (-1163 (-351)) (-519) (-351) (-351) (-351) (-351) (-519) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)))) (-15 -4031 ((-1168) (-1163 (-351)) (-519) (-351) (-2 (|:| |try| (-351)) (|:| |did| (-351)) (|:| -3650 (-351))) (-351) (-1163 (-351)) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)))) (-15 -4031 ((-1168) (-1163 (-351)) (-519) (-351) (-2 (|:| |try| (-351)) (|:| |did| (-351)) (|:| -3650 (-351))) (-351) (-1163 (-351)) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)))) (-15 -2047 ((-1168) (-1163 (-351)) (-519) (-351) (-351) (-519) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)))))) (T -722)) +((-2047 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-519)) (-5 *6 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) (-5 *1 (-722)))) (-4031 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-519)) (-5 *6 (-2 (|:| |try| (-351)) (|:| |did| (-351)) (|:| -3650 (-351)))) (-5 *7 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) (-5 *1 (-722)))) (-4031 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-519)) (-5 *6 (-2 (|:| |try| (-351)) (|:| |did| (-351)) (|:| -3650 (-351)))) (-5 *7 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) (-5 *1 (-722)))) (-1284 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-519)) (-5 *6 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) (-5 *1 (-722)))) (-2200 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-519)) (-5 *6 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) (-5 *1 (-722)))) (-2200 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-519)) (-5 *6 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) (-5 *1 (-722))))) +(-10 -7 (-15 -2200 ((-1168) (-1163 (-351)) (-519) (-351) (-351) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)))) (-15 -2200 ((-1168) (-1163 (-351)) (-519) (-351) (-351) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)))) (-15 -1284 ((-1168) (-1163 (-351)) (-519) (-351) (-351) (-351) (-351) (-519) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)))) (-15 -4031 ((-1168) (-1163 (-351)) (-519) (-351) (-2 (|:| |try| (-351)) (|:| |did| (-351)) (|:| -3650 (-351))) (-351) (-1163 (-351)) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)))) (-15 -4031 ((-1168) (-1163 (-351)) (-519) (-351) (-2 (|:| |try| (-351)) (|:| |did| (-351)) (|:| -3650 (-351))) (-351) (-1163 (-351)) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)) (-1163 (-351)))) (-15 -2047 ((-1168) (-1163 (-351)) (-519) (-351) (-351) (-519) (-1 (-1168) (-1163 (-351)) (-1163 (-351)) (-351))))) +((-1981 (((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519)) 53)) (-1261 (((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519)) 30)) (-3919 (((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519)) 52)) (-3201 (((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519)) 28)) (-2146 (((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519)) 51)) (-3995 (((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519)) 18)) (-1468 (((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519) (-519)) 31)) (-2008 (((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519) (-519)) 29)) (-2587 (((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519) (-519)) 27))) +(((-723) (-10 -7 (-15 -2587 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519) (-519))) (-15 -2008 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519) (-519))) (-15 -1468 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519) (-519))) (-15 -3995 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519))) (-15 -3201 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519))) (-15 -1261 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519))) (-15 -2146 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519))) (-15 -3919 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519))) (-15 -1981 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519))))) (T -723)) +((-1981 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) (|:| |success| (-108)))) (-5 *1 (-723)) (-5 *5 (-519)))) (-3919 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) (|:| |success| (-108)))) (-5 *1 (-723)) (-5 *5 (-519)))) (-2146 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) (|:| |success| (-108)))) (-5 *1 (-723)) (-5 *5 (-519)))) (-1261 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) (|:| |success| (-108)))) (-5 *1 (-723)) (-5 *5 (-519)))) (-3201 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) (|:| |success| (-108)))) (-5 *1 (-723)) (-5 *5 (-519)))) (-3995 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) (|:| |success| (-108)))) (-5 *1 (-723)) (-5 *5 (-519)))) (-1468 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) (|:| |success| (-108)))) (-5 *1 (-723)) (-5 *5 (-519)))) (-2008 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) (|:| |success| (-108)))) (-5 *1 (-723)) (-5 *5 (-519)))) (-2587 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) (|:| |success| (-108)))) (-5 *1 (-723)) (-5 *5 (-519))))) +(-10 -7 (-15 -2587 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519) (-519))) (-15 -2008 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519) (-519))) (-15 -1468 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519) (-519))) (-15 -3995 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519))) (-15 -3201 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519))) (-15 -1261 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519))) (-15 -2146 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519))) (-15 -3919 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519))) (-15 -1981 ((-2 (|:| -3493 (-351)) (|:| -3026 (-351)) (|:| |totalpts| (-519)) (|:| |success| (-108))) (-1 (-351) (-351)) (-351) (-351) (-351) (-351) (-519) (-519)))) +((-3572 (((-1113 |#1|) |#1| (-201) (-519)) 45))) +(((-724 |#1|) (-10 -7 (-15 -3572 ((-1113 |#1|) |#1| (-201) (-519)))) (-898)) (T -724)) +((-3572 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-201)) (-5 *5 (-519)) (-5 *2 (-1113 *3)) (-5 *1 (-724 *3)) (-4 *3 (-898))))) +(-10 -7 (-15 -3572 ((-1113 |#1|) |#1| (-201) (-519)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 24)) (-3167 (((-3 $ "failed") $ $) 26)) (-2249 (($) 23 T CONST)) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 22 T CONST)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18)) (-1623 (($ $ $) 28) (($ $) 27)) (-1614 (($ $ $) 20)) (* (($ (-705) $) 25) (($ (-848) $) 21) (($ (-519) $) 29))) +(((-725) (-1194)) (T -725)) +NIL +(-13 (-730) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-726) . T) ((-728) . T) ((-730) . T) ((-782) . T) ((-1011) . T)) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 24)) (-2249 (($) 23 T CONST)) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 22 T CONST)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18)) (-1614 (($ $ $) 20)) (* (($ (-705) $) 25) (($ (-848) $) 21))) +(((-726) (-1194)) (T -726)) +NIL +(-13 (-728) (-23)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-559 (-790)) . T) ((-728) . T) ((-782) . T) ((-1011) . T)) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 24)) (-2494 (($ $ $) 27)) (-3167 (((-3 $ "failed") $ $) 26)) (-2249 (($) 23 T CONST)) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 22 T CONST)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18)) (-1614 (($ $ $) 20)) (* (($ (-705) $) 25) (($ (-848) $) 21))) +(((-727) (-1194)) (T -727)) +((-2494 (*1 *1 *1 *1) (-4 *1 (-727)))) +(-13 (-730) (-10 -8 (-15 -2494 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-726) . T) ((-728) . T) ((-730) . T) ((-782) . T) ((-1011) . T)) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 24)) (-2249 (($) 23 T CONST)) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 22 T CONST)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18)) (-1614 (($ $ $) 20)) (* (($ (-705) $) 25) (($ (-848) $) 21))) +(((-728) (-1194)) (T -728)) +NIL +(-13 (-782) (-23)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-559 (-790)) . T) ((-782) . T) ((-1011) . T)) +((-3493 (((-1015) $) 12)) (-1937 (($ (-1082) (-1015)) 13)) (-2938 (((-1082) $) 10)) (-2217 (((-790) $) 24))) +(((-729) (-13 (-559 (-790)) (-10 -8 (-15 -2938 ((-1082) $)) (-15 -3493 ((-1015) $)) (-15 -1937 ($ (-1082) (-1015)))))) (T -729)) +((-2938 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-729)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-729)))) (-1937 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1015)) (-5 *1 (-729))))) +(-13 (-559 (-790)) (-10 -8 (-15 -2938 ((-1082) $)) (-15 -3493 ((-1015) $)) (-15 -1937 ($ (-1082) (-1015))))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 24)) (-3167 (((-3 $ "failed") $ $) 26)) (-2249 (($) 23 T CONST)) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 22 T CONST)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18)) (-1614 (($ $ $) 20)) (* (($ (-705) $) 25) (($ (-848) $) 21))) +(((-730) (-1194)) (T -730)) +NIL +(-13 (-726) (-124)) +(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-726) . T) ((-728) . T) ((-782) . T) ((-1011) . T)) +((-3569 (((-108) $) 41)) (-1301 (((-3 (-519) "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1499 (((-519) $) NIL) (((-379 (-519)) $) NIL) ((|#2| $) 42)) (-1631 (((-3 (-379 (-519)) "failed") $) 78)) (-2102 (((-108) $) 72)) (-2506 (((-379 (-519)) $) 76)) (-3681 ((|#2| $) 26)) (-1405 (($ (-1 |#2| |#2|) $) 23)) (-3151 (($ $) 61)) (-1446 (((-495) $) 67)) (-3333 (($ $) 21)) (-2217 (((-790) $) 56) (($ (-519)) 39) (($ |#2|) 37) (($ (-379 (-519))) NIL)) (-3594 (((-705)) 10)) (-1478 ((|#2| $) 71)) (-1543 (((-108) $ $) 29)) (-1561 (((-108) $ $) 69)) (-1623 (($ $) 31) (($ $ $) NIL)) (-1614 (($ $ $) 30)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-731 |#1| |#2|) (-10 -8 (-15 -1561 ((-108) |#1| |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -3151 (|#1| |#1|)) (-15 -1631 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2506 ((-379 (-519)) |#1|)) (-15 -2102 ((-108) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3681 (|#2| |#1|)) (-15 -3333 (|#1| |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 -3594 ((-705))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 -3569 ((-108) |#1|)) (-15 * (|#1| (-848) |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) (-732 |#2|) (-157)) (T -731)) +((-3594 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-705)) (-5 *1 (-731 *3 *4)) (-4 *3 (-732 *4))))) +(-10 -8 (-15 -1561 ((-108) |#1| |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -3151 (|#1| |#1|)) (-15 -1631 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2506 ((-379 (-519)) |#1|)) (-15 -2102 ((-108) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3681 (|#2| |#1|)) (-15 -3333 (|#1| |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 -3594 ((-705))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 -3569 ((-108) |#1|)) (-15 * (|#1| (-848) |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-1642 (((-705)) 53 (|has| |#1| (-340)))) (-2249 (($) 17 T CONST)) (-1301 (((-3 (-519) "failed") $) 94 (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) 92 (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 90)) (-1499 (((-519) $) 95 (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) 93 (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) 89)) (-4193 (((-3 $ "failed") $) 34)) (-1944 ((|#1| $) 79)) (-1631 (((-3 (-379 (-519)) "failed") $) 66 (|has| |#1| (-504)))) (-2102 (((-108) $) 68 (|has| |#1| (-504)))) (-2506 (((-379 (-519)) $) 67 (|has| |#1| (-504)))) (-3314 (($) 56 (|has| |#1| (-340)))) (-1568 (((-108) $) 31)) (-3727 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-3681 ((|#1| $) 71)) (-2864 (($ $ $) 62 (|has| |#1| (-782)))) (-2489 (($ $ $) 61 (|has| |#1| (-782)))) (-1405 (($ (-1 |#1| |#1|) $) 81)) (-3334 (((-848) $) 55 (|has| |#1| (-340)))) (-1266 (((-1065) $) 9)) (-3151 (($ $) 65 (|has| |#1| (-335)))) (-2770 (($ (-848)) 54 (|has| |#1| (-340)))) (-2381 ((|#1| $) 76)) (-1589 ((|#1| $) 77)) (-2655 ((|#1| $) 78)) (-2279 ((|#1| $) 72)) (-3501 ((|#1| $) 73)) (-2448 ((|#1| $) 74)) (-1719 ((|#1| $) 75)) (-4139 (((-1029) $) 10)) (-2324 (($ $ (-585 |#1|) (-585 |#1|)) 87 (|has| |#1| (-282 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-282 |#1|))) (($ $ (-267 |#1|)) 85 (|has| |#1| (-282 |#1|))) (($ $ (-585 (-267 |#1|))) 84 (|has| |#1| (-282 |#1|))) (($ $ (-585 (-1082)) (-585 |#1|)) 83 (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-1082) |#1|) 82 (|has| |#1| (-480 (-1082) |#1|)))) (-2598 (($ $ |#1|) 88 (|has| |#1| (-260 |#1| |#1|)))) (-1446 (((-495) $) 63 (|has| |#1| (-560 (-495))))) (-3333 (($ $) 80)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 37) (($ (-379 (-519))) 91 (|has| |#1| (-959 (-379 (-519)))))) (-3773 (((-3 $ "failed") $) 64 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1478 ((|#1| $) 69 (|has| |#1| (-977)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1586 (((-108) $ $) 59 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 58 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 60 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 57 (|has| |#1| (-782)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38))) +(((-732 |#1|) (-1194) (-157)) (T -732)) +((-3333 (*1 *1 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) (-1589 (*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) (-2381 (*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) (-3727 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)) (-4 *2 (-977)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-732 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-108)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-732 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-379 (-519))))) (-1631 (*1 *2 *1) (|partial| -12 (-4 *1 (-732 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-379 (-519))))) (-3151 (*1 *1 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)) (-4 *2 (-335))))) +(-13 (-37 |t#1|) (-383 |t#1|) (-310 |t#1|) (-10 -8 (-15 -3333 ($ $)) (-15 -1944 (|t#1| $)) (-15 -2655 (|t#1| $)) (-15 -1589 (|t#1| $)) (-15 -2381 (|t#1| $)) (-15 -1719 (|t#1| $)) (-15 -2448 (|t#1| $)) (-15 -3501 (|t#1| $)) (-15 -2279 (|t#1| $)) (-15 -3681 (|t#1| $)) (-15 -3727 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-340)) (-6 (-340)) |%noBranch|) (IF (|has| |t#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |t#1| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-977)) (-15 -1478 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-504)) (PROGN (-15 -2102 ((-108) $)) (-15 -2506 ((-379 (-519)) $)) (-15 -1631 ((-3 (-379 (-519)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-335)) (-15 -3151 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-260 |#1| $) |has| |#1| (-260 |#1| |#1|)) ((-282 |#1|) |has| |#1| (-282 |#1|)) ((-340) |has| |#1| (-340)) ((-310 |#1|) . T) ((-383 |#1|) . T) ((-480 (-1082) |#1|) |has| |#1| (-480 (-1082) |#1|)) ((-480 |#1| |#1|) |has| |#1| (-282 |#1|)) ((-587 |#1|) . T) ((-587 $) . T) ((-652 |#1|) . T) ((-661) . T) ((-782) |has| |#1| (-782)) ((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 |#1|) . T) ((-974 |#1|) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1405 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 (|#3| (-1 |#4| |#2|) |#1|))) (-732 |#2|) (-157) (-732 |#4|) (-157)) (T -733)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-732 *6)) (-5 *1 (-733 *4 *5 *2 *6)) (-4 *4 (-732 *5))))) +(-10 -7 (-15 -1405 (|#3| (-1 |#4| |#2|) |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1642 (((-705)) NIL (|has| |#1| (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL) (((-3 (-922 |#1|) "failed") $) 35) (((-3 (-519) "failed") $) NIL (-3730 (|has| (-922 |#1|) (-959 (-519))) (|has| |#1| (-959 (-519))))) (((-3 (-379 (-519)) "failed") $) NIL (-3730 (|has| (-922 |#1|) (-959 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519))))))) (-1499 ((|#1| $) NIL) (((-922 |#1|) $) 33) (((-519) $) NIL (-3730 (|has| (-922 |#1|) (-959 (-519))) (|has| |#1| (-959 (-519))))) (((-379 (-519)) $) NIL (-3730 (|has| (-922 |#1|) (-959 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519))))))) (-4193 (((-3 $ "failed") $) NIL)) (-1944 ((|#1| $) 16)) (-1631 (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-504)))) (-2102 (((-108) $) NIL (|has| |#1| (-504)))) (-2506 (((-379 (-519)) $) NIL (|has| |#1| (-504)))) (-3314 (($) NIL (|has| |#1| (-340)))) (-1568 (((-108) $) NIL)) (-3727 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-922 |#1|) (-922 |#1|)) 29)) (-3681 ((|#1| $) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-3334 (((-848) $) NIL (|has| |#1| (-340)))) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL (|has| |#1| (-335)))) (-2770 (($ (-848)) NIL (|has| |#1| (-340)))) (-2381 ((|#1| $) 22)) (-1589 ((|#1| $) 20)) (-2655 ((|#1| $) 18)) (-2279 ((|#1| $) 26)) (-3501 ((|#1| $) 25)) (-2448 ((|#1| $) 24)) (-1719 ((|#1| $) 23)) (-4139 (((-1029) $) NIL)) (-2324 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-282 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-282 |#1|))) (($ $ (-267 |#1|)) NIL (|has| |#1| (-282 |#1|))) (($ $ (-585 (-267 |#1|))) NIL (|has| |#1| (-282 |#1|))) (($ $ (-585 (-1082)) (-585 |#1|)) NIL (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-1082) |#1|) NIL (|has| |#1| (-480 (-1082) |#1|)))) (-2598 (($ $ |#1|) NIL (|has| |#1| (-260 |#1| |#1|)))) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-3333 (($ $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL) (($ (-922 |#1|)) 30) (($ (-379 (-519))) NIL (-3730 (|has| (-922 |#1|) (-959 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519))))))) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-1478 ((|#1| $) NIL (|has| |#1| (-977)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 8 T CONST)) (-3611 (($) 12 T CONST)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-734 |#1|) (-13 (-732 |#1|) (-383 (-922 |#1|)) (-10 -8 (-15 -3727 ($ (-922 |#1|) (-922 |#1|))))) (-157)) (T -734)) +((-3727 (*1 *1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-157)) (-5 *1 (-734 *3))))) +(-13 (-732 |#1|) (-383 (-922 |#1|)) (-10 -8 (-15 -3727 ($ (-922 |#1|) (-922 |#1|))))) +((-1430 (((-108) $ $) 7)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1225 (((-957) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 13)) (-1543 (((-108) $ $) 6))) +(((-735) (-1194)) (T -735)) +((-1809 (*1 *2 *3 *4) (-12 (-4 *1 (-735)) (-5 *3 (-980)) (-5 *4 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)))))) (-1225 (*1 *2 *3) (-12 (-4 *1 (-735)) (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-957))))) +(-13 (-1011) (-10 -7 (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1225 ((-957) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-4183 (((-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) |#3| |#2| (-1082)) 19))) +(((-736 |#1| |#2| |#3|) (-10 -7 (-15 -4183 ((-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) |#3| |#2| (-1082)))) (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135)) (-13 (-29 |#1|) (-1103) (-885)) (-595 |#2|)) (T -736)) +((-4183 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1082)) (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-4 *4 (-13 (-29 *6) (-1103) (-885))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2070 (-585 *4)))) (-5 *1 (-736 *6 *4 *3)) (-4 *3 (-595 *4))))) +(-10 -7 (-15 -4183 ((-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) |#3| |#2| (-1082)))) +((-3442 (((-3 |#2| "failed") |#2| (-110) (-267 |#2|) (-585 |#2|)) 26) (((-3 |#2| "failed") (-267 |#2|) (-110) (-267 |#2|) (-585 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) |#2| "failed") |#2| (-110) (-1082)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) |#2| "failed") (-267 |#2|) (-110) (-1082)) 17) (((-3 (-2 (|:| |particular| (-1163 |#2|)) (|:| -2070 (-585 (-1163 |#2|)))) "failed") (-585 |#2|) (-585 (-110)) (-1082)) 22) (((-3 (-2 (|:| |particular| (-1163 |#2|)) (|:| -2070 (-585 (-1163 |#2|)))) "failed") (-585 (-267 |#2|)) (-585 (-110)) (-1082)) 24) (((-3 (-585 (-1163 |#2|)) "failed") (-625 |#2|) (-1082)) 36) (((-3 (-2 (|:| |particular| (-1163 |#2|)) (|:| -2070 (-585 (-1163 |#2|)))) "failed") (-625 |#2|) (-1163 |#2|) (-1082)) 34))) +(((-737 |#1| |#2|) (-10 -7 (-15 -3442 ((-3 (-2 (|:| |particular| (-1163 |#2|)) (|:| -2070 (-585 (-1163 |#2|)))) "failed") (-625 |#2|) (-1163 |#2|) (-1082))) (-15 -3442 ((-3 (-585 (-1163 |#2|)) "failed") (-625 |#2|) (-1082))) (-15 -3442 ((-3 (-2 (|:| |particular| (-1163 |#2|)) (|:| -2070 (-585 (-1163 |#2|)))) "failed") (-585 (-267 |#2|)) (-585 (-110)) (-1082))) (-15 -3442 ((-3 (-2 (|:| |particular| (-1163 |#2|)) (|:| -2070 (-585 (-1163 |#2|)))) "failed") (-585 |#2|) (-585 (-110)) (-1082))) (-15 -3442 ((-3 (-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) |#2| "failed") (-267 |#2|) (-110) (-1082))) (-15 -3442 ((-3 (-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) |#2| "failed") |#2| (-110) (-1082))) (-15 -3442 ((-3 |#2| "failed") (-267 |#2|) (-110) (-267 |#2|) (-585 |#2|))) (-15 -3442 ((-3 |#2| "failed") |#2| (-110) (-267 |#2|) (-585 |#2|)))) (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135)) (-13 (-29 |#1|) (-1103) (-885))) (T -737)) +((-3442 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-267 *2)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1103) (-885))) (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *1 (-737 *6 *2)))) (-3442 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-267 *2)) (-5 *4 (-110)) (-5 *5 (-585 *2)) (-4 *2 (-13 (-29 *6) (-1103) (-885))) (-5 *1 (-737 *6 *2)) (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))))) (-3442 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1082)) (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2070 (-585 *3))) *3 "failed")) (-5 *1 (-737 *6 *3)) (-4 *3 (-13 (-29 *6) (-1103) (-885))))) (-3442 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-267 *7)) (-5 *4 (-110)) (-5 *5 (-1082)) (-4 *7 (-13 (-29 *6) (-1103) (-885))) (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2070 (-585 *7))) *7 "failed")) (-5 *1 (-737 *6 *7)))) (-3442 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-110))) (-5 *5 (-1082)) (-4 *7 (-13 (-29 *6) (-1103) (-885))) (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-2 (|:| |particular| (-1163 *7)) (|:| -2070 (-585 (-1163 *7))))) (-5 *1 (-737 *6 *7)))) (-3442 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-585 (-267 *7))) (-5 *4 (-585 (-110))) (-5 *5 (-1082)) (-4 *7 (-13 (-29 *6) (-1103) (-885))) (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-2 (|:| |particular| (-1163 *7)) (|:| -2070 (-585 (-1163 *7))))) (-5 *1 (-737 *6 *7)))) (-3442 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-625 *6)) (-5 *4 (-1082)) (-4 *6 (-13 (-29 *5) (-1103) (-885))) (-4 *5 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-585 (-1163 *6))) (-5 *1 (-737 *5 *6)))) (-3442 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-625 *7)) (-5 *5 (-1082)) (-4 *7 (-13 (-29 *6) (-1103) (-885))) (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-2 (|:| |particular| (-1163 *7)) (|:| -2070 (-585 (-1163 *7))))) (-5 *1 (-737 *6 *7)) (-5 *4 (-1163 *7))))) +(-10 -7 (-15 -3442 ((-3 (-2 (|:| |particular| (-1163 |#2|)) (|:| -2070 (-585 (-1163 |#2|)))) "failed") (-625 |#2|) (-1163 |#2|) (-1082))) (-15 -3442 ((-3 (-585 (-1163 |#2|)) "failed") (-625 |#2|) (-1082))) (-15 -3442 ((-3 (-2 (|:| |particular| (-1163 |#2|)) (|:| -2070 (-585 (-1163 |#2|)))) "failed") (-585 (-267 |#2|)) (-585 (-110)) (-1082))) (-15 -3442 ((-3 (-2 (|:| |particular| (-1163 |#2|)) (|:| -2070 (-585 (-1163 |#2|)))) "failed") (-585 |#2|) (-585 (-110)) (-1082))) (-15 -3442 ((-3 (-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) |#2| "failed") (-267 |#2|) (-110) (-1082))) (-15 -3442 ((-3 (-2 (|:| |particular| |#2|) (|:| -2070 (-585 |#2|))) |#2| "failed") |#2| (-110) (-1082))) (-15 -3442 ((-3 |#2| "failed") (-267 |#2|) (-110) (-267 |#2|) (-585 |#2|))) (-15 -3442 ((-3 |#2| "failed") |#2| (-110) (-267 |#2|) (-585 |#2|)))) +((-3962 (($) 9)) (-3722 (((-3 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351))) "failed") (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 26)) (-3019 (((-585 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $) 23)) (-1846 (($ (-2 (|:| -2583 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351)))))) 20)) (-1576 (($ (-585 (-2 (|:| -2583 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351))))))) 18)) (-2383 (((-1168)) 12))) +(((-738) (-10 -8 (-15 -3962 ($)) (-15 -2383 ((-1168))) (-15 -3019 ((-585 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $)) (-15 -1576 ($ (-585 (-2 (|:| -2583 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351)))))))) (-15 -1846 ($ (-2 (|:| -2583 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351))))))) (-15 -3722 ((-3 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351))) "failed") (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (T -738)) +((-3722 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351)))) (-5 *1 (-738)))) (-1846 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2583 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351)))))) (-5 *1 (-738)))) (-1576 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -2583 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351))))))) (-5 *1 (-738)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-5 *1 (-738)))) (-2383 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-738)))) (-3962 (*1 *1) (-5 *1 (-738)))) +(-10 -8 (-15 -3962 ($)) (-15 -2383 ((-1168))) (-15 -3019 ((-585 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $)) (-15 -1576 ($ (-585 (-2 (|:| -2583 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351)))))))) (-15 -1846 ($ (-2 (|:| -2583 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3100 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351))))))) (-15 -3722 ((-3 (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) (|:| |expense| (-351)) (|:| |accuracy| (-351)) (|:| |intermediateResults| (-351))) "failed") (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) +((-1721 ((|#2| |#2| (-1082)) 15)) (-2572 ((|#2| |#2| (-1082)) 47)) (-2625 (((-1 |#2| |#2|) (-1082)) 11))) +(((-739 |#1| |#2|) (-10 -7 (-15 -1721 (|#2| |#2| (-1082))) (-15 -2572 (|#2| |#2| (-1082))) (-15 -2625 ((-1 |#2| |#2|) (-1082)))) (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135)) (-13 (-29 |#1|) (-1103) (-885))) (T -739)) +((-2625 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-1 *5 *5)) (-5 *1 (-739 *4 *5)) (-4 *5 (-13 (-29 *4) (-1103) (-885))))) (-2572 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *1 (-739 *4 *2)) (-4 *2 (-13 (-29 *4) (-1103) (-885))))) (-1721 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *1 (-739 *4 *2)) (-4 *2 (-13 (-29 *4) (-1103) (-885)))))) +(-10 -7 (-15 -1721 (|#2| |#2| (-1082))) (-15 -2572 (|#2| |#2| (-1082))) (-15 -2625 ((-1 |#2| |#2|) (-1082)))) +((-3442 (((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-288 (-351)) (-585 (-351)) (-351) (-351)) 114) (((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-288 (-351)) (-585 (-351)) (-351)) 115) (((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-585 (-351)) (-351)) 117) (((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-288 (-351)) (-351)) 118) (((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-351)) 119) (((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351))) 120) (((-957) (-743) (-980)) 105) (((-957) (-743)) 106)) (-1809 (((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-743) (-980)) 71) (((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-743)) 73))) +(((-740) (-10 -7 (-15 -3442 ((-957) (-743))) (-15 -3442 ((-957) (-743) (-980))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-351))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-288 (-351)) (-351))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-585 (-351)) (-351))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-288 (-351)) (-585 (-351)) (-351))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-288 (-351)) (-585 (-351)) (-351) (-351))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-743))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-743) (-980))))) (T -740)) +((-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-743)) (-5 *4 (-980)) (-5 *2 (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))))) (-5 *1 (-740)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))))) (-5 *1 (-740)))) (-3442 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1163 (-288 *4))) (-5 *5 (-585 (-351))) (-5 *6 (-288 (-351))) (-5 *4 (-351)) (-5 *2 (-957)) (-5 *1 (-740)))) (-3442 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1163 (-288 *4))) (-5 *5 (-585 (-351))) (-5 *6 (-288 (-351))) (-5 *4 (-351)) (-5 *2 (-957)) (-5 *1 (-740)))) (-3442 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1163 (-288 (-351)))) (-5 *4 (-351)) (-5 *5 (-585 *4)) (-5 *2 (-957)) (-5 *1 (-740)))) (-3442 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1163 (-288 *4))) (-5 *5 (-585 (-351))) (-5 *6 (-288 (-351))) (-5 *4 (-351)) (-5 *2 (-957)) (-5 *1 (-740)))) (-3442 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1163 (-288 (-351)))) (-5 *4 (-351)) (-5 *5 (-585 *4)) (-5 *2 (-957)) (-5 *1 (-740)))) (-3442 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1163 (-288 (-351)))) (-5 *4 (-351)) (-5 *5 (-585 *4)) (-5 *2 (-957)) (-5 *1 (-740)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-743)) (-5 *4 (-980)) (-5 *2 (-957)) (-5 *1 (-740)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-957)) (-5 *1 (-740))))) +(-10 -7 (-15 -3442 ((-957) (-743))) (-15 -3442 ((-957) (-743) (-980))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-351))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-288 (-351)) (-351))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-585 (-351)) (-351))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-288 (-351)) (-585 (-351)) (-351))) (-15 -3442 ((-957) (-1163 (-288 (-351))) (-351) (-351) (-585 (-351)) (-288 (-351)) (-585 (-351)) (-351) (-351))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-743))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-743) (-980)))) +((-1723 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2070 (-585 |#4|))) (-592 |#4|) |#4|) 32))) +(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1723 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2070 (-585 |#4|))) (-592 |#4|) |#4|))) (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519)))) (-1139 |#1|) (-1139 (-379 |#2|)) (-314 |#1| |#2| |#3|)) (T -741)) +((-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *4)) (-4 *4 (-314 *5 *6 *7)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) (-5 *1 (-741 *5 *6 *7 *4))))) +(-10 -7 (-15 -1723 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2070 (-585 |#4|))) (-592 |#4|) |#4|))) +((-2107 (((-2 (|:| -3257 |#3|) (|:| |rh| (-585 (-379 |#2|)))) |#4| (-585 (-379 |#2|))) 52)) (-4112 (((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#4| |#2|) 60) (((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#4|) 59) (((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#3| |#2|) 20) (((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#3|) 21)) (-3591 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3492 ((|#2| |#3| (-585 (-379 |#2|))) 94) (((-3 |#2| "failed") |#3| (-379 |#2|)) 91))) +(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3492 ((-3 |#2| "failed") |#3| (-379 |#2|))) (-15 -3492 (|#2| |#3| (-585 (-379 |#2|)))) (-15 -4112 ((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#3|)) (-15 -4112 ((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#3| |#2|)) (-15 -3591 (|#2| |#3| |#1|)) (-15 -4112 ((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#4|)) (-15 -4112 ((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#4| |#2|)) (-15 -3591 (|#2| |#4| |#1|)) (-15 -2107 ((-2 (|:| -3257 |#3|) (|:| |rh| (-585 (-379 |#2|)))) |#4| (-585 (-379 |#2|))))) (-13 (-335) (-135) (-959 (-379 (-519)))) (-1139 |#1|) (-595 |#2|) (-595 (-379 |#2|))) (T -742)) +((-2107 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *6 (-1139 *5)) (-5 *2 (-2 (|:| -3257 *7) (|:| |rh| (-585 (-379 *6))))) (-5 *1 (-742 *5 *6 *7 *3)) (-5 *4 (-585 (-379 *6))) (-4 *7 (-595 *6)) (-4 *3 (-595 (-379 *6))))) (-3591 (*1 *2 *3 *4) (-12 (-4 *2 (-1139 *4)) (-5 *1 (-742 *4 *2 *5 *3)) (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *5 (-595 *2)) (-4 *3 (-595 (-379 *2))))) (-4112 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *4 (-1139 *5)) (-5 *2 (-585 (-2 (|:| -1896 *4) (|:| -1620 *4)))) (-5 *1 (-742 *5 *4 *6 *3)) (-4 *6 (-595 *4)) (-4 *3 (-595 (-379 *4))))) (-4112 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *5 (-1139 *4)) (-5 *2 (-585 (-2 (|:| -1896 *5) (|:| -1620 *5)))) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *6 (-595 *5)) (-4 *3 (-595 (-379 *5))))) (-3591 (*1 *2 *3 *4) (-12 (-4 *2 (-1139 *4)) (-5 *1 (-742 *4 *2 *3 *5)) (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *3 (-595 *2)) (-4 *5 (-595 (-379 *2))))) (-4112 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *4 (-1139 *5)) (-5 *2 (-585 (-2 (|:| -1896 *4) (|:| -1620 *4)))) (-5 *1 (-742 *5 *4 *3 *6)) (-4 *3 (-595 *4)) (-4 *6 (-595 (-379 *4))))) (-4112 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *5 (-1139 *4)) (-5 *2 (-585 (-2 (|:| -1896 *5) (|:| -1620 *5)))) (-5 *1 (-742 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-595 (-379 *5))))) (-3492 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-379 *2))) (-4 *2 (-1139 *5)) (-5 *1 (-742 *5 *2 *3 *6)) (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *3 (-595 *2)) (-4 *6 (-595 (-379 *2))))) (-3492 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-379 *2)) (-4 *2 (-1139 *5)) (-5 *1 (-742 *5 *2 *3 *6)) (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *3 (-595 *2)) (-4 *6 (-595 *4))))) +(-10 -7 (-15 -3492 ((-3 |#2| "failed") |#3| (-379 |#2|))) (-15 -3492 (|#2| |#3| (-585 (-379 |#2|)))) (-15 -4112 ((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#3|)) (-15 -4112 ((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#3| |#2|)) (-15 -3591 (|#2| |#3| |#1|)) (-15 -4112 ((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#4|)) (-15 -4112 ((-585 (-2 (|:| -1896 |#2|) (|:| -1620 |#2|))) |#4| |#2|)) (-15 -3591 (|#2| |#4| |#1|)) (-15 -2107 ((-2 (|:| -3257 |#3|) (|:| |rh| (-585 (-379 |#2|)))) |#4| (-585 (-379 |#2|))))) +((-1430 (((-108) $ $) NIL)) (-1499 (((-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) $) 9)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 11) (($ (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 8)) (-1543 (((-108) $ $) NIL))) +(((-743) (-13 (-1011) (-10 -8 (-15 -2217 ($ (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2217 ((-790) $)) (-15 -1499 ((-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) $))))) (T -743)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-743)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *1 (-743)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *1 (-743))))) +(-13 (-1011) (-10 -8 (-15 -2217 ($ (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2217 ((-790) $)) (-15 -1499 ((-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) $)))) +((-3169 (((-585 (-2 (|:| |frac| (-379 |#2|)) (|:| -3257 |#3|))) |#3| (-1 (-585 |#2|) |#2| (-1078 |#2|)) (-1 (-390 |#2|) |#2|)) 117)) (-1969 (((-585 (-2 (|:| |poly| |#2|) (|:| -3257 |#3|))) |#3| (-1 (-585 |#1|) |#2|)) 45)) (-3494 (((-585 (-2 (|:| |deg| (-705)) (|:| -3257 |#2|))) |#3|) 94)) (-1820 ((|#2| |#3|) 37)) (-2735 (((-585 (-2 (|:| -2730 |#1|) (|:| -3257 |#3|))) |#3| (-1 (-585 |#1|) |#2|)) 81)) (-3949 ((|#3| |#3| (-379 |#2|)) 62) ((|#3| |#3| |#2|) 78))) +(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 (|#2| |#3|)) (-15 -3494 ((-585 (-2 (|:| |deg| (-705)) (|:| -3257 |#2|))) |#3|)) (-15 -2735 ((-585 (-2 (|:| -2730 |#1|) (|:| -3257 |#3|))) |#3| (-1 (-585 |#1|) |#2|))) (-15 -1969 ((-585 (-2 (|:| |poly| |#2|) (|:| -3257 |#3|))) |#3| (-1 (-585 |#1|) |#2|))) (-15 -3169 ((-585 (-2 (|:| |frac| (-379 |#2|)) (|:| -3257 |#3|))) |#3| (-1 (-585 |#2|) |#2| (-1078 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -3949 (|#3| |#3| |#2|)) (-15 -3949 (|#3| |#3| (-379 |#2|)))) (-13 (-335) (-135) (-959 (-379 (-519)))) (-1139 |#1|) (-595 |#2|) (-595 (-379 |#2|))) (T -744)) +((-3949 (*1 *2 *2 *3) (-12 (-5 *3 (-379 *5)) (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *5 (-1139 *4)) (-5 *1 (-744 *4 *5 *2 *6)) (-4 *2 (-595 *5)) (-4 *6 (-595 *3)))) (-3949 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *3 (-1139 *4)) (-5 *1 (-744 *4 *3 *2 *5)) (-4 *2 (-595 *3)) (-4 *5 (-595 (-379 *3))))) (-3169 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-585 *7) *7 (-1078 *7))) (-5 *5 (-1 (-390 *7) *7)) (-4 *7 (-1139 *6)) (-4 *6 (-13 (-335) (-135) (-959 (-379 (-519))))) (-5 *2 (-585 (-2 (|:| |frac| (-379 *7)) (|:| -3257 *3)))) (-5 *1 (-744 *6 *7 *3 *8)) (-4 *3 (-595 *7)) (-4 *8 (-595 (-379 *7))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *6 (-1139 *5)) (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3257 *3)))) (-5 *1 (-744 *5 *6 *3 *7)) (-4 *3 (-595 *6)) (-4 *7 (-595 (-379 *6))))) (-2735 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *6 (-1139 *5)) (-5 *2 (-585 (-2 (|:| -2730 *5) (|:| -3257 *3)))) (-5 *1 (-744 *5 *6 *3 *7)) (-4 *3 (-595 *6)) (-4 *7 (-595 (-379 *6))))) (-3494 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *5 (-1139 *4)) (-5 *2 (-585 (-2 (|:| |deg| (-705)) (|:| -3257 *5)))) (-5 *1 (-744 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-595 (-379 *5))))) (-1820 (*1 *2 *3) (-12 (-4 *2 (-1139 *4)) (-5 *1 (-744 *4 *2 *3 *5)) (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *3 (-595 *2)) (-4 *5 (-595 (-379 *2)))))) +(-10 -7 (-15 -1820 (|#2| |#3|)) (-15 -3494 ((-585 (-2 (|:| |deg| (-705)) (|:| -3257 |#2|))) |#3|)) (-15 -2735 ((-585 (-2 (|:| -2730 |#1|) (|:| -3257 |#3|))) |#3| (-1 (-585 |#1|) |#2|))) (-15 -1969 ((-585 (-2 (|:| |poly| |#2|) (|:| -3257 |#3|))) |#3| (-1 (-585 |#1|) |#2|))) (-15 -3169 ((-585 (-2 (|:| |frac| (-379 |#2|)) (|:| -3257 |#3|))) |#3| (-1 (-585 |#2|) |#2| (-1078 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -3949 (|#3| |#3| |#2|)) (-15 -3949 (|#3| |#3| (-379 |#2|)))) +((-3988 (((-2 (|:| -2070 (-585 (-379 |#2|))) (|:| -2488 (-625 |#1|))) (-593 |#2| (-379 |#2|)) (-585 (-379 |#2|))) 118) (((-2 (|:| |particular| (-3 (-379 |#2|) "failed")) (|:| -2070 (-585 (-379 |#2|)))) (-593 |#2| (-379 |#2|)) (-379 |#2|)) 117) (((-2 (|:| -2070 (-585 (-379 |#2|))) (|:| -2488 (-625 |#1|))) (-592 (-379 |#2|)) (-585 (-379 |#2|))) 112) (((-2 (|:| |particular| (-3 (-379 |#2|) "failed")) (|:| -2070 (-585 (-379 |#2|)))) (-592 (-379 |#2|)) (-379 |#2|)) 110)) (-1195 ((|#2| (-593 |#2| (-379 |#2|))) 77) ((|#2| (-592 (-379 |#2|))) 81))) +(((-745 |#1| |#2|) (-10 -7 (-15 -3988 ((-2 (|:| |particular| (-3 (-379 |#2|) "failed")) (|:| -2070 (-585 (-379 |#2|)))) (-592 (-379 |#2|)) (-379 |#2|))) (-15 -3988 ((-2 (|:| -2070 (-585 (-379 |#2|))) (|:| -2488 (-625 |#1|))) (-592 (-379 |#2|)) (-585 (-379 |#2|)))) (-15 -3988 ((-2 (|:| |particular| (-3 (-379 |#2|) "failed")) (|:| -2070 (-585 (-379 |#2|)))) (-593 |#2| (-379 |#2|)) (-379 |#2|))) (-15 -3988 ((-2 (|:| -2070 (-585 (-379 |#2|))) (|:| -2488 (-625 |#1|))) (-593 |#2| (-379 |#2|)) (-585 (-379 |#2|)))) (-15 -1195 (|#2| (-592 (-379 |#2|)))) (-15 -1195 (|#2| (-593 |#2| (-379 |#2|))))) (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519)))) (-1139 |#1|)) (T -745)) +((-1195 (*1 *2 *3) (-12 (-5 *3 (-593 *2 (-379 *2))) (-4 *2 (-1139 *4)) (-5 *1 (-745 *4 *2)) (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))))) (-1195 (*1 *2 *3) (-12 (-5 *3 (-592 (-379 *2))) (-4 *2 (-1139 *4)) (-5 *1 (-745 *4 *2)) (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-379 *6))) (-4 *6 (-1139 *5)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 (-2 (|:| -2070 (-585 (-379 *6))) (|:| -2488 (-625 *5)))) (-5 *1 (-745 *5 *6)) (-5 *4 (-585 (-379 *6))))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-379 *6))) (-5 *4 (-379 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) (-5 *1 (-745 *5 *6)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-379 *6))) (-4 *6 (-1139 *5)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 (-2 (|:| -2070 (-585 (-379 *6))) (|:| -2488 (-625 *5)))) (-5 *1 (-745 *5 *6)) (-5 *4 (-585 (-379 *6))))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-379 *6))) (-5 *4 (-379 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) (-5 *1 (-745 *5 *6))))) +(-10 -7 (-15 -3988 ((-2 (|:| |particular| (-3 (-379 |#2|) "failed")) (|:| -2070 (-585 (-379 |#2|)))) (-592 (-379 |#2|)) (-379 |#2|))) (-15 -3988 ((-2 (|:| -2070 (-585 (-379 |#2|))) (|:| -2488 (-625 |#1|))) (-592 (-379 |#2|)) (-585 (-379 |#2|)))) (-15 -3988 ((-2 (|:| |particular| (-3 (-379 |#2|) "failed")) (|:| -2070 (-585 (-379 |#2|)))) (-593 |#2| (-379 |#2|)) (-379 |#2|))) (-15 -3988 ((-2 (|:| -2070 (-585 (-379 |#2|))) (|:| -2488 (-625 |#1|))) (-593 |#2| (-379 |#2|)) (-585 (-379 |#2|)))) (-15 -1195 (|#2| (-592 (-379 |#2|)))) (-15 -1195 (|#2| (-593 |#2| (-379 |#2|))))) +((-2291 (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#1|))) |#5| |#4|) 47))) +(((-746 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2291 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#1|))) |#5| |#4|))) (-335) (-595 |#1|) (-1139 |#1|) (-659 |#1| |#3|) (-595 |#4|)) (T -746)) +((-2291 (*1 *2 *3 *4) (-12 (-4 *5 (-335)) (-4 *7 (-1139 *5)) (-4 *4 (-659 *5 *7)) (-5 *2 (-2 (|:| -2488 (-625 *6)) (|:| |vec| (-1163 *5)))) (-5 *1 (-746 *5 *6 *7 *4 *3)) (-4 *6 (-595 *5)) (-4 *3 (-595 *4))))) +(-10 -7 (-15 -2291 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#1|))) |#5| |#4|))) +((-3169 (((-585 (-2 (|:| |frac| (-379 |#2|)) (|:| -3257 (-593 |#2| (-379 |#2|))))) (-593 |#2| (-379 |#2|)) (-1 (-390 |#2|) |#2|)) 43)) (-1994 (((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|)) (-1 (-390 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|))) 135 (|has| |#1| (-27))) (((-585 (-379 |#2|)) (-592 (-379 |#2|)) (-1 (-390 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-585 (-379 |#2|)) (-592 (-379 |#2|))) 137 (|has| |#1| (-27))) (((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-390 |#2|) |#2|)) 36) (((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|)) (-1 (-585 |#1|) |#2|)) 37) (((-585 (-379 |#2|)) (-592 (-379 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-390 |#2|) |#2|)) 34) (((-585 (-379 |#2|)) (-592 (-379 |#2|)) (-1 (-585 |#1|) |#2|)) 35)) (-1969 (((-585 (-2 (|:| |poly| |#2|) (|:| -3257 (-593 |#2| (-379 |#2|))))) (-593 |#2| (-379 |#2|)) (-1 (-585 |#1|) |#2|)) 81))) +(((-747 |#1| |#2|) (-10 -7 (-15 -1994 ((-585 (-379 |#2|)) (-592 (-379 |#2|)) (-1 (-585 |#1|) |#2|))) (-15 -1994 ((-585 (-379 |#2|)) (-592 (-379 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -1994 ((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|)) (-1 (-585 |#1|) |#2|))) (-15 -1994 ((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -3169 ((-585 (-2 (|:| |frac| (-379 |#2|)) (|:| -3257 (-593 |#2| (-379 |#2|))))) (-593 |#2| (-379 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -1969 ((-585 (-2 (|:| |poly| |#2|) (|:| -3257 (-593 |#2| (-379 |#2|))))) (-593 |#2| (-379 |#2|)) (-1 (-585 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1994 ((-585 (-379 |#2|)) (-592 (-379 |#2|)))) (-15 -1994 ((-585 (-379 |#2|)) (-592 (-379 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -1994 ((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|)))) (-15 -1994 ((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|)) (-1 (-390 |#2|) |#2|)))) |%noBranch|)) (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519)))) (-1139 |#1|)) (T -747)) +((-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-379 *6))) (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1139 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 (-585 (-379 *6))) (-5 *1 (-747 *5 *6)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-593 *5 (-379 *5))) (-4 *5 (-1139 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 (-585 (-379 *5))) (-5 *1 (-747 *4 *5)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-379 *6))) (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1139 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 (-585 (-379 *6))) (-5 *1 (-747 *5 *6)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-592 (-379 *5))) (-4 *5 (-1139 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 (-585 (-379 *5))) (-5 *1 (-747 *4 *5)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-4 *6 (-1139 *5)) (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3257 (-593 *6 (-379 *6)))))) (-5 *1 (-747 *5 *6)) (-5 *3 (-593 *6 (-379 *6))))) (-3169 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1139 *5)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 (-585 (-2 (|:| |frac| (-379 *6)) (|:| -3257 (-593 *6 (-379 *6)))))) (-5 *1 (-747 *5 *6)) (-5 *3 (-593 *6 (-379 *6))))) (-1994 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-593 *7 (-379 *7))) (-5 *4 (-1 (-585 *6) *7)) (-5 *5 (-1 (-390 *7) *7)) (-4 *6 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-4 *7 (-1139 *6)) (-5 *2 (-585 (-379 *7))) (-5 *1 (-747 *6 *7)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-379 *6))) (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-4 *6 (-1139 *5)) (-5 *2 (-585 (-379 *6))) (-5 *1 (-747 *5 *6)))) (-1994 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-379 *7))) (-5 *4 (-1 (-585 *6) *7)) (-5 *5 (-1 (-390 *7) *7)) (-4 *6 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-4 *7 (-1139 *6)) (-5 *2 (-585 (-379 *7))) (-5 *1 (-747 *6 *7)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-379 *6))) (-5 *4 (-1 (-585 *5) *6)) (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-4 *6 (-1139 *5)) (-5 *2 (-585 (-379 *6))) (-5 *1 (-747 *5 *6))))) +(-10 -7 (-15 -1994 ((-585 (-379 |#2|)) (-592 (-379 |#2|)) (-1 (-585 |#1|) |#2|))) (-15 -1994 ((-585 (-379 |#2|)) (-592 (-379 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -1994 ((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|)) (-1 (-585 |#1|) |#2|))) (-15 -1994 ((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|)) (-1 (-585 |#1|) |#2|) (-1 (-390 |#2|) |#2|))) (-15 -3169 ((-585 (-2 (|:| |frac| (-379 |#2|)) (|:| -3257 (-593 |#2| (-379 |#2|))))) (-593 |#2| (-379 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -1969 ((-585 (-2 (|:| |poly| |#2|) (|:| -3257 (-593 |#2| (-379 |#2|))))) (-593 |#2| (-379 |#2|)) (-1 (-585 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1994 ((-585 (-379 |#2|)) (-592 (-379 |#2|)))) (-15 -1994 ((-585 (-379 |#2|)) (-592 (-379 |#2|)) (-1 (-390 |#2|) |#2|))) (-15 -1994 ((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|)))) (-15 -1994 ((-585 (-379 |#2|)) (-593 |#2| (-379 |#2|)) (-1 (-390 |#2|) |#2|)))) |%noBranch|)) +((-3375 (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#1|))) (-625 |#2|) (-1163 |#1|)) 85) (((-2 (|:| A (-625 |#1|)) (|:| |eqs| (-585 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1163 |#1|)) (|:| -3257 |#2|) (|:| |rh| |#1|))))) (-625 |#1|) (-1163 |#1|)) 14)) (-1952 (((-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|)))) (-625 |#2|) (-1163 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2070 (-585 |#1|))) |#2| |#1|)) 91)) (-3442 (((-3 (-2 (|:| |particular| (-1163 |#1|)) (|:| -2070 (-625 |#1|))) "failed") (-625 |#1|) (-1163 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2070 (-585 |#1|))) "failed") |#2| |#1|)) 44))) +(((-748 |#1| |#2|) (-10 -7 (-15 -3375 ((-2 (|:| A (-625 |#1|)) (|:| |eqs| (-585 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1163 |#1|)) (|:| -3257 |#2|) (|:| |rh| |#1|))))) (-625 |#1|) (-1163 |#1|))) (-15 -3375 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#1|))) (-625 |#2|) (-1163 |#1|))) (-15 -3442 ((-3 (-2 (|:| |particular| (-1163 |#1|)) (|:| -2070 (-625 |#1|))) "failed") (-625 |#1|) (-1163 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2070 (-585 |#1|))) "failed") |#2| |#1|))) (-15 -1952 ((-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|)))) (-625 |#2|) (-1163 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2070 (-585 |#1|))) |#2| |#1|)))) (-335) (-595 |#1|)) (T -748)) +((-1952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2070 (-585 *6))) *7 *6)) (-4 *6 (-335)) (-4 *7 (-595 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1163 *6) "failed")) (|:| -2070 (-585 (-1163 *6))))) (-5 *1 (-748 *6 *7)) (-5 *4 (-1163 *6)))) (-3442 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2070 (-585 *6))) "failed") *7 *6)) (-4 *6 (-335)) (-4 *7 (-595 *6)) (-5 *2 (-2 (|:| |particular| (-1163 *6)) (|:| -2070 (-625 *6)))) (-5 *1 (-748 *6 *7)) (-5 *3 (-625 *6)) (-5 *4 (-1163 *6)))) (-3375 (*1 *2 *3 *4) (-12 (-4 *5 (-335)) (-4 *6 (-595 *5)) (-5 *2 (-2 (|:| -2488 (-625 *6)) (|:| |vec| (-1163 *5)))) (-5 *1 (-748 *5 *6)) (-5 *3 (-625 *6)) (-5 *4 (-1163 *5)))) (-3375 (*1 *2 *3 *4) (-12 (-4 *5 (-335)) (-5 *2 (-2 (|:| A (-625 *5)) (|:| |eqs| (-585 (-2 (|:| C (-625 *5)) (|:| |g| (-1163 *5)) (|:| -3257 *6) (|:| |rh| *5)))))) (-5 *1 (-748 *5 *6)) (-5 *3 (-625 *5)) (-5 *4 (-1163 *5)) (-4 *6 (-595 *5))))) +(-10 -7 (-15 -3375 ((-2 (|:| A (-625 |#1|)) (|:| |eqs| (-585 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1163 |#1|)) (|:| -3257 |#2|) (|:| |rh| |#1|))))) (-625 |#1|) (-1163 |#1|))) (-15 -3375 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#1|))) (-625 |#2|) (-1163 |#1|))) (-15 -3442 ((-3 (-2 (|:| |particular| (-1163 |#1|)) (|:| -2070 (-625 |#1|))) "failed") (-625 |#1|) (-1163 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2070 (-585 |#1|))) "failed") |#2| |#1|))) (-15 -1952 ((-2 (|:| |particular| (-3 (-1163 |#1|) "failed")) (|:| -2070 (-585 (-1163 |#1|)))) (-625 |#2|) (-1163 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2070 (-585 |#1|))) |#2| |#1|)))) +((-2544 (((-625 |#1|) (-585 |#1|) (-705)) 13) (((-625 |#1|) (-585 |#1|)) 14)) (-2479 (((-3 (-1163 |#1|) "failed") |#2| |#1| (-585 |#1|)) 34)) (-1591 (((-3 |#1| "failed") |#2| |#1| (-585 |#1|) (-1 |#1| |#1|)) 42))) +(((-749 |#1| |#2|) (-10 -7 (-15 -2544 ((-625 |#1|) (-585 |#1|))) (-15 -2544 ((-625 |#1|) (-585 |#1|) (-705))) (-15 -2479 ((-3 (-1163 |#1|) "failed") |#2| |#1| (-585 |#1|))) (-15 -1591 ((-3 |#1| "failed") |#2| |#1| (-585 |#1|) (-1 |#1| |#1|)))) (-335) (-595 |#1|)) (T -749)) +((-1591 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-585 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-335)) (-5 *1 (-749 *2 *3)) (-4 *3 (-595 *2)))) (-2479 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-585 *4)) (-4 *4 (-335)) (-5 *2 (-1163 *4)) (-5 *1 (-749 *4 *3)) (-4 *3 (-595 *4)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-705)) (-4 *5 (-335)) (-5 *2 (-625 *5)) (-5 *1 (-749 *5 *6)) (-4 *6 (-595 *5)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-335)) (-5 *2 (-625 *4)) (-5 *1 (-749 *4 *5)) (-4 *5 (-595 *4))))) +(-10 -7 (-15 -2544 ((-625 |#1|) (-585 |#1|))) (-15 -2544 ((-625 |#1|) (-585 |#1|) (-705))) (-15 -2479 ((-3 (-1163 |#1|) "failed") |#2| |#1| (-585 |#1|))) (-15 -1591 ((-3 |#1| "failed") |#2| |#1| (-585 |#1|) (-1 |#1| |#1|)))) +((-1430 (((-108) $ $) NIL (|has| |#2| (-1011)))) (-3569 (((-108) $) NIL (|has| |#2| (-124)))) (-2096 (($ (-848)) NIL (|has| |#2| (-968)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2494 (($ $ $) NIL (|has| |#2| (-727)))) (-3167 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-1473 (((-108) $ (-705)) NIL)) (-1642 (((-705)) NIL (|has| |#2| (-340)))) (-2287 (((-519) $) NIL (|has| |#2| (-780)))) (-2421 ((|#2| $ (-519) |#2|) NIL (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (-12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011)))) (((-3 (-379 (-519)) "failed") $) NIL (-12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1011)))) (-1499 (((-519) $) NIL (-12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011)))) (((-379 (-519)) $) NIL (-12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) ((|#2| $) NIL (|has| |#2| (-1011)))) (-1562 (((-625 (-519)) (-625 $)) NIL (-12 (|has| |#2| (-581 (-519))) (|has| |#2| (-968)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (-12 (|has| |#2| (-581 (-519))) (|has| |#2| (-968)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL (|has| |#2| (-968))) (((-625 |#2|) (-625 $)) NIL (|has| |#2| (-968)))) (-4193 (((-3 $ "failed") $) NIL (|has| |#2| (-968)))) (-3314 (($) NIL (|has| |#2| (-340)))) (-3865 ((|#2| $ (-519) |#2|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#2| $ (-519)) NIL)) (-3419 (((-108) $) NIL (|has| |#2| (-780)))) (-3844 (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1568 (((-108) $) NIL (|has| |#2| (-968)))) (-2143 (((-108) $) NIL (|has| |#2| (-780)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-3725 (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-3850 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#2| |#2|) $) NIL)) (-3334 (((-848) $) NIL (|has| |#2| (-340)))) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#2| (-1011)))) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-2770 (($ (-848)) NIL (|has| |#2| (-340)))) (-4139 (((-1029) $) NIL (|has| |#2| (-1011)))) (-2331 ((|#2| $) NIL (|has| (-519) (-782)))) (-3640 (($ $ |#2|) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#2| $ (-519) |#2|) NIL) ((|#2| $ (-519)) NIL)) (-1466 ((|#2| $ $) NIL (|has| |#2| (-968)))) (-1963 (($ (-1163 |#2|)) NIL)) (-2914 (((-126)) NIL (|has| |#2| (-335)))) (-2181 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1 |#2| |#2|) (-705)) NIL (|has| |#2| (-968))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-968)))) (-4155 (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-1163 |#2|) $) NIL) (($ (-519)) NIL (-3730 (-12 (|has| |#2| (-959 (-519))) (|has| |#2| (-1011))) (|has| |#2| (-968)))) (($ (-379 (-519))) NIL (-12 (|has| |#2| (-959 (-379 (-519)))) (|has| |#2| (-1011)))) (($ |#2|) NIL (|has| |#2| (-1011))) (((-790) $) NIL (|has| |#2| (-559 (-790))))) (-3594 (((-705)) NIL (|has| |#2| (-968)))) (-1778 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-1478 (($ $) NIL (|has| |#2| (-780)))) (-3559 (($ $ (-705)) NIL (|has| |#2| (-968))) (($ $ (-848)) NIL (|has| |#2| (-968)))) (-3602 (($) NIL (|has| |#2| (-124)) CONST)) (-3611 (($) NIL (|has| |#2| (-968)) CONST)) (-2242 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#2| (-827 (-1082))) (|has| |#2| (-968)))) (($ $ (-1 |#2| |#2|) (-705)) NIL (|has| |#2| (-968))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-968)))) (-1586 (((-108) $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1569 (((-108) $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1543 (((-108) $ $) NIL (|has| |#2| (-1011)))) (-1578 (((-108) $ $) NIL (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1561 (((-108) $ $) 11 (-3730 (|has| |#2| (-727)) (|has| |#2| (-780))))) (-1632 (($ $ |#2|) NIL (|has| |#2| (-335)))) (-1623 (($ $ $) NIL (|has| |#2| (-968))) (($ $) NIL (|has| |#2| (-968)))) (-1614 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-705)) NIL (|has| |#2| (-968))) (($ $ (-848)) NIL (|has| |#2| (-968)))) (* (($ $ $) NIL (|has| |#2| (-968))) (($ (-519) $) NIL (|has| |#2| (-968))) (($ $ |#2|) NIL (|has| |#2| (-661))) (($ |#2| $) NIL (|has| |#2| (-661))) (($ (-705) $) NIL (|has| |#2| (-124))) (($ (-848) $) NIL (|has| |#2| (-25)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-750 |#1| |#2| |#3|) (-214 |#1| |#2|) (-705) (-727) (-1 (-108) (-1163 |#2|) (-1163 |#2|))) (T -750)) +NIL +(-214 |#1| |#2|) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2801 (((-585 (-705)) $) NIL) (((-585 (-705)) $ (-1082)) NIL)) (-3711 (((-705) $) NIL) (((-705) $ (-1082)) NIL)) (-4083 (((-585 (-753 (-1082))) $) NIL)) (-1283 (((-1078 $) $ (-753 (-1082))) NIL) (((-1078 |#1|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 (-753 (-1082)))) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-4043 (($ $) NIL (|has| |#1| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-2504 (($ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-753 (-1082)) "failed") $) NIL) (((-3 (-1082) "failed") $) NIL) (((-3 (-1034 |#1| (-1082)) "failed") $) NIL)) (-1499 ((|#1| $) NIL) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-753 (-1082)) $) NIL) (((-1082) $) NIL) (((-1034 |#1| (-1082)) $) NIL)) (-1286 (($ $ $ (-753 (-1082))) NIL (|has| |#1| (-157)))) (-3218 (($ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-423))) (($ $ (-753 (-1082))) NIL (|has| |#1| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#1| (-836)))) (-4015 (($ $ |#1| (-491 (-753 (-1082))) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-753 (-1082)) (-813 (-351))) (|has| |#1| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-753 (-1082)) (-813 (-519))) (|has| |#1| (-813 (-519)))))) (-3709 (((-705) $ (-1082)) NIL) (((-705) $) NIL)) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-4066 (($ (-1078 |#1|) (-753 (-1082))) NIL) (($ (-1078 $) (-753 (-1082))) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-491 (-753 (-1082)))) NIL) (($ $ (-753 (-1082)) (-705)) NIL) (($ $ (-585 (-753 (-1082))) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-753 (-1082))) NIL)) (-3695 (((-491 (-753 (-1082))) $) NIL) (((-705) $ (-753 (-1082))) NIL) (((-585 (-705)) $ (-585 (-753 (-1082)))) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3737 (($ (-1 (-491 (-753 (-1082))) (-491 (-753 (-1082)))) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2243 (((-1 $ (-705)) (-1082)) NIL) (((-1 $ (-705)) $) NIL (|has| |#1| (-209)))) (-2635 (((-3 (-753 (-1082)) "failed") $) NIL)) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-1582 (((-753 (-1082)) $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1266 (((-1065) $) NIL)) (-2799 (((-108) $) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| (-753 (-1082))) (|:| -1690 (-705))) "failed") $) NIL)) (-1904 (($ $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) NIL)) (-3173 ((|#1| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-836)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-753 (-1082)) |#1|) NIL) (($ $ (-585 (-753 (-1082))) (-585 |#1|)) NIL) (($ $ (-753 (-1082)) $) NIL) (($ $ (-585 (-753 (-1082))) (-585 $)) NIL) (($ $ (-1082) $) NIL (|has| |#1| (-209))) (($ $ (-585 (-1082)) (-585 $)) NIL (|has| |#1| (-209))) (($ $ (-1082) |#1|) NIL (|has| |#1| (-209))) (($ $ (-585 (-1082)) (-585 |#1|)) NIL (|has| |#1| (-209)))) (-3677 (($ $ (-753 (-1082))) NIL (|has| |#1| (-157)))) (-2181 (($ $ (-753 (-1082))) NIL) (($ $ (-585 (-753 (-1082)))) NIL) (($ $ (-753 (-1082)) (-705)) NIL) (($ $ (-585 (-753 (-1082))) (-585 (-705))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1938 (((-585 (-1082)) $) NIL)) (-4178 (((-491 (-753 (-1082))) $) NIL) (((-705) $ (-753 (-1082))) NIL) (((-585 (-705)) $ (-585 (-753 (-1082)))) NIL) (((-705) $ (-1082)) NIL)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| (-753 (-1082)) (-560 (-819 (-351)))) (|has| |#1| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| (-753 (-1082)) (-560 (-819 (-519)))) (|has| |#1| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| (-753 (-1082)) (-560 (-495))) (|has| |#1| (-560 (-495)))))) (-3939 ((|#1| $) NIL (|has| |#1| (-423))) (($ $ (-753 (-1082))) NIL (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL) (($ (-753 (-1082))) NIL) (($ (-1082)) NIL) (($ (-1034 |#1| (-1082))) NIL) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#1| (-511)))) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-491 (-753 (-1082)))) NIL) (($ $ (-753 (-1082)) (-705)) NIL) (($ $ (-585 (-753 (-1082))) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#1| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-753 (-1082))) NIL) (($ $ (-585 (-753 (-1082)))) NIL) (($ $ (-753 (-1082)) (-705)) NIL) (($ $ (-585 (-753 (-1082))) (-585 (-705))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-751 |#1|) (-13 (-228 |#1| (-1082) (-753 (-1082)) (-491 (-753 (-1082)))) (-959 (-1034 |#1| (-1082)))) (-968)) (T -751)) +NIL +(-13 (-228 |#1| (-1082) (-753 (-1082)) (-491 (-753 (-1082)))) (-959 (-1034 |#1| (-1082)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#2| (-335)))) (-1410 (($ $) NIL (|has| |#2| (-335)))) (-3060 (((-108) $) NIL (|has| |#2| (-335)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL (|has| |#2| (-335)))) (-3093 (((-390 $) $) NIL (|has| |#2| (-335)))) (-3409 (((-108) $ $) NIL (|has| |#2| (-335)))) (-2249 (($) NIL T CONST)) (-2311 (($ $ $) NIL (|has| |#2| (-335)))) (-4193 (((-3 $ "failed") $) NIL)) (-2286 (($ $ $) NIL (|has| |#2| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#2| (-335)))) (-1320 (((-108) $) NIL (|has| |#2| (-335)))) (-1568 (((-108) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#2| (-335)))) (-2254 (($ (-585 $)) NIL (|has| |#2| (-335))) (($ $ $) NIL (|has| |#2| (-335)))) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 20 (|has| |#2| (-335)))) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#2| (-335)))) (-2292 (($ (-585 $)) NIL (|has| |#2| (-335))) (($ $ $) NIL (|has| |#2| (-335)))) (-1921 (((-390 $) $) NIL (|has| |#2| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#2| (-335)))) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#2| (-335)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#2| (-335)))) (-3129 (((-705) $) NIL (|has| |#2| (-335)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#2| (-335)))) (-2181 (($ $ (-705)) NIL) (($ $) 13)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-379 (-519))) NIL (|has| |#2| (-335))) (($ $) NIL (|has| |#2| (-335)))) (-3594 (((-705)) NIL)) (-1617 (((-108) $ $) NIL (|has| |#2| (-335)))) (-3559 (($ $ (-705)) NIL) (($ $ (-848)) NIL) (($ $ (-519)) NIL (|has| |#2| (-335)))) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-705)) NIL) (($ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) 15 (|has| |#2| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-705)) NIL) (($ $ (-848)) NIL) (($ $ (-519)) 18 (|has| |#2| (-335)))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-379 (-519)) $) NIL (|has| |#2| (-335))) (($ $ (-379 (-519))) NIL (|has| |#2| (-335))))) +(((-752 |#1| |#2| |#3|) (-13 (-107 $ $) (-209) (-10 -8 (IF (|has| |#2| (-335)) (-6 (-335)) |%noBranch|) (-15 -2217 ($ |#2|)) (-15 -2217 (|#2| $)))) (-1011) (-827 |#1|) |#1|) (T -752)) +((-2217 (*1 *1 *2) (-12 (-4 *3 (-1011)) (-14 *4 *3) (-5 *1 (-752 *3 *2 *4)) (-4 *2 (-827 *3)))) (-2217 (*1 *2 *1) (-12 (-4 *2 (-827 *3)) (-5 *1 (-752 *3 *2 *4)) (-4 *3 (-1011)) (-14 *4 *3)))) +(-13 (-107 $ $) (-209) (-10 -8 (IF (|has| |#2| (-335)) (-6 (-335)) |%noBranch|) (-15 -2217 ($ |#2|)) (-15 -2217 (|#2| $)))) +((-1430 (((-108) $ $) NIL)) (-3711 (((-705) $) NIL)) (-1622 ((|#1| $) 10)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-3709 (((-705) $) 11)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-2243 (($ |#1| (-705)) 9)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2181 (($ $) NIL) (($ $ (-705)) NIL)) (-2217 (((-790) $) NIL) (($ |#1|) NIL)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL))) +(((-753 |#1|) (-241 |#1|) (-782)) (T -753)) +NIL +(-241 |#1|) +((-1430 (((-108) $ $) NIL)) (-4096 (((-585 |#1|) $) 29)) (-1642 (((-705) $) NIL)) (-2249 (($) NIL T CONST)) (-1927 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-2343 (($ $) 31)) (-4193 (((-3 $ "failed") $) NIL)) (-3225 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1568 (((-108) $) NIL)) (-4059 ((|#1| $ (-519)) NIL)) (-2765 (((-705) $ (-519)) NIL)) (-2260 (($ $) 36)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-3550 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-1493 (((-108) $ $) 34)) (-2568 (((-705) $) 25)) (-1266 (((-1065) $) NIL)) (-2766 (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 ((|#1| $) 30)) (-3433 (((-585 (-2 (|:| |gen| |#1|) (|:| -3325 (-705)))) $) NIL)) (-2275 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2217 (((-790) $) NIL) (($ |#1|) NIL)) (-3559 (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (-3611 (($) 14 T CONST)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 35)) (** (($ $ (-705)) NIL) (($ $ (-848)) NIL) (($ |#1| (-705)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-754 |#1|) (-13 (-778) (-959 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-705))) (-15 -2331 (|#1| $)) (-15 -2343 ($ $)) (-15 -2260 ($ $)) (-15 -1493 ((-108) $ $)) (-15 -1628 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -3550 ((-3 $ "failed") $ $)) (-15 -1927 ((-3 $ "failed") $ $)) (-15 -3550 ((-3 $ "failed") $ |#1|)) (-15 -1927 ((-3 $ "failed") $ |#1|)) (-15 -2275 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3225 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1642 ((-705) $)) (-15 -2765 ((-705) $ (-519))) (-15 -4059 (|#1| $ (-519))) (-15 -3433 ((-585 (-2 (|:| |gen| |#1|) (|:| -3325 (-705)))) $)) (-15 -2568 ((-705) $)) (-15 -4096 ((-585 |#1|) $)))) (-782)) (T -754)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-705)) (-5 *1 (-754 *2)) (-4 *2 (-782)))) (-2331 (*1 *2 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) (-2343 (*1 *1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) (-1493 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-754 *3)) (-4 *3 (-782)))) (-1628 (*1 *1 *1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) (-2766 (*1 *1 *1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) (-3550 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) (-1927 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) (-3550 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) (-1927 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) (-2275 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-754 *3)) (|:| |rm| (-754 *3)))) (-5 *1 (-754 *3)) (-4 *3 (-782)))) (-3225 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-754 *3)) (|:| |mm| (-754 *3)) (|:| |rm| (-754 *3)))) (-5 *1 (-754 *3)) (-4 *3 (-782)))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-754 *3)) (-4 *3 (-782)))) (-2765 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-705)) (-5 *1 (-754 *4)) (-4 *4 (-782)))) (-4059 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *1 (-754 *2)) (-4 *2 (-782)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 (-705))))) (-5 *1 (-754 *3)) (-4 *3 (-782)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-754 *3)) (-4 *3 (-782)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-754 *3)) (-4 *3 (-782))))) +(-13 (-778) (-959 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-705))) (-15 -2331 (|#1| $)) (-15 -2343 ($ $)) (-15 -2260 ($ $)) (-15 -1493 ((-108) $ $)) (-15 -1628 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -3550 ((-3 $ "failed") $ $)) (-15 -1927 ((-3 $ "failed") $ $)) (-15 -3550 ((-3 $ "failed") $ |#1|)) (-15 -1927 ((-3 $ "failed") $ |#1|)) (-15 -2275 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3225 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1642 ((-705) $)) (-15 -2765 ((-705) $ (-519))) (-15 -4059 (|#1| $ (-519))) (-15 -3433 ((-585 (-2 (|:| |gen| |#1|) (|:| -3325 (-705)))) $)) (-15 -2568 ((-705) $)) (-15 -4096 ((-585 |#1|) $)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-2287 (((-519) $) 53)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-3419 (((-108) $) 51)) (-1568 (((-108) $) 31)) (-2143 (((-108) $) 52)) (-2864 (($ $ $) 50)) (-2489 (($ $ $) 49)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2261 (((-3 $ "failed") $ $) 42)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-1478 (($ $) 54)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1586 (((-108) $ $) 47)) (-1569 (((-108) $ $) 46)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 48)) (-1561 (((-108) $ $) 45)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-755) (-1194)) (T -755)) +NIL +(-13 (-511) (-780)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-157) . T) ((-264) . T) ((-511) . T) ((-587 $) . T) ((-652 $) . T) ((-661) . T) ((-725) . T) ((-726) . T) ((-728) . T) ((-730) . T) ((-780) . T) ((-782) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-3014 (($ (-1029)) 7)) (-2673 (((-108) $ (-1065) (-1029)) 15)) (-4007 (((-757) $) 12)) (-2011 (((-757) $) 11)) (-1957 (((-1168) $) 9)) (-1636 (((-108) $ (-1029)) 16))) +(((-756) (-10 -8 (-15 -3014 ($ (-1029))) (-15 -1957 ((-1168) $)) (-15 -2011 ((-757) $)) (-15 -4007 ((-757) $)) (-15 -2673 ((-108) $ (-1065) (-1029))) (-15 -1636 ((-108) $ (-1029))))) (T -756)) +((-1636 (*1 *2 *1 *3) (-12 (-5 *3 (-1029)) (-5 *2 (-108)) (-5 *1 (-756)))) (-2673 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1065)) (-5 *4 (-1029)) (-5 *2 (-108)) (-5 *1 (-756)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-756)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-756)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-756)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-756))))) +(-10 -8 (-15 -3014 ($ (-1029))) (-15 -1957 ((-1168) $)) (-15 -2011 ((-757) $)) (-15 -4007 ((-757) $)) (-15 -2673 ((-108) $ (-1065) (-1029))) (-15 -1636 ((-108) $ (-1029)))) +((-1841 (((-1168) $ (-758)) 12)) (-3601 (((-1168) $ (-1082)) 32)) (-3170 (((-1168) $ (-1065) (-1065)) 34)) (-1865 (((-1168) $ (-1065)) 33)) (-3114 (((-1168) $) 19)) (-3083 (((-1168) $ (-519)) 28)) (-2741 (((-1168) $ (-201)) 30)) (-1519 (((-1168) $) 18)) (-2300 (((-1168) $) 26)) (-2771 (((-1168) $) 25)) (-3082 (((-1168) $) 23)) (-1346 (((-1168) $) 24)) (-3028 (((-1168) $) 22)) (-1987 (((-1168) $) 21)) (-2684 (((-1168) $) 20)) (-1390 (((-1168) $) 16)) (-3937 (((-1168) $) 17)) (-1212 (((-1168) $) 15)) (-2786 (((-1168) $) 14)) (-1676 (((-1168) $) 13)) (-2142 (($ (-1065) (-758)) 9)) (-4157 (($ (-1065) (-1065) (-758)) 8)) (-3292 (((-1082) $) 51)) (-1387 (((-1082) $) 55)) (-4101 (((-2 (|:| |cd| (-1065)) (|:| -2938 (-1065))) $) 54)) (-1601 (((-1065) $) 52)) (-2839 (((-1168) $) 41)) (-2477 (((-519) $) 49)) (-2808 (((-201) $) 50)) (-3337 (((-1168) $) 40)) (-1400 (((-1168) $) 48)) (-3057 (((-1168) $) 47)) (-2160 (((-1168) $) 45)) (-3604 (((-1168) $) 46)) (-3486 (((-1168) $) 44)) (-2718 (((-1168) $) 43)) (-3510 (((-1168) $) 42)) (-3506 (((-1168) $) 38)) (-3615 (((-1168) $) 39)) (-2978 (((-1168) $) 37)) (-1427 (((-1168) $) 36)) (-3523 (((-1168) $) 35)) (-1244 (((-1168) $) 11))) +(((-757) (-10 -8 (-15 -4157 ($ (-1065) (-1065) (-758))) (-15 -2142 ($ (-1065) (-758))) (-15 -1244 ((-1168) $)) (-15 -1841 ((-1168) $ (-758))) (-15 -1676 ((-1168) $)) (-15 -2786 ((-1168) $)) (-15 -1212 ((-1168) $)) (-15 -1390 ((-1168) $)) (-15 -3937 ((-1168) $)) (-15 -1519 ((-1168) $)) (-15 -3114 ((-1168) $)) (-15 -2684 ((-1168) $)) (-15 -1987 ((-1168) $)) (-15 -3028 ((-1168) $)) (-15 -3082 ((-1168) $)) (-15 -1346 ((-1168) $)) (-15 -2771 ((-1168) $)) (-15 -2300 ((-1168) $)) (-15 -3083 ((-1168) $ (-519))) (-15 -2741 ((-1168) $ (-201))) (-15 -3601 ((-1168) $ (-1082))) (-15 -1865 ((-1168) $ (-1065))) (-15 -3170 ((-1168) $ (-1065) (-1065))) (-15 -3523 ((-1168) $)) (-15 -1427 ((-1168) $)) (-15 -2978 ((-1168) $)) (-15 -3506 ((-1168) $)) (-15 -3615 ((-1168) $)) (-15 -3337 ((-1168) $)) (-15 -2839 ((-1168) $)) (-15 -3510 ((-1168) $)) (-15 -2718 ((-1168) $)) (-15 -3486 ((-1168) $)) (-15 -2160 ((-1168) $)) (-15 -3604 ((-1168) $)) (-15 -3057 ((-1168) $)) (-15 -1400 ((-1168) $)) (-15 -2477 ((-519) $)) (-15 -2808 ((-201) $)) (-15 -3292 ((-1082) $)) (-15 -1601 ((-1065) $)) (-15 -4101 ((-2 (|:| |cd| (-1065)) (|:| -2938 (-1065))) $)) (-15 -1387 ((-1082) $)))) (T -757)) +((-1387 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-757)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1065)) (|:| -2938 (-1065)))) (-5 *1 (-757)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-757)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-757)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-757)))) (-2477 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-757)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3604 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3170 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-757)))) (-1865 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-757)))) (-3601 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-757)))) (-2741 (*1 *2 *1 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1168)) (-5 *1 (-757)))) (-3083 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-757)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-1212 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-1841 (*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1168)) (-5 *1 (-757)))) (-1244 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757)))) (-2142 (*1 *1 *2 *3) (-12 (-5 *2 (-1065)) (-5 *3 (-758)) (-5 *1 (-757)))) (-4157 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1065)) (-5 *3 (-758)) (-5 *1 (-757))))) +(-10 -8 (-15 -4157 ($ (-1065) (-1065) (-758))) (-15 -2142 ($ (-1065) (-758))) (-15 -1244 ((-1168) $)) (-15 -1841 ((-1168) $ (-758))) (-15 -1676 ((-1168) $)) (-15 -2786 ((-1168) $)) (-15 -1212 ((-1168) $)) (-15 -1390 ((-1168) $)) (-15 -3937 ((-1168) $)) (-15 -1519 ((-1168) $)) (-15 -3114 ((-1168) $)) (-15 -2684 ((-1168) $)) (-15 -1987 ((-1168) $)) (-15 -3028 ((-1168) $)) (-15 -3082 ((-1168) $)) (-15 -1346 ((-1168) $)) (-15 -2771 ((-1168) $)) (-15 -2300 ((-1168) $)) (-15 -3083 ((-1168) $ (-519))) (-15 -2741 ((-1168) $ (-201))) (-15 -3601 ((-1168) $ (-1082))) (-15 -1865 ((-1168) $ (-1065))) (-15 -3170 ((-1168) $ (-1065) (-1065))) (-15 -3523 ((-1168) $)) (-15 -1427 ((-1168) $)) (-15 -2978 ((-1168) $)) (-15 -3506 ((-1168) $)) (-15 -3615 ((-1168) $)) (-15 -3337 ((-1168) $)) (-15 -2839 ((-1168) $)) (-15 -3510 ((-1168) $)) (-15 -2718 ((-1168) $)) (-15 -3486 ((-1168) $)) (-15 -2160 ((-1168) $)) (-15 -3604 ((-1168) $)) (-15 -3057 ((-1168) $)) (-15 -1400 ((-1168) $)) (-15 -2477 ((-519) $)) (-15 -2808 ((-201) $)) (-15 -3292 ((-1082) $)) (-15 -1601 ((-1065) $)) (-15 -4101 ((-2 (|:| |cd| (-1065)) (|:| -2938 (-1065))) $)) (-15 -1387 ((-1082) $))) +((-1430 (((-108) $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 12)) (-3174 (($) 15)) (-2657 (($) 13)) (-2207 (($) 16)) (-2851 (($) 14)) (-1543 (((-108) $ $) 8))) +(((-758) (-13 (-1011) (-10 -8 (-15 -2657 ($)) (-15 -3174 ($)) (-15 -2207 ($)) (-15 -2851 ($))))) (T -758)) +((-2657 (*1 *1) (-5 *1 (-758))) (-3174 (*1 *1) (-5 *1 (-758))) (-2207 (*1 *1) (-5 *1 (-758))) (-2851 (*1 *1) (-5 *1 (-758)))) +(-13 (-1011) (-10 -8 (-15 -2657 ($)) (-15 -3174 ($)) (-15 -2207 ($)) (-15 -2851 ($)))) +((-1430 (((-108) $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 21) (($ (-1082)) 17)) (-1585 (((-108) $) 10)) (-3231 (((-108) $) 9)) (-4053 (((-108) $) 11)) (-2419 (((-108) $) 8)) (-1543 (((-108) $ $) 19))) +(((-759) (-13 (-1011) (-10 -8 (-15 -2217 ($ (-1082))) (-15 -2419 ((-108) $)) (-15 -3231 ((-108) $)) (-15 -1585 ((-108) $)) (-15 -4053 ((-108) $))))) (T -759)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-759)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-759)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-759)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-759)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-759))))) +(-13 (-1011) (-10 -8 (-15 -2217 ($ (-1082))) (-15 -2419 ((-108) $)) (-15 -3231 ((-108) $)) (-15 -1585 ((-108) $)) (-15 -4053 ((-108) $)))) +((-1430 (((-108) $ $) NIL)) (-1613 (($ (-759) (-585 (-1082))) 24)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-3545 (((-759) $) 25)) (-1653 (((-585 (-1082)) $) 26)) (-2217 (((-790) $) 23)) (-1543 (((-108) $ $) NIL))) +(((-760) (-13 (-1011) (-10 -8 (-15 -3545 ((-759) $)) (-15 -1653 ((-585 (-1082)) $)) (-15 -1613 ($ (-759) (-585 (-1082))))))) (T -760)) +((-3545 (*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-760)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-760)))) (-1613 (*1 *1 *2 *3) (-12 (-5 *2 (-759)) (-5 *3 (-585 (-1082))) (-5 *1 (-760))))) +(-13 (-1011) (-10 -8 (-15 -3545 ((-759) $)) (-15 -1653 ((-585 (-1082)) $)) (-15 -1613 ($ (-759) (-585 (-1082)))))) +((-2761 (((-1168) (-757) (-288 |#1|) (-108)) 22) (((-1168) (-757) (-288 |#1|)) 76) (((-1065) (-288 |#1|) (-108)) 75) (((-1065) (-288 |#1|)) 74))) +(((-761 |#1|) (-10 -7 (-15 -2761 ((-1065) (-288 |#1|))) (-15 -2761 ((-1065) (-288 |#1|) (-108))) (-15 -2761 ((-1168) (-757) (-288 |#1|))) (-15 -2761 ((-1168) (-757) (-288 |#1|) (-108)))) (-13 (-763) (-782) (-968))) (T -761)) +((-2761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-757)) (-5 *4 (-288 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-763) (-782) (-968))) (-5 *2 (-1168)) (-5 *1 (-761 *6)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-757)) (-5 *4 (-288 *5)) (-4 *5 (-13 (-763) (-782) (-968))) (-5 *2 (-1168)) (-5 *1 (-761 *5)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-288 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-763) (-782) (-968))) (-5 *2 (-1065)) (-5 *1 (-761 *5)))) (-2761 (*1 *2 *3) (-12 (-5 *3 (-288 *4)) (-4 *4 (-13 (-763) (-782) (-968))) (-5 *2 (-1065)) (-5 *1 (-761 *4))))) +(-10 -7 (-15 -2761 ((-1065) (-288 |#1|))) (-15 -2761 ((-1065) (-288 |#1|) (-108))) (-15 -2761 ((-1168) (-757) (-288 |#1|))) (-15 -2761 ((-1168) (-757) (-288 |#1|) (-108)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3662 ((|#1| $) 10)) (-1435 (($ |#1|) 9)) (-1568 (((-108) $) NIL)) (-4042 (($ |#2| (-705)) NIL)) (-3695 (((-705) $) NIL)) (-3197 ((|#2| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2181 (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $) NIL (|has| |#1| (-209)))) (-4178 (((-705) $) NIL)) (-2217 (((-790) $) 17) (($ (-519)) NIL) (($ |#2|) NIL (|has| |#2| (-157)))) (-1220 ((|#2| $ (-705)) NIL)) (-3594 (((-705)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $) NIL (|has| |#1| (-209)))) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-762 |#1| |#2|) (-13 (-644 |#2|) (-10 -8 (IF (|has| |#1| (-209)) (-6 (-209)) |%noBranch|) (-15 -1435 ($ |#1|)) (-15 -3662 (|#1| $)))) (-644 |#2|) (-968)) (T -762)) +((-1435 (*1 *1 *2) (-12 (-4 *3 (-968)) (-5 *1 (-762 *2 *3)) (-4 *2 (-644 *3)))) (-3662 (*1 *2 *1) (-12 (-4 *2 (-644 *3)) (-5 *1 (-762 *2 *3)) (-4 *3 (-968))))) +(-13 (-644 |#2|) (-10 -8 (IF (|has| |#1| (-209)) (-6 (-209)) |%noBranch|) (-15 -1435 ($ |#1|)) (-15 -3662 (|#1| $)))) +((-2761 (((-1168) (-757) $ (-108)) 9) (((-1168) (-757) $) 8) (((-1065) $ (-108)) 7) (((-1065) $) 6))) +(((-763) (-1194)) (T -763)) +((-2761 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-763)) (-5 *3 (-757)) (-5 *4 (-108)) (-5 *2 (-1168)))) (-2761 (*1 *2 *3 *1) (-12 (-4 *1 (-763)) (-5 *3 (-757)) (-5 *2 (-1168)))) (-2761 (*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *3 (-108)) (-5 *2 (-1065)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-763)) (-5 *2 (-1065))))) +(-13 (-10 -8 (-15 -2761 ((-1065) $)) (-15 -2761 ((-1065) $ (-108))) (-15 -2761 ((-1168) (-757) $)) (-15 -2761 ((-1168) (-757) $ (-108))))) +((-3148 (((-284) (-1065) (-1065)) 12)) (-1581 (((-108) (-1065) (-1065)) 34)) (-3702 (((-108) (-1065)) 33)) (-2384 (((-51) (-1065)) 25)) (-2784 (((-51) (-1065)) 23)) (-2952 (((-51) (-757)) 17)) (-3926 (((-585 (-1065)) (-1065)) 28)) (-2557 (((-585 (-1065))) 27))) +(((-764) (-10 -7 (-15 -2952 ((-51) (-757))) (-15 -2784 ((-51) (-1065))) (-15 -2384 ((-51) (-1065))) (-15 -2557 ((-585 (-1065)))) (-15 -3926 ((-585 (-1065)) (-1065))) (-15 -3702 ((-108) (-1065))) (-15 -1581 ((-108) (-1065) (-1065))) (-15 -3148 ((-284) (-1065) (-1065))))) (T -764)) +((-3148 (*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-284)) (-5 *1 (-764)))) (-1581 (*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-108)) (-5 *1 (-764)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-108)) (-5 *1 (-764)))) (-3926 (*1 *2 *3) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-764)) (-5 *3 (-1065)))) (-2557 (*1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-764)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-51)) (-5 *1 (-764)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-51)) (-5 *1 (-764)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-51)) (-5 *1 (-764))))) +(-10 -7 (-15 -2952 ((-51) (-757))) (-15 -2784 ((-51) (-1065))) (-15 -2384 ((-51) (-1065))) (-15 -2557 ((-585 (-1065)))) (-15 -3926 ((-585 (-1065)) (-1065))) (-15 -3702 ((-108) (-1065))) (-15 -1581 ((-108) (-1065) (-1065))) (-15 -3148 ((-284) (-1065) (-1065)))) +((-1430 (((-108) $ $) 19)) (-2304 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1415 (($ $ $) 72)) (-3466 (((-108) $ $) 73)) (-1473 (((-108) $ (-705)) 8)) (-1780 (($ (-585 |#1|)) 68) (($) 67)) (-2846 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-1552 (($ $) 62)) (-2366 (($ $) 58 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2502 (($ |#1| $) 47 (|has| $ (-6 -4221))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4221)))) (-1438 (($ |#1| $) 57 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4221)))) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-2864 ((|#1| $) 78)) (-2511 (($ $ $) 81)) (-2500 (($ $ $) 80)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2489 ((|#1| $) 79)) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22)) (-3766 (($ $ $) 69)) (-4152 ((|#1| $) 39)) (-1846 (($ |#1| $) 40) (($ |#1| $ (-705)) 63)) (-4139 (((-1029) $) 21)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3212 ((|#1| $) 41)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-1307 (((-585 (-2 (|:| -3100 |#1|) (|:| -4155 (-705)))) $) 61)) (-2019 (($ $ |#1|) 71) (($ $ $) 70)) (-2436 (($) 49) (($ (-585 |#1|)) 48)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 59 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 50)) (-2217 (((-790) $) 18)) (-3451 (($ (-585 |#1|)) 66) (($) 65)) (-3879 (($ (-585 |#1|)) 42)) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20)) (-1561 (((-108) $ $) 64)) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-765 |#1|) (-1194) (-782)) (T -765)) +((-2864 (*1 *2 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-782))))) +(-13 (-671 |t#1|) (-893 |t#1|) (-10 -8 (-15 -2864 (|t#1| $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-559 (-790)) . T) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-211 |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-630 |#1|) . T) ((-671 |#1|) . T) ((-893 |#1|) . T) ((-1009 |#1|) . T) ((-1011) . T) ((-1117) . T)) +((-2533 (((-1168) (-1029) (-1029)) 47)) (-3091 (((-1168) (-756) (-51)) 44)) (-1308 (((-51) (-756)) 16))) +(((-766) (-10 -7 (-15 -1308 ((-51) (-756))) (-15 -3091 ((-1168) (-756) (-51))) (-15 -2533 ((-1168) (-1029) (-1029))))) (T -766)) +((-2533 (*1 *2 *3 *3) (-12 (-5 *3 (-1029)) (-5 *2 (-1168)) (-5 *1 (-766)))) (-3091 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-51)) (-5 *2 (-1168)) (-5 *1 (-766)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-51)) (-5 *1 (-766))))) +(-10 -7 (-15 -1308 ((-51) (-756))) (-15 -3091 ((-1168) (-756) (-51))) (-15 -2533 ((-1168) (-1029) (-1029)))) +((-1405 (((-768 |#2|) (-1 |#2| |#1|) (-768 |#1|) (-768 |#2|)) 12) (((-768 |#2|) (-1 |#2| |#1|) (-768 |#1|)) 13))) +(((-767 |#1| |#2|) (-10 -7 (-15 -1405 ((-768 |#2|) (-1 |#2| |#1|) (-768 |#1|))) (-15 -1405 ((-768 |#2|) (-1 |#2| |#1|) (-768 |#1|) (-768 |#2|)))) (-1011) (-1011)) (T -767)) +((-1405 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-768 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-768 *5)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-5 *1 (-767 *5 *6)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-768 *5)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-5 *2 (-768 *6)) (-5 *1 (-767 *5 *6))))) +(-10 -7 (-15 -1405 ((-768 |#2|) (-1 |#2| |#1|) (-768 |#1|))) (-15 -1405 ((-768 |#2|) (-1 |#2| |#1|) (-768 |#1|) (-768 |#2|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL (|has| |#1| (-21)))) (-3167 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2287 (((-519) $) NIL (|has| |#1| (-780)))) (-2249 (($) NIL (|has| |#1| (-21)) CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 15)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) 9)) (-4193 (((-3 $ "failed") $) 40 (|has| |#1| (-780)))) (-1631 (((-3 (-379 (-519)) "failed") $) 48 (|has| |#1| (-504)))) (-2102 (((-108) $) 43 (|has| |#1| (-504)))) (-2506 (((-379 (-519)) $) 45 (|has| |#1| (-504)))) (-3419 (((-108) $) NIL (|has| |#1| (-780)))) (-1568 (((-108) $) NIL (|has| |#1| (-780)))) (-2143 (((-108) $) NIL (|has| |#1| (-780)))) (-2864 (($ $ $) NIL (|has| |#1| (-780)))) (-2489 (($ $ $) NIL (|has| |#1| (-780)))) (-1266 (((-1065) $) NIL)) (-2899 (($) 13)) (-3875 (((-108) $) 12)) (-4139 (((-1029) $) NIL)) (-1789 (((-108) $) 11)) (-2217 (((-790) $) 18) (($ (-379 (-519))) NIL (|has| |#1| (-959 (-379 (-519))))) (($ |#1|) 8) (($ (-519)) NIL (-3730 (|has| |#1| (-780)) (|has| |#1| (-959 (-519)))))) (-3594 (((-705)) 34 (|has| |#1| (-780)))) (-1478 (($ $) NIL (|has| |#1| (-780)))) (-3559 (($ $ (-848)) NIL (|has| |#1| (-780))) (($ $ (-705)) NIL (|has| |#1| (-780)))) (-3602 (($) 22 (|has| |#1| (-21)) CONST)) (-3611 (($) 31 (|has| |#1| (-780)) CONST)) (-1586 (((-108) $ $) NIL (|has| |#1| (-780)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-780)))) (-1543 (((-108) $ $) 20)) (-1578 (((-108) $ $) NIL (|has| |#1| (-780)))) (-1561 (((-108) $ $) 42 (|has| |#1| (-780)))) (-1623 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1614 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-848)) NIL (|has| |#1| (-780))) (($ $ (-705)) NIL (|has| |#1| (-780)))) (* (($ $ $) 37 (|has| |#1| (-780))) (($ (-519) $) 25 (|has| |#1| (-21))) (($ (-705) $) NIL (|has| |#1| (-21))) (($ (-848) $) NIL (|has| |#1| (-21))))) +(((-768 |#1|) (-13 (-1011) (-383 |#1|) (-10 -8 (-15 -2899 ($)) (-15 -1789 ((-108) $)) (-15 -3875 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |#1| (-504)) (PROGN (-15 -2102 ((-108) $)) (-15 -2506 ((-379 (-519)) $)) (-15 -1631 ((-3 (-379 (-519)) "failed") $))) |%noBranch|))) (-1011)) (T -768)) +((-2899 (*1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-1011)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-768 *3)) (-4 *3 (-1011)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-768 *3)) (-4 *3 (-1011)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-768 *3)) (-4 *3 (-504)) (-4 *3 (-1011)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-768 *3)) (-4 *3 (-504)) (-4 *3 (-1011)))) (-1631 (*1 *2 *1) (|partial| -12 (-5 *2 (-379 (-519))) (-5 *1 (-768 *3)) (-4 *3 (-504)) (-4 *3 (-1011))))) +(-13 (-1011) (-383 |#1|) (-10 -8 (-15 -2899 ($)) (-15 -1789 ((-108) $)) (-15 -3875 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |#1| (-504)) (PROGN (-15 -2102 ((-108) $)) (-15 -2506 ((-379 (-519)) $)) (-15 -1631 ((-3 (-379 (-519)) "failed") $))) |%noBranch|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-1499 ((|#1| $) NIL) (((-110) $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2678 ((|#1| (-110) |#1|) NIL)) (-1568 (((-108) $) NIL)) (-1274 (($ |#1| (-333 (-110))) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2375 (($ $ (-1 |#1| |#1|)) NIL)) (-3289 (($ $ (-1 |#1| |#1|)) NIL)) (-2598 ((|#1| $ |#1|) NIL)) (-2697 ((|#1| |#1|) NIL (|has| |#1| (-157)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-3275 (($ $) NIL (|has| |#1| (-157))) (($ $ $) NIL (|has| |#1| (-157)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ (-110) (-519)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))))) +(((-769 |#1|) (-13 (-968) (-959 |#1|) (-959 (-110)) (-260 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3275 ($ $)) (-15 -3275 ($ $ $)) (-15 -2697 (|#1| |#1|))) |%noBranch|) (-15 -3289 ($ $ (-1 |#1| |#1|))) (-15 -2375 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-519))) (-15 ** ($ $ (-519))) (-15 -2678 (|#1| (-110) |#1|)) (-15 -1274 ($ |#1| (-333 (-110)))))) (-968)) (T -769)) +((-3275 (*1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-157)) (-4 *2 (-968)))) (-3275 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-157)) (-4 *2 (-968)))) (-2697 (*1 *2 *2) (-12 (-5 *1 (-769 *2)) (-4 *2 (-157)) (-4 *2 (-968)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-769 *3)))) (-2375 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-769 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-519)) (-5 *1 (-769 *4)) (-4 *4 (-968)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-769 *3)) (-4 *3 (-968)))) (-2678 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-769 *2)) (-4 *2 (-968)))) (-1274 (*1 *1 *2 *3) (-12 (-5 *3 (-333 (-110))) (-5 *1 (-769 *2)) (-4 *2 (-968))))) +(-13 (-968) (-959 |#1|) (-959 (-110)) (-260 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3275 ($ $)) (-15 -3275 ($ $ $)) (-15 -2697 (|#1| |#1|))) |%noBranch|) (-15 -3289 ($ $ (-1 |#1| |#1|))) (-15 -2375 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-519))) (-15 ** ($ $ (-519))) (-15 -2678 (|#1| (-110) |#1|)) (-15 -1274 ($ |#1| (-333 (-110)))))) +((-2187 (((-191 (-469)) (-1065)) 8))) +(((-770) (-10 -7 (-15 -2187 ((-191 (-469)) (-1065))))) (T -770)) +((-2187 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-191 (-469))) (-5 *1 (-770))))) +(-10 -7 (-15 -2187 ((-191 (-469)) (-1065)))) +((-1430 (((-108) $ $) 7)) (-2289 (((-957) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) 14) (((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 13)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 16) (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) 15)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1543 (((-108) $ $) 6))) +(((-771) (-1194)) (T -771)) +((-1809 (*1 *2 *3 *4) (-12 (-4 *1 (-771)) (-5 *3 (-980)) (-5 *4 (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (-5 *2 (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)))))) (-1809 (*1 *2 *3 *4) (-12 (-4 *1 (-771)) (-5 *3 (-980)) (-5 *4 (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) (-5 *2 (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)))))) (-2289 (*1 *2 *3) (-12 (-4 *1 (-771)) (-5 *3 (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) (-5 *2 (-957)))) (-2289 (*1 *2 *3) (-12 (-4 *1 (-771)) (-5 *3 (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (-5 *2 (-957))))) +(-13 (-1011) (-10 -7 (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201))))))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))) (-15 -2289 ((-957) (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))) (-15 -2289 ((-957) (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201))))))))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-2016 (((-957) (-585 (-288 (-351))) (-585 (-351))) 143) (((-957) (-288 (-351)) (-585 (-351))) 141) (((-957) (-288 (-351)) (-585 (-351)) (-585 (-775 (-351))) (-585 (-775 (-351)))) 140) (((-957) (-288 (-351)) (-585 (-351)) (-585 (-775 (-351))) (-585 (-288 (-351))) (-585 (-775 (-351)))) 139) (((-957) (-773)) 112) (((-957) (-773) (-980)) 111)) (-1809 (((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-773) (-980)) 76) (((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-773)) 78)) (-2004 (((-957) (-585 (-288 (-351))) (-585 (-351))) 144) (((-957) (-773)) 128))) +(((-772) (-10 -7 (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-773))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-773) (-980))) (-15 -2016 ((-957) (-773) (-980))) (-15 -2016 ((-957) (-773))) (-15 -2004 ((-957) (-773))) (-15 -2016 ((-957) (-288 (-351)) (-585 (-351)) (-585 (-775 (-351))) (-585 (-288 (-351))) (-585 (-775 (-351))))) (-15 -2016 ((-957) (-288 (-351)) (-585 (-351)) (-585 (-775 (-351))) (-585 (-775 (-351))))) (-15 -2016 ((-957) (-288 (-351)) (-585 (-351)))) (-15 -2016 ((-957) (-585 (-288 (-351))) (-585 (-351)))) (-15 -2004 ((-957) (-585 (-288 (-351))) (-585 (-351)))))) (T -772)) +((-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-288 (-351)))) (-5 *4 (-585 (-351))) (-5 *2 (-957)) (-5 *1 (-772)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-288 (-351)))) (-5 *4 (-585 (-351))) (-5 *2 (-957)) (-5 *1 (-772)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-351))) (-5 *2 (-957)) (-5 *1 (-772)))) (-2016 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-351))) (-5 *5 (-585 (-775 (-351)))) (-5 *2 (-957)) (-5 *1 (-772)))) (-2016 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-585 (-351))) (-5 *5 (-585 (-775 (-351)))) (-5 *6 (-585 (-288 (-351)))) (-5 *3 (-288 (-351))) (-5 *2 (-957)) (-5 *1 (-772)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-957)) (-5 *1 (-772)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-957)) (-5 *1 (-772)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-773)) (-5 *4 (-980)) (-5 *2 (-957)) (-5 *1 (-772)))) (-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-773)) (-5 *4 (-980)) (-5 *2 (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))))) (-5 *1 (-772)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))))) (-5 *1 (-772))))) +(-10 -7 (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-773))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-773) (-980))) (-15 -2016 ((-957) (-773) (-980))) (-15 -2016 ((-957) (-773))) (-15 -2004 ((-957) (-773))) (-15 -2016 ((-957) (-288 (-351)) (-585 (-351)) (-585 (-775 (-351))) (-585 (-288 (-351))) (-585 (-775 (-351))))) (-15 -2016 ((-957) (-288 (-351)) (-585 (-351)) (-585 (-775 (-351))) (-585 (-775 (-351))))) (-15 -2016 ((-957) (-288 (-351)) (-585 (-351)))) (-15 -2016 ((-957) (-585 (-288 (-351))) (-585 (-351)))) (-15 -2004 ((-957) (-585 (-288 (-351))) (-585 (-351))))) +((-1430 (((-108) $ $) NIL)) (-1499 (((-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))) $) 15)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 14) (($ (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) 8) (($ (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))))) 12)) (-1543 (((-108) $ $) NIL))) +(((-773) (-13 (-1011) (-10 -8 (-15 -2217 ($ (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201))))))) (-15 -2217 ($ (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))) (-15 -2217 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))))) (-15 -2217 ((-790) $)) (-15 -1499 ((-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))) $))))) (T -773)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-773)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (-5 *1 (-773)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) (-5 *1 (-773)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))))) (-5 *1 (-773)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))))) (-5 *1 (-773))))) +(-13 (-1011) (-10 -8 (-15 -2217 ($ (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201))))))) (-15 -2217 ($ (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))) (-15 -2217 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))))) (-15 -2217 ((-790) $)) (-15 -1499 ((-3 (|:| |noa| (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201)))))) $)))) +((-1405 (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|) (-775 |#2|)) 13) (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)) 14))) +(((-774 |#1| |#2|) (-10 -7 (-15 -1405 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -1405 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|) (-775 |#2|)))) (-1011) (-1011)) (T -774)) +((-1405 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-5 *1 (-774 *5 *6)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-5 *2 (-775 *6)) (-5 *1 (-774 *5 *6))))) +(-10 -7 (-15 -1405 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -1405 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|) (-775 |#2|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL (|has| |#1| (-21)))) (-2259 (((-1029) $) 24)) (-3167 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2287 (((-519) $) NIL (|has| |#1| (-780)))) (-2249 (($) NIL (|has| |#1| (-21)) CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 16)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) 9)) (-4193 (((-3 $ "failed") $) 47 (|has| |#1| (-780)))) (-1631 (((-3 (-379 (-519)) "failed") $) 54 (|has| |#1| (-504)))) (-2102 (((-108) $) 49 (|has| |#1| (-504)))) (-2506 (((-379 (-519)) $) 52 (|has| |#1| (-504)))) (-3419 (((-108) $) NIL (|has| |#1| (-780)))) (-2923 (($) 13)) (-1568 (((-108) $) NIL (|has| |#1| (-780)))) (-2143 (((-108) $) NIL (|has| |#1| (-780)))) (-2936 (($) 14)) (-2864 (($ $ $) NIL (|has| |#1| (-780)))) (-2489 (($ $ $) NIL (|has| |#1| (-780)))) (-1266 (((-1065) $) NIL)) (-3875 (((-108) $) 12)) (-4139 (((-1029) $) NIL)) (-1789 (((-108) $) 11)) (-2217 (((-790) $) 22) (($ (-379 (-519))) NIL (|has| |#1| (-959 (-379 (-519))))) (($ |#1|) 8) (($ (-519)) NIL (-3730 (|has| |#1| (-780)) (|has| |#1| (-959 (-519)))))) (-3594 (((-705)) 41 (|has| |#1| (-780)))) (-1478 (($ $) NIL (|has| |#1| (-780)))) (-3559 (($ $ (-848)) NIL (|has| |#1| (-780))) (($ $ (-705)) NIL (|has| |#1| (-780)))) (-3602 (($) 29 (|has| |#1| (-21)) CONST)) (-3611 (($) 38 (|has| |#1| (-780)) CONST)) (-1586 (((-108) $ $) NIL (|has| |#1| (-780)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-780)))) (-1543 (((-108) $ $) 27)) (-1578 (((-108) $ $) NIL (|has| |#1| (-780)))) (-1561 (((-108) $ $) 48 (|has| |#1| (-780)))) (-1623 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1614 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-848)) NIL (|has| |#1| (-780))) (($ $ (-705)) NIL (|has| |#1| (-780)))) (* (($ $ $) 44 (|has| |#1| (-780))) (($ (-519) $) 32 (|has| |#1| (-21))) (($ (-705) $) NIL (|has| |#1| (-21))) (($ (-848) $) NIL (|has| |#1| (-21))))) +(((-775 |#1|) (-13 (-1011) (-383 |#1|) (-10 -8 (-15 -2923 ($)) (-15 -2936 ($)) (-15 -1789 ((-108) $)) (-15 -3875 ((-108) $)) (-15 -2259 ((-1029) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |#1| (-504)) (PROGN (-15 -2102 ((-108) $)) (-15 -2506 ((-379 (-519)) $)) (-15 -1631 ((-3 (-379 (-519)) "failed") $))) |%noBranch|))) (-1011)) (T -775)) +((-2923 (*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1011)))) (-2936 (*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1011)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1011)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1011)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-775 *3)) (-4 *3 (-1011)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-504)) (-4 *3 (-1011)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-775 *3)) (-4 *3 (-504)) (-4 *3 (-1011)))) (-1631 (*1 *2 *1) (|partial| -12 (-5 *2 (-379 (-519))) (-5 *1 (-775 *3)) (-4 *3 (-504)) (-4 *3 (-1011))))) +(-13 (-1011) (-383 |#1|) (-10 -8 (-15 -2923 ($)) (-15 -2936 ($)) (-15 -1789 ((-108) $)) (-15 -3875 ((-108) $)) (-15 -2259 ((-1029) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-780)) |%noBranch|) (IF (|has| |#1| (-504)) (PROGN (-15 -2102 ((-108) $)) (-15 -2506 ((-379 (-519)) $)) (-15 -1631 ((-3 (-379 (-519)) "failed") $))) |%noBranch|))) +((-1430 (((-108) $ $) 7)) (-1642 (((-705)) 20)) (-3314 (($) 23)) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-3334 (((-848) $) 22)) (-1266 (((-1065) $) 9)) (-2770 (($ (-848)) 21)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18))) +(((-776) (-1194)) (T -776)) +NIL +(-13 (-782) (-340)) +(((-97) . T) ((-559 (-790)) . T) ((-340) . T) ((-782) . T) ((-1011) . T)) +((-4075 (((-108) (-1163 |#2|) (-1163 |#2|)) 17)) (-1646 (((-108) (-1163 |#2|) (-1163 |#2|)) 18)) (-3873 (((-108) (-1163 |#2|) (-1163 |#2|)) 14))) +(((-777 |#1| |#2|) (-10 -7 (-15 -3873 ((-108) (-1163 |#2|) (-1163 |#2|))) (-15 -4075 ((-108) (-1163 |#2|) (-1163 |#2|))) (-15 -1646 ((-108) (-1163 |#2|) (-1163 |#2|)))) (-705) (-726)) (T -777)) +((-1646 (*1 *2 *3 *3) (-12 (-5 *3 (-1163 *5)) (-4 *5 (-726)) (-5 *2 (-108)) (-5 *1 (-777 *4 *5)) (-14 *4 (-705)))) (-4075 (*1 *2 *3 *3) (-12 (-5 *3 (-1163 *5)) (-4 *5 (-726)) (-5 *2 (-108)) (-5 *1 (-777 *4 *5)) (-14 *4 (-705)))) (-3873 (*1 *2 *3 *3) (-12 (-5 *3 (-1163 *5)) (-4 *5 (-726)) (-5 *2 (-108)) (-5 *1 (-777 *4 *5)) (-14 *4 (-705))))) +(-10 -7 (-15 -3873 ((-108) (-1163 |#2|) (-1163 |#2|))) (-15 -4075 ((-108) (-1163 |#2|) (-1163 |#2|))) (-15 -1646 ((-108) (-1163 |#2|) (-1163 |#2|)))) +((-1430 (((-108) $ $) 7)) (-2249 (($) 24 T CONST)) (-4193 (((-3 $ "failed") $) 28)) (-1568 (((-108) $) 25)) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3559 (($ $ (-705)) 27) (($ $ (-848)) 22)) (-3611 (($) 23 T CONST)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18)) (** (($ $ (-705)) 26) (($ $ (-848)) 21)) (* (($ $ $) 20))) +(((-778) (-1194)) (T -778)) +NIL +(-13 (-782) (-661)) +(((-97) . T) ((-559 (-790)) . T) ((-661) . T) ((-782) . T) ((-1023) . T) ((-1011) . T)) +((-2287 (((-519) $) 17)) (-3419 (((-108) $) 10)) (-2143 (((-108) $) 11)) (-1478 (($ $) 19))) +(((-779 |#1|) (-10 -8 (-15 -1478 (|#1| |#1|)) (-15 -2287 ((-519) |#1|)) (-15 -2143 ((-108) |#1|)) (-15 -3419 ((-108) |#1|))) (-780)) (T -779)) +NIL +(-10 -8 (-15 -1478 (|#1| |#1|)) (-15 -2287 ((-519) |#1|)) (-15 -2143 ((-108) |#1|)) (-15 -3419 ((-108) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 24)) (-3167 (((-3 $ "failed") $ $) 26)) (-2287 (((-519) $) 33)) (-2249 (($) 23 T CONST)) (-4193 (((-3 $ "failed") $) 39)) (-3419 (((-108) $) 35)) (-1568 (((-108) $) 42)) (-2143 (((-108) $) 34)) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 45)) (-3594 (((-705)) 44)) (-1478 (($ $) 32)) (-3559 (($ $ (-705)) 40) (($ $ (-848)) 36)) (-3602 (($) 22 T CONST)) (-3611 (($) 43 T CONST)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18)) (-1623 (($ $ $) 28) (($ $) 27)) (-1614 (($ $ $) 20)) (** (($ $ (-705)) 41) (($ $ (-848)) 37)) (* (($ (-705) $) 25) (($ (-848) $) 21) (($ (-519) $) 29) (($ $ $) 38))) +(((-780) (-1194)) (T -780)) +((-3419 (*1 *2 *1) (-12 (-4 *1 (-780)) (-5 *2 (-108)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-780)) (-5 *2 (-108)))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-780)) (-5 *2 (-519)))) (-1478 (*1 *1 *1) (-4 *1 (-780)))) +(-13 (-725) (-968) (-661) (-10 -8 (-15 -3419 ((-108) $)) (-15 -2143 ((-108) $)) (-15 -2287 ((-519) $)) (-15 -1478 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 $) . T) ((-661) . T) ((-725) . T) ((-726) . T) ((-728) . T) ((-730) . T) ((-782) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-2864 (($ $ $) 10)) (-2489 (($ $ $) 9)) (-1586 (((-108) $ $) 13)) (-1569 (((-108) $ $) 11)) (-1578 (((-108) $ $) 14))) +(((-781 |#1|) (-10 -8 (-15 -2864 (|#1| |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -1578 ((-108) |#1| |#1|)) (-15 -1586 ((-108) |#1| |#1|)) (-15 -1569 ((-108) |#1| |#1|))) (-782)) (T -781)) +NIL +(-10 -8 (-15 -2864 (|#1| |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -1578 ((-108) |#1| |#1|)) (-15 -1586 ((-108) |#1| |#1|)) (-15 -1569 ((-108) |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-2864 (($ $ $) 13)) (-2489 (($ $ $) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1586 (((-108) $ $) 16)) (-1569 (((-108) $ $) 17)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 15)) (-1561 (((-108) $ $) 18))) +(((-782) (-1194)) (T -782)) +((-1561 (*1 *2 *1 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) (-1569 (*1 *2 *1 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) (-1586 (*1 *2 *1 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) (-1578 (*1 *2 *1 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) (-2489 (*1 *1 *1 *1) (-4 *1 (-782))) (-2864 (*1 *1 *1 *1) (-4 *1 (-782)))) +(-13 (-1011) (-10 -8 (-15 -1561 ((-108) $ $)) (-15 -1569 ((-108) $ $)) (-15 -1586 ((-108) $ $)) (-15 -1578 ((-108) $ $)) (-15 -2489 ($ $ $)) (-15 -2864 ($ $ $)))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-2757 (($ $ $) 46)) (-3473 (($ $ $) 45)) (-3607 (($ $ $) 43)) (-2246 (($ $ $) 52)) (-2630 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 47)) (-1939 (((-3 $ "failed") $ $) 50)) (-1301 (((-3 (-519) "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2177 (($ $) 36)) (-3387 (($ $ $) 40)) (-2026 (($ $ $) 39)) (-1513 (($ $ $) 48)) (-1298 (($ $ $) 54)) (-4126 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 42)) (-4196 (((-3 $ "failed") $ $) 49)) (-2261 (((-3 $ "failed") $ |#2|) 29)) (-3939 ((|#2| $) 33)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ (-379 (-519))) NIL) (($ |#2|) 12)) (-2988 (((-585 |#2|) $) 19)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23))) +(((-783 |#1| |#2|) (-10 -8 (-15 -1513 (|#1| |#1| |#1|)) (-15 -2630 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1397 |#1|)) |#1| |#1|)) (-15 -2246 (|#1| |#1| |#1|)) (-15 -1939 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2757 (|#1| |#1| |#1|)) (-15 -3473 (|#1| |#1| |#1|)) (-15 -3607 (|#1| |#1| |#1|)) (-15 -4126 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1397 |#1|)) |#1| |#1|)) (-15 -1298 (|#1| |#1| |#1|)) (-15 -4196 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3387 (|#1| |#1| |#1|)) (-15 -2026 (|#1| |#1| |#1|)) (-15 -2177 (|#1| |#1|)) (-15 -3939 (|#2| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2988 ((-585 |#2|) |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|)) (-15 -2217 ((-790) |#1|))) (-784 |#2|) (-968)) (T -783)) +NIL +(-10 -8 (-15 -1513 (|#1| |#1| |#1|)) (-15 -2630 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1397 |#1|)) |#1| |#1|)) (-15 -2246 (|#1| |#1| |#1|)) (-15 -1939 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2757 (|#1| |#1| |#1|)) (-15 -3473 (|#1| |#1| |#1|)) (-15 -3607 (|#1| |#1| |#1|)) (-15 -4126 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1397 |#1|)) |#1| |#1|)) (-15 -1298 (|#1| |#1| |#1|)) (-15 -4196 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3387 (|#1| |#1| |#1|)) (-15 -2026 (|#1| |#1| |#1|)) (-15 -2177 (|#1| |#1|)) (-15 -3939 (|#2| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2988 ((-585 |#2|) |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|)) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-2757 (($ $ $) 45 (|has| |#1| (-335)))) (-3473 (($ $ $) 46 (|has| |#1| (-335)))) (-3607 (($ $ $) 48 (|has| |#1| (-335)))) (-2246 (($ $ $) 43 (|has| |#1| (-335)))) (-2630 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 42 (|has| |#1| (-335)))) (-1939 (((-3 $ "failed") $ $) 44 (|has| |#1| (-335)))) (-2294 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 47 (|has| |#1| (-335)))) (-1301 (((-3 (-519) "failed") $) 74 (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) 72 (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 69)) (-1499 (((-519) $) 75 (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) 73 (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) 68)) (-3218 (($ $) 64)) (-4193 (((-3 $ "failed") $) 34)) (-2177 (($ $) 55 (|has| |#1| (-423)))) (-1568 (((-108) $) 31)) (-4042 (($ |#1| (-705)) 62)) (-2425 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57 (|has| |#1| (-511)))) (-3973 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 58 (|has| |#1| (-511)))) (-3695 (((-705) $) 66)) (-3387 (($ $ $) 52 (|has| |#1| (-335)))) (-2026 (($ $ $) 53 (|has| |#1| (-335)))) (-1513 (($ $ $) 41 (|has| |#1| (-335)))) (-1298 (($ $ $) 50 (|has| |#1| (-335)))) (-4126 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 49 (|has| |#1| (-335)))) (-4196 (((-3 $ "failed") $ $) 51 (|has| |#1| (-335)))) (-1209 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 54 (|has| |#1| (-335)))) (-3197 ((|#1| $) 65)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2261 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-511)))) (-4178 (((-705) $) 67)) (-3939 ((|#1| $) 56 (|has| |#1| (-423)))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ (-379 (-519))) 71 (|has| |#1| (-959 (-379 (-519))))) (($ |#1|) 70)) (-2988 (((-585 |#1|) $) 61)) (-1220 ((|#1| $ (-705)) 63)) (-3594 (((-705)) 29)) (-1627 ((|#1| $ |#1| |#1|) 60)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76))) +(((-784 |#1|) (-1194) (-968)) (T -784)) +((-4178 (*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-968)) (-5 *2 (-705)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-968)) (-5 *2 (-705)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)))) (-3218 (*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)))) (-1220 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-4 *1 (-784 *2)) (-4 *2 (-968)))) (-4042 (*1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-784 *2)) (-4 *2 (-968)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-968)) (-5 *2 (-585 *3)))) (-1627 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)))) (-2261 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-511)))) (-3973 (*1 *2 *1 *1) (-12 (-4 *3 (-511)) (-4 *3 (-968)) (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-784 *3)))) (-2425 (*1 *2 *1 *1) (-12 (-4 *3 (-511)) (-4 *3 (-968)) (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-784 *3)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-423)))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-423)))) (-1209 (*1 *2 *1 *1) (-12 (-4 *3 (-335)) (-4 *3 (-968)) (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-784 *3)))) (-2026 (*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-3387 (*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-4196 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-1298 (*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-4126 (*1 *2 *1 *1) (-12 (-4 *3 (-335)) (-4 *3 (-968)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1397 *1))) (-4 *1 (-784 *3)))) (-3607 (*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-2294 (*1 *2 *1 *1) (-12 (-4 *3 (-335)) (-4 *3 (-968)) (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-784 *3)))) (-3473 (*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-2757 (*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-1939 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-2246 (*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-2630 (*1 *2 *1 *1) (-12 (-4 *3 (-335)) (-4 *3 (-968)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1397 *1))) (-4 *1 (-784 *3)))) (-1513 (*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) +(-13 (-968) (-107 |t#1| |t#1|) (-383 |t#1|) (-10 -8 (-15 -4178 ((-705) $)) (-15 -3695 ((-705) $)) (-15 -3197 (|t#1| $)) (-15 -3218 ($ $)) (-15 -1220 (|t#1| $ (-705))) (-15 -4042 ($ |t#1| (-705))) (-15 -2988 ((-585 |t#1|) $)) (-15 -1627 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-511)) (PROGN (-15 -2261 ((-3 $ "failed") $ |t#1|)) (-15 -3973 ((-2 (|:| -3573 $) (|:| -1354 $)) $ $)) (-15 -2425 ((-2 (|:| -3573 $) (|:| -1354 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-423)) (PROGN (-15 -3939 (|t#1| $)) (-15 -2177 ($ $))) |%noBranch|) (IF (|has| |t#1| (-335)) (PROGN (-15 -1209 ((-2 (|:| -3573 $) (|:| -1354 $)) $ $)) (-15 -2026 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -4196 ((-3 $ "failed") $ $)) (-15 -1298 ($ $ $)) (-15 -4126 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $)) (-15 -3607 ($ $ $)) (-15 -2294 ((-2 (|:| -3573 $) (|:| -1354 $)) $ $)) (-15 -3473 ($ $ $)) (-15 -2757 ($ $ $)) (-15 -1939 ((-3 $ "failed") $ $)) (-15 -2246 ($ $ $)) (-15 -2630 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $)) (-15 -1513 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-383 |#1|) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-652 |#1|) |has| |#1| (-157)) ((-661) . T) ((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 |#1|) . T) ((-974 |#1|) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-2535 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-2294 (((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-335)))) (-2425 (((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-511)))) (-3973 (((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-511)))) (-1209 (((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-335)))) (-1627 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32))) +(((-785 |#1| |#2|) (-10 -7 (-15 -2535 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1627 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-511)) (PROGN (-15 -3973 ((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2425 ((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-335)) (PROGN (-15 -1209 ((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2294 ((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-968) (-784 |#1|)) (T -785)) +((-2294 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-335)) (-4 *5 (-968)) (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-785 *5 *3)) (-4 *3 (-784 *5)))) (-1209 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-335)) (-4 *5 (-968)) (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-785 *5 *3)) (-4 *3 (-784 *5)))) (-2425 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-511)) (-4 *5 (-968)) (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-785 *5 *3)) (-4 *3 (-784 *5)))) (-3973 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-511)) (-4 *5 (-968)) (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-785 *5 *3)) (-4 *3 (-784 *5)))) (-1627 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-968)) (-5 *1 (-785 *2 *3)) (-4 *3 (-784 *2)))) (-2535 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-968)) (-5 *1 (-785 *5 *2)) (-4 *2 (-784 *5))))) +(-10 -7 (-15 -2535 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1627 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-511)) (PROGN (-15 -3973 ((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2425 ((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-335)) (PROGN (-15 -1209 ((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2294 ((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-2757 (($ $ $) NIL (|has| |#1| (-335)))) (-3473 (($ $ $) NIL (|has| |#1| (-335)))) (-3607 (($ $ $) NIL (|has| |#1| (-335)))) (-2246 (($ $ $) NIL (|has| |#1| (-335)))) (-2630 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-1939 (((-3 $ "failed") $ $) NIL (|has| |#1| (-335)))) (-2294 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 25 (|has| |#1| (-335)))) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) NIL)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-423)))) (-2184 (((-790) $ (-790)) NIL)) (-1568 (((-108) $) NIL)) (-4042 (($ |#1| (-705)) NIL)) (-2425 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 21 (|has| |#1| (-511)))) (-3973 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 19 (|has| |#1| (-511)))) (-3695 (((-705) $) NIL)) (-3387 (($ $ $) NIL (|has| |#1| (-335)))) (-2026 (($ $ $) NIL (|has| |#1| (-335)))) (-1513 (($ $ $) NIL (|has| |#1| (-335)))) (-1298 (($ $ $) NIL (|has| |#1| (-335)))) (-4126 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-4196 (((-3 $ "failed") $ $) NIL (|has| |#1| (-335)))) (-1209 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 23 (|has| |#1| (-335)))) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511)))) (-4178 (((-705) $) NIL)) (-3939 ((|#1| $) NIL (|has| |#1| (-423)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ (-379 (-519))) NIL (|has| |#1| (-959 (-379 (-519))))) (($ |#1|) NIL)) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-705)) NIL)) (-3594 (((-705)) NIL)) (-1627 ((|#1| $ |#1| |#1|) 15)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-786 |#1| |#2| |#3|) (-13 (-784 |#1|) (-10 -8 (-15 -2184 ((-790) $ (-790))))) (-968) (-94 |#1|) (-1 |#1| |#1|)) (T -786)) +((-2184 (*1 *2 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-786 *3 *4 *5)) (-4 *3 (-968)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-784 |#1|) (-10 -8 (-15 -2184 ((-790) $ (-790))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-2757 (($ $ $) NIL (|has| |#2| (-335)))) (-3473 (($ $ $) NIL (|has| |#2| (-335)))) (-3607 (($ $ $) NIL (|has| |#2| (-335)))) (-2246 (($ $ $) NIL (|has| |#2| (-335)))) (-2630 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#2| (-335)))) (-1939 (((-3 $ "failed") $ $) NIL (|has| |#2| (-335)))) (-2294 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#2| (-335)))) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#2| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-3 |#2| "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| |#2| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#2| (-959 (-379 (-519))))) ((|#2| $) NIL)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#2| (-423)))) (-1568 (((-108) $) NIL)) (-4042 (($ |#2| (-705)) 16)) (-2425 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#2| (-511)))) (-3973 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#2| (-511)))) (-3695 (((-705) $) NIL)) (-3387 (($ $ $) NIL (|has| |#2| (-335)))) (-2026 (($ $ $) NIL (|has| |#2| (-335)))) (-1513 (($ $ $) NIL (|has| |#2| (-335)))) (-1298 (($ $ $) NIL (|has| |#2| (-335)))) (-4126 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#2| (-335)))) (-4196 (((-3 $ "failed") $ $) NIL (|has| |#2| (-335)))) (-1209 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#2| (-335)))) (-3197 ((|#2| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-511)))) (-4178 (((-705) $) NIL)) (-3939 ((|#2| $) NIL (|has| |#2| (-423)))) (-2217 (((-790) $) 23) (($ (-519)) NIL) (($ (-379 (-519))) NIL (|has| |#2| (-959 (-379 (-519))))) (($ |#2|) NIL) (($ (-1159 |#1|)) 18)) (-2988 (((-585 |#2|) $) NIL)) (-1220 ((|#2| $ (-705)) NIL)) (-3594 (((-705)) NIL)) (-1627 ((|#2| $ |#2| |#2|) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) 13 T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-787 |#1| |#2| |#3| |#4|) (-13 (-784 |#2|) (-10 -8 (-15 -2217 ($ (-1159 |#1|))))) (-1082) (-968) (-94 |#2|) (-1 |#2| |#2|)) (T -787)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1159 *3)) (-14 *3 (-1082)) (-5 *1 (-787 *3 *4 *5 *6)) (-4 *4 (-968)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-784 |#2|) (-10 -8 (-15 -2217 ($ (-1159 |#1|))))) +((-2001 ((|#1| (-705) |#1|) 35 (|has| |#1| (-37 (-379 (-519)))))) (-1210 ((|#1| (-705) (-705) |#1|) 27) ((|#1| (-705) |#1|) 20)) (-4118 ((|#1| (-705) |#1|) 31)) (-2411 ((|#1| (-705) |#1|) 29)) (-2149 ((|#1| (-705) |#1|) 28))) +(((-788 |#1|) (-10 -7 (-15 -2149 (|#1| (-705) |#1|)) (-15 -2411 (|#1| (-705) |#1|)) (-15 -4118 (|#1| (-705) |#1|)) (-15 -1210 (|#1| (-705) |#1|)) (-15 -1210 (|#1| (-705) (-705) |#1|)) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -2001 (|#1| (-705) |#1|)) |%noBranch|)) (-157)) (T -788)) +((-2001 (*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-157)))) (-1210 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-157)))) (-1210 (*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-157)))) (-4118 (*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-157)))) (-2411 (*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-157)))) (-2149 (*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-157))))) +(-10 -7 (-15 -2149 (|#1| (-705) |#1|)) (-15 -2411 (|#1| (-705) |#1|)) (-15 -4118 (|#1| (-705) |#1|)) (-15 -1210 (|#1| (-705) |#1|)) (-15 -1210 (|#1| (-705) (-705) |#1|)) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -2001 (|#1| (-705) |#1|)) |%noBranch|)) +((-1430 (((-108) $ $) NIL)) (-3493 (((-519) $) 12)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 18) (($ (-519)) 11)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 8)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 9))) +(((-789) (-13 (-782) (-10 -8 (-15 -2217 ($ (-519))) (-15 -3493 ((-519) $))))) (T -789)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-789)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-789))))) +(-13 (-782) (-10 -8 (-15 -2217 ($ (-519))) (-15 -3493 ((-519) $)))) +((-1430 (((-108) $ $) NIL)) (-1908 (($ $ $) 115)) (-2699 (((-519) $) 30) (((-519)) 35)) (-4188 (($ (-519)) 44)) (-3344 (($ $ $) 45) (($ (-585 $)) 76)) (-3420 (($ $ (-585 $)) 74)) (-1936 (((-519) $) 33)) (-3056 (($ $ $) 63)) (-3565 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3790 (((-519) $) 32)) (-2833 (($ $ $) 62)) (-1522 (($ $) 105)) (-2236 (($ $ $) 119)) (-2701 (($ (-585 $)) 52)) (-2578 (($ $ (-585 $)) 69)) (-3240 (($ (-519) (-519)) 46)) (-1730 (($ $) 116) (($ $ $) 117)) (-1931 (($ $ (-519)) 40) (($ $) 43)) (-2311 (($ $ $) 89)) (-1779 (($ $ $) 122)) (-2453 (($ $) 106)) (-2286 (($ $ $) 90)) (-2695 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2066 (((-1168) $) 8)) (-2377 (($ $) 109) (($ $ (-705)) 112)) (-2430 (($ $ $) 65)) (-2693 (($ $ $) 64)) (-3434 (($ $ (-585 $)) 100)) (-1318 (($ $ $) 104)) (-2664 (($ (-585 $)) 50)) (-1340 (($ $) 60) (($ (-585 $)) 61)) (-1542 (($ $ $) 113)) (-2552 (($ $) 107)) (-3025 (($ $ $) 118)) (-2184 (($ (-519)) 20) (($ (-1082)) 22) (($ (-1065)) 29) (($ (-201)) 24)) (-3997 (($ $ $) 93)) (-2445 (($ $) 94)) (-4143 (((-1168) (-1065)) 14)) (-2889 (($ (-1065)) 13)) (-1377 (($ (-585 (-585 $))) 48)) (-1917 (($ $ (-519)) 39) (($ $) 42)) (-1266 (((-1065) $) NIL)) (-2955 (($ $ $) 121)) (-1721 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3891 (((-108) $) 98)) (-2537 (($ $ (-585 $)) 102) (($ $ $ $) 103)) (-1750 (($ (-519)) 36)) (-4141 (((-519) $) 31) (((-519)) 34)) (-3370 (($ $ $) 37) (($ (-585 $)) 75)) (-4139 (((-1029) $) NIL)) (-2261 (($ $ $) 91)) (-1548 (($) 12)) (-2598 (($ $ (-585 $)) 99)) (-1466 (($ $) 108) (($ $ (-705)) 111)) (-2275 (($ $ $) 88)) (-2181 (($ $ (-705)) 127)) (-2346 (($ (-585 $)) 51)) (-2217 (((-790) $) 18)) (-1896 (($ $ (-519)) 38) (($ $) 41)) (-3479 (($ $) 58) (($ (-585 $)) 59)) (-3451 (($ $) 56) (($ (-585 $)) 57)) (-1647 (($ $) 114)) (-3377 (($ (-585 $)) 55)) (-3563 (($ $ $) 97)) (-1381 (($ $ $) 120)) (-4012 (($ $ $) 92)) (-2474 (($ $ $) 77)) (-1686 (($ $ $) 95) (($ $) 96)) (-1586 (($ $ $) 81)) (-1569 (($ $ $) 79)) (-1543 (((-108) $ $) 15) (($ $ $) 16)) (-1578 (($ $ $) 80)) (-1561 (($ $ $) 78)) (-1632 (($ $ $) 86)) (-1623 (($ $ $) 83) (($ $) 84)) (-1614 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-790) (-13 (-1011) (-10 -8 (-15 -2066 ((-1168) $)) (-15 -2889 ($ (-1065))) (-15 -4143 ((-1168) (-1065))) (-15 -2184 ($ (-519))) (-15 -2184 ($ (-1082))) (-15 -2184 ($ (-1065))) (-15 -2184 ($ (-201))) (-15 -1548 ($)) (-15 -2699 ((-519) $)) (-15 -4141 ((-519) $)) (-15 -2699 ((-519))) (-15 -4141 ((-519))) (-15 -3790 ((-519) $)) (-15 -1936 ((-519) $)) (-15 -1750 ($ (-519))) (-15 -4188 ($ (-519))) (-15 -3240 ($ (-519) (-519))) (-15 -1917 ($ $ (-519))) (-15 -1931 ($ $ (-519))) (-15 -1896 ($ $ (-519))) (-15 -1917 ($ $)) (-15 -1931 ($ $)) (-15 -1896 ($ $)) (-15 -3370 ($ $ $)) (-15 -3344 ($ $ $)) (-15 -3370 ($ (-585 $))) (-15 -3344 ($ (-585 $))) (-15 -3434 ($ $ (-585 $))) (-15 -2537 ($ $ (-585 $))) (-15 -2537 ($ $ $ $)) (-15 -1318 ($ $ $)) (-15 -3891 ((-108) $)) (-15 -2598 ($ $ (-585 $))) (-15 -1522 ($ $)) (-15 -2955 ($ $ $)) (-15 -1647 ($ $)) (-15 -1377 ($ (-585 (-585 $)))) (-15 -1908 ($ $ $)) (-15 -1730 ($ $)) (-15 -1730 ($ $ $)) (-15 -3025 ($ $ $)) (-15 -2236 ($ $ $)) (-15 -1381 ($ $ $)) (-15 -1779 ($ $ $)) (-15 -2181 ($ $ (-705))) (-15 -3563 ($ $ $)) (-15 -2833 ($ $ $)) (-15 -3056 ($ $ $)) (-15 -2693 ($ $ $)) (-15 -2430 ($ $ $)) (-15 -2578 ($ $ (-585 $))) (-15 -3420 ($ $ (-585 $))) (-15 -2453 ($ $)) (-15 -1466 ($ $)) (-15 -1466 ($ $ (-705))) (-15 -2377 ($ $)) (-15 -2377 ($ $ (-705))) (-15 -2552 ($ $)) (-15 -1542 ($ $ $)) (-15 -3565 ($ $)) (-15 -3565 ($ $ $)) (-15 -3565 ($ $ $ $)) (-15 -2695 ($ $)) (-15 -2695 ($ $ $)) (-15 -2695 ($ $ $ $)) (-15 -1721 ($ $)) (-15 -1721 ($ $ $)) (-15 -1721 ($ $ $ $)) (-15 -3451 ($ $)) (-15 -3451 ($ (-585 $))) (-15 -3479 ($ $)) (-15 -3479 ($ (-585 $))) (-15 -1340 ($ $)) (-15 -1340 ($ (-585 $))) (-15 -2664 ($ (-585 $))) (-15 -2346 ($ (-585 $))) (-15 -2701 ($ (-585 $))) (-15 -3377 ($ (-585 $))) (-15 -1543 ($ $ $)) (-15 -2474 ($ $ $)) (-15 -1561 ($ $ $)) (-15 -1569 ($ $ $)) (-15 -1578 ($ $ $)) (-15 -1586 ($ $ $)) (-15 -1614 ($ $ $)) (-15 -1623 ($ $ $)) (-15 -1623 ($ $)) (-15 * ($ $ $)) (-15 -1632 ($ $ $)) (-15 ** ($ $ $)) (-15 -2275 ($ $ $)) (-15 -2311 ($ $ $)) (-15 -2286 ($ $ $)) (-15 -2261 ($ $ $)) (-15 -4012 ($ $ $)) (-15 -3997 ($ $ $)) (-15 -2445 ($ $)) (-15 -1686 ($ $ $)) (-15 -1686 ($ $))))) (T -790)) +((-2066 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-790)))) (-2889 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-790)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-790)))) (-2184 (*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-2184 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-790)))) (-2184 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-790)))) (-2184 (*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-790)))) (-1548 (*1 *1) (-5 *1 (-790))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-4141 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-2699 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-4141 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-3790 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-1750 (*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-4188 (*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-3240 (*1 *1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-1917 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-1931 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-1896 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) (-1917 (*1 *1 *1) (-5 *1 (-790))) (-1931 (*1 *1 *1) (-5 *1 (-790))) (-1896 (*1 *1 *1) (-5 *1 (-790))) (-3370 (*1 *1 *1 *1) (-5 *1 (-790))) (-3344 (*1 *1 *1 *1) (-5 *1 (-790))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-3434 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-2537 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-2537 (*1 *1 *1 *1 *1) (-5 *1 (-790))) (-1318 (*1 *1 *1 *1) (-5 *1 (-790))) (-3891 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-790)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-1522 (*1 *1 *1) (-5 *1 (-790))) (-2955 (*1 *1 *1 *1) (-5 *1 (-790))) (-1647 (*1 *1 *1) (-5 *1 (-790))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-790)))) (-5 *1 (-790)))) (-1908 (*1 *1 *1 *1) (-5 *1 (-790))) (-1730 (*1 *1 *1) (-5 *1 (-790))) (-1730 (*1 *1 *1 *1) (-5 *1 (-790))) (-3025 (*1 *1 *1 *1) (-5 *1 (-790))) (-2236 (*1 *1 *1 *1) (-5 *1 (-790))) (-1381 (*1 *1 *1 *1) (-5 *1 (-790))) (-1779 (*1 *1 *1 *1) (-5 *1 (-790))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-790)))) (-3563 (*1 *1 *1 *1) (-5 *1 (-790))) (-2833 (*1 *1 *1 *1) (-5 *1 (-790))) (-3056 (*1 *1 *1 *1) (-5 *1 (-790))) (-2693 (*1 *1 *1 *1) (-5 *1 (-790))) (-2430 (*1 *1 *1 *1) (-5 *1 (-790))) (-2578 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-3420 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-2453 (*1 *1 *1) (-5 *1 (-790))) (-1466 (*1 *1 *1) (-5 *1 (-790))) (-1466 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-790)))) (-2377 (*1 *1 *1) (-5 *1 (-790))) (-2377 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-790)))) (-2552 (*1 *1 *1) (-5 *1 (-790))) (-1542 (*1 *1 *1 *1) (-5 *1 (-790))) (-3565 (*1 *1 *1) (-5 *1 (-790))) (-3565 (*1 *1 *1 *1) (-5 *1 (-790))) (-3565 (*1 *1 *1 *1 *1) (-5 *1 (-790))) (-2695 (*1 *1 *1) (-5 *1 (-790))) (-2695 (*1 *1 *1 *1) (-5 *1 (-790))) (-2695 (*1 *1 *1 *1 *1) (-5 *1 (-790))) (-1721 (*1 *1 *1) (-5 *1 (-790))) (-1721 (*1 *1 *1 *1) (-5 *1 (-790))) (-1721 (*1 *1 *1 *1 *1) (-5 *1 (-790))) (-3451 (*1 *1 *1) (-5 *1 (-790))) (-3451 (*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-3479 (*1 *1 *1) (-5 *1 (-790))) (-3479 (*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-1340 (*1 *1 *1) (-5 *1 (-790))) (-1340 (*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-2346 (*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-2701 (*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-3377 (*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) (-1543 (*1 *1 *1 *1) (-5 *1 (-790))) (-2474 (*1 *1 *1 *1) (-5 *1 (-790))) (-1561 (*1 *1 *1 *1) (-5 *1 (-790))) (-1569 (*1 *1 *1 *1) (-5 *1 (-790))) (-1578 (*1 *1 *1 *1) (-5 *1 (-790))) (-1586 (*1 *1 *1 *1) (-5 *1 (-790))) (-1614 (*1 *1 *1 *1) (-5 *1 (-790))) (-1623 (*1 *1 *1 *1) (-5 *1 (-790))) (-1623 (*1 *1 *1) (-5 *1 (-790))) (* (*1 *1 *1 *1) (-5 *1 (-790))) (-1632 (*1 *1 *1 *1) (-5 *1 (-790))) (** (*1 *1 *1 *1) (-5 *1 (-790))) (-2275 (*1 *1 *1 *1) (-5 *1 (-790))) (-2311 (*1 *1 *1 *1) (-5 *1 (-790))) (-2286 (*1 *1 *1 *1) (-5 *1 (-790))) (-2261 (*1 *1 *1 *1) (-5 *1 (-790))) (-4012 (*1 *1 *1 *1) (-5 *1 (-790))) (-3997 (*1 *1 *1 *1) (-5 *1 (-790))) (-2445 (*1 *1 *1) (-5 *1 (-790))) (-1686 (*1 *1 *1 *1) (-5 *1 (-790))) (-1686 (*1 *1 *1) (-5 *1 (-790)))) +(-13 (-1011) (-10 -8 (-15 -2066 ((-1168) $)) (-15 -2889 ($ (-1065))) (-15 -4143 ((-1168) (-1065))) (-15 -2184 ($ (-519))) (-15 -2184 ($ (-1082))) (-15 -2184 ($ (-1065))) (-15 -2184 ($ (-201))) (-15 -1548 ($)) (-15 -2699 ((-519) $)) (-15 -4141 ((-519) $)) (-15 -2699 ((-519))) (-15 -4141 ((-519))) (-15 -3790 ((-519) $)) (-15 -1936 ((-519) $)) (-15 -1750 ($ (-519))) (-15 -4188 ($ (-519))) (-15 -3240 ($ (-519) (-519))) (-15 -1917 ($ $ (-519))) (-15 -1931 ($ $ (-519))) (-15 -1896 ($ $ (-519))) (-15 -1917 ($ $)) (-15 -1931 ($ $)) (-15 -1896 ($ $)) (-15 -3370 ($ $ $)) (-15 -3344 ($ $ $)) (-15 -3370 ($ (-585 $))) (-15 -3344 ($ (-585 $))) (-15 -3434 ($ $ (-585 $))) (-15 -2537 ($ $ (-585 $))) (-15 -2537 ($ $ $ $)) (-15 -1318 ($ $ $)) (-15 -3891 ((-108) $)) (-15 -2598 ($ $ (-585 $))) (-15 -1522 ($ $)) (-15 -2955 ($ $ $)) (-15 -1647 ($ $)) (-15 -1377 ($ (-585 (-585 $)))) (-15 -1908 ($ $ $)) (-15 -1730 ($ $)) (-15 -1730 ($ $ $)) (-15 -3025 ($ $ $)) (-15 -2236 ($ $ $)) (-15 -1381 ($ $ $)) (-15 -1779 ($ $ $)) (-15 -2181 ($ $ (-705))) (-15 -3563 ($ $ $)) (-15 -2833 ($ $ $)) (-15 -3056 ($ $ $)) (-15 -2693 ($ $ $)) (-15 -2430 ($ $ $)) (-15 -2578 ($ $ (-585 $))) (-15 -3420 ($ $ (-585 $))) (-15 -2453 ($ $)) (-15 -1466 ($ $)) (-15 -1466 ($ $ (-705))) (-15 -2377 ($ $)) (-15 -2377 ($ $ (-705))) (-15 -2552 ($ $)) (-15 -1542 ($ $ $)) (-15 -3565 ($ $)) (-15 -3565 ($ $ $)) (-15 -3565 ($ $ $ $)) (-15 -2695 ($ $)) (-15 -2695 ($ $ $)) (-15 -2695 ($ $ $ $)) (-15 -1721 ($ $)) (-15 -1721 ($ $ $)) (-15 -1721 ($ $ $ $)) (-15 -3451 ($ $)) (-15 -3451 ($ (-585 $))) (-15 -3479 ($ $)) (-15 -3479 ($ (-585 $))) (-15 -1340 ($ $)) (-15 -1340 ($ (-585 $))) (-15 -2664 ($ (-585 $))) (-15 -2346 ($ (-585 $))) (-15 -2701 ($ (-585 $))) (-15 -3377 ($ (-585 $))) (-15 -1543 ($ $ $)) (-15 -2474 ($ $ $)) (-15 -1561 ($ $ $)) (-15 -1569 ($ $ $)) (-15 -1578 ($ $ $)) (-15 -1586 ($ $ $)) (-15 -1614 ($ $ $)) (-15 -1623 ($ $ $)) (-15 -1623 ($ $)) (-15 * ($ $ $)) (-15 -1632 ($ $ $)) (-15 ** ($ $ $)) (-15 -2275 ($ $ $)) (-15 -2311 ($ $ $)) (-15 -2286 ($ $ $)) (-15 -2261 ($ $ $)) (-15 -4012 ($ $ $)) (-15 -3997 ($ $ $)) (-15 -2445 ($ $)) (-15 -1686 ($ $ $)) (-15 -1686 ($ $)))) +((-1498 (((-1168) (-585 (-51))) 24)) (-1597 (((-1168) (-1065) (-790)) 14) (((-1168) (-790)) 9) (((-1168) (-1065)) 11))) +(((-791) (-10 -7 (-15 -1597 ((-1168) (-1065))) (-15 -1597 ((-1168) (-790))) (-15 -1597 ((-1168) (-1065) (-790))) (-15 -1498 ((-1168) (-585 (-51)))))) (T -791)) +((-1498 (*1 *2 *3) (-12 (-5 *3 (-585 (-51))) (-5 *2 (-1168)) (-5 *1 (-791)))) (-1597 (*1 *2 *3 *4) (-12 (-5 *3 (-1065)) (-5 *4 (-790)) (-5 *2 (-1168)) (-5 *1 (-791)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1168)) (-5 *1 (-791)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-791))))) +(-10 -7 (-15 -1597 ((-1168) (-1065))) (-15 -1597 ((-1168) (-790))) (-15 -1597 ((-1168) (-1065) (-790))) (-15 -1498 ((-1168) (-585 (-51))))) +((-1430 (((-108) $ $) NIL)) (-1622 (((-3 $ "failed") (-1082)) 32)) (-1642 (((-705)) 30)) (-3314 (($) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-3334 (((-848) $) 28)) (-1266 (((-1065) $) 38)) (-2770 (($ (-848)) 27)) (-4139 (((-1029) $) NIL)) (-1446 (((-1082) $) 13) (((-495) $) 19) (((-819 (-351)) $) 25) (((-819 (-519)) $) 22)) (-2217 (((-790) $) 16)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 35)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 34))) +(((-792 |#1|) (-13 (-776) (-560 (-1082)) (-560 (-495)) (-560 (-819 (-351))) (-560 (-819 (-519))) (-10 -8 (-15 -1622 ((-3 $ "failed") (-1082))))) (-585 (-1082))) (T -792)) +((-1622 (*1 *1 *2) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-792 *3)) (-14 *3 (-585 *2))))) +(-13 (-776) (-560 (-1082)) (-560 (-495)) (-560 (-819 (-351))) (-560 (-819 (-519))) (-10 -8 (-15 -1622 ((-3 $ "failed") (-1082))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (((-879 |#1|) $) NIL) (($ (-879 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-157)))) (-3594 (((-705)) NIL)) (-2639 (((-1168) (-705)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1632 (((-3 $ "failed") $ $) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))))) +(((-793 |#1| |#2| |#3| |#4|) (-13 (-968) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2217 ((-879 |#1|) $)) (-15 -2217 ($ (-879 |#1|))) (IF (|has| |#1| (-335)) (-15 -1632 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2639 ((-1168) (-705))))) (-968) (-585 (-1082)) (-585 (-705)) (-705)) (T -793)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-879 *3)) (-5 *1 (-793 *3 *4 *5 *6)) (-4 *3 (-968)) (-14 *4 (-585 (-1082))) (-14 *5 (-585 (-705))) (-14 *6 (-705)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-968)) (-5 *1 (-793 *3 *4 *5 *6)) (-14 *4 (-585 (-1082))) (-14 *5 (-585 (-705))) (-14 *6 (-705)))) (-1632 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-793 *2 *3 *4 *5)) (-4 *2 (-335)) (-4 *2 (-968)) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-705))) (-14 *5 (-705)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-793 *4 *5 *6 *7)) (-4 *4 (-968)) (-14 *5 (-585 (-1082))) (-14 *6 (-585 *3)) (-14 *7 *3)))) +(-13 (-968) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2217 ((-879 |#1|) $)) (-15 -2217 ($ (-879 |#1|))) (IF (|has| |#1| (-335)) (-15 -1632 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2639 ((-1168) (-705))))) +((-2937 (((-3 (-158 |#3|) "failed") (-705) (-705) |#2| |#2|) 31)) (-2890 (((-3 (-379 |#3|) "failed") (-705) (-705) |#2| |#2|) 24))) +(((-794 |#1| |#2| |#3|) (-10 -7 (-15 -2890 ((-3 (-379 |#3|) "failed") (-705) (-705) |#2| |#2|)) (-15 -2937 ((-3 (-158 |#3|) "failed") (-705) (-705) |#2| |#2|))) (-335) (-1154 |#1|) (-1139 |#1|)) (T -794)) +((-2937 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-705)) (-4 *5 (-335)) (-5 *2 (-158 *6)) (-5 *1 (-794 *5 *4 *6)) (-4 *4 (-1154 *5)) (-4 *6 (-1139 *5)))) (-2890 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-705)) (-4 *5 (-335)) (-5 *2 (-379 *6)) (-5 *1 (-794 *5 *4 *6)) (-4 *4 (-1154 *5)) (-4 *6 (-1139 *5))))) +(-10 -7 (-15 -2890 ((-3 (-379 |#3|) "failed") (-705) (-705) |#2| |#2|)) (-15 -2937 ((-3 (-158 |#3|) "failed") (-705) (-705) |#2| |#2|))) +((-2890 (((-3 (-379 (-1136 |#2| |#1|)) "failed") (-705) (-705) (-1155 |#1| |#2| |#3|)) 28) (((-3 (-379 (-1136 |#2| |#1|)) "failed") (-705) (-705) (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|)) 26))) +(((-795 |#1| |#2| |#3|) (-10 -7 (-15 -2890 ((-3 (-379 (-1136 |#2| |#1|)) "failed") (-705) (-705) (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|))) (-15 -2890 ((-3 (-379 (-1136 |#2| |#1|)) "failed") (-705) (-705) (-1155 |#1| |#2| |#3|)))) (-335) (-1082) |#1|) (T -795)) +((-2890 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-705)) (-5 *4 (-1155 *5 *6 *7)) (-4 *5 (-335)) (-14 *6 (-1082)) (-14 *7 *5) (-5 *2 (-379 (-1136 *6 *5))) (-5 *1 (-795 *5 *6 *7)))) (-2890 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-705)) (-5 *4 (-1155 *5 *6 *7)) (-4 *5 (-335)) (-14 *6 (-1082)) (-14 *7 *5) (-5 *2 (-379 (-1136 *6 *5))) (-5 *1 (-795 *5 *6 *7))))) +(-10 -7 (-15 -2890 ((-3 (-379 (-1136 |#2| |#1|)) "failed") (-705) (-705) (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|))) (-15 -2890 ((-3 (-379 (-1136 |#2| |#1|)) "failed") (-705) (-705) (-1155 |#1| |#2| |#3|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-1934 (($ $ (-519)) 62)) (-3409 (((-108) $ $) 59)) (-2249 (($) 17 T CONST)) (-1730 (($ (-1078 (-519)) (-519)) 61)) (-2311 (($ $ $) 55)) (-4193 (((-3 $ "failed") $) 34)) (-3503 (($ $) 64)) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-3709 (((-705) $) 69)) (-1568 (((-108) $) 31)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-2205 (((-519)) 66)) (-1290 (((-519) $) 65)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3881 (($ $ (-519)) 68)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-3129 (((-705) $) 58)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-3084 (((-1063 (-519)) $) 70)) (-1508 (($ $) 67)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3905 (((-519) $ (-519)) 63)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-796 |#1|) (-1194) (-519)) (T -796)) +((-3084 (*1 *2 *1) (-12 (-4 *1 (-796 *3)) (-5 *2 (-1063 (-519))))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-796 *3)) (-5 *2 (-705)))) (-3881 (*1 *1 *1 *2) (-12 (-4 *1 (-796 *3)) (-5 *2 (-519)))) (-1508 (*1 *1 *1) (-4 *1 (-796 *2))) (-2205 (*1 *2) (-12 (-4 *1 (-796 *3)) (-5 *2 (-519)))) (-1290 (*1 *2 *1) (-12 (-4 *1 (-796 *3)) (-5 *2 (-519)))) (-3503 (*1 *1 *1) (-4 *1 (-796 *2))) (-3905 (*1 *2 *1 *2) (-12 (-4 *1 (-796 *3)) (-5 *2 (-519)))) (-1934 (*1 *1 *1 *2) (-12 (-4 *1 (-796 *3)) (-5 *2 (-519)))) (-1730 (*1 *1 *2 *3) (-12 (-5 *2 (-1078 (-519))) (-5 *3 (-519)) (-4 *1 (-796 *4))))) +(-13 (-280) (-135) (-10 -8 (-15 -3084 ((-1063 (-519)) $)) (-15 -3709 ((-705) $)) (-15 -3881 ($ $ (-519))) (-15 -1508 ($ $)) (-15 -2205 ((-519))) (-15 -1290 ((-519) $)) (-15 -3503 ($ $)) (-15 -3905 ((-519) $ (-519))) (-15 -1934 ($ $ (-519))) (-15 -1730 ($ (-1078 (-519)) (-519))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-559 (-790)) . T) ((-157) . T) ((-264) . T) ((-280) . T) ((-423) . T) ((-511) . T) ((-587 $) . T) ((-652 $) . T) ((-661) . T) ((-847) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1934 (($ $ (-519)) NIL)) (-3409 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-1730 (($ (-1078 (-519)) (-519)) NIL)) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3503 (($ $) NIL)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-3709 (((-705) $) NIL)) (-1568 (((-108) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2205 (((-519)) NIL)) (-1290 (((-519) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3881 (($ $ (-519)) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-3084 (((-1063 (-519)) $) NIL)) (-1508 (($ $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL)) (-3594 (((-705)) NIL)) (-1617 (((-108) $ $) NIL)) (-3905 (((-519) $ (-519)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL))) +(((-797 |#1|) (-796 |#1|) (-519)) (T -797)) +NIL +(-796 |#1|) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2157 (((-797 |#1|) $) NIL (|has| (-797 |#1|) (-280)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-797 |#1|) (-836)))) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| (-797 |#1|) (-836)))) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL (|has| (-797 |#1|) (-755)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-797 |#1|) "failed") $) NIL) (((-3 (-1082) "failed") $) NIL (|has| (-797 |#1|) (-959 (-1082)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| (-797 |#1|) (-959 (-519)))) (((-3 (-519) "failed") $) NIL (|has| (-797 |#1|) (-959 (-519))))) (-1499 (((-797 |#1|) $) NIL) (((-1082) $) NIL (|has| (-797 |#1|) (-959 (-1082)))) (((-379 (-519)) $) NIL (|has| (-797 |#1|) (-959 (-519)))) (((-519) $) NIL (|has| (-797 |#1|) (-959 (-519))))) (-3768 (($ $) NIL) (($ (-519) $) NIL)) (-2311 (($ $ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| (-797 |#1|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| (-797 |#1|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-797 |#1|))) (|:| |vec| (-1163 (-797 |#1|)))) (-625 $) (-1163 $)) NIL) (((-625 (-797 |#1|)) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| (-797 |#1|) (-504)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3419 (((-108) $) NIL (|has| (-797 |#1|) (-755)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (|has| (-797 |#1|) (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (|has| (-797 |#1|) (-813 (-351))))) (-1568 (((-108) $) NIL)) (-1534 (($ $) NIL)) (-2855 (((-797 |#1|) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| (-797 |#1|) (-1058)))) (-2143 (((-108) $) NIL (|has| (-797 |#1|) (-755)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) NIL (|has| (-797 |#1|) (-782)))) (-2489 (($ $ $) NIL (|has| (-797 |#1|) (-782)))) (-1405 (($ (-1 (-797 |#1|) (-797 |#1|)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| (-797 |#1|) (-1058)) CONST)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) NIL (|has| (-797 |#1|) (-280)))) (-1525 (((-797 |#1|) $) NIL (|has| (-797 |#1|) (-504)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-797 |#1|) (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-797 |#1|) (-836)))) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2324 (($ $ (-585 (-797 |#1|)) (-585 (-797 |#1|))) NIL (|has| (-797 |#1|) (-282 (-797 |#1|)))) (($ $ (-797 |#1|) (-797 |#1|)) NIL (|has| (-797 |#1|) (-282 (-797 |#1|)))) (($ $ (-267 (-797 |#1|))) NIL (|has| (-797 |#1|) (-282 (-797 |#1|)))) (($ $ (-585 (-267 (-797 |#1|)))) NIL (|has| (-797 |#1|) (-282 (-797 |#1|)))) (($ $ (-585 (-1082)) (-585 (-797 |#1|))) NIL (|has| (-797 |#1|) (-480 (-1082) (-797 |#1|)))) (($ $ (-1082) (-797 |#1|)) NIL (|has| (-797 |#1|) (-480 (-1082) (-797 |#1|))))) (-3129 (((-705) $) NIL)) (-2598 (($ $ (-797 |#1|)) NIL (|has| (-797 |#1|) (-260 (-797 |#1|) (-797 |#1|))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2181 (($ $) NIL (|has| (-797 |#1|) (-209))) (($ $ (-705)) NIL (|has| (-797 |#1|) (-209))) (($ $ (-1082)) NIL (|has| (-797 |#1|) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-797 |#1|) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-797 |#1|) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-797 |#1|) (-827 (-1082)))) (($ $ (-1 (-797 |#1|) (-797 |#1|)) (-705)) NIL) (($ $ (-1 (-797 |#1|) (-797 |#1|))) NIL)) (-2724 (($ $) NIL)) (-2866 (((-797 |#1|) $) NIL)) (-1446 (((-819 (-519)) $) NIL (|has| (-797 |#1|) (-560 (-819 (-519))))) (((-819 (-351)) $) NIL (|has| (-797 |#1|) (-560 (-819 (-351))))) (((-495) $) NIL (|has| (-797 |#1|) (-560 (-495)))) (((-351) $) NIL (|has| (-797 |#1|) (-944))) (((-201) $) NIL (|has| (-797 |#1|) (-944)))) (-2859 (((-158 (-379 (-519))) $) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| (-797 |#1|) (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL) (($ (-797 |#1|)) NIL) (($ (-1082)) NIL (|has| (-797 |#1|) (-959 (-1082))))) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| (-797 |#1|) (-836))) (|has| (-797 |#1|) (-133))))) (-3594 (((-705)) NIL)) (-3617 (((-797 |#1|) $) NIL (|has| (-797 |#1|) (-504)))) (-1617 (((-108) $ $) NIL)) (-3905 (((-379 (-519)) $ (-519)) NIL)) (-1478 (($ $) NIL (|has| (-797 |#1|) (-755)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $) NIL (|has| (-797 |#1|) (-209))) (($ $ (-705)) NIL (|has| (-797 |#1|) (-209))) (($ $ (-1082)) NIL (|has| (-797 |#1|) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-797 |#1|) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-797 |#1|) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-797 |#1|) (-827 (-1082)))) (($ $ (-1 (-797 |#1|) (-797 |#1|)) (-705)) NIL) (($ $ (-1 (-797 |#1|) (-797 |#1|))) NIL)) (-1586 (((-108) $ $) NIL (|has| (-797 |#1|) (-782)))) (-1569 (((-108) $ $) NIL (|has| (-797 |#1|) (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| (-797 |#1|) (-782)))) (-1561 (((-108) $ $) NIL (|has| (-797 |#1|) (-782)))) (-1632 (($ $ $) NIL) (($ (-797 |#1|) (-797 |#1|)) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ (-797 |#1|) $) NIL) (($ $ (-797 |#1|)) NIL))) +(((-798 |#1|) (-13 (-916 (-797 |#1|)) (-10 -8 (-15 -3905 ((-379 (-519)) $ (-519))) (-15 -2859 ((-158 (-379 (-519))) $)) (-15 -3768 ($ $)) (-15 -3768 ($ (-519) $)))) (-519)) (T -798)) +((-3905 (*1 *2 *1 *3) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-798 *4)) (-14 *4 *3) (-5 *3 (-519)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-158 (-379 (-519)))) (-5 *1 (-798 *3)) (-14 *3 (-519)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-798 *2)) (-14 *2 (-519)))) (-3768 (*1 *1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-798 *3)) (-14 *3 *2)))) +(-13 (-916 (-797 |#1|)) (-10 -8 (-15 -3905 ((-379 (-519)) $ (-519))) (-15 -2859 ((-158 (-379 (-519))) $)) (-15 -3768 ($ $)) (-15 -3768 ($ (-519) $)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2157 ((|#2| $) NIL (|has| |#2| (-280)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL (|has| |#2| (-755)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#2| "failed") $) NIL) (((-3 (-1082) "failed") $) NIL (|has| |#2| (-959 (-1082)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#2| (-959 (-519)))) (((-3 (-519) "failed") $) NIL (|has| |#2| (-959 (-519))))) (-1499 ((|#2| $) NIL) (((-1082) $) NIL (|has| |#2| (-959 (-1082)))) (((-379 (-519)) $) NIL (|has| |#2| (-959 (-519)))) (((-519) $) NIL (|has| |#2| (-959 (-519))))) (-3768 (($ $) 31) (($ (-519) $) 32)) (-2311 (($ $ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL) (((-625 |#2|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) 53)) (-3314 (($) NIL (|has| |#2| (-504)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3419 (((-108) $) NIL (|has| |#2| (-755)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (|has| |#2| (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (|has| |#2| (-813 (-351))))) (-1568 (((-108) $) NIL)) (-1534 (($ $) NIL)) (-2855 ((|#2| $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| |#2| (-1058)))) (-2143 (((-108) $) NIL (|has| |#2| (-755)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) NIL (|has| |#2| (-782)))) (-2489 (($ $ $) NIL (|has| |#2| (-782)))) (-1405 (($ (-1 |#2| |#2|) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 49)) (-3816 (($) NIL (|has| |#2| (-1058)) CONST)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) NIL (|has| |#2| (-280)))) (-1525 ((|#2| $) NIL (|has| |#2| (-504)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2324 (($ $ (-585 |#2|) (-585 |#2|)) NIL (|has| |#2| (-282 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-282 |#2|))) (($ $ (-267 |#2|)) NIL (|has| |#2| (-282 |#2|))) (($ $ (-585 (-267 |#2|))) NIL (|has| |#2| (-282 |#2|))) (($ $ (-585 (-1082)) (-585 |#2|)) NIL (|has| |#2| (-480 (-1082) |#2|))) (($ $ (-1082) |#2|) NIL (|has| |#2| (-480 (-1082) |#2|)))) (-3129 (((-705) $) NIL)) (-2598 (($ $ |#2|) NIL (|has| |#2| (-260 |#2| |#2|)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2181 (($ $) NIL (|has| |#2| (-209))) (($ $ (-705)) NIL (|has| |#2| (-209))) (($ $ (-1082)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2724 (($ $) NIL)) (-2866 ((|#2| $) NIL)) (-1446 (((-819 (-519)) $) NIL (|has| |#2| (-560 (-819 (-519))))) (((-819 (-351)) $) NIL (|has| |#2| (-560 (-819 (-351))))) (((-495) $) NIL (|has| |#2| (-560 (-495)))) (((-351) $) NIL (|has| |#2| (-944))) (((-201) $) NIL (|has| |#2| (-944)))) (-2859 (((-158 (-379 (-519))) $) 68)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-836))))) (-2217 (((-790) $) 86) (($ (-519)) 19) (($ $) NIL) (($ (-379 (-519))) 24) (($ |#2|) 18) (($ (-1082)) NIL (|has| |#2| (-959 (-1082))))) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#2| (-836))) (|has| |#2| (-133))))) (-3594 (((-705)) NIL)) (-3617 ((|#2| $) NIL (|has| |#2| (-504)))) (-1617 (((-108) $ $) NIL)) (-3905 (((-379 (-519)) $ (-519)) 60)) (-1478 (($ $) NIL (|has| |#2| (-755)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 14 T CONST)) (-3611 (($) 16 T CONST)) (-2242 (($ $) NIL (|has| |#2| (-209))) (($ $ (-705)) NIL (|has| |#2| (-209))) (($ $ (-1082)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1586 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1543 (((-108) $ $) 35)) (-1578 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1632 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1623 (($ $) 39) (($ $ $) 41)) (-1614 (($ $ $) 37)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) 50)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 42) (($ $ $) 44) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-799 |#1| |#2|) (-13 (-916 |#2|) (-10 -8 (-15 -3905 ((-379 (-519)) $ (-519))) (-15 -2859 ((-158 (-379 (-519))) $)) (-15 -3768 ($ $)) (-15 -3768 ($ (-519) $)))) (-519) (-796 |#1|)) (T -799)) +((-3905 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-379 (-519))) (-5 *1 (-799 *4 *5)) (-5 *3 (-519)) (-4 *5 (-796 *4)))) (-2859 (*1 *2 *1) (-12 (-14 *3 (-519)) (-5 *2 (-158 (-379 (-519)))) (-5 *1 (-799 *3 *4)) (-4 *4 (-796 *3)))) (-3768 (*1 *1 *1) (-12 (-14 *2 (-519)) (-5 *1 (-799 *2 *3)) (-4 *3 (-796 *2)))) (-3768 (*1 *1 *2 *1) (-12 (-5 *2 (-519)) (-14 *3 *2) (-5 *1 (-799 *3 *4)) (-4 *4 (-796 *3))))) +(-13 (-916 |#2|) (-10 -8 (-15 -3905 ((-379 (-519)) $ (-519))) (-15 -2859 ((-158 (-379 (-519))) $)) (-15 -3768 ($ $)) (-15 -3768 ($ (-519) $)))) +((-1430 (((-108) $ $) NIL (-12 (|has| |#1| (-1011)) (|has| |#2| (-1011))))) (-2098 ((|#2| $) 12)) (-2804 (($ |#1| |#2|) 9)) (-1266 (((-1065) $) NIL (-12 (|has| |#1| (-1011)) (|has| |#2| (-1011))))) (-4139 (((-1029) $) NIL (-12 (|has| |#1| (-1011)) (|has| |#2| (-1011))))) (-2331 ((|#1| $) 11)) (-2228 (($ |#1| |#2|) 10)) (-2217 (((-790) $) 18 (-3730 (-12 (|has| |#1| (-559 (-790))) (|has| |#2| (-559 (-790)))) (-12 (|has| |#1| (-1011)) (|has| |#2| (-1011)))))) (-1543 (((-108) $ $) 22 (-12 (|has| |#1| (-1011)) (|has| |#2| (-1011)))))) +(((-800 |#1| |#2|) (-13 (-1117) (-10 -8 (IF (|has| |#1| (-559 (-790))) (IF (|has| |#2| (-559 (-790))) (-6 (-559 (-790))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1011)) (IF (|has| |#2| (-1011)) (-6 (-1011)) |%noBranch|) |%noBranch|) (-15 -2804 ($ |#1| |#2|)) (-15 -2228 ($ |#1| |#2|)) (-15 -2331 (|#1| $)) (-15 -2098 (|#2| $)))) (-1117) (-1117)) (T -800)) +((-2804 (*1 *1 *2 *3) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-2228 (*1 *1 *2 *3) (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) (-2331 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-800 *2 *3)) (-4 *3 (-1117)))) (-2098 (*1 *2 *1) (-12 (-4 *2 (-1117)) (-5 *1 (-800 *3 *2)) (-4 *3 (-1117))))) +(-13 (-1117) (-10 -8 (IF (|has| |#1| (-559 (-790))) (IF (|has| |#2| (-559 (-790))) (-6 (-559 (-790))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1011)) (IF (|has| |#2| (-1011)) (-6 (-1011)) |%noBranch|) |%noBranch|) (-15 -2804 ($ |#1| |#2|)) (-15 -2228 ($ |#1| |#2|)) (-15 -2331 (|#1| $)) (-15 -2098 (|#2| $)))) +((-1430 (((-108) $ $) NIL)) (-4060 (((-519) $) 15)) (-2862 (($ (-143)) 11)) (-1798 (($ (-143)) 12)) (-1266 (((-1065) $) NIL)) (-3676 (((-143) $) 13)) (-4139 (((-1029) $) NIL)) (-2670 (($ (-143)) 9)) (-2301 (($ (-143)) 8)) (-2217 (((-790) $) 23) (($ (-143)) 16)) (-2273 (($ (-143)) 10)) (-1543 (((-108) $ $) NIL))) +(((-801) (-13 (-1011) (-10 -8 (-15 -2301 ($ (-143))) (-15 -2670 ($ (-143))) (-15 -2273 ($ (-143))) (-15 -2862 ($ (-143))) (-15 -1798 ($ (-143))) (-15 -3676 ((-143) $)) (-15 -4060 ((-519) $)) (-15 -2217 ($ (-143)))))) (T -801)) +((-2301 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801)))) (-2273 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801)))) (-2862 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801)))) (-1798 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-801)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-801)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801))))) +(-13 (-1011) (-10 -8 (-15 -2301 ($ (-143))) (-15 -2670 ($ (-143))) (-15 -2273 ($ (-143))) (-15 -2862 ($ (-143))) (-15 -1798 ($ (-143))) (-15 -3676 ((-143) $)) (-15 -4060 ((-519) $)) (-15 -2217 ($ (-143))))) +((-2217 (((-288 (-519)) (-379 (-879 (-47)))) 21) (((-288 (-519)) (-879 (-47))) 16))) +(((-802) (-10 -7 (-15 -2217 ((-288 (-519)) (-879 (-47)))) (-15 -2217 ((-288 (-519)) (-379 (-879 (-47))))))) (T -802)) +((-2217 (*1 *2 *3) (-12 (-5 *3 (-379 (-879 (-47)))) (-5 *2 (-288 (-519))) (-5 *1 (-802)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-879 (-47))) (-5 *2 (-288 (-519))) (-5 *1 (-802))))) +(-10 -7 (-15 -2217 ((-288 (-519)) (-879 (-47)))) (-15 -2217 ((-288 (-519)) (-379 (-879 (-47)))))) +((-1405 (((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)) 14))) +(((-803 |#1| |#2|) (-10 -7 (-15 -1405 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)))) (-1117) (-1117)) (T -803)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6))))) +(-10 -7 (-15 -1405 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)))) +((-3833 (($ |#1| |#1|) 8)) (-3143 ((|#1| $ (-705)) 10))) +(((-804 |#1|) (-10 -8 (-15 -3833 ($ |#1| |#1|)) (-15 -3143 (|#1| $ (-705)))) (-1117)) (T -804)) +((-3143 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *1 (-804 *2)) (-4 *2 (-1117)))) (-3833 (*1 *1 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1117))))) +(-10 -8 (-15 -3833 ($ |#1| |#1|)) (-15 -3143 (|#1| $ (-705)))) +((-1405 (((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)) 14))) +(((-805 |#1| |#2|) (-10 -7 (-15 -1405 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)))) (-1117) (-1117)) (T -805)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6))))) +(-10 -7 (-15 -1405 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)))) +((-3833 (($ |#1| |#1| |#1|) 8)) (-3143 ((|#1| $ (-705)) 10))) +(((-806 |#1|) (-10 -8 (-15 -3833 ($ |#1| |#1| |#1|)) (-15 -3143 (|#1| $ (-705)))) (-1117)) (T -806)) +((-3143 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *1 (-806 *2)) (-4 *2 (-1117)))) (-3833 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1117))))) +(-10 -8 (-15 -3833 ($ |#1| |#1| |#1|)) (-15 -3143 (|#1| $ (-705)))) +((-1692 (((-585 (-1087)) (-1065)) 8))) +(((-807) (-10 -7 (-15 -1692 ((-585 (-1087)) (-1065))))) (T -807)) +((-1692 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-585 (-1087))) (-5 *1 (-807))))) +(-10 -7 (-15 -1692 ((-585 (-1087)) (-1065)))) +((-1405 (((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|)) 14))) +(((-808 |#1| |#2|) (-10 -7 (-15 -1405 ((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|)))) (-1117) (-1117)) (T -808)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-809 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-809 *6)) (-5 *1 (-808 *5 *6))))) +(-10 -7 (-15 -1405 ((-809 |#2|) (-1 |#2| |#1|) (-809 |#1|)))) +((-1758 (($ |#1| |#1| |#1|) 8)) (-3143 ((|#1| $ (-705)) 10))) +(((-809 |#1|) (-10 -8 (-15 -1758 ($ |#1| |#1| |#1|)) (-15 -3143 (|#1| $ (-705)))) (-1117)) (T -809)) +((-3143 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *1 (-809 *2)) (-4 *2 (-1117)))) (-1758 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-809 *2)) (-4 *2 (-1117))))) +(-10 -8 (-15 -1758 ($ |#1| |#1| |#1|)) (-15 -3143 (|#1| $ (-705)))) +((-3575 (((-1063 (-585 (-519))) (-585 (-519)) (-1063 (-585 (-519)))) 32)) (-2444 (((-1063 (-585 (-519))) (-585 (-519)) (-585 (-519))) 28)) (-3895 (((-1063 (-585 (-519))) (-585 (-519))) 41) (((-1063 (-585 (-519))) (-585 (-519)) (-585 (-519))) 40)) (-2778 (((-1063 (-585 (-519))) (-519)) 42)) (-2868 (((-1063 (-585 (-519))) (-519) (-519)) 22) (((-1063 (-585 (-519))) (-519)) 16) (((-1063 (-585 (-519))) (-519) (-519) (-519)) 12)) (-1839 (((-1063 (-585 (-519))) (-1063 (-585 (-519)))) 26)) (-3333 (((-585 (-519)) (-585 (-519))) 25))) +(((-810) (-10 -7 (-15 -2868 ((-1063 (-585 (-519))) (-519) (-519) (-519))) (-15 -2868 ((-1063 (-585 (-519))) (-519))) (-15 -2868 ((-1063 (-585 (-519))) (-519) (-519))) (-15 -3333 ((-585 (-519)) (-585 (-519)))) (-15 -1839 ((-1063 (-585 (-519))) (-1063 (-585 (-519))))) (-15 -2444 ((-1063 (-585 (-519))) (-585 (-519)) (-585 (-519)))) (-15 -3575 ((-1063 (-585 (-519))) (-585 (-519)) (-1063 (-585 (-519))))) (-15 -3895 ((-1063 (-585 (-519))) (-585 (-519)) (-585 (-519)))) (-15 -3895 ((-1063 (-585 (-519))) (-585 (-519)))) (-15 -2778 ((-1063 (-585 (-519))) (-519))))) (T -810)) +((-2778 (*1 *2 *3) (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) (-5 *3 (-519)))) (-3895 (*1 *2 *3) (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) (-5 *3 (-585 (-519))))) (-3895 (*1 *2 *3 *3) (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) (-5 *3 (-585 (-519))))) (-3575 (*1 *2 *3 *2) (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *3 (-585 (-519))) (-5 *1 (-810)))) (-2444 (*1 *2 *3 *3) (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) (-5 *3 (-585 (-519))))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)))) (-3333 (*1 *2 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-810)))) (-2868 (*1 *2 *3 *3) (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) (-5 *3 (-519)))) (-2868 (*1 *2 *3) (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) (-5 *3 (-519)))) (-2868 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) (-5 *3 (-519))))) +(-10 -7 (-15 -2868 ((-1063 (-585 (-519))) (-519) (-519) (-519))) (-15 -2868 ((-1063 (-585 (-519))) (-519))) (-15 -2868 ((-1063 (-585 (-519))) (-519) (-519))) (-15 -3333 ((-585 (-519)) (-585 (-519)))) (-15 -1839 ((-1063 (-585 (-519))) (-1063 (-585 (-519))))) (-15 -2444 ((-1063 (-585 (-519))) (-585 (-519)) (-585 (-519)))) (-15 -3575 ((-1063 (-585 (-519))) (-585 (-519)) (-1063 (-585 (-519))))) (-15 -3895 ((-1063 (-585 (-519))) (-585 (-519)) (-585 (-519)))) (-15 -3895 ((-1063 (-585 (-519))) (-585 (-519)))) (-15 -2778 ((-1063 (-585 (-519))) (-519)))) +((-1446 (((-819 (-351)) $) 9 (|has| |#1| (-560 (-819 (-351))))) (((-819 (-519)) $) 8 (|has| |#1| (-560 (-819 (-519))))))) +(((-811 |#1|) (-1194) (-1117)) (T -811)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-560 (-819 (-519)))) (-6 (-560 (-819 (-519)))) |%noBranch|) (IF (|has| |t#1| (-560 (-819 (-351)))) (-6 (-560 (-819 (-351)))) |%noBranch|))) +(((-560 (-819 (-351))) |has| |#1| (-560 (-819 (-351)))) ((-560 (-819 (-519))) |has| |#1| (-560 (-819 (-519))))) +((-1430 (((-108) $ $) NIL)) (-1822 (($) 14)) (-3516 (($ (-816 |#1| |#2|) (-816 |#1| |#3|)) 27)) (-3843 (((-816 |#1| |#3|) $) 16)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2037 (((-108) $) 22)) (-3134 (($) 19)) (-2217 (((-790) $) 30)) (-2600 (((-816 |#1| |#2|) $) 15)) (-1543 (((-108) $ $) 25))) +(((-812 |#1| |#2| |#3|) (-13 (-1011) (-10 -8 (-15 -2037 ((-108) $)) (-15 -3134 ($)) (-15 -1822 ($)) (-15 -3516 ($ (-816 |#1| |#2|) (-816 |#1| |#3|))) (-15 -2600 ((-816 |#1| |#2|) $)) (-15 -3843 ((-816 |#1| |#3|) $)))) (-1011) (-1011) (-605 |#2|)) (T -812)) +((-2037 (*1 *2 *1) (-12 (-4 *4 (-1011)) (-5 *2 (-108)) (-5 *1 (-812 *3 *4 *5)) (-4 *3 (-1011)) (-4 *5 (-605 *4)))) (-3134 (*1 *1) (-12 (-4 *3 (-1011)) (-5 *1 (-812 *2 *3 *4)) (-4 *2 (-1011)) (-4 *4 (-605 *3)))) (-1822 (*1 *1) (-12 (-4 *3 (-1011)) (-5 *1 (-812 *2 *3 *4)) (-4 *2 (-1011)) (-4 *4 (-605 *3)))) (-3516 (*1 *1 *2 *3) (-12 (-5 *2 (-816 *4 *5)) (-5 *3 (-816 *4 *6)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-605 *5)) (-5 *1 (-812 *4 *5 *6)))) (-2600 (*1 *2 *1) (-12 (-4 *4 (-1011)) (-5 *2 (-816 *3 *4)) (-5 *1 (-812 *3 *4 *5)) (-4 *3 (-1011)) (-4 *5 (-605 *4)))) (-3843 (*1 *2 *1) (-12 (-4 *4 (-1011)) (-5 *2 (-816 *3 *5)) (-5 *1 (-812 *3 *4 *5)) (-4 *3 (-1011)) (-4 *5 (-605 *4))))) +(-13 (-1011) (-10 -8 (-15 -2037 ((-108) $)) (-15 -3134 ($)) (-15 -1822 ($)) (-15 -3516 ($ (-816 |#1| |#2|) (-816 |#1| |#3|))) (-15 -2600 ((-816 |#1| |#2|) $)) (-15 -3843 ((-816 |#1| |#3|) $)))) +((-1430 (((-108) $ $) 7)) (-4068 (((-816 |#1| $) $ (-819 |#1|) (-816 |#1| $)) 13)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1543 (((-108) $ $) 6))) +(((-813 |#1|) (-1194) (-1011)) (T -813)) +((-4068 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-816 *4 *1)) (-5 *3 (-819 *4)) (-4 *1 (-813 *4)) (-4 *4 (-1011))))) +(-13 (-1011) (-10 -8 (-15 -4068 ((-816 |t#1| $) $ (-819 |t#1|) (-816 |t#1| $))))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-2917 (((-108) (-585 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-2234 (((-816 |#1| |#2|) |#2| |#3|) 43 (-12 (-2445 (|has| |#2| (-959 (-1082)))) (-2445 (|has| |#2| (-968))))) (((-585 (-267 (-879 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-968)) (-2445 (|has| |#2| (-959 (-1082)))))) (((-585 (-267 |#2|)) |#2| |#3|) 35 (|has| |#2| (-959 (-1082)))) (((-812 |#1| |#2| (-585 |#2|)) (-585 |#2|) |#3|) 21))) +(((-814 |#1| |#2| |#3|) (-10 -7 (-15 -2917 ((-108) |#2| |#3|)) (-15 -2917 ((-108) (-585 |#2|) |#3|)) (-15 -2234 ((-812 |#1| |#2| (-585 |#2|)) (-585 |#2|) |#3|)) (IF (|has| |#2| (-959 (-1082))) (-15 -2234 ((-585 (-267 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-968)) (-15 -2234 ((-585 (-267 (-879 |#2|))) |#2| |#3|)) (-15 -2234 ((-816 |#1| |#2|) |#2| |#3|))))) (-1011) (-813 |#1|) (-560 (-819 |#1|))) (T -814)) +((-2234 (*1 *2 *3 *4) (-12 (-4 *5 (-1011)) (-5 *2 (-816 *5 *3)) (-5 *1 (-814 *5 *3 *4)) (-2445 (-4 *3 (-959 (-1082)))) (-2445 (-4 *3 (-968))) (-4 *3 (-813 *5)) (-4 *4 (-560 (-819 *5))))) (-2234 (*1 *2 *3 *4) (-12 (-4 *5 (-1011)) (-5 *2 (-585 (-267 (-879 *3)))) (-5 *1 (-814 *5 *3 *4)) (-4 *3 (-968)) (-2445 (-4 *3 (-959 (-1082)))) (-4 *3 (-813 *5)) (-4 *4 (-560 (-819 *5))))) (-2234 (*1 *2 *3 *4) (-12 (-4 *5 (-1011)) (-5 *2 (-585 (-267 *3))) (-5 *1 (-814 *5 *3 *4)) (-4 *3 (-959 (-1082))) (-4 *3 (-813 *5)) (-4 *4 (-560 (-819 *5))))) (-2234 (*1 *2 *3 *4) (-12 (-4 *5 (-1011)) (-4 *6 (-813 *5)) (-5 *2 (-812 *5 *6 (-585 *6))) (-5 *1 (-814 *5 *6 *4)) (-5 *3 (-585 *6)) (-4 *4 (-560 (-819 *5))))) (-2917 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-4 *6 (-813 *5)) (-4 *5 (-1011)) (-5 *2 (-108)) (-5 *1 (-814 *5 *6 *4)) (-4 *4 (-560 (-819 *5))))) (-2917 (*1 *2 *3 *4) (-12 (-4 *5 (-1011)) (-5 *2 (-108)) (-5 *1 (-814 *5 *3 *4)) (-4 *3 (-813 *5)) (-4 *4 (-560 (-819 *5)))))) +(-10 -7 (-15 -2917 ((-108) |#2| |#3|)) (-15 -2917 ((-108) (-585 |#2|) |#3|)) (-15 -2234 ((-812 |#1| |#2| (-585 |#2|)) (-585 |#2|) |#3|)) (IF (|has| |#2| (-959 (-1082))) (-15 -2234 ((-585 (-267 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-968)) (-15 -2234 ((-585 (-267 (-879 |#2|))) |#2| |#3|)) (-15 -2234 ((-816 |#1| |#2|) |#2| |#3|))))) +((-1405 (((-816 |#1| |#3|) (-1 |#3| |#2|) (-816 |#1| |#2|)) 21))) +(((-815 |#1| |#2| |#3|) (-10 -7 (-15 -1405 ((-816 |#1| |#3|) (-1 |#3| |#2|) (-816 |#1| |#2|)))) (-1011) (-1011) (-1011)) (T -815)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-816 *5 *6)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-816 *5 *7)) (-5 *1 (-815 *5 *6 *7))))) +(-10 -7 (-15 -1405 ((-816 |#1| |#3|) (-1 |#3| |#2|) (-816 |#1| |#2|)))) +((-1430 (((-108) $ $) NIL)) (-2304 (($ $ $) 37)) (-1688 (((-3 (-108) "failed") $ (-819 |#1|)) 34)) (-1822 (($) 11)) (-1266 (((-1065) $) NIL)) (-2388 (($ (-819 |#1|) |#2| $) 20)) (-4139 (((-1029) $) NIL)) (-1804 (((-3 |#2| "failed") (-819 |#1|) $) 48)) (-2037 (((-108) $) 14)) (-3134 (($) 12)) (-2002 (((-585 (-2 (|:| -2583 (-1082)) (|:| -3100 |#2|))) $) 25)) (-2228 (($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 |#2|)))) 23)) (-2217 (((-790) $) 42)) (-2278 (($ (-819 |#1|) |#2| $ |#2|) 46)) (-2040 (($ (-819 |#1|) |#2| $) 45)) (-1543 (((-108) $ $) 39))) +(((-816 |#1| |#2|) (-13 (-1011) (-10 -8 (-15 -2037 ((-108) $)) (-15 -3134 ($)) (-15 -1822 ($)) (-15 -2304 ($ $ $)) (-15 -1804 ((-3 |#2| "failed") (-819 |#1|) $)) (-15 -2040 ($ (-819 |#1|) |#2| $)) (-15 -2388 ($ (-819 |#1|) |#2| $)) (-15 -2278 ($ (-819 |#1|) |#2| $ |#2|)) (-15 -2002 ((-585 (-2 (|:| -2583 (-1082)) (|:| -3100 |#2|))) $)) (-15 -2228 ($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 |#2|))))) (-15 -1688 ((-3 (-108) "failed") $ (-819 |#1|))))) (-1011) (-1011)) (T -816)) +((-2037 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-816 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)))) (-3134 (*1 *1) (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011)))) (-1822 (*1 *1) (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011)))) (-2304 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011)))) (-1804 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-819 *4)) (-4 *4 (-1011)) (-4 *2 (-1011)) (-5 *1 (-816 *4 *2)))) (-2040 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-819 *4)) (-4 *4 (-1011)) (-5 *1 (-816 *4 *3)) (-4 *3 (-1011)))) (-2388 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-819 *4)) (-4 *4 (-1011)) (-5 *1 (-816 *4 *3)) (-4 *3 (-1011)))) (-2278 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-819 *4)) (-4 *4 (-1011)) (-5 *1 (-816 *4 *3)) (-4 *3 (-1011)))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 *4)))) (-5 *1 (-816 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 *4)))) (-4 *4 (-1011)) (-5 *1 (-816 *3 *4)) (-4 *3 (-1011)))) (-1688 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-819 *4)) (-4 *4 (-1011)) (-5 *2 (-108)) (-5 *1 (-816 *4 *5)) (-4 *5 (-1011))))) +(-13 (-1011) (-10 -8 (-15 -2037 ((-108) $)) (-15 -3134 ($)) (-15 -1822 ($)) (-15 -2304 ($ $ $)) (-15 -1804 ((-3 |#2| "failed") (-819 |#1|) $)) (-15 -2040 ($ (-819 |#1|) |#2| $)) (-15 -2388 ($ (-819 |#1|) |#2| $)) (-15 -2278 ($ (-819 |#1|) |#2| $ |#2|)) (-15 -2002 ((-585 (-2 (|:| -2583 (-1082)) (|:| -3100 |#2|))) $)) (-15 -2228 ($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 |#2|))))) (-15 -1688 ((-3 (-108) "failed") $ (-819 |#1|))))) +((-1875 (((-819 |#1|) (-819 |#1|) (-585 (-1082)) (-1 (-108) (-585 |#2|))) 30) (((-819 |#1|) (-819 |#1|) (-585 (-1 (-108) |#2|))) 42) (((-819 |#1|) (-819 |#1|) (-1 (-108) |#2|)) 33)) (-1688 (((-108) (-585 |#2|) (-819 |#1|)) 39) (((-108) |#2| (-819 |#1|)) 35)) (-4003 (((-1 (-108) |#2|) (-819 |#1|)) 14)) (-2116 (((-585 |#2|) (-819 |#1|)) 23)) (-2441 (((-819 |#1|) (-819 |#1|) |#2|) 19))) +(((-817 |#1| |#2|) (-10 -7 (-15 -1875 ((-819 |#1|) (-819 |#1|) (-1 (-108) |#2|))) (-15 -1875 ((-819 |#1|) (-819 |#1|) (-585 (-1 (-108) |#2|)))) (-15 -1875 ((-819 |#1|) (-819 |#1|) (-585 (-1082)) (-1 (-108) (-585 |#2|)))) (-15 -4003 ((-1 (-108) |#2|) (-819 |#1|))) (-15 -1688 ((-108) |#2| (-819 |#1|))) (-15 -1688 ((-108) (-585 |#2|) (-819 |#1|))) (-15 -2441 ((-819 |#1|) (-819 |#1|) |#2|)) (-15 -2116 ((-585 |#2|) (-819 |#1|)))) (-1011) (-1117)) (T -817)) +((-2116 (*1 *2 *3) (-12 (-5 *3 (-819 *4)) (-4 *4 (-1011)) (-5 *2 (-585 *5)) (-5 *1 (-817 *4 *5)) (-4 *5 (-1117)))) (-2441 (*1 *2 *2 *3) (-12 (-5 *2 (-819 *4)) (-4 *4 (-1011)) (-5 *1 (-817 *4 *3)) (-4 *3 (-1117)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-819 *5)) (-4 *5 (-1011)) (-4 *6 (-1117)) (-5 *2 (-108)) (-5 *1 (-817 *5 *6)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *4 (-819 *5)) (-4 *5 (-1011)) (-5 *2 (-108)) (-5 *1 (-817 *5 *3)) (-4 *3 (-1117)))) (-4003 (*1 *2 *3) (-12 (-5 *3 (-819 *4)) (-4 *4 (-1011)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-817 *4 *5)) (-4 *5 (-1117)))) (-1875 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-819 *5)) (-5 *3 (-585 (-1082))) (-5 *4 (-1 (-108) (-585 *6))) (-4 *5 (-1011)) (-4 *6 (-1117)) (-5 *1 (-817 *5 *6)))) (-1875 (*1 *2 *2 *3) (-12 (-5 *2 (-819 *4)) (-5 *3 (-585 (-1 (-108) *5))) (-4 *4 (-1011)) (-4 *5 (-1117)) (-5 *1 (-817 *4 *5)))) (-1875 (*1 *2 *2 *3) (-12 (-5 *2 (-819 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1011)) (-4 *5 (-1117)) (-5 *1 (-817 *4 *5))))) +(-10 -7 (-15 -1875 ((-819 |#1|) (-819 |#1|) (-1 (-108) |#2|))) (-15 -1875 ((-819 |#1|) (-819 |#1|) (-585 (-1 (-108) |#2|)))) (-15 -1875 ((-819 |#1|) (-819 |#1|) (-585 (-1082)) (-1 (-108) (-585 |#2|)))) (-15 -4003 ((-1 (-108) |#2|) (-819 |#1|))) (-15 -1688 ((-108) |#2| (-819 |#1|))) (-15 -1688 ((-108) (-585 |#2|) (-819 |#1|))) (-15 -2441 ((-819 |#1|) (-819 |#1|) |#2|)) (-15 -2116 ((-585 |#2|) (-819 |#1|)))) +((-1405 (((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|)) 17))) +(((-818 |#1| |#2|) (-10 -7 (-15 -1405 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|)))) (-1011) (-1011)) (T -818)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-5 *2 (-819 *6)) (-5 *1 (-818 *5 *6))))) +(-10 -7 (-15 -1405 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|)))) +((-1430 (((-108) $ $) NIL)) (-3074 (($ $ (-585 (-51))) 63)) (-4083 (((-585 $) $) 117)) (-1923 (((-2 (|:| |var| (-585 (-1082))) (|:| |pred| (-51))) $) 23)) (-1465 (((-108) $) 30)) (-3716 (($ $ (-585 (-1082)) (-51)) 25)) (-3071 (($ $ (-585 (-51))) 62)) (-1301 (((-3 |#1| "failed") $) 60) (((-3 (-1082) "failed") $) 139)) (-1499 ((|#1| $) 56) (((-1082) $) NIL)) (-1455 (($ $) 107)) (-1527 (((-108) $) 46)) (-2335 (((-585 (-51)) $) 44)) (-3153 (($ (-1082) (-108) (-108) (-108)) 64)) (-1359 (((-3 (-585 $) "failed") (-585 $)) 71)) (-3678 (((-108) $) 49)) (-2238 (((-108) $) 48)) (-1266 (((-1065) $) NIL)) (-3499 (((-3 (-585 $) "failed") $) 35)) (-4067 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-3785 (((-3 (-2 (|:| |val| $) (|:| -1690 $)) "failed") $) 82)) (-2100 (((-3 (-585 $) "failed") $) 32)) (-3728 (((-3 (-585 $) "failed") $ (-110)) 106) (((-3 (-2 (|:| -1435 (-110)) (|:| |arg| (-585 $))) "failed") $) 94)) (-4032 (((-3 (-585 $) "failed") $) 36)) (-2669 (((-3 (-2 (|:| |val| $) (|:| -1690 (-705))) "failed") $) 39)) (-2932 (((-108) $) 29)) (-4139 (((-1029) $) NIL)) (-2120 (((-108) $) 21)) (-3767 (((-108) $) 45)) (-3765 (((-585 (-51)) $) 110)) (-2638 (((-108) $) 47)) (-2598 (($ (-110) (-585 $)) 91)) (-1253 (((-705) $) 28)) (-2449 (($ $) 61)) (-1446 (($ (-585 $)) 58)) (-2308 (((-108) $) 26)) (-2217 (((-790) $) 51) (($ |#1|) 18) (($ (-1082)) 65)) (-2441 (($ $ (-51)) 109)) (-3602 (($) 90 T CONST)) (-3611 (($) 72 T CONST)) (-1543 (((-108) $ $) 78)) (-1632 (($ $ $) 99)) (-1614 (($ $ $) 103)) (** (($ $ (-705)) 98) (($ $ $) 52)) (* (($ $ $) 104))) +(((-819 |#1|) (-13 (-1011) (-959 |#1|) (-959 (-1082)) (-10 -8 (-15 0 ($) -2730) (-15 1 ($) -2730) (-15 -2100 ((-3 (-585 $) "failed") $)) (-15 -3499 ((-3 (-585 $) "failed") $)) (-15 -3728 ((-3 (-585 $) "failed") $ (-110))) (-15 -3728 ((-3 (-2 (|:| -1435 (-110)) (|:| |arg| (-585 $))) "failed") $)) (-15 -2669 ((-3 (-2 (|:| |val| $) (|:| -1690 (-705))) "failed") $)) (-15 -4067 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4032 ((-3 (-585 $) "failed") $)) (-15 -3785 ((-3 (-2 (|:| |val| $) (|:| -1690 $)) "failed") $)) (-15 -2598 ($ (-110) (-585 $))) (-15 -1614 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-705))) (-15 ** ($ $ $)) (-15 -1632 ($ $ $)) (-15 -1253 ((-705) $)) (-15 -1446 ($ (-585 $))) (-15 -2449 ($ $)) (-15 -2932 ((-108) $)) (-15 -1527 ((-108) $)) (-15 -1465 ((-108) $)) (-15 -2308 ((-108) $)) (-15 -2638 ((-108) $)) (-15 -2238 ((-108) $)) (-15 -3678 ((-108) $)) (-15 -3767 ((-108) $)) (-15 -2335 ((-585 (-51)) $)) (-15 -3071 ($ $ (-585 (-51)))) (-15 -3074 ($ $ (-585 (-51)))) (-15 -3153 ($ (-1082) (-108) (-108) (-108))) (-15 -3716 ($ $ (-585 (-1082)) (-51))) (-15 -1923 ((-2 (|:| |var| (-585 (-1082))) (|:| |pred| (-51))) $)) (-15 -2120 ((-108) $)) (-15 -1455 ($ $)) (-15 -2441 ($ $ (-51))) (-15 -3765 ((-585 (-51)) $)) (-15 -4083 ((-585 $) $)) (-15 -1359 ((-3 (-585 $) "failed") (-585 $))))) (-1011)) (T -819)) +((-3602 (*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) (-3611 (*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) (-2100 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-3499 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-3728 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-585 (-819 *4))) (-5 *1 (-819 *4)) (-4 *4 (-1011)))) (-3728 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1435 (-110)) (|:| |arg| (-585 (-819 *3))))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-2669 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-819 *3)) (|:| -1690 (-705)))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-4067 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-819 *3)) (|:| |den| (-819 *3)))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-4032 (*1 *2 *1) (|partial| -12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-3785 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-819 *3)) (|:| -1690 (-819 *3)))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-2598 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-585 (-819 *4))) (-5 *1 (-819 *4)) (-4 *4 (-1011)))) (-1614 (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) (-1632 (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-2449 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-1465 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-3071 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-3074 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-3153 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-108)) (-5 *1 (-819 *4)) (-4 *4 (-1011)))) (-3716 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-51)) (-5 *1 (-819 *4)) (-4 *4 (-1011)))) (-1923 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-585 (-1082))) (|:| |pred| (-51)))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-1455 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-585 (-51))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) (-1359 (*1 *2 *2) (|partial| -12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(-13 (-1011) (-959 |#1|) (-959 (-1082)) (-10 -8 (-15 (-3602) ($) -2730) (-15 (-3611) ($) -2730) (-15 -2100 ((-3 (-585 $) "failed") $)) (-15 -3499 ((-3 (-585 $) "failed") $)) (-15 -3728 ((-3 (-585 $) "failed") $ (-110))) (-15 -3728 ((-3 (-2 (|:| -1435 (-110)) (|:| |arg| (-585 $))) "failed") $)) (-15 -2669 ((-3 (-2 (|:| |val| $) (|:| -1690 (-705))) "failed") $)) (-15 -4067 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4032 ((-3 (-585 $) "failed") $)) (-15 -3785 ((-3 (-2 (|:| |val| $) (|:| -1690 $)) "failed") $)) (-15 -2598 ($ (-110) (-585 $))) (-15 -1614 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-705))) (-15 ** ($ $ $)) (-15 -1632 ($ $ $)) (-15 -1253 ((-705) $)) (-15 -1446 ($ (-585 $))) (-15 -2449 ($ $)) (-15 -2932 ((-108) $)) (-15 -1527 ((-108) $)) (-15 -1465 ((-108) $)) (-15 -2308 ((-108) $)) (-15 -2638 ((-108) $)) (-15 -2238 ((-108) $)) (-15 -3678 ((-108) $)) (-15 -3767 ((-108) $)) (-15 -2335 ((-585 (-51)) $)) (-15 -3071 ($ $ (-585 (-51)))) (-15 -3074 ($ $ (-585 (-51)))) (-15 -3153 ($ (-1082) (-108) (-108) (-108))) (-15 -3716 ($ $ (-585 (-1082)) (-51))) (-15 -1923 ((-2 (|:| |var| (-585 (-1082))) (|:| |pred| (-51))) $)) (-15 -2120 ((-108) $)) (-15 -1455 ($ $)) (-15 -2441 ($ $ (-51))) (-15 -3765 ((-585 (-51)) $)) (-15 -4083 ((-585 $) $)) (-15 -1359 ((-3 (-585 $) "failed") (-585 $))))) +((-1430 (((-108) $ $) NIL)) (-4096 (((-585 |#1|) $) 16)) (-2465 (((-108) $) 38)) (-1301 (((-3 (-610 |#1|) "failed") $) 41)) (-1499 (((-610 |#1|) $) 39)) (-2343 (($ $) 18)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-2568 (((-705) $) 45)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 (((-610 |#1|) $) 17)) (-2217 (((-790) $) 37) (($ (-610 |#1|)) 21) (((-754 |#1|) $) 27) (($ |#1|) 20)) (-3611 (($) 8 T CONST)) (-3613 (((-585 (-610 |#1|)) $) 23)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 11)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 48))) +(((-820 |#1|) (-13 (-782) (-959 (-610 |#1|)) (-10 -8 (-15 1 ($) -2730) (-15 -2217 ((-754 |#1|) $)) (-15 -2217 ($ |#1|)) (-15 -2331 ((-610 |#1|) $)) (-15 -2568 ((-705) $)) (-15 -3613 ((-585 (-610 |#1|)) $)) (-15 -2343 ($ $)) (-15 -2465 ((-108) $)) (-15 -4096 ((-585 |#1|) $)))) (-782)) (T -820)) +((-3611 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-782)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-754 *3)) (-5 *1 (-820 *3)) (-4 *3 (-782)))) (-2217 (*1 *1 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-782)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-610 *3)) (-5 *1 (-820 *3)) (-4 *3 (-782)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-820 *3)) (-4 *3 (-782)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-585 (-610 *3))) (-5 *1 (-820 *3)) (-4 *3 (-782)))) (-2343 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-782)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-782)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-820 *3)) (-4 *3 (-782))))) +(-13 (-782) (-959 (-610 |#1|)) (-10 -8 (-15 (-3611) ($) -2730) (-15 -2217 ((-754 |#1|) $)) (-15 -2217 ($ |#1|)) (-15 -2331 ((-610 |#1|) $)) (-15 -2568 ((-705) $)) (-15 -3613 ((-585 (-610 |#1|)) $)) (-15 -2343 ($ $)) (-15 -2465 ((-108) $)) (-15 -4096 ((-585 |#1|) $)))) +((-2613 ((|#1| |#1| |#1|) 20))) +(((-821 |#1| |#2|) (-10 -7 (-15 -2613 (|#1| |#1| |#1|))) (-1139 |#2|) (-968)) (T -821)) +((-2613 (*1 *2 *2 *2) (-12 (-4 *3 (-968)) (-5 *1 (-821 *2 *3)) (-4 *2 (-1139 *3))))) +(-10 -7 (-15 -2613 (|#1| |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-1809 (((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) 14)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1418 (((-957) (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) 13)) (-1543 (((-108) $ $) 6))) +(((-822) (-1194)) (T -822)) +((-1809 (*1 *2 *3 *4) (-12 (-4 *1 (-822)) (-5 *3 (-980)) (-5 *4 (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) (-5 *2 (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)))))) (-1418 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *3 (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) (-5 *2 (-957))))) +(-13 (-1011) (-10 -7 (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| |explanations| (-1065))) (-980) (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201))))) (-15 -1418 ((-957) (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201))))))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-2032 ((|#1| |#1| (-705)) 24)) (-2785 (((-3 |#1| "failed") |#1| |#1|) 23)) (-2285 (((-3 (-2 (|:| -1917 |#1|) (|:| -1931 |#1|)) "failed") |#1| (-705) (-705)) 27) (((-585 |#1|) |#1|) 29))) +(((-823 |#1| |#2|) (-10 -7 (-15 -2285 ((-585 |#1|) |#1|)) (-15 -2285 ((-3 (-2 (|:| -1917 |#1|) (|:| -1931 |#1|)) "failed") |#1| (-705) (-705))) (-15 -2785 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2032 (|#1| |#1| (-705)))) (-1139 |#2|) (-335)) (T -823)) +((-2032 (*1 *2 *2 *3) (-12 (-5 *3 (-705)) (-4 *4 (-335)) (-5 *1 (-823 *2 *4)) (-4 *2 (-1139 *4)))) (-2785 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-335)) (-5 *1 (-823 *2 *3)) (-4 *2 (-1139 *3)))) (-2285 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-705)) (-4 *5 (-335)) (-5 *2 (-2 (|:| -1917 *3) (|:| -1931 *3))) (-5 *1 (-823 *3 *5)) (-4 *3 (-1139 *5)))) (-2285 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-585 *3)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1139 *4))))) +(-10 -7 (-15 -2285 ((-585 |#1|) |#1|)) (-15 -2285 ((-3 (-2 (|:| -1917 |#1|) (|:| -1931 |#1|)) "failed") |#1| (-705) (-705))) (-15 -2785 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2032 (|#1| |#1| (-705)))) +((-3442 (((-957) (-351) (-351) (-351) (-351) (-705) (-705) (-585 (-288 (-351))) (-585 (-585 (-288 (-351)))) (-1065)) 92) (((-957) (-351) (-351) (-351) (-351) (-705) (-705) (-585 (-288 (-351))) (-585 (-585 (-288 (-351)))) (-1065) (-201)) 87) (((-957) (-825) (-980)) 76) (((-957) (-825)) 77)) (-1809 (((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-825) (-980)) 50) (((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-825)) 52))) +(((-824) (-10 -7 (-15 -3442 ((-957) (-825))) (-15 -3442 ((-957) (-825) (-980))) (-15 -3442 ((-957) (-351) (-351) (-351) (-351) (-705) (-705) (-585 (-288 (-351))) (-585 (-585 (-288 (-351)))) (-1065) (-201))) (-15 -3442 ((-957) (-351) (-351) (-351) (-351) (-705) (-705) (-585 (-288 (-351))) (-585 (-585 (-288 (-351)))) (-1065))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-825))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-825) (-980))))) (T -824)) +((-1809 (*1 *2 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-980)) (-5 *2 (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))))) (-5 *1 (-824)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065))))) (-5 *1 (-824)))) (-3442 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-705)) (-5 *6 (-585 (-585 (-288 *3)))) (-5 *7 (-1065)) (-5 *5 (-585 (-288 (-351)))) (-5 *3 (-351)) (-5 *2 (-957)) (-5 *1 (-824)))) (-3442 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-705)) (-5 *6 (-585 (-585 (-288 *3)))) (-5 *7 (-1065)) (-5 *8 (-201)) (-5 *5 (-585 (-288 (-351)))) (-5 *3 (-351)) (-5 *2 (-957)) (-5 *1 (-824)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-980)) (-5 *2 (-957)) (-5 *1 (-824)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-957)) (-5 *1 (-824))))) +(-10 -7 (-15 -3442 ((-957) (-825))) (-15 -3442 ((-957) (-825) (-980))) (-15 -3442 ((-957) (-351) (-351) (-351) (-351) (-705) (-705) (-585 (-288 (-351))) (-585 (-585 (-288 (-351)))) (-1065) (-201))) (-15 -3442 ((-957) (-351) (-351) (-351) (-351) (-705) (-705) (-585 (-288 (-351))) (-585 (-585 (-288 (-351)))) (-1065))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-825))) (-15 -1809 ((-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) (|:| |explanations| (-585 (-1065)))) (-825) (-980)))) +((-1430 (((-108) $ $) NIL)) (-1499 (((-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201))) $) 10)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 12) (($ (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) 9)) (-1543 (((-108) $ $) NIL))) +(((-825) (-13 (-1011) (-10 -8 (-15 -2217 ($ (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201))))) (-15 -2217 ((-790) $)) (-15 -1499 ((-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201))) $))))) (T -825)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-825)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) (-5 *1 (-825)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201)))) (-5 *1 (-825))))) +(-13 (-1011) (-10 -8 (-15 -2217 ($ (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201))))) (-15 -2217 ((-790) $)) (-15 -1499 ((-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| (-585 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-705)) (|:| |boundaryType| (-519)) (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) (|:| |tol| (-201))) $)))) +((-2181 (($ $ |#2|) NIL) (($ $ (-585 |#2|)) 10) (($ $ |#2| (-705)) 12) (($ $ (-585 |#2|) (-585 (-705))) 15)) (-2242 (($ $ |#2|) 16) (($ $ (-585 |#2|)) 18) (($ $ |#2| (-705)) 19) (($ $ (-585 |#2|) (-585 (-705))) 21))) +(((-826 |#1| |#2|) (-10 -8 (-15 -2242 (|#1| |#1| (-585 |#2|) (-585 (-705)))) (-15 -2242 (|#1| |#1| |#2| (-705))) (-15 -2242 (|#1| |#1| (-585 |#2|))) (-15 -2242 (|#1| |#1| |#2|)) (-15 -2181 (|#1| |#1| (-585 |#2|) (-585 (-705)))) (-15 -2181 (|#1| |#1| |#2| (-705))) (-15 -2181 (|#1| |#1| (-585 |#2|))) (-15 -2181 (|#1| |#1| |#2|))) (-827 |#2|) (-1011)) (T -826)) +NIL +(-10 -8 (-15 -2242 (|#1| |#1| (-585 |#2|) (-585 (-705)))) (-15 -2242 (|#1| |#1| |#2| (-705))) (-15 -2242 (|#1| |#1| (-585 |#2|))) (-15 -2242 (|#1| |#1| |#2|)) (-15 -2181 (|#1| |#1| (-585 |#2|) (-585 (-705)))) (-15 -2181 (|#1| |#1| |#2| (-705))) (-15 -2181 (|#1| |#1| (-585 |#2|))) (-15 -2181 (|#1| |#1| |#2|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2181 (($ $ |#1|) 42) (($ $ (-585 |#1|)) 41) (($ $ |#1| (-705)) 40) (($ $ (-585 |#1|) (-585 (-705))) 39)) (-2217 (((-790) $) 11) (($ (-519)) 28)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ |#1|) 38) (($ $ (-585 |#1|)) 37) (($ $ |#1| (-705)) 36) (($ $ (-585 |#1|) (-585 (-705))) 35)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-827 |#1|) (-1194) (-1011)) (T -827)) +((-2181 (*1 *1 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1011)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-827 *3)) (-4 *3 (-1011)))) (-2181 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-827 *2)) (-4 *2 (-1011)))) (-2181 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-705))) (-4 *1 (-827 *4)) (-4 *4 (-1011)))) (-2242 (*1 *1 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1011)))) (-2242 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-827 *3)) (-4 *3 (-1011)))) (-2242 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-827 *2)) (-4 *2 (-1011)))) (-2242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-705))) (-4 *1 (-827 *4)) (-4 *4 (-1011))))) +(-13 (-968) (-10 -8 (-15 -2181 ($ $ |t#1|)) (-15 -2181 ($ $ (-585 |t#1|))) (-15 -2181 ($ $ |t#1| (-705))) (-15 -2181 ($ $ (-585 |t#1|) (-585 (-705)))) (-15 -2242 ($ $ |t#1|)) (-15 -2242 ($ $ (-585 |t#1|))) (-15 -2242 ($ $ |t#1| (-705))) (-15 -2242 ($ $ (-585 |t#1|) (-585 (-705)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 $) . T) ((-661) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3493 ((|#1| $) 26)) (-1473 (((-108) $ (-705)) NIL)) (-2410 ((|#1| $ |#1|) NIL (|has| $ (-6 -4222)))) (-1324 (($ $ $) NIL (|has| $ (-6 -4222)))) (-3861 (($ $ $) NIL (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4222))) (($ $ "left" $) NIL (|has| $ (-6 -4222))) (($ $ "right" $) NIL (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) NIL (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1931 (($ $) 25)) (-1808 (($ |#1|) 12) (($ $ $) 17)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) NIL)) (-3458 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1917 (($ $) 23)) (-1281 (((-585 |#1|) $) NIL)) (-1668 (((-108) $) 20)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1763 (((-519) $ $) NIL)) (-3096 (((-108) $) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-1104 |#1|) $) 9) (((-790) $) 29 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) NIL)) (-2915 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 21 (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-828 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -1808 ($ |#1|)) (-15 -1808 ($ $ $)) (-15 -2217 ((-1104 |#1|) $)))) (-1011)) (T -828)) +((-1808 (*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1011)))) (-1808 (*1 *1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1011)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1011))))) +(-13 (-115 |#1|) (-10 -8 (-15 -1808 ($ |#1|)) (-15 -1808 ($ $ $)) (-15 -2217 ((-1104 |#1|) $)))) +((-2075 ((|#2| (-1049 |#1| |#2|)) 41))) +(((-829 |#1| |#2|) (-10 -7 (-15 -2075 (|#2| (-1049 |#1| |#2|)))) (-848) (-13 (-968) (-10 -7 (-6 (-4223 "*"))))) (T -829)) +((-2075 (*1 *2 *3) (-12 (-5 *3 (-1049 *4 *2)) (-14 *4 (-848)) (-4 *2 (-13 (-968) (-10 -7 (-6 (-4223 "*"))))) (-5 *1 (-829 *4 *2))))) +(-10 -7 (-15 -2075 (|#2| (-1049 |#1| |#2|)))) +((-1430 (((-108) $ $) 7)) (-2249 (($) 20 T CONST)) (-4193 (((-3 $ "failed") $) 16)) (-2806 (((-1013 |#1|) $ |#1|) 35)) (-1568 (((-108) $) 19)) (-2864 (($ $ $) 33 (-3730 (|has| |#1| (-782)) (|has| |#1| (-340))))) (-2489 (($ $ $) 32 (-3730 (|has| |#1| (-782)) (|has| |#1| (-340))))) (-1266 (((-1065) $) 9)) (-3151 (($ $) 27)) (-4139 (((-1029) $) 10)) (-2324 ((|#1| $ |#1|) 37)) (-2598 ((|#1| $ |#1|) 36)) (-3721 (($ (-585 (-585 |#1|))) 38)) (-2298 (($ (-585 |#1|)) 39)) (-3333 (($ $ $) 23)) (-3190 (($ $ $) 22)) (-2217 (((-790) $) 11)) (-3559 (($ $ (-848)) 13) (($ $ (-705)) 17) (($ $ (-519)) 24)) (-3611 (($) 21 T CONST)) (-1586 (((-108) $ $) 30 (-3730 (|has| |#1| (-782)) (|has| |#1| (-340))))) (-1569 (((-108) $ $) 29 (-3730 (|has| |#1| (-782)) (|has| |#1| (-340))))) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 31 (-3730 (|has| |#1| (-782)) (|has| |#1| (-340))))) (-1561 (((-108) $ $) 34)) (-1632 (($ $ $) 26)) (** (($ $ (-848)) 14) (($ $ (-705)) 18) (($ $ (-519)) 25)) (* (($ $ $) 15))) +(((-830 |#1|) (-1194) (-1011)) (T -830)) +((-2298 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-4 *1 (-830 *3)))) (-3721 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1011)) (-4 *1 (-830 *3)))) (-2324 (*1 *2 *1 *2) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1011)))) (-2598 (*1 *2 *1 *2) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1011)))) (-2806 (*1 *2 *1 *3) (-12 (-4 *1 (-830 *3)) (-4 *3 (-1011)) (-5 *2 (-1013 *3)))) (-1561 (*1 *2 *1 *1) (-12 (-4 *1 (-830 *3)) (-4 *3 (-1011)) (-5 *2 (-108))))) +(-13 (-444) (-10 -8 (-15 -2298 ($ (-585 |t#1|))) (-15 -3721 ($ (-585 (-585 |t#1|)))) (-15 -2324 (|t#1| $ |t#1|)) (-15 -2598 (|t#1| $ |t#1|)) (-15 -2806 ((-1013 |t#1|) $ |t#1|)) (-15 -1561 ((-108) $ $)) (IF (|has| |t#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |t#1| (-340)) (-6 (-782)) |%noBranch|))) +(((-97) . T) ((-559 (-790)) . T) ((-444) . T) ((-661) . T) ((-782) -3730 (|has| |#1| (-782)) (|has| |#1| (-340))) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3256 (((-585 (-585 (-705))) $) 108)) (-2215 (((-585 (-705)) (-832 |#1|) $) 130)) (-1514 (((-585 (-705)) (-832 |#1|) $) 131)) (-3539 (((-585 (-832 |#1|)) $) 98)) (-3314 (((-832 |#1|) $ (-519)) 103) (((-832 |#1|) $) 104)) (-2878 (($ (-585 (-832 |#1|))) 110)) (-3709 (((-705) $) 105)) (-2585 (((-1013 (-1013 |#1|)) $) 128)) (-2806 (((-1013 |#1|) $ |#1|) 121) (((-1013 (-1013 |#1|)) $ (-1013 |#1|)) 139) (((-1013 (-585 |#1|)) $ (-585 |#1|)) 142)) (-3777 (((-1013 |#1|) $) 101)) (-1933 (((-108) (-832 |#1|) $) 92)) (-1266 (((-1065) $) NIL)) (-2081 (((-1168) $) 95) (((-1168) $ (-519) (-519)) 143)) (-4139 (((-1029) $) NIL)) (-4195 (((-585 (-832 |#1|)) $) 96)) (-2598 (((-832 |#1|) $ (-705)) 99)) (-4178 (((-705) $) 106)) (-2217 (((-790) $) 119) (((-585 (-832 |#1|)) $) 22) (($ (-585 (-832 |#1|))) 109)) (-3414 (((-585 |#1|) $) 107)) (-1543 (((-108) $ $) 136)) (-1578 (((-108) $ $) 134)) (-1561 (((-108) $ $) 133))) +(((-831 |#1|) (-13 (-1011) (-10 -8 (-15 -2217 ((-585 (-832 |#1|)) $)) (-15 -4195 ((-585 (-832 |#1|)) $)) (-15 -2598 ((-832 |#1|) $ (-705))) (-15 -3314 ((-832 |#1|) $ (-519))) (-15 -3314 ((-832 |#1|) $)) (-15 -3709 ((-705) $)) (-15 -4178 ((-705) $)) (-15 -3414 ((-585 |#1|) $)) (-15 -3539 ((-585 (-832 |#1|)) $)) (-15 -3256 ((-585 (-585 (-705))) $)) (-15 -2217 ($ (-585 (-832 |#1|)))) (-15 -2878 ($ (-585 (-832 |#1|)))) (-15 -2806 ((-1013 |#1|) $ |#1|)) (-15 -2585 ((-1013 (-1013 |#1|)) $)) (-15 -2806 ((-1013 (-1013 |#1|)) $ (-1013 |#1|))) (-15 -2806 ((-1013 (-585 |#1|)) $ (-585 |#1|))) (-15 -1933 ((-108) (-832 |#1|) $)) (-15 -2215 ((-585 (-705)) (-832 |#1|) $)) (-15 -1514 ((-585 (-705)) (-832 |#1|) $)) (-15 -3777 ((-1013 |#1|) $)) (-15 -1561 ((-108) $ $)) (-15 -1578 ((-108) $ $)) (-15 -2081 ((-1168) $)) (-15 -2081 ((-1168) $ (-519) (-519))))) (-1011)) (T -831)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-585 (-832 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-4195 (*1 *2 *1) (-12 (-5 *2 (-585 (-832 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *2 (-832 *4)) (-5 *1 (-831 *4)) (-4 *4 (-1011)))) (-3314 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-832 *4)) (-5 *1 (-831 *4)) (-4 *4 (-1011)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-585 (-832 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-705)))) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-832 *3))) (-4 *3 (-1011)) (-5 *1 (-831 *3)))) (-2878 (*1 *1 *2) (-12 (-5 *2 (-585 (-832 *3))) (-4 *3 (-1011)) (-5 *1 (-831 *3)))) (-2806 (*1 *2 *1 *3) (-12 (-5 *2 (-1013 *3)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-1013 (-1013 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-2806 (*1 *2 *1 *3) (-12 (-4 *4 (-1011)) (-5 *2 (-1013 (-1013 *4))) (-5 *1 (-831 *4)) (-5 *3 (-1013 *4)))) (-2806 (*1 *2 *1 *3) (-12 (-4 *4 (-1011)) (-5 *2 (-1013 (-585 *4))) (-5 *1 (-831 *4)) (-5 *3 (-585 *4)))) (-1933 (*1 *2 *3 *1) (-12 (-5 *3 (-832 *4)) (-4 *4 (-1011)) (-5 *2 (-108)) (-5 *1 (-831 *4)))) (-2215 (*1 *2 *3 *1) (-12 (-5 *3 (-832 *4)) (-4 *4 (-1011)) (-5 *2 (-585 (-705))) (-5 *1 (-831 *4)))) (-1514 (*1 *2 *3 *1) (-12 (-5 *3 (-832 *4)) (-4 *4 (-1011)) (-5 *2 (-585 (-705))) (-5 *1 (-831 *4)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-1013 *3)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-1561 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-1578 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) (-2081 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-831 *4)) (-4 *4 (-1011))))) +(-13 (-1011) (-10 -8 (-15 -2217 ((-585 (-832 |#1|)) $)) (-15 -4195 ((-585 (-832 |#1|)) $)) (-15 -2598 ((-832 |#1|) $ (-705))) (-15 -3314 ((-832 |#1|) $ (-519))) (-15 -3314 ((-832 |#1|) $)) (-15 -3709 ((-705) $)) (-15 -4178 ((-705) $)) (-15 -3414 ((-585 |#1|) $)) (-15 -3539 ((-585 (-832 |#1|)) $)) (-15 -3256 ((-585 (-585 (-705))) $)) (-15 -2217 ($ (-585 (-832 |#1|)))) (-15 -2878 ($ (-585 (-832 |#1|)))) (-15 -2806 ((-1013 |#1|) $ |#1|)) (-15 -2585 ((-1013 (-1013 |#1|)) $)) (-15 -2806 ((-1013 (-1013 |#1|)) $ (-1013 |#1|))) (-15 -2806 ((-1013 (-585 |#1|)) $ (-585 |#1|))) (-15 -1933 ((-108) (-832 |#1|) $)) (-15 -2215 ((-585 (-705)) (-832 |#1|) $)) (-15 -1514 ((-585 (-705)) (-832 |#1|) $)) (-15 -3777 ((-1013 |#1|) $)) (-15 -1561 ((-108) $ $)) (-15 -1578 ((-108) $ $)) (-15 -2081 ((-1168) $)) (-15 -2081 ((-1168) $ (-519) (-519))))) +((-1430 (((-108) $ $) NIL)) (-3276 (((-585 $) (-585 $)) 77)) (-2287 (((-519) $) 60)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) NIL)) (-3709 (((-705) $) 58)) (-2806 (((-1013 |#1|) $ |#1|) 49)) (-1568 (((-108) $) NIL)) (-3164 (((-108) $) 63)) (-4144 (((-705) $) 61)) (-3777 (((-1013 |#1|) $) 42)) (-2864 (($ $ $) NIL (-3730 (|has| |#1| (-340)) (|has| |#1| (-782))))) (-2489 (($ $ $) NIL (-3730 (|has| |#1| (-340)) (|has| |#1| (-782))))) (-1973 (((-2 (|:| |preimage| (-585 |#1|)) (|:| |image| (-585 |#1|))) $) 36)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 93)) (-4139 (((-1029) $) NIL)) (-2216 (((-1013 |#1|) $) 99 (|has| |#1| (-340)))) (-1295 (((-108) $) 59)) (-2324 ((|#1| $ |#1|) 47)) (-2598 ((|#1| $ |#1|) 94)) (-4178 (((-705) $) 44)) (-3721 (($ (-585 (-585 |#1|))) 85)) (-3580 (((-895) $) 53)) (-2298 (($ (-585 |#1|)) 21)) (-3333 (($ $ $) NIL)) (-3190 (($ $ $) NIL)) (-2856 (($ (-585 (-585 |#1|))) 39)) (-3425 (($ (-585 (-585 |#1|))) 88)) (-3359 (($ (-585 |#1|)) 96)) (-2217 (((-790) $) 84) (($ (-585 (-585 |#1|))) 66) (($ (-585 |#1|)) 67)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3611 (($) 16 T CONST)) (-1586 (((-108) $ $) NIL (-3730 (|has| |#1| (-340)) (|has| |#1| (-782))))) (-1569 (((-108) $ $) NIL (-3730 (|has| |#1| (-340)) (|has| |#1| (-782))))) (-1543 (((-108) $ $) 45)) (-1578 (((-108) $ $) NIL (-3730 (|has| |#1| (-340)) (|has| |#1| (-782))))) (-1561 (((-108) $ $) 65)) (-1632 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ $ $) 22))) +(((-832 |#1|) (-13 (-830 |#1|) (-10 -8 (-15 -1973 ((-2 (|:| |preimage| (-585 |#1|)) (|:| |image| (-585 |#1|))) $)) (-15 -2856 ($ (-585 (-585 |#1|)))) (-15 -2217 ($ (-585 (-585 |#1|)))) (-15 -2217 ($ (-585 |#1|))) (-15 -3425 ($ (-585 (-585 |#1|)))) (-15 -4178 ((-705) $)) (-15 -3777 ((-1013 |#1|) $)) (-15 -3580 ((-895) $)) (-15 -3709 ((-705) $)) (-15 -4144 ((-705) $)) (-15 -2287 ((-519) $)) (-15 -1295 ((-108) $)) (-15 -3164 ((-108) $)) (-15 -3276 ((-585 $) (-585 $))) (IF (|has| |#1| (-340)) (-15 -2216 ((-1013 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-504)) (-15 -3359 ($ (-585 |#1|))) (IF (|has| |#1| (-340)) (-15 -3359 ($ (-585 |#1|))) |%noBranch|)))) (-1011)) (T -832)) +((-1973 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-585 *3)) (|:| |image| (-585 *3)))) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) (-2856 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1011)) (-5 *1 (-832 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1011)) (-5 *1 (-832 *3)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-832 *3)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1011)) (-5 *1 (-832 *3)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-1013 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) (-3580 (*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) (-3164 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-585 (-832 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-1013 *3)) (-5 *1 (-832 *3)) (-4 *3 (-340)) (-4 *3 (-1011)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-832 *3))))) +(-13 (-830 |#1|) (-10 -8 (-15 -1973 ((-2 (|:| |preimage| (-585 |#1|)) (|:| |image| (-585 |#1|))) $)) (-15 -2856 ($ (-585 (-585 |#1|)))) (-15 -2217 ($ (-585 (-585 |#1|)))) (-15 -2217 ($ (-585 |#1|))) (-15 -3425 ($ (-585 (-585 |#1|)))) (-15 -4178 ((-705) $)) (-15 -3777 ((-1013 |#1|) $)) (-15 -3580 ((-895) $)) (-15 -3709 ((-705) $)) (-15 -4144 ((-705) $)) (-15 -2287 ((-519) $)) (-15 -1295 ((-108) $)) (-15 -3164 ((-108) $)) (-15 -3276 ((-585 $) (-585 $))) (IF (|has| |#1| (-340)) (-15 -2216 ((-1013 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-504)) (-15 -3359 ($ (-585 |#1|))) (IF (|has| |#1| (-340)) (-15 -3359 ($ (-585 |#1|))) |%noBranch|)))) +((-2795 (((-3 (-585 (-1078 |#4|)) "failed") (-585 (-1078 |#4|)) (-1078 |#4|)) 128)) (-3285 ((|#1|) 76)) (-3277 (((-390 (-1078 |#4|)) (-1078 |#4|)) 137)) (-3762 (((-390 (-1078 |#4|)) (-585 |#3|) (-1078 |#4|)) 68)) (-2495 (((-390 (-1078 |#4|)) (-1078 |#4|)) 147)) (-2611 (((-3 (-585 (-1078 |#4|)) "failed") (-585 (-1078 |#4|)) (-1078 |#4|) |#3|) 92))) +(((-833 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2795 ((-3 (-585 (-1078 |#4|)) "failed") (-585 (-1078 |#4|)) (-1078 |#4|))) (-15 -2495 ((-390 (-1078 |#4|)) (-1078 |#4|))) (-15 -3277 ((-390 (-1078 |#4|)) (-1078 |#4|))) (-15 -3285 (|#1|)) (-15 -2611 ((-3 (-585 (-1078 |#4|)) "failed") (-585 (-1078 |#4|)) (-1078 |#4|) |#3|)) (-15 -3762 ((-390 (-1078 |#4|)) (-585 |#3|) (-1078 |#4|)))) (-836) (-727) (-782) (-876 |#1| |#2| |#3|)) (T -833)) +((-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *7)) (-4 *7 (-782)) (-4 *5 (-836)) (-4 *6 (-727)) (-4 *8 (-876 *5 *6 *7)) (-5 *2 (-390 (-1078 *8))) (-5 *1 (-833 *5 *6 *7 *8)) (-5 *4 (-1078 *8)))) (-2611 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-585 (-1078 *7))) (-5 *3 (-1078 *7)) (-4 *7 (-876 *5 *6 *4)) (-4 *5 (-836)) (-4 *6 (-727)) (-4 *4 (-782)) (-5 *1 (-833 *5 *6 *4 *7)))) (-3285 (*1 *2) (-12 (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-836)) (-5 *1 (-833 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) (-3277 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-876 *4 *5 *6)) (-5 *2 (-390 (-1078 *7))) (-5 *1 (-833 *4 *5 *6 *7)) (-5 *3 (-1078 *7)))) (-2495 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-876 *4 *5 *6)) (-5 *2 (-390 (-1078 *7))) (-5 *1 (-833 *4 *5 *6 *7)) (-5 *3 (-1078 *7)))) (-2795 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1078 *7))) (-5 *3 (-1078 *7)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-836)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-833 *4 *5 *6 *7))))) +(-10 -7 (-15 -2795 ((-3 (-585 (-1078 |#4|)) "failed") (-585 (-1078 |#4|)) (-1078 |#4|))) (-15 -2495 ((-390 (-1078 |#4|)) (-1078 |#4|))) (-15 -3277 ((-390 (-1078 |#4|)) (-1078 |#4|))) (-15 -3285 (|#1|)) (-15 -2611 ((-3 (-585 (-1078 |#4|)) "failed") (-585 (-1078 |#4|)) (-1078 |#4|) |#3|)) (-15 -3762 ((-390 (-1078 |#4|)) (-585 |#3|) (-1078 |#4|)))) +((-2795 (((-3 (-585 (-1078 |#2|)) "failed") (-585 (-1078 |#2|)) (-1078 |#2|)) 36)) (-3285 ((|#1|) 54)) (-3277 (((-390 (-1078 |#2|)) (-1078 |#2|)) 102)) (-3762 (((-390 (-1078 |#2|)) (-1078 |#2|)) 89)) (-2495 (((-390 (-1078 |#2|)) (-1078 |#2|)) 113))) +(((-834 |#1| |#2|) (-10 -7 (-15 -2795 ((-3 (-585 (-1078 |#2|)) "failed") (-585 (-1078 |#2|)) (-1078 |#2|))) (-15 -2495 ((-390 (-1078 |#2|)) (-1078 |#2|))) (-15 -3277 ((-390 (-1078 |#2|)) (-1078 |#2|))) (-15 -3285 (|#1|)) (-15 -3762 ((-390 (-1078 |#2|)) (-1078 |#2|)))) (-836) (-1139 |#1|)) (T -834)) +((-3762 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-1139 *4)) (-5 *2 (-390 (-1078 *5))) (-5 *1 (-834 *4 *5)) (-5 *3 (-1078 *5)))) (-3285 (*1 *2) (-12 (-4 *2 (-836)) (-5 *1 (-834 *2 *3)) (-4 *3 (-1139 *2)))) (-3277 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-1139 *4)) (-5 *2 (-390 (-1078 *5))) (-5 *1 (-834 *4 *5)) (-5 *3 (-1078 *5)))) (-2495 (*1 *2 *3) (-12 (-4 *4 (-836)) (-4 *5 (-1139 *4)) (-5 *2 (-390 (-1078 *5))) (-5 *1 (-834 *4 *5)) (-5 *3 (-1078 *5)))) (-2795 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1078 *5))) (-5 *3 (-1078 *5)) (-4 *5 (-1139 *4)) (-4 *4 (-836)) (-5 *1 (-834 *4 *5))))) +(-10 -7 (-15 -2795 ((-3 (-585 (-1078 |#2|)) "failed") (-585 (-1078 |#2|)) (-1078 |#2|))) (-15 -2495 ((-390 (-1078 |#2|)) (-1078 |#2|))) (-15 -3277 ((-390 (-1078 |#2|)) (-1078 |#2|))) (-15 -3285 (|#1|)) (-15 -3762 ((-390 (-1078 |#2|)) (-1078 |#2|)))) +((-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 39)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 18)) (-3773 (((-3 $ "failed") $) 33))) +(((-835 |#1|) (-10 -8 (-15 -3773 ((-3 |#1| "failed") |#1|)) (-15 -2960 ((-3 (-585 (-1078 |#1|)) "failed") (-585 (-1078 |#1|)) (-1078 |#1|))) (-15 -1715 ((-1078 |#1|) (-1078 |#1|) (-1078 |#1|)))) (-836)) (T -835)) +NIL +(-10 -8 (-15 -3773 ((-3 |#1| "failed") |#1|)) (-15 -2960 ((-3 (-585 (-1078 |#1|)) "failed") (-585 (-1078 |#1|)) (-1078 |#1|))) (-15 -1715 ((-1078 |#1|) (-1078 |#1|) (-1078 |#1|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-1958 (((-390 (-1078 $)) (-1078 $)) 60)) (-4043 (($ $) 51)) (-3093 (((-390 $) $) 52)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 57)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1320 (((-108) $) 53)) (-1568 (((-108) $) 31)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-1863 (((-390 (-1078 $)) (-1078 $)) 58)) (-3966 (((-390 (-1078 $)) (-1078 $)) 59)) (-1921 (((-390 $) $) 50)) (-2261 (((-3 $ "failed") $ $) 42)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 56 (|has| $ (-133)))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43)) (-3773 (((-3 $ "failed") $) 55 (|has| $ (-133)))) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-836) (-1194)) (T -836)) +((-1715 (*1 *2 *2 *2) (-12 (-5 *2 (-1078 *1)) (-4 *1 (-836)))) (-1958 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *2 (-390 (-1078 *1))) (-5 *3 (-1078 *1)))) (-3966 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *2 (-390 (-1078 *1))) (-5 *3 (-1078 *1)))) (-1863 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *2 (-390 (-1078 *1))) (-5 *3 (-1078 *1)))) (-2960 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-585 (-1078 *1))) (-5 *3 (-1078 *1)) (-4 *1 (-836)))) (-1376 (*1 *2 *3) (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-133)) (-4 *1 (-836)) (-5 *2 (-1163 *1)))) (-3773 (*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-836))))) +(-13 (-1121) (-10 -8 (-15 -1958 ((-390 (-1078 $)) (-1078 $))) (-15 -3966 ((-390 (-1078 $)) (-1078 $))) (-15 -1863 ((-390 (-1078 $)) (-1078 $))) (-15 -1715 ((-1078 $) (-1078 $) (-1078 $))) (-15 -2960 ((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $))) (IF (|has| $ (-133)) (PROGN (-15 -1376 ((-3 (-1163 $) "failed") (-625 $))) (-15 -3773 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-157) . T) ((-264) . T) ((-423) . T) ((-511) . T) ((-587 $) . T) ((-652 $) . T) ((-661) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1121) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3839 (((-108) $) NIL)) (-1922 (((-705)) NIL)) (-1871 (($ $ (-848)) NIL (|has| $ (-340))) (($ $) NIL)) (-3263 (((-1091 (-848) (-705)) (-519)) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-1642 (((-705)) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 $ "failed") $) NIL)) (-1499 (($ $) NIL)) (-2528 (($ (-1163 $)) NIL)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1625 (($) NIL)) (-4156 (((-108) $) NIL)) (-3824 (($ $) NIL) (($ $ (-705)) NIL)) (-1320 (((-108) $) NIL)) (-3709 (((-768 (-848)) $) NIL) (((-848) $) NIL)) (-1568 (((-108) $) NIL)) (-3637 (($) NIL (|has| $ (-340)))) (-2877 (((-108) $) NIL (|has| $ (-340)))) (-3681 (($ $ (-848)) NIL (|has| $ (-340))) (($ $) NIL)) (-1675 (((-3 $ "failed") $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3437 (((-1078 $) $ (-848)) NIL (|has| $ (-340))) (((-1078 $) $) NIL)) (-3334 (((-848) $) NIL)) (-1955 (((-1078 $) $) NIL (|has| $ (-340)))) (-3270 (((-3 (-1078 $) "failed") $ $) NIL (|has| $ (-340))) (((-1078 $) $) NIL (|has| $ (-340)))) (-3904 (($ $ (-1078 $)) NIL (|has| $ (-340)))) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL T CONST)) (-2770 (($ (-848)) NIL)) (-2141 (((-108) $) NIL)) (-4139 (((-1029) $) NIL)) (-1397 (($) NIL (|has| $ (-340)))) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL)) (-1921 (((-390 $) $) NIL)) (-1445 (((-848)) NIL) (((-768 (-848))) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2867 (((-3 (-705) "failed") $ $) NIL) (((-705) $) NIL)) (-2914 (((-126)) NIL)) (-2181 (($ $ (-705)) NIL) (($ $) NIL)) (-4178 (((-848) $) NIL) (((-768 (-848)) $) NIL)) (-1462 (((-1078 $)) NIL)) (-3132 (($) NIL)) (-3670 (($) NIL (|has| $ (-340)))) (-3399 (((-625 $) (-1163 $)) NIL) (((-1163 $) $) NIL)) (-1446 (((-519) $) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL)) (-3773 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3594 (((-705)) NIL)) (-2070 (((-1163 $) (-848)) NIL) (((-1163 $)) NIL)) (-1617 (((-108) $ $) NIL)) (-3980 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-3706 (($ $ (-705)) NIL (|has| $ (-340))) (($ $) NIL (|has| $ (-340)))) (-2242 (($ $ (-705)) NIL) (($ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL))) +(((-837 |#1|) (-13 (-321) (-301 $) (-560 (-519))) (-848)) (T -837)) +NIL +(-13 (-321) (-301 $) (-560 (-519))) +((-2501 (((-3 (-2 (|:| -3709 (-705)) (|:| -2112 |#5|)) "failed") (-308 |#2| |#3| |#4| |#5|)) 76)) (-1781 (((-108) (-308 |#2| |#3| |#4| |#5|)) 16)) (-3709 (((-3 (-705) "failed") (-308 |#2| |#3| |#4| |#5|)) 14))) +(((-838 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3709 ((-3 (-705) "failed") (-308 |#2| |#3| |#4| |#5|))) (-15 -1781 ((-108) (-308 |#2| |#3| |#4| |#5|))) (-15 -2501 ((-3 (-2 (|:| -3709 (-705)) (|:| -2112 |#5|)) "failed") (-308 |#2| |#3| |#4| |#5|)))) (-13 (-782) (-511) (-959 (-519))) (-402 |#1|) (-1139 |#2|) (-1139 (-379 |#3|)) (-314 |#2| |#3| |#4|)) (T -838)) +((-2501 (*1 *2 *3) (|partial| -12 (-5 *3 (-308 *5 *6 *7 *8)) (-4 *5 (-402 *4)) (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) (-4 *8 (-314 *5 *6 *7)) (-4 *4 (-13 (-782) (-511) (-959 (-519)))) (-5 *2 (-2 (|:| -3709 (-705)) (|:| -2112 *8))) (-5 *1 (-838 *4 *5 *6 *7 *8)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-308 *5 *6 *7 *8)) (-4 *5 (-402 *4)) (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) (-4 *8 (-314 *5 *6 *7)) (-4 *4 (-13 (-782) (-511) (-959 (-519)))) (-5 *2 (-108)) (-5 *1 (-838 *4 *5 *6 *7 *8)))) (-3709 (*1 *2 *3) (|partial| -12 (-5 *3 (-308 *5 *6 *7 *8)) (-4 *5 (-402 *4)) (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) (-4 *8 (-314 *5 *6 *7)) (-4 *4 (-13 (-782) (-511) (-959 (-519)))) (-5 *2 (-705)) (-5 *1 (-838 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3709 ((-3 (-705) "failed") (-308 |#2| |#3| |#4| |#5|))) (-15 -1781 ((-108) (-308 |#2| |#3| |#4| |#5|))) (-15 -2501 ((-3 (-2 (|:| -3709 (-705)) (|:| -2112 |#5|)) "failed") (-308 |#2| |#3| |#4| |#5|)))) +((-2501 (((-3 (-2 (|:| -3709 (-705)) (|:| -2112 |#3|)) "failed") (-308 (-379 (-519)) |#1| |#2| |#3|)) 56)) (-1781 (((-108) (-308 (-379 (-519)) |#1| |#2| |#3|)) 13)) (-3709 (((-3 (-705) "failed") (-308 (-379 (-519)) |#1| |#2| |#3|)) 11))) +(((-839 |#1| |#2| |#3|) (-10 -7 (-15 -3709 ((-3 (-705) "failed") (-308 (-379 (-519)) |#1| |#2| |#3|))) (-15 -1781 ((-108) (-308 (-379 (-519)) |#1| |#2| |#3|))) (-15 -2501 ((-3 (-2 (|:| -3709 (-705)) (|:| -2112 |#3|)) "failed") (-308 (-379 (-519)) |#1| |#2| |#3|)))) (-1139 (-379 (-519))) (-1139 (-379 |#1|)) (-314 (-379 (-519)) |#1| |#2|)) (T -839)) +((-2501 (*1 *2 *3) (|partial| -12 (-5 *3 (-308 (-379 (-519)) *4 *5 *6)) (-4 *4 (-1139 (-379 (-519)))) (-4 *5 (-1139 (-379 *4))) (-4 *6 (-314 (-379 (-519)) *4 *5)) (-5 *2 (-2 (|:| -3709 (-705)) (|:| -2112 *6))) (-5 *1 (-839 *4 *5 *6)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-308 (-379 (-519)) *4 *5 *6)) (-4 *4 (-1139 (-379 (-519)))) (-4 *5 (-1139 (-379 *4))) (-4 *6 (-314 (-379 (-519)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-839 *4 *5 *6)))) (-3709 (*1 *2 *3) (|partial| -12 (-5 *3 (-308 (-379 (-519)) *4 *5 *6)) (-4 *4 (-1139 (-379 (-519)))) (-4 *5 (-1139 (-379 *4))) (-4 *6 (-314 (-379 (-519)) *4 *5)) (-5 *2 (-705)) (-5 *1 (-839 *4 *5 *6))))) +(-10 -7 (-15 -3709 ((-3 (-705) "failed") (-308 (-379 (-519)) |#1| |#2| |#3|))) (-15 -1781 ((-108) (-308 (-379 (-519)) |#1| |#2| |#3|))) (-15 -2501 ((-3 (-2 (|:| -3709 (-705)) (|:| -2112 |#3|)) "failed") (-308 (-379 (-519)) |#1| |#2| |#3|)))) +((-2984 ((|#2| |#2|) 25)) (-1537 (((-519) (-585 (-2 (|:| |den| (-519)) (|:| |gcdnum| (-519))))) 15)) (-1685 (((-848) (-519)) 35)) (-2136 (((-519) |#2|) 42)) (-1471 (((-519) |#2|) 21) (((-2 (|:| |den| (-519)) (|:| |gcdnum| (-519))) |#1|) 20))) +(((-840 |#1| |#2|) (-10 -7 (-15 -1685 ((-848) (-519))) (-15 -1471 ((-2 (|:| |den| (-519)) (|:| |gcdnum| (-519))) |#1|)) (-15 -1471 ((-519) |#2|)) (-15 -1537 ((-519) (-585 (-2 (|:| |den| (-519)) (|:| |gcdnum| (-519)))))) (-15 -2136 ((-519) |#2|)) (-15 -2984 (|#2| |#2|))) (-1139 (-379 (-519))) (-1139 (-379 |#1|))) (T -840)) +((-2984 (*1 *2 *2) (-12 (-4 *3 (-1139 (-379 (-519)))) (-5 *1 (-840 *3 *2)) (-4 *2 (-1139 (-379 *3))))) (-2136 (*1 *2 *3) (-12 (-4 *4 (-1139 (-379 *2))) (-5 *2 (-519)) (-5 *1 (-840 *4 *3)) (-4 *3 (-1139 (-379 *4))))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |den| (-519)) (|:| |gcdnum| (-519))))) (-4 *4 (-1139 (-379 *2))) (-5 *2 (-519)) (-5 *1 (-840 *4 *5)) (-4 *5 (-1139 (-379 *4))))) (-1471 (*1 *2 *3) (-12 (-4 *4 (-1139 (-379 *2))) (-5 *2 (-519)) (-5 *1 (-840 *4 *3)) (-4 *3 (-1139 (-379 *4))))) (-1471 (*1 *2 *3) (-12 (-4 *3 (-1139 (-379 (-519)))) (-5 *2 (-2 (|:| |den| (-519)) (|:| |gcdnum| (-519)))) (-5 *1 (-840 *3 *4)) (-4 *4 (-1139 (-379 *3))))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-519)) (-4 *4 (-1139 (-379 *3))) (-5 *2 (-848)) (-5 *1 (-840 *4 *5)) (-4 *5 (-1139 (-379 *4)))))) +(-10 -7 (-15 -1685 ((-848) (-519))) (-15 -1471 ((-2 (|:| |den| (-519)) (|:| |gcdnum| (-519))) |#1|)) (-15 -1471 ((-519) |#2|)) (-15 -1537 ((-519) (-585 (-2 (|:| |den| (-519)) (|:| |gcdnum| (-519)))))) (-15 -2136 ((-519) |#2|)) (-15 -2984 (|#2| |#2|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2157 ((|#1| $) 81)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-2311 (($ $ $) NIL)) (-4193 (((-3 $ "failed") $) 75)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3931 (($ |#1| (-390 |#1|)) 73)) (-1649 (((-1078 |#1|) |#1| |#1|) 40)) (-3920 (($ $) 49)) (-1568 (((-108) $) NIL)) (-3734 (((-519) $) 78)) (-3608 (($ $ (-519)) 80)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3578 ((|#1| $) 77)) (-4026 (((-390 |#1|) $) 76)) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) 74)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-3854 (($ $) 38)) (-2217 (((-790) $) 99) (($ (-519)) 54) (($ $) NIL) (($ (-379 (-519))) NIL) (($ |#1|) 30) (((-379 |#1|) $) 59) (($ (-379 (-390 |#1|))) 67)) (-3594 (((-705)) 52)) (-1617 (((-108) $ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 23 T CONST)) (-3611 (($) 11 T CONST)) (-1543 (((-108) $ $) 68)) (-1632 (($ $ $) NIL)) (-1623 (($ $) 88) (($ $ $) NIL)) (-1614 (($ $ $) 37)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 90) (($ $ $) 36) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-841 |#1|) (-13 (-335) (-37 |#1|) (-10 -8 (-15 -2217 ((-379 |#1|) $)) (-15 -2217 ($ (-379 (-390 |#1|)))) (-15 -3854 ($ $)) (-15 -4026 ((-390 |#1|) $)) (-15 -3578 (|#1| $)) (-15 -3608 ($ $ (-519))) (-15 -3734 ((-519) $)) (-15 -1649 ((-1078 |#1|) |#1| |#1|)) (-15 -3920 ($ $)) (-15 -3931 ($ |#1| (-390 |#1|))) (-15 -2157 (|#1| $)))) (-280)) (T -841)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-379 *3)) (-5 *1 (-841 *3)) (-4 *3 (-280)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-379 (-390 *3))) (-4 *3 (-280)) (-5 *1 (-841 *3)))) (-3854 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-280)))) (-4026 (*1 *2 *1) (-12 (-5 *2 (-390 *3)) (-5 *1 (-841 *3)) (-4 *3 (-280)))) (-3578 (*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-280)))) (-3608 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-841 *3)) (-4 *3 (-280)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-841 *3)) (-4 *3 (-280)))) (-1649 (*1 *2 *3 *3) (-12 (-5 *2 (-1078 *3)) (-5 *1 (-841 *3)) (-4 *3 (-280)))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-280)))) (-3931 (*1 *1 *2 *3) (-12 (-5 *3 (-390 *2)) (-4 *2 (-280)) (-5 *1 (-841 *2)))) (-2157 (*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-280))))) +(-13 (-335) (-37 |#1|) (-10 -8 (-15 -2217 ((-379 |#1|) $)) (-15 -2217 ($ (-379 (-390 |#1|)))) (-15 -3854 ($ $)) (-15 -4026 ((-390 |#1|) $)) (-15 -3578 (|#1| $)) (-15 -3608 ($ $ (-519))) (-15 -3734 ((-519) $)) (-15 -1649 ((-1078 |#1|) |#1| |#1|)) (-15 -3920 ($ $)) (-15 -3931 ($ |#1| (-390 |#1|))) (-15 -2157 (|#1| $)))) +((-3931 (((-51) (-879 |#1|) (-390 (-879 |#1|)) (-1082)) 16) (((-51) (-379 (-879 |#1|)) (-1082)) 17))) +(((-842 |#1|) (-10 -7 (-15 -3931 ((-51) (-379 (-879 |#1|)) (-1082))) (-15 -3931 ((-51) (-879 |#1|) (-390 (-879 |#1|)) (-1082)))) (-13 (-280) (-135))) (T -842)) +((-3931 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-390 (-879 *6))) (-5 *5 (-1082)) (-5 *3 (-879 *6)) (-4 *6 (-13 (-280) (-135))) (-5 *2 (-51)) (-5 *1 (-842 *6)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) (-4 *5 (-13 (-280) (-135))) (-5 *2 (-51)) (-5 *1 (-842 *5))))) +(-10 -7 (-15 -3931 ((-51) (-379 (-879 |#1|)) (-1082))) (-15 -3931 ((-51) (-879 |#1|) (-390 (-879 |#1|)) (-1082)))) +((-3804 ((|#4| (-585 |#4|)) 119) (((-1078 |#4|) (-1078 |#4|) (-1078 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-2292 (((-1078 |#4|) (-585 (-1078 |#4|))) 112) (((-1078 |#4|) (-1078 |#4|) (-1078 |#4|)) 49) ((|#4| (-585 |#4|)) 54) ((|#4| |#4| |#4|) 83))) +(((-843 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2292 (|#4| |#4| |#4|)) (-15 -2292 (|#4| (-585 |#4|))) (-15 -2292 ((-1078 |#4|) (-1078 |#4|) (-1078 |#4|))) (-15 -2292 ((-1078 |#4|) (-585 (-1078 |#4|)))) (-15 -3804 (|#4| |#4| |#4|)) (-15 -3804 ((-1078 |#4|) (-1078 |#4|) (-1078 |#4|))) (-15 -3804 (|#4| (-585 |#4|)))) (-727) (-782) (-280) (-876 |#3| |#1| |#2|)) (T -843)) +((-3804 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *6 *4 *5)) (-5 *1 (-843 *4 *5 *6 *2)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-280)))) (-3804 (*1 *2 *2 *2) (-12 (-5 *2 (-1078 *6)) (-4 *6 (-876 *5 *3 *4)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *5 (-280)) (-5 *1 (-843 *3 *4 *5 *6)))) (-3804 (*1 *2 *2 *2) (-12 (-4 *3 (-727)) (-4 *4 (-782)) (-4 *5 (-280)) (-5 *1 (-843 *3 *4 *5 *2)) (-4 *2 (-876 *5 *3 *4)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-585 (-1078 *7))) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-280)) (-5 *2 (-1078 *7)) (-5 *1 (-843 *4 *5 *6 *7)) (-4 *7 (-876 *6 *4 *5)))) (-2292 (*1 *2 *2 *2) (-12 (-5 *2 (-1078 *6)) (-4 *6 (-876 *5 *3 *4)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *5 (-280)) (-5 *1 (-843 *3 *4 *5 *6)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *6 *4 *5)) (-5 *1 (-843 *4 *5 *6 *2)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-280)))) (-2292 (*1 *2 *2 *2) (-12 (-4 *3 (-727)) (-4 *4 (-782)) (-4 *5 (-280)) (-5 *1 (-843 *3 *4 *5 *2)) (-4 *2 (-876 *5 *3 *4))))) +(-10 -7 (-15 -2292 (|#4| |#4| |#4|)) (-15 -2292 (|#4| (-585 |#4|))) (-15 -2292 ((-1078 |#4|) (-1078 |#4|) (-1078 |#4|))) (-15 -2292 ((-1078 |#4|) (-585 (-1078 |#4|)))) (-15 -3804 (|#4| |#4| |#4|)) (-15 -3804 ((-1078 |#4|) (-1078 |#4|) (-1078 |#4|))) (-15 -3804 (|#4| (-585 |#4|)))) +((-2455 (((-831 (-519)) (-895)) 22) (((-831 (-519)) (-585 (-519))) 19)) (-2284 (((-831 (-519)) (-585 (-519))) 46) (((-831 (-519)) (-848)) 47)) (-1563 (((-831 (-519))) 23)) (-4023 (((-831 (-519))) 36) (((-831 (-519)) (-585 (-519))) 35)) (-2787 (((-831 (-519))) 34) (((-831 (-519)) (-585 (-519))) 33)) (-3745 (((-831 (-519))) 32) (((-831 (-519)) (-585 (-519))) 31)) (-2872 (((-831 (-519))) 30) (((-831 (-519)) (-585 (-519))) 29)) (-2539 (((-831 (-519))) 28) (((-831 (-519)) (-585 (-519))) 27)) (-1558 (((-831 (-519))) 38) (((-831 (-519)) (-585 (-519))) 37)) (-3598 (((-831 (-519)) (-585 (-519))) 50) (((-831 (-519)) (-848)) 51)) (-2742 (((-831 (-519)) (-585 (-519))) 48) (((-831 (-519)) (-848)) 49)) (-4127 (((-831 (-519)) (-585 (-519))) 43) (((-831 (-519)) (-848)) 45)) (-3214 (((-831 (-519)) (-585 (-848))) 40))) +(((-844) (-10 -7 (-15 -2284 ((-831 (-519)) (-848))) (-15 -2284 ((-831 (-519)) (-585 (-519)))) (-15 -4127 ((-831 (-519)) (-848))) (-15 -4127 ((-831 (-519)) (-585 (-519)))) (-15 -3214 ((-831 (-519)) (-585 (-848)))) (-15 -2742 ((-831 (-519)) (-848))) (-15 -2742 ((-831 (-519)) (-585 (-519)))) (-15 -3598 ((-831 (-519)) (-848))) (-15 -3598 ((-831 (-519)) (-585 (-519)))) (-15 -2539 ((-831 (-519)) (-585 (-519)))) (-15 -2539 ((-831 (-519)))) (-15 -2872 ((-831 (-519)) (-585 (-519)))) (-15 -2872 ((-831 (-519)))) (-15 -3745 ((-831 (-519)) (-585 (-519)))) (-15 -3745 ((-831 (-519)))) (-15 -2787 ((-831 (-519)) (-585 (-519)))) (-15 -2787 ((-831 (-519)))) (-15 -4023 ((-831 (-519)) (-585 (-519)))) (-15 -4023 ((-831 (-519)))) (-15 -1558 ((-831 (-519)) (-585 (-519)))) (-15 -1558 ((-831 (-519)))) (-15 -1563 ((-831 (-519)))) (-15 -2455 ((-831 (-519)) (-585 (-519)))) (-15 -2455 ((-831 (-519)) (-895))))) (T -844)) +((-2455 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-1563 (*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-1558 (*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-4023 (*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-2787 (*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-3745 (*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-2872 (*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-2539 (*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-2742 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-585 (-848))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(-10 -7 (-15 -2284 ((-831 (-519)) (-848))) (-15 -2284 ((-831 (-519)) (-585 (-519)))) (-15 -4127 ((-831 (-519)) (-848))) (-15 -4127 ((-831 (-519)) (-585 (-519)))) (-15 -3214 ((-831 (-519)) (-585 (-848)))) (-15 -2742 ((-831 (-519)) (-848))) (-15 -2742 ((-831 (-519)) (-585 (-519)))) (-15 -3598 ((-831 (-519)) (-848))) (-15 -3598 ((-831 (-519)) (-585 (-519)))) (-15 -2539 ((-831 (-519)) (-585 (-519)))) (-15 -2539 ((-831 (-519)))) (-15 -2872 ((-831 (-519)) (-585 (-519)))) (-15 -2872 ((-831 (-519)))) (-15 -3745 ((-831 (-519)) (-585 (-519)))) (-15 -3745 ((-831 (-519)))) (-15 -2787 ((-831 (-519)) (-585 (-519)))) (-15 -2787 ((-831 (-519)))) (-15 -4023 ((-831 (-519)) (-585 (-519)))) (-15 -4023 ((-831 (-519)))) (-15 -1558 ((-831 (-519)) (-585 (-519)))) (-15 -1558 ((-831 (-519)))) (-15 -1563 ((-831 (-519)))) (-15 -2455 ((-831 (-519)) (-585 (-519)))) (-15 -2455 ((-831 (-519)) (-895)))) +((-3820 (((-585 (-879 |#1|)) (-585 (-879 |#1|)) (-585 (-1082))) 10)) (-2817 (((-585 (-879 |#1|)) (-585 (-879 |#1|)) (-585 (-1082))) 9))) +(((-845 |#1|) (-10 -7 (-15 -2817 ((-585 (-879 |#1|)) (-585 (-879 |#1|)) (-585 (-1082)))) (-15 -3820 ((-585 (-879 |#1|)) (-585 (-879 |#1|)) (-585 (-1082))))) (-423)) (T -845)) +((-3820 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-879 *4))) (-5 *3 (-585 (-1082))) (-4 *4 (-423)) (-5 *1 (-845 *4)))) (-2817 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-879 *4))) (-5 *3 (-585 (-1082))) (-4 *4 (-423)) (-5 *1 (-845 *4))))) +(-10 -7 (-15 -2817 ((-585 (-879 |#1|)) (-585 (-879 |#1|)) (-585 (-1082)))) (-15 -3820 ((-585 (-879 |#1|)) (-585 (-879 |#1|)) (-585 (-1082))))) +((-2217 (((-288 |#1|) (-448)) 15))) +(((-846 |#1|) (-10 -7 (-15 -2217 ((-288 |#1|) (-448)))) (-13 (-782) (-511))) (T -846)) +((-2217 (*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-288 *4)) (-5 *1 (-846 *4)) (-4 *4 (-13 (-782) (-511)))))) +(-10 -7 (-15 -2217 ((-288 |#1|) (-448)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-1568 (((-108) $) 31)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-847) (-1194)) (T -847)) +((-3036 (*1 *2 *3) (-12 (-4 *1 (-847)) (-5 *2 (-2 (|:| -3031 (-585 *1)) (|:| -1397 *1))) (-5 *3 (-585 *1)))) (-2661 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-585 *1)) (-4 *1 (-847))))) +(-13 (-423) (-10 -8 (-15 -3036 ((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $))) (-15 -2661 ((-3 (-585 $) "failed") (-585 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-157) . T) ((-264) . T) ((-423) . T) ((-511) . T) ((-587 $) . T) ((-652 $) . T) ((-661) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2292 (($ $ $) NIL)) (-2217 (((-790) $) NIL)) (-3559 (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (-3611 (($) NIL T CONST)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (* (($ (-848) $) NIL) (($ $ $) NIL))) +(((-848) (-13 (-25) (-782) (-661) (-10 -8 (-15 -2292 ($ $ $)) (-6 (-4223 "*"))))) (T -848)) +((-2292 (*1 *1 *1 *1) (-5 *1 (-848)))) +(-13 (-25) (-782) (-661) (-10 -8 (-15 -2292 ($ $ $)) (-6 (-4223 "*")))) +((-2971 ((|#2| (-585 |#1|) (-585 |#1|)) 24))) +(((-849 |#1| |#2|) (-10 -7 (-15 -2971 (|#2| (-585 |#1|) (-585 |#1|)))) (-335) (-1139 |#1|)) (T -849)) +((-2971 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-335)) (-4 *2 (-1139 *4)) (-5 *1 (-849 *4 *2))))) +(-10 -7 (-15 -2971 (|#2| (-585 |#1|) (-585 |#1|)))) +((-3841 (((-1078 |#2|) (-585 |#2|) (-585 |#2|)) 17) (((-1136 |#1| |#2|) (-1136 |#1| |#2|) (-585 |#2|) (-585 |#2|)) 13))) +(((-850 |#1| |#2|) (-10 -7 (-15 -3841 ((-1136 |#1| |#2|) (-1136 |#1| |#2|) (-585 |#2|) (-585 |#2|))) (-15 -3841 ((-1078 |#2|) (-585 |#2|) (-585 |#2|)))) (-1082) (-335)) (T -850)) +((-3841 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-335)) (-5 *2 (-1078 *5)) (-5 *1 (-850 *4 *5)) (-14 *4 (-1082)))) (-3841 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1136 *4 *5)) (-5 *3 (-585 *5)) (-14 *4 (-1082)) (-4 *5 (-335)) (-5 *1 (-850 *4 *5))))) +(-10 -7 (-15 -3841 ((-1136 |#1| |#2|) (-1136 |#1| |#2|) (-585 |#2|) (-585 |#2|))) (-15 -3841 ((-1078 |#2|) (-585 |#2|) (-585 |#2|)))) +((-1698 (((-519) (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-1065)) 138)) (-4069 ((|#4| |#4|) 154)) (-2153 (((-585 (-379 (-879 |#1|))) (-585 (-1082))) 117)) (-3846 (((-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))) (-625 |#4|) (-585 (-379 (-879 |#1|))) (-585 (-585 |#4|)) (-705) (-705) (-519)) 73)) (-3748 (((-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))) (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))) (-585 |#4|)) 57)) (-2406 (((-625 |#4|) (-625 |#4|) (-585 |#4|)) 53)) (-3347 (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-1065)) 150)) (-3618 (((-519) (-625 |#4|) (-848) (-1065)) 131) (((-519) (-625 |#4|) (-585 (-1082)) (-848) (-1065)) 130) (((-519) (-625 |#4|) (-585 |#4|) (-848) (-1065)) 129) (((-519) (-625 |#4|) (-1065)) 126) (((-519) (-625 |#4|) (-585 (-1082)) (-1065)) 125) (((-519) (-625 |#4|) (-585 |#4|) (-1065)) 124) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-848)) 123) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 (-1082)) (-848)) 122) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 |#4|) (-848)) 121) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|)) 119) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 (-1082))) 118) (((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 |#4|)) 115)) (-3614 ((|#4| (-879 |#1|)) 66)) (-2350 (((-108) (-585 |#4|) (-585 (-585 |#4|))) 151)) (-3191 (((-585 (-585 (-519))) (-519) (-519)) 128)) (-3099 (((-585 (-585 |#4|)) (-585 (-585 |#4|))) 85)) (-2756 (((-705) (-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 |#4|))))) 83)) (-2247 (((-705) (-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 |#4|))))) 82)) (-3412 (((-108) (-585 (-879 |#1|))) 17) (((-108) (-585 |#4|)) 13)) (-1384 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-585 |#4|)) (|:| |n0| (-585 |#4|))) (-585 |#4|) (-585 |#4|)) 69)) (-3942 (((-585 |#4|) |#4|) 47)) (-2668 (((-585 (-379 (-879 |#1|))) (-585 |#4|)) 113) (((-625 (-379 (-879 |#1|))) (-625 |#4|)) 54) (((-379 (-879 |#1|)) |#4|) 110)) (-3868 (((-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))))))) (|:| |rgsz| (-519))) (-625 |#4|) (-585 (-379 (-879 |#1|))) (-705) (-1065) (-519)) 89)) (-2323 (((-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 |#4|)))) (-625 |#4|) (-705)) 81)) (-1844 (((-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519))))) (-625 |#4|) (-705)) 98)) (-2505 (((-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))) (-2 (|:| -2488 (-625 (-379 (-879 |#1|)))) (|:| |vec| (-585 (-379 (-879 |#1|)))) (|:| -3229 (-705)) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519))))) 46))) +(((-851 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 |#4|))) (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 (-1082)))) (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|))) (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 |#4|) (-848))) (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 (-1082)) (-848))) (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-848))) (-15 -3618 ((-519) (-625 |#4|) (-585 |#4|) (-1065))) (-15 -3618 ((-519) (-625 |#4|) (-585 (-1082)) (-1065))) (-15 -3618 ((-519) (-625 |#4|) (-1065))) (-15 -3618 ((-519) (-625 |#4|) (-585 |#4|) (-848) (-1065))) (-15 -3618 ((-519) (-625 |#4|) (-585 (-1082)) (-848) (-1065))) (-15 -3618 ((-519) (-625 |#4|) (-848) (-1065))) (-15 -1698 ((-519) (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-1065))) (-15 -3347 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-1065))) (-15 -3868 ((-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))))))) (|:| |rgsz| (-519))) (-625 |#4|) (-585 (-379 (-879 |#1|))) (-705) (-1065) (-519))) (-15 -2668 ((-379 (-879 |#1|)) |#4|)) (-15 -2668 ((-625 (-379 (-879 |#1|))) (-625 |#4|))) (-15 -2668 ((-585 (-379 (-879 |#1|))) (-585 |#4|))) (-15 -2153 ((-585 (-379 (-879 |#1|))) (-585 (-1082)))) (-15 -3614 (|#4| (-879 |#1|))) (-15 -1384 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-585 |#4|)) (|:| |n0| (-585 |#4|))) (-585 |#4|) (-585 |#4|))) (-15 -2323 ((-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 |#4|)))) (-625 |#4|) (-705))) (-15 -3748 ((-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))) (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))) (-585 |#4|))) (-15 -2505 ((-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))) (-2 (|:| -2488 (-625 (-379 (-879 |#1|)))) (|:| |vec| (-585 (-379 (-879 |#1|)))) (|:| -3229 (-705)) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (-15 -3942 ((-585 |#4|) |#4|)) (-15 -2247 ((-705) (-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 |#4|)))))) (-15 -2756 ((-705) (-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 |#4|)))))) (-15 -3099 ((-585 (-585 |#4|)) (-585 (-585 |#4|)))) (-15 -3191 ((-585 (-585 (-519))) (-519) (-519))) (-15 -2350 ((-108) (-585 |#4|) (-585 (-585 |#4|)))) (-15 -1844 ((-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519))))) (-625 |#4|) (-705))) (-15 -2406 ((-625 |#4|) (-625 |#4|) (-585 |#4|))) (-15 -3846 ((-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))) (-625 |#4|) (-585 (-379 (-879 |#1|))) (-585 (-585 |#4|)) (-705) (-705) (-519))) (-15 -4069 (|#4| |#4|)) (-15 -3412 ((-108) (-585 |#4|))) (-15 -3412 ((-108) (-585 (-879 |#1|))))) (-13 (-280) (-135)) (-13 (-782) (-560 (-1082))) (-727) (-876 |#1| |#3| |#2|)) (T -851)) +((-3412 (*1 *2 *3) (-12 (-5 *3 (-585 (-879 *4))) (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-108)) (-5 *1 (-851 *4 *5 *6 *7)) (-4 *7 (-876 *4 *6 *5)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-876 *4 *6 *5)) (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-108)) (-5 *1 (-851 *4 *5 *6 *7)))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-280) (-135))) (-4 *4 (-13 (-782) (-560 (-1082)))) (-4 *5 (-727)) (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-876 *3 *5 *4)))) (-3846 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519))))) (-5 *4 (-625 *12)) (-5 *5 (-585 (-379 (-879 *9)))) (-5 *6 (-585 (-585 *12))) (-5 *7 (-705)) (-5 *8 (-519)) (-4 *9 (-13 (-280) (-135))) (-4 *12 (-876 *9 *11 *10)) (-4 *10 (-13 (-782) (-560 (-1082)))) (-4 *11 (-727)) (-5 *2 (-2 (|:| |eqzro| (-585 *12)) (|:| |neqzro| (-585 *12)) (|:| |wcond| (-585 (-879 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 *9)))) (|:| -2070 (-585 (-1163 (-379 (-879 *9))))))))) (-5 *1 (-851 *9 *10 *11 *12)))) (-2406 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-585 *7)) (-4 *7 (-876 *4 *6 *5)) (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *1 (-851 *4 *5 *6 *7)))) (-1844 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-705)) (-4 *8 (-876 *5 *7 *6)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) (-4 *7 (-727)) (-5 *2 (-585 (-2 (|:| |det| *8) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (-5 *1 (-851 *5 *6 *7 *8)))) (-2350 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-876 *5 *7 *6)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) (-4 *7 (-727)) (-5 *2 (-108)) (-5 *1 (-851 *5 *6 *7 *8)))) (-3191 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-585 (-585 (-519)))) (-5 *1 (-851 *4 *5 *6 *7)) (-5 *3 (-519)) (-4 *7 (-876 *4 *6 *5)))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-585 (-585 *6))) (-4 *6 (-876 *3 *5 *4)) (-4 *3 (-13 (-280) (-135))) (-4 *4 (-13 (-782) (-560 (-1082)))) (-4 *5 (-727)) (-5 *1 (-851 *3 *4 *5 *6)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| *7) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 *7))))) (-4 *7 (-876 *4 *6 *5)) (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-705)) (-5 *1 (-851 *4 *5 *6 *7)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| *7) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 *7))))) (-4 *7 (-876 *4 *6 *5)) (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-705)) (-5 *1 (-851 *4 *5 *6 *7)))) (-3942 (*1 *2 *3) (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-585 *3)) (-5 *1 (-851 *4 *5 *6 *3)) (-4 *3 (-876 *4 *6 *5)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2488 (-625 (-379 (-879 *4)))) (|:| |vec| (-585 (-379 (-879 *4)))) (|:| -3229 (-705)) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519))))) (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-2 (|:| |partsol| (-1163 (-379 (-879 *4)))) (|:| -2070 (-585 (-1163 (-379 (-879 *4))))))) (-5 *1 (-851 *4 *5 *6 *7)) (-4 *7 (-876 *4 *6 *5)))) (-3748 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1163 (-379 (-879 *4)))) (|:| -2070 (-585 (-1163 (-379 (-879 *4))))))) (-5 *3 (-585 *7)) (-4 *4 (-13 (-280) (-135))) (-4 *7 (-876 *4 *6 *5)) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *1 (-851 *4 *5 *6 *7)))) (-2323 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-4 *8 (-876 *5 *7 *6)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) (-4 *7 (-727)) (-5 *2 (-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| *8) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 *8))))) (-5 *1 (-851 *5 *6 *7 *8)) (-5 *4 (-705)))) (-1384 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-4 *7 (-876 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-585 *7)) (|:| |n0| (-585 *7)))) (-5 *1 (-851 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-879 *4)) (-4 *4 (-13 (-280) (-135))) (-4 *2 (-876 *4 *6 *5)) (-5 *1 (-851 *4 *5 *6 *2)) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-585 (-1082))) (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-585 (-379 (-879 *4)))) (-5 *1 (-851 *4 *5 *6 *7)) (-4 *7 (-876 *4 *6 *5)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-876 *4 *6 *5)) (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-585 (-379 (-879 *4)))) (-5 *1 (-851 *4 *5 *6 *7)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-876 *4 *6 *5)) (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-625 (-379 (-879 *4)))) (-5 *1 (-851 *4 *5 *6 *7)))) (-2668 (*1 *2 *3) (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-379 (-879 *4))) (-5 *1 (-851 *4 *5 *6 *3)) (-4 *3 (-876 *4 *6 *5)))) (-3868 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-625 *11)) (-5 *4 (-585 (-379 (-879 *8)))) (-5 *5 (-705)) (-5 *6 (-1065)) (-4 *8 (-13 (-280) (-135))) (-4 *11 (-876 *8 *10 *9)) (-4 *9 (-13 (-782) (-560 (-1082)))) (-4 *10 (-727)) (-5 *2 (-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 *11)) (|:| |neqzro| (-585 *11)) (|:| |wcond| (-585 (-879 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 *8)))) (|:| -2070 (-585 (-1163 (-379 (-879 *8)))))))))) (|:| |rgsz| (-519)))) (-5 *1 (-851 *8 *9 *10 *11)) (-5 *7 (-519)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) (|:| |wcond| (-585 (-879 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 *4)))) (|:| -2070 (-585 (-1163 (-379 (-879 *4)))))))))) (-5 *1 (-851 *4 *5 *6 *7)) (-4 *7 (-876 *4 *6 *5)))) (-1698 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-879 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 *5)))) (|:| -2070 (-585 (-1163 (-379 (-879 *5)))))))))) (-5 *4 (-1065)) (-4 *5 (-13 (-280) (-135))) (-4 *8 (-876 *5 *7 *6)) (-4 *6 (-13 (-782) (-560 (-1082)))) (-4 *7 (-727)) (-5 *2 (-519)) (-5 *1 (-851 *5 *6 *7 *8)))) (-3618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-848)) (-5 *5 (-1065)) (-4 *9 (-876 *6 *8 *7)) (-4 *6 (-13 (-280) (-135))) (-4 *7 (-13 (-782) (-560 (-1082)))) (-4 *8 (-727)) (-5 *2 (-519)) (-5 *1 (-851 *6 *7 *8 *9)))) (-3618 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 *10)) (-5 *4 (-585 (-1082))) (-5 *5 (-848)) (-5 *6 (-1065)) (-4 *10 (-876 *7 *9 *8)) (-4 *7 (-13 (-280) (-135))) (-4 *8 (-13 (-782) (-560 (-1082)))) (-4 *9 (-727)) (-5 *2 (-519)) (-5 *1 (-851 *7 *8 *9 *10)))) (-3618 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 *10)) (-5 *4 (-585 *10)) (-5 *5 (-848)) (-5 *6 (-1065)) (-4 *10 (-876 *7 *9 *8)) (-4 *7 (-13 (-280) (-135))) (-4 *8 (-13 (-782) (-560 (-1082)))) (-4 *9 (-727)) (-5 *2 (-519)) (-5 *1 (-851 *7 *8 *9 *10)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-1065)) (-4 *8 (-876 *5 *7 *6)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) (-4 *7 (-727)) (-5 *2 (-519)) (-5 *1 (-851 *5 *6 *7 *8)))) (-3618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-585 (-1082))) (-5 *5 (-1065)) (-4 *9 (-876 *6 *8 *7)) (-4 *6 (-13 (-280) (-135))) (-4 *7 (-13 (-782) (-560 (-1082)))) (-4 *8 (-727)) (-5 *2 (-519)) (-5 *1 (-851 *6 *7 *8 *9)))) (-3618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-585 *9)) (-5 *5 (-1065)) (-4 *9 (-876 *6 *8 *7)) (-4 *6 (-13 (-280) (-135))) (-4 *7 (-13 (-782) (-560 (-1082)))) (-4 *8 (-727)) (-5 *2 (-519)) (-5 *1 (-851 *6 *7 *8 *9)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-848)) (-4 *8 (-876 *5 *7 *6)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) (-4 *7 (-727)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-879 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 *5)))) (|:| -2070 (-585 (-1163 (-379 (-879 *5)))))))))) (-5 *1 (-851 *5 *6 *7 *8)))) (-3618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-585 (-1082))) (-5 *5 (-848)) (-4 *9 (-876 *6 *8 *7)) (-4 *6 (-13 (-280) (-135))) (-4 *7 (-13 (-782) (-560 (-1082)))) (-4 *8 (-727)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) (|:| |wcond| (-585 (-879 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 *6)))) (|:| -2070 (-585 (-1163 (-379 (-879 *6)))))))))) (-5 *1 (-851 *6 *7 *8 *9)))) (-3618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *5 (-848)) (-4 *9 (-876 *6 *8 *7)) (-4 *6 (-13 (-280) (-135))) (-4 *7 (-13 (-782) (-560 (-1082)))) (-4 *8 (-727)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) (|:| |wcond| (-585 (-879 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 *6)))) (|:| -2070 (-585 (-1163 (-379 (-879 *6)))))))))) (-5 *1 (-851 *6 *7 *8 *9)) (-5 *4 (-585 *9)))) (-3618 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-876 *4 *6 *5)) (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) (|:| |wcond| (-585 (-879 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 *4)))) (|:| -2070 (-585 (-1163 (-379 (-879 *4)))))))))) (-5 *1 (-851 *4 *5 *6 *7)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-585 (-1082))) (-4 *8 (-876 *5 *7 *6)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) (-4 *7 (-727)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-879 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 *5)))) (|:| -2070 (-585 (-1163 (-379 (-879 *5)))))))))) (-5 *1 (-851 *5 *6 *7 *8)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-4 *8 (-876 *5 *7 *6)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) (-4 *7 (-727)) (-5 *2 (-585 (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) (|:| |wcond| (-585 (-879 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 *5)))) (|:| -2070 (-585 (-1163 (-379 (-879 *5)))))))))) (-5 *1 (-851 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) +(-10 -7 (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 |#4|))) (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 (-1082)))) (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|))) (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 |#4|) (-848))) (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-585 (-1082)) (-848))) (-15 -3618 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-625 |#4|) (-848))) (-15 -3618 ((-519) (-625 |#4|) (-585 |#4|) (-1065))) (-15 -3618 ((-519) (-625 |#4|) (-585 (-1082)) (-1065))) (-15 -3618 ((-519) (-625 |#4|) (-1065))) (-15 -3618 ((-519) (-625 |#4|) (-585 |#4|) (-848) (-1065))) (-15 -3618 ((-519) (-625 |#4|) (-585 (-1082)) (-848) (-1065))) (-15 -3618 ((-519) (-625 |#4|) (-848) (-1065))) (-15 -1698 ((-519) (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-1065))) (-15 -3347 ((-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|))))))))) (-1065))) (-15 -3868 ((-2 (|:| |rgl| (-585 (-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))))))) (|:| |rgsz| (-519))) (-625 |#4|) (-585 (-379 (-879 |#1|))) (-705) (-1065) (-519))) (-15 -2668 ((-379 (-879 |#1|)) |#4|)) (-15 -2668 ((-625 (-379 (-879 |#1|))) (-625 |#4|))) (-15 -2668 ((-585 (-379 (-879 |#1|))) (-585 |#4|))) (-15 -2153 ((-585 (-379 (-879 |#1|))) (-585 (-1082)))) (-15 -3614 (|#4| (-879 |#1|))) (-15 -1384 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-585 |#4|)) (|:| |n0| (-585 |#4|))) (-585 |#4|) (-585 |#4|))) (-15 -2323 ((-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 |#4|)))) (-625 |#4|) (-705))) (-15 -3748 ((-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))) (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))) (-585 |#4|))) (-15 -2505 ((-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))) (-2 (|:| -2488 (-625 (-379 (-879 |#1|)))) (|:| |vec| (-585 (-379 (-879 |#1|)))) (|:| -3229 (-705)) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (-15 -3942 ((-585 |#4|) |#4|)) (-15 -2247 ((-705) (-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 |#4|)))))) (-15 -2756 ((-705) (-585 (-2 (|:| -3229 (-705)) (|:| |eqns| (-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))))) (|:| |fgb| (-585 |#4|)))))) (-15 -3099 ((-585 (-585 |#4|)) (-585 (-585 |#4|)))) (-15 -3191 ((-585 (-585 (-519))) (-519) (-519))) (-15 -2350 ((-108) (-585 |#4|) (-585 (-585 |#4|)))) (-15 -1844 ((-585 (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519))))) (-625 |#4|) (-705))) (-15 -2406 ((-625 |#4|) (-625 |#4|) (-585 |#4|))) (-15 -3846 ((-2 (|:| |eqzro| (-585 |#4|)) (|:| |neqzro| (-585 |#4|)) (|:| |wcond| (-585 (-879 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1163 (-379 (-879 |#1|)))) (|:| -2070 (-585 (-1163 (-379 (-879 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519)))) (-625 |#4|) (-585 (-379 (-879 |#1|))) (-585 (-585 |#4|)) (-705) (-705) (-519))) (-15 -4069 (|#4| |#4|)) (-15 -3412 ((-108) (-585 |#4|))) (-15 -3412 ((-108) (-585 (-879 |#1|))))) +((-1208 (((-854) |#1| (-1082)) 16) (((-854) |#1| (-1082) (-1006 (-201))) 20)) (-2413 (((-854) |#1| |#1| (-1082) (-1006 (-201))) 18) (((-854) |#1| (-1082) (-1006 (-201))) 14))) +(((-852 |#1|) (-10 -7 (-15 -2413 ((-854) |#1| (-1082) (-1006 (-201)))) (-15 -2413 ((-854) |#1| |#1| (-1082) (-1006 (-201)))) (-15 -1208 ((-854) |#1| (-1082) (-1006 (-201)))) (-15 -1208 ((-854) |#1| (-1082)))) (-560 (-495))) (T -852)) +((-1208 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-5 *2 (-854)) (-5 *1 (-852 *3)) (-4 *3 (-560 (-495))))) (-1208 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082)) (-5 *5 (-1006 (-201))) (-5 *2 (-854)) (-5 *1 (-852 *3)) (-4 *3 (-560 (-495))))) (-2413 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1082)) (-5 *5 (-1006 (-201))) (-5 *2 (-854)) (-5 *1 (-852 *3)) (-4 *3 (-560 (-495))))) (-2413 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1082)) (-5 *5 (-1006 (-201))) (-5 *2 (-854)) (-5 *1 (-852 *3)) (-4 *3 (-560 (-495)))))) +(-10 -7 (-15 -2413 ((-854) |#1| (-1082) (-1006 (-201)))) (-15 -2413 ((-854) |#1| |#1| (-1082) (-1006 (-201)))) (-15 -1208 ((-854) |#1| (-1082) (-1006 (-201)))) (-15 -1208 ((-854) |#1| (-1082)))) +((-3207 (($ $ (-1006 (-201)) (-1006 (-201)) (-1006 (-201))) 69)) (-3834 (((-1006 (-201)) $) 40)) (-3822 (((-1006 (-201)) $) 39)) (-3809 (((-1006 (-201)) $) 38)) (-3751 (((-585 (-585 (-201))) $) 43)) (-2209 (((-1006 (-201)) $) 41)) (-1263 (((-519) (-519)) 32)) (-1629 (((-519) (-519)) 28)) (-1725 (((-519) (-519)) 30)) (-1797 (((-108) (-108)) 35)) (-2277 (((-519)) 31)) (-3171 (($ $ (-1006 (-201))) 72) (($ $) 73)) (-1539 (($ (-1 (-870 (-201)) (-201)) (-1006 (-201))) 77) (($ (-1 (-870 (-201)) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201))) 78)) (-2413 (($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201))) 80) (($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201))) 81) (($ $ (-1006 (-201))) 75)) (-4140 (((-519)) 36)) (-3930 (((-519)) 27)) (-3287 (((-519)) 29)) (-2302 (((-585 (-585 (-870 (-201)))) $) 93)) (-3329 (((-108) (-108)) 37)) (-2217 (((-790) $) 92)) (-2164 (((-108)) 34))) +(((-853) (-13 (-898) (-10 -8 (-15 -1539 ($ (-1 (-870 (-201)) (-201)) (-1006 (-201)))) (-15 -1539 ($ (-1 (-870 (-201)) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -2413 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201)))) (-15 -2413 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -2413 ($ $ (-1006 (-201)))) (-15 -3207 ($ $ (-1006 (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -3171 ($ $ (-1006 (-201)))) (-15 -3171 ($ $)) (-15 -2209 ((-1006 (-201)) $)) (-15 -3751 ((-585 (-585 (-201))) $)) (-15 -3930 ((-519))) (-15 -1629 ((-519) (-519))) (-15 -3287 ((-519))) (-15 -1725 ((-519) (-519))) (-15 -2277 ((-519))) (-15 -1263 ((-519) (-519))) (-15 -2164 ((-108))) (-15 -1797 ((-108) (-108))) (-15 -4140 ((-519))) (-15 -3329 ((-108) (-108)))))) (T -853)) +((-1539 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-870 (-201)) (-201))) (-5 *3 (-1006 (-201))) (-5 *1 (-853)))) (-1539 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-870 (-201)) (-201))) (-5 *3 (-1006 (-201))) (-5 *1 (-853)))) (-2413 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) (-5 *1 (-853)))) (-2413 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) (-5 *1 (-853)))) (-2413 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-853)))) (-3207 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-853)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-853)))) (-3171 (*1 *1 *1) (-5 *1 (-853))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-853)))) (-3751 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-201)))) (-5 *1 (-853)))) (-3930 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853)))) (-1629 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853)))) (-3287 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853)))) (-1725 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853)))) (-2277 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853)))) (-1263 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853)))) (-2164 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-853)))) (-1797 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-853)))) (-4140 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853)))) (-3329 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-853))))) +(-13 (-898) (-10 -8 (-15 -1539 ($ (-1 (-870 (-201)) (-201)) (-1006 (-201)))) (-15 -1539 ($ (-1 (-870 (-201)) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -2413 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201)))) (-15 -2413 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -2413 ($ $ (-1006 (-201)))) (-15 -3207 ($ $ (-1006 (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -3171 ($ $ (-1006 (-201)))) (-15 -3171 ($ $)) (-15 -2209 ((-1006 (-201)) $)) (-15 -3751 ((-585 (-585 (-201))) $)) (-15 -3930 ((-519))) (-15 -1629 ((-519) (-519))) (-15 -3287 ((-519))) (-15 -1725 ((-519) (-519))) (-15 -2277 ((-519))) (-15 -1263 ((-519) (-519))) (-15 -2164 ((-108))) (-15 -1797 ((-108) (-108))) (-15 -4140 ((-519))) (-15 -3329 ((-108) (-108))))) +((-3207 (($ $ (-1006 (-201))) 70) (($ $ (-1006 (-201)) (-1006 (-201))) 71)) (-3822 (((-1006 (-201)) $) 43)) (-3809 (((-1006 (-201)) $) 42)) (-2209 (((-1006 (-201)) $) 44)) (-3994 (((-519) (-519)) 36)) (-2266 (((-519) (-519)) 32)) (-3945 (((-519) (-519)) 34)) (-3967 (((-108) (-108)) 38)) (-1404 (((-519)) 35)) (-3171 (($ $ (-1006 (-201))) 74) (($ $) 75)) (-1539 (($ (-1 (-870 (-201)) (-201)) (-1006 (-201))) 84) (($ (-1 (-870 (-201)) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201))) 85)) (-1208 (($ (-1 (-201) (-201)) (-1006 (-201))) 92) (($ (-1 (-201) (-201))) 95)) (-2413 (($ (-1 (-201) (-201)) (-1006 (-201))) 79) (($ (-1 (-201) (-201)) (-1006 (-201)) (-1006 (-201))) 80) (($ (-585 (-1 (-201) (-201))) (-1006 (-201))) 87) (($ (-585 (-1 (-201) (-201))) (-1006 (-201)) (-1006 (-201))) 88) (($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201))) 81) (($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201))) 82) (($ $ (-1006 (-201))) 76)) (-2612 (((-108) $) 39)) (-3482 (((-519)) 40)) (-3043 (((-519)) 31)) (-3124 (((-519)) 33)) (-2302 (((-585 (-585 (-870 (-201)))) $) 22)) (-3065 (((-108) (-108)) 41)) (-2217 (((-790) $) 106)) (-2751 (((-108)) 37))) +(((-854) (-13 (-881) (-10 -8 (-15 -2413 ($ (-1 (-201) (-201)) (-1006 (-201)))) (-15 -2413 ($ (-1 (-201) (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -2413 ($ (-585 (-1 (-201) (-201))) (-1006 (-201)))) (-15 -2413 ($ (-585 (-1 (-201) (-201))) (-1006 (-201)) (-1006 (-201)))) (-15 -2413 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201)))) (-15 -2413 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -1539 ($ (-1 (-870 (-201)) (-201)) (-1006 (-201)))) (-15 -1539 ($ (-1 (-870 (-201)) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -1208 ($ (-1 (-201) (-201)) (-1006 (-201)))) (-15 -1208 ($ (-1 (-201) (-201)))) (-15 -2413 ($ $ (-1006 (-201)))) (-15 -2612 ((-108) $)) (-15 -3207 ($ $ (-1006 (-201)))) (-15 -3207 ($ $ (-1006 (-201)) (-1006 (-201)))) (-15 -3171 ($ $ (-1006 (-201)))) (-15 -3171 ($ $)) (-15 -2209 ((-1006 (-201)) $)) (-15 -3043 ((-519))) (-15 -2266 ((-519) (-519))) (-15 -3124 ((-519))) (-15 -3945 ((-519) (-519))) (-15 -1404 ((-519))) (-15 -3994 ((-519) (-519))) (-15 -2751 ((-108))) (-15 -3967 ((-108) (-108))) (-15 -3482 ((-519))) (-15 -3065 ((-108) (-108)))))) (T -854)) +((-2413 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) (-5 *1 (-854)))) (-2413 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) (-5 *1 (-854)))) (-2413 (*1 *1 *2 *3) (-12 (-5 *2 (-585 (-1 (-201) (-201)))) (-5 *3 (-1006 (-201))) (-5 *1 (-854)))) (-2413 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-1 (-201) (-201)))) (-5 *3 (-1006 (-201))) (-5 *1 (-854)))) (-2413 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) (-5 *1 (-854)))) (-2413 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) (-5 *1 (-854)))) (-1539 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-870 (-201)) (-201))) (-5 *3 (-1006 (-201))) (-5 *1 (-854)))) (-1539 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-870 (-201)) (-201))) (-5 *3 (-1006 (-201))) (-5 *1 (-854)))) (-1208 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) (-5 *1 (-854)))) (-1208 (*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-854)))) (-2413 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-854)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-854)))) (-3207 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-854)))) (-3207 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-854)))) (-3171 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-854)))) (-3171 (*1 *1 *1) (-5 *1 (-854))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-854)))) (-3043 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854)))) (-3124 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854)))) (-1404 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854)))) (-2751 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))) (-3967 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))) (-3482 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854))))) +(-13 (-881) (-10 -8 (-15 -2413 ($ (-1 (-201) (-201)) (-1006 (-201)))) (-15 -2413 ($ (-1 (-201) (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -2413 ($ (-585 (-1 (-201) (-201))) (-1006 (-201)))) (-15 -2413 ($ (-585 (-1 (-201) (-201))) (-1006 (-201)) (-1006 (-201)))) (-15 -2413 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201)))) (-15 -2413 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -1539 ($ (-1 (-870 (-201)) (-201)) (-1006 (-201)))) (-15 -1539 ($ (-1 (-870 (-201)) (-201)) (-1006 (-201)) (-1006 (-201)) (-1006 (-201)))) (-15 -1208 ($ (-1 (-201) (-201)) (-1006 (-201)))) (-15 -1208 ($ (-1 (-201) (-201)))) (-15 -2413 ($ $ (-1006 (-201)))) (-15 -2612 ((-108) $)) (-15 -3207 ($ $ (-1006 (-201)))) (-15 -3207 ($ $ (-1006 (-201)) (-1006 (-201)))) (-15 -3171 ($ $ (-1006 (-201)))) (-15 -3171 ($ $)) (-15 -2209 ((-1006 (-201)) $)) (-15 -3043 ((-519))) (-15 -2266 ((-519) (-519))) (-15 -3124 ((-519))) (-15 -3945 ((-519) (-519))) (-15 -1404 ((-519))) (-15 -3994 ((-519) (-519))) (-15 -2751 ((-108))) (-15 -3967 ((-108) (-108))) (-15 -3482 ((-519))) (-15 -3065 ((-108) (-108))))) +((-3427 (((-585 (-1006 (-201))) (-585 (-585 (-870 (-201))))) 23))) +(((-855) (-10 -7 (-15 -3427 ((-585 (-1006 (-201))) (-585 (-585 (-870 (-201)))))))) (T -855)) +((-3427 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *2 (-585 (-1006 (-201)))) (-5 *1 (-855))))) +(-10 -7 (-15 -3427 ((-585 (-1006 (-201))) (-585 (-585 (-870 (-201))))))) +((-2752 ((|#2| |#2|) 25)) (-1805 ((|#2| |#2|) 26)) (-2730 ((|#2| |#2|) 24)) (-3037 ((|#2| |#2| (-1065)) 23))) +(((-856 |#1| |#2|) (-10 -7 (-15 -3037 (|#2| |#2| (-1065))) (-15 -2730 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -1805 (|#2| |#2|))) (-782) (-402 |#1|)) (T -856)) +((-1805 (*1 *2 *2) (-12 (-4 *3 (-782)) (-5 *1 (-856 *3 *2)) (-4 *2 (-402 *3)))) (-2752 (*1 *2 *2) (-12 (-4 *3 (-782)) (-5 *1 (-856 *3 *2)) (-4 *2 (-402 *3)))) (-2730 (*1 *2 *2) (-12 (-4 *3 (-782)) (-5 *1 (-856 *3 *2)) (-4 *2 (-402 *3)))) (-3037 (*1 *2 *2 *3) (-12 (-5 *3 (-1065)) (-4 *4 (-782)) (-5 *1 (-856 *4 *2)) (-4 *2 (-402 *4))))) +(-10 -7 (-15 -3037 (|#2| |#2| (-1065))) (-15 -2730 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -1805 (|#2| |#2|))) +((-2752 (((-288 (-519)) (-1082)) 15)) (-1805 (((-288 (-519)) (-1082)) 13)) (-2730 (((-288 (-519)) (-1082)) 11)) (-3037 (((-288 (-519)) (-1082) (-1065)) 18))) +(((-857) (-10 -7 (-15 -3037 ((-288 (-519)) (-1082) (-1065))) (-15 -2730 ((-288 (-519)) (-1082))) (-15 -2752 ((-288 (-519)) (-1082))) (-15 -1805 ((-288 (-519)) (-1082))))) (T -857)) +((-1805 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-288 (-519))) (-5 *1 (-857)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-288 (-519))) (-5 *1 (-857)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-288 (-519))) (-5 *1 (-857)))) (-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-1065)) (-5 *2 (-288 (-519))) (-5 *1 (-857))))) +(-10 -7 (-15 -3037 ((-288 (-519)) (-1082) (-1065))) (-15 -2730 ((-288 (-519)) (-1082))) (-15 -2752 ((-288 (-519)) (-1082))) (-15 -1805 ((-288 (-519)) (-1082)))) +((-4068 (((-816 |#1| |#3|) |#2| (-819 |#1|) (-816 |#1| |#3|)) 24)) (-3749 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 12))) +(((-858 |#1| |#2| |#3|) (-10 -7 (-15 -3749 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -4068 ((-816 |#1| |#3|) |#2| (-819 |#1|) (-816 |#1| |#3|)))) (-1011) (-813 |#1|) (-13 (-1011) (-959 |#2|))) (T -858)) +((-4068 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *5 *6)) (-5 *4 (-819 *5)) (-4 *5 (-1011)) (-4 *6 (-13 (-1011) (-959 *3))) (-4 *3 (-813 *5)) (-5 *1 (-858 *5 *3 *6)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1011) (-959 *5))) (-4 *5 (-813 *4)) (-4 *4 (-1011)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-858 *4 *5 *6))))) +(-10 -7 (-15 -3749 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -4068 ((-816 |#1| |#3|) |#2| (-819 |#1|) (-816 |#1| |#3|)))) +((-4068 (((-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|)) 29))) +(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -4068 ((-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|)))) (-1011) (-13 (-511) (-782) (-813 |#1|)) (-13 (-402 |#2|) (-560 (-819 |#1|)) (-813 |#1|) (-959 (-558 $)))) (T -859)) +((-4068 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *5 *3)) (-4 *5 (-1011)) (-4 *3 (-13 (-402 *6) (-560 *4) (-813 *5) (-959 (-558 $)))) (-5 *4 (-819 *5)) (-4 *6 (-13 (-511) (-782) (-813 *5))) (-5 *1 (-859 *5 *6 *3))))) +(-10 -7 (-15 -4068 ((-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|)))) +((-4068 (((-816 (-519) |#1|) |#1| (-819 (-519)) (-816 (-519) |#1|)) 12))) +(((-860 |#1|) (-10 -7 (-15 -4068 ((-816 (-519) |#1|) |#1| (-819 (-519)) (-816 (-519) |#1|)))) (-504)) (T -860)) +((-4068 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 (-519) *3)) (-5 *4 (-819 (-519))) (-4 *3 (-504)) (-5 *1 (-860 *3))))) +(-10 -7 (-15 -4068 ((-816 (-519) |#1|) |#1| (-819 (-519)) (-816 (-519) |#1|)))) +((-4068 (((-816 |#1| |#2|) (-558 |#2|) (-819 |#1|) (-816 |#1| |#2|)) 52))) +(((-861 |#1| |#2|) (-10 -7 (-15 -4068 ((-816 |#1| |#2|) (-558 |#2|) (-819 |#1|) (-816 |#1| |#2|)))) (-1011) (-13 (-782) (-959 (-558 $)) (-560 (-819 |#1|)) (-813 |#1|))) (T -861)) +((-4068 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *5 *6)) (-5 *3 (-558 *6)) (-4 *5 (-1011)) (-4 *6 (-13 (-782) (-959 (-558 $)) (-560 *4) (-813 *5))) (-5 *4 (-819 *5)) (-5 *1 (-861 *5 *6))))) +(-10 -7 (-15 -4068 ((-816 |#1| |#2|) (-558 |#2|) (-819 |#1|) (-816 |#1| |#2|)))) +((-4068 (((-812 |#1| |#2| |#3|) |#3| (-819 |#1|) (-812 |#1| |#2| |#3|)) 14))) +(((-862 |#1| |#2| |#3|) (-10 -7 (-15 -4068 ((-812 |#1| |#2| |#3|) |#3| (-819 |#1|) (-812 |#1| |#2| |#3|)))) (-1011) (-813 |#1|) (-605 |#2|)) (T -862)) +((-4068 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *5 *6 *3)) (-5 *4 (-819 *5)) (-4 *5 (-1011)) (-4 *6 (-813 *5)) (-4 *3 (-605 *6)) (-5 *1 (-862 *5 *6 *3))))) +(-10 -7 (-15 -4068 ((-812 |#1| |#2| |#3|) |#3| (-819 |#1|) (-812 |#1| |#2| |#3|)))) +((-4068 (((-816 |#1| |#5|) |#5| (-819 |#1|) (-816 |#1| |#5|)) 17 (|has| |#3| (-813 |#1|))) (((-816 |#1| |#5|) |#5| (-819 |#1|) (-816 |#1| |#5|) (-1 (-816 |#1| |#5|) |#3| (-819 |#1|) (-816 |#1| |#5|))) 16))) +(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4068 ((-816 |#1| |#5|) |#5| (-819 |#1|) (-816 |#1| |#5|) (-1 (-816 |#1| |#5|) |#3| (-819 |#1|) (-816 |#1| |#5|)))) (IF (|has| |#3| (-813 |#1|)) (-15 -4068 ((-816 |#1| |#5|) |#5| (-819 |#1|) (-816 |#1| |#5|))) |%noBranch|)) (-1011) (-727) (-782) (-13 (-968) (-782) (-813 |#1|)) (-13 (-876 |#4| |#2| |#3|) (-560 (-819 |#1|)))) (T -863)) +((-4068 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *5 *3)) (-4 *5 (-1011)) (-4 *3 (-13 (-876 *8 *6 *7) (-560 *4))) (-5 *4 (-819 *5)) (-4 *7 (-813 *5)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-13 (-968) (-782) (-813 *5))) (-5 *1 (-863 *5 *6 *7 *8 *3)))) (-4068 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-816 *6 *3) *8 (-819 *6) (-816 *6 *3))) (-4 *8 (-782)) (-5 *2 (-816 *6 *3)) (-5 *4 (-819 *6)) (-4 *6 (-1011)) (-4 *3 (-13 (-876 *9 *7 *8) (-560 *4))) (-4 *7 (-727)) (-4 *9 (-13 (-968) (-782) (-813 *6))) (-5 *1 (-863 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -4068 ((-816 |#1| |#5|) |#5| (-819 |#1|) (-816 |#1| |#5|) (-1 (-816 |#1| |#5|) |#3| (-819 |#1|) (-816 |#1| |#5|)))) (IF (|has| |#3| (-813 |#1|)) (-15 -4068 ((-816 |#1| |#5|) |#5| (-819 |#1|) (-816 |#1| |#5|))) |%noBranch|)) +((-1875 ((|#2| |#2| (-585 (-1 (-108) |#3|))) 11) ((|#2| |#2| (-1 (-108) |#3|)) 12))) +(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -1875 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1875 (|#2| |#2| (-585 (-1 (-108) |#3|))))) (-782) (-402 |#1|) (-1117)) (T -864)) +((-1875 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-1 (-108) *5))) (-4 *5 (-1117)) (-4 *4 (-782)) (-5 *1 (-864 *4 *2 *5)) (-4 *2 (-402 *4)))) (-1875 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1117)) (-4 *4 (-782)) (-5 *1 (-864 *4 *2 *5)) (-4 *2 (-402 *4))))) +(-10 -7 (-15 -1875 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1875 (|#2| |#2| (-585 (-1 (-108) |#3|))))) +((-1875 (((-288 (-519)) (-1082) (-585 (-1 (-108) |#1|))) 16) (((-288 (-519)) (-1082) (-1 (-108) |#1|)) 13))) +(((-865 |#1|) (-10 -7 (-15 -1875 ((-288 (-519)) (-1082) (-1 (-108) |#1|))) (-15 -1875 ((-288 (-519)) (-1082) (-585 (-1 (-108) |#1|))))) (-1117)) (T -865)) +((-1875 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-585 (-1 (-108) *5))) (-4 *5 (-1117)) (-5 *2 (-288 (-519))) (-5 *1 (-865 *5)))) (-1875 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1117)) (-5 *2 (-288 (-519))) (-5 *1 (-865 *5))))) +(-10 -7 (-15 -1875 ((-288 (-519)) (-1082) (-1 (-108) |#1|))) (-15 -1875 ((-288 (-519)) (-1082) (-585 (-1 (-108) |#1|))))) +((-4068 (((-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|)) 25))) +(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -4068 ((-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|)))) (-1011) (-13 (-511) (-813 |#1|) (-560 (-819 |#1|))) (-916 |#2|)) (T -866)) +((-4068 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *5 *3)) (-4 *5 (-1011)) (-4 *3 (-916 *6)) (-4 *6 (-13 (-511) (-813 *5) (-560 *4))) (-5 *4 (-819 *5)) (-5 *1 (-866 *5 *6 *3))))) +(-10 -7 (-15 -4068 ((-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|)))) +((-4068 (((-816 |#1| (-1082)) (-1082) (-819 |#1|) (-816 |#1| (-1082))) 17))) +(((-867 |#1|) (-10 -7 (-15 -4068 ((-816 |#1| (-1082)) (-1082) (-819 |#1|) (-816 |#1| (-1082))))) (-1011)) (T -867)) +((-4068 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *5 (-1082))) (-5 *3 (-1082)) (-5 *4 (-819 *5)) (-4 *5 (-1011)) (-5 *1 (-867 *5))))) +(-10 -7 (-15 -4068 ((-816 |#1| (-1082)) (-1082) (-819 |#1|) (-816 |#1| (-1082))))) +((-2562 (((-816 |#1| |#3|) (-585 |#3|) (-585 (-819 |#1|)) (-816 |#1| |#3|) (-1 (-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|))) 33)) (-4068 (((-816 |#1| |#3|) (-585 |#3|) (-585 (-819 |#1|)) (-1 |#3| (-585 |#3|)) (-816 |#1| |#3|) (-1 (-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|))) 32))) +(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -4068 ((-816 |#1| |#3|) (-585 |#3|) (-585 (-819 |#1|)) (-1 |#3| (-585 |#3|)) (-816 |#1| |#3|) (-1 (-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|)))) (-15 -2562 ((-816 |#1| |#3|) (-585 |#3|) (-585 (-819 |#1|)) (-816 |#1| |#3|) (-1 (-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|))))) (-1011) (-13 (-968) (-782)) (-13 (-968) (-560 (-819 |#1|)) (-959 |#2|))) (T -868)) +((-2562 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-819 *6))) (-5 *5 (-1 (-816 *6 *8) *8 (-819 *6) (-816 *6 *8))) (-4 *6 (-1011)) (-4 *8 (-13 (-968) (-560 (-819 *6)) (-959 *7))) (-5 *2 (-816 *6 *8)) (-4 *7 (-13 (-968) (-782))) (-5 *1 (-868 *6 *7 *8)))) (-4068 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-585 (-819 *7))) (-5 *5 (-1 *9 (-585 *9))) (-5 *6 (-1 (-816 *7 *9) *9 (-819 *7) (-816 *7 *9))) (-4 *7 (-1011)) (-4 *9 (-13 (-968) (-560 (-819 *7)) (-959 *8))) (-5 *2 (-816 *7 *9)) (-5 *3 (-585 *9)) (-4 *8 (-13 (-968) (-782))) (-5 *1 (-868 *7 *8 *9))))) +(-10 -7 (-15 -4068 ((-816 |#1| |#3|) (-585 |#3|) (-585 (-819 |#1|)) (-1 |#3| (-585 |#3|)) (-816 |#1| |#3|) (-1 (-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|)))) (-15 -2562 ((-816 |#1| |#3|) (-585 |#3|) (-585 (-819 |#1|)) (-816 |#1| |#3|) (-1 (-816 |#1| |#3|) |#3| (-819 |#1|) (-816 |#1| |#3|))))) +((-3537 (((-1078 (-379 (-519))) (-519)) 62)) (-1732 (((-1078 (-519)) (-519)) 65)) (-4134 (((-1078 (-519)) (-519)) 59)) (-1697 (((-519) (-1078 (-519))) 54)) (-3480 (((-1078 (-379 (-519))) (-519)) 48)) (-2828 (((-1078 (-519)) (-519)) 37)) (-2411 (((-1078 (-519)) (-519)) 67)) (-2149 (((-1078 (-519)) (-519)) 66)) (-2244 (((-1078 (-379 (-519))) (-519)) 50))) +(((-869) (-10 -7 (-15 -2244 ((-1078 (-379 (-519))) (-519))) (-15 -2149 ((-1078 (-519)) (-519))) (-15 -2411 ((-1078 (-519)) (-519))) (-15 -2828 ((-1078 (-519)) (-519))) (-15 -3480 ((-1078 (-379 (-519))) (-519))) (-15 -1697 ((-519) (-1078 (-519)))) (-15 -4134 ((-1078 (-519)) (-519))) (-15 -1732 ((-1078 (-519)) (-519))) (-15 -3537 ((-1078 (-379 (-519))) (-519))))) (T -869)) +((-3537 (*1 *2 *3) (-12 (-5 *2 (-1078 (-379 (-519)))) (-5 *1 (-869)) (-5 *3 (-519)))) (-1732 (*1 *2 *3) (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-869)) (-5 *3 (-519)))) (-4134 (*1 *2 *3) (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-869)) (-5 *3 (-519)))) (-1697 (*1 *2 *3) (-12 (-5 *3 (-1078 (-519))) (-5 *2 (-519)) (-5 *1 (-869)))) (-3480 (*1 *2 *3) (-12 (-5 *2 (-1078 (-379 (-519)))) (-5 *1 (-869)) (-5 *3 (-519)))) (-2828 (*1 *2 *3) (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-869)) (-5 *3 (-519)))) (-2411 (*1 *2 *3) (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-869)) (-5 *3 (-519)))) (-2149 (*1 *2 *3) (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-869)) (-5 *3 (-519)))) (-2244 (*1 *2 *3) (-12 (-5 *2 (-1078 (-379 (-519)))) (-5 *1 (-869)) (-5 *3 (-519))))) +(-10 -7 (-15 -2244 ((-1078 (-379 (-519))) (-519))) (-15 -2149 ((-1078 (-519)) (-519))) (-15 -2411 ((-1078 (-519)) (-519))) (-15 -2828 ((-1078 (-519)) (-519))) (-15 -3480 ((-1078 (-379 (-519))) (-519))) (-15 -1697 ((-519) (-1078 (-519)))) (-15 -4134 ((-1078 (-519)) (-519))) (-15 -1732 ((-1078 (-519)) (-519))) (-15 -3537 ((-1078 (-379 (-519))) (-519)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3535 (($ (-705)) NIL (|has| |#1| (-23)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4222))) (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| |#1| (-782))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#1| $ (-519) |#1|) 11 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) NIL (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) NIL)) (-3297 (((-519) (-1 (-108) |#1|) $) NIL) (((-519) |#1| $) NIL (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) NIL (|has| |#1| (-1011)))) (-2789 (($ (-585 |#1|)) 13)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3959 (((-625 |#1|) $ $) NIL (|has| |#1| (-968)))) (-1822 (($ (-705) |#1|) 8)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) 10 (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1464 ((|#1| $) NIL (-12 (|has| |#1| (-925)) (|has| |#1| (-968))))) (-2768 (((-108) $ (-705)) NIL)) (-2568 ((|#1| $) NIL (-12 (|has| |#1| (-925)) (|has| |#1| (-968))))) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1672 (($ |#1| $ (-519)) NIL) (($ $ $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2331 ((|#1| $) NIL (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3640 (($ $ |#1|) NIL (|has| $ (-6 -4222)))) (-3881 (($ $ (-585 |#1|)) 24)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ (-519) |#1|) NIL) ((|#1| $ (-519)) 18) (($ $ (-1130 (-519))) NIL)) (-1466 ((|#1| $ $) NIL (|has| |#1| (-968)))) (-2914 (((-848) $) 16)) (-3720 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-2376 (($ $ $) 22)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495)))) (($ (-585 |#1|)) 17)) (-2228 (($ (-585 |#1|)) NIL)) (-4150 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-585 $)) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1623 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1614 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-519) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-661))) (($ $ |#1|) NIL (|has| |#1| (-661)))) (-3532 (((-705) $) 14 (|has| $ (-6 -4221))))) +(((-870 |#1|) (-904 |#1|) (-968)) (T -870)) +NIL +(-904 |#1|) +((-3587 (((-451 |#1| |#2|) (-879 |#2|)) 17)) (-3658 (((-223 |#1| |#2|) (-879 |#2|)) 29)) (-1226 (((-879 |#2|) (-451 |#1| |#2|)) 22)) (-2796 (((-223 |#1| |#2|) (-451 |#1| |#2|)) 53)) (-1869 (((-879 |#2|) (-223 |#1| |#2|)) 26)) (-1988 (((-451 |#1| |#2|) (-223 |#1| |#2|)) 44))) +(((-871 |#1| |#2|) (-10 -7 (-15 -1988 ((-451 |#1| |#2|) (-223 |#1| |#2|))) (-15 -2796 ((-223 |#1| |#2|) (-451 |#1| |#2|))) (-15 -3587 ((-451 |#1| |#2|) (-879 |#2|))) (-15 -1226 ((-879 |#2|) (-451 |#1| |#2|))) (-15 -1869 ((-879 |#2|) (-223 |#1| |#2|))) (-15 -3658 ((-223 |#1| |#2|) (-879 |#2|)))) (-585 (-1082)) (-968)) (T -871)) +((-3658 (*1 *2 *3) (-12 (-5 *3 (-879 *5)) (-4 *5 (-968)) (-5 *2 (-223 *4 *5)) (-5 *1 (-871 *4 *5)) (-14 *4 (-585 (-1082))))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-585 (-1082))) (-4 *5 (-968)) (-5 *2 (-879 *5)) (-5 *1 (-871 *4 *5)))) (-1226 (*1 *2 *3) (-12 (-5 *3 (-451 *4 *5)) (-14 *4 (-585 (-1082))) (-4 *5 (-968)) (-5 *2 (-879 *5)) (-5 *1 (-871 *4 *5)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-879 *5)) (-4 *5 (-968)) (-5 *2 (-451 *4 *5)) (-5 *1 (-871 *4 *5)) (-14 *4 (-585 (-1082))))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-451 *4 *5)) (-14 *4 (-585 (-1082))) (-4 *5 (-968)) (-5 *2 (-223 *4 *5)) (-5 *1 (-871 *4 *5)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-585 (-1082))) (-4 *5 (-968)) (-5 *2 (-451 *4 *5)) (-5 *1 (-871 *4 *5))))) +(-10 -7 (-15 -1988 ((-451 |#1| |#2|) (-223 |#1| |#2|))) (-15 -2796 ((-223 |#1| |#2|) (-451 |#1| |#2|))) (-15 -3587 ((-451 |#1| |#2|) (-879 |#2|))) (-15 -1226 ((-879 |#2|) (-451 |#1| |#2|))) (-15 -1869 ((-879 |#2|) (-223 |#1| |#2|))) (-15 -3658 ((-223 |#1| |#2|) (-879 |#2|)))) +((-3298 (((-585 |#2|) |#2| |#2|) 10)) (-1480 (((-705) (-585 |#1|)) 38 (|has| |#1| (-780)))) (-1769 (((-585 |#2|) |#2|) 11)) (-1267 (((-705) (-585 |#1|) (-519) (-519)) 37 (|has| |#1| (-780)))) (-3927 ((|#1| |#2|) 33 (|has| |#1| (-780))))) +(((-872 |#1| |#2|) (-10 -7 (-15 -3298 ((-585 |#2|) |#2| |#2|)) (-15 -1769 ((-585 |#2|) |#2|)) (IF (|has| |#1| (-780)) (PROGN (-15 -3927 (|#1| |#2|)) (-15 -1480 ((-705) (-585 |#1|))) (-15 -1267 ((-705) (-585 |#1|) (-519) (-519)))) |%noBranch|)) (-335) (-1139 |#1|)) (T -872)) +((-1267 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-519)) (-4 *5 (-780)) (-4 *5 (-335)) (-5 *2 (-705)) (-5 *1 (-872 *5 *6)) (-4 *6 (-1139 *5)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-780)) (-4 *4 (-335)) (-5 *2 (-705)) (-5 *1 (-872 *4 *5)) (-4 *5 (-1139 *4)))) (-3927 (*1 *2 *3) (-12 (-4 *2 (-335)) (-4 *2 (-780)) (-5 *1 (-872 *2 *3)) (-4 *3 (-1139 *2)))) (-1769 (*1 *2 *3) (-12 (-4 *4 (-335)) (-5 *2 (-585 *3)) (-5 *1 (-872 *4 *3)) (-4 *3 (-1139 *4)))) (-3298 (*1 *2 *3 *3) (-12 (-4 *4 (-335)) (-5 *2 (-585 *3)) (-5 *1 (-872 *4 *3)) (-4 *3 (-1139 *4))))) +(-10 -7 (-15 -3298 ((-585 |#2|) |#2| |#2|)) (-15 -1769 ((-585 |#2|) |#2|)) (IF (|has| |#1| (-780)) (PROGN (-15 -3927 (|#1| |#2|)) (-15 -1480 ((-705) (-585 |#1|))) (-15 -1267 ((-705) (-585 |#1|) (-519) (-519)))) |%noBranch|)) +((-1405 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 18))) +(((-873 |#1| |#2|) (-10 -7 (-15 -1405 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-968) (-968)) (T -873)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-968)) (-4 *6 (-968)) (-5 *2 (-879 *6)) (-5 *1 (-873 *5 *6))))) +(-10 -7 (-15 -1405 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) +((-1283 (((-1136 |#1| (-879 |#2|)) (-879 |#2|) (-1159 |#1|)) 18))) +(((-874 |#1| |#2|) (-10 -7 (-15 -1283 ((-1136 |#1| (-879 |#2|)) (-879 |#2|) (-1159 |#1|)))) (-1082) (-968)) (T -874)) +((-1283 (*1 *2 *3 *4) (-12 (-5 *4 (-1159 *5)) (-14 *5 (-1082)) (-4 *6 (-968)) (-5 *2 (-1136 *5 (-879 *6))) (-5 *1 (-874 *5 *6)) (-5 *3 (-879 *6))))) +(-10 -7 (-15 -1283 ((-1136 |#1| (-879 |#2|)) (-879 |#2|) (-1159 |#1|)))) +((-1976 (((-705) $) 70) (((-705) $ (-585 |#4|)) 73)) (-4043 (($ $) 170)) (-3093 (((-390 $) $) 162)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 113)) (-1301 (((-3 |#2| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 (-519) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-1499 ((|#2| $) NIL) (((-379 (-519)) $) NIL) (((-519) $) NIL) ((|#4| $) 58)) (-1286 (($ $ $ |#4|) 75)) (-1562 (((-625 (-519)) (-625 $)) NIL) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) 103) (((-625 |#2|) (-625 $)) 96)) (-2177 (($ $) 177) (($ $ |#4|) 180)) (-3208 (((-585 $) $) 62)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 195) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 189)) (-2089 (((-585 $) $) 28)) (-4042 (($ |#2| |#3|) NIL) (($ $ |#4| (-705)) NIL) (($ $ (-585 |#4|) (-585 (-705))) 56)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ |#4|) 159)) (-3499 (((-3 (-585 $) "failed") $) 42)) (-2100 (((-3 (-585 $) "failed") $) 31)) (-2669 (((-3 (-2 (|:| |var| |#4|) (|:| -1690 (-705))) "failed") $) 46)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 106)) (-1863 (((-390 (-1078 $)) (-1078 $)) 119)) (-3966 (((-390 (-1078 $)) (-1078 $)) 117)) (-1921 (((-390 $) $) 137)) (-2324 (($ $ (-585 (-267 $))) 20) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-585 |#4|) (-585 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-585 |#4|) (-585 $)) NIL)) (-3677 (($ $ |#4|) 77)) (-1446 (((-819 (-351)) $) 209) (((-819 (-519)) $) 202) (((-495) $) 217)) (-3939 ((|#2| $) NIL) (($ $ |#4|) 172)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 151)) (-1220 ((|#2| $ |#3|) NIL) (($ $ |#4| (-705)) 51) (($ $ (-585 |#4|) (-585 (-705))) 54)) (-3773 (((-3 $ "failed") $) 153)) (-1561 (((-108) $ $) 183))) +(((-875 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1715 ((-1078 |#1|) (-1078 |#1|) (-1078 |#1|))) (-15 -3093 ((-390 |#1|) |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -3773 ((-3 |#1| "failed") |#1|)) (-15 -1561 ((-108) |#1| |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -4068 ((-816 (-519) |#1|) |#1| (-819 (-519)) (-816 (-519) |#1|))) (-15 -4068 ((-816 (-351) |#1|) |#1| (-819 (-351)) (-816 (-351) |#1|))) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -3966 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -1863 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -2960 ((-3 (-585 (-1078 |#1|)) "failed") (-585 (-1078 |#1|)) (-1078 |#1|))) (-15 -1376 ((-3 (-1163 |#1|) "failed") (-625 |#1|))) (-15 -2177 (|#1| |#1| |#4|)) (-15 -3939 (|#1| |#1| |#4|)) (-15 -3677 (|#1| |#1| |#4|)) (-15 -1286 (|#1| |#1| |#1| |#4|)) (-15 -3208 ((-585 |#1|) |#1|)) (-15 -1976 ((-705) |#1| (-585 |#4|))) (-15 -1976 ((-705) |#1|)) (-15 -2669 ((-3 (-2 (|:| |var| |#4|) (|:| -1690 (-705))) "failed") |#1|)) (-15 -3499 ((-3 (-585 |#1|) "failed") |#1|)) (-15 -2100 ((-3 (-585 |#1|) "failed") |#1|)) (-15 -4042 (|#1| |#1| (-585 |#4|) (-585 (-705)))) (-15 -4042 (|#1| |#1| |#4| (-705))) (-15 -4098 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1| |#4|)) (-15 -2089 ((-585 |#1|) |#1|)) (-15 -1220 (|#1| |#1| (-585 |#4|) (-585 (-705)))) (-15 -1220 (|#1| |#1| |#4| (-705))) (-15 -1562 ((-625 |#2|) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -1499 (|#4| |#1|)) (-15 -1301 ((-3 |#4| "failed") |#1|)) (-15 -2324 (|#1| |#1| (-585 |#4|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#4| |#1|)) (-15 -2324 (|#1| |#1| (-585 |#4|) (-585 |#2|))) (-15 -2324 (|#1| |#1| |#4| |#2|)) (-15 -2324 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| (-267 |#1|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -4042 (|#1| |#2| |#3|)) (-15 -1220 (|#2| |#1| |#3|)) (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -3939 (|#2| |#1|)) (-15 -2177 (|#1| |#1|))) (-876 |#2| |#3| |#4|) (-968) (-727) (-782)) (T -875)) +NIL +(-10 -8 (-15 -1715 ((-1078 |#1|) (-1078 |#1|) (-1078 |#1|))) (-15 -3093 ((-390 |#1|) |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -3773 ((-3 |#1| "failed") |#1|)) (-15 -1561 ((-108) |#1| |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -4068 ((-816 (-519) |#1|) |#1| (-819 (-519)) (-816 (-519) |#1|))) (-15 -4068 ((-816 (-351) |#1|) |#1| (-819 (-351)) (-816 (-351) |#1|))) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -3966 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -1863 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -2960 ((-3 (-585 (-1078 |#1|)) "failed") (-585 (-1078 |#1|)) (-1078 |#1|))) (-15 -1376 ((-3 (-1163 |#1|) "failed") (-625 |#1|))) (-15 -2177 (|#1| |#1| |#4|)) (-15 -3939 (|#1| |#1| |#4|)) (-15 -3677 (|#1| |#1| |#4|)) (-15 -1286 (|#1| |#1| |#1| |#4|)) (-15 -3208 ((-585 |#1|) |#1|)) (-15 -1976 ((-705) |#1| (-585 |#4|))) (-15 -1976 ((-705) |#1|)) (-15 -2669 ((-3 (-2 (|:| |var| |#4|) (|:| -1690 (-705))) "failed") |#1|)) (-15 -3499 ((-3 (-585 |#1|) "failed") |#1|)) (-15 -2100 ((-3 (-585 |#1|) "failed") |#1|)) (-15 -4042 (|#1| |#1| (-585 |#4|) (-585 (-705)))) (-15 -4042 (|#1| |#1| |#4| (-705))) (-15 -4098 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1| |#4|)) (-15 -2089 ((-585 |#1|) |#1|)) (-15 -1220 (|#1| |#1| (-585 |#4|) (-585 (-705)))) (-15 -1220 (|#1| |#1| |#4| (-705))) (-15 -1562 ((-625 |#2|) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -1499 (|#4| |#1|)) (-15 -1301 ((-3 |#4| "failed") |#1|)) (-15 -2324 (|#1| |#1| (-585 |#4|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#4| |#1|)) (-15 -2324 (|#1| |#1| (-585 |#4|) (-585 |#2|))) (-15 -2324 (|#1| |#1| |#4| |#2|)) (-15 -2324 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| (-267 |#1|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -4042 (|#1| |#2| |#3|)) (-15 -1220 (|#2| |#1| |#3|)) (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -3939 (|#2| |#1|)) (-15 -2177 (|#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4083 (((-585 |#3|) $) 110)) (-1283 (((-1078 $) $ |#3|) 125) (((-1078 |#1|) $) 124)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 87 (|has| |#1| (-511)))) (-1410 (($ $) 88 (|has| |#1| (-511)))) (-3060 (((-108) $) 90 (|has| |#1| (-511)))) (-1976 (((-705) $) 112) (((-705) $ (-585 |#3|)) 111)) (-3167 (((-3 $ "failed") $ $) 19)) (-1958 (((-390 (-1078 $)) (-1078 $)) 100 (|has| |#1| (-836)))) (-4043 (($ $) 98 (|has| |#1| (-423)))) (-3093 (((-390 $) $) 97 (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 103 (|has| |#1| (-836)))) (-2249 (($) 17 T CONST)) (-1301 (((-3 |#1| "failed") $) 164) (((-3 (-379 (-519)) "failed") $) 162 (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) 160 (|has| |#1| (-959 (-519)))) (((-3 |#3| "failed") $) 136)) (-1499 ((|#1| $) 165) (((-379 (-519)) $) 161 (|has| |#1| (-959 (-379 (-519))))) (((-519) $) 159 (|has| |#1| (-959 (-519)))) ((|#3| $) 135)) (-1286 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3218 (($ $) 154)) (-1562 (((-625 (-519)) (-625 $)) 134 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 133 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 132) (((-625 |#1|) (-625 $)) 131)) (-4193 (((-3 $ "failed") $) 34)) (-2177 (($ $) 176 (|has| |#1| (-423))) (($ $ |#3|) 105 (|has| |#1| (-423)))) (-3208 (((-585 $) $) 109)) (-1320 (((-108) $) 96 (|has| |#1| (-836)))) (-4015 (($ $ |#1| |#2| $) 172)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 84 (-12 (|has| |#3| (-813 (-351))) (|has| |#1| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 83 (-12 (|has| |#3| (-813 (-519))) (|has| |#1| (-813 (-519)))))) (-1568 (((-108) $) 31)) (-3798 (((-705) $) 169)) (-4066 (($ (-1078 |#1|) |#3|) 117) (($ (-1078 $) |#3|) 116)) (-2089 (((-585 $) $) 126)) (-2642 (((-108) $) 152)) (-4042 (($ |#1| |#2|) 153) (($ $ |#3| (-705)) 119) (($ $ (-585 |#3|) (-585 (-705))) 118)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ |#3|) 120)) (-3695 ((|#2| $) 170) (((-705) $ |#3|) 122) (((-585 (-705)) $ (-585 |#3|)) 121)) (-2864 (($ $ $) 79 (|has| |#1| (-782)))) (-2489 (($ $ $) 78 (|has| |#1| (-782)))) (-3737 (($ (-1 |#2| |#2|) $) 171)) (-1405 (($ (-1 |#1| |#1|) $) 151)) (-2635 (((-3 |#3| "failed") $) 123)) (-3185 (($ $) 149)) (-3197 ((|#1| $) 148)) (-2254 (($ (-585 $)) 94 (|has| |#1| (-423))) (($ $ $) 93 (|has| |#1| (-423)))) (-1266 (((-1065) $) 9)) (-3499 (((-3 (-585 $) "failed") $) 114)) (-2100 (((-3 (-585 $) "failed") $) 115)) (-2669 (((-3 (-2 (|:| |var| |#3|) (|:| -1690 (-705))) "failed") $) 113)) (-4139 (((-1029) $) 10)) (-3162 (((-108) $) 166)) (-3173 ((|#1| $) 167)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 95 (|has| |#1| (-423)))) (-2292 (($ (-585 $)) 92 (|has| |#1| (-423))) (($ $ $) 91 (|has| |#1| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) 102 (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) 101 (|has| |#1| (-836)))) (-1921 (((-390 $) $) 99 (|has| |#1| (-836)))) (-2261 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-511))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-511)))) (-2324 (($ $ (-585 (-267 $))) 145) (($ $ (-267 $)) 144) (($ $ $ $) 143) (($ $ (-585 $) (-585 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-585 |#3|) (-585 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-585 |#3|) (-585 $)) 138)) (-3677 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2181 (($ $ |#3|) 42) (($ $ (-585 |#3|)) 41) (($ $ |#3| (-705)) 40) (($ $ (-585 |#3|) (-585 (-705))) 39)) (-4178 ((|#2| $) 150) (((-705) $ |#3|) 130) (((-585 (-705)) $ (-585 |#3|)) 129)) (-1446 (((-819 (-351)) $) 82 (-12 (|has| |#3| (-560 (-819 (-351)))) (|has| |#1| (-560 (-819 (-351)))))) (((-819 (-519)) $) 81 (-12 (|has| |#3| (-560 (-819 (-519)))) (|has| |#1| (-560 (-819 (-519)))))) (((-495) $) 80 (-12 (|has| |#3| (-560 (-495))) (|has| |#1| (-560 (-495)))))) (-3939 ((|#1| $) 175 (|has| |#1| (-423))) (($ $ |#3|) 106 (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 104 (-4012 (|has| $ (-133)) (|has| |#1| (-836))))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-511))) (($ (-379 (-519))) 72 (-3730 (|has| |#1| (-959 (-379 (-519)))) (|has| |#1| (-37 (-379 (-519))))))) (-2988 (((-585 |#1|) $) 168)) (-1220 ((|#1| $ |#2|) 155) (($ $ |#3| (-705)) 128) (($ $ (-585 |#3|) (-585 (-705))) 127)) (-3773 (((-3 $ "failed") $) 73 (-3730 (-4012 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) 29)) (-1487 (($ $ $ (-705)) 173 (|has| |#1| (-157)))) (-1617 (((-108) $ $) 89 (|has| |#1| (-511)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ |#3|) 38) (($ $ (-585 |#3|)) 37) (($ $ |#3| (-705)) 36) (($ $ (-585 |#3|) (-585 (-705))) 35)) (-1586 (((-108) $ $) 76 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 75 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 77 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 74 (|has| |#1| (-782)))) (-1632 (($ $ |#1|) 156 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 158 (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) 157 (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-876 |#1| |#2| |#3|) (-1194) (-968) (-727) (-782)) (T -876)) +((-2177 (*1 *1 *1) (-12 (-4 *1 (-876 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-423)))) (-4178 (*1 *2 *1 *3) (-12 (-4 *1 (-876 *4 *5 *3)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) (-5 *2 (-705)))) (-4178 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-876 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 (-705))))) (-1220 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-876 *4 *5 *2)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *2 (-782)))) (-1220 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-705))) (-4 *1 (-876 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)))) (-2089 (*1 *2 *1) (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-876 *3 *4 *5)))) (-1283 (*1 *2 *1 *3) (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) (-5 *2 (-1078 *1)) (-4 *1 (-876 *4 *5 *3)))) (-1283 (*1 *2 *1) (-12 (-4 *1 (-876 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-1078 *3)))) (-2635 (*1 *2 *1) (|partial| -12 (-4 *1 (-876 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)))) (-3695 (*1 *2 *1 *3) (-12 (-4 *1 (-876 *4 *5 *3)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) (-5 *2 (-705)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-876 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 (-705))))) (-4098 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-876 *4 *5 *3)))) (-4042 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-876 *4 *5 *2)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *2 (-782)))) (-4042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-705))) (-4 *1 (-876 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)))) (-4066 (*1 *1 *2 *3) (-12 (-5 *2 (-1078 *4)) (-4 *4 (-968)) (-4 *1 (-876 *4 *5 *3)) (-4 *5 (-727)) (-4 *3 (-782)))) (-4066 (*1 *1 *2 *3) (-12 (-5 *2 (-1078 *1)) (-4 *1 (-876 *4 *5 *3)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)))) (-2100 (*1 *2 *1) (|partial| -12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-876 *3 *4 *5)))) (-3499 (*1 *2 *1) (|partial| -12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-876 *3 *4 *5)))) (-2669 (*1 *2 *1) (|partial| -12 (-4 *1 (-876 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-2 (|:| |var| *5) (|:| -1690 (-705)))))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-876 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-705)))) (-1976 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *6)) (-4 *1 (-876 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-705)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-876 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *5)))) (-3208 (*1 *2 *1) (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-876 *3 *4 *5)))) (-1286 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-876 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)) (-4 *3 (-157)))) (-3677 (*1 *1 *1 *2) (-12 (-4 *1 (-876 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)) (-4 *3 (-157)))) (-3939 (*1 *1 *1 *2) (-12 (-4 *1 (-876 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)) (-4 *3 (-423)))) (-2177 (*1 *1 *1 *2) (-12 (-4 *1 (-876 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)) (-4 *3 (-423)))) (-4043 (*1 *1 *1) (-12 (-4 *1 (-876 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-423)))) (-3093 (*1 *2 *1) (-12 (-4 *3 (-423)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-390 *1)) (-4 *1 (-876 *3 *4 *5))))) +(-13 (-827 |t#3|) (-298 |t#1| |t#2|) (-282 $) (-480 |t#3| |t#1|) (-480 |t#3| $) (-959 |t#3|) (-349 |t#1|) (-10 -8 (-15 -4178 ((-705) $ |t#3|)) (-15 -4178 ((-585 (-705)) $ (-585 |t#3|))) (-15 -1220 ($ $ |t#3| (-705))) (-15 -1220 ($ $ (-585 |t#3|) (-585 (-705)))) (-15 -2089 ((-585 $) $)) (-15 -1283 ((-1078 $) $ |t#3|)) (-15 -1283 ((-1078 |t#1|) $)) (-15 -2635 ((-3 |t#3| "failed") $)) (-15 -3695 ((-705) $ |t#3|)) (-15 -3695 ((-585 (-705)) $ (-585 |t#3|))) (-15 -4098 ((-2 (|:| -3573 $) (|:| -1354 $)) $ $ |t#3|)) (-15 -4042 ($ $ |t#3| (-705))) (-15 -4042 ($ $ (-585 |t#3|) (-585 (-705)))) (-15 -4066 ($ (-1078 |t#1|) |t#3|)) (-15 -4066 ($ (-1078 $) |t#3|)) (-15 -2100 ((-3 (-585 $) "failed") $)) (-15 -3499 ((-3 (-585 $) "failed") $)) (-15 -2669 ((-3 (-2 (|:| |var| |t#3|) (|:| -1690 (-705))) "failed") $)) (-15 -1976 ((-705) $)) (-15 -1976 ((-705) $ (-585 |t#3|))) (-15 -4083 ((-585 |t#3|) $)) (-15 -3208 ((-585 $) $)) (IF (|has| |t#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |t#1| (-560 (-495))) (IF (|has| |t#3| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-560 (-819 (-519)))) (IF (|has| |t#3| (-560 (-819 (-519)))) (-6 (-560 (-819 (-519)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-560 (-819 (-351)))) (IF (|has| |t#3| (-560 (-819 (-351)))) (-6 (-560 (-819 (-351)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-813 (-519))) (IF (|has| |t#3| (-813 (-519))) (-6 (-813 (-519))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-813 (-351))) (IF (|has| |t#3| (-813 (-351))) (-6 (-813 (-351))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -1286 ($ $ $ |t#3|)) (-15 -3677 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-423)) (PROGN (-6 (-423)) (-15 -3939 ($ $ |t#3|)) (-15 -2177 ($ $)) (-15 -2177 ($ $ |t#3|)) (-15 -3093 ((-390 $) $)) (-15 -4043 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4219)) (-6 -4219) |%noBranch|) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-379 (-519)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-157))) ((-560 (-495)) -12 (|has| |#1| (-560 (-495))) (|has| |#3| (-560 (-495)))) ((-560 (-819 (-351))) -12 (|has| |#1| (-560 (-819 (-351)))) (|has| |#3| (-560 (-819 (-351))))) ((-560 (-819 (-519))) -12 (|has| |#1| (-560 (-819 (-519)))) (|has| |#3| (-560 (-819 (-519))))) ((-264) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-282 $) . T) ((-298 |#1| |#2|) . T) ((-349 |#1|) . T) ((-383 |#1|) . T) ((-423) -3730 (|has| |#1| (-836)) (|has| |#1| (-423))) ((-480 |#3| |#1|) . T) ((-480 |#3| $) . T) ((-480 $ $) . T) ((-511) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-587 #0#) |has| |#1| (-37 (-379 (-519)))) ((-587 |#1|) . T) ((-587 $) . T) ((-581 (-519)) |has| |#1| (-581 (-519))) ((-581 |#1|) . T) ((-652 #0#) |has| |#1| (-37 (-379 (-519)))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-661) . T) ((-782) |has| |#1| (-782)) ((-827 |#3|) . T) ((-813 (-351)) -12 (|has| |#1| (-813 (-351))) (|has| |#3| (-813 (-351)))) ((-813 (-519)) -12 (|has| |#1| (-813 (-519))) (|has| |#3| (-813 (-519)))) ((-836) |has| |#1| (-836)) ((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 |#1|) . T) ((-959 |#3|) . T) ((-974 #0#) |has| |#1| (-37 (-379 (-519)))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1121) |has| |#1| (-836))) +((-4083 (((-585 |#2|) |#5|) 36)) (-1283 (((-1078 |#5|) |#5| |#2| (-1078 |#5|)) 23) (((-379 (-1078 |#5|)) |#5| |#2|) 16)) (-4066 ((|#5| (-379 (-1078 |#5|)) |#2|) 30)) (-2635 (((-3 |#2| "failed") |#5|) 61)) (-3499 (((-3 (-585 |#5|) "failed") |#5|) 55)) (-3785 (((-3 (-2 (|:| |val| |#5|) (|:| -1690 (-519))) "failed") |#5|) 45)) (-2100 (((-3 (-585 |#5|) "failed") |#5|) 57)) (-2669 (((-3 (-2 (|:| |var| |#2|) (|:| -1690 (-519))) "failed") |#5|) 48))) +(((-877 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4083 ((-585 |#2|) |#5|)) (-15 -2635 ((-3 |#2| "failed") |#5|)) (-15 -1283 ((-379 (-1078 |#5|)) |#5| |#2|)) (-15 -4066 (|#5| (-379 (-1078 |#5|)) |#2|)) (-15 -1283 ((-1078 |#5|) |#5| |#2| (-1078 |#5|))) (-15 -2100 ((-3 (-585 |#5|) "failed") |#5|)) (-15 -3499 ((-3 (-585 |#5|) "failed") |#5|)) (-15 -2669 ((-3 (-2 (|:| |var| |#2|) (|:| -1690 (-519))) "failed") |#5|)) (-15 -3785 ((-3 (-2 (|:| |val| |#5|) (|:| -1690 (-519))) "failed") |#5|))) (-727) (-782) (-968) (-876 |#3| |#1| |#2|) (-13 (-335) (-10 -8 (-15 -2217 ($ |#4|)) (-15 -2855 (|#4| $)) (-15 -2866 (|#4| $))))) (T -877)) +((-3785 (*1 *2 *3) (|partial| -12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1690 (-519)))) (-5 *1 (-877 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-335) (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $))))))) (-2669 (*1 *2 *3) (|partial| -12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1690 (-519)))) (-5 *1 (-877 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-335) (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $))))))) (-3499 (*1 *2 *3) (|partial| -12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-877 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-335) (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $))))))) (-2100 (*1 *2 *3) (|partial| -12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-585 *3)) (-5 *1 (-877 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-335) (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $))))))) (-1283 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1078 *3)) (-4 *3 (-13 (-335) (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $))))) (-4 *7 (-876 *6 *5 *4)) (-4 *5 (-727)) (-4 *4 (-782)) (-4 *6 (-968)) (-5 *1 (-877 *5 *4 *6 *7 *3)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-1078 *2))) (-4 *5 (-727)) (-4 *4 (-782)) (-4 *6 (-968)) (-4 *2 (-13 (-335) (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $))))) (-5 *1 (-877 *5 *4 *6 *7 *2)) (-4 *7 (-876 *6 *5 *4)))) (-1283 (*1 *2 *3 *4) (-12 (-4 *5 (-727)) (-4 *4 (-782)) (-4 *6 (-968)) (-4 *7 (-876 *6 *5 *4)) (-5 *2 (-379 (-1078 *3))) (-5 *1 (-877 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-335) (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $))))))) (-2635 (*1 *2 *3) (|partial| -12 (-4 *4 (-727)) (-4 *5 (-968)) (-4 *6 (-876 *5 *4 *2)) (-4 *2 (-782)) (-5 *1 (-877 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-335) (-10 -8 (-15 -2217 ($ *6)) (-15 -2855 (*6 $)) (-15 -2866 (*6 $))))))) (-4083 (*1 *2 *3) (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-585 *5)) (-5 *1 (-877 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-335) (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $)))))))) +(-10 -7 (-15 -4083 ((-585 |#2|) |#5|)) (-15 -2635 ((-3 |#2| "failed") |#5|)) (-15 -1283 ((-379 (-1078 |#5|)) |#5| |#2|)) (-15 -4066 (|#5| (-379 (-1078 |#5|)) |#2|)) (-15 -1283 ((-1078 |#5|) |#5| |#2| (-1078 |#5|))) (-15 -2100 ((-3 (-585 |#5|) "failed") |#5|)) (-15 -3499 ((-3 (-585 |#5|) "failed") |#5|)) (-15 -2669 ((-3 (-2 (|:| |var| |#2|) (|:| -1690 (-519))) "failed") |#5|)) (-15 -3785 ((-3 (-2 (|:| |val| |#5|) (|:| -1690 (-519))) "failed") |#5|))) +((-1405 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-878 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1405 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-727) (-782) (-968) (-876 |#3| |#1| |#2|) (-13 (-1011) (-10 -8 (-15 -1614 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-705)))))) (T -878)) +((-1405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-782)) (-4 *8 (-968)) (-4 *6 (-727)) (-4 *2 (-13 (-1011) (-10 -8 (-15 -1614 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-705)))))) (-5 *1 (-878 *6 *7 *8 *5 *2)) (-4 *5 (-876 *8 *6 *7))))) +(-10 -7 (-15 -1405 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 (-1082)) $) 15)) (-1283 (((-1078 $) $ (-1082)) 21) (((-1078 |#1|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 (-1082))) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-4043 (($ $) NIL (|has| |#1| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) 8) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-1082) "failed") $) NIL)) (-1499 ((|#1| $) NIL) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-1082) $) NIL)) (-1286 (($ $ $ (-1082)) NIL (|has| |#1| (-157)))) (-3218 (($ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-423))) (($ $ (-1082)) NIL (|has| |#1| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#1| (-836)))) (-4015 (($ $ |#1| (-491 (-1082)) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-1082) (-813 (-351))) (|has| |#1| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-1082) (-813 (-519))) (|has| |#1| (-813 (-519)))))) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-4066 (($ (-1078 |#1|) (-1082)) NIL) (($ (-1078 $) (-1082)) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-491 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-1082)) NIL)) (-3695 (((-491 (-1082)) $) NIL) (((-705) $ (-1082)) NIL) (((-585 (-705)) $ (-585 (-1082))) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3737 (($ (-1 (-491 (-1082)) (-491 (-1082))) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2635 (((-3 (-1082) "failed") $) 19)) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1266 (((-1065) $) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| (-1082)) (|:| -1690 (-705))) "failed") $) NIL)) (-4142 (($ $ (-1082)) 29 (|has| |#1| (-37 (-379 (-519)))))) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) NIL)) (-3173 ((|#1| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-836)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-1082) |#1|) NIL) (($ $ (-585 (-1082)) (-585 |#1|)) NIL) (($ $ (-1082) $) NIL) (($ $ (-585 (-1082)) (-585 $)) NIL)) (-3677 (($ $ (-1082)) NIL (|has| |#1| (-157)))) (-2181 (($ $ (-1082)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL)) (-4178 (((-491 (-1082)) $) NIL) (((-705) $ (-1082)) NIL) (((-585 (-705)) $ (-585 (-1082))) NIL)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| (-1082) (-560 (-819 (-351)))) (|has| |#1| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| (-1082) (-560 (-819 (-519)))) (|has| |#1| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| (-1082) (-560 (-495))) (|has| |#1| (-560 (-495)))))) (-3939 ((|#1| $) NIL (|has| |#1| (-423))) (($ $ (-1082)) NIL (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-836))))) (-2217 (((-790) $) 25) (($ (-519)) NIL) (($ |#1|) NIL) (($ (-1082)) 27) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#1| (-511)))) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-491 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#1| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-1082)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-879 |#1|) (-13 (-876 |#1| (-491 (-1082)) (-1082)) (-10 -8 (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1082))) |%noBranch|))) (-968)) (T -879)) +((-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-879 *3)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968))))) +(-13 (-876 |#1| (-491 (-1082)) (-1082)) (-10 -8 (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1082))) |%noBranch|))) +((-1198 (((-2 (|:| -1690 (-705)) (|:| -3031 |#5|) (|:| |radicand| |#5|)) |#3| (-705)) 37)) (-2158 (((-2 (|:| -1690 (-705)) (|:| -3031 |#5|) (|:| |radicand| |#5|)) (-379 (-519)) (-705)) 33)) (-1303 (((-2 (|:| -1690 (-705)) (|:| -3031 |#4|) (|:| |radicand| (-585 |#4|))) |#4| (-705)) 52)) (-2772 (((-2 (|:| -1690 (-705)) (|:| -3031 |#5|) (|:| |radicand| |#5|)) |#5| (-705)) 62 (|has| |#3| (-423))))) +(((-880 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1198 ((-2 (|:| -1690 (-705)) (|:| -3031 |#5|) (|:| |radicand| |#5|)) |#3| (-705))) (-15 -2158 ((-2 (|:| -1690 (-705)) (|:| -3031 |#5|) (|:| |radicand| |#5|)) (-379 (-519)) (-705))) (IF (|has| |#3| (-423)) (-15 -2772 ((-2 (|:| -1690 (-705)) (|:| -3031 |#5|) (|:| |radicand| |#5|)) |#5| (-705))) |%noBranch|) (-15 -1303 ((-2 (|:| -1690 (-705)) (|:| -3031 |#4|) (|:| |radicand| (-585 |#4|))) |#4| (-705)))) (-727) (-782) (-511) (-876 |#3| |#1| |#2|) (-13 (-335) (-10 -8 (-15 -2855 (|#4| $)) (-15 -2866 (|#4| $)) (-15 -2217 ($ |#4|))))) (T -880)) +((-1303 (*1 *2 *3 *4) (-12 (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-511)) (-4 *3 (-876 *7 *5 *6)) (-5 *2 (-2 (|:| -1690 (-705)) (|:| -3031 *3) (|:| |radicand| (-585 *3)))) (-5 *1 (-880 *5 *6 *7 *3 *8)) (-5 *4 (-705)) (-4 *8 (-13 (-335) (-10 -8 (-15 -2855 (*3 $)) (-15 -2866 (*3 $)) (-15 -2217 ($ *3))))))) (-2772 (*1 *2 *3 *4) (-12 (-4 *7 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-511)) (-4 *8 (-876 *7 *5 *6)) (-5 *2 (-2 (|:| -1690 (-705)) (|:| -3031 *3) (|:| |radicand| *3))) (-5 *1 (-880 *5 *6 *7 *8 *3)) (-5 *4 (-705)) (-4 *3 (-13 (-335) (-10 -8 (-15 -2855 (*8 $)) (-15 -2866 (*8 $)) (-15 -2217 ($ *8))))))) (-2158 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-519))) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-511)) (-4 *8 (-876 *7 *5 *6)) (-5 *2 (-2 (|:| -1690 (-705)) (|:| -3031 *9) (|:| |radicand| *9))) (-5 *1 (-880 *5 *6 *7 *8 *9)) (-5 *4 (-705)) (-4 *9 (-13 (-335) (-10 -8 (-15 -2855 (*8 $)) (-15 -2866 (*8 $)) (-15 -2217 ($ *8))))))) (-1198 (*1 *2 *3 *4) (-12 (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-511)) (-4 *7 (-876 *3 *5 *6)) (-5 *2 (-2 (|:| -1690 (-705)) (|:| -3031 *8) (|:| |radicand| *8))) (-5 *1 (-880 *5 *6 *3 *7 *8)) (-5 *4 (-705)) (-4 *8 (-13 (-335) (-10 -8 (-15 -2855 (*7 $)) (-15 -2866 (*7 $)) (-15 -2217 ($ *7)))))))) +(-10 -7 (-15 -1198 ((-2 (|:| -1690 (-705)) (|:| -3031 |#5|) (|:| |radicand| |#5|)) |#3| (-705))) (-15 -2158 ((-2 (|:| -1690 (-705)) (|:| -3031 |#5|) (|:| |radicand| |#5|)) (-379 (-519)) (-705))) (IF (|has| |#3| (-423)) (-15 -2772 ((-2 (|:| -1690 (-705)) (|:| -3031 |#5|) (|:| |radicand| |#5|)) |#5| (-705))) |%noBranch|) (-15 -1303 ((-2 (|:| -1690 (-705)) (|:| -3031 |#4|) (|:| |radicand| (-585 |#4|))) |#4| (-705)))) +((-3822 (((-1006 (-201)) $) 8)) (-3809 (((-1006 (-201)) $) 9)) (-2302 (((-585 (-585 (-870 (-201)))) $) 10)) (-2217 (((-790) $) 6))) +(((-881) (-1194)) (T -881)) +((-2302 (*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-585 (-585 (-870 (-201))))))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-1006 (-201))))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-1006 (-201)))))) +(-13 (-559 (-790)) (-10 -8 (-15 -2302 ((-585 (-585 (-870 (-201)))) $)) (-15 -3809 ((-1006 (-201)) $)) (-15 -3822 ((-1006 (-201)) $)))) +(((-559 (-790)) . T)) +((-1945 (((-3 (-625 |#1|) "failed") |#2| (-848)) 14))) +(((-882 |#1| |#2|) (-10 -7 (-15 -1945 ((-3 (-625 |#1|) "failed") |#2| (-848)))) (-511) (-595 |#1|)) (T -882)) +((-1945 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-848)) (-4 *5 (-511)) (-5 *2 (-625 *5)) (-5 *1 (-882 *5 *3)) (-4 *3 (-595 *5))))) +(-10 -7 (-15 -1945 ((-3 (-625 |#1|) "failed") |#2| (-848)))) +((-1367 (((-884 |#2|) (-1 |#2| |#1| |#2|) (-884 |#1|) |#2|) 16)) (-3874 ((|#2| (-1 |#2| |#1| |#2|) (-884 |#1|) |#2|) 18)) (-1405 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 13))) +(((-883 |#1| |#2|) (-10 -7 (-15 -1367 ((-884 |#2|) (-1 |#2| |#1| |#2|) (-884 |#1|) |#2|)) (-15 -3874 (|#2| (-1 |#2| |#1| |#2|) (-884 |#1|) |#2|)) (-15 -1405 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-1117) (-1117)) (T -883)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6)))) (-3874 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-884 *5)) (-4 *5 (-1117)) (-4 *2 (-1117)) (-5 *1 (-883 *5 *2)))) (-1367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-884 *6)) (-4 *6 (-1117)) (-4 *5 (-1117)) (-5 *2 (-884 *5)) (-5 *1 (-883 *6 *5))))) +(-10 -7 (-15 -1367 ((-884 |#2|) (-1 |#2| |#1| |#2|) (-884 |#1|) |#2|)) (-15 -3874 (|#2| (-1 |#2| |#1| |#2|) (-884 |#1|) |#2|)) (-15 -1405 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4222))) (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| |#1| (-782))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#1| $ (-519) |#1|) 17 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) NIL (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) 16 (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) 14)) (-3297 (((-519) (-1 (-108) |#1|) $) NIL) (((-519) |#1| $) NIL (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) NIL (|has| |#1| (-1011)))) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1822 (($ (-705) |#1|) 13)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) 10 (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1672 (($ |#1| $ (-519)) NIL) (($ $ $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2331 ((|#1| $) NIL (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3640 (($ $ |#1|) 12 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) 11)) (-2598 ((|#1| $ (-519) |#1|) NIL) ((|#1| $ (-519)) 15) (($ $ (-1130 (-519))) NIL)) (-3720 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) NIL)) (-4150 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-585 $)) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-3532 (((-705) $) 8 (|has| $ (-6 -4221))))) +(((-884 |#1|) (-19 |#1|) (-1117)) (T -884)) NIL (-19 |#1|) -((-1329 (($ $ (-999 $)) 7) (($ $ (-1077)) 6))) -(((-882) (-1189)) (T -882)) -((-1329 (*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-882)))) (-1329 (*1 *1 *1 *2) (-12 (-4 *1 (-882)) (-5 *2 (-1077))))) -(-13 (-10 -8 (-15 -1329 ($ $ (-1077))) (-15 -1329 ($ $ (-999 $))))) -((-4169 (((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077)) (-1077)) 23) (((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077))) 24) (((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1073 |#1|))) (-876 |#1|) (-1077) (-876 |#1|) (-1077)) 41))) -(((-883 |#1|) (-10 -7 (-15 -4169 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1073 |#1|))) (-876 |#1|) (-1077) (-876 |#1|) (-1077))) (-15 -4169 ((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -4169 ((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077)) (-1077)))) (-13 (-333) (-134))) (T -883)) -((-4169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077))) (-5 *5 (-1077)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 *6))) (|:| |prim| (-1073 *6)))) (-5 *1 (-883 *6)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 *5))) (|:| |prim| (-1073 *5)))) (-5 *1 (-883 *5)))) (-4169 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-1077)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1073 *5)))) (-5 *1 (-883 *5))))) -(-10 -7 (-15 -4169 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1073 |#1|))) (-876 |#1|) (-1077) (-876 |#1|) (-1077))) (-15 -4169 ((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077)))) (-15 -4169 ((-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 |#1|))) (|:| |prim| (-1073 |#1|))) (-583 (-876 |#1|)) (-583 (-1077)) (-1077)))) -((-2251 (((-583 |#1|) |#1| |#1|) 42)) (-2022 (((-107) |#1|) 39)) (-1561 ((|#1| |#1|) 65)) (-3258 ((|#1| |#1|) 64))) -(((-884 |#1|) (-10 -7 (-15 -2022 ((-107) |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -2251 ((-583 |#1|) |#1| |#1|))) (-502)) (T -884)) -((-2251 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-884 *3)) (-4 *3 (-502)))) (-1561 (*1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-502)))) (-3258 (*1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-502)))) (-2022 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-884 *3)) (-4 *3 (-502))))) -(-10 -7 (-15 -2022 ((-107) |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -2251 ((-583 |#1|) |#1| |#1|))) -((-3421 (((-1163) (-787)) 9))) -(((-885) (-10 -7 (-15 -3421 ((-1163) (-787))))) (T -885)) -((-3421 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-885))))) -(-10 -7 (-15 -3421 ((-1163) (-787)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 63 (|has| |#1| (-509)))) (-2491 (($ $) 64 (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 28)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) 24)) (-3550 (((-3 $ "failed") $) 35)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-1760 (($ $ |#1| |#2| $) 48)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) 16)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| |#2|) NIL)) (-3942 ((|#2| $) 19)) (-1542 (($ (-1 |#2| |#2|) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2325 (($ $) 23)) (-2336 ((|#1| $) 21)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) 40)) (-2311 ((|#1| $) NIL)) (-2555 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-123)) (|has| |#1| (-509))))) (-2333 (((-3 $ "failed") $ $) 74 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-509)))) (-1191 ((|#2| $) 17)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) 39) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 34) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ |#2|) 31)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) 15)) (-2308 (($ $ $ (-703)) 59 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 69 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 55) (($ $ (-703)) 56)) (-3663 (($) 22 T CONST)) (-3675 (($) 12 T CONST)) (-1572 (((-107) $ $) 68)) (-1692 (($ $ |#1|) 75 (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) 54) (($ $ (-703)) 52)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-886 |#1| |#2|) (-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -2555 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|))) (-964) (-724)) (T -886)) -((-2555 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-886 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-964)) (-4 *2 (-724))))) -(-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -2555 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-3505 (($ $ $) 63 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (-1783 (((-3 $ "failed") $ $) 50 (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-2390 (((-703)) 34 (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-4122 ((|#2| $) 21)) (-2650 ((|#1| $) 20)) (-3038 (($) NIL (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-3550 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2192 (($) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-1690 (((-107) $) NIL (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3480 (($ $ $) NIL (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-4095 (($ $ $) NIL (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-3139 (($ |#1| |#2|) 19)) (-4161 (((-845) $) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 37 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2803 (($ (-845)) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-4130 (((-1024) $) NIL)) (-1853 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-1970 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2262 (((-787) $) 14)) (-2806 (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-845)) NIL (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3663 (($) 40 (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-3675 (($) 24 (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) CONST)) (-1630 (((-107) $ $) NIL (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1606 (((-107) $ $) NIL (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1572 (((-107) $ $) 18)) (-1618 (((-107) $ $) NIL (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1596 (((-107) $ $) 66 (-3786 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1692 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-1680 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1666 (($ $ $) 43 (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (** (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) 31 (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-845)) NIL (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (* (($ (-517) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-703) $) 46 (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ (-845) $) NIL (-3786 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ $ $) 27 (-3786 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))))) -(((-887 |#1| |#2|) (-13 (-1006) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (-15 -3139 ($ |#1| |#2|)) (-15 -2650 (|#1| $)) (-15 -4122 (|#2| $)))) (-1006) (-1006)) (T -887)) -((-3139 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-2650 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1006)))) (-4122 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1006))))) -(-13 (-1006) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |%noBranch|) |%noBranch|) (-15 -3139 ($ |#1| |#2|)) (-15 -2650 (|#1| $)) (-15 -4122 (|#2| $)))) -((-4011 (($ $ $) 8)) (-2479 (($ $) 6)) (-2272 (($ $ $) 9)) (-1840 (($ $ $) 10)) (-4024 (($ $ $) 7))) -(((-888) (-1189)) (T -888)) -((-1840 (*1 *1 *1 *1) (-4 *1 (-888))) (-2272 (*1 *1 *1 *1) (-4 *1 (-888))) (-4011 (*1 *1 *1 *1) (-4 *1 (-888))) (-4024 (*1 *1 *1 *1) (-4 *1 (-888))) (-2479 (*1 *1 *1) (-4 *1 (-888)))) -(-13 (-10 -8 (-15 -2479 ($ $)) (-15 -4024 ($ $ $)) (-15 -4011 ($ $ $)) (-15 -2272 ($ $ $)) (-15 -1840 ($ $ $)))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-2785 (($ $ $) 43)) (-3824 (($ $ $) 44)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-4095 ((|#1| $) 45)) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-889 |#1|) (-1189) (-779)) (T -889)) -((-4095 (*1 *2 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779)))) (-3824 (*1 *1 *1 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779)))) (-2785 (*1 *1 *1 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4195) (-15 -4095 (|t#1| $)) (-15 -3824 ($ $ $)) (-15 -2785 ($ $ $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-2060 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|) 85)) (-4068 ((|#2| |#2| |#2|) 83)) (-3879 (((-2 (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|) 87)) (-1979 (((-2 (|:| |coef1| |#2|) (|:| -2361 |#2|)) |#2| |#2|) 89)) (-3842 (((-2 (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|) 107 (|has| |#1| (-421)))) (-1849 (((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 46)) (-3587 (((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 64)) (-1304 (((-2 (|:| |coef1| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 66)) (-2201 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2538 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 71)) (-3651 (((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|) 97)) (-1695 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 74)) (-2958 (((-583 (-703)) |#2| |#2|) 82)) (-3003 ((|#1| |#2| |#2|) 42)) (-2874 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|) 105 (|has| |#1| (-421)))) (-2589 ((|#1| |#2| |#2|) 103 (|has| |#1| (-421)))) (-3354 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 44)) (-1769 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|) 63)) (-2133 ((|#1| |#2| |#2|) 61)) (-1868 (((-2 (|:| -1570 |#1|) (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|) 35)) (-3799 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3535 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1504 ((|#2| |#2| |#2|) 75)) (-2310 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 69)) (-3037 ((|#2| |#2| |#2| (-703)) 67)) (-2361 ((|#2| |#2| |#2|) 111 (|has| |#1| (-421)))) (-2333 (((-1158 |#2|) (-1158 |#2|) |#1|) 21)) (-2018 (((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|) 39)) (-3637 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|) 95)) (-3115 ((|#1| |#2|) 92)) (-1654 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 73)) (-2170 ((|#2| |#2| |#2| (-703)) 72)) (-3379 (((-583 |#2|) |#2| |#2|) 80)) (-2165 ((|#2| |#2| |#1| |#1| (-703)) 50)) (-2934 ((|#1| |#1| |#1| (-703)) 49)) (* (((-1158 |#2|) |#1| (-1158 |#2|)) 16))) -(((-890 |#1| |#2|) (-10 -7 (-15 -2133 (|#1| |#2| |#2|)) (-15 -1769 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -3587 ((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1304 ((-2 (|:| |coef1| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -3037 (|#2| |#2| |#2| (-703))) (-15 -2310 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2538 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2170 (|#2| |#2| |#2| (-703))) (-15 -1654 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1695 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1504 (|#2| |#2| |#2|)) (-15 -3535 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2201 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4068 (|#2| |#2| |#2|)) (-15 -2060 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -3879 ((-2 (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -1979 ((-2 (|:| |coef1| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -3115 (|#1| |#2|)) (-15 -3637 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|)) (-15 -3651 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|)) (-15 -3379 ((-583 |#2|) |#2| |#2|)) (-15 -2958 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2589 (|#1| |#2| |#2|)) (-15 -2874 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|)) (-15 -3842 ((-2 (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|)) (-15 -2361 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1158 |#2|) |#1| (-1158 |#2|))) (-15 -2333 ((-1158 |#2|) (-1158 |#2|) |#1|)) (-15 -1868 ((-2 (|:| -1570 |#1|) (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -2018 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -2934 (|#1| |#1| |#1| (-703))) (-15 -2165 (|#2| |#2| |#1| |#1| (-703))) (-15 -3799 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3003 (|#1| |#2| |#2|)) (-15 -3354 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1849 ((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|))) (-509) (-1134 |#1|)) (T -890)) -((-1849 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3354 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3003 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2)))) (-3799 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) (-2165 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) (-2934 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-890 *2 *4)) (-4 *4 (-1134 *2)))) (-2018 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-1868 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1570 *4) (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-2333 (*1 *2 *2 *3) (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-509)) (-5 *1 (-890 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-509)) (-5 *1 (-890 *3 *4)))) (-2361 (*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) (-3842 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2589 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2589 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-2589 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2)))) (-2958 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3379 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3651 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3637 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3115 (*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2)))) (-1979 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2361 *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3879 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2361 *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-2060 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2361 *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-4068 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) (-2201 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3535 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-1504 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) (-1695 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))) (-1654 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))) (-2170 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-890 *4 *2)) (-4 *2 (-1134 *4)))) (-2538 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))) (-2310 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5)))) (-3037 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-890 *4 *2)) (-4 *2 (-1134 *4)))) (-1304 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2133 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-3587 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-1769 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2133 *4))) (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) (-2133 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2))))) -(-10 -7 (-15 -2133 (|#1| |#2| |#2|)) (-15 -1769 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -3587 ((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1304 ((-2 (|:| |coef1| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -3037 (|#2| |#2| |#2| (-703))) (-15 -2310 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2538 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2170 (|#2| |#2| |#2| (-703))) (-15 -1654 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1695 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1504 (|#2| |#2| |#2|)) (-15 -3535 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2201 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4068 (|#2| |#2| |#2|)) (-15 -2060 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -3879 ((-2 (|:| |coef2| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -1979 ((-2 (|:| |coef1| |#2|) (|:| -2361 |#2|)) |#2| |#2|)) (-15 -3115 (|#1| |#2|)) (-15 -3637 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|)) (-15 -3651 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2|)) (-15 -3379 ((-583 |#2|) |#2| |#2|)) (-15 -2958 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2589 (|#1| |#2| |#2|)) (-15 -2874 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|)) (-15 -3842 ((-2 (|:| |coef2| |#2|) (|:| -2589 |#1|)) |#2| |#2|)) (-15 -2361 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1158 |#2|) |#1| (-1158 |#2|))) (-15 -2333 ((-1158 |#2|) (-1158 |#2|) |#1|)) (-15 -1868 ((-2 (|:| -1570 |#1|) (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -2018 ((-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) |#2| |#2|)) (-15 -2934 (|#1| |#1| |#1| (-703))) (-15 -2165 (|#2| |#2| |#1| |#1| (-703))) (-15 -3799 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3003 (|#1| |#2| |#2|)) (-15 -3354 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|)) (-15 -1849 ((-2 (|:| |coef2| |#2|) (|:| -2133 |#1|)) |#2| |#2|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) 27)) (-3038 (($) NIL T CONST)) (-3952 (((-583 (-583 (-517))) (-583 (-517))) 29)) (-2565 (((-517) $) 45)) (-4126 (($ (-583 (-517))) 17)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3367 (((-583 (-517)) $) 11)) (-1853 (($ $) 32)) (-2262 (((-787) $) 43) (((-583 (-517)) $) 9)) (-3663 (($) 7 T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 20)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 19)) (-1666 (($ $ $) 21)) (* (($ (-703) $) 25) (($ (-845) $) NIL))) -(((-891) (-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -4126 ($ (-583 (-517)))) (-15 -3952 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -2565 ((-517) $)) (-15 -1853 ($ $)) (-15 -2262 ((-583 (-517)) $))))) (T -891)) -((-4126 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-891)))) (-3952 (*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-891)) (-5 *3 (-583 (-517))))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-891)))) (-1853 (*1 *1 *1) (-5 *1 (-891))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-891))))) -(-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -4126 ($ (-583 (-517)))) (-15 -3952 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -2565 ((-517) $)) (-15 -1853 ($ $)) (-15 -2262 ((-583 (-517)) $)))) -((-1692 (($ $ |#2|) 30)) (-1680 (($ $) 22) (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-377 (-517)) $) 26) (($ $ (-377 (-517))) 28))) -(((-892 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1692 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) (-893 |#2| |#3| |#4|) (-964) (-724) (-779)) (T -892)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1692 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-845) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 |#3|) $) 74)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-3690 (((-107) $) 73)) (-1690 (((-107) $) 31)) (-3022 (((-107) $) 62)) (-2059 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-583 |#3|) (-583 |#2|)) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1191 ((|#2| $) 64)) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1939 ((|#1| $ |#2|) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) -(((-893 |#1| |#2| |#3|) (-1189) (-964) (-724) (-779)) (T -893)) -((-2336 (*1 *2 *1) (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-964)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-724)) (-4 *4 (-779)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *2 *4)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *2 (-724)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-893 *4 *3 *2)) (-4 *4 (-964)) (-4 *3 (-724)) (-4 *2 (-779)))) (-2059 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-893 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-724)) (-4 *6 (-779)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2384 (*1 *1 *1) (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-724)) (-4 *4 (-779))))) -(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2059 ($ $ |t#3| |t#2|)) (-15 -2059 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -2325 ($ $)) (-15 -2336 (|t#1| $)) (-15 -1191 (|t#2| $)) (-15 -2080 ((-583 |t#3|) $)) (-15 -3690 ((-107) $)) (-15 -2384 ($ $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2724 (((-1001 (-199)) $) 8)) (-2712 (((-1001 (-199)) $) 9)) (-2700 (((-1001 (-199)) $) 10)) (-1515 (((-583 (-583 (-867 (-199)))) $) 11)) (-2262 (((-787) $) 6))) -(((-894) (-1189)) (T -894)) -((-1515 (*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-583 (-583 (-867 (-199))))))) (-2700 (*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199))))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199))))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199)))))) -(-13 (-557 (-787)) (-10 -8 (-15 -1515 ((-583 (-583 (-867 (-199)))) $)) (-15 -2700 ((-1001 (-199)) $)) (-15 -2712 ((-1001 (-199)) $)) (-15 -2724 ((-1001 (-199)) $)))) -(((-557 (-787)) . T)) -((-2080 (((-583 |#4|) $) 23)) (-3538 (((-107) $) 48)) (-4001 (((-107) $) 47)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#4|) 36)) (-2697 (((-107) $) 49)) (-2171 (((-107) $ $) 55)) (-3000 (((-107) $ $) 58)) (-3764 (((-107) $) 53)) (-2774 (((-583 |#5|) (-583 |#5|) $) 90)) (-3821 (((-583 |#5|) (-583 |#5|) $) 87)) (-3292 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1425 (((-583 |#4|) $) 27)) (-1808 (((-107) |#4| $) 30)) (-2236 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3231 (($ $ |#4|) 33)) (-2316 (($ $ |#4|) 32)) (-3127 (($ $ |#4|) 34)) (-1572 (((-107) $ $) 40))) -(((-895 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4001 ((-107) |#1|)) (-15 -2774 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3821 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3292 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2236 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2697 ((-107) |#1|)) (-15 -3000 ((-107) |#1| |#1|)) (-15 -2171 ((-107) |#1| |#1|)) (-15 -3764 ((-107) |#1|)) (-15 -3538 ((-107) |#1|)) (-15 -2149 ((-2 (|:| |under| |#1|) (|:| -2713 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3127 (|#1| |#1| |#4|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -1808 ((-107) |#4| |#1|)) (-15 -1425 ((-583 |#4|) |#1|)) (-15 -2080 ((-583 |#4|) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-896 |#2| |#3| |#4| |#5|) (-964) (-725) (-779) (-978 |#2| |#3| |#4|)) (T -895)) -NIL -(-10 -8 (-15 -4001 ((-107) |#1|)) (-15 -2774 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3821 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3292 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2236 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2697 ((-107) |#1|)) (-15 -3000 ((-107) |#1| |#1|)) (-15 -2171 ((-107) |#1| |#1|)) (-15 -3764 ((-107) |#1|)) (-15 -3538 ((-107) |#1|)) (-15 -2149 ((-2 (|:| |under| |#1|) (|:| -2713 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -3127 (|#1| |#1| |#4|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -1808 ((-107) |#4| |#1|)) (-15 -1425 ((-583 |#4|) |#1|)) (-15 -2080 ((-583 |#4|) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195)))) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195)))) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-4130 (((-1024) $) 10)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195))))) -(((-896 |#1| |#2| |#3| |#4|) (-1189) (-964) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -896)) -((-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-896 *3 *4 *5 *6)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-896 *3 *4 *5 *6)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-779)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1808 (*1 *2 *3 *1) (-12 (-4 *1 (-896 *4 *5 *3 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-107)))) (-2316 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2)))) (-3127 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2)))) (-3231 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2)))) (-2149 (*1 *2 *1 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2713 *1) (|:| |upper| *1))) (-4 *1 (-896 *4 *5 *3 *6)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2171 (*1 *2 *1 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-3000 (*1 *2 *1 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2236 (*1 *2 *3 *1) (-12 (-4 *1 (-896 *4 *5 *6 *3)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3292 (*1 *2 *3 *1) (-12 (-4 *1 (-896 *4 *5 *6 *3)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3821 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)))) (-2774 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107))))) -(-13 (-1006) (-138 |t#4|) (-557 (-583 |t#4|)) (-10 -8 (-6 -4195) (-15 -3220 ((-3 $ "failed") (-583 |t#4|))) (-15 -3402 ($ (-583 |t#4|))) (-15 -2772 (|t#3| $)) (-15 -2080 ((-583 |t#3|) $)) (-15 -1425 ((-583 |t#3|) $)) (-15 -1808 ((-107) |t#3| $)) (-15 -2316 ($ $ |t#3|)) (-15 -3127 ($ $ |t#3|)) (-15 -3231 ($ $ |t#3|)) (-15 -2149 ((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |t#3|)) (-15 -3538 ((-107) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -3764 ((-107) $)) (-15 -2171 ((-107) $ $)) (-15 -3000 ((-107) $ $)) (-15 -2697 ((-107) $)) (-15 -2236 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3292 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3821 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2774 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -4001 ((-107) $))) |%noBranch|))) -(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-1006) . T) ((-1112) . T)) -((-3438 (((-583 |#4|) |#4| |#4|) 115)) (-3200 (((-583 |#4|) (-583 |#4|) (-107)) 104 (|has| |#1| (-421))) (((-583 |#4|) (-583 |#4|)) 105 (|has| |#1| (-421)))) (-3732 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 35)) (-2515 (((-107) |#4|) 34)) (-2566 (((-583 |#4|) |#4|) 101 (|has| |#1| (-421)))) (-4065 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|)) 20)) (-3117 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 22)) (-2575 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 23)) (-4133 (((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|)) 73)) (-2797 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2928 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-1947 (((-583 |#4|) (-583 |#4|)) 107)) (-1378 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107)) 48) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 50)) (-2309 ((|#4| |#4| (-583 |#4|)) 49)) (-2809 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 111 (|has| |#1| (-421)))) (-3930 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 114 (|has| |#1| (-421)))) (-1944 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 113 (|has| |#1| (-421)))) (-2886 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 87) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 89) (((-583 |#4|) (-583 |#4|) |#4|) 118) (((-583 |#4|) |#4| |#4|) 116) (((-583 |#4|) (-583 |#4|)) 88)) (-2398 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 98 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3698 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 41)) (-2654 (((-107) (-583 |#4|)) 62)) (-2621 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 53)) (-2890 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 29)) (-3460 (((-107) |#4|) 28)) (-3329 (((-583 |#4|) (-583 |#4|)) 97 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3077 (((-583 |#4|) (-583 |#4|)) 96 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3447 (((-583 |#4|) (-583 |#4|)) 66)) (-1961 (((-583 |#4|) (-583 |#4|)) 79)) (-1677 (((-107) (-583 |#4|) (-583 |#4|)) 51)) (-3739 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 39)) (-1652 (((-107) |#4|) 36))) -(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2886 ((-583 |#4|) (-583 |#4|))) (-15 -2886 ((-583 |#4|) |#4| |#4|)) (-15 -1947 ((-583 |#4|) (-583 |#4|))) (-15 -3438 ((-583 |#4|) |#4| |#4|)) (-15 -2886 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2886 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2886 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -1677 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2621 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2654 ((-107) (-583 |#4|))) (-15 -4065 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3117 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2575 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3698 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2515 ((-107) |#4|)) (-15 -3732 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3460 ((-107) |#4|)) (-15 -2890 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1652 ((-107) |#4|)) (-15 -3739 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1378 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1378 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2309 (|#4| |#4| (-583 |#4|))) (-15 -3447 ((-583 |#4|) (-583 |#4|))) (-15 -4133 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -1961 ((-583 |#4|) (-583 |#4|))) (-15 -2797 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2928 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2566 ((-583 |#4|) |#4|)) (-15 -3200 ((-583 |#4|) (-583 |#4|))) (-15 -3200 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2809 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1944 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3930 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3077 ((-583 |#4|) (-583 |#4|))) (-15 -3329 ((-583 |#4|) (-583 |#4|))) (-15 -2398 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) (-509) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -897)) -((-2398 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-3329 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-3930 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-1944 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2809 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-3200 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *7)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2566 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2928 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-897 *5 *6 *7 *8)))) (-2797 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-897 *6 *7 *8 *9)))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-4133 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -2544 (-583 *7)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2309 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *2)))) (-1378 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *7)))) (-1378 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2890 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2515 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-3117 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-4065 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2654 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *4 *5 *6 *7)))) (-2621 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *5 *6 *7 *8)))) (-1677 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-897 *4 *5 *6 *7)))) (-2886 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *7)))) (-2886 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2886 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *3)))) (-3438 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) (-2886 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6))))) -(-10 -7 (-15 -2886 ((-583 |#4|) (-583 |#4|))) (-15 -2886 ((-583 |#4|) |#4| |#4|)) (-15 -1947 ((-583 |#4|) (-583 |#4|))) (-15 -3438 ((-583 |#4|) |#4| |#4|)) (-15 -2886 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2886 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2886 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -1677 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2621 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2654 ((-107) (-583 |#4|))) (-15 -4065 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -3117 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2575 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -3698 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2515 ((-107) |#4|)) (-15 -3732 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -3460 ((-107) |#4|)) (-15 -2890 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1652 ((-107) |#4|)) (-15 -3739 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1378 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1378 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2309 (|#4| |#4| (-583 |#4|))) (-15 -3447 ((-583 |#4|) (-583 |#4|))) (-15 -4133 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -1961 ((-583 |#4|) (-583 |#4|))) (-15 -2797 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2928 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2566 ((-583 |#4|) |#4|)) (-15 -3200 ((-583 |#4|) (-583 |#4|))) (-15 -3200 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2809 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1944 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3930 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3077 ((-583 |#4|) (-583 |#4|))) (-15 -3329 ((-583 |#4|) (-583 |#4|))) (-15 -2398 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) -((-2223 (((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-2553 (((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|)) 36)) (-3233 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16))) -(((-898 |#1|) (-10 -7 (-15 -2223 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3233 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2553 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|)))) (-333)) (T -898)) -((-2553 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1158 *5))))) (-5 *1 (-898 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)))) (-3233 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-898 *5)))) (-2223 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-898 *6)) (-5 *3 (-623 *6))))) -(-10 -7 (-15 -2223 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3233 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2553 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1158 |#1|)))) (-623 |#1|) (-1158 |#1|)))) -((-3306 (((-388 |#4|) |#4|) 47))) -(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3306 ((-388 |#4|) |#4|))) (-779) (-725) (-421) (-873 |#3| |#2| |#1|)) (T -899)) -((-3306 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-899 *4 *5 *6 *3)) (-4 *3 (-873 *6 *5 *4))))) -(-10 -7 (-15 -3306 ((-388 |#4|) |#4|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3904 (($ (-703)) 112 (|has| |#1| (-23)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1210 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1006)))) (-3432 (($ (-583 |#1|)) 118)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2681 (((-623 |#1|) $ $) 105 (|has| |#1| (-964)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1492 ((|#1| $) 102 (-12 (|has| |#1| (-964)) (|has| |#1| (-921))))) (-2328 (((-107) $ (-703)) 10)) (-3728 ((|#1| $) 103 (-12 (|has| |#1| (-964)) (|has| |#1| (-921))))) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3175 (($ $ (-583 |#1|)) 115)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-3912 ((|#1| $ $) 106 (|has| |#1| (-964)))) (-1470 (((-845) $) 117)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-1305 (($ $ $) 104)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 116)) (-2279 (($ (-583 |#1|)) 70)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1680 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1666 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-900 |#1|) (-1189) (-964)) (T -900)) -((-3432 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-900 *3)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-964)) (-5 *2 (-845)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-900 *3)))) (-1305 (*1 *1 *1 *1) (-12 (-4 *1 (-900 *2)) (-4 *2 (-964)))) (-3175 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-900 *3)) (-4 *3 (-964))))) -(-13 (-1156 |t#1|) (-10 -8 (-15 -3432 ($ (-583 |t#1|))) (-15 -1470 ((-845) $)) (-15 -3367 ($ (-583 |t#1|))) (-15 -1305 ($ $ $)) (-15 -3175 ($ $ (-583 |t#1|))))) -(((-33) . T) ((-97) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1006) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-1112) . T) ((-1156 |#1|) . T)) -((-3312 (((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)) 17))) -(((-901 |#1| |#2|) (-10 -7 (-15 -3312 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)))) (-964) (-964)) (T -901)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-5 *2 (-867 *6)) (-5 *1 (-901 *5 *6))))) -(-10 -7 (-15 -3312 ((-867 |#2|) (-1 |#2| |#1|) (-867 |#1|)))) -((-3567 ((|#1| (-867 |#1|)) 13)) (-4042 ((|#1| (-867 |#1|)) 12)) (-2945 ((|#1| (-867 |#1|)) 11)) (-2528 ((|#1| (-867 |#1|)) 15)) (-4154 ((|#1| (-867 |#1|)) 21)) (-2083 ((|#1| (-867 |#1|)) 14)) (-3134 ((|#1| (-867 |#1|)) 16)) (-2623 ((|#1| (-867 |#1|)) 20)) (-3060 ((|#1| (-867 |#1|)) 19))) -(((-902 |#1|) (-10 -7 (-15 -2945 (|#1| (-867 |#1|))) (-15 -4042 (|#1| (-867 |#1|))) (-15 -3567 (|#1| (-867 |#1|))) (-15 -2083 (|#1| (-867 |#1|))) (-15 -2528 (|#1| (-867 |#1|))) (-15 -3134 (|#1| (-867 |#1|))) (-15 -3060 (|#1| (-867 |#1|))) (-15 -2623 (|#1| (-867 |#1|))) (-15 -4154 (|#1| (-867 |#1|)))) (-964)) (T -902)) -((-4154 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964))))) -(-10 -7 (-15 -2945 (|#1| (-867 |#1|))) (-15 -4042 (|#1| (-867 |#1|))) (-15 -3567 (|#1| (-867 |#1|))) (-15 -2083 (|#1| (-867 |#1|))) (-15 -2528 (|#1| (-867 |#1|))) (-15 -3134 (|#1| (-867 |#1|))) (-15 -3060 (|#1| (-867 |#1|))) (-15 -2623 (|#1| (-867 |#1|))) (-15 -4154 (|#1| (-867 |#1|)))) -((-3090 (((-3 |#1| "failed") |#1|) 18)) (-3543 (((-3 |#1| "failed") |#1|) 6)) (-3607 (((-3 |#1| "failed") |#1|) 16)) (-2485 (((-3 |#1| "failed") |#1|) 4)) (-2488 (((-3 |#1| "failed") |#1|) 20)) (-3369 (((-3 |#1| "failed") |#1|) 8)) (-1514 (((-3 |#1| "failed") |#1| (-703)) 1)) (-3207 (((-3 |#1| "failed") |#1|) 3)) (-2644 (((-3 |#1| "failed") |#1|) 2)) (-3051 (((-3 |#1| "failed") |#1|) 21)) (-2228 (((-3 |#1| "failed") |#1|) 9)) (-2164 (((-3 |#1| "failed") |#1|) 19)) (-3013 (((-3 |#1| "failed") |#1|) 7)) (-2480 (((-3 |#1| "failed") |#1|) 17)) (-3420 (((-3 |#1| "failed") |#1|) 5)) (-2831 (((-3 |#1| "failed") |#1|) 24)) (-3216 (((-3 |#1| "failed") |#1|) 12)) (-3325 (((-3 |#1| "failed") |#1|) 22)) (-2094 (((-3 |#1| "failed") |#1|) 10)) (-3704 (((-3 |#1| "failed") |#1|) 26)) (-3994 (((-3 |#1| "failed") |#1|) 14)) (-3875 (((-3 |#1| "failed") |#1|) 27)) (-2092 (((-3 |#1| "failed") |#1|) 15)) (-1964 (((-3 |#1| "failed") |#1|) 25)) (-1556 (((-3 |#1| "failed") |#1|) 13)) (-3608 (((-3 |#1| "failed") |#1|) 23)) (-3333 (((-3 |#1| "failed") |#1|) 11))) -(((-903 |#1|) (-1189) (-1098)) (T -903)) -((-3875 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3704 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-1964 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2831 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3608 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3325 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3051 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2488 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2164 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3090 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2480 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3607 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2092 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3994 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-1556 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3216 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3333 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2094 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2228 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3369 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3013 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3543 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3420 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2485 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-3207 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-2644 (*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098)))) (-1514 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(-13 (-10 -7 (-15 -1514 ((-3 |t#1| "failed") |t#1| (-703))) (-15 -2644 ((-3 |t#1| "failed") |t#1|)) (-15 -3207 ((-3 |t#1| "failed") |t#1|)) (-15 -2485 ((-3 |t#1| "failed") |t#1|)) (-15 -3420 ((-3 |t#1| "failed") |t#1|)) (-15 -3543 ((-3 |t#1| "failed") |t#1|)) (-15 -3013 ((-3 |t#1| "failed") |t#1|)) (-15 -3369 ((-3 |t#1| "failed") |t#1|)) (-15 -2228 ((-3 |t#1| "failed") |t#1|)) (-15 -2094 ((-3 |t#1| "failed") |t#1|)) (-15 -3333 ((-3 |t#1| "failed") |t#1|)) (-15 -3216 ((-3 |t#1| "failed") |t#1|)) (-15 -1556 ((-3 |t#1| "failed") |t#1|)) (-15 -3994 ((-3 |t#1| "failed") |t#1|)) (-15 -2092 ((-3 |t#1| "failed") |t#1|)) (-15 -3607 ((-3 |t#1| "failed") |t#1|)) (-15 -2480 ((-3 |t#1| "failed") |t#1|)) (-15 -3090 ((-3 |t#1| "failed") |t#1|)) (-15 -2164 ((-3 |t#1| "failed") |t#1|)) (-15 -2488 ((-3 |t#1| "failed") |t#1|)) (-15 -3051 ((-3 |t#1| "failed") |t#1|)) (-15 -3325 ((-3 |t#1| "failed") |t#1|)) (-15 -3608 ((-3 |t#1| "failed") |t#1|)) (-15 -2831 ((-3 |t#1| "failed") |t#1|)) (-15 -1964 ((-3 |t#1| "failed") |t#1|)) (-15 -3704 ((-3 |t#1| "failed") |t#1|)) (-15 -3875 ((-3 |t#1| "failed") |t#1|)))) -((-1321 ((|#4| |#4| (-583 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2014 ((|#4| |#4| (-583 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3312 ((|#4| (-1 |#4| (-876 |#1|)) |#4|) 30))) -(((-904 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2014 (|#4| |#4| |#3|)) (-15 -2014 (|#4| |#4| (-583 |#3|))) (-15 -1321 (|#4| |#4| |#3|)) (-15 -1321 (|#4| |#4| (-583 |#3|))) (-15 -3312 (|#4| (-1 |#4| (-876 |#1|)) |#4|))) (-964) (-725) (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077))))) (-873 (-876 |#1|) |#2| |#3|)) (T -904)) -((-3312 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-876 *4))) (-4 *4 (-964)) (-4 *2 (-873 (-876 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-5 *1 (-904 *4 *5 *6 *2)))) (-1321 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-4 *4 (-964)) (-4 *5 (-725)) (-5 *1 (-904 *4 *5 *6 *2)) (-4 *2 (-873 (-876 *4) *5 *6)))) (-1321 (*1 *2 *2 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-5 *1 (-904 *4 *5 *3 *2)) (-4 *2 (-873 (-876 *4) *5 *3)))) (-2014 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-4 *4 (-964)) (-4 *5 (-725)) (-5 *1 (-904 *4 *5 *6 *2)) (-4 *2 (-873 (-876 *4) *5 *6)))) (-2014 (*1 *2 *2 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)) (-15 -3791 ((-3 $ "failed") (-1077)))))) (-5 *1 (-904 *4 *5 *3 *2)) (-4 *2 (-873 (-876 *4) *5 *3))))) -(-10 -7 (-15 -2014 (|#4| |#4| |#3|)) (-15 -2014 (|#4| |#4| (-583 |#3|))) (-15 -1321 (|#4| |#4| |#3|)) (-15 -1321 (|#4| |#4| (-583 |#3|))) (-15 -3312 (|#4| (-1 |#4| (-876 |#1|)) |#4|))) -((-2087 ((|#2| |#3|) 34)) (-1486 (((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 71)) (-2734 (((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 86))) -(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -2087 (|#2| |#3|))) (-319) (-1134 |#1|) (-1134 |#2|) (-657 |#2| |#3|)) (T -905)) -((-2087 (*1 *2 *3) (-12 (-4 *3 (-1134 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-905 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))) (-1486 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 *3)) (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-905 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) (-2734 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| -3700 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-905 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5))))) -(-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -2087 (|#2| |#3|))) -((-1445 (((-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))) 65))) -(((-906 |#1| |#2|) (-10 -7 (-15 -1445 ((-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))))) (-583 (-1077)) (-703)) (T -906)) -((-1445 (*1 *2 *2) (-12 (-5 *2 (-907 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1077))) (-14 *4 (-703)) (-5 *1 (-906 *3 *4))))) -(-10 -7 (-15 -1445 ((-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-907 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))))) -((-2105 (((-107) $ $) NIL)) (-1558 (((-3 (-107) "failed") $) 67)) (-2130 (($ $) 35 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-4143 (($ $ (-3 (-107) "failed")) 68)) (-3491 (($ (-583 |#4|) |#4|) 24)) (-3232 (((-1060) $) NIL)) (-3108 (($ $) 65)) (-4130 (((-1024) $) NIL)) (-1754 (((-107) $) 66)) (-2679 (($) 29)) (-2728 ((|#4| $) 70)) (-1896 (((-583 |#4|) $) 69)) (-2262 (((-787) $) 64)) (-1572 (((-107) $ $) NIL))) -(((-907 |#1| |#2| |#3| |#4|) (-13 (-1006) (-557 (-787)) (-10 -8 (-15 -2679 ($)) (-15 -3491 ($ (-583 |#4|) |#4|)) (-15 -1558 ((-3 (-107) "failed") $)) (-15 -4143 ($ $ (-3 (-107) "failed"))) (-15 -1754 ((-107) $)) (-15 -1896 ((-583 |#4|) $)) (-15 -2728 (|#4| $)) (-15 -3108 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -2130 ($ $)) |%noBranch|) |%noBranch|))) (-421) (-779) (-725) (-873 |#1| |#3| |#2|)) (T -907)) -((-2679 (*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3)))) (-3491 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-873 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-907 *4 *5 *6 *3)))) (-1558 (*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4)))) (-1754 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4)))) (-1896 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4)))) (-2728 (*1 *2 *1) (-12 (-4 *2 (-873 *3 *5 *4)) (-5 *1 (-907 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))) (-3108 (*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3)))) (-2130 (*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3))))) -(-13 (-1006) (-557 (-787)) (-10 -8 (-15 -2679 ($)) (-15 -3491 ($ (-583 |#4|) |#4|)) (-15 -1558 ((-3 (-107) "failed") $)) (-15 -4143 ($ $ (-3 (-107) "failed"))) (-15 -1754 ((-107) $)) (-15 -1896 ((-583 |#4|) $)) (-15 -2728 (|#4| $)) (-15 -3108 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -2130 ($ $)) |%noBranch|) |%noBranch|))) -((-1788 (((-107) |#5| |#5|) 38)) (-3752 (((-107) |#5| |#5|) 52)) (-3331 (((-107) |#5| (-583 |#5|)) 74) (((-107) |#5| |#5|) 61)) (-1361 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-2457 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) 63)) (-3455 (((-1163)) 33)) (-1533 (((-1163) (-1060) (-1060) (-1060)) 29)) (-3812 (((-583 |#5|) (-583 |#5|)) 81)) (-3825 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) 79)) (-1950 (((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 101)) (-1719 (((-107) |#5| |#5|) 47)) (-2451 (((-3 (-107) "failed") |#5| |#5|) 71)) (-1526 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-3818 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-1579 (((-107) (-583 |#4|) (-583 |#4|)) 60)) (-3673 (((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 97)) (-1908 (((-583 |#5|) (-583 |#5|)) 43))) -(((-908 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1533 ((-1163) (-1060) (-1060) (-1060))) (-15 -3455 ((-1163))) (-15 -1788 ((-107) |#5| |#5|)) (-15 -1908 ((-583 |#5|) (-583 |#5|))) (-15 -1719 ((-107) |#5| |#5|)) (-15 -3752 ((-107) |#5| |#5|)) (-15 -1361 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1526 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3818 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1579 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2451 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3331 ((-107) |#5| |#5|)) (-15 -3331 ((-107) |#5| (-583 |#5|))) (-15 -3812 ((-583 |#5|) (-583 |#5|))) (-15 -2457 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -3825 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-15 -1950 ((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3673 ((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -908)) -((-3673 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3817 (-583 *9)) (|:| -3864 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-908 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-1950 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3817 (-583 *9)) (|:| -3864 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-908 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3864 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-908 *3 *4 *5 *6 *7)))) (-2457 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *8)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-908 *3 *4 *5 *6 *7)))) (-3331 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-908 *5 *6 *7 *8 *3)))) (-3331 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-2451 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1579 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3818 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1526 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1361 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3752 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1719 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-908 *3 *4 *5 *6 *7)))) (-1788 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3455 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-908 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-1533 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -(-10 -7 (-15 -1533 ((-1163) (-1060) (-1060) (-1060))) (-15 -3455 ((-1163))) (-15 -1788 ((-107) |#5| |#5|)) (-15 -1908 ((-583 |#5|) (-583 |#5|))) (-15 -1719 ((-107) |#5| |#5|)) (-15 -3752 ((-107) |#5| |#5|)) (-15 -1361 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1526 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3818 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1579 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2451 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3331 ((-107) |#5| |#5|)) (-15 -3331 ((-107) |#5| (-583 |#5|))) (-15 -3812 ((-583 |#5|) (-583 |#5|))) (-15 -2457 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -3825 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-15 -1950 ((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3673 ((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) -((-3791 (((-1077) $) 15)) (-3112 (((-1060) $) 16)) (-2960 (($ (-1077) (-1060)) 14)) (-2262 (((-787) $) 13))) -(((-909) (-13 (-557 (-787)) (-10 -8 (-15 -2960 ($ (-1077) (-1060))) (-15 -3791 ((-1077) $)) (-15 -3112 ((-1060) $))))) (T -909)) -((-2960 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1060)) (-5 *1 (-909)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-909)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-909))))) -(-13 (-557 (-787)) (-10 -8 (-15 -2960 ($ (-1077) (-1060))) (-15 -3791 ((-1077) $)) (-15 -3112 ((-1060) $)))) -((-3312 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-910 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#2| |#1|) |#3|))) (-509) (-509) (-912 |#1|) (-912 |#2|)) (T -910)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-912 *6)) (-5 *1 (-910 *5 *6 *4 *2)) (-4 *4 (-912 *5))))) -(-10 -7 (-15 -3312 (|#4| (-1 |#2| |#1|) |#3|))) -((-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-1077) "failed") $) 65) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) 95)) (-3402 ((|#2| $) NIL) (((-1077) $) 60) (((-377 (-517)) $) NIL) (((-517) $) 92)) (-2947 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 112) (((-623 |#2|) (-623 $)) 28)) (-2192 (($) 98)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 74) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 83)) (-3662 (($ $) 10)) (-1639 (((-3 $ "failed") $) 20)) (-3312 (($ (-1 |#2| |#2|) $) 22)) (-2578 (($) 16)) (-2590 (($ $) 54)) (-2042 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1463 (($ $) 12)) (-3367 (((-816 (-517)) $) 69) (((-816 (-349)) $) 78) (((-493) $) 40) (((-349) $) 44) (((-199) $) 47)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 90) (($ |#2|) NIL) (($ (-1077)) 57)) (-1818 (((-703)) 31)) (-1596 (((-107) $ $) 50))) -(((-911 |#1| |#2|) (-10 -8 (-15 -1596 ((-107) |#1| |#1|)) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -2262 (|#1| (-1077))) (-15 -2192 (|#1|)) (-15 -2590 (|#1| |#1|)) (-15 -1463 (|#1| |#1|)) (-15 -3662 (|#1| |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -2262 ((-787) |#1|))) (-912 |#2|) (-509)) (T -911)) -((-1818 (*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4))))) -(-10 -8 (-15 -1596 ((-107) |#1| |#1|)) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -2262 (|#1| (-1077))) (-15 -2192 (|#1|)) (-15 -2590 (|#1| |#1|)) (-15 -1463 (|#1| |#1|)) (-15 -3662 (|#1| |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -2939 ((-813 (-517) |#1|) |#1| (-816 (-517)) (-813 (-517) |#1|))) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -2947 ((-623 |#2|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2964 ((|#1| $) 139 (|has| |#1| (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 130 (|has| |#1| (-833)))) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 133 (|has| |#1| (-833)))) (-1765 (((-107) $ $) 59)) (-3502 (((-517) $) 120 (|has| |#1| (-752)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 178) (((-3 (-1077) "failed") $) 128 (|has| |#1| (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) 112 (|has| |#1| (-955 (-517)))) (((-3 (-517) "failed") $) 110 (|has| |#1| (-955 (-517))))) (-3402 ((|#1| $) 177) (((-1077) $) 127 (|has| |#1| (-955 (-1077)))) (((-377 (-517)) $) 111 (|has| |#1| (-955 (-517)))) (((-517) $) 109 (|has| |#1| (-955 (-517))))) (-2383 (($ $ $) 55)) (-2947 (((-623 (-517)) (-623 $)) 152 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 151 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 150) (((-623 |#1|) (-623 $)) 149)) (-3550 (((-3 $ "failed") $) 34)) (-2192 (($) 137 (|has| |#1| (-502)))) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-2671 (((-107) $) 122 (|has| |#1| (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 146 (|has| |#1| (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 145 (|has| |#1| (-810 (-349))))) (-1690 (((-107) $) 31)) (-3662 (($ $) 141)) (-3858 ((|#1| $) 143)) (-1639 (((-3 $ "failed") $) 108 (|has| |#1| (-1053)))) (-2321 (((-107) $) 121 (|has| |#1| (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3480 (($ $ $) 118 (|has| |#1| (-779)))) (-4095 (($ $ $) 117 (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) 169)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-2578 (($) 107 (|has| |#1| (-1053)) CONST)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2590 (($ $) 138 (|has| |#1| (-278)))) (-2713 ((|#1| $) 135 (|has| |#1| (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 132 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 131 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) 175 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 173 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 172 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 171 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) 170 (|has| |#1| (-478 (-1077) |#1|)))) (-3388 (((-703) $) 58)) (-2612 (($ $ |#1|) 176 (|has| |#1| (-258 |#1| |#1|)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-2042 (($ $) 168 (|has| |#1| (-207))) (($ $ (-703)) 166 (|has| |#1| (-207))) (($ $ (-1077)) 164 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 163 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 162 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 161 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-1463 (($ $) 140)) (-2082 ((|#1| $) 142)) (-3367 (((-816 (-517)) $) 148 (|has| |#1| (-558 (-816 (-517))))) (((-816 (-349)) $) 147 (|has| |#1| (-558 (-816 (-349))))) (((-493) $) 125 (|has| |#1| (-558 (-493)))) (((-349) $) 124 (|has| |#1| (-940))) (((-199) $) 123 (|has| |#1| (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 134 (-4024 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 181) (($ (-1077)) 129 (|has| |#1| (-955 (-1077))))) (-3385 (((-3 $ "failed") $) 126 (-3786 (|has| |#1| (-132)) (-4024 (|has| $ (-132)) (|has| |#1| (-833)))))) (-1818 (((-703)) 29)) (-3126 ((|#1| $) 136 (|has| |#1| (-502)))) (-2944 (((-107) $ $) 39)) (-2829 (($ $) 119 (|has| |#1| (-752)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $) 167 (|has| |#1| (-207))) (($ $ (-703)) 165 (|has| |#1| (-207))) (($ $ (-1077)) 160 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 159 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 158 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 157 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1630 (((-107) $ $) 115 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 114 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 116 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 113 (|has| |#1| (-779)))) (-1692 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179))) -(((-912 |#1|) (-1189) (-509)) (T -912)) -((-1692 (*1 *1 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))) (-3858 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))) (-3662 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))) (-1463 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-2590 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-2192 (*1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-502)) (-4 *2 (-509)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-502))))) -(-13 (-333) (-37 |t#1|) (-955 |t#1|) (-308 |t#1|) (-205 |t#1|) (-347 |t#1|) (-808 |t#1|) (-370 |t#1|) (-10 -8 (-15 -1692 ($ |t#1| |t#1|)) (-15 -3858 (|t#1| $)) (-15 -2082 (|t#1| $)) (-15 -3662 ($ $)) (-15 -1463 ($ $)) (IF (|has| |t#1| (-1053)) (-6 (-1053)) |%noBranch|) (IF (|has| |t#1| (-955 (-517))) (PROGN (-6 (-955 (-517))) (-6 (-955 (-377 (-517))))) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-752)) (-6 (-752)) |%noBranch|) (IF (|has| |t#1| (-940)) (-6 (-940)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-955 (-1077))) (-6 (-955 (-1077))) |%noBranch|) (IF (|has| |t#1| (-278)) (PROGN (-15 -2964 (|t#1| $)) (-15 -2590 ($ $))) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -2192 ($)) (-15 -3126 (|t#1| $)) (-15 -2713 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) |has| |#1| (-940)) ((-558 (-349)) |has| |#1| (-940)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-816 (-349))) |has| |#1| (-558 (-816 (-349)))) ((-558 (-816 (-517))) |has| |#1| (-558 (-816 (-517)))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) . T) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) . T) ((-278) . T) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-421) . T) ((-478 (-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-723) |has| |#1| (-752)) ((-724) |has| |#1| (-752)) ((-726) |has| |#1| (-752)) ((-727) |has| |#1| (-752)) ((-752) |has| |#1| (-752)) ((-777) |has| |#1| (-752)) ((-779) -3786 (|has| |#1| (-779)) (|has| |#1| (-752))) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-810 (-349)) |has| |#1| (-810 (-349))) ((-810 (-517)) |has| |#1| (-810 (-517))) ((-808 |#1|) . T) ((-833) |has| |#1| (-833)) ((-844) . T) ((-940) |has| |#1| (-940)) ((-955 (-377 (-517))) |has| |#1| (-955 (-517))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 (-1077)) |has| |#1| (-955 (-1077))) ((-955 |#1|) . T) ((-970 #0#) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| |#1| (-1053)) ((-1112) . T) ((-1116) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1616 (($ (-1044 |#1| |#2|)) 11)) (-2362 (((-1044 |#1| |#2|) $) 12)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2612 ((|#2| $ (-214 |#1| |#2|)) 16)) (-2262 (((-787) $) NIL)) (-3663 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL))) -(((-913 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1616 ($ (-1044 |#1| |#2|))) (-15 -2362 ((-1044 |#1| |#2|) $)) (-15 -2612 (|#2| $ (-214 |#1| |#2|))))) (-845) (-333)) (T -913)) -((-1616 (*1 *1 *2) (-12 (-5 *2 (-1044 *3 *4)) (-14 *3 (-845)) (-4 *4 (-333)) (-5 *1 (-913 *3 *4)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-1044 *3 *4)) (-5 *1 (-913 *3 *4)) (-14 *3 (-845)) (-4 *4 (-333)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-845)) (-4 *2 (-333)) (-5 *1 (-913 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -1616 ($ (-1044 |#1| |#2|))) (-15 -2362 ((-1044 |#1| |#2|) $)) (-15 -2612 (|#2| $ (-214 |#1| |#2|))))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-2205 (($ $) 46)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3728 (((-703) $) 45)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1319 ((|#1| $) 44)) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-3461 ((|#1| |#1| $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-1903 ((|#1| $) 47)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-2522 ((|#1| $) 43)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-914 |#1|) (-1189) (-1112)) (T -914)) -((-3461 (*1 *2 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))) (-1903 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))) (-2205 (*1 *1 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))) (-1319 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112)))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4195) (-15 -3461 (|t#1| |t#1| $)) (-15 -1903 (|t#1| $)) (-15 -2205 ($ $)) (-15 -3728 ((-703) $)) (-15 -1319 (|t#1| $)) (-15 -2522 (|t#1| $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-1992 (((-107) $) 42)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 43)) (-3389 (((-3 (-377 (-517)) "failed") $) 78)) (-3748 (((-107) $) 72)) (-3727 (((-377 (-517)) $) 76)) (-1690 (((-107) $) 41)) (-3522 ((|#2| $) 22)) (-3312 (($ (-1 |#2| |#2|) $) 19)) (-2291 (($ $) 61)) (-2042 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3367 (((-493) $) 67)) (-1853 (($ $) 17)) (-2262 (((-787) $) 56) (($ (-517)) 38) (($ |#2|) 36) (($ (-377 (-517))) NIL)) (-1818 (((-703)) 10)) (-2829 ((|#2| $) 71)) (-1572 (((-107) $ $) 25)) (-1596 (((-107) $ $) 69)) (-1680 (($ $) 29) (($ $ $) 28)) (-1666 (($ $ $) 26)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL))) -(((-915 |#1| |#2|) (-10 -8 (-15 -2262 (|#1| (-377 (-517)))) (-15 -1596 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -2291 (|#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2829 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -1690 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-916 |#2|) (-156)) (T -915)) -((-1818 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-915 *3 *4)) (-4 *3 (-916 *4))))) -(-10 -8 (-15 -2262 (|#1| (-377 (-517)))) (-15 -1596 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -2291 (|#1| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -2829 (|#2| |#1|)) (-15 -3522 (|#2| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -3312 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2262 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -1690 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -1992 ((-107) |#1|)) (-15 * (|#1| (-845) |#1|)) (-15 -1666 (|#1| |#1| |#1|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3220 (((-3 (-517) "failed") $) 119 (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 117 (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) 116)) (-3402 (((-517) $) 120 (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) 118 (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) 115)) (-2947 (((-623 (-517)) (-623 $)) 90 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 89 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 88) (((-623 |#1|) (-623 $)) 87)) (-3550 (((-3 $ "failed") $) 34)) (-3919 ((|#1| $) 80)) (-3389 (((-3 (-377 (-517)) "failed") $) 76 (|has| |#1| (-502)))) (-3748 (((-107) $) 78 (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) 77 (|has| |#1| (-502)))) (-4124 (($ |#1| |#1| |#1| |#1|) 81)) (-1690 (((-107) $) 31)) (-3522 ((|#1| $) 82)) (-3480 (($ $ $) 68 (|has| |#1| (-779)))) (-4095 (($ $ $) 67 (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) 91)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 73 (|has| |#1| (-333)))) (-3840 ((|#1| $) 83)) (-3061 ((|#1| $) 84)) (-1273 ((|#1| $) 85)) (-4130 (((-1024) $) 10)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) 97 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 95 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 94 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) 93 (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) 92 (|has| |#1| (-478 (-1077) |#1|)))) (-2612 (($ $ |#1|) 98 (|has| |#1| (-258 |#1| |#1|)))) (-2042 (($ $) 114 (|has| |#1| (-207))) (($ $ (-703)) 112 (|has| |#1| (-207))) (($ $ (-1077)) 110 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 109 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 108 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 107 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3367 (((-493) $) 74 (|has| |#1| (-558 (-493))))) (-1853 (($ $) 86)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 62 (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517))))))) (-3385 (((-3 $ "failed") $) 75 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-2829 ((|#1| $) 79 (|has| |#1| (-973)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 72 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $) 113 (|has| |#1| (-207))) (($ $ (-703)) 111 (|has| |#1| (-207))) (($ $ (-1077)) 106 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 105 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 104 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 103 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1630 (((-107) $ $) 65 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 64 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 66 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 63 (|has| |#1| (-779)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 71 (|has| |#1| (-333)))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-377 (-517))) 70 (|has| |#1| (-333))) (($ (-377 (-517)) $) 69 (|has| |#1| (-333))))) -(((-916 |#1|) (-1189) (-156)) (T -916)) -((-1853 (*1 *1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-1273 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-4124 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)) (-4 *2 (-973)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-3389 (*1 *2 *1) (|partial| -12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517)))))) -(-13 (-37 |t#1|) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1853 ($ $)) (-15 -1273 (|t#1| $)) (-15 -3061 (|t#1| $)) (-15 -3840 (|t#1| $)) (-15 -3522 (|t#1| $)) (-15 -4124 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3919 (|t#1| $)) (IF (|has| |t#1| (-262)) (-6 (-262)) |%noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-217)) |%noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -2829 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3748 ((-107) $)) (-15 -3727 ((-377 (-517)) $)) (-15 -3389 ((-3 (-377 (-517)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-333)) ((-37 |#1|) . T) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-333)) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) |has| |#1| (-333)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3786 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1077) |#1|) |has| |#1| (-478 (-1077) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 #0#) |has| |#1| (-333)) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-333)) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-970 #0#) |has| |#1| (-333)) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-3312 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|))) (-916 |#2|) (-156) (-916 |#4|) (-156)) (T -917)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-916 *6)) (-5 *1 (-917 *4 *5 *2 *6)) (-4 *4 (-916 *5))))) -(-10 -7 (-15 -3312 (|#3| (-1 |#4| |#2|) |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3919 ((|#1| $) 12)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-3748 (((-107) $) NIL (|has| |#1| (-502)))) (-3727 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-4124 (($ |#1| |#1| |#1| |#1|) 16)) (-1690 (((-107) $) NIL)) (-3522 ((|#1| $) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3840 ((|#1| $) 15)) (-3061 ((|#1| $) 14)) (-1273 ((|#1| $) 13)) (-4130 (((-1024) $) NIL)) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1077) |#1|))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-478 (-1077) |#1|)))) (-2612 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-2042 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1853 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517))))))) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-2829 ((|#1| $) NIL (|has| |#1| (-973)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 8 T CONST)) (-3675 (($) 10 T CONST)) (-3348 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))))) -(((-918 |#1|) (-916 |#1|) (-156)) (T -918)) -NIL -(-916 |#1|) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-2205 (($ $) 20)) (-3790 (($ (-583 |#1|)) 29)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3728 (((-703) $) 22)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) 24)) (-3439 (($ |#1| $) 15)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1319 ((|#1| $) 23)) (-1551 ((|#1| $) 19)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-3461 ((|#1| |#1| $) 14)) (-1754 (((-107) $) 17)) (-2679 (($) NIL)) (-1903 ((|#1| $) 18)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) NIL)) (-2522 ((|#1| $) 26)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-919 |#1|) (-13 (-914 |#1|) (-10 -8 (-15 -3790 ($ (-583 |#1|))))) (-1006)) (T -919)) -((-3790 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-919 *3))))) -(-13 (-914 |#1|) (-10 -8 (-15 -3790 ($ (-583 |#1|))))) -((-3908 (($ $) 12)) (-2940 (($ $ (-517)) 13))) -(((-920 |#1|) (-10 -8 (-15 -3908 (|#1| |#1|)) (-15 -2940 (|#1| |#1| (-517)))) (-921)) (T -920)) -NIL -(-10 -8 (-15 -3908 (|#1| |#1|)) (-15 -2940 (|#1| |#1| (-517)))) -((-3908 (($ $) 6)) (-2940 (($ $ (-517)) 7)) (** (($ $ (-377 (-517))) 8))) -(((-921) (-1189)) (T -921)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-921)) (-5 *2 (-377 (-517))))) (-2940 (*1 *1 *1 *2) (-12 (-4 *1 (-921)) (-5 *2 (-517)))) (-3908 (*1 *1 *1) (-4 *1 (-921)))) -(-13 (-10 -8 (-15 -3908 ($ $)) (-15 -2940 ($ $ (-517))) (-15 ** ($ $ (-377 (-517)))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2861 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-2491 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2025 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-1278 (((-623 (-377 |#2|)) (-1158 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1991 (((-377 |#2|) $) NIL)) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3306 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1765 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2390 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-2401 (((-107)) NIL)) (-1369 (((-107) |#1|) 147) (((-107) |#2|) 152)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| (-377 |#2|) (-955 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-955 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-3539 (($ (-1158 (-377 |#2|)) (-1158 $)) NIL) (($ (-1158 (-377 |#2|))) 70) (($ (-1158 |#2|) |#2|) NIL)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2383 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-4028 (((-623 (-377 |#2|)) $ (-1158 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-377 |#2|))) (|:| |vec| (-1158 (-377 |#2|)))) (-623 $) (-1158 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-1852 (((-1158 $) (-1158 $)) NIL)) (-1510 (($ |#3|) 65) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3550 (((-3 $ "failed") $) NIL)) (-3810 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3881 (((-107) |#1| |#1|) NIL)) (-3778 (((-845)) NIL)) (-2192 (($) NIL (|has| (-377 |#2|) (-338)))) (-2897 (((-107)) NIL)) (-1607 (((-107) |#1|) 56) (((-107) |#2|) 149)) (-2356 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-4172 (($ $) NIL)) (-4169 (($) NIL (|has| (-377 |#2|) (-319)))) (-2634 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2627 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-2022 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3250 (((-845) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-845)) $) NIL (|has| (-377 |#2|) (-319)))) (-1690 (((-107) $) NIL)) (-3128 (((-703)) NIL)) (-3947 (((-1158 $) (-1158 $)) NIL)) (-3522 (((-377 |#2|) $) NIL)) (-2784 (((-583 (-876 |#1|)) (-1077)) NIL (|has| |#1| (-333)))) (-1639 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1914 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-4161 (((-845) $) NIL (|has| (-377 |#2|) (-338)))) (-1497 ((|#3| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3232 (((-1060) $) NIL)) (-2765 (((-623 (-377 |#2|))) 52)) (-2160 (((-623 (-377 |#2|))) 51)) (-2291 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1792 (($ (-1158 |#2|) |#2|) 71)) (-3444 (((-623 (-377 |#2|))) 50)) (-3564 (((-623 (-377 |#2|))) 49)) (-2303 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2067 (((-2 (|:| |num| (-1158 |#2|)) (|:| |den| |#2|)) $) 77)) (-2474 (((-1158 $)) 46)) (-2734 (((-1158 $)) 45)) (-3093 (((-107) $) NIL)) (-3138 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2578 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-2803 (($ (-845)) NIL (|has| (-377 |#2|) (-338)))) (-2645 (((-3 |#2| "failed")) 63)) (-4130 (((-1024) $) NIL)) (-2224 (((-703)) NIL)) (-1306 (($) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| (-377 |#2|) (-333)))) (-2361 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3896 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2333 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3388 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-2612 ((|#1| $ |#1| |#1|) NIL)) (-2178 (((-3 |#2| "failed")) 62)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3115 (((-377 |#2|) (-1158 $)) NIL) (((-377 |#2|)) 42)) (-3667 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-2042 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-3248 (((-623 (-377 |#2|)) (-1158 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2819 ((|#3|) 53)) (-3718 (($) NIL (|has| (-377 |#2|) (-319)))) (-1372 (((-1158 (-377 |#2|)) $ (-1158 $)) NIL) (((-623 (-377 |#2|)) (-1158 $) (-1158 $)) NIL) (((-1158 (-377 |#2|)) $) 72) (((-623 (-377 |#2|)) (-1158 $)) NIL)) (-3367 (((-1158 (-377 |#2|)) $) NIL) (($ (-1158 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-1697 (((-1158 $) (-1158 $)) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3786 (|has| (-377 |#2|) (-955 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3385 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3848 ((|#3| $) NIL)) (-1818 (((-703)) NIL)) (-3471 (((-107)) 60)) (-3788 (((-107) |#1|) 153) (((-107) |#2|) 154)) (-3700 (((-1158 $)) 124)) (-2944 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2159 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1288 (((-107)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-3663 (($) 94 T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-824 (-1077))))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3786 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333))))) -(((-922 |#1| |#2| |#3| |#4| |#5|) (-312 |#1| |#2| |#3|) (-1116) (-1134 |#1|) (-1134 (-377 |#2|)) (-377 |#2|) (-703)) (T -922)) -NIL -(-312 |#1| |#2| |#3|) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1194 (((-583 (-517)) $) 54)) (-3754 (($ (-583 (-517))) 62)) (-2964 (((-517) $) 40 (|has| (-517) (-278)))) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL (|has| (-517) (-752)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) 49) (((-3 (-1077) "failed") $) NIL (|has| (-517) (-955 (-1077)))) (((-3 (-377 (-517)) "failed") $) 47 (|has| (-517) (-955 (-517)))) (((-3 (-517) "failed") $) 49 (|has| (-517) (-955 (-517))))) (-3402 (((-517) $) NIL) (((-1077) $) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) NIL (|has| (-517) (-955 (-517)))) (((-517) $) NIL (|has| (-517) (-955 (-517))))) (-2383 (($ $ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2192 (($) NIL (|has| (-517) (-502)))) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1812 (((-583 (-517)) $) 60)) (-2671 (((-107) $) NIL (|has| (-517) (-752)))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (|has| (-517) (-810 (-517)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (|has| (-517) (-810 (-349))))) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL)) (-3858 (((-517) $) 37)) (-1639 (((-3 $ "failed") $) NIL (|has| (-517) (-1053)))) (-2321 (((-107) $) NIL (|has| (-517) (-752)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-517) (-779)))) (-3312 (($ (-1 (-517) (-517)) $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL)) (-2578 (($) NIL (|has| (-517) (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2590 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) 42)) (-4089 (((-1058 (-517)) $) 59)) (-2708 (($ (-583 (-517)) (-583 (-517))) 63)) (-2713 (((-517) $) 53 (|has| (-517) (-502)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| (-517) (-833)))) (-3896 (((-388 $) $) NIL)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3552 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1077)) (-583 (-517))) NIL (|has| (-517) (-478 (-1077) (-517)))) (($ $ (-1077) (-517)) NIL (|has| (-517) (-478 (-1077) (-517))))) (-3388 (((-703) $) NIL)) (-2612 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $) 11 (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1463 (($ $) NIL)) (-2082 (((-517) $) 39)) (-3713 (((-583 (-517)) $) 61)) (-3367 (((-816 (-517)) $) NIL (|has| (-517) (-558 (-816 (-517))))) (((-816 (-349)) $) NIL (|has| (-517) (-558 (-816 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-940))) (((-199) $) NIL (|has| (-517) (-940)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-833))))) (-2262 (((-787) $) 77) (($ (-517)) 43) (($ $) NIL) (($ (-377 (-517))) 19) (($ (-517)) 43) (($ (-1077)) NIL (|has| (-517) (-955 (-1077)))) (((-377 (-517)) $) 17)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-517) (-833))) (|has| (-517) (-132))))) (-1818 (((-703)) 9)) (-3126 (((-517) $) 51 (|has| (-517) (-502)))) (-2944 (((-107) $ $) NIL)) (-2829 (($ $) NIL (|has| (-517) (-752)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 10 T CONST)) (-3675 (($) 12 T CONST)) (-3348 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1077)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| (-517) (-824 (-1077)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1630 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) 14)) (-1618 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1596 (((-107) $ $) 33 (|has| (-517) (-779)))) (-1692 (($ $ $) 29) (($ (-517) (-517)) 31)) (-1680 (($ $) 15) (($ $ $) 22)) (-1666 (($ $ $) 20)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 25) (($ $ $) 27) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) 25) (($ $ (-517)) NIL))) -(((-923 |#1|) (-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -1194 ((-583 (-517)) $)) (-15 -4089 ((-1058 (-517)) $)) (-15 -1812 ((-583 (-517)) $)) (-15 -3713 ((-583 (-517)) $)) (-15 -3754 ($ (-583 (-517)))) (-15 -2708 ($ (-583 (-517)) (-583 (-517)))))) (-517)) (T -923)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-1194 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-4089 (*1 *2 *1) (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) (-2708 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517))))) -(-13 (-912 (-517)) (-10 -8 (-15 -2262 ((-377 (-517)) $)) (-15 -2590 ((-377 (-517)) $)) (-15 -1194 ((-583 (-517)) $)) (-15 -4089 ((-1058 (-517)) $)) (-15 -1812 ((-583 (-517)) $)) (-15 -3713 ((-583 (-517)) $)) (-15 -3754 ($ (-583 (-517)))) (-15 -2708 ($ (-583 (-517)) (-583 (-517)))))) -((-3198 (((-51) (-377 (-517)) (-517)) 9))) -(((-924) (-10 -7 (-15 -3198 ((-51) (-377 (-517)) (-517))))) (T -924)) -((-3198 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-924))))) -(-10 -7 (-15 -3198 ((-51) (-377 (-517)) (-517)))) -((-2390 (((-517)) 13)) (-2441 (((-517)) 16)) (-1997 (((-1163) (-517)) 15)) (-3586 (((-517) (-517)) 17) (((-517)) 12))) -(((-925) (-10 -7 (-15 -3586 ((-517))) (-15 -2390 ((-517))) (-15 -3586 ((-517) (-517))) (-15 -1997 ((-1163) (-517))) (-15 -2441 ((-517))))) (T -925)) -((-2441 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-925)))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925)))) (-2390 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925)))) (-3586 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925))))) -(-10 -7 (-15 -3586 ((-517))) (-15 -2390 ((-517))) (-15 -3586 ((-517) (-517))) (-15 -1997 ((-1163) (-517))) (-15 -2441 ((-517)))) -((-2470 (((-388 |#1|) |#1|) 40)) (-3896 (((-388 |#1|) |#1|) 39))) -(((-926 |#1|) (-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1|))) (-1134 (-377 (-517)))) (T -926)) -((-2470 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-926 *3)) (-4 *3 (-1134 (-377 (-517)))))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-926 *3)) (-4 *3 (-1134 (-377 (-517))))))) -(-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1|))) -((-3389 (((-3 (-377 (-517)) "failed") |#1|) 14)) (-3748 (((-107) |#1|) 13)) (-3727 (((-377 (-517)) |#1|) 9))) -(((-927 |#1|) (-10 -7 (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|))) (-955 (-377 (-517)))) (T -927)) -((-3389 (*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-927 *3)) (-4 *3 (-955 *2)))) (-3748 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-927 *3)) (-4 *3 (-955 (-377 (-517)))))) (-3727 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-927 *3)) (-4 *3 (-955 *2))))) -(-10 -7 (-15 -3727 ((-377 (-517)) |#1|)) (-15 -3748 ((-107) |#1|)) (-15 -3389 ((-3 (-377 (-517)) "failed") |#1|))) -((-2436 ((|#2| $ "value" |#2|) 12)) (-2612 ((|#2| $ "value") 10)) (-3224 (((-107) $ $) 18))) -(((-928 |#1| |#2|) (-10 -8 (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -3224 ((-107) |#1| |#1|)) (-15 -2612 (|#2| |#1| "value"))) (-929 |#2|) (-1112)) (T -928)) -NIL -(-10 -8 (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -3224 ((-107) |#1| |#1|)) (-15 -2612 (|#2| |#1| "value"))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-3038 (($) 7 T CONST)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47)) (-3868 (((-517) $ $) 44)) (-1414 (((-107) $) 46)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-929 |#1|) (-1189) (-1112)) (T -929)) -((-3234 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-5 *2 (-583 *1)) (-4 *1 (-929 *3)))) (-1823 (*1 *2 *1) (-12 (-4 *3 (-1112)) (-5 *2 (-583 *1)) (-4 *1 (-929 *3)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-1112)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-929 *2)) (-4 *2 (-1112)))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-583 *3)))) (-3868 (*1 *2 *1 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-517)))) (-3224 (*1 *2 *1 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-107)))) (-1700 (*1 *2 *1 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-107)))) (-2638 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4196)) (-4 *1 (-929 *3)) (-4 *3 (-1112)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4196)) (-4 *1 (-929 *2)) (-4 *2 (-1112)))) (-2226 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-929 *2)) (-4 *2 (-1112))))) -(-13 (-456 |t#1|) (-10 -8 (-15 -3234 ((-583 $) $)) (-15 -1823 ((-583 $) $)) (-15 -3834 ((-107) $)) (-15 -3112 (|t#1| $)) (-15 -2612 (|t#1| $ "value")) (-15 -1414 ((-107) $)) (-15 -1925 ((-583 |t#1|) $)) (-15 -3868 ((-517) $ $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -3224 ((-107) $ $)) (-15 -1700 ((-107) $ $))) |%noBranch|) (IF (|has| $ (-6 -4196)) (PROGN (-15 -2638 ($ $ (-583 $))) (-15 -2436 (|t#1| $ "value" |t#1|)) (-15 -2226 (|t#1| $ |t#1|))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-3908 (($ $) 9) (($ $ (-703)) 43) (($ (-377 (-517))) 12) (($ (-517)) 15)) (-1454 (((-3 $ "failed") (-1073 $) (-845) (-787)) 23) (((-3 $ "failed") (-1073 $) (-845)) 28)) (-2940 (($ $ (-517)) 49)) (-1818 (((-703)) 16)) (-1244 (((-583 $) (-1073 $)) NIL) (((-583 $) (-1073 (-377 (-517)))) 54) (((-583 $) (-1073 (-517))) 59) (((-583 $) (-876 $)) 63) (((-583 $) (-876 (-377 (-517)))) 67) (((-583 $) (-876 (-517))) 71)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 47))) -(((-930 |#1|) (-10 -8 (-15 -3908 (|#1| (-517))) (-15 -3908 (|#1| (-377 (-517)))) (-15 -3908 (|#1| |#1| (-703))) (-15 -1244 ((-583 |#1|) (-876 (-517)))) (-15 -1244 ((-583 |#1|) (-876 (-377 (-517))))) (-15 -1244 ((-583 |#1|) (-876 |#1|))) (-15 -1244 ((-583 |#1|) (-1073 (-517)))) (-15 -1244 ((-583 |#1|) (-1073 (-377 (-517))))) (-15 -1244 ((-583 |#1|) (-1073 |#1|))) (-15 -1454 ((-3 |#1| "failed") (-1073 |#1|) (-845))) (-15 -1454 ((-3 |#1| "failed") (-1073 |#1|) (-845) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2940 (|#1| |#1| (-517))) (-15 -3908 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1818 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845)))) (-931)) (T -930)) -((-1818 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-930 *3)) (-4 *3 (-931))))) -(-10 -8 (-15 -3908 (|#1| (-517))) (-15 -3908 (|#1| (-377 (-517)))) (-15 -3908 (|#1| |#1| (-703))) (-15 -1244 ((-583 |#1|) (-876 (-517)))) (-15 -1244 ((-583 |#1|) (-876 (-377 (-517))))) (-15 -1244 ((-583 |#1|) (-876 |#1|))) (-15 -1244 ((-583 |#1|) (-1073 (-517)))) (-15 -1244 ((-583 |#1|) (-1073 (-377 (-517))))) (-15 -1244 ((-583 |#1|) (-1073 |#1|))) (-15 -1454 ((-3 |#1| "failed") (-1073 |#1|) (-845))) (-15 -1454 ((-3 |#1| "failed") (-1073 |#1|) (-845) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2940 (|#1| |#1| (-517))) (-15 -3908 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -1818 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 89)) (-2491 (($ $) 90)) (-2025 (((-107) $) 92)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 109)) (-3306 (((-388 $) $) 110)) (-3908 (($ $) 73) (($ $ (-703)) 59) (($ (-377 (-517))) 58) (($ (-517)) 57)) (-1765 (((-107) $ $) 100)) (-3502 (((-517) $) 127)) (-3038 (($) 17 T CONST)) (-1454 (((-3 $ "failed") (-1073 $) (-845) (-787)) 67) (((-3 $ "failed") (-1073 $) (-845)) 66)) (-3220 (((-3 (-517) "failed") $) 85 (|has| (-377 (-517)) (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 83 (|has| (-377 (-517)) (-955 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) 81)) (-3402 (((-517) $) 86 (|has| (-377 (-517)) (-955 (-517)))) (((-377 (-517)) $) 84 (|has| (-377 (-517)) (-955 (-377 (-517))))) (((-377 (-517)) $) 80)) (-3171 (($ $ (-787)) 56)) (-3383 (($ $ (-787)) 55)) (-2383 (($ $ $) 104)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 103)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 98)) (-2022 (((-107) $) 111)) (-2671 (((-107) $) 125)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 72)) (-2321 (((-107) $) 126)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 107)) (-3480 (($ $ $) 124)) (-4095 (($ $ $) 123)) (-3712 (((-3 (-1073 $) "failed") $) 68)) (-3107 (((-3 (-787) "failed") $) 70)) (-2411 (((-3 (-1073 $) "failed") $) 69)) (-2323 (($ (-583 $)) 96) (($ $ $) 95)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 112)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 97)) (-2361 (($ (-583 $)) 94) (($ $ $) 93)) (-3896 (((-388 $) $) 108)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 105)) (-2333 (((-3 $ "failed") $ $) 88)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 99)) (-3388 (((-703) $) 101)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 102)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 117) (($ $) 87) (($ (-377 (-517))) 82) (($ (-517)) 79) (($ (-377 (-517))) 76)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 91)) (-2194 (((-377 (-517)) $ $) 54)) (-1244 (((-583 $) (-1073 $)) 65) (((-583 $) (-1073 (-377 (-517)))) 64) (((-583 $) (-1073 (-517))) 63) (((-583 $) (-876 $)) 62) (((-583 $) (-876 (-377 (-517)))) 61) (((-583 $) (-876 (-517))) 60)) (-2829 (($ $) 128)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 113)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 121)) (-1606 (((-107) $ $) 120)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 122)) (-1596 (((-107) $ $) 119)) (-1692 (($ $ $) 118)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 114) (($ $ (-377 (-517))) 71)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 116) (($ $ (-377 (-517))) 115) (($ (-517) $) 78) (($ $ (-517)) 77) (($ (-377 (-517)) $) 75) (($ $ (-377 (-517))) 74))) -(((-931) (-1189)) (T -931)) -((-3908 (*1 *1 *1) (-4 *1 (-931))) (-3107 (*1 *2 *1) (|partial| -12 (-4 *1 (-931)) (-5 *2 (-787)))) (-2411 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073 *1)) (-4 *1 (-931)))) (-3712 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073 *1)) (-4 *1 (-931)))) (-1454 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1073 *1)) (-5 *3 (-845)) (-5 *4 (-787)) (-4 *1 (-931)))) (-1454 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1073 *1)) (-5 *3 (-845)) (-4 *1 (-931)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-931)) (-5 *2 (-583 *1)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-1073 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-1073 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-931)) (-5 *2 (-583 *1)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-876 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) (-3908 (*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-703)))) (-3908 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-931)))) (-3908 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-931)))) (-3171 (*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-787)))) (-3383 (*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-787)))) (-2194 (*1 *2 *1 *1) (-12 (-4 *1 (-931)) (-5 *2 (-377 (-517)))))) -(-13 (-134) (-777) (-156) (-333) (-381 (-377 (-517))) (-37 (-517)) (-37 (-377 (-517))) (-921) (-10 -8 (-15 -3107 ((-3 (-787) "failed") $)) (-15 -2411 ((-3 (-1073 $) "failed") $)) (-15 -3712 ((-3 (-1073 $) "failed") $)) (-15 -1454 ((-3 $ "failed") (-1073 $) (-845) (-787))) (-15 -1454 ((-3 $ "failed") (-1073 $) (-845))) (-15 -1244 ((-583 $) (-1073 $))) (-15 -1244 ((-583 $) (-1073 (-377 (-517))))) (-15 -1244 ((-583 $) (-1073 (-517)))) (-15 -1244 ((-583 $) (-876 $))) (-15 -1244 ((-583 $) (-876 (-377 (-517))))) (-15 -1244 ((-583 $) (-876 (-517)))) (-15 -3908 ($ $ (-703))) (-15 -3908 ($ $)) (-15 -3908 ($ (-377 (-517)))) (-15 -3908 ($ (-517))) (-15 -3171 ($ $ (-787))) (-15 -3383 ($ $ (-787))) (-15 -2194 ((-377 (-517)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 #1=(-517)) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 #1# #1#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-381 (-377 (-517))) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 #1#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 #1#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-844) . T) ((-921) . T) ((-955 (-377 (-517))) . T) ((-955 (-517)) |has| (-377 (-517)) (-955 (-517))) ((-970 #0#) . T) ((-970 #1#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T)) -((-1648 (((-2 (|:| |ans| |#2|) (|:| -3302 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62))) -(((-932 |#1| |#2|) (-10 -7 (-15 -1648 ((-2 (|:| |ans| |#2|) (|:| -3302 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-27) (-400 |#1|))) (T -932)) -((-1648 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1077)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1098) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-955 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3302 *4) (|:| |sol?| (-107)))) (-5 *1 (-932 *8 *4))))) -(-10 -7 (-15 -1648 ((-2 (|:| |ans| |#2|) (|:| -3302 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3640 (((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47))) -(((-933 |#1| |#2|) (-10 -7 (-15 -3640 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517))) (-13 (-1098) (-27) (-400 |#1|))) (T -933)) -((-3640 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1077)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1098) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-955 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-933 *8 *4))))) -(-10 -7 (-15 -3640 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1077) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2791 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2119 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3817 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)) 30)) (-2341 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 57)) (-3523 (((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|)) 62))) -(((-934 |#1| |#2|) (-10 -7 (-15 -2341 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3523 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -2119 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3817 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)))) (-13 (-333) (-134) (-955 (-517))) (-1134 |#1|)) (T -934)) -((-2119 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1134 *6)) (-4 *6 (-13 (-333) (-134) (-955 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -3817 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-934 *6 *3)))) (-3523 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-934 *4 *5)) (-5 *3 (-377 *5)))) (-2341 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -1701 *6))) (-5 *1 (-934 *5 *6)) (-5 *3 (-377 *6))))) -(-10 -7 (-15 -2341 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -3523 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -2119 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -3817 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)))) -((-1275 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 22)) (-1990 (((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 32))) -(((-935 |#1| |#2|) (-10 -7 (-15 -1275 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1990 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)))) (-13 (-333) (-134) (-955 (-517))) (-1134 |#1|)) (T -935)) -((-1990 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-935 *4 *5)) (-5 *3 (-377 *5)))) (-1275 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -1701 *6))) (-5 *1 (-935 *5 *6)) (-5 *3 (-377 *6))))) -(-10 -7 (-15 -1275 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -1701 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1990 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)))) -((-3070 (((-1 |#1|) (-583 (-2 (|:| -3112 |#1|) (|:| -3546 (-517))))) 37)) (-1610 (((-1 |#1|) (-1008 |#1|)) 45)) (-1829 (((-1 |#1|) (-1158 |#1|) (-1158 (-517)) (-517)) 34))) -(((-936 |#1|) (-10 -7 (-15 -1610 ((-1 |#1|) (-1008 |#1|))) (-15 -3070 ((-1 |#1|) (-583 (-2 (|:| -3112 |#1|) (|:| -3546 (-517)))))) (-15 -1829 ((-1 |#1|) (-1158 |#1|) (-1158 (-517)) (-517)))) (-1006)) (T -936)) -((-1829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1158 *6)) (-5 *4 (-1158 (-517))) (-5 *5 (-517)) (-4 *6 (-1006)) (-5 *2 (-1 *6)) (-5 *1 (-936 *6)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3112 *4) (|:| -3546 (-517))))) (-4 *4 (-1006)) (-5 *2 (-1 *4)) (-5 *1 (-936 *4)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1008 *4)) (-4 *4 (-1006)) (-5 *2 (-1 *4)) (-5 *1 (-936 *4))))) -(-10 -7 (-15 -1610 ((-1 |#1|) (-1008 |#1|))) (-15 -3070 ((-1 |#1|) (-583 (-2 (|:| -3112 |#1|) (|:| -3546 (-517)))))) (-15 -1829 ((-1 |#1|) (-1158 |#1|) (-1158 (-517)) (-517)))) -((-3250 (((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-937 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3250 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-333) (-1134 |#1|) (-1134 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-13 (-338) (-333))) (T -937)) -((-3250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1134 *6)) (-4 *4 (-1134 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-937 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3250 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2104 (((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) 31) (((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517))) 28)) (-2046 (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517))) 33) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517))) 29) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) 32) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|) 27)) (-1752 (((-583 (-377 (-517))) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) 19)) (-1982 (((-377 (-517)) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) 16))) -(((-938 |#1|) (-10 -7 (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|)) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -1982 ((-377 (-517)) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -1752 ((-583 (-377 (-517))) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))))) (-1134 (-517))) (T -938)) -((-1752 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-938 *4)) (-4 *4 (-1134 (-517))))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-938 *4)) (-4 *4 (-1134 (-517))))) (-2104 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))))) (-2104 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))))) (-2046 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3287 *5) (|:| -3302 *5)))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))) (-5 *4 (-2 (|:| -3287 *5) (|:| -3302 *5))))) (-2046 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))) (-5 *4 (-377 (-517))))) (-2046 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))) (-5 *4 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) (-2046 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517)))))) -(-10 -7 (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|)) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -1982 ((-377 (-517)) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -1752 ((-583 (-377 (-517))) (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))))) -((-2104 (((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) 35) (((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517))) 32)) (-2046 (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517))) 30) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517))) 26) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) 28) (((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|) 24))) -(((-939 |#1|) (-10 -7 (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|)) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) (-1134 (-377 (-517)))) (T -939)) -((-2104 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517)))))) (-2104 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-1134 *4)))) (-2046 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3287 *5) (|:| -3302 *5)))) (-5 *1 (-939 *3)) (-4 *3 (-1134 *5)) (-5 *4 (-2 (|:| -3287 *5) (|:| -3302 *5))))) (-2046 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3287 *4) (|:| -3302 *4)))) (-5 *1 (-939 *3)) (-4 *3 (-1134 *4)))) (-2046 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517)))) (-5 *4 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) (-2046 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517))))))) -(-10 -7 (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1|)) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -2046 ((-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-377 (-517)))) (-15 -2104 ((-3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) "failed") |#1| (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))) (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) -((-3367 (((-199) $) 6) (((-349) $) 9))) -(((-940) (-1189)) (T -940)) -NIL -(-13 (-558 (-199)) (-558 (-349))) -(((-558 (-199)) . T) ((-558 (-349)) . T)) -((-1993 (((-583 (-349)) (-876 (-517)) (-349)) 27) (((-583 (-349)) (-876 (-377 (-517))) (-349)) 26)) (-3695 (((-583 (-583 (-349))) (-583 (-876 (-517))) (-583 (-1077)) (-349)) 36))) -(((-941) (-10 -7 (-15 -1993 ((-583 (-349)) (-876 (-377 (-517))) (-349))) (-15 -1993 ((-583 (-349)) (-876 (-517)) (-349))) (-15 -3695 ((-583 (-583 (-349))) (-583 (-876 (-517))) (-583 (-1077)) (-349))))) (T -941)) -((-3695 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-583 (-1077))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-941)) (-5 *5 (-349)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-941)) (-5 *4 (-349)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-941)) (-5 *4 (-349))))) -(-10 -7 (-15 -1993 ((-583 (-349)) (-876 (-377 (-517))) (-349))) (-15 -1993 ((-583 (-349)) (-876 (-517)) (-349))) (-15 -3695 ((-583 (-583 (-349))) (-583 (-876 (-517))) (-583 (-1077)) (-349)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 70)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-3908 (($ $) NIL) (($ $ (-703)) NIL) (($ (-377 (-517))) NIL) (($ (-517)) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) 65)) (-3038 (($) NIL T CONST)) (-1454 (((-3 $ "failed") (-1073 $) (-845) (-787)) NIL) (((-3 $ "failed") (-1073 $) (-845)) 49)) (-3220 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 (-517)) (-955 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-517) "failed") $) NIL (-3786 (|has| (-377 (-517)) (-955 (-517))) (|has| |#1| (-955 (-517)))))) (-3402 (((-377 (-517)) $) 14 (|has| (-377 (-517)) (-955 (-377 (-517))))) (((-377 (-517)) $) 14) ((|#1| $) 109) (((-517) $) NIL (-3786 (|has| (-377 (-517)) (-955 (-517))) (|has| |#1| (-955 (-517)))))) (-3171 (($ $ (-787)) 40)) (-3383 (($ $ (-787)) 41)) (-2383 (($ $ $) NIL)) (-2255 (((-377 (-517)) $ $) 18)) (-3550 (((-3 $ "failed") $) 83)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-2671 (((-107) $) 60)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL)) (-2321 (((-107) $) 63)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-3712 (((-3 (-1073 $) "failed") $) 78)) (-3107 (((-3 (-787) "failed") $) 77)) (-2411 (((-3 (-1073 $) "failed") $) 75)) (-3816 (((-3 (-974 $ (-1073 $)) "failed") $) 73)) (-2323 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 84)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2262 (((-787) $) 82) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) 57) (($ (-377 (-517))) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 111)) (-1818 (((-703)) NIL)) (-2944 (((-107) $ $) NIL)) (-2194 (((-377 (-517)) $ $) 24)) (-1244 (((-583 $) (-1073 $)) 55) (((-583 $) (-1073 (-377 (-517)))) NIL) (((-583 $) (-1073 (-517))) NIL) (((-583 $) (-876 $)) NIL) (((-583 $) (-876 (-377 (-517)))) NIL) (((-583 $) (-876 (-517))) NIL)) (-2763 (($ (-974 $ (-1073 $)) (-787)) 39)) (-2829 (($ $) 19)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-3663 (($) 28 T CONST)) (-3675 (($) 34 T CONST)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 71)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 21)) (-1692 (($ $ $) 32)) (-1680 (($ $) 33) (($ $ $) 69)) (-1666 (($ $ $) 104)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 92) (($ $ $) 97) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ (-517) $) 92) (($ $ (-517)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL))) -(((-942 |#1|) (-13 (-931) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2763 ($ (-974 $ (-1073 $)) (-787))) (-15 -3816 ((-3 (-974 $ (-1073 $)) "failed") $)) (-15 -2255 ((-377 (-517)) $ $)))) (-13 (-777) (-333) (-940))) (T -942)) -((-2763 (*1 *1 *2 *3) (-12 (-5 *2 (-974 (-942 *4) (-1073 (-942 *4)))) (-5 *3 (-787)) (-5 *1 (-942 *4)) (-4 *4 (-13 (-777) (-333) (-940))))) (-3816 (*1 *2 *1) (|partial| -12 (-5 *2 (-974 (-942 *3) (-1073 (-942 *3)))) (-5 *1 (-942 *3)) (-4 *3 (-13 (-777) (-333) (-940))))) (-2255 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-942 *3)) (-4 *3 (-13 (-777) (-333) (-940)))))) -(-13 (-931) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2763 ($ (-974 $ (-1073 $)) (-787))) (-15 -3816 ((-3 (-974 $ (-1073 $)) "failed") $)) (-15 -2255 ((-377 (-517)) $ $)))) -((-2214 (((-2 (|:| -3817 |#2|) (|:| -1395 (-583 |#1|))) |#2| (-583 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-943 |#1| |#2|) (-10 -7 (-15 -2214 (|#2| |#2| |#1|)) (-15 -2214 ((-2 (|:| -3817 |#2|) (|:| -1395 (-583 |#1|))) |#2| (-583 |#1|)))) (-333) (-593 |#1|)) (T -943)) -((-2214 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -3817 *3) (|:| -1395 (-583 *5)))) (-5 *1 (-943 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))) (-2214 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-943 *3 *2)) (-4 *2 (-593 *3))))) -(-10 -7 (-15 -2214 (|#2| |#2| |#1|)) (-15 -2214 ((-2 (|:| -3817 |#2|) (|:| -1395 (-583 |#1|))) |#2| (-583 |#1|)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2717 ((|#1| $ |#1|) 14)) (-2436 ((|#1| $ |#1|) 12)) (-4151 (($ |#1|) 10)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2612 ((|#1| $) 11)) (-3494 ((|#1| $) 13)) (-2262 (((-787) $) 21 (|has| |#1| (-1006)))) (-1572 (((-107) $ $) 9))) -(((-944 |#1|) (-13 (-1112) (-10 -8 (-15 -4151 ($ |#1|)) (-15 -2612 (|#1| $)) (-15 -2436 (|#1| $ |#1|)) (-15 -3494 (|#1| $)) (-15 -2717 (|#1| $ |#1|)) (-15 -1572 ((-107) $ $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|))) (-1112)) (T -944)) -((-4151 (*1 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) (-2612 (*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) (-2436 (*1 *2 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) (-3494 (*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) (-2717 (*1 *2 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) (-1572 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-944 *3)) (-4 *3 (-1112))))) -(-13 (-1112) (-10 -8 (-15 -4151 ($ |#1|)) (-15 -2612 (|#1| $)) (-15 -2436 (|#1| $ |#1|)) (-15 -3494 (|#1| $)) (-15 -2717 (|#1| $ |#1|)) (-15 -1572 ((-107) $ $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|))) -((-2105 (((-107) $ $) NIL)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3246 (((-583 $) (-583 |#4|)) 105) (((-583 $) (-583 |#4|) (-107)) 106) (((-583 $) (-583 |#4|) (-107) (-107)) 104) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 107)) (-2080 (((-583 |#3|) $) NIL)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3710 ((|#4| |#4| $) NIL)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 99)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 54)) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) 26 (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2774 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3402 (($ (-583 |#4|)) NIL)) (-2429 (((-3 $ "failed") $) 39)) (-2195 ((|#4| |#4| $) 57)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4142 ((|#4| |#4| $) NIL)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) NIL)) (-3901 (((-107) |#4| $) NIL)) (-1426 (((-107) |#4| $) NIL)) (-3403 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4145 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 119)) (-1525 (((-583 |#4|) $) 16 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2772 ((|#3| $) 33)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#4|) $) 17 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2737 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 21)) (-1425 (((-583 |#3|) $) NIL)) (-1808 (((-107) |#3| $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 97)) (-1447 (((-3 |#4| "failed") $) 37)) (-1243 (((-583 $) |#4| $) 80)) (-3398 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 90) (((-107) |#4| $) 52)) (-2187 (((-583 $) |#4| $) 102) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 103) (((-583 $) |#4| (-583 $)) NIL)) (-3334 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 114)) (-2642 (($ |#4| $) 70) (($ (-583 |#4|) $) 71) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 67)) (-3846 (((-583 |#4|) $) NIL)) (-1568 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2930 ((|#4| |#4| $) NIL)) (-1579 (((-107) $ $) NIL)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3877 ((|#4| |#4| $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-3 |#4| "failed") $) 35)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-4059 (((-3 $ "failed") $ |#4|) 48)) (-3175 (($ $ |#4|) NIL) (((-583 $) |#4| $) 82) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 77)) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 15)) (-2679 (($) 13)) (-1191 (((-703) $) NIL)) (-4140 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) 12)) (-3367 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-2316 (($ $ |#3|) 44)) (-4158 (($ $) NIL)) (-3127 (($ $ |#3|) NIL)) (-2262 (((-787) $) 31) (((-583 |#4|) $) 40)) (-3192 (((-703) $) NIL (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-2709 (((-583 $) |#4| $) 79) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) NIL)) (-2525 (((-107) |#4| $) NIL)) (-3275 (((-107) |#3| $) 53)) (-1572 (((-107) $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-945 |#1| |#2| |#3| |#4|) (-13 (-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2642 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3334 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -4145 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -945)) -((-2642 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-945 *5 *6 *7 *3))) (-5 *1 (-945 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3246 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8)))) (-3246 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8)))) (-3334 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8)))) (-4145 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-945 *5 *6 *7 *8))))) (-5 *1 (-945 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) -(-13 (-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2642 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3334 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -4145 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) -((-1986 (((-583 (-623 |#1|)) (-583 (-623 |#1|))) 57) (((-623 |#1|) (-623 |#1|)) 56) (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 55) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 52)) (-2534 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845)) 51) (((-623 |#1|) (-623 |#1|) (-845)) 50)) (-3565 (((-583 (-623 (-517))) (-583 (-583 (-517)))) 67) (((-583 (-623 (-517))) (-583 (-829 (-517))) (-517)) 66) (((-623 (-517)) (-583 (-517))) 63) (((-623 (-517)) (-829 (-517)) (-517)) 62)) (-3845 (((-623 (-876 |#1|)) (-703)) 80)) (-2907 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845)) 36 (|has| |#1| (-6 (-4197 "*")))) (((-623 |#1|) (-623 |#1|) (-845)) 34 (|has| |#1| (-6 (-4197 "*")))))) -(((-946 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4197 "*"))) (-15 -2907 ((-623 |#1|) (-623 |#1|) (-845))) |%noBranch|) (IF (|has| |#1| (-6 (-4197 "*"))) (-15 -2907 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845))) |%noBranch|) (-15 -3845 ((-623 (-876 |#1|)) (-703))) (-15 -2534 ((-623 |#1|) (-623 |#1|) (-845))) (-15 -2534 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845))) (-15 -1986 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1986 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1986 ((-623 |#1|) (-623 |#1|))) (-15 -1986 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3565 ((-623 (-517)) (-829 (-517)) (-517))) (-15 -3565 ((-623 (-517)) (-583 (-517)))) (-15 -3565 ((-583 (-623 (-517))) (-583 (-829 (-517))) (-517))) (-15 -3565 ((-583 (-623 (-517))) (-583 (-583 (-517)))))) (-964)) (T -946)) -((-3565 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-946 *4)) (-4 *4 (-964)))) (-3565 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-829 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-946 *5)) (-4 *5 (-964)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-946 *4)) (-4 *4 (-964)))) (-3565 (*1 *2 *3 *4) (-12 (-5 *3 (-829 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-946 *5)) (-4 *5 (-964)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-964)) (-5 *1 (-946 *3)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-946 *3)))) (-1986 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-964)) (-5 *1 (-946 *3)))) (-1986 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-946 *3)))) (-2534 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-845)) (-4 *4 (-964)) (-5 *1 (-946 *4)))) (-2534 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-845)) (-4 *4 (-964)) (-5 *1 (-946 *4)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-876 *4))) (-5 *1 (-946 *4)) (-4 *4 (-964)))) (-2907 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-845)) (|has| *4 (-6 (-4197 "*"))) (-4 *4 (-964)) (-5 *1 (-946 *4)))) (-2907 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-845)) (|has| *4 (-6 (-4197 "*"))) (-4 *4 (-964)) (-5 *1 (-946 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4197 "*"))) (-15 -2907 ((-623 |#1|) (-623 |#1|) (-845))) |%noBranch|) (IF (|has| |#1| (-6 (-4197 "*"))) (-15 -2907 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845))) |%noBranch|) (-15 -3845 ((-623 (-876 |#1|)) (-703))) (-15 -2534 ((-623 |#1|) (-623 |#1|) (-845))) (-15 -2534 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-845))) (-15 -1986 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1986 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1986 ((-623 |#1|) (-623 |#1|))) (-15 -1986 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3565 ((-623 (-517)) (-829 (-517)) (-517))) (-15 -3565 ((-623 (-517)) (-583 (-517)))) (-15 -3565 ((-583 (-623 (-517))) (-583 (-829 (-517))) (-517))) (-15 -3565 ((-583 (-623 (-517))) (-583 (-583 (-517)))))) -((-2498 (((-623 |#1|) (-583 (-623 |#1|)) (-1158 |#1|)) 50 (|has| |#1| (-278)))) (-1975 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 (-1158 |#1|))) 73 (|has| |#1| (-333))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 |#1|)) 71 (|has| |#1| (-333)))) (-3995 (((-1158 |#1|) (-583 (-1158 |#1|)) (-517)) 75 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-2452 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-845)) 80 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107)) 78 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|))) 77 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517)) 76 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-4099 (((-107) (-583 (-623 |#1|))) 69 (|has| |#1| (-333))) (((-107) (-583 (-623 |#1|)) (-517)) 68 (|has| |#1| (-333)))) (-2091 (((-1158 (-1158 |#1|)) (-583 (-623 |#1|)) (-1158 |#1|)) 48 (|has| |#1| (-278)))) (-3058 (((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|)) 33)) (-2028 (((-623 |#1|) (-1158 (-1158 |#1|))) 30)) (-3643 (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517)) 64 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 63 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517)) 62 (|has| |#1| (-333))))) -(((-947 |#1|) (-10 -7 (-15 -2028 ((-623 |#1|) (-1158 (-1158 |#1|)))) (-15 -3058 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -2091 ((-1158 (-1158 |#1|)) (-583 (-623 |#1|)) (-1158 |#1|))) (-15 -2498 ((-623 |#1|) (-583 (-623 |#1|)) (-1158 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -4099 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -4099 ((-107) (-583 (-623 |#1|)))) (-15 -1975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 |#1|))) (-15 -1975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 (-1158 |#1|))))) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-845))) (-15 -3995 ((-1158 |#1|) (-583 (-1158 |#1|)) (-517)))) |%noBranch|) |%noBranch|)) (-964)) (T -947)) -((-3995 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1158 *5))) (-5 *4 (-517)) (-5 *2 (-1158 *5)) (-5 *1 (-947 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-583 (-623 *5))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-583 (-623 *5))))) (-2452 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-964)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-947 *4)) (-5 *3 (-583 (-623 *4))))) (-2452 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-964)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-947 *6)) (-5 *3 (-583 (-623 *6))))) (-1975 (*1 *2 *3 *4) (-12 (-5 *4 (-1158 (-1158 *5))) (-4 *5 (-333)) (-4 *5 (-964)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-583 (-623 *5))))) (-1975 (*1 *2 *3 *4) (-12 (-5 *4 (-1158 *5)) (-4 *5 (-333)) (-4 *5 (-964)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) (-5 *3 (-583 (-623 *5))))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-964)) (-5 *2 (-107)) (-5 *1 (-947 *4)))) (-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-964)) (-5 *2 (-107)) (-5 *1 (-947 *5)))) (-3643 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-947 *5)) (-4 *5 (-333)) (-4 *5 (-964)))) (-3643 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-947 *4)) (-4 *4 (-333)) (-4 *4 (-964)))) (-3643 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-947 *6)) (-4 *6 (-333)) (-4 *6 (-964)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1158 *5)) (-4 *5 (-278)) (-4 *5 (-964)) (-5 *2 (-623 *5)) (-5 *1 (-947 *5)))) (-2091 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-964)) (-5 *2 (-1158 (-1158 *5))) (-5 *1 (-947 *5)) (-5 *4 (-1158 *5)))) (-3058 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-964)) (-5 *1 (-947 *4)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-1158 (-1158 *4))) (-4 *4 (-964)) (-5 *2 (-623 *4)) (-5 *1 (-947 *4))))) -(-10 -7 (-15 -2028 ((-623 |#1|) (-1158 (-1158 |#1|)))) (-15 -3058 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -2091 ((-1158 (-1158 |#1|)) (-583 (-623 |#1|)) (-1158 |#1|))) (-15 -2498 ((-623 |#1|) (-583 (-623 |#1|)) (-1158 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3643 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -4099 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -4099 ((-107) (-583 (-623 |#1|)))) (-15 -1975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 |#1|))) (-15 -1975 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1158 (-1158 |#1|))))) |%noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -2452 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-845))) (-15 -3995 ((-1158 |#1|) (-583 (-1158 |#1|)) (-517)))) |%noBranch|) |%noBranch|)) -((-4009 ((|#1| (-845) |#1|) 9))) -(((-948 |#1|) (-10 -7 (-15 -4009 (|#1| (-845) |#1|))) (-13 (-1006) (-10 -8 (-15 -1666 ($ $ $))))) (T -948)) -((-4009 (*1 *2 *3 *2) (-12 (-5 *3 (-845)) (-5 *1 (-948 *2)) (-4 *2 (-13 (-1006) (-10 -8 (-15 -1666 ($ $ $)))))))) -(-10 -7 (-15 -4009 (|#1| (-845) |#1|))) -((-2190 (((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-876 (-517))))) 58)) (-3442 (((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-876 (-517))))) 48)) (-2875 (((-583 (-286 (-517))) (-623 (-377 (-876 (-517))))) 41)) (-4091 (((-583 (-623 (-286 (-517)))) (-623 (-377 (-876 (-517))))) 68)) (-3392 (((-623 (-286 (-517))) (-623 (-286 (-517)))) 33)) (-2866 (((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517))))) 61)) (-2840 (((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-876 (-517))))) 65))) -(((-949) (-10 -7 (-15 -2190 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-876 (-517)))))) (-15 -3442 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-876 (-517)))))) (-15 -2875 ((-583 (-286 (-517))) (-623 (-377 (-876 (-517)))))) (-15 -2840 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-876 (-517)))))) (-15 -3392 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2866 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -4091 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-876 (-517)))))))) (T -949)) -((-4091 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-876 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949)))) (-2866 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-949)))) (-2840 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-876 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-949)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-876 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-949)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-876 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949)) (-5 *3 (-286 (-517))))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-876 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-949))))) -(-10 -7 (-15 -2190 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-876 (-517)))))) (-15 -3442 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-876 (-517)))))) (-15 -2875 ((-583 (-286 (-517))) (-623 (-377 (-876 (-517)))))) (-15 -2840 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-876 (-517)))))) (-15 -3392 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2866 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -4091 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-876 (-517))))))) -((-2643 ((|#1| |#1| (-845)) 9))) -(((-950 |#1|) (-10 -7 (-15 -2643 (|#1| |#1| (-845)))) (-13 (-1006) (-10 -8 (-15 * ($ $ $))))) (T -950)) -((-2643 (*1 *2 *2 *3) (-12 (-5 *3 (-845)) (-5 *1 (-950 *2)) (-4 *2 (-13 (-1006) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2643 (|#1| |#1| (-845)))) -((-2262 ((|#1| (-282)) 11) (((-1163) |#1|) 9))) -(((-951 |#1|) (-10 -7 (-15 -2262 ((-1163) |#1|)) (-15 -2262 (|#1| (-282)))) (-1112)) (T -951)) -((-2262 (*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-951 *2)) (-4 *2 (-1112)))) (-2262 (*1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *1 (-951 *3)) (-4 *3 (-1112))))) -(-10 -7 (-15 -2262 ((-1163) |#1|)) (-15 -2262 (|#1| (-282)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-1510 (($ |#4|) 25)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-1497 ((|#4| $) 27)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 46) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1818 (((-703)) 43)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 21 T CONST)) (-3675 (($) 23 T CONST)) (-1572 (((-107) $ $) 40)) (-1680 (($ $) 31) (($ $ $) NIL)) (-1666 (($ $ $) 29)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-952 |#1| |#2| |#3| |#4| |#5|) (-13 (-156) (-37 |#1|) (-10 -8 (-15 -1510 ($ |#4|)) (-15 -2262 ($ |#4|)) (-15 -1497 (|#4| $)))) (-333) (-725) (-779) (-873 |#1| |#2| |#3|) (-583 |#4|)) (T -952)) -((-1510 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-952 *3 *4 *5 *2 *6)) (-4 *2 (-873 *3 *4 *5)) (-14 *6 (-583 *2)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-952 *3 *4 *5 *2 *6)) (-4 *2 (-873 *3 *4 *5)) (-14 *6 (-583 *2)))) (-1497 (*1 *2 *1) (-12 (-4 *2 (-873 *3 *4 *5)) (-5 *1 (-952 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2))))) -(-13 (-156) (-37 |#1|) (-10 -8 (-15 -1510 ($ |#4|)) (-15 -2262 ($ |#4|)) (-15 -1497 (|#4| $)))) -((-2105 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-3351 (((-1163) $ (-1077) (-1077)) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2846 (((-107) (-107)) 39)) (-2410 (((-107) (-107)) 38)) (-2436 (((-51) $ (-1077) (-51)) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 (-51) "failed") (-1077) $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-1749 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-3 (-51) "failed") (-1077) $) NIL)) (-1423 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2750 (((-51) $ (-1077) (-51)) NIL (|has| $ (-6 -4196)))) (-2557 (((-51) $ (-1077)) NIL)) (-1525 (((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-1077) $) NIL (|has| (-1077) (-779)))) (-3687 (((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-1969 (((-1077) $) NIL (|has| (-1077) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4196))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-1869 (((-583 (-1077)) $) 34)) (-2409 (((-107) (-1077) $) NIL)) (-2015 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL)) (-3439 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL)) (-1449 (((-583 (-1077)) $) NIL)) (-3413 (((-107) (-1077) $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-2420 (((-51) $) NIL (|has| (-1077) (-779)))) (-1985 (((-3 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) "failed") (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL)) (-2837 (($ $ (-51)) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-265 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-2862 (((-583 (-51)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 (((-51) $ (-1077)) 35) (((-51) $ (-1077) (-51)) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-2262 (((-787) $) 37 (-3786 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-953) (-13 (-1089 (-1077) (-51)) (-10 -7 (-15 -2846 ((-107) (-107))) (-15 -2410 ((-107) (-107))) (-6 -4195)))) (T -953)) -((-2846 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-953)))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-953))))) -(-13 (-1089 (-1077) (-51)) (-10 -7 (-15 -2846 ((-107) (-107))) (-15 -2410 ((-107) (-107))) (-6 -4195))) -((-3402 ((|#2| $) 10))) -(((-954 |#1| |#2|) (-10 -8 (-15 -3402 (|#2| |#1|))) (-955 |#2|) (-1112)) (T -954)) -NIL -(-10 -8 (-15 -3402 (|#2| |#1|))) -((-3220 (((-3 |#1| "failed") $) 7)) (-3402 ((|#1| $) 8)) (-2262 (($ |#1|) 6))) -(((-955 |#1|) (-1189) (-1112)) (T -955)) -((-3402 (*1 *2 *1) (-12 (-4 *1 (-955 *2)) (-4 *2 (-1112)))) (-3220 (*1 *2 *1) (|partial| -12 (-4 *1 (-955 *2)) (-4 *2 (-1112)))) (-2262 (*1 *1 *2) (-12 (-4 *1 (-955 *2)) (-4 *2 (-1112))))) -(-13 (-10 -8 (-15 -2262 ($ |t#1|)) (-15 -3220 ((-3 |t#1| "failed") $)) (-15 -3402 (|t#1| $)))) -((-3472 (((-583 (-583 (-265 (-377 (-876 |#2|))))) (-583 (-876 |#2|)) (-583 (-1077))) 35))) -(((-956 |#1| |#2|) (-10 -7 (-15 -3472 ((-583 (-583 (-265 (-377 (-876 |#2|))))) (-583 (-876 |#2|)) (-583 (-1077))))) (-509) (-13 (-509) (-955 |#1|))) (T -956)) -((-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077))) (-4 *6 (-13 (-509) (-955 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *6)))))) (-5 *1 (-956 *5 *6))))) -(-10 -7 (-15 -3472 ((-583 (-583 (-265 (-377 (-876 |#2|))))) (-583 (-876 |#2|)) (-583 (-1077))))) -((-2442 (((-349)) 15)) (-1610 (((-1 (-349)) (-349) (-349)) 20)) (-1701 (((-1 (-349)) (-703)) 43)) (-1347 (((-349)) 34)) (-1375 (((-1 (-349)) (-349) (-349)) 35)) (-2116 (((-349)) 26)) (-3054 (((-1 (-349)) (-349)) 27)) (-2389 (((-349) (-703)) 38)) (-2908 (((-1 (-349)) (-703)) 39)) (-4057 (((-1 (-349)) (-703) (-703)) 42)) (-3466 (((-1 (-349)) (-703) (-703)) 40))) -(((-957) (-10 -7 (-15 -2442 ((-349))) (-15 -1347 ((-349))) (-15 -2116 ((-349))) (-15 -2389 ((-349) (-703))) (-15 -1610 ((-1 (-349)) (-349) (-349))) (-15 -1375 ((-1 (-349)) (-349) (-349))) (-15 -3054 ((-1 (-349)) (-349))) (-15 -2908 ((-1 (-349)) (-703))) (-15 -3466 ((-1 (-349)) (-703) (-703))) (-15 -4057 ((-1 (-349)) (-703) (-703))) (-15 -1701 ((-1 (-349)) (-703))))) (T -957)) -((-1701 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))) (-4057 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))) (-3466 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))) (-3054 (*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349)))) (-1375 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349)))) (-1610 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-957)))) (-2116 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957)))) (-1347 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957)))) (-2442 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957))))) -(-10 -7 (-15 -2442 ((-349))) (-15 -1347 ((-349))) (-15 -2116 ((-349))) (-15 -2389 ((-349) (-703))) (-15 -1610 ((-1 (-349)) (-349) (-349))) (-15 -1375 ((-1 (-349)) (-349) (-349))) (-15 -3054 ((-1 (-349)) (-349))) (-15 -2908 ((-1 (-349)) (-703))) (-15 -3466 ((-1 (-349)) (-703) (-703))) (-15 -4057 ((-1 (-349)) (-703) (-703))) (-15 -1701 ((-1 (-349)) (-703)))) -((-3896 (((-388 |#1|) |#1|) 31))) -(((-958 |#1|) (-10 -7 (-15 -3896 ((-388 |#1|) |#1|))) (-1134 (-377 (-876 (-517))))) (T -958)) -((-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-958 *3)) (-4 *3 (-1134 (-377 (-876 (-517)))))))) -(-10 -7 (-15 -3896 ((-388 |#1|) |#1|))) -((-3949 (((-377 (-388 (-876 |#1|))) (-377 (-876 |#1|))) 14))) -(((-959 |#1|) (-10 -7 (-15 -3949 ((-377 (-388 (-876 |#1|))) (-377 (-876 |#1|))))) (-278)) (T -959)) -((-3949 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-876 *4)))) (-5 *1 (-959 *4))))) -(-10 -7 (-15 -3949 ((-377 (-388 (-876 |#1|))) (-377 (-876 |#1|))))) -((-2080 (((-583 (-1077)) (-377 (-876 |#1|))) 15)) (-1428 (((-377 (-1073 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077)) 22)) (-2069 (((-377 (-876 |#1|)) (-377 (-1073 (-377 (-876 |#1|)))) (-1077)) 24)) (-1958 (((-3 (-1077) "failed") (-377 (-876 |#1|))) 18)) (-3552 (((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-265 (-377 (-876 |#1|))))) 29) (((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|)))) 31) (((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-1077)) (-583 (-377 (-876 |#1|)))) 26) (((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|))) 27)) (-2262 (((-377 (-876 |#1|)) |#1|) 11))) -(((-960 |#1|) (-10 -7 (-15 -2080 ((-583 (-1077)) (-377 (-876 |#1|)))) (-15 -1958 ((-3 (-1077) "failed") (-377 (-876 |#1|)))) (-15 -1428 ((-377 (-1073 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077))) (-15 -2069 ((-377 (-876 |#1|)) (-377 (-1073 (-377 (-876 |#1|)))) (-1077))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|)))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-1077)) (-583 (-377 (-876 |#1|))))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -2262 ((-377 (-876 |#1|)) |#1|))) (-509)) (T -960)) -((-2262 (*1 *2 *3) (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-960 *3)) (-4 *3 (-509)))) (-3552 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-876 *4))))) (-5 *2 (-377 (-876 *4))) (-4 *4 (-509)) (-5 *1 (-960 *4)))) (-3552 (*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-876 *4)))) (-5 *2 (-377 (-876 *4))) (-4 *4 (-509)) (-5 *1 (-960 *4)))) (-3552 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1077))) (-5 *4 (-583 (-377 (-876 *5)))) (-5 *2 (-377 (-876 *5))) (-4 *5 (-509)) (-5 *1 (-960 *5)))) (-3552 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-876 *4))) (-5 *3 (-1077)) (-4 *4 (-509)) (-5 *1 (-960 *4)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1073 (-377 (-876 *5))))) (-5 *4 (-1077)) (-5 *2 (-377 (-876 *5))) (-5 *1 (-960 *5)) (-4 *5 (-509)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-509)) (-5 *2 (-377 (-1073 (-377 (-876 *5))))) (-5 *1 (-960 *5)) (-5 *3 (-377 (-876 *5))))) (-1958 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-5 *2 (-1077)) (-5 *1 (-960 *4)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1077))) (-5 *1 (-960 *4))))) -(-10 -7 (-15 -2080 ((-583 (-1077)) (-377 (-876 |#1|)))) (-15 -1958 ((-3 (-1077) "failed") (-377 (-876 |#1|)))) (-15 -1428 ((-377 (-1073 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077))) (-15 -2069 ((-377 (-876 |#1|)) (-377 (-1073 (-377 (-876 |#1|)))) (-1077))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|)))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-1077)) (-583 (-377 (-876 |#1|))))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-265 (-377 (-876 |#1|))))) (-15 -3552 ((-377 (-876 |#1|)) (-377 (-876 |#1|)) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -2262 ((-377 (-876 |#1|)) |#1|))) -((-2105 (((-107) $ $) NIL)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 (-712 |#1| (-789 |#2|)))))) (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3246 (((-583 $) (-583 (-712 |#1| (-789 |#2|)))) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)) NIL)) (-2080 (((-583 (-789 |#2|)) $) NIL)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-3240 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3710 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1322 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3864 $))) (-712 |#1| (-789 |#2|)) $) NIL)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ (-789 |#2|)) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 (-712 |#1| (-789 |#2|)) "failed") $ (-789 |#2|)) NIL)) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) NIL (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2622 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2774 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-3821 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3402 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-2429 (((-3 $ "failed") $) NIL)) (-2195 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-712 |#1| (-789 |#2|)) (-1006))))) (-1423 (($ (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-3639 (((-107) (-712 |#1| (-789 |#2|)) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-4142 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1510 (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|))) NIL (|has| $ (-6 -4195))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-1954 (((-2 (|:| -1712 (-583 (-712 |#1| (-789 |#2|)))) (|:| -3723 (-583 (-712 |#1| (-789 |#2|))))) $) NIL)) (-3901 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1426 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-3403 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-1525 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3142 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2772 (((-789 |#2|) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-712 |#1| (-789 |#2|)) (-1006))))) (-2737 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL)) (-1425 (((-583 (-789 |#2|)) $) NIL)) (-1808 (((-107) (-789 |#2|) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2211 (((-3 (-712 |#1| (-789 |#2|)) (-583 $)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1504 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3864 $))) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1447 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-1243 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL)) (-3398 (((-3 (-107) (-583 $)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-2187 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL)) (-2642 (($ (-712 |#1| (-789 |#2|)) $) NIL) (($ (-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-3846 (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-1568 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2930 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1579 (((-107) $ $) NIL)) (-2236 (((-2 (|:| |num| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-2788 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3877 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-1985 (((-3 (-712 |#1| (-789 |#2|)) "failed") (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL)) (-4059 (((-3 $ "failed") $ (-712 |#1| (-789 |#2|))) NIL)) (-3175 (($ $ (-712 |#1| (-789 |#2|))) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-3843 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (($ $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (($ $ (-265 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (($ $ (-583 (-265 (-712 |#1| (-789 |#2|))))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-1191 (((-703) $) NIL)) (-4140 (((-703) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-712 |#1| (-789 |#2|)) (-1006)))) (((-703) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-712 |#1| (-789 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3231 (($ $ (-789 |#2|)) NIL)) (-2316 (($ $ (-789 |#2|)) NIL)) (-4158 (($ $) NIL)) (-3127 (($ $ (-789 |#2|)) NIL)) (-2262 (((-787) $) NIL) (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-3192 (((-703) $) NIL (|has| (-789 |#2|) (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-1217 (((-107) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-583 (-712 |#1| (-789 |#2|))))) NIL)) (-2709 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-1272 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-4070 (((-583 (-789 |#2|)) $) NIL)) (-2525 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-3275 (((-107) (-789 |#2|) $) NIL)) (-1572 (((-107) $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-961 |#1| |#2|) (-13 (-983 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -3246 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107))))) (-421) (-583 (-1077))) (T -961)) -((-3246 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-961 *5 *6))))) -(-13 (-983 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -3246 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107))))) -((-1610 (((-1 (-517)) (-1001 (-517))) 33)) (-3953 (((-517) (-517) (-517) (-517) (-517)) 30)) (-1777 (((-1 (-517)) |RationalNumber|) NIL)) (-1748 (((-1 (-517)) |RationalNumber|) NIL)) (-1462 (((-1 (-517)) (-517) |RationalNumber|) NIL))) -(((-962) (-10 -7 (-15 -1610 ((-1 (-517)) (-1001 (-517)))) (-15 -1462 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -1777 ((-1 (-517)) |RationalNumber|)) (-15 -1748 ((-1 (-517)) |RationalNumber|)) (-15 -3953 ((-517) (-517) (-517) (-517) (-517))))) (T -962)) -((-3953 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-962)))) (-1748 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962)))) (-1777 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962)))) (-1462 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962)) (-5 *3 (-517)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1001 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-962))))) -(-10 -7 (-15 -1610 ((-1 (-517)) (-1001 (-517)))) (-15 -1462 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -1777 ((-1 (-517)) |RationalNumber|)) (-15 -1748 ((-1 (-517)) |RationalNumber|)) (-15 -3953 ((-517) (-517) (-517) (-517) (-517)))) -((-2262 (((-787) $) NIL) (($ (-517)) 10))) -(((-963 |#1|) (-10 -8 (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-964)) (T -963)) -NIL -(-10 -8 (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-964) (-1189)) (T -964)) -((-1818 (*1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-703)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-964))))) -(-13 (-971) (-659) (-585 $) (-10 -8 (-15 -1818 ((-703))) (-15 -2262 ($ (-517))) (-6 -4192))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2086 (((-377 (-876 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)) 45))) -(((-965 |#1| |#2|) (-10 -7 (-15 -2086 ((-377 (-876 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)))) (-1077) (-333)) (T -965)) -((-2086 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-876 *6))) (-5 *1 (-965 *5 *6)) (-14 *5 (-1077))))) -(-10 -7 (-15 -2086 ((-377 (-876 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)))) -((-1912 (((-107) $) 28)) (-1256 (((-107) $) 16)) (-1409 (((-703) $) 13)) (-1422 (((-703) $) 14)) (-1974 (((-107) $) 26)) (-3007 (((-107) $) 30))) -(((-966 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1422 ((-703) |#1|)) (-15 -1409 ((-703) |#1|)) (-15 -3007 ((-107) |#1|)) (-15 -1912 ((-107) |#1|)) (-15 -1974 ((-107) |#1|)) (-15 -1256 ((-107) |#1|))) (-967 |#2| |#3| |#4| |#5| |#6|) (-703) (-703) (-964) (-212 |#3| |#4|) (-212 |#2| |#4|)) (T -966)) -NIL -(-10 -8 (-15 -1422 ((-703) |#1|)) (-15 -1409 ((-703) |#1|)) (-15 -3007 ((-107) |#1|)) (-15 -1912 ((-107) |#1|)) (-15 -1974 ((-107) |#1|)) (-15 -1256 ((-107) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1912 (((-107) $) 51)) (-1783 (((-3 $ "failed") $ $) 19)) (-1256 (((-107) $) 53)) (-3443 (((-107) $ (-703)) 61)) (-3038 (($) 17 T CONST)) (-1197 (($ $) 34 (|has| |#3| (-278)))) (-1397 ((|#4| $ (-517)) 39)) (-3778 (((-703) $) 33 (|has| |#3| (-509)))) (-2557 ((|#3| $ (-517) (-517)) 41)) (-1525 (((-583 |#3|) $) 68 (|has| $ (-6 -4195)))) (-3850 (((-703) $) 32 (|has| |#3| (-509)))) (-1671 (((-583 |#5|) $) 31 (|has| |#3| (-509)))) (-1409 (((-703) $) 45)) (-1422 (((-703) $) 44)) (-2266 (((-107) $ (-703)) 60)) (-2560 (((-517) $) 49)) (-2970 (((-517) $) 47)) (-3687 (((-583 |#3|) $) 69 (|has| $ (-6 -4195)))) (-1949 (((-107) |#3| $) 71 (-12 (|has| |#3| (-1006)) (|has| $ (-6 -4195))))) (-2413 (((-517) $) 48)) (-1718 (((-517) $) 46)) (-2362 (($ (-583 (-583 |#3|))) 54)) (-2737 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3468 (((-583 (-583 |#3|)) $) 43)) (-2328 (((-107) $ (-703)) 59)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-509)))) (-3843 (((-107) (-1 (-107) |#3|) $) 66 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#3|) (-583 |#3|)) 75 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-265 |#3|)) 73 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-583 (-265 |#3|))) 72 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))) (-1770 (((-107) $ $) 55)) (-1754 (((-107) $) 58)) (-2679 (($) 57)) (-2612 ((|#3| $ (-517) (-517)) 42) ((|#3| $ (-517) (-517) |#3|) 40)) (-1974 (((-107) $) 52)) (-4140 (((-703) |#3| $) 70 (-12 (|has| |#3| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#3|) $) 67 (|has| $ (-6 -4195)))) (-2453 (($ $) 56)) (-2295 ((|#5| $ (-517)) 38)) (-2262 (((-787) $) 11)) (-1272 (((-107) (-1 (-107) |#3|) $) 65 (|has| $ (-6 -4195)))) (-3007 (((-107) $) 50)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#3|) 35 (|has| |#3| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3573 (((-703) $) 62 (|has| $ (-6 -4195))))) -(((-967 |#1| |#2| |#3| |#4| |#5|) (-1189) (-703) (-703) (-964) (-212 |t#2| |t#3|) (-212 |t#1| |t#3|)) (T -967)) -((-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2362 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-964)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-1256 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1912 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2560 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1718 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-2612 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-964)))) (-2557 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-964)))) (-2612 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *2 (-964)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) (-1397 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *6 *2 *7)) (-4 *6 (-964)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *6 *7 *2)) (-4 *6 (-964)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))) (-3312 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2333 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-964)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) (-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-964)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) (-1197 (*1 *1 *1) (-12 (-4 *1 (-967 *2 *3 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7))))) -(-13 (-106 |t#3| |t#3|) (-456 |t#3|) (-10 -8 (-6 -4195) (IF (|has| |t#3| (-156)) (-6 (-650 |t#3|)) |%noBranch|) (-15 -2362 ($ (-583 (-583 |t#3|)))) (-15 -1256 ((-107) $)) (-15 -1974 ((-107) $)) (-15 -1912 ((-107) $)) (-15 -3007 ((-107) $)) (-15 -2560 ((-517) $)) (-15 -2413 ((-517) $)) (-15 -2970 ((-517) $)) (-15 -1718 ((-517) $)) (-15 -1409 ((-703) $)) (-15 -1422 ((-703) $)) (-15 -3468 ((-583 (-583 |t#3|)) $)) (-15 -2612 (|t#3| $ (-517) (-517))) (-15 -2557 (|t#3| $ (-517) (-517))) (-15 -2612 (|t#3| $ (-517) (-517) |t#3|)) (-15 -1397 (|t#4| $ (-517))) (-15 -2295 (|t#5| $ (-517))) (-15 -3312 ($ (-1 |t#3| |t#3|) $)) (-15 -3312 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-509)) (-15 -2333 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-333)) (-15 -1692 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-278)) (-15 -1197 ($ $)) |%noBranch|) (IF (|has| |t#3| (-509)) (PROGN (-15 -3778 ((-703) $)) (-15 -3850 ((-703) $)) (-15 -1671 ((-583 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-106 |#3| |#3|) . T) ((-123) . T) ((-557 (-787)) . T) ((-280 |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))) ((-456 |#3|) . T) ((-478 |#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))) ((-585 |#3|) . T) ((-650 |#3|) |has| |#3| (-156)) ((-970 |#3|) . T) ((-1006) . T) ((-1112) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1912 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1256 (((-107) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-1197 (($ $) 40 (|has| |#3| (-278)))) (-1397 (((-214 |#2| |#3|) $ (-517)) 29)) (-3391 (($ (-623 |#3|)) 38)) (-3778 (((-703) $) 42 (|has| |#3| (-509)))) (-2557 ((|#3| $ (-517) (-517)) NIL)) (-1525 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-3850 (((-703) $) 44 (|has| |#3| (-509)))) (-1671 (((-583 (-214 |#1| |#3|)) $) 48 (|has| |#3| (-509)))) (-1409 (((-703) $) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2362 (($ (-583 (-583 |#3|))) 24)) (-2737 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3468 (((-583 (-583 |#3|)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-509)))) (-3843 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#3| $ (-517) (-517)) NIL) ((|#3| $ (-517) (-517) |#3|) NIL)) (-1470 (((-125)) 51 (|has| |#3| (-333)))) (-1974 (((-107) $) NIL)) (-4140 (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006)))) (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) 60 (|has| |#3| (-558 (-493))))) (-2295 (((-214 |#1| |#3|) $ (-517)) 33)) (-2262 (((-787) $) 16) (((-623 |#3|) $) 35)) (-1272 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-3663 (($) 13 T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-968 |#1| |#2| |#3|) (-13 (-967 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1165 |#3|)) |%noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (-15 -3391 ($ (-623 |#3|))) (-15 -2262 ((-623 |#3|) $)))) (-703) (-703) (-964)) (T -968)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-964)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-964)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703))))) -(-13 (-967 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1165 |#3|)) |%noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|) (-15 -3391 ($ (-623 |#3|))) (-15 -2262 ((-623 |#3|) $)))) -((-1510 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3312 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-969 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3312 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1510 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-703) (-703) (-964) (-212 |#2| |#3|) (-212 |#1| |#3|) (-967 |#1| |#2| |#3| |#4| |#5|) (-964) (-212 |#2| |#7|) (-212 |#1| |#7|) (-967 |#1| |#2| |#7| |#8| |#9|)) (T -969)) -((-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-964)) (-4 *2 (-964)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *12 (-967 *5 *6 *2 *10 *11)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-964)) (-4 *10 (-964)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-967 *5 *6 *10 *11 *12)) (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10))))) -(-10 -7 (-15 -3312 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1510 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ |#1|) 23))) -(((-970 |#1|) (-1189) (-971)) (T -970)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-970 *2)) (-4 *2 (-971))))) +((-3647 (($ $ (-1004 $)) 7) (($ $ (-1082)) 6))) +(((-885) (-1194)) (T -885)) +((-3647 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-885)))) (-3647 (*1 *1 *1 *2) (-12 (-4 *1 (-885)) (-5 *2 (-1082))))) +(-13 (-10 -8 (-15 -3647 ($ $ (-1082))) (-15 -3647 ($ $ (-1004 $))))) +((-1625 (((-2 (|:| -3031 (-585 (-519))) (|:| |poly| (-585 (-1078 |#1|))) (|:| |prim| (-1078 |#1|))) (-585 (-879 |#1|)) (-585 (-1082)) (-1082)) 23) (((-2 (|:| -3031 (-585 (-519))) (|:| |poly| (-585 (-1078 |#1|))) (|:| |prim| (-1078 |#1|))) (-585 (-879 |#1|)) (-585 (-1082))) 24) (((-2 (|:| |coef1| (-519)) (|:| |coef2| (-519)) (|:| |prim| (-1078 |#1|))) (-879 |#1|) (-1082) (-879 |#1|) (-1082)) 41))) +(((-886 |#1|) (-10 -7 (-15 -1625 ((-2 (|:| |coef1| (-519)) (|:| |coef2| (-519)) (|:| |prim| (-1078 |#1|))) (-879 |#1|) (-1082) (-879 |#1|) (-1082))) (-15 -1625 ((-2 (|:| -3031 (-585 (-519))) (|:| |poly| (-585 (-1078 |#1|))) (|:| |prim| (-1078 |#1|))) (-585 (-879 |#1|)) (-585 (-1082)))) (-15 -1625 ((-2 (|:| -3031 (-585 (-519))) (|:| |poly| (-585 (-1078 |#1|))) (|:| |prim| (-1078 |#1|))) (-585 (-879 |#1|)) (-585 (-1082)) (-1082)))) (-13 (-335) (-135))) (T -886)) +((-1625 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-879 *6))) (-5 *4 (-585 (-1082))) (-5 *5 (-1082)) (-4 *6 (-13 (-335) (-135))) (-5 *2 (-2 (|:| -3031 (-585 (-519))) (|:| |poly| (-585 (-1078 *6))) (|:| |prim| (-1078 *6)))) (-5 *1 (-886 *6)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-585 (-1082))) (-4 *5 (-13 (-335) (-135))) (-5 *2 (-2 (|:| -3031 (-585 (-519))) (|:| |poly| (-585 (-1078 *5))) (|:| |prim| (-1078 *5)))) (-5 *1 (-886 *5)))) (-1625 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1082)) (-4 *5 (-13 (-335) (-135))) (-5 *2 (-2 (|:| |coef1| (-519)) (|:| |coef2| (-519)) (|:| |prim| (-1078 *5)))) (-5 *1 (-886 *5))))) +(-10 -7 (-15 -1625 ((-2 (|:| |coef1| (-519)) (|:| |coef2| (-519)) (|:| |prim| (-1078 |#1|))) (-879 |#1|) (-1082) (-879 |#1|) (-1082))) (-15 -1625 ((-2 (|:| -3031 (-585 (-519))) (|:| |poly| (-585 (-1078 |#1|))) (|:| |prim| (-1078 |#1|))) (-585 (-879 |#1|)) (-585 (-1082)))) (-15 -1625 ((-2 (|:| -3031 (-585 (-519))) (|:| |poly| (-585 (-1078 |#1|))) (|:| |prim| (-1078 |#1|))) (-585 (-879 |#1|)) (-585 (-1082)) (-1082)))) +((-1873 (((-585 |#1|) |#1| |#1|) 42)) (-1320 (((-108) |#1|) 39)) (-2589 ((|#1| |#1|) 65)) (-3644 ((|#1| |#1|) 64))) +(((-887 |#1|) (-10 -7 (-15 -1320 ((-108) |#1|)) (-15 -3644 (|#1| |#1|)) (-15 -2589 (|#1| |#1|)) (-15 -1873 ((-585 |#1|) |#1| |#1|))) (-504)) (T -887)) +((-1873 (*1 *2 *3 *3) (-12 (-5 *2 (-585 *3)) (-5 *1 (-887 *3)) (-4 *3 (-504)))) (-2589 (*1 *2 *2) (-12 (-5 *1 (-887 *2)) (-4 *2 (-504)))) (-3644 (*1 *2 *2) (-12 (-5 *1 (-887 *2)) (-4 *2 (-504)))) (-1320 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-887 *3)) (-4 *3 (-504))))) +(-10 -7 (-15 -1320 ((-108) |#1|)) (-15 -3644 (|#1| |#1|)) (-15 -2589 (|#1| |#1|)) (-15 -1873 ((-585 |#1|) |#1| |#1|))) +((-2066 (((-1168) (-790)) 9))) +(((-888) (-10 -7 (-15 -2066 ((-1168) (-790))))) (T -888)) +((-2066 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1168)) (-5 *1 (-888))))) +(-10 -7 (-15 -2066 ((-1168) (-790)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 63 (|has| |#1| (-511)))) (-1410 (($ $) 64 (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 28)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) NIL)) (-3218 (($ $) 24)) (-4193 (((-3 $ "failed") $) 35)) (-2177 (($ $) NIL (|has| |#1| (-423)))) (-4015 (($ $ |#1| |#2| $) 48)) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) 16)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| |#2|) NIL)) (-3695 ((|#2| $) 19)) (-3737 (($ (-1 |#2| |#2|) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-3185 (($ $) 23)) (-3197 ((|#1| $) 21)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) 40)) (-3173 ((|#1| $) NIL)) (-1339 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-124)) (|has| |#1| (-511))))) (-2261 (((-3 $ "failed") $ $) 74 (|has| |#1| (-511))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-511)))) (-4178 ((|#2| $) 17)) (-3939 ((|#1| $) NIL (|has| |#1| (-423)))) (-2217 (((-790) $) NIL) (($ (-519)) 39) (($ $) NIL (|has| |#1| (-511))) (($ |#1|) 34) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519))))))) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ |#2|) 31)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) 15)) (-1487 (($ $ $ (-705)) 59 (|has| |#1| (-157)))) (-1617 (((-108) $ $) 69 (|has| |#1| (-511)))) (-3559 (($ $ (-848)) 55) (($ $ (-705)) 56)) (-3602 (($) 22 T CONST)) (-3611 (($) 12 T CONST)) (-1543 (((-108) $ $) 68)) (-1632 (($ $ |#1|) 75 (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) 54) (($ $ (-705)) 52)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-889 |#1| |#2|) (-13 (-298 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-511)) (IF (|has| |#2| (-124)) (-15 -1339 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4219)) (-6 -4219) |%noBranch|))) (-968) (-726)) (T -889)) +((-1339 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-889 *3 *2)) (-4 *2 (-124)) (-4 *3 (-511)) (-4 *3 (-968)) (-4 *2 (-726))))) +(-13 (-298 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-511)) (IF (|has| |#2| (-124)) (-15 -1339 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4219)) (-6 -4219) |%noBranch|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL (-3730 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-2494 (($ $ $) 63 (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))) (-3167 (((-3 $ "failed") $ $) 50 (-3730 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-1642 (((-705)) 34 (-12 (|has| |#1| (-340)) (|has| |#2| (-340))))) (-4160 ((|#2| $) 21)) (-2891 ((|#1| $) 20)) (-2249 (($) NIL (-3730 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-444)) (|has| |#2| (-444))) (-12 (|has| |#1| (-661)) (|has| |#2| (-661))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) CONST)) (-4193 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| |#1| (-444)) (|has| |#2| (-444))) (-12 (|has| |#1| (-661)) (|has| |#2| (-661)))))) (-3314 (($) NIL (-12 (|has| |#1| (-340)) (|has| |#2| (-340))))) (-1568 (((-108) $) NIL (-3730 (-12 (|has| |#1| (-444)) (|has| |#2| (-444))) (-12 (|has| |#1| (-661)) (|has| |#2| (-661)))))) (-2864 (($ $ $) NIL (-3730 (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-782)) (|has| |#2| (-782)))))) (-2489 (($ $ $) NIL (-3730 (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-782)) (|has| |#2| (-782)))))) (-4158 (($ |#1| |#2|) 19)) (-3334 (((-848) $) NIL (-12 (|has| |#1| (-340)) (|has| |#2| (-340))))) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 37 (-12 (|has| |#1| (-444)) (|has| |#2| (-444))))) (-2770 (($ (-848)) NIL (-12 (|has| |#1| (-340)) (|has| |#2| (-340))))) (-4139 (((-1029) $) NIL)) (-3333 (($ $ $) NIL (-12 (|has| |#1| (-444)) (|has| |#2| (-444))))) (-3190 (($ $ $) NIL (-12 (|has| |#1| (-444)) (|has| |#2| (-444))))) (-2217 (((-790) $) 14)) (-3559 (($ $ (-519)) NIL (-12 (|has| |#1| (-444)) (|has| |#2| (-444)))) (($ $ (-705)) NIL (-3730 (-12 (|has| |#1| (-444)) (|has| |#2| (-444))) (-12 (|has| |#1| (-661)) (|has| |#2| (-661))))) (($ $ (-848)) NIL (-3730 (-12 (|has| |#1| (-444)) (|has| |#2| (-444))) (-12 (|has| |#1| (-661)) (|has| |#2| (-661)))))) (-3602 (($) 40 (-3730 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) CONST)) (-3611 (($) 24 (-3730 (-12 (|has| |#1| (-444)) (|has| |#2| (-444))) (-12 (|has| |#1| (-661)) (|has| |#2| (-661)))) CONST)) (-1586 (((-108) $ $) NIL (-3730 (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-782)) (|has| |#2| (-782)))))) (-1569 (((-108) $ $) NIL (-3730 (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-782)) (|has| |#2| (-782)))))) (-1543 (((-108) $ $) 18)) (-1578 (((-108) $ $) NIL (-3730 (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-782)) (|has| |#2| (-782)))))) (-1561 (((-108) $ $) 66 (-3730 (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-782)) (|has| |#2| (-782)))))) (-1632 (($ $ $) NIL (-12 (|has| |#1| (-444)) (|has| |#2| (-444))))) (-1623 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1614 (($ $ $) 43 (-3730 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (** (($ $ (-519)) NIL (-12 (|has| |#1| (-444)) (|has| |#2| (-444)))) (($ $ (-705)) 31 (-3730 (-12 (|has| |#1| (-444)) (|has| |#2| (-444))) (-12 (|has| |#1| (-661)) (|has| |#2| (-661))))) (($ $ (-848)) NIL (-3730 (-12 (|has| |#1| (-444)) (|has| |#2| (-444))) (-12 (|has| |#1| (-661)) (|has| |#2| (-661)))))) (* (($ (-519) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-705) $) 46 (-3730 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))) (($ (-848) $) NIL (-3730 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))) (($ $ $) 27 (-3730 (-12 (|has| |#1| (-444)) (|has| |#2| (-444))) (-12 (|has| |#1| (-661)) (|has| |#2| (-661))))))) +(((-890 |#1| |#2|) (-13 (-1011) (-10 -8 (IF (|has| |#1| (-340)) (IF (|has| |#2| (-340)) (-6 (-340)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-661)) (IF (|has| |#2| (-661)) (-6 (-661)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-444)) (-6 (-444)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-782)) (IF (|has| |#2| (-782)) (-6 (-782)) |%noBranch|) |%noBranch|) (-15 -4158 ($ |#1| |#2|)) (-15 -2891 (|#1| $)) (-15 -4160 (|#2| $)))) (-1011) (-1011)) (T -890)) +((-4158 (*1 *1 *2 *3) (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011)))) (-2891 (*1 *2 *1) (-12 (-4 *2 (-1011)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1011)))) (-4160 (*1 *2 *1) (-12 (-4 *2 (-1011)) (-5 *1 (-890 *3 *2)) (-4 *3 (-1011))))) +(-13 (-1011) (-10 -8 (IF (|has| |#1| (-340)) (IF (|has| |#2| (-340)) (-6 (-340)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-661)) (IF (|has| |#2| (-661)) (-6 (-661)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-444)) (-6 (-444)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-782)) (IF (|has| |#2| (-782)) (-6 (-782)) |%noBranch|) |%noBranch|) (-15 -4158 ($ |#1| |#2|)) (-15 -2891 (|#1| $)) (-15 -4160 (|#2| $)))) +((-4083 (((-1013 (-1082)) $) 19)) (-2945 (((-108) $) 26)) (-1622 (((-1082) $) 27)) (-1237 (((-108) $) 24)) (-3882 ((|#1| $) 25)) (-3989 (((-800 $ $) $) 34)) (-2094 (((-108) $) 33)) (-3997 (($ $ $) 12)) (-2782 (($ $) 29)) (-2623 (((-108) $) 28)) (-2445 (($ $) 10)) (-2809 (((-800 $ $) $) 36)) (-1232 (((-108) $) 35)) (-3398 (($ $ $) 13)) (-1717 (((-800 $ $) $) 38)) (-1287 (((-108) $) 37)) (-2581 (($ $ $) 14)) (-2217 (($ |#1|) 7) (($ (-1082)) 9) (((-790) $) 40 (|has| |#1| (-559 (-790))))) (-2269 (((-800 $ $) $) 32)) (-3862 (((-108) $) 30)) (-4012 (($ $ $) 11))) +(((-891 |#1|) (-13 (-892) (-10 -8 (IF (|has| |#1| (-559 (-790))) (-6 (-559 (-790))) |%noBranch|) (-15 -2217 ($ |#1|)) (-15 -2217 ($ (-1082))) (-15 -4083 ((-1013 (-1082)) $)) (-15 -1237 ((-108) $)) (-15 -3882 (|#1| $)) (-15 -2945 ((-108) $)) (-15 -1622 ((-1082) $)) (-15 -2623 ((-108) $)) (-15 -2782 ($ $)) (-15 -3862 ((-108) $)) (-15 -2269 ((-800 $ $) $)) (-15 -2094 ((-108) $)) (-15 -3989 ((-800 $ $) $)) (-15 -1232 ((-108) $)) (-15 -2809 ((-800 $ $) $)) (-15 -1287 ((-108) $)) (-15 -1717 ((-800 $ $) $)))) (-892)) (T -891)) +((-2217 (*1 *1 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-892)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-1013 (-1082))) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-1237 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-3882 (*1 *2 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-892)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-2782 (*1 *1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-892)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-2269 (*1 *2 *1) (-12 (-5 *2 (-800 (-891 *3) (-891 *3))) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-800 (-891 *3) (-891 *3))) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-1232 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-800 (-891 *3) (-891 *3))) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892)))) (-1717 (*1 *2 *1) (-12 (-5 *2 (-800 (-891 *3) (-891 *3))) (-5 *1 (-891 *3)) (-4 *3 (-892))))) +(-13 (-892) (-10 -8 (IF (|has| |#1| (-559 (-790))) (-6 (-559 (-790))) |%noBranch|) (-15 -2217 ($ |#1|)) (-15 -2217 ($ (-1082))) (-15 -4083 ((-1013 (-1082)) $)) (-15 -1237 ((-108) $)) (-15 -3882 (|#1| $)) (-15 -2945 ((-108) $)) (-15 -1622 ((-1082) $)) (-15 -2623 ((-108) $)) (-15 -2782 ($ $)) (-15 -3862 ((-108) $)) (-15 -2269 ((-800 $ $) $)) (-15 -2094 ((-108) $)) (-15 -3989 ((-800 $ $) $)) (-15 -1232 ((-108) $)) (-15 -2809 ((-800 $ $) $)) (-15 -1287 ((-108) $)) (-15 -1717 ((-800 $ $) $)))) +((-3997 (($ $ $) 8)) (-2445 (($ $) 6)) (-3398 (($ $ $) 9)) (-2581 (($ $ $) 10)) (-4012 (($ $ $) 7))) +(((-892) (-1194)) (T -892)) +((-2581 (*1 *1 *1 *1) (-4 *1 (-892))) (-3398 (*1 *1 *1 *1) (-4 *1 (-892))) (-3997 (*1 *1 *1 *1) (-4 *1 (-892))) (-4012 (*1 *1 *1 *1) (-4 *1 (-892))) (-2445 (*1 *1 *1) (-4 *1 (-892)))) +(-13 (-10 -8 (-15 -2445 ($ $)) (-15 -4012 ($ $ $)) (-15 -3997 ($ $ $)) (-15 -3398 ($ $ $)) (-15 -2581 ($ $ $)))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) 8)) (-2249 (($) 7 T CONST)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-2511 (($ $ $) 43)) (-2500 (($ $ $) 44)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2489 ((|#1| $) 45)) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4152 ((|#1| $) 39)) (-1846 (($ |#1| $) 40)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-3212 ((|#1| $) 41)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) 42)) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-893 |#1|) (-1194) (-782)) (T -893)) +((-2489 (*1 *2 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-782)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-782)))) (-2511 (*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-782))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4221) (-15 -2489 (|t#1| $)) (-15 -2500 ($ $ $)) (-15 -2511 ($ $ $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-1603 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2292 |#2|)) |#2| |#2|) 85)) (-1218 ((|#2| |#2| |#2|) 83)) (-2666 (((-2 (|:| |coef2| |#2|) (|:| -2292 |#2|)) |#2| |#2|) 87)) (-3004 (((-2 (|:| |coef1| |#2|) (|:| -2292 |#2|)) |#2| |#2|) 89)) (-2151 (((-2 (|:| |coef2| |#2|) (|:| -3159 |#1|)) |#2| |#2|) 107 (|has| |#1| (-423)))) (-1784 (((-2 (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|) 46)) (-1321 (((-2 (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|) 64)) (-2363 (((-2 (|:| |coef1| |#2|) (|:| -1286 |#1|)) |#2| |#2|) 66)) (-1599 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-1883 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705)) 71)) (-2400 (((-2 (|:| |coef2| |#2|) (|:| -3677 |#1|)) |#2|) 97)) (-2653 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705)) 74)) (-1551 (((-585 (-705)) |#2| |#2|) 82)) (-2499 ((|#1| |#2| |#2|) 42)) (-2609 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3159 |#1|)) |#2| |#2|) 105 (|has| |#1| (-423)))) (-3159 ((|#1| |#2| |#2|) 103 (|has| |#1| (-423)))) (-2525 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|) 44)) (-3876 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|) 63)) (-1286 ((|#1| |#2| |#2|) 61)) (-2964 (((-2 (|:| -3031 |#1|) (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2|) 35)) (-3719 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3213 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3296 ((|#2| |#2| |#2|) 75)) (-3070 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705)) 69)) (-3085 ((|#2| |#2| |#2| (-705)) 67)) (-2292 ((|#2| |#2| |#2|) 111 (|has| |#1| (-423)))) (-2261 (((-1163 |#2|) (-1163 |#2|) |#1|) 21)) (-1745 (((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2|) 39)) (-2431 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3677 |#1|)) |#2|) 95)) (-3677 ((|#1| |#2|) 92)) (-4051 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705)) 73)) (-3592 ((|#2| |#2| |#2| (-705)) 72)) (-3731 (((-585 |#2|) |#2| |#2|) 80)) (-3435 ((|#2| |#2| |#1| |#1| (-705)) 50)) (-3053 ((|#1| |#1| |#1| (-705)) 49)) (* (((-1163 |#2|) |#1| (-1163 |#2|)) 16))) +(((-894 |#1| |#2|) (-10 -7 (-15 -1286 (|#1| |#2| |#2|)) (-15 -3876 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|)) (-15 -1321 ((-2 (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|)) (-15 -2363 ((-2 (|:| |coef1| |#2|) (|:| -1286 |#1|)) |#2| |#2|)) (-15 -3085 (|#2| |#2| |#2| (-705))) (-15 -3070 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705))) (-15 -1883 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705))) (-15 -3592 (|#2| |#2| |#2| (-705))) (-15 -4051 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705))) (-15 -2653 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705))) (-15 -3296 (|#2| |#2| |#2|)) (-15 -3213 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1599 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1218 (|#2| |#2| |#2|)) (-15 -1603 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2292 |#2|)) |#2| |#2|)) (-15 -2666 ((-2 (|:| |coef2| |#2|) (|:| -2292 |#2|)) |#2| |#2|)) (-15 -3004 ((-2 (|:| |coef1| |#2|) (|:| -2292 |#2|)) |#2| |#2|)) (-15 -3677 (|#1| |#2|)) (-15 -2431 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3677 |#1|)) |#2|)) (-15 -2400 ((-2 (|:| |coef2| |#2|) (|:| -3677 |#1|)) |#2|)) (-15 -3731 ((-585 |#2|) |#2| |#2|)) (-15 -1551 ((-585 (-705)) |#2| |#2|)) (IF (|has| |#1| (-423)) (PROGN (-15 -3159 (|#1| |#2| |#2|)) (-15 -2609 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3159 |#1|)) |#2| |#2|)) (-15 -2151 ((-2 (|:| |coef2| |#2|) (|:| -3159 |#1|)) |#2| |#2|)) (-15 -2292 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1163 |#2|) |#1| (-1163 |#2|))) (-15 -2261 ((-1163 |#2|) (-1163 |#2|) |#1|)) (-15 -2964 ((-2 (|:| -3031 |#1|) (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2|)) (-15 -1745 ((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2|)) (-15 -3053 (|#1| |#1| |#1| (-705))) (-15 -3435 (|#2| |#2| |#1| |#1| (-705))) (-15 -3719 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2499 (|#1| |#2| |#2|)) (-15 -2525 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|)) (-15 -1784 ((-2 (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|))) (-511) (-1139 |#1|)) (T -894)) +((-1784 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1286 *4))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-2525 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1286 *4))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-2499 (*1 *2 *3 *3) (-12 (-4 *2 (-511)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1139 *2)))) (-3719 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-511)) (-5 *1 (-894 *3 *2)) (-4 *2 (-1139 *3)))) (-3435 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-705)) (-4 *3 (-511)) (-5 *1 (-894 *3 *2)) (-4 *2 (-1139 *3)))) (-3053 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-705)) (-4 *2 (-511)) (-5 *1 (-894 *2 *4)) (-4 *4 (-1139 *2)))) (-1745 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-2964 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| -3031 *4) (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-2261 (*1 *2 *2 *3) (-12 (-5 *2 (-1163 *4)) (-4 *4 (-1139 *3)) (-4 *3 (-511)) (-5 *1 (-894 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1163 *4)) (-4 *4 (-1139 *3)) (-4 *3 (-511)) (-5 *1 (-894 *3 *4)))) (-2292 (*1 *2 *2 *2) (-12 (-4 *3 (-423)) (-4 *3 (-511)) (-5 *1 (-894 *3 *2)) (-4 *2 (-1139 *3)))) (-2151 (*1 *2 *3 *3) (-12 (-4 *4 (-423)) (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3159 *4))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-2609 (*1 *2 *3 *3) (-12 (-4 *4 (-423)) (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3159 *4))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-3159 (*1 *2 *3 *3) (-12 (-4 *2 (-511)) (-4 *2 (-423)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1139 *2)))) (-1551 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-585 (-705))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-3731 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-585 *3)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-2400 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3677 *4))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-2431 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3677 *4))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-3677 (*1 *2 *3) (-12 (-4 *2 (-511)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1139 *2)))) (-3004 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2292 *3))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-2666 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2292 *3))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-1603 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2292 *3))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-1218 (*1 *2 *2 *2) (-12 (-4 *3 (-511)) (-5 *1 (-894 *3 *2)) (-4 *2 (-1139 *3)))) (-1599 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-3213 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-3296 (*1 *2 *2 *2) (-12 (-4 *3 (-511)) (-5 *1 (-894 *3 *2)) (-4 *2 (-1139 *3)))) (-2653 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-705)) (-4 *5 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-894 *5 *3)) (-4 *3 (-1139 *5)))) (-4051 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-705)) (-4 *5 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-894 *5 *3)) (-4 *3 (-1139 *5)))) (-3592 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-705)) (-4 *4 (-511)) (-5 *1 (-894 *4 *2)) (-4 *2 (-1139 *4)))) (-1883 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-705)) (-4 *5 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-894 *5 *3)) (-4 *3 (-1139 *5)))) (-3070 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-705)) (-4 *5 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-894 *5 *3)) (-4 *3 (-1139 *5)))) (-3085 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-705)) (-4 *4 (-511)) (-5 *1 (-894 *4 *2)) (-4 *2 (-1139 *4)))) (-2363 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1286 *4))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-1321 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1286 *4))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-3876 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1286 *4))) (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) (-1286 (*1 *2 *3 *3) (-12 (-4 *2 (-511)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1139 *2))))) +(-10 -7 (-15 -1286 (|#1| |#2| |#2|)) (-15 -3876 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|)) (-15 -1321 ((-2 (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|)) (-15 -2363 ((-2 (|:| |coef1| |#2|) (|:| -1286 |#1|)) |#2| |#2|)) (-15 -3085 (|#2| |#2| |#2| (-705))) (-15 -3070 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705))) (-15 -1883 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705))) (-15 -3592 (|#2| |#2| |#2| (-705))) (-15 -4051 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705))) (-15 -2653 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-705))) (-15 -3296 (|#2| |#2| |#2|)) (-15 -3213 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1599 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1218 (|#2| |#2| |#2|)) (-15 -1603 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2292 |#2|)) |#2| |#2|)) (-15 -2666 ((-2 (|:| |coef2| |#2|) (|:| -2292 |#2|)) |#2| |#2|)) (-15 -3004 ((-2 (|:| |coef1| |#2|) (|:| -2292 |#2|)) |#2| |#2|)) (-15 -3677 (|#1| |#2|)) (-15 -2431 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3677 |#1|)) |#2|)) (-15 -2400 ((-2 (|:| |coef2| |#2|) (|:| -3677 |#1|)) |#2|)) (-15 -3731 ((-585 |#2|) |#2| |#2|)) (-15 -1551 ((-585 (-705)) |#2| |#2|)) (IF (|has| |#1| (-423)) (PROGN (-15 -3159 (|#1| |#2| |#2|)) (-15 -2609 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3159 |#1|)) |#2| |#2|)) (-15 -2151 ((-2 (|:| |coef2| |#2|) (|:| -3159 |#1|)) |#2| |#2|)) (-15 -2292 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1163 |#2|) |#1| (-1163 |#2|))) (-15 -2261 ((-1163 |#2|) (-1163 |#2|) |#1|)) (-15 -2964 ((-2 (|:| -3031 |#1|) (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2|)) (-15 -1745 ((-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) |#2| |#2|)) (-15 -3053 (|#1| |#1| |#1| (-705))) (-15 -3435 (|#2| |#2| |#1| |#1| (-705))) (-15 -3719 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2499 (|#1| |#2| |#2|)) (-15 -2525 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|)) (-15 -1784 ((-2 (|:| |coef2| |#2|) (|:| -1286 |#1|)) |#2| |#2|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) 27)) (-2249 (($) NIL T CONST)) (-3554 (((-585 (-585 (-519))) (-585 (-519))) 29)) (-2166 (((-519) $) 45)) (-1228 (($ (-585 (-519))) 17)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1446 (((-585 (-519)) $) 11)) (-3333 (($ $) 32)) (-2217 (((-790) $) 43) (((-585 (-519)) $) 9)) (-3602 (($) 7 T CONST)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 20)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 19)) (-1614 (($ $ $) 21)) (* (($ (-705) $) 25) (($ (-848) $) NIL))) +(((-895) (-13 (-730) (-560 (-585 (-519))) (-10 -8 (-15 -1228 ($ (-585 (-519)))) (-15 -3554 ((-585 (-585 (-519))) (-585 (-519)))) (-15 -2166 ((-519) $)) (-15 -3333 ($ $)) (-15 -2217 ((-585 (-519)) $))))) (T -895)) +((-1228 (*1 *1 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-895)))) (-3554 (*1 *2 *3) (-12 (-5 *2 (-585 (-585 (-519)))) (-5 *1 (-895)) (-5 *3 (-585 (-519))))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-895)))) (-3333 (*1 *1 *1) (-5 *1 (-895))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-895))))) +(-13 (-730) (-560 (-585 (-519))) (-10 -8 (-15 -1228 ($ (-585 (-519)))) (-15 -3554 ((-585 (-585 (-519))) (-585 (-519)))) (-15 -2166 ((-519) $)) (-15 -3333 ($ $)) (-15 -2217 ((-585 (-519)) $)))) +((-1632 (($ $ |#2|) 30)) (-1623 (($ $) 22) (($ $ $) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-379 (-519)) $) 26) (($ $ (-379 (-519))) 28))) +(((-896 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-379 (-519)))) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 -1632 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|))) (-897 |#2| |#3| |#4|) (-968) (-726) (-782)) (T -896)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-379 (-519)))) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 -1632 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 * (|#1| (-848) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4083 (((-585 |#3|) $) 74)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 51 (|has| |#1| (-511)))) (-1410 (($ $) 52 (|has| |#1| (-511)))) (-3060 (((-108) $) 54 (|has| |#1| (-511)))) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-3218 (($ $) 60)) (-4193 (((-3 $ "failed") $) 34)) (-3943 (((-108) $) 73)) (-1568 (((-108) $) 31)) (-2642 (((-108) $) 62)) (-4042 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-585 |#3|) (-585 |#2|)) 75)) (-1405 (($ (-1 |#1| |#1|) $) 63)) (-3185 (($ $) 65)) (-3197 ((|#1| $) 66)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-511)))) (-4178 ((|#2| $) 64)) (-1508 (($ $) 72)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ (-379 (-519))) 57 (|has| |#1| (-37 (-379 (-519))))) (($ $) 49 (|has| |#1| (-511))) (($ |#1|) 47 (|has| |#1| (-157)))) (-1220 ((|#1| $ |#2|) 59)) (-3773 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 53 (|has| |#1| (-511)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#1|) 58 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-379 (-519)) $) 56 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 55 (|has| |#1| (-37 (-379 (-519))))))) +(((-897 |#1| |#2| |#3|) (-1194) (-968) (-726) (-782)) (T -897)) +((-3197 (*1 *2 *1) (-12 (-4 *1 (-897 *2 *3 *4)) (-4 *3 (-726)) (-4 *4 (-782)) (-4 *2 (-968)))) (-3185 (*1 *1 *1) (-12 (-4 *1 (-897 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-726)) (-4 *4 (-782)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-897 *3 *2 *4)) (-4 *3 (-968)) (-4 *4 (-782)) (-4 *2 (-726)))) (-4042 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-897 *4 *3 *2)) (-4 *4 (-968)) (-4 *3 (-726)) (-4 *2 (-782)))) (-4042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 *5)) (-4 *1 (-897 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-726)) (-4 *6 (-782)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-897 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-726)) (-4 *5 (-782)) (-5 *2 (-585 *5)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-897 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-726)) (-4 *5 (-782)) (-5 *2 (-108)))) (-1508 (*1 *1 *1) (-12 (-4 *1 (-897 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-726)) (-4 *4 (-782))))) +(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -4042 ($ $ |t#3| |t#2|)) (-15 -4042 ($ $ (-585 |t#3|) (-585 |t#2|))) (-15 -3185 ($ $)) (-15 -3197 (|t#1| $)) (-15 -4178 (|t#2| $)) (-15 -4083 ((-585 |t#3|) $)) (-15 -3943 ((-108) $)) (-15 -1508 ($ $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-511)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-379 (-519)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-264) |has| |#1| (-511)) ((-511) |has| |#1| (-511)) ((-587 #0#) |has| |#1| (-37 (-379 (-519)))) ((-587 |#1|) . T) ((-587 $) . T) ((-652 #0#) |has| |#1| (-37 (-379 (-519)))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) |has| |#1| (-511)) ((-661) . T) ((-974 #0#) |has| |#1| (-37 (-379 (-519)))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-3834 (((-1006 (-201)) $) 8)) (-3822 (((-1006 (-201)) $) 9)) (-3809 (((-1006 (-201)) $) 10)) (-2302 (((-585 (-585 (-870 (-201)))) $) 11)) (-2217 (((-790) $) 6))) +(((-898) (-1194)) (T -898)) +((-2302 (*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-585 (-585 (-870 (-201))))))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1006 (-201))))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1006 (-201))))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1006 (-201)))))) +(-13 (-559 (-790)) (-10 -8 (-15 -2302 ((-585 (-585 (-870 (-201)))) $)) (-15 -3809 ((-1006 (-201)) $)) (-15 -3822 ((-1006 (-201)) $)) (-15 -3834 ((-1006 (-201)) $)))) +(((-559 (-790)) . T)) +((-4083 (((-585 |#4|) $) 23)) (-2968 (((-108) $) 48)) (-3146 (((-108) $) 47)) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#4|) 36)) (-3266 (((-108) $) 49)) (-2542 (((-108) $ $) 55)) (-3609 (((-108) $ $) 58)) (-1276 (((-108) $) 53)) (-1456 (((-585 |#5|) (-585 |#5|) $) 90)) (-3596 (((-585 |#5|) (-585 |#5|) $) 87)) (-1354 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1360 (((-585 |#4|) $) 27)) (-1219 (((-108) |#4| $) 30)) (-2573 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-4175 (($ $ |#4|) 33)) (-1982 (($ $ |#4|) 32)) (-1272 (($ $ |#4|) 34)) (-1543 (((-108) $ $) 40))) +(((-899 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3146 ((-108) |#1|)) (-15 -1456 ((-585 |#5|) (-585 |#5|) |#1|)) (-15 -3596 ((-585 |#5|) (-585 |#5|) |#1|)) (-15 -1354 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2573 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3266 ((-108) |#1|)) (-15 -3609 ((-108) |#1| |#1|)) (-15 -2542 ((-108) |#1| |#1|)) (-15 -1276 ((-108) |#1|)) (-15 -2968 ((-108) |#1|)) (-15 -3276 ((-2 (|:| |under| |#1|) (|:| -1525 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4175 (|#1| |#1| |#4|)) (-15 -1272 (|#1| |#1| |#4|)) (-15 -1982 (|#1| |#1| |#4|)) (-15 -1219 ((-108) |#4| |#1|)) (-15 -1360 ((-585 |#4|) |#1|)) (-15 -4083 ((-585 |#4|) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) (-900 |#2| |#3| |#4| |#5|) (-968) (-727) (-782) (-982 |#2| |#3| |#4|)) (T -899)) +NIL +(-10 -8 (-15 -3146 ((-108) |#1|)) (-15 -1456 ((-585 |#5|) (-585 |#5|) |#1|)) (-15 -3596 ((-585 |#5|) (-585 |#5|) |#1|)) (-15 -1354 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2573 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3266 ((-108) |#1|)) (-15 -3609 ((-108) |#1| |#1|)) (-15 -2542 ((-108) |#1| |#1|)) (-15 -1276 ((-108) |#1|)) (-15 -2968 ((-108) |#1|)) (-15 -3276 ((-2 (|:| |under| |#1|) (|:| -1525 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4175 (|#1| |#1| |#4|)) (-15 -1272 (|#1| |#1| |#4|)) (-15 -1982 (|#1| |#1| |#4|)) (-15 -1219 ((-108) |#4| |#1|)) (-15 -1360 ((-585 |#4|) |#1|)) (-15 -4083 ((-585 |#4|) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-4083 (((-585 |#3|) $) 33)) (-2968 (((-108) $) 26)) (-3146 (((-108) $) 17 (|has| |#1| (-511)))) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#3|) 27)) (-1473 (((-108) $ (-705)) 44)) (-1640 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4221)))) (-2249 (($) 45 T CONST)) (-3266 (((-108) $) 22 (|has| |#1| (-511)))) (-2542 (((-108) $ $) 24 (|has| |#1| (-511)))) (-3609 (((-108) $ $) 23 (|has| |#1| (-511)))) (-1276 (((-108) $) 25 (|has| |#1| (-511)))) (-1456 (((-585 |#4|) (-585 |#4|) $) 18 (|has| |#1| (-511)))) (-3596 (((-585 |#4|) (-585 |#4|) $) 19 (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 |#4|)) 36)) (-1499 (($ (-585 |#4|)) 35)) (-2366 (($ $) 68 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#4| $) 67 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-511)))) (-3874 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4221))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4221)))) (-3844 (((-585 |#4|) $) 52 (|has| $ (-6 -4221)))) (-4086 ((|#3| $) 34)) (-3878 (((-108) $ (-705)) 43)) (-3725 (((-585 |#4|) $) 53 (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) 47)) (-1360 (((-585 |#3|) $) 32)) (-1219 (((-108) |#3| $) 31)) (-2768 (((-108) $ (-705)) 42)) (-1266 (((-1065) $) 9)) (-2573 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-511)))) (-4139 (((-1029) $) 10)) (-2395 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#4|) (-585 |#4|)) 59 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) 57 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 (-267 |#4|))) 56 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) 38)) (-3108 (((-108) $) 41)) (-1548 (($) 40)) (-4155 (((-705) |#4| $) 54 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4221)))) (-2449 (($ $) 39)) (-1446 (((-495) $) 69 (|has| |#4| (-560 (-495))))) (-2228 (($ (-585 |#4|)) 60)) (-4175 (($ $ |#3|) 28)) (-1982 (($ $ |#3|) 30)) (-1272 (($ $ |#3|) 29)) (-2217 (((-790) $) 11) (((-585 |#4|) $) 37)) (-1778 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 6)) (-3532 (((-705) $) 46 (|has| $ (-6 -4221))))) +(((-900 |#1| |#2| |#3| |#4|) (-1194) (-968) (-727) (-782) (-982 |t#1| |t#2| |t#3|)) (T -900)) +((-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *1 (-900 *3 *4 *5 *6)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *1 (-900 *3 *4 *5 *6)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *4 *2 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-982 *3 *4 *2)) (-4 *2 (-782)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-585 *5)))) (-1360 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-585 *5)))) (-1219 (*1 *2 *3 *1) (-12 (-4 *1 (-900 *4 *5 *3 *6)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) (-4 *6 (-982 *4 *5 *3)) (-5 *2 (-108)))) (-1982 (*1 *1 *1 *2) (-12 (-4 *1 (-900 *3 *4 *2 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)) (-4 *5 (-982 *3 *4 *2)))) (-1272 (*1 *1 *1 *2) (-12 (-4 *1 (-900 *3 *4 *2 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)) (-4 *5 (-982 *3 *4 *2)))) (-4175 (*1 *1 *1 *2) (-12 (-4 *1 (-900 *3 *4 *2 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)) (-4 *5 (-982 *3 *4 *2)))) (-3276 (*1 *2 *1 *3) (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) (-4 *6 (-982 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1525 *1) (|:| |upper| *1))) (-4 *1 (-900 *4 *5 *3 *6)))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-5 *2 (-108)))) (-2542 (*1 *2 *1 *1) (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-5 *2 (-108)))) (-3609 (*1 *2 *1 *1) (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-5 *2 (-108)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-5 *2 (-108)))) (-2573 (*1 *2 *3 *1) (-12 (-4 *1 (-900 *4 *5 *6 *3)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-4 *4 (-511)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1354 (*1 *2 *3 *1) (-12 (-4 *1 (-900 *4 *5 *6 *3)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-4 *4 (-511)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3596 (*1 *2 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)))) (-1456 (*1 *2 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)))) (-3146 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-5 *2 (-108))))) +(-13 (-1011) (-139 |t#4|) (-559 (-585 |t#4|)) (-10 -8 (-6 -4221) (-15 -1301 ((-3 $ "failed") (-585 |t#4|))) (-15 -1499 ($ (-585 |t#4|))) (-15 -4086 (|t#3| $)) (-15 -4083 ((-585 |t#3|) $)) (-15 -1360 ((-585 |t#3|) $)) (-15 -1219 ((-108) |t#3| $)) (-15 -1982 ($ $ |t#3|)) (-15 -1272 ($ $ |t#3|)) (-15 -4175 ($ $ |t#3|)) (-15 -3276 ((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |t#3|)) (-15 -2968 ((-108) $)) (IF (|has| |t#1| (-511)) (PROGN (-15 -1276 ((-108) $)) (-15 -2542 ((-108) $ $)) (-15 -3609 ((-108) $ $)) (-15 -3266 ((-108) $)) (-15 -2573 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1354 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3596 ((-585 |t#4|) (-585 |t#4|) $)) (-15 -1456 ((-585 |t#4|) (-585 |t#4|) $)) (-15 -3146 ((-108) $))) |%noBranch|))) +(((-33) . T) ((-97) . T) ((-559 (-585 |#4|)) . T) ((-559 (-790)) . T) ((-139 |#4|) . T) ((-560 (-495)) |has| |#4| (-560 (-495))) ((-282 |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-458 |#4|) . T) ((-480 |#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-1011) . T) ((-1117) . T)) +((-3350 (((-585 |#4|) |#4| |#4|) 115)) (-2592 (((-585 |#4|) (-585 |#4|) (-108)) 104 (|has| |#1| (-423))) (((-585 |#4|) (-585 |#4|)) 105 (|has| |#1| (-423)))) (-2857 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 35)) (-2707 (((-108) |#4|) 34)) (-1700 (((-585 |#4|) |#4|) 101 (|has| |#1| (-423)))) (-1553 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-1 (-108) |#4|) (-585 |#4|)) 20)) (-2127 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-108) |#4|)) (-585 |#4|)) 22)) (-3817 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-108) |#4|)) (-585 |#4|)) 23)) (-2429 (((-3 (-2 (|:| |bas| (-447 |#1| |#2| |#3| |#4|)) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|)) 73)) (-3932 (((-585 |#4|) (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2841 (((-585 |#4|) (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-1930 (((-585 |#4|) (-585 |#4|)) 107)) (-1484 (((-585 |#4|) (-585 |#4|) (-585 |#4|) (-108)) 48) (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 50)) (-2651 ((|#4| |#4| (-585 |#4|)) 49)) (-4099 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 111 (|has| |#1| (-423)))) (-2271 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 114 (|has| |#1| (-423)))) (-1726 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 113 (|has| |#1| (-423)))) (-2370 (((-585 |#4|) (-585 |#4|) (-585 |#4|) (-1 (-585 |#4|) (-585 |#4|))) 87) (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 89) (((-585 |#4|) (-585 |#4|) |#4|) 118) (((-585 |#4|) |#4| |#4|) 116) (((-585 |#4|) (-585 |#4|)) 88)) (-1821 (((-585 |#4|) (-585 |#4|) (-585 |#4|)) 98 (-12 (|has| |#1| (-135)) (|has| |#1| (-280))))) (-2491 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 41)) (-2830 (((-108) (-585 |#4|)) 62)) (-3685 (((-108) (-585 |#4|) (-585 (-585 |#4|))) 53)) (-2077 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 29)) (-1333 (((-108) |#4|) 28)) (-3951 (((-585 |#4|) (-585 |#4|)) 97 (-12 (|has| |#1| (-135)) (|has| |#1| (-280))))) (-1637 (((-585 |#4|) (-585 |#4|)) 96 (-12 (|has| |#1| (-135)) (|has| |#1| (-280))))) (-1702 (((-585 |#4|) (-585 |#4|)) 66)) (-1795 (((-585 |#4|) (-585 |#4|)) 79)) (-3073 (((-108) (-585 |#4|) (-585 |#4|)) 51)) (-3848 (((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|)) 39)) (-1509 (((-108) |#4|) 36))) +(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2370 ((-585 |#4|) (-585 |#4|))) (-15 -2370 ((-585 |#4|) |#4| |#4|)) (-15 -1930 ((-585 |#4|) (-585 |#4|))) (-15 -3350 ((-585 |#4|) |#4| |#4|)) (-15 -2370 ((-585 |#4|) (-585 |#4|) |#4|)) (-15 -2370 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2370 ((-585 |#4|) (-585 |#4|) (-585 |#4|) (-1 (-585 |#4|) (-585 |#4|)))) (-15 -3073 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -3685 ((-108) (-585 |#4|) (-585 (-585 |#4|)))) (-15 -2830 ((-108) (-585 |#4|))) (-15 -1553 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-1 (-108) |#4|) (-585 |#4|))) (-15 -2127 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-108) |#4|)) (-585 |#4|))) (-15 -3817 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-108) |#4|)) (-585 |#4|))) (-15 -2491 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2707 ((-108) |#4|)) (-15 -2857 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -1333 ((-108) |#4|)) (-15 -2077 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -1509 ((-108) |#4|)) (-15 -3848 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -1484 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -1484 ((-585 |#4|) (-585 |#4|) (-585 |#4|) (-108))) (-15 -2651 (|#4| |#4| (-585 |#4|))) (-15 -1702 ((-585 |#4|) (-585 |#4|))) (-15 -2429 ((-3 (-2 (|:| |bas| (-447 |#1| |#2| |#3| |#4|)) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|))) (-15 -1795 ((-585 |#4|) (-585 |#4|))) (-15 -3932 ((-585 |#4|) (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2841 ((-585 |#4|) (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-423)) (PROGN (-15 -1700 ((-585 |#4|) |#4|)) (-15 -2592 ((-585 |#4|) (-585 |#4|))) (-15 -2592 ((-585 |#4|) (-585 |#4|) (-108))) (-15 -4099 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -1726 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2271 ((-585 |#4|) (-585 |#4|) (-585 |#4|)))) |%noBranch|) (IF (|has| |#1| (-280)) (IF (|has| |#1| (-135)) (PROGN (-15 -1637 ((-585 |#4|) (-585 |#4|))) (-15 -3951 ((-585 |#4|) (-585 |#4|))) (-15 -1821 ((-585 |#4|) (-585 |#4|) (-585 |#4|)))) |%noBranch|) |%noBranch|)) (-511) (-727) (-782) (-982 |#1| |#2| |#3|)) (T -901)) +((-1821 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-280)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-280)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-1637 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-280)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-2271 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-423)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-1726 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-423)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-4099 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-423)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-2592 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-108)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-901 *4 *5 *6 *7)))) (-2592 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-423)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-1700 (*1 *2 *3) (-12 (-4 *4 (-423)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *3)) (-5 *1 (-901 *4 *5 *6 *3)) (-4 *3 (-982 *4 *5 *6)))) (-2841 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-901 *5 *6 *7 *8)))) (-3932 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-585 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-982 *6 *7 *8)) (-4 *6 (-511)) (-4 *7 (-727)) (-4 *8 (-782)) (-5 *1 (-901 *6 *7 *8 *9)))) (-1795 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-2429 (*1 *2 *3) (|partial| -12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-447 *4 *5 *6 *7)) (|:| -1365 (-585 *7)))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-1702 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-2651 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-982 *4 *5 *6)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-901 *4 *5 *6 *2)))) (-1484 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-585 *7)) (-5 *3 (-108)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-901 *4 *5 *6 *7)))) (-1484 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-1509 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-901 *4 *5 *6 *3)) (-4 *3 (-982 *4 *5 *6)))) (-2077 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-1333 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-901 *4 *5 *6 *3)) (-4 *3 (-982 *4 *5 *6)))) (-2857 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-2707 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-901 *4 *5 *6 *3)) (-4 *3 (-982 *4 *5 *6)))) (-2491 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) (-3817 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1 (-108) *8))) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-2127 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1 (-108) *8))) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-1553 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-901 *4 *5 *6 *7)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-108)) (-5 *1 (-901 *5 *6 *7 *8)))) (-3073 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-901 *4 *5 *6 *7)))) (-2370 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-585 *7) (-585 *7))) (-5 *2 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-901 *4 *5 *6 *7)))) (-2370 (*1 *2 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-2370 (*1 *2 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-982 *4 *5 *6)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-901 *4 *5 *6 *3)))) (-3350 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *3)) (-5 *1 (-901 *4 *5 *6 *3)) (-4 *3 (-982 *4 *5 *6)))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) (-2370 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *3)) (-5 *1 (-901 *4 *5 *6 *3)) (-4 *3 (-982 *4 *5 *6)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6))))) +(-10 -7 (-15 -2370 ((-585 |#4|) (-585 |#4|))) (-15 -2370 ((-585 |#4|) |#4| |#4|)) (-15 -1930 ((-585 |#4|) (-585 |#4|))) (-15 -3350 ((-585 |#4|) |#4| |#4|)) (-15 -2370 ((-585 |#4|) (-585 |#4|) |#4|)) (-15 -2370 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2370 ((-585 |#4|) (-585 |#4|) (-585 |#4|) (-1 (-585 |#4|) (-585 |#4|)))) (-15 -3073 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -3685 ((-108) (-585 |#4|) (-585 (-585 |#4|)))) (-15 -2830 ((-108) (-585 |#4|))) (-15 -1553 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-1 (-108) |#4|) (-585 |#4|))) (-15 -2127 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-108) |#4|)) (-585 |#4|))) (-15 -3817 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 (-1 (-108) |#4|)) (-585 |#4|))) (-15 -2491 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -2707 ((-108) |#4|)) (-15 -2857 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -1333 ((-108) |#4|)) (-15 -2077 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -1509 ((-108) |#4|)) (-15 -3848 ((-2 (|:| |goodPols| (-585 |#4|)) (|:| |badPols| (-585 |#4|))) (-585 |#4|))) (-15 -1484 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -1484 ((-585 |#4|) (-585 |#4|) (-585 |#4|) (-108))) (-15 -2651 (|#4| |#4| (-585 |#4|))) (-15 -1702 ((-585 |#4|) (-585 |#4|))) (-15 -2429 ((-3 (-2 (|:| |bas| (-447 |#1| |#2| |#3| |#4|)) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|))) (-15 -1795 ((-585 |#4|) (-585 |#4|))) (-15 -3932 ((-585 |#4|) (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2841 ((-585 |#4|) (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-423)) (PROGN (-15 -1700 ((-585 |#4|) |#4|)) (-15 -2592 ((-585 |#4|) (-585 |#4|))) (-15 -2592 ((-585 |#4|) (-585 |#4|) (-108))) (-15 -4099 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -1726 ((-585 |#4|) (-585 |#4|) (-585 |#4|))) (-15 -2271 ((-585 |#4|) (-585 |#4|) (-585 |#4|)))) |%noBranch|) (IF (|has| |#1| (-280)) (IF (|has| |#1| (-135)) (PROGN (-15 -1637 ((-585 |#4|) (-585 |#4|))) (-15 -3951 ((-585 |#4|) (-585 |#4|))) (-15 -1821 ((-585 |#4|) (-585 |#4|) (-585 |#4|)))) |%noBranch|) |%noBranch|)) +((-2933 (((-2 (|:| R (-625 |#1|)) (|:| A (-625 |#1|)) (|:| |Ainv| (-625 |#1|))) (-625 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-1983 (((-585 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1163 |#1|)))) (-625 |#1|) (-1163 |#1|)) 36)) (-4090 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16))) +(((-902 |#1|) (-10 -7 (-15 -2933 ((-2 (|:| R (-625 |#1|)) (|:| A (-625 |#1|)) (|:| |Ainv| (-625 |#1|))) (-625 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -4090 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1983 ((-585 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1163 |#1|)))) (-625 |#1|) (-1163 |#1|)))) (-335)) (T -902)) +((-1983 (*1 *2 *3 *4) (-12 (-4 *5 (-335)) (-5 *2 (-585 (-2 (|:| C (-625 *5)) (|:| |g| (-1163 *5))))) (-5 *1 (-902 *5)) (-5 *3 (-625 *5)) (-5 *4 (-1163 *5)))) (-4090 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-625 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-335)) (-5 *1 (-902 *5)))) (-2933 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-335)) (-5 *2 (-2 (|:| R (-625 *6)) (|:| A (-625 *6)) (|:| |Ainv| (-625 *6)))) (-5 *1 (-902 *6)) (-5 *3 (-625 *6))))) +(-10 -7 (-15 -2933 ((-2 (|:| R (-625 |#1|)) (|:| A (-625 |#1|)) (|:| |Ainv| (-625 |#1|))) (-625 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -4090 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1983 ((-585 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1163 |#1|)))) (-625 |#1|) (-1163 |#1|)))) +((-3093 (((-390 |#4|) |#4|) 47))) +(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3093 ((-390 |#4|) |#4|))) (-782) (-727) (-423) (-876 |#3| |#2| |#1|)) (T -903)) +((-3093 (*1 *2 *3) (-12 (-4 *4 (-782)) (-4 *5 (-727)) (-4 *6 (-423)) (-5 *2 (-390 *3)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-876 *6 *5 *4))))) +(-10 -7 (-15 -3093 ((-390 |#4|) |#4|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3535 (($ (-705)) 112 (|has| |#1| (-23)))) (-1583 (((-1168) $ (-519) (-519)) 40 (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4222))) (($ $) 88 (-12 (|has| |#1| (-782)) (|has| $ (-6 -4222))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) 8)) (-2421 ((|#1| $ (-519) |#1|) 52 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) 58 (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-1998 (($ $) 90 (|has| $ (-6 -4222)))) (-1868 (($ $) 100)) (-2366 (($ $) 78 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#1| $) 77 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) 53 (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) 51)) (-3297 (((-519) (-1 (-108) |#1|) $) 97) (((-519) |#1| $) 96 (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) 95 (|has| |#1| (-1011)))) (-2789 (($ (-585 |#1|)) 118)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3959 (((-625 |#1|) $ $) 105 (|has| |#1| (-968)))) (-1822 (($ (-705) |#1|) 69)) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 43 (|has| (-519) (-782)))) (-2864 (($ $ $) 87 (|has| |#1| (-782)))) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 44 (|has| (-519) (-782)))) (-2489 (($ $ $) 86 (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1464 ((|#1| $) 102 (-12 (|has| |#1| (-968)) (|has| |#1| (-925))))) (-2768 (((-108) $ (-705)) 10)) (-2568 ((|#1| $) 103 (-12 (|has| |#1| (-968)) (|has| |#1| (-925))))) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1672 (($ |#1| $ (-519)) 60) (($ $ $ (-519)) 59)) (-3909 (((-585 (-519)) $) 46)) (-1506 (((-108) (-519) $) 47)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2331 ((|#1| $) 42 (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3640 (($ $ |#1|) 41 (|has| $ (-6 -4222)))) (-3881 (($ $ (-585 |#1|)) 115)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) 48)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ (-519) |#1|) 50) ((|#1| $ (-519)) 49) (($ $ (-1130 (-519))) 63)) (-1466 ((|#1| $ $) 106 (|has| |#1| (-968)))) (-2914 (((-848) $) 117)) (-3720 (($ $ (-519)) 62) (($ $ (-1130 (-519))) 61)) (-2376 (($ $ $) 104)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2584 (($ $ $ (-519)) 91 (|has| $ (-6 -4222)))) (-2449 (($ $) 13)) (-1446 (((-495) $) 79 (|has| |#1| (-560 (-495)))) (($ (-585 |#1|)) 116)) (-2228 (($ (-585 |#1|)) 70)) (-4150 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-585 $)) 65)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) 84 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 83 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-1578 (((-108) $ $) 85 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 82 (|has| |#1| (-782)))) (-1623 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1614 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-519) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-661))) (($ $ |#1|) 107 (|has| |#1| (-661)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-904 |#1|) (-1194) (-968)) (T -904)) +((-2789 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-968)) (-4 *1 (-904 *3)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-904 *3)) (-4 *3 (-968)) (-5 *2 (-848)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-968)) (-4 *1 (-904 *3)))) (-2376 (*1 *1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-968)))) (-3881 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-904 *3)) (-4 *3 (-968))))) +(-13 (-1161 |t#1|) (-10 -8 (-15 -2789 ($ (-585 |t#1|))) (-15 -2914 ((-848) $)) (-15 -1446 ($ (-585 |t#1|))) (-15 -2376 ($ $ $)) (-15 -3881 ($ $ (-585 |t#1|))))) +(((-33) . T) ((-97) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782))) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-260 #0=(-519) |#1|) . T) ((-262 #0# |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-345 |#1|) . T) ((-458 |#1|) . T) ((-552 #0# |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-590 |#1|) . T) ((-19 |#1|) . T) ((-782) |has| |#1| (-782)) ((-1011) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782))) ((-1117) . T) ((-1161 |#1|) . T)) +((-1405 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 17))) +(((-905 |#1| |#2|) (-10 -7 (-15 -1405 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-968) (-968)) (T -905)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-968)) (-4 *6 (-968)) (-5 *2 (-870 *6)) (-5 *1 (-905 *5 *6))))) +(-10 -7 (-15 -1405 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) +((-2423 ((|#1| (-870 |#1|)) 13)) (-2468 ((|#1| (-870 |#1|)) 12)) (-2439 ((|#1| (-870 |#1|)) 11)) (-2480 ((|#1| (-870 |#1|)) 15)) (-4060 ((|#1| (-870 |#1|)) 21)) (-3933 ((|#1| (-870 |#1|)) 14)) (-3581 ((|#1| (-870 |#1|)) 16)) (-3676 ((|#1| (-870 |#1|)) 20)) (-3514 ((|#1| (-870 |#1|)) 19))) +(((-906 |#1|) (-10 -7 (-15 -2439 (|#1| (-870 |#1|))) (-15 -2468 (|#1| (-870 |#1|))) (-15 -2423 (|#1| (-870 |#1|))) (-15 -3933 (|#1| (-870 |#1|))) (-15 -2480 (|#1| (-870 |#1|))) (-15 -3581 (|#1| (-870 |#1|))) (-15 -3514 (|#1| (-870 |#1|))) (-15 -3676 (|#1| (-870 |#1|))) (-15 -4060 (|#1| (-870 |#1|)))) (-968)) (T -906)) +((-4060 (*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968))))) +(-10 -7 (-15 -2439 (|#1| (-870 |#1|))) (-15 -2468 (|#1| (-870 |#1|))) (-15 -2423 (|#1| (-870 |#1|))) (-15 -3933 (|#1| (-870 |#1|))) (-15 -2480 (|#1| (-870 |#1|))) (-15 -3581 (|#1| (-870 |#1|))) (-15 -3514 (|#1| (-870 |#1|))) (-15 -3676 (|#1| (-870 |#1|))) (-15 -4060 (|#1| (-870 |#1|)))) +((-3984 (((-3 |#1| "failed") |#1|) 18)) (-3313 (((-3 |#1| "failed") |#1|) 6)) (-2138 (((-3 |#1| "failed") |#1|) 16)) (-3172 (((-3 |#1| "failed") |#1|) 4)) (-3135 (((-3 |#1| "failed") |#1|) 20)) (-1996 (((-3 |#1| "failed") |#1|) 8)) (-4190 (((-3 |#1| "failed") |#1| (-705)) 1)) (-2364 (((-3 |#1| "failed") |#1|) 3)) (-1357 (((-3 |#1| "failed") |#1|) 2)) (-1565 (((-3 |#1| "failed") |#1|) 21)) (-1545 (((-3 |#1| "failed") |#1|) 9)) (-2454 (((-3 |#1| "failed") |#1|) 19)) (-3349 (((-3 |#1| "failed") |#1|) 7)) (-3690 (((-3 |#1| "failed") |#1|) 17)) (-2831 (((-3 |#1| "failed") |#1|) 5)) (-2193 (((-3 |#1| "failed") |#1|) 24)) (-2671 (((-3 |#1| "failed") |#1|) 12)) (-2484 (((-3 |#1| "failed") |#1|) 22)) (-2170 (((-3 |#1| "failed") |#1|) 10)) (-3205 (((-3 |#1| "failed") |#1|) 26)) (-2472 (((-3 |#1| "failed") |#1|) 14)) (-1516 (((-3 |#1| "failed") |#1|) 27)) (-1434 (((-3 |#1| "failed") |#1|) 15)) (-4153 (((-3 |#1| "failed") |#1|) 25)) (-3799 (((-3 |#1| "failed") |#1|) 13)) (-4114 (((-3 |#1| "failed") |#1|) 23)) (-2726 (((-3 |#1| "failed") |#1|) 11))) +(((-907 |#1|) (-1194) (-1103)) (T -907)) +((-1516 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-3205 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-4153 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-2193 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-4114 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-2484 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-1565 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-3135 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-2454 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-3984 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-3690 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-2138 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-1434 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-2472 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-3799 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-2671 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-2726 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-2170 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-1545 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-1996 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-3349 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-3313 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-2831 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-3172 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-2364 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-1357 (*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103)))) (-4190 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-705)) (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(-13 (-10 -7 (-15 -4190 ((-3 |t#1| "failed") |t#1| (-705))) (-15 -1357 ((-3 |t#1| "failed") |t#1|)) (-15 -2364 ((-3 |t#1| "failed") |t#1|)) (-15 -3172 ((-3 |t#1| "failed") |t#1|)) (-15 -2831 ((-3 |t#1| "failed") |t#1|)) (-15 -3313 ((-3 |t#1| "failed") |t#1|)) (-15 -3349 ((-3 |t#1| "failed") |t#1|)) (-15 -1996 ((-3 |t#1| "failed") |t#1|)) (-15 -1545 ((-3 |t#1| "failed") |t#1|)) (-15 -2170 ((-3 |t#1| "failed") |t#1|)) (-15 -2726 ((-3 |t#1| "failed") |t#1|)) (-15 -2671 ((-3 |t#1| "failed") |t#1|)) (-15 -3799 ((-3 |t#1| "failed") |t#1|)) (-15 -2472 ((-3 |t#1| "failed") |t#1|)) (-15 -1434 ((-3 |t#1| "failed") |t#1|)) (-15 -2138 ((-3 |t#1| "failed") |t#1|)) (-15 -3690 ((-3 |t#1| "failed") |t#1|)) (-15 -3984 ((-3 |t#1| "failed") |t#1|)) (-15 -2454 ((-3 |t#1| "failed") |t#1|)) (-15 -3135 ((-3 |t#1| "failed") |t#1|)) (-15 -1565 ((-3 |t#1| "failed") |t#1|)) (-15 -2484 ((-3 |t#1| "failed") |t#1|)) (-15 -4114 ((-3 |t#1| "failed") |t#1|)) (-15 -2193 ((-3 |t#1| "failed") |t#1|)) (-15 -4153 ((-3 |t#1| "failed") |t#1|)) (-15 -3205 ((-3 |t#1| "failed") |t#1|)) (-15 -1516 ((-3 |t#1| "failed") |t#1|)))) +((-4065 ((|#4| |#4| (-585 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2257 ((|#4| |#4| (-585 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1405 ((|#4| (-1 |#4| (-879 |#1|)) |#4|) 30))) +(((-908 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2257 (|#4| |#4| |#3|)) (-15 -2257 (|#4| |#4| (-585 |#3|))) (-15 -4065 (|#4| |#4| |#3|)) (-15 -4065 (|#4| |#4| (-585 |#3|))) (-15 -1405 (|#4| (-1 |#4| (-879 |#1|)) |#4|))) (-968) (-727) (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)) (-15 -1622 ((-3 $ "failed") (-1082))))) (-876 (-879 |#1|) |#2| |#3|)) (T -908)) +((-1405 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-879 *4))) (-4 *4 (-968)) (-4 *2 (-876 (-879 *4) *5 *6)) (-4 *5 (-727)) (-4 *6 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)) (-15 -1622 ((-3 $ "failed") (-1082)))))) (-5 *1 (-908 *4 *5 *6 *2)))) (-4065 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)) (-15 -1622 ((-3 $ "failed") (-1082)))))) (-4 *4 (-968)) (-4 *5 (-727)) (-5 *1 (-908 *4 *5 *6 *2)) (-4 *2 (-876 (-879 *4) *5 *6)))) (-4065 (*1 *2 *2 *3) (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)) (-15 -1622 ((-3 $ "failed") (-1082)))))) (-5 *1 (-908 *4 *5 *3 *2)) (-4 *2 (-876 (-879 *4) *5 *3)))) (-2257 (*1 *2 *2 *3) (-12 (-5 *3 (-585 *6)) (-4 *6 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)) (-15 -1622 ((-3 $ "failed") (-1082)))))) (-4 *4 (-968)) (-4 *5 (-727)) (-5 *1 (-908 *4 *5 *6 *2)) (-4 *2 (-876 (-879 *4) *5 *6)))) (-2257 (*1 *2 *2 *3) (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)) (-15 -1622 ((-3 $ "failed") (-1082)))))) (-5 *1 (-908 *4 *5 *3 *2)) (-4 *2 (-876 (-879 *4) *5 *3))))) +(-10 -7 (-15 -2257 (|#4| |#4| |#3|)) (-15 -2257 (|#4| |#4| (-585 |#3|))) (-15 -4065 (|#4| |#4| |#3|)) (-15 -4065 (|#4| |#4| (-585 |#3|))) (-15 -1405 (|#4| (-1 |#4| (-879 |#1|)) |#4|))) +((-3448 ((|#2| |#3|) 34)) (-2902 (((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|) 71)) (-3668 (((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) 86))) +(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3668 ((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))))) (-15 -2902 ((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|)) (-15 -3448 (|#2| |#3|))) (-321) (-1139 |#1|) (-1139 |#2|) (-659 |#2| |#3|)) (T -909)) +((-3448 (*1 *2 *3) (-12 (-4 *3 (-1139 *2)) (-4 *2 (-1139 *4)) (-5 *1 (-909 *4 *2 *3 *5)) (-4 *4 (-321)) (-4 *5 (-659 *2 *3)))) (-2902 (*1 *2 *3) (-12 (-4 *4 (-321)) (-4 *3 (-1139 *4)) (-4 *5 (-1139 *3)) (-5 *2 (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-909 *4 *3 *5 *6)) (-4 *6 (-659 *3 *5)))) (-3668 (*1 *2) (-12 (-4 *3 (-321)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 *4)) (-5 *2 (-2 (|:| -2070 (-625 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-625 *4)))) (-5 *1 (-909 *3 *4 *5 *6)) (-4 *6 (-659 *4 *5))))) +(-10 -7 (-15 -3668 ((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))))) (-15 -2902 ((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|)) (-15 -3448 (|#2| |#3|))) +((-2097 (((-911 (-379 (-519)) (-792 |#1|) (-216 |#2| (-705)) (-223 |#1| (-379 (-519)))) (-911 (-379 (-519)) (-792 |#1|) (-216 |#2| (-705)) (-223 |#1| (-379 (-519))))) 65))) +(((-910 |#1| |#2|) (-10 -7 (-15 -2097 ((-911 (-379 (-519)) (-792 |#1|) (-216 |#2| (-705)) (-223 |#1| (-379 (-519)))) (-911 (-379 (-519)) (-792 |#1|) (-216 |#2| (-705)) (-223 |#1| (-379 (-519))))))) (-585 (-1082)) (-705)) (T -910)) +((-2097 (*1 *2 *2) (-12 (-5 *2 (-911 (-379 (-519)) (-792 *3) (-216 *4 (-705)) (-223 *3 (-379 (-519))))) (-14 *3 (-585 (-1082))) (-14 *4 (-705)) (-5 *1 (-910 *3 *4))))) +(-10 -7 (-15 -2097 ((-911 (-379 (-519)) (-792 |#1|) (-216 |#2| (-705)) (-223 |#1| (-379 (-519)))) (-911 (-379 (-519)) (-792 |#1|) (-216 |#2| (-705)) (-223 |#1| (-379 (-519))))))) +((-1430 (((-108) $ $) NIL)) (-2881 (((-3 (-108) "failed") $) 67)) (-2248 (($ $) 35 (-12 (|has| |#1| (-135)) (|has| |#1| (-280))))) (-4008 (($ $ (-3 (-108) "failed")) 68)) (-3154 (($ (-585 |#4|) |#4|) 24)) (-1266 (((-1065) $) NIL)) (-3362 (($ $) 65)) (-4139 (((-1029) $) NIL)) (-3108 (((-108) $) 66)) (-1548 (($) 29)) (-1830 ((|#4| $) 70)) (-2426 (((-585 |#4|) $) 69)) (-2217 (((-790) $) 64)) (-1543 (((-108) $ $) NIL))) +(((-911 |#1| |#2| |#3| |#4|) (-13 (-1011) (-559 (-790)) (-10 -8 (-15 -1548 ($)) (-15 -3154 ($ (-585 |#4|) |#4|)) (-15 -2881 ((-3 (-108) "failed") $)) (-15 -4008 ($ $ (-3 (-108) "failed"))) (-15 -3108 ((-108) $)) (-15 -2426 ((-585 |#4|) $)) (-15 -1830 (|#4| $)) (-15 -3362 ($ $)) (IF (|has| |#1| (-280)) (IF (|has| |#1| (-135)) (-15 -2248 ($ $)) |%noBranch|) |%noBranch|))) (-423) (-782) (-727) (-876 |#1| |#3| |#2|)) (T -911)) +((-1548 (*1 *1) (-12 (-4 *2 (-423)) (-4 *3 (-782)) (-4 *4 (-727)) (-5 *1 (-911 *2 *3 *4 *5)) (-4 *5 (-876 *2 *4 *3)))) (-3154 (*1 *1 *2 *3) (-12 (-5 *2 (-585 *3)) (-4 *3 (-876 *4 *6 *5)) (-4 *4 (-423)) (-4 *5 (-782)) (-4 *6 (-727)) (-5 *1 (-911 *4 *5 *6 *3)))) (-2881 (*1 *2 *1) (|partial| -12 (-4 *3 (-423)) (-4 *4 (-782)) (-4 *5 (-727)) (-5 *2 (-108)) (-5 *1 (-911 *3 *4 *5 *6)) (-4 *6 (-876 *3 *5 *4)))) (-4008 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-423)) (-4 *4 (-782)) (-4 *5 (-727)) (-5 *1 (-911 *3 *4 *5 *6)) (-4 *6 (-876 *3 *5 *4)))) (-3108 (*1 *2 *1) (-12 (-4 *3 (-423)) (-4 *4 (-782)) (-4 *5 (-727)) (-5 *2 (-108)) (-5 *1 (-911 *3 *4 *5 *6)) (-4 *6 (-876 *3 *5 *4)))) (-2426 (*1 *2 *1) (-12 (-4 *3 (-423)) (-4 *4 (-782)) (-4 *5 (-727)) (-5 *2 (-585 *6)) (-5 *1 (-911 *3 *4 *5 *6)) (-4 *6 (-876 *3 *5 *4)))) (-1830 (*1 *2 *1) (-12 (-4 *2 (-876 *3 *5 *4)) (-5 *1 (-911 *3 *4 *5 *2)) (-4 *3 (-423)) (-4 *4 (-782)) (-4 *5 (-727)))) (-3362 (*1 *1 *1) (-12 (-4 *2 (-423)) (-4 *3 (-782)) (-4 *4 (-727)) (-5 *1 (-911 *2 *3 *4 *5)) (-4 *5 (-876 *2 *4 *3)))) (-2248 (*1 *1 *1) (-12 (-4 *2 (-135)) (-4 *2 (-280)) (-4 *2 (-423)) (-4 *3 (-782)) (-4 *4 (-727)) (-5 *1 (-911 *2 *3 *4 *5)) (-4 *5 (-876 *2 *4 *3))))) +(-13 (-1011) (-559 (-790)) (-10 -8 (-15 -1548 ($)) (-15 -3154 ($ (-585 |#4|) |#4|)) (-15 -2881 ((-3 (-108) "failed") $)) (-15 -4008 ($ $ (-3 (-108) "failed"))) (-15 -3108 ((-108) $)) (-15 -2426 ((-585 |#4|) $)) (-15 -1830 (|#4| $)) (-15 -3362 ($ $)) (IF (|has| |#1| (-280)) (IF (|has| |#1| (-135)) (-15 -2248 ($ $)) |%noBranch|) |%noBranch|))) +((-1256 (((-108) |#5| |#5|) 38)) (-3549 (((-108) |#5| |#5|) 52)) (-2490 (((-108) |#5| (-585 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-1796 (((-108) (-585 |#4|) (-585 |#4|)) 58)) (-2916 (((-108) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) 63)) (-3380 (((-1168)) 33)) (-3400 (((-1168) (-1065) (-1065) (-1065)) 29)) (-2746 (((-585 |#5|) (-585 |#5|)) 81)) (-3038 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)))) 79)) (-1630 (((-585 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-108) (-108)) 101)) (-1799 (((-108) |#5| |#5|) 47)) (-1502 (((-3 (-108) "failed") |#5| |#5|) 71)) (-1960 (((-108) (-585 |#4|) (-585 |#4|)) 57)) (-3802 (((-108) (-585 |#4|) (-585 |#4|)) 59)) (-3291 (((-108) (-585 |#4|) (-585 |#4|)) 60)) (-2919 (((-3 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|))) "failed") (-585 |#4|) |#5| (-585 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-3996 (((-585 |#5|) (-585 |#5|)) 43))) +(((-912 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3400 ((-1168) (-1065) (-1065) (-1065))) (-15 -3380 ((-1168))) (-15 -1256 ((-108) |#5| |#5|)) (-15 -3996 ((-585 |#5|) (-585 |#5|))) (-15 -1799 ((-108) |#5| |#5|)) (-15 -3549 ((-108) |#5| |#5|)) (-15 -1796 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -1960 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -3802 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -3291 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -1502 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2490 ((-108) |#5| |#5|)) (-15 -2490 ((-108) |#5| (-585 |#5|))) (-15 -2746 ((-585 |#5|) (-585 |#5|))) (-15 -2916 ((-108) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)))) (-15 -3038 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) (-15 -1630 ((-585 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-108) (-108))) (-15 -2919 ((-3 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|))) "failed") (-585 |#4|) |#5| (-585 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-423) (-727) (-782) (-982 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -912)) +((-2919 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *9 (-982 *6 *7 *8)) (-5 *2 (-2 (|:| -3257 (-585 *9)) (|:| -1890 *4) (|:| |ineq| (-585 *9)))) (-5 *1 (-912 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) (-4 *4 (-987 *6 *7 *8 *9)))) (-1630 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-585 *10)) (-5 *5 (-108)) (-4 *10 (-987 *6 *7 *8 *9)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *9 (-982 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| -3257 (-585 *9)) (|:| -1890 *10) (|:| |ineq| (-585 *9))))) (-5 *1 (-912 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1890 *7)))) (-4 *6 (-982 *3 *4 *5)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-912 *3 *4 *5 *6 *7)))) (-2916 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1890 *8))) (-4 *7 (-982 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *8)))) (-2746 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *1 (-912 *3 *4 *5 *6 *7)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-982 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-912 *5 *6 *7 *8 *3)))) (-2490 (*1 *2 *3 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-1502 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3291 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3802 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-1960 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-1796 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3549 (*1 *2 *3 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-1799 (*1 *2 *3 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *1 (-912 *3 *4 *5 *6 *7)))) (-1256 (*1 *2 *3 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3380 (*1 *2) (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) (-5 *1 (-912 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-3400 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) (-5 *1 (-912 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +(-10 -7 (-15 -3400 ((-1168) (-1065) (-1065) (-1065))) (-15 -3380 ((-1168))) (-15 -1256 ((-108) |#5| |#5|)) (-15 -3996 ((-585 |#5|) (-585 |#5|))) (-15 -1799 ((-108) |#5| |#5|)) (-15 -3549 ((-108) |#5| |#5|)) (-15 -1796 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -1960 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -3802 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -3291 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -1502 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2490 ((-108) |#5| |#5|)) (-15 -2490 ((-108) |#5| (-585 |#5|))) (-15 -2746 ((-585 |#5|) (-585 |#5|))) (-15 -2916 ((-108) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)))) (-15 -3038 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) (-15 -1630 ((-585 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-108) (-108))) (-15 -2919 ((-3 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|))) "failed") (-585 |#4|) |#5| (-585 |#4|) (-108) (-108) (-108) (-108) (-108)))) +((-1622 (((-1082) $) 15)) (-3493 (((-1065) $) 16)) (-1620 (($ (-1082) (-1065)) 14)) (-2217 (((-790) $) 13))) +(((-913) (-13 (-559 (-790)) (-10 -8 (-15 -1620 ($ (-1082) (-1065))) (-15 -1622 ((-1082) $)) (-15 -3493 ((-1065) $))))) (T -913)) +((-1620 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1065)) (-5 *1 (-913)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-913)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-913))))) +(-13 (-559 (-790)) (-10 -8 (-15 -1620 ($ (-1082) (-1065))) (-15 -1622 ((-1082) $)) (-15 -3493 ((-1065) $)))) +((-1405 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 (|#4| (-1 |#2| |#1|) |#3|))) (-511) (-511) (-916 |#1|) (-916 |#2|)) (T -914)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-511)) (-4 *6 (-511)) (-4 *2 (-916 *6)) (-5 *1 (-914 *5 *6 *4 *2)) (-4 *4 (-916 *5))))) +(-10 -7 (-15 -1405 (|#4| (-1 |#2| |#1|) |#3|))) +((-1301 (((-3 |#2| "failed") $) NIL) (((-3 (-1082) "failed") $) 65) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 (-519) "failed") $) 95)) (-1499 ((|#2| $) NIL) (((-1082) $) 60) (((-379 (-519)) $) NIL) (((-519) $) 92)) (-1562 (((-625 (-519)) (-625 $)) NIL) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) 112) (((-625 |#2|) (-625 $)) 28)) (-3314 (($) 98)) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 74) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 83)) (-1534 (($ $) 10)) (-1675 (((-3 $ "failed") $) 20)) (-1405 (($ (-1 |#2| |#2|) $) 22)) (-3816 (($) 16)) (-3326 (($ $) 54)) (-2181 (($ $) NIL) (($ $ (-705)) NIL) (($ $ (-1082)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2724 (($ $) 12)) (-1446 (((-819 (-519)) $) 69) (((-819 (-351)) $) 78) (((-495) $) 40) (((-351) $) 44) (((-201) $) 47)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) 90) (($ |#2|) NIL) (($ (-1082)) 57)) (-3594 (((-705)) 31)) (-1561 (((-108) $ $) 50))) +(((-915 |#1| |#2|) (-10 -8 (-15 -1561 ((-108) |#1| |#1|)) (-15 -3816 (|#1|)) (-15 -1675 ((-3 |#1| "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1446 ((-201) |#1|)) (-15 -1446 ((-351) |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1499 ((-1082) |#1|)) (-15 -1301 ((-3 (-1082) "failed") |#1|)) (-15 -2217 (|#1| (-1082))) (-15 -3314 (|#1|)) (-15 -3326 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -4068 ((-816 (-351) |#1|) |#1| (-819 (-351)) (-816 (-351) |#1|))) (-15 -4068 ((-816 (-519) |#1|) |#1| (-819 (-519)) (-816 (-519) |#1|))) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -1562 ((-625 |#2|) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-519))) (-15 -3594 ((-705))) (-15 -2217 ((-790) |#1|))) (-916 |#2|) (-511)) (T -915)) +((-3594 (*1 *2) (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-915 *3 *4)) (-4 *3 (-916 *4))))) +(-10 -8 (-15 -1561 ((-108) |#1| |#1|)) (-15 -3816 (|#1|)) (-15 -1675 ((-3 |#1| "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1446 ((-201) |#1|)) (-15 -1446 ((-351) |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1499 ((-1082) |#1|)) (-15 -1301 ((-3 (-1082) "failed") |#1|)) (-15 -2217 (|#1| (-1082))) (-15 -3314 (|#1|)) (-15 -3326 (|#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -4068 ((-816 (-351) |#1|) |#1| (-819 (-351)) (-816 (-351) |#1|))) (-15 -4068 ((-816 (-519) |#1|) |#1| (-819 (-519)) (-816 (-519) |#1|))) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -1562 ((-625 |#2|) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-519))) (-15 -3594 ((-705))) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-2157 ((|#1| $) 139 (|has| |#1| (-280)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-1958 (((-390 (-1078 $)) (-1078 $)) 130 (|has| |#1| (-836)))) (-4043 (($ $) 73)) (-3093 (((-390 $) $) 72)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 133 (|has| |#1| (-836)))) (-3409 (((-108) $ $) 59)) (-2287 (((-519) $) 120 (|has| |#1| (-755)))) (-2249 (($) 17 T CONST)) (-1301 (((-3 |#1| "failed") $) 178) (((-3 (-1082) "failed") $) 128 (|has| |#1| (-959 (-1082)))) (((-3 (-379 (-519)) "failed") $) 112 (|has| |#1| (-959 (-519)))) (((-3 (-519) "failed") $) 110 (|has| |#1| (-959 (-519))))) (-1499 ((|#1| $) 177) (((-1082) $) 127 (|has| |#1| (-959 (-1082)))) (((-379 (-519)) $) 111 (|has| |#1| (-959 (-519)))) (((-519) $) 109 (|has| |#1| (-959 (-519))))) (-2311 (($ $ $) 55)) (-1562 (((-625 (-519)) (-625 $)) 152 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 151 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 150) (((-625 |#1|) (-625 $)) 149)) (-4193 (((-3 $ "failed") $) 34)) (-3314 (($) 137 (|has| |#1| (-504)))) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-1320 (((-108) $) 71)) (-3419 (((-108) $) 122 (|has| |#1| (-755)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 146 (|has| |#1| (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 145 (|has| |#1| (-813 (-351))))) (-1568 (((-108) $) 31)) (-1534 (($ $) 141)) (-2855 ((|#1| $) 143)) (-1675 (((-3 $ "failed") $) 108 (|has| |#1| (-1058)))) (-2143 (((-108) $) 121 (|has| |#1| (-755)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-2864 (($ $ $) 118 (|has| |#1| (-782)))) (-2489 (($ $ $) 117 (|has| |#1| (-782)))) (-1405 (($ (-1 |#1| |#1|) $) 169)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 70)) (-3816 (($) 107 (|has| |#1| (-1058)) CONST)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-3326 (($ $) 138 (|has| |#1| (-280)))) (-1525 ((|#1| $) 135 (|has| |#1| (-504)))) (-1863 (((-390 (-1078 $)) (-1078 $)) 132 (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) 131 (|has| |#1| (-836)))) (-1921 (((-390 $) $) 74)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-2324 (($ $ (-585 |#1|) (-585 |#1|)) 175 (|has| |#1| (-282 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-282 |#1|))) (($ $ (-267 |#1|)) 173 (|has| |#1| (-282 |#1|))) (($ $ (-585 (-267 |#1|))) 172 (|has| |#1| (-282 |#1|))) (($ $ (-585 (-1082)) (-585 |#1|)) 171 (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-1082) |#1|) 170 (|has| |#1| (-480 (-1082) |#1|)))) (-3129 (((-705) $) 58)) (-2598 (($ $ |#1|) 176 (|has| |#1| (-260 |#1| |#1|)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-2181 (($ $) 168 (|has| |#1| (-209))) (($ $ (-705)) 166 (|has| |#1| (-209))) (($ $ (-1082)) 164 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 163 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 162 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) 161 (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2724 (($ $) 140)) (-2866 ((|#1| $) 142)) (-1446 (((-819 (-519)) $) 148 (|has| |#1| (-560 (-819 (-519))))) (((-819 (-351)) $) 147 (|has| |#1| (-560 (-819 (-351))))) (((-495) $) 125 (|has| |#1| (-560 (-495)))) (((-351) $) 124 (|has| |#1| (-944))) (((-201) $) 123 (|has| |#1| (-944)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 134 (-4012 (|has| $ (-133)) (|has| |#1| (-836))))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-379 (-519))) 65) (($ |#1|) 181) (($ (-1082)) 129 (|has| |#1| (-959 (-1082))))) (-3773 (((-3 $ "failed") $) 126 (-3730 (|has| |#1| (-133)) (-4012 (|has| $ (-133)) (|has| |#1| (-836)))))) (-3594 (((-705)) 29)) (-3617 ((|#1| $) 136 (|has| |#1| (-504)))) (-1617 (((-108) $ $) 39)) (-1478 (($ $) 119 (|has| |#1| (-755)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 69)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $) 167 (|has| |#1| (-209))) (($ $ (-705)) 165 (|has| |#1| (-209))) (($ $ (-1082)) 160 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 159 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 158 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) 157 (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1586 (((-108) $ $) 115 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 114 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 116 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 113 (|has| |#1| (-782)))) (-1632 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 68)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 67) (($ (-379 (-519)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179))) +(((-916 |#1|) (-1194) (-511)) (T -916)) +((-1632 (*1 *1 *2 *2) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)))) (-2866 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)))) (-1534 (*1 *1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)))) (-2724 (*1 *1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)) (-4 *2 (-280)))) (-3326 (*1 *1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)) (-4 *2 (-280)))) (-3314 (*1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-504)) (-4 *2 (-511)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)) (-4 *2 (-504)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)) (-4 *2 (-504))))) +(-13 (-335) (-37 |t#1|) (-959 |t#1|) (-310 |t#1|) (-207 |t#1|) (-349 |t#1|) (-811 |t#1|) (-372 |t#1|) (-10 -8 (-15 -1632 ($ |t#1| |t#1|)) (-15 -2855 (|t#1| $)) (-15 -2866 (|t#1| $)) (-15 -1534 ($ $)) (-15 -2724 ($ $)) (IF (|has| |t#1| (-1058)) (-6 (-1058)) |%noBranch|) (IF (|has| |t#1| (-959 (-519))) (PROGN (-6 (-959 (-519))) (-6 (-959 (-379 (-519))))) |%noBranch|) (IF (|has| |t#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |t#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |t#1| (-944)) (-6 (-944)) |%noBranch|) (IF (|has| |t#1| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-959 (-1082))) (-6 (-959 (-1082))) |%noBranch|) (IF (|has| |t#1| (-280)) (PROGN (-15 -2157 (|t#1| $)) (-15 -3326 ($ $))) |%noBranch|) (IF (|has| |t#1| (-504)) (PROGN (-15 -3314 ($)) (-15 -3617 (|t#1| $)) (-15 -1525 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) . T) ((-560 (-201)) |has| |#1| (-944)) ((-560 (-351)) |has| |#1| (-944)) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-560 (-819 (-351))) |has| |#1| (-560 (-819 (-351)))) ((-560 (-819 (-519))) |has| |#1| (-560 (-819 (-519)))) ((-207 |#1|) . T) ((-209) |has| |#1| (-209)) ((-219) . T) ((-260 |#1| $) |has| |#1| (-260 |#1| |#1|)) ((-264) . T) ((-280) . T) ((-282 |#1|) |has| |#1| (-282 |#1|)) ((-335) . T) ((-310 |#1|) . T) ((-349 |#1|) . T) ((-372 |#1|) . T) ((-423) . T) ((-480 (-1082) |#1|) |has| |#1| (-480 (-1082) |#1|)) ((-480 |#1| |#1|) |has| |#1| (-282 |#1|)) ((-511) . T) ((-587 #0#) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-581 (-519)) |has| |#1| (-581 (-519))) ((-581 |#1|) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-661) . T) ((-725) |has| |#1| (-755)) ((-726) |has| |#1| (-755)) ((-728) |has| |#1| (-755)) ((-730) |has| |#1| (-755)) ((-755) |has| |#1| (-755)) ((-780) |has| |#1| (-755)) ((-782) -3730 (|has| |#1| (-782)) (|has| |#1| (-755))) ((-827 (-1082)) |has| |#1| (-827 (-1082))) ((-813 (-351)) |has| |#1| (-813 (-351))) ((-813 (-519)) |has| |#1| (-813 (-519))) ((-811 |#1|) . T) ((-836) |has| |#1| (-836)) ((-847) . T) ((-944) |has| |#1| (-944)) ((-959 (-379 (-519))) |has| |#1| (-959 (-519))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 (-1082)) |has| |#1| (-959 (-1082))) ((-959 |#1|) . T) ((-974 #0#) . T) ((-974 |#1|) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1058) |has| |#1| (-1058)) ((-1117) . T) ((-1121) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-3947 (($ (-1049 |#1| |#2|)) 11)) (-1377 (((-1049 |#1| |#2|) $) 12)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2598 ((|#2| $ (-216 |#1| |#2|)) 16)) (-2217 (((-790) $) NIL)) (-3602 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL))) +(((-917 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3947 ($ (-1049 |#1| |#2|))) (-15 -1377 ((-1049 |#1| |#2|) $)) (-15 -2598 (|#2| $ (-216 |#1| |#2|))))) (-848) (-335)) (T -917)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1049 *3 *4)) (-14 *3 (-848)) (-4 *4 (-335)) (-5 *1 (-917 *3 *4)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1049 *3 *4)) (-5 *1 (-917 *3 *4)) (-14 *3 (-848)) (-4 *4 (-335)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 (-216 *4 *2)) (-14 *4 (-848)) (-4 *2 (-335)) (-5 *1 (-917 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -3947 ($ (-1049 |#1| |#2|))) (-15 -1377 ((-1049 |#1| |#2|) $)) (-15 -2598 (|#2| $ (-216 |#1| |#2|))))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) 8)) (-2249 (($) 7 T CONST)) (-3064 (($ $) 46)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-2568 (((-705) $) 45)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4152 ((|#1| $) 39)) (-1846 (($ |#1| $) 40)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-3686 ((|#1| $) 44)) (-3212 ((|#1| $) 41)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3087 ((|#1| |#1| $) 48)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-1348 ((|#1| $) 47)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) 42)) (-3365 ((|#1| $) 43)) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-918 |#1|) (-1194) (-1117)) (T -918)) +((-3087 (*1 *2 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1117)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1117)))) (-3064 (*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1117)))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-705)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1117)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1117))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4221) (-15 -3087 (|t#1| |t#1| $)) (-15 -1348 (|t#1| $)) (-15 -3064 ($ $)) (-15 -2568 ((-705) $)) (-15 -3686 (|t#1| $)) (-15 -3365 (|t#1| $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-3569 (((-108) $) 42)) (-1301 (((-3 (-519) "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1499 (((-519) $) NIL) (((-379 (-519)) $) NIL) ((|#2| $) 43)) (-1631 (((-3 (-379 (-519)) "failed") $) 78)) (-2102 (((-108) $) 72)) (-2506 (((-379 (-519)) $) 76)) (-1568 (((-108) $) 41)) (-3681 ((|#2| $) 22)) (-1405 (($ (-1 |#2| |#2|) $) 19)) (-3151 (($ $) 61)) (-2181 (($ $) NIL) (($ $ (-705)) NIL) (($ $ (-1082)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1446 (((-495) $) 67)) (-3333 (($ $) 17)) (-2217 (((-790) $) 56) (($ (-519)) 38) (($ |#2|) 36) (($ (-379 (-519))) NIL)) (-3594 (((-705)) 10)) (-1478 ((|#2| $) 71)) (-1543 (((-108) $ $) 25)) (-1561 (((-108) $ $) 69)) (-1623 (($ $) 29) (($ $ $) 28)) (-1614 (($ $ $) 26)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL))) +(((-919 |#1| |#2|) (-10 -8 (-15 -2217 (|#1| (-379 (-519)))) (-15 -1561 ((-108) |#1| |#1|)) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 * (|#1| |#1| (-379 (-519)))) (-15 -3151 (|#1| |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1631 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2506 ((-379 (-519)) |#1|)) (-15 -2102 ((-108) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3681 (|#2| |#1|)) (-15 -3333 (|#1| |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 -3594 ((-705))) (-15 -1568 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 -3569 ((-108) |#1|)) (-15 * (|#1| (-848) |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) (-920 |#2|) (-157)) (T -919)) +((-3594 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-705)) (-5 *1 (-919 *3 *4)) (-4 *3 (-920 *4))))) +(-10 -8 (-15 -2217 (|#1| (-379 (-519)))) (-15 -1561 ((-108) |#1| |#1|)) (-15 * (|#1| (-379 (-519)) |#1|)) (-15 * (|#1| |#1| (-379 (-519)))) (-15 -3151 (|#1| |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1631 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2506 ((-379 (-519)) |#1|)) (-15 -2102 ((-108) |#1|)) (-15 -1478 (|#2| |#1|)) (-15 -3681 (|#2| |#1|)) (-15 -3333 (|#1| |#1|)) (-15 -1405 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -2217 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2217 (|#1| (-519))) (-15 -3594 ((-705))) (-15 -1568 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 * (|#1| (-705) |#1|)) (-15 -3569 ((-108) |#1|)) (-15 * (|#1| (-848) |#1|)) (-15 -1614 (|#1| |#1| |#1|)) (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1301 (((-3 (-519) "failed") $) 119 (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) 117 (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) 116)) (-1499 (((-519) $) 120 (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) 118 (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) 115)) (-1562 (((-625 (-519)) (-625 $)) 90 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 89 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 88) (((-625 |#1|) (-625 $)) 87)) (-4193 (((-3 $ "failed") $) 34)) (-1944 ((|#1| $) 80)) (-1631 (((-3 (-379 (-519)) "failed") $) 76 (|has| |#1| (-504)))) (-2102 (((-108) $) 78 (|has| |#1| (-504)))) (-2506 (((-379 (-519)) $) 77 (|has| |#1| (-504)))) (-3107 (($ |#1| |#1| |#1| |#1|) 81)) (-1568 (((-108) $) 31)) (-3681 ((|#1| $) 82)) (-2864 (($ $ $) 68 (|has| |#1| (-782)))) (-2489 (($ $ $) 67 (|has| |#1| (-782)))) (-1405 (($ (-1 |#1| |#1|) $) 91)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 73 (|has| |#1| (-335)))) (-2279 ((|#1| $) 83)) (-3501 ((|#1| $) 84)) (-2448 ((|#1| $) 85)) (-4139 (((-1029) $) 10)) (-2324 (($ $ (-585 |#1|) (-585 |#1|)) 97 (|has| |#1| (-282 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-282 |#1|))) (($ $ (-267 |#1|)) 95 (|has| |#1| (-282 |#1|))) (($ $ (-585 (-267 |#1|))) 94 (|has| |#1| (-282 |#1|))) (($ $ (-585 (-1082)) (-585 |#1|)) 93 (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-1082) |#1|) 92 (|has| |#1| (-480 (-1082) |#1|)))) (-2598 (($ $ |#1|) 98 (|has| |#1| (-260 |#1| |#1|)))) (-2181 (($ $) 114 (|has| |#1| (-209))) (($ $ (-705)) 112 (|has| |#1| (-209))) (($ $ (-1082)) 110 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 109 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 108 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) 107 (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1446 (((-495) $) 74 (|has| |#1| (-560 (-495))))) (-3333 (($ $) 86)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 37) (($ (-379 (-519))) 62 (-3730 (|has| |#1| (-335)) (|has| |#1| (-959 (-379 (-519))))))) (-3773 (((-3 $ "failed") $) 75 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1478 ((|#1| $) 79 (|has| |#1| (-977)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 72 (|has| |#1| (-335)))) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $) 113 (|has| |#1| (-209))) (($ $ (-705)) 111 (|has| |#1| (-209))) (($ $ (-1082)) 106 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 105 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 104 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) 103 (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1586 (((-108) $ $) 65 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 64 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 66 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 63 (|has| |#1| (-782)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 71 (|has| |#1| (-335)))) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-379 (-519))) 70 (|has| |#1| (-335))) (($ (-379 (-519)) $) 69 (|has| |#1| (-335))))) +(((-920 |#1|) (-1194) (-157)) (T -920)) +((-3333 (*1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157)))) (-3107 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157)))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157)) (-4 *2 (-977)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-108)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-379 (-519))))) (-1631 (*1 *2 *1) (|partial| -12 (-4 *1 (-920 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-379 (-519)))))) +(-13 (-37 |t#1|) (-383 |t#1|) (-207 |t#1|) (-310 |t#1|) (-349 |t#1|) (-10 -8 (-15 -3333 ($ $)) (-15 -2448 (|t#1| $)) (-15 -3501 (|t#1| $)) (-15 -2279 (|t#1| $)) (-15 -3681 (|t#1| $)) (-15 -3107 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1944 (|t#1| $)) (IF (|has| |t#1| (-264)) (-6 (-264)) |%noBranch|) (IF (|has| |t#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |t#1| (-335)) (-6 (-219)) |%noBranch|) (IF (|has| |t#1| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-977)) (-15 -1478 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-504)) (PROGN (-15 -2102 ((-108) $)) (-15 -2506 ((-379 (-519)) $)) (-15 -1631 ((-3 (-379 (-519)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) |has| |#1| (-335)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-335)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-335)) (|has| |#1| (-264))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-207 |#1|) . T) ((-209) |has| |#1| (-209)) ((-219) |has| |#1| (-335)) ((-260 |#1| $) |has| |#1| (-260 |#1| |#1|)) ((-264) -3730 (|has| |#1| (-335)) (|has| |#1| (-264))) ((-282 |#1|) |has| |#1| (-282 |#1|)) ((-310 |#1|) . T) ((-349 |#1|) . T) ((-383 |#1|) . T) ((-480 (-1082) |#1|) |has| |#1| (-480 (-1082) |#1|)) ((-480 |#1| |#1|) |has| |#1| (-282 |#1|)) ((-587 #0#) |has| |#1| (-335)) ((-587 |#1|) . T) ((-587 $) . T) ((-581 (-519)) |has| |#1| (-581 (-519))) ((-581 |#1|) . T) ((-652 #0#) |has| |#1| (-335)) ((-652 |#1|) . T) ((-661) . T) ((-782) |has| |#1| (-782)) ((-827 (-1082)) |has| |#1| (-827 (-1082))) ((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 |#1|) . T) ((-974 #0#) |has| |#1| (-335)) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-335)) (|has| |#1| (-264))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1405 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-921 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 (|#3| (-1 |#4| |#2|) |#1|))) (-920 |#2|) (-157) (-920 |#4|) (-157)) (T -921)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-920 *6)) (-5 *1 (-921 *4 *5 *2 *6)) (-4 *4 (-920 *5))))) +(-10 -7 (-15 -1405 (|#3| (-1 |#4| |#2|) |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-1944 ((|#1| $) 12)) (-1631 (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-504)))) (-2102 (((-108) $) NIL (|has| |#1| (-504)))) (-2506 (((-379 (-519)) $) NIL (|has| |#1| (-504)))) (-3107 (($ |#1| |#1| |#1| |#1|) 16)) (-1568 (((-108) $) NIL)) (-3681 ((|#1| $) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL (|has| |#1| (-335)))) (-2279 ((|#1| $) 15)) (-3501 ((|#1| $) 14)) (-2448 ((|#1| $) 13)) (-4139 (((-1029) $) NIL)) (-2324 (($ $ (-585 |#1|) (-585 |#1|)) NIL (|has| |#1| (-282 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-282 |#1|))) (($ $ (-267 |#1|)) NIL (|has| |#1| (-282 |#1|))) (($ $ (-585 (-267 |#1|))) NIL (|has| |#1| (-282 |#1|))) (($ $ (-585 (-1082)) (-585 |#1|)) NIL (|has| |#1| (-480 (-1082) |#1|))) (($ $ (-1082) |#1|) NIL (|has| |#1| (-480 (-1082) |#1|)))) (-2598 (($ $ |#1|) NIL (|has| |#1| (-260 |#1| |#1|)))) (-2181 (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-3333 (($ $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-335)) (|has| |#1| (-959 (-379 (-519))))))) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-1478 ((|#1| $) NIL (|has| |#1| (-977)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (-3602 (($) 8 T CONST)) (-3611 (($) 10 T CONST)) (-2242 (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-379 (-519))) NIL (|has| |#1| (-335))) (($ (-379 (-519)) $) NIL (|has| |#1| (-335))))) +(((-922 |#1|) (-920 |#1|) (-157)) (T -922)) +NIL +(-920 |#1|) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1473 (((-108) $ (-705)) NIL)) (-2249 (($) NIL T CONST)) (-3064 (($ $) 20)) (-4033 (($ (-585 |#1|)) 29)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-2568 (((-705) $) 22)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4152 ((|#1| $) 24)) (-1846 (($ |#1| $) 15)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-3686 ((|#1| $) 23)) (-3212 ((|#1| $) 19)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3087 ((|#1| |#1| $) 14)) (-3108 (((-108) $) 17)) (-1548 (($) NIL)) (-1348 ((|#1| $) 18)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) NIL)) (-3365 ((|#1| $) 26)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-923 |#1|) (-13 (-918 |#1|) (-10 -8 (-15 -4033 ($ (-585 |#1|))))) (-1011)) (T -923)) +((-4033 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-923 *3))))) +(-13 (-918 |#1|) (-10 -8 (-15 -4033 ($ (-585 |#1|))))) +((-1934 (($ $) 12)) (-1517 (($ $ (-519)) 13))) +(((-924 |#1|) (-10 -8 (-15 -1934 (|#1| |#1|)) (-15 -1517 (|#1| |#1| (-519)))) (-925)) (T -924)) +NIL +(-10 -8 (-15 -1934 (|#1| |#1|)) (-15 -1517 (|#1| |#1| (-519)))) +((-1934 (($ $) 6)) (-1517 (($ $ (-519)) 7)) (** (($ $ (-379 (-519))) 8))) +(((-925) (-1194)) (T -925)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-379 (-519))))) (-1517 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-519)))) (-1934 (*1 *1 *1) (-4 *1 (-925)))) +(-13 (-10 -8 (-15 -1934 ($ $)) (-15 -1517 ($ $ (-519))) (-15 ** ($ $ (-379 (-519)))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4108 (((-2 (|:| |num| (-1163 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| (-379 |#2|) (-335)))) (-1410 (($ $) NIL (|has| (-379 |#2|) (-335)))) (-3060 (((-108) $) NIL (|has| (-379 |#2|) (-335)))) (-2935 (((-625 (-379 |#2|)) (-1163 $)) NIL) (((-625 (-379 |#2|))) NIL)) (-1871 (((-379 |#2|) $) NIL)) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| (-379 |#2|) (-321)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL (|has| (-379 |#2|) (-335)))) (-3093 (((-390 $) $) NIL (|has| (-379 |#2|) (-335)))) (-3409 (((-108) $ $) NIL (|has| (-379 |#2|) (-335)))) (-1642 (((-705)) NIL (|has| (-379 |#2|) (-340)))) (-3222 (((-108)) NIL)) (-1654 (((-108) |#1|) 147) (((-108) |#2|) 152)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| (-379 |#2|) (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| (-379 |#2|) (-959 (-379 (-519))))) (((-3 (-379 |#2|) "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| (-379 |#2|) (-959 (-519)))) (((-379 (-519)) $) NIL (|has| (-379 |#2|) (-959 (-379 (-519))))) (((-379 |#2|) $) NIL)) (-2528 (($ (-1163 (-379 |#2|)) (-1163 $)) NIL) (($ (-1163 (-379 |#2|))) 70) (($ (-1163 |#2|) |#2|) NIL)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-379 |#2|) (-321)))) (-2311 (($ $ $) NIL (|has| (-379 |#2|) (-335)))) (-3771 (((-625 (-379 |#2|)) $ (-1163 $)) NIL) (((-625 (-379 |#2|)) $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| (-379 |#2|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| (-379 |#2|) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-379 |#2|))) (|:| |vec| (-1163 (-379 |#2|)))) (-625 $) (-1163 $)) NIL) (((-625 (-379 |#2|)) (-625 $)) NIL)) (-1971 (((-1163 $) (-1163 $)) NIL)) (-3874 (($ |#3|) 65) (((-3 $ "failed") (-379 |#3|)) NIL (|has| (-379 |#2|) (-335)))) (-4193 (((-3 $ "failed") $) NIL)) (-1279 (((-585 (-585 |#1|))) NIL (|has| |#1| (-340)))) (-2325 (((-108) |#1| |#1|) NIL)) (-3229 (((-848)) NIL)) (-3314 (($) NIL (|has| (-379 |#2|) (-340)))) (-2295 (((-108)) NIL)) (-2987 (((-108) |#1|) 56) (((-108) |#2|) 149)) (-2286 (($ $ $) NIL (|has| (-379 |#2|) (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| (-379 |#2|) (-335)))) (-2177 (($ $) NIL)) (-1625 (($) NIL (|has| (-379 |#2|) (-321)))) (-4156 (((-108) $) NIL (|has| (-379 |#2|) (-321)))) (-3824 (($ $ (-705)) NIL (|has| (-379 |#2|) (-321))) (($ $) NIL (|has| (-379 |#2|) (-321)))) (-1320 (((-108) $) NIL (|has| (-379 |#2|) (-335)))) (-3709 (((-848) $) NIL (|has| (-379 |#2|) (-321))) (((-768 (-848)) $) NIL (|has| (-379 |#2|) (-321)))) (-1568 (((-108) $) NIL)) (-1323 (((-705)) NIL)) (-3430 (((-1163 $) (-1163 $)) NIL)) (-3681 (((-379 |#2|) $) NIL)) (-3567 (((-585 (-879 |#1|)) (-1082)) NIL (|has| |#1| (-335)))) (-1675 (((-3 $ "failed") $) NIL (|has| (-379 |#2|) (-321)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| (-379 |#2|) (-335)))) (-3437 ((|#3| $) NIL (|has| (-379 |#2|) (-335)))) (-3334 (((-848) $) NIL (|has| (-379 |#2|) (-340)))) (-3860 ((|#3| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| (-379 |#2|) (-335))) (($ $ $) NIL (|has| (-379 |#2|) (-335)))) (-1266 (((-1065) $) NIL)) (-1269 (((-625 (-379 |#2|))) 52)) (-3158 (((-625 (-379 |#2|))) 51)) (-3151 (($ $) NIL (|has| (-379 |#2|) (-335)))) (-3923 (($ (-1163 |#2|) |#2|) 71)) (-3206 (((-625 (-379 |#2|))) 50)) (-2973 (((-625 (-379 |#2|))) 49)) (-2274 (((-2 (|:| |num| (-625 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1683 (((-2 (|:| |num| (-1163 |#2|)) (|:| |den| |#2|)) $) 77)) (-3534 (((-1163 $)) 46)) (-3668 (((-1163 $)) 45)) (-3760 (((-108) $) NIL)) (-2760 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3816 (($) NIL (|has| (-379 |#2|) (-321)) CONST)) (-2770 (($ (-848)) NIL (|has| (-379 |#2|) (-340)))) (-3413 (((-3 |#2| "failed")) 63)) (-4139 (((-1029) $) NIL)) (-3794 (((-705)) NIL)) (-1397 (($) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| (-379 |#2|) (-335)))) (-2292 (($ (-585 $)) NIL (|has| (-379 |#2|) (-335))) (($ $ $) NIL (|has| (-379 |#2|) (-335)))) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| (-379 |#2|) (-321)))) (-1921 (((-390 $) $) NIL (|has| (-379 |#2|) (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-379 |#2|) (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| (-379 |#2|) (-335)))) (-2261 (((-3 $ "failed") $ $) NIL (|has| (-379 |#2|) (-335)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| (-379 |#2|) (-335)))) (-3129 (((-705) $) NIL (|has| (-379 |#2|) (-335)))) (-2598 ((|#1| $ |#1| |#1|) NIL)) (-2391 (((-3 |#2| "failed")) 62)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| (-379 |#2|) (-335)))) (-3677 (((-379 |#2|) (-1163 $)) NIL) (((-379 |#2|)) 42)) (-2867 (((-705) $) NIL (|has| (-379 |#2|) (-321))) (((-3 (-705) "failed") $ $) NIL (|has| (-379 |#2|) (-321)))) (-2181 (($ $ (-1 (-379 |#2|) (-379 |#2|)) (-705)) NIL (|has| (-379 |#2|) (-335))) (($ $ (-1 (-379 |#2|) (-379 |#2|))) NIL (|has| (-379 |#2|) (-335))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-705)) NIL (-3730 (-12 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321)))) (($ $) NIL (-3730 (-12 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321))))) (-1611 (((-625 (-379 |#2|)) (-1163 $) (-1 (-379 |#2|) (-379 |#2|))) NIL (|has| (-379 |#2|) (-335)))) (-1462 ((|#3|) 53)) (-3132 (($) NIL (|has| (-379 |#2|) (-321)))) (-3399 (((-1163 (-379 |#2|)) $ (-1163 $)) NIL) (((-625 (-379 |#2|)) (-1163 $) (-1163 $)) NIL) (((-1163 (-379 |#2|)) $) 72) (((-625 (-379 |#2|)) (-1163 $)) NIL)) (-1446 (((-1163 (-379 |#2|)) $) NIL) (($ (-1163 (-379 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| (-379 |#2|) (-321)))) (-1477 (((-1163 $) (-1163 $)) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ (-379 |#2|)) NIL) (($ (-379 (-519))) NIL (-3730 (|has| (-379 |#2|) (-959 (-379 (-519)))) (|has| (-379 |#2|) (-335)))) (($ $) NIL (|has| (-379 |#2|) (-335)))) (-3773 (($ $) NIL (|has| (-379 |#2|) (-321))) (((-3 $ "failed") $) NIL (|has| (-379 |#2|) (-133)))) (-2165 ((|#3| $) NIL)) (-3594 (((-705)) NIL)) (-4171 (((-108)) 60)) (-3122 (((-108) |#1|) 153) (((-108) |#2|) 154)) (-2070 (((-1163 $)) 124)) (-1617 (((-108) $ $) NIL (|has| (-379 |#2|) (-335)))) (-3260 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3588 (((-108)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| (-379 |#2|) (-335)))) (-3602 (($) 94 T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-1 (-379 |#2|) (-379 |#2|)) (-705)) NIL (|has| (-379 |#2|) (-335))) (($ $ (-1 (-379 |#2|) (-379 |#2|))) NIL (|has| (-379 |#2|) (-335))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| (-379 |#2|) (-335)) (|has| (-379 |#2|) (-827 (-1082))))) (($ $ (-705)) NIL (-3730 (-12 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321)))) (($ $) NIL (-3730 (-12 (|has| (-379 |#2|) (-209)) (|has| (-379 |#2|) (-335))) (|has| (-379 |#2|) (-321))))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ $) NIL (|has| (-379 |#2|) (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| (-379 |#2|) (-335)))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 |#2|)) NIL) (($ (-379 |#2|) $) NIL) (($ (-379 (-519)) $) NIL (|has| (-379 |#2|) (-335))) (($ $ (-379 (-519))) NIL (|has| (-379 |#2|) (-335))))) +(((-926 |#1| |#2| |#3| |#4| |#5|) (-314 |#1| |#2| |#3|) (-1121) (-1139 |#1|) (-1139 (-379 |#2|)) (-379 |#2|) (-705)) (T -926)) +NIL +(-314 |#1| |#2| |#3|) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3712 (((-585 (-519)) $) 54)) (-3511 (($ (-585 (-519))) 62)) (-2157 (((-519) $) 40 (|has| (-519) (-280)))) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL (|has| (-519) (-755)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) 49) (((-3 (-1082) "failed") $) NIL (|has| (-519) (-959 (-1082)))) (((-3 (-379 (-519)) "failed") $) 47 (|has| (-519) (-959 (-519)))) (((-3 (-519) "failed") $) 49 (|has| (-519) (-959 (-519))))) (-1499 (((-519) $) NIL) (((-1082) $) NIL (|has| (-519) (-959 (-1082)))) (((-379 (-519)) $) NIL (|has| (-519) (-959 (-519)))) (((-519) $) NIL (|has| (-519) (-959 (-519))))) (-2311 (($ $ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| (-519) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| (-519) (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-625 (-519)) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3314 (($) NIL (|has| (-519) (-504)))) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-2095 (((-585 (-519)) $) 60)) (-3419 (((-108) $) NIL (|has| (-519) (-755)))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (|has| (-519) (-813 (-519)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (|has| (-519) (-813 (-351))))) (-1568 (((-108) $) NIL)) (-1534 (($ $) NIL)) (-2855 (((-519) $) 37)) (-1675 (((-3 $ "failed") $) NIL (|has| (-519) (-1058)))) (-2143 (((-108) $) NIL (|has| (-519) (-755)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| (-519) (-782)))) (-1405 (($ (-1 (-519) (-519)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL)) (-3816 (($) NIL (|has| (-519) (-1058)) CONST)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-3326 (($ $) NIL (|has| (-519) (-280))) (((-379 (-519)) $) 42)) (-1338 (((-1063 (-519)) $) 59)) (-2337 (($ (-585 (-519)) (-585 (-519))) 63)) (-1525 (((-519) $) 53 (|has| (-519) (-504)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| (-519) (-836)))) (-1921 (((-390 $) $) NIL)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2324 (($ $ (-585 (-519)) (-585 (-519))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-519) (-519)) NIL (|has| (-519) (-282 (-519)))) (($ $ (-267 (-519))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-585 (-267 (-519)))) NIL (|has| (-519) (-282 (-519)))) (($ $ (-585 (-1082)) (-585 (-519))) NIL (|has| (-519) (-480 (-1082) (-519)))) (($ $ (-1082) (-519)) NIL (|has| (-519) (-480 (-1082) (-519))))) (-3129 (((-705) $) NIL)) (-2598 (($ $ (-519)) NIL (|has| (-519) (-260 (-519) (-519))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2181 (($ $) 11 (|has| (-519) (-209))) (($ $ (-705)) NIL (|has| (-519) (-209))) (($ $ (-1082)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1 (-519) (-519)) (-705)) NIL) (($ $ (-1 (-519) (-519))) NIL)) (-2724 (($ $) NIL)) (-2866 (((-519) $) 39)) (-2879 (((-585 (-519)) $) 61)) (-1446 (((-819 (-519)) $) NIL (|has| (-519) (-560 (-819 (-519))))) (((-819 (-351)) $) NIL (|has| (-519) (-560 (-819 (-351))))) (((-495) $) NIL (|has| (-519) (-560 (-495)))) (((-351) $) NIL (|has| (-519) (-944))) (((-201) $) NIL (|has| (-519) (-944)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| (-519) (-836))))) (-2217 (((-790) $) 77) (($ (-519)) 43) (($ $) NIL) (($ (-379 (-519))) 19) (($ (-519)) 43) (($ (-1082)) NIL (|has| (-519) (-959 (-1082)))) (((-379 (-519)) $) 17)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| (-519) (-836))) (|has| (-519) (-133))))) (-3594 (((-705)) 9)) (-3617 (((-519) $) 51 (|has| (-519) (-504)))) (-1617 (((-108) $ $) NIL)) (-1478 (($ $) NIL (|has| (-519) (-755)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 10 T CONST)) (-3611 (($) 12 T CONST)) (-2242 (($ $) NIL (|has| (-519) (-209))) (($ $ (-705)) NIL (|has| (-519) (-209))) (($ $ (-1082)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| (-519) (-827 (-1082)))) (($ $ (-1 (-519) (-519)) (-705)) NIL) (($ $ (-1 (-519) (-519))) NIL)) (-1586 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1569 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1543 (((-108) $ $) 14)) (-1578 (((-108) $ $) NIL (|has| (-519) (-782)))) (-1561 (((-108) $ $) 33 (|has| (-519) (-782)))) (-1632 (($ $ $) 29) (($ (-519) (-519)) 31)) (-1623 (($ $) 15) (($ $ $) 22)) (-1614 (($ $ $) 20)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 25) (($ $ $) 27) (($ $ (-379 (-519))) NIL) (($ (-379 (-519)) $) NIL) (($ (-519) $) 25) (($ $ (-519)) NIL))) +(((-927 |#1|) (-13 (-916 (-519)) (-10 -8 (-15 -2217 ((-379 (-519)) $)) (-15 -3326 ((-379 (-519)) $)) (-15 -3712 ((-585 (-519)) $)) (-15 -1338 ((-1063 (-519)) $)) (-15 -2095 ((-585 (-519)) $)) (-15 -2879 ((-585 (-519)) $)) (-15 -3511 ($ (-585 (-519)))) (-15 -2337 ($ (-585 (-519)) (-585 (-519)))))) (-519)) (T -927)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-1063 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519)))) (-2337 (*1 *1 *2 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519))))) +(-13 (-916 (-519)) (-10 -8 (-15 -2217 ((-379 (-519)) $)) (-15 -3326 ((-379 (-519)) $)) (-15 -3712 ((-585 (-519)) $)) (-15 -1338 ((-1063 (-519)) $)) (-15 -2095 ((-585 (-519)) $)) (-15 -2879 ((-585 (-519)) $)) (-15 -3511 ($ (-585 (-519)))) (-15 -2337 ($ (-585 (-519)) (-585 (-519)))))) +((-4176 (((-51) (-379 (-519)) (-519)) 9))) +(((-928) (-10 -7 (-15 -4176 ((-51) (-379 (-519)) (-519))))) (T -928)) +((-4176 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-519))) (-5 *4 (-519)) (-5 *2 (-51)) (-5 *1 (-928))))) +(-10 -7 (-15 -4176 ((-51) (-379 (-519)) (-519)))) +((-1642 (((-519)) 13)) (-2162 (((-519)) 16)) (-3558 (((-1168) (-519)) 15)) (-3202 (((-519) (-519)) 17) (((-519)) 12))) +(((-929) (-10 -7 (-15 -3202 ((-519))) (-15 -1642 ((-519))) (-15 -3202 ((-519) (-519))) (-15 -3558 ((-1168) (-519))) (-15 -2162 ((-519))))) (T -929)) +((-2162 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-929)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-929)))) (-3202 (*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-929)))) (-1642 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-929)))) (-3202 (*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-929))))) +(-10 -7 (-15 -3202 ((-519))) (-15 -1642 ((-519))) (-15 -3202 ((-519) (-519))) (-15 -3558 ((-1168) (-519))) (-15 -2162 ((-519)))) +((-2496 (((-390 |#1|) |#1|) 40)) (-1921 (((-390 |#1|) |#1|) 39))) +(((-930 |#1|) (-10 -7 (-15 -1921 ((-390 |#1|) |#1|)) (-15 -2496 ((-390 |#1|) |#1|))) (-1139 (-379 (-519)))) (T -930)) +((-2496 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-930 *3)) (-4 *3 (-1139 (-379 (-519)))))) (-1921 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-930 *3)) (-4 *3 (-1139 (-379 (-519))))))) +(-10 -7 (-15 -1921 ((-390 |#1|) |#1|)) (-15 -2496 ((-390 |#1|) |#1|))) +((-1631 (((-3 (-379 (-519)) "failed") |#1|) 14)) (-2102 (((-108) |#1|) 13)) (-2506 (((-379 (-519)) |#1|) 9))) +(((-931 |#1|) (-10 -7 (-15 -2506 ((-379 (-519)) |#1|)) (-15 -2102 ((-108) |#1|)) (-15 -1631 ((-3 (-379 (-519)) "failed") |#1|))) (-959 (-379 (-519)))) (T -931)) +((-1631 (*1 *2 *3) (|partial| -12 (-5 *2 (-379 (-519))) (-5 *1 (-931 *3)) (-4 *3 (-959 *2)))) (-2102 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-931 *3)) (-4 *3 (-959 (-379 (-519)))))) (-2506 (*1 *2 *3) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-931 *3)) (-4 *3 (-959 *2))))) +(-10 -7 (-15 -2506 ((-379 (-519)) |#1|)) (-15 -2102 ((-108) |#1|)) (-15 -1631 ((-3 (-379 (-519)) "failed") |#1|))) +((-2421 ((|#2| $ "value" |#2|) 12)) (-2598 ((|#2| $ "value") 10)) (-2915 (((-108) $ $) 18))) +(((-932 |#1| |#2|) (-10 -8 (-15 -2421 (|#2| |#1| "value" |#2|)) (-15 -2915 ((-108) |#1| |#1|)) (-15 -2598 (|#2| |#1| "value"))) (-933 |#2|) (-1117)) (T -932)) +NIL +(-10 -8 (-15 -2421 (|#2| |#1| "value" |#2|)) (-15 -2915 ((-108) |#1| |#1|)) (-15 -2598 (|#2| |#1| "value"))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3493 ((|#1| $) 48)) (-1473 (((-108) $ (-705)) 8)) (-2410 ((|#1| $ |#1|) 39 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) 41 (|has| $ (-6 -4222)))) (-2249 (($) 7 T CONST)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) 50)) (-3458 (((-108) $ $) 42 (|has| |#1| (-1011)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1281 (((-585 |#1|) $) 45)) (-1668 (((-108) $) 49)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ "value") 47)) (-1763 (((-519) $ $) 44)) (-3096 (((-108) $) 46)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) 51)) (-2915 (((-108) $ $) 43 (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-933 |#1|) (-1194) (-1117)) (T -933)) +((-2018 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-5 *2 (-585 *1)) (-4 *1 (-933 *3)))) (-3393 (*1 *2 *1) (-12 (-4 *3 (-1117)) (-5 *2 (-585 *1)) (-4 *1 (-933 *3)))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-5 *2 (-108)))) (-3493 (*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-1117)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-933 *2)) (-4 *2 (-1117)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-5 *2 (-108)))) (-1281 (*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-5 *2 (-585 *3)))) (-1763 (*1 *2 *1 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-5 *2 (-519)))) (-2915 (*1 *2 *1 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-4 *3 (-1011)) (-5 *2 (-108)))) (-3458 (*1 *2 *1 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-4 *3 (-1011)) (-5 *2 (-108)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *1)) (|has| *1 (-6 -4222)) (-4 *1 (-933 *3)) (-4 *3 (-1117)))) (-2421 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4222)) (-4 *1 (-933 *2)) (-4 *2 (-1117)))) (-2410 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-933 *2)) (-4 *2 (-1117))))) +(-13 (-458 |t#1|) (-10 -8 (-15 -2018 ((-585 $) $)) (-15 -3393 ((-585 $) $)) (-15 -1668 ((-108) $)) (-15 -3493 (|t#1| $)) (-15 -2598 (|t#1| $ "value")) (-15 -3096 ((-108) $)) (-15 -1281 ((-585 |t#1|) $)) (-15 -1763 ((-519) $ $)) (IF (|has| |t#1| (-1011)) (PROGN (-15 -2915 ((-108) $ $)) (-15 -3458 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4222)) (PROGN (-15 -1659 ($ $ (-585 $))) (-15 -2421 (|t#1| $ "value" |t#1|)) (-15 -2410 (|t#1| $ |t#1|))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-1934 (($ $) 9) (($ $ (-705)) 43) (($ (-379 (-519))) 12) (($ (-519)) 15)) (-4027 (((-3 $ "failed") (-1078 $) (-848) (-790)) 23) (((-3 $ "failed") (-1078 $) (-848)) 28)) (-1517 (($ $ (-519)) 49)) (-3594 (((-705)) 16)) (-2721 (((-585 $) (-1078 $)) NIL) (((-585 $) (-1078 (-379 (-519)))) 54) (((-585 $) (-1078 (-519))) 59) (((-585 $) (-879 $)) 63) (((-585 $) (-879 (-379 (-519)))) 67) (((-585 $) (-879 (-519))) 71)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL) (($ $ (-379 (-519))) 47))) +(((-934 |#1|) (-10 -8 (-15 -1934 (|#1| (-519))) (-15 -1934 (|#1| (-379 (-519)))) (-15 -1934 (|#1| |#1| (-705))) (-15 -2721 ((-585 |#1|) (-879 (-519)))) (-15 -2721 ((-585 |#1|) (-879 (-379 (-519))))) (-15 -2721 ((-585 |#1|) (-879 |#1|))) (-15 -2721 ((-585 |#1|) (-1078 (-519)))) (-15 -2721 ((-585 |#1|) (-1078 (-379 (-519))))) (-15 -2721 ((-585 |#1|) (-1078 |#1|))) (-15 -4027 ((-3 |#1| "failed") (-1078 |#1|) (-848))) (-15 -4027 ((-3 |#1| "failed") (-1078 |#1|) (-848) (-790))) (-15 ** (|#1| |#1| (-379 (-519)))) (-15 -1517 (|#1| |#1| (-519))) (-15 -1934 (|#1| |#1|)) (-15 ** (|#1| |#1| (-519))) (-15 -3594 ((-705))) (-15 ** (|#1| |#1| (-705))) (-15 ** (|#1| |#1| (-848)))) (-935)) (T -934)) +((-3594 (*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-934 *3)) (-4 *3 (-935))))) +(-10 -8 (-15 -1934 (|#1| (-519))) (-15 -1934 (|#1| (-379 (-519)))) (-15 -1934 (|#1| |#1| (-705))) (-15 -2721 ((-585 |#1|) (-879 (-519)))) (-15 -2721 ((-585 |#1|) (-879 (-379 (-519))))) (-15 -2721 ((-585 |#1|) (-879 |#1|))) (-15 -2721 ((-585 |#1|) (-1078 (-519)))) (-15 -2721 ((-585 |#1|) (-1078 (-379 (-519))))) (-15 -2721 ((-585 |#1|) (-1078 |#1|))) (-15 -4027 ((-3 |#1| "failed") (-1078 |#1|) (-848))) (-15 -4027 ((-3 |#1| "failed") (-1078 |#1|) (-848) (-790))) (-15 ** (|#1| |#1| (-379 (-519)))) (-15 -1517 (|#1| |#1| (-519))) (-15 -1934 (|#1| |#1|)) (-15 ** (|#1| |#1| (-519))) (-15 -3594 ((-705))) (-15 ** (|#1| |#1| (-705))) (-15 ** (|#1| |#1| (-848)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 89)) (-1410 (($ $) 90)) (-3060 (((-108) $) 92)) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 109)) (-3093 (((-390 $) $) 110)) (-1934 (($ $) 73) (($ $ (-705)) 59) (($ (-379 (-519))) 58) (($ (-519)) 57)) (-3409 (((-108) $ $) 100)) (-2287 (((-519) $) 127)) (-2249 (($) 17 T CONST)) (-4027 (((-3 $ "failed") (-1078 $) (-848) (-790)) 67) (((-3 $ "failed") (-1078 $) (-848)) 66)) (-1301 (((-3 (-519) "failed") $) 85 (|has| (-379 (-519)) (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) 83 (|has| (-379 (-519)) (-959 (-379 (-519))))) (((-3 (-379 (-519)) "failed") $) 81)) (-1499 (((-519) $) 86 (|has| (-379 (-519)) (-959 (-519)))) (((-379 (-519)) $) 84 (|has| (-379 (-519)) (-959 (-379 (-519))))) (((-379 (-519)) $) 80)) (-3217 (($ $ (-790)) 56)) (-1755 (($ $ (-790)) 55)) (-2311 (($ $ $) 104)) (-4193 (((-3 $ "failed") $) 34)) (-2286 (($ $ $) 103)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 98)) (-1320 (((-108) $) 111)) (-3419 (((-108) $) 125)) (-1568 (((-108) $) 31)) (-1517 (($ $ (-519)) 72)) (-2143 (((-108) $) 126)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 107)) (-2864 (($ $ $) 124)) (-2489 (($ $ $) 123)) (-2507 (((-3 (-1078 $) "failed") $) 68)) (-3180 (((-3 (-790) "failed") $) 70)) (-1401 (((-3 (-1078 $) "failed") $) 69)) (-2254 (($ (-585 $)) 96) (($ $ $) 95)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 112)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 97)) (-2292 (($ (-585 $)) 94) (($ $ $) 93)) (-1921 (((-390 $) $) 108)) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 105)) (-2261 (((-3 $ "failed") $ $) 88)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 99)) (-3129 (((-705) $) 101)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 102)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ (-379 (-519))) 117) (($ $) 87) (($ (-379 (-519))) 82) (($ (-519)) 79) (($ (-379 (-519))) 76)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 91)) (-3905 (((-379 (-519)) $ $) 54)) (-2721 (((-585 $) (-1078 $)) 65) (((-585 $) (-1078 (-379 (-519)))) 64) (((-585 $) (-1078 (-519))) 63) (((-585 $) (-879 $)) 62) (((-585 $) (-879 (-379 (-519)))) 61) (((-585 $) (-879 (-519))) 60)) (-1478 (($ $) 128)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 113)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1586 (((-108) $ $) 121)) (-1569 (((-108) $ $) 120)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 122)) (-1561 (((-108) $ $) 119)) (-1632 (($ $ $) 118)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 114) (($ $ (-379 (-519))) 71)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ (-379 (-519)) $) 116) (($ $ (-379 (-519))) 115) (($ (-519) $) 78) (($ $ (-519)) 77) (($ (-379 (-519)) $) 75) (($ $ (-379 (-519))) 74))) +(((-935) (-1194)) (T -935)) +((-1934 (*1 *1 *1) (-4 *1 (-935))) (-3180 (*1 *2 *1) (|partial| -12 (-4 *1 (-935)) (-5 *2 (-790)))) (-1401 (*1 *2 *1) (|partial| -12 (-5 *2 (-1078 *1)) (-4 *1 (-935)))) (-2507 (*1 *2 *1) (|partial| -12 (-5 *2 (-1078 *1)) (-4 *1 (-935)))) (-4027 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1078 *1)) (-5 *3 (-848)) (-5 *4 (-790)) (-4 *1 (-935)))) (-4027 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1078 *1)) (-5 *3 (-848)) (-4 *1 (-935)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-1078 *1)) (-4 *1 (-935)) (-5 *2 (-585 *1)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-1078 (-379 (-519)))) (-5 *2 (-585 *1)) (-4 *1 (-935)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-1078 (-519))) (-5 *2 (-585 *1)) (-4 *1 (-935)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-879 *1)) (-4 *1 (-935)) (-5 *2 (-585 *1)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-879 (-379 (-519)))) (-5 *2 (-585 *1)) (-4 *1 (-935)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-879 (-519))) (-5 *2 (-585 *1)) (-4 *1 (-935)))) (-1934 (*1 *1 *1 *2) (-12 (-4 *1 (-935)) (-5 *2 (-705)))) (-1934 (*1 *1 *2) (-12 (-5 *2 (-379 (-519))) (-4 *1 (-935)))) (-1934 (*1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-935)))) (-3217 (*1 *1 *1 *2) (-12 (-4 *1 (-935)) (-5 *2 (-790)))) (-1755 (*1 *1 *1 *2) (-12 (-4 *1 (-935)) (-5 *2 (-790)))) (-3905 (*1 *2 *1 *1) (-12 (-4 *1 (-935)) (-5 *2 (-379 (-519)))))) +(-13 (-135) (-780) (-157) (-335) (-383 (-379 (-519))) (-37 (-519)) (-37 (-379 (-519))) (-925) (-10 -8 (-15 -3180 ((-3 (-790) "failed") $)) (-15 -1401 ((-3 (-1078 $) "failed") $)) (-15 -2507 ((-3 (-1078 $) "failed") $)) (-15 -4027 ((-3 $ "failed") (-1078 $) (-848) (-790))) (-15 -4027 ((-3 $ "failed") (-1078 $) (-848))) (-15 -2721 ((-585 $) (-1078 $))) (-15 -2721 ((-585 $) (-1078 (-379 (-519))))) (-15 -2721 ((-585 $) (-1078 (-519)))) (-15 -2721 ((-585 $) (-879 $))) (-15 -2721 ((-585 $) (-879 (-379 (-519))))) (-15 -2721 ((-585 $) (-879 (-519)))) (-15 -1934 ($ $ (-705))) (-15 -1934 ($ $)) (-15 -1934 ($ (-379 (-519)))) (-15 -1934 ($ (-519))) (-15 -3217 ($ $ (-790))) (-15 -1755 ($ $ (-790))) (-15 -3905 ((-379 (-519)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-37 #1=(-519)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-559 (-790)) . T) ((-157) . T) ((-219) . T) ((-264) . T) ((-280) . T) ((-335) . T) ((-383 (-379 (-519))) . T) ((-423) . T) ((-511) . T) ((-587 #0#) . T) ((-587 #1#) . T) ((-587 $) . T) ((-652 #0#) . T) ((-652 #1#) . T) ((-652 $) . T) ((-661) . T) ((-725) . T) ((-726) . T) ((-728) . T) ((-730) . T) ((-780) . T) ((-782) . T) ((-847) . T) ((-925) . T) ((-959 (-379 (-519))) . T) ((-959 (-519)) |has| (-379 (-519)) (-959 (-519))) ((-974 #0#) . T) ((-974 #1#) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1121) . T)) +((-3643 (((-2 (|:| |ans| |#2|) (|:| -1931 |#2|) (|:| |sol?| (-108))) (-519) |#2| |#2| (-1082) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62))) +(((-936 |#1| |#2|) (-10 -7 (-15 -3643 ((-2 (|:| |ans| |#2|) (|:| -1931 |#2|) (|:| |sol?| (-108))) (-519) |#2| |#2| (-1082) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519))) (-13 (-1103) (-27) (-402 |#1|))) (T -936)) +((-3643 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1082)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-585 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1265 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1103) (-27) (-402 *8))) (-4 *8 (-13 (-423) (-782) (-135) (-959 *3) (-581 *3))) (-5 *3 (-519)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1931 *4) (|:| |sol?| (-108)))) (-5 *1 (-936 *8 *4))))) +(-10 -7 (-15 -3643 ((-2 (|:| |ans| |#2|) (|:| -1931 |#2|) (|:| |sol?| (-108))) (-519) |#2| |#2| (-1082) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3519 (((-3 (-585 |#2|) "failed") (-519) |#2| |#2| |#2| (-1082) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47))) +(((-937 |#1| |#2|) (-10 -7 (-15 -3519 ((-3 (-585 |#2|) "failed") (-519) |#2| |#2| |#2| (-1082) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519))) (-13 (-1103) (-27) (-402 |#1|))) (T -937)) +((-3519 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1082)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-585 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1265 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1103) (-27) (-402 *8))) (-4 *8 (-13 (-423) (-782) (-135) (-959 *3) (-581 *3))) (-5 *3 (-519)) (-5 *2 (-585 *4)) (-5 *1 (-937 *8 *4))))) +(-10 -7 (-15 -3519 ((-3 (-585 |#2|) "failed") (-519) |#2| |#2| |#2| (-1082) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-585 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-585 |#2|)) (-1 (-3 (-2 (|:| -1265 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3801 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3257 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-519)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-519) (-1 |#2| |#2|)) 30)) (-3371 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-379 |#2|)) (|:| |c| (-379 |#2|)) (|:| -1652 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-1 |#2| |#2|)) 57)) (-4047 (((-2 (|:| |ans| (-379 |#2|)) (|:| |nosol| (-108))) (-379 |#2|) (-379 |#2|)) 62))) +(((-938 |#1| |#2|) (-10 -7 (-15 -3371 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-379 |#2|)) (|:| |c| (-379 |#2|)) (|:| -1652 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-1 |#2| |#2|))) (-15 -4047 ((-2 (|:| |ans| (-379 |#2|)) (|:| |nosol| (-108))) (-379 |#2|) (-379 |#2|))) (-15 -3801 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3257 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-519)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-519) (-1 |#2| |#2|)))) (-13 (-335) (-135) (-959 (-519))) (-1139 |#1|)) (T -938)) +((-3801 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1139 *6)) (-4 *6 (-13 (-335) (-135) (-959 *4))) (-5 *4 (-519)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -3257 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-938 *6 *3)))) (-4047 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-335) (-135) (-959 (-519)))) (-4 *5 (-1139 *4)) (-5 *2 (-2 (|:| |ans| (-379 *5)) (|:| |nosol| (-108)))) (-5 *1 (-938 *4 *5)) (-5 *3 (-379 *5)))) (-3371 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-13 (-335) (-135) (-959 (-519)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-379 *6)) (|:| |c| (-379 *6)) (|:| -1652 *6))) (-5 *1 (-938 *5 *6)) (-5 *3 (-379 *6))))) +(-10 -7 (-15 -3371 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-379 |#2|)) (|:| |c| (-379 |#2|)) (|:| -1652 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-1 |#2| |#2|))) (-15 -4047 ((-2 (|:| |ans| (-379 |#2|)) (|:| |nosol| (-108))) (-379 |#2|) (-379 |#2|))) (-15 -3801 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3257 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-519)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-519) (-1 |#2| |#2|)))) +((-2392 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-379 |#2|)) (|:| |h| |#2|) (|:| |c1| (-379 |#2|)) (|:| |c2| (-379 |#2|)) (|:| -1652 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|) (-1 |#2| |#2|)) 22)) (-2748 (((-3 (-585 (-379 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|)) 32))) +(((-939 |#1| |#2|) (-10 -7 (-15 -2392 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-379 |#2|)) (|:| |h| |#2|) (|:| |c1| (-379 |#2|)) (|:| |c2| (-379 |#2|)) (|:| -1652 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|) (-1 |#2| |#2|))) (-15 -2748 ((-3 (-585 (-379 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|)))) (-13 (-335) (-135) (-959 (-519))) (-1139 |#1|)) (T -939)) +((-2748 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-335) (-135) (-959 (-519)))) (-4 *5 (-1139 *4)) (-5 *2 (-585 (-379 *5))) (-5 *1 (-939 *4 *5)) (-5 *3 (-379 *5)))) (-2392 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-13 (-335) (-135) (-959 (-519)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-379 *6)) (|:| |h| *6) (|:| |c1| (-379 *6)) (|:| |c2| (-379 *6)) (|:| -1652 *6))) (-5 *1 (-939 *5 *6)) (-5 *3 (-379 *6))))) +(-10 -7 (-15 -2392 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-379 |#2|)) (|:| |h| |#2|) (|:| |c1| (-379 |#2|)) (|:| |c2| (-379 |#2|)) (|:| -1652 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|) (-1 |#2| |#2|))) (-15 -2748 ((-3 (-585 (-379 |#2|)) "failed") (-379 |#2|) (-379 |#2|) (-379 |#2|)))) +((-2704 (((-1 |#1|) (-585 (-2 (|:| -3493 |#1|) (|:| -3711 (-519))))) 37)) (-3402 (((-1 |#1|) (-1013 |#1|)) 45)) (-3858 (((-1 |#1|) (-1163 |#1|) (-1163 (-519)) (-519)) 34))) +(((-940 |#1|) (-10 -7 (-15 -3402 ((-1 |#1|) (-1013 |#1|))) (-15 -2704 ((-1 |#1|) (-585 (-2 (|:| -3493 |#1|) (|:| -3711 (-519)))))) (-15 -3858 ((-1 |#1|) (-1163 |#1|) (-1163 (-519)) (-519)))) (-1011)) (T -940)) +((-3858 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1163 *6)) (-5 *4 (-1163 (-519))) (-5 *5 (-519)) (-4 *6 (-1011)) (-5 *2 (-1 *6)) (-5 *1 (-940 *6)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -3493 *4) (|:| -3711 (-519))))) (-4 *4 (-1011)) (-5 *2 (-1 *4)) (-5 *1 (-940 *4)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-1013 *4)) (-4 *4 (-1011)) (-5 *2 (-1 *4)) (-5 *1 (-940 *4))))) +(-10 -7 (-15 -3402 ((-1 |#1|) (-1013 |#1|))) (-15 -2704 ((-1 |#1|) (-585 (-2 (|:| -3493 |#1|) (|:| -3711 (-519)))))) (-15 -3858 ((-1 |#1|) (-1163 |#1|) (-1163 (-519)) (-519)))) +((-3709 (((-705) (-308 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-941 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3709 ((-705) (-308 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-335) (-1139 |#1|) (-1139 (-379 |#2|)) (-314 |#1| |#2| |#3|) (-13 (-340) (-335))) (T -941)) +((-3709 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-308 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-335)) (-4 *7 (-1139 *6)) (-4 *4 (-1139 (-379 *7))) (-4 *8 (-314 *6 *7 *4)) (-4 *9 (-13 (-340) (-335))) (-5 *2 (-705)) (-5 *1 (-941 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3709 ((-705) (-308 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3171 (((-3 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) "failed") |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) 31) (((-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519))) 28)) (-1355 (((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519))) 33) (((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-379 (-519))) 29) (((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) 32) (((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1|) 27)) (-3746 (((-585 (-379 (-519))) (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) 19)) (-4180 (((-379 (-519)) (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) 16))) +(((-942 |#1|) (-10 -7 (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1|)) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-379 (-519)))) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519)))) (-15 -3171 ((-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519)))) (-15 -3171 ((-3 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) "failed") |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-15 -4180 ((-379 (-519)) (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-15 -3746 ((-585 (-379 (-519))) (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))))) (-1139 (-519))) (T -942)) +((-3746 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-5 *2 (-585 (-379 (-519)))) (-5 *1 (-942 *4)) (-4 *4 (-1139 (-519))))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) (-5 *2 (-379 (-519))) (-5 *1 (-942 *4)) (-4 *4 (-1139 (-519))))) (-3171 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) (-5 *1 (-942 *3)) (-4 *3 (-1139 (-519))))) (-3171 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) (-5 *4 (-379 (-519))) (-5 *1 (-942 *3)) (-4 *3 (-1139 (-519))))) (-1355 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-379 (-519))) (-5 *2 (-585 (-2 (|:| -1917 *5) (|:| -1931 *5)))) (-5 *1 (-942 *3)) (-4 *3 (-1139 (-519))) (-5 *4 (-2 (|:| -1917 *5) (|:| -1931 *5))))) (-1355 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-5 *1 (-942 *3)) (-4 *3 (-1139 (-519))) (-5 *4 (-379 (-519))))) (-1355 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-5 *1 (-942 *3)) (-4 *3 (-1139 (-519))) (-5 *4 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))))) (-1355 (*1 *2 *3) (-12 (-5 *2 (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-5 *1 (-942 *3)) (-4 *3 (-1139 (-519)))))) +(-10 -7 (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1|)) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-379 (-519)))) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519)))) (-15 -3171 ((-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519)))) (-15 -3171 ((-3 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) "failed") |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-15 -4180 ((-379 (-519)) (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-15 -3746 ((-585 (-379 (-519))) (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))))) +((-3171 (((-3 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) "failed") |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) 35) (((-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519))) 32)) (-1355 (((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519))) 30) (((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-379 (-519))) 26) (((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) 28) (((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1|) 24))) +(((-943 |#1|) (-10 -7 (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1|)) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-379 (-519)))) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519)))) (-15 -3171 ((-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519)))) (-15 -3171 ((-3 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) "failed") |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))))) (-1139 (-379 (-519)))) (T -943)) +((-3171 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) (-5 *1 (-943 *3)) (-4 *3 (-1139 (-379 (-519)))))) (-3171 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) (-5 *4 (-379 (-519))) (-5 *1 (-943 *3)) (-4 *3 (-1139 *4)))) (-1355 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-379 (-519))) (-5 *2 (-585 (-2 (|:| -1917 *5) (|:| -1931 *5)))) (-5 *1 (-943 *3)) (-4 *3 (-1139 *5)) (-5 *4 (-2 (|:| -1917 *5) (|:| -1931 *5))))) (-1355 (*1 *2 *3 *4) (-12 (-5 *4 (-379 (-519))) (-5 *2 (-585 (-2 (|:| -1917 *4) (|:| -1931 *4)))) (-5 *1 (-943 *3)) (-4 *3 (-1139 *4)))) (-1355 (*1 *2 *3 *4) (-12 (-5 *2 (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-5 *1 (-943 *3)) (-4 *3 (-1139 (-379 (-519)))) (-5 *4 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))))) (-1355 (*1 *2 *3) (-12 (-5 *2 (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-5 *1 (-943 *3)) (-4 *3 (-1139 (-379 (-519))))))) +(-10 -7 (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1|)) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-379 (-519)))) (-15 -1355 ((-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519)))) (-15 -3171 ((-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-379 (-519)))) (-15 -3171 ((-3 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) "failed") |#1| (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))) (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))))) +((-1446 (((-201) $) 6) (((-351) $) 9))) +(((-944) (-1194)) (T -944)) +NIL +(-13 (-560 (-201)) (-560 (-351))) +(((-560 (-201)) . T) ((-560 (-351)) . T)) +((-3442 (((-585 (-351)) (-879 (-519)) (-351)) 27) (((-585 (-351)) (-879 (-379 (-519))) (-351)) 26)) (-2463 (((-585 (-585 (-351))) (-585 (-879 (-519))) (-585 (-1082)) (-351)) 36))) +(((-945) (-10 -7 (-15 -3442 ((-585 (-351)) (-879 (-379 (-519))) (-351))) (-15 -3442 ((-585 (-351)) (-879 (-519)) (-351))) (-15 -2463 ((-585 (-585 (-351))) (-585 (-879 (-519))) (-585 (-1082)) (-351))))) (T -945)) +((-2463 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-879 (-519)))) (-5 *4 (-585 (-1082))) (-5 *2 (-585 (-585 (-351)))) (-5 *1 (-945)) (-5 *5 (-351)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-519))) (-5 *2 (-585 (-351))) (-5 *1 (-945)) (-5 *4 (-351)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-379 (-519)))) (-5 *2 (-585 (-351))) (-5 *1 (-945)) (-5 *4 (-351))))) +(-10 -7 (-15 -3442 ((-585 (-351)) (-879 (-379 (-519))) (-351))) (-15 -3442 ((-585 (-351)) (-879 (-519)) (-351))) (-15 -2463 ((-585 (-585 (-351))) (-585 (-879 (-519))) (-585 (-1082)) (-351)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 70)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-1934 (($ $) NIL) (($ $ (-705)) NIL) (($ (-379 (-519))) NIL) (($ (-519)) NIL)) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) 65)) (-2249 (($) NIL T CONST)) (-4027 (((-3 $ "failed") (-1078 $) (-848) (-790)) NIL) (((-3 $ "failed") (-1078 $) (-848)) 49)) (-1301 (((-3 (-379 (-519)) "failed") $) NIL (|has| (-379 (-519)) (-959 (-379 (-519))))) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-519) "failed") $) NIL (-3730 (|has| (-379 (-519)) (-959 (-519))) (|has| |#1| (-959 (-519)))))) (-1499 (((-379 (-519)) $) 14 (|has| (-379 (-519)) (-959 (-379 (-519))))) (((-379 (-519)) $) 14) ((|#1| $) 109) (((-519) $) NIL (-3730 (|has| (-379 (-519)) (-959 (-519))) (|has| |#1| (-959 (-519)))))) (-3217 (($ $ (-790)) 40)) (-1755 (($ $ (-790)) 41)) (-2311 (($ $ $) NIL)) (-1353 (((-379 (-519)) $ $) 18)) (-4193 (((-3 $ "failed") $) 83)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3419 (((-108) $) 60)) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL)) (-2143 (((-108) $) 63)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-2507 (((-3 (-1078 $) "failed") $) 78)) (-3180 (((-3 (-790) "failed") $) 77)) (-1401 (((-3 (-1078 $) "failed") $) 75)) (-1837 (((-3 (-978 $ (-1078 $)) "failed") $) 73)) (-2254 (($ (-585 $)) NIL) (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 84)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ (-585 $)) NIL) (($ $ $) NIL)) (-1921 (((-390 $) $) NIL)) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2217 (((-790) $) 82) (($ (-519)) NIL) (($ (-379 (-519))) NIL) (($ $) 57) (($ (-379 (-519))) NIL) (($ (-519)) NIL) (($ (-379 (-519))) NIL) (($ |#1|) 111)) (-3594 (((-705)) NIL)) (-1617 (((-108) $ $) NIL)) (-3905 (((-379 (-519)) $ $) 24)) (-2721 (((-585 $) (-1078 $)) 55) (((-585 $) (-1078 (-379 (-519)))) NIL) (((-585 $) (-1078 (-519))) NIL) (((-585 $) (-879 $)) NIL) (((-585 $) (-879 (-379 (-519)))) NIL) (((-585 $) (-879 (-519))) NIL)) (-1467 (($ (-978 $ (-1078 $)) (-790)) 39)) (-1478 (($ $) 19)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL)) (-3602 (($) 28 T CONST)) (-3611 (($) 34 T CONST)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 71)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 21)) (-1632 (($ $ $) 32)) (-1623 (($ $) 33) (($ $ $) 69)) (-1614 (($ $ $) 104)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL) (($ $ (-379 (-519))) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 92) (($ $ $) 97) (($ (-379 (-519)) $) NIL) (($ $ (-379 (-519))) NIL) (($ (-519) $) 92) (($ $ (-519)) NIL) (($ (-379 (-519)) $) NIL) (($ $ (-379 (-519))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL))) +(((-946 |#1|) (-13 (-935) (-383 |#1|) (-37 |#1|) (-10 -8 (-15 -1467 ($ (-978 $ (-1078 $)) (-790))) (-15 -1837 ((-3 (-978 $ (-1078 $)) "failed") $)) (-15 -1353 ((-379 (-519)) $ $)))) (-13 (-780) (-335) (-944))) (T -946)) +((-1467 (*1 *1 *2 *3) (-12 (-5 *2 (-978 (-946 *4) (-1078 (-946 *4)))) (-5 *3 (-790)) (-5 *1 (-946 *4)) (-4 *4 (-13 (-780) (-335) (-944))))) (-1837 (*1 *2 *1) (|partial| -12 (-5 *2 (-978 (-946 *3) (-1078 (-946 *3)))) (-5 *1 (-946 *3)) (-4 *3 (-13 (-780) (-335) (-944))))) (-1353 (*1 *2 *1 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-946 *3)) (-4 *3 (-13 (-780) (-335) (-944)))))) +(-13 (-935) (-383 |#1|) (-37 |#1|) (-10 -8 (-15 -1467 ($ (-978 $ (-1078 $)) (-790))) (-15 -1837 ((-3 (-978 $ (-1078 $)) "failed") $)) (-15 -1353 ((-379 (-519)) $ $)))) +((-1310 (((-2 (|:| -3257 |#2|) (|:| -1435 (-585 |#1|))) |#2| (-585 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-947 |#1| |#2|) (-10 -7 (-15 -1310 (|#2| |#2| |#1|)) (-15 -1310 ((-2 (|:| -3257 |#2|) (|:| -1435 (-585 |#1|))) |#2| (-585 |#1|)))) (-335) (-595 |#1|)) (T -947)) +((-1310 (*1 *2 *3 *4) (-12 (-4 *5 (-335)) (-5 *2 (-2 (|:| -3257 *3) (|:| -1435 (-585 *5)))) (-5 *1 (-947 *5 *3)) (-5 *4 (-585 *5)) (-4 *3 (-595 *5)))) (-1310 (*1 *2 *2 *3) (-12 (-4 *3 (-335)) (-5 *1 (-947 *3 *2)) (-4 *2 (-595 *3))))) +(-10 -7 (-15 -1310 (|#2| |#2| |#1|)) (-15 -1310 ((-2 (|:| -3257 |#2|) (|:| -1435 (-585 |#1|))) |#2| (-585 |#1|)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1304 ((|#1| $ |#1|) 14)) (-2421 ((|#1| $ |#1|) 12)) (-3574 (($ |#1|) 10)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2598 ((|#1| $) 11)) (-2264 ((|#1| $) 13)) (-2217 (((-790) $) 21 (|has| |#1| (-1011)))) (-1543 (((-108) $ $) 9))) +(((-948 |#1|) (-13 (-1117) (-10 -8 (-15 -3574 ($ |#1|)) (-15 -2598 (|#1| $)) (-15 -2421 (|#1| $ |#1|)) (-15 -2264 (|#1| $)) (-15 -1304 (|#1| $ |#1|)) (-15 -1543 ((-108) $ $)) (IF (|has| |#1| (-1011)) (-6 (-1011)) |%noBranch|))) (-1117)) (T -948)) +((-3574 (*1 *1 *2) (-12 (-5 *1 (-948 *2)) (-4 *2 (-1117)))) (-2598 (*1 *2 *1) (-12 (-5 *1 (-948 *2)) (-4 *2 (-1117)))) (-2421 (*1 *2 *1 *2) (-12 (-5 *1 (-948 *2)) (-4 *2 (-1117)))) (-2264 (*1 *2 *1) (-12 (-5 *1 (-948 *2)) (-4 *2 (-1117)))) (-1304 (*1 *2 *1 *2) (-12 (-5 *1 (-948 *2)) (-4 *2 (-1117)))) (-1543 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-948 *3)) (-4 *3 (-1117))))) +(-13 (-1117) (-10 -8 (-15 -3574 ($ |#1|)) (-15 -2598 (|#1| $)) (-15 -2421 (|#1| $ |#1|)) (-15 -2264 (|#1| $)) (-15 -1304 (|#1| $ |#1|)) (-15 -1543 ((-108) $ $)) (IF (|has| |#1| (-1011)) (-6 (-1011)) |%noBranch|))) +((-1430 (((-108) $ $) NIL)) (-3106 (((-585 (-2 (|:| -1664 $) (|:| -1556 (-585 |#4|)))) (-585 |#4|)) NIL)) (-2548 (((-585 $) (-585 |#4|)) 105) (((-585 $) (-585 |#4|) (-108)) 106) (((-585 $) (-585 |#4|) (-108) (-108)) 104) (((-585 $) (-585 |#4|) (-108) (-108) (-108) (-108)) 107)) (-4083 (((-585 |#3|) $) NIL)) (-2968 (((-108) $) NIL)) (-3146 (((-108) $) NIL (|has| |#1| (-511)))) (-2943 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4145 ((|#4| |#4| $) NIL)) (-4043 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| $) 99)) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#3|) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-1640 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221))) (((-3 |#4| "failed") $ |#3|) 54)) (-2249 (($) NIL T CONST)) (-3266 (((-108) $) 26 (|has| |#1| (-511)))) (-2542 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3609 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1276 (((-108) $) NIL (|has| |#1| (-511)))) (-4117 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1456 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-511)))) (-3596 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 |#4|)) NIL)) (-1499 (($ (-585 |#4|)) NIL)) (-2343 (((-3 $ "failed") $) 39)) (-1570 ((|#4| |#4| $) 57)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-1438 (($ |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-511)))) (-2459 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3805 ((|#4| |#4| $) NIL)) (-3874 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4221))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4221))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2109 (((-2 (|:| -1664 (-585 |#4|)) (|:| -1556 (-585 |#4|))) $) NIL)) (-2674 (((-108) |#4| $) NIL)) (-2051 (((-108) |#4| $) NIL)) (-2167 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2776 (((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-108) (-108)) 119)) (-3844 (((-585 |#4|) $) 16 (|has| $ (-6 -4221)))) (-3507 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4086 ((|#3| $) 33)) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#4|) $) 17 (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-3850 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) 21)) (-1360 (((-585 |#3|) $) NIL)) (-1219 (((-108) |#3| $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-1196 (((-3 |#4| (-585 $)) |#4| |#4| $) NIL)) (-3296 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| |#4| $) 97)) (-1457 (((-3 |#4| "failed") $) 37)) (-2975 (((-585 $) |#4| $) 80)) (-3422 (((-3 (-108) (-585 $)) |#4| $) NIL)) (-2575 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-3766 (((-585 $) |#4| $) 102) (((-585 $) (-585 |#4|) $) NIL) (((-585 $) (-585 |#4|) (-585 $)) 103) (((-585 $) |#4| (-585 $)) NIL)) (-1749 (((-585 $) (-585 |#4|) (-108) (-108) (-108)) 114)) (-3772 (($ |#4| $) 70) (($ (-585 |#4|) $) 71) (((-585 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-4092 (((-585 |#4|) $) NIL)) (-2921 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3369 ((|#4| |#4| $) NIL)) (-3291 (((-108) $ $) NIL)) (-2573 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-511)))) (-3300 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1867 ((|#4| |#4| $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 (((-3 |#4| "failed") $) 35)) (-2395 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2781 (((-3 $ "failed") $ |#4|) 48)) (-3881 (($ $ |#4|) NIL) (((-585 $) |#4| $) 82) (((-585 $) |#4| (-585 $)) NIL) (((-585 $) (-585 |#4|) $) NIL) (((-585 $) (-585 |#4|) (-585 $)) 77)) (-2379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 (-267 |#4|))) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 15)) (-1548 (($) 13)) (-4178 (((-705) $) NIL)) (-4155 (((-705) |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) (((-705) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) 12)) (-1446 (((-495) $) NIL (|has| |#4| (-560 (-495))))) (-2228 (($ (-585 |#4|)) 20)) (-4175 (($ $ |#3|) 42)) (-1982 (($ $ |#3|) 44)) (-3282 (($ $) NIL)) (-1272 (($ $ |#3|) NIL)) (-2217 (((-790) $) 31) (((-585 |#4|) $) 40)) (-3156 (((-705) $) NIL (|has| |#3| (-340)))) (-3541 (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3735 (((-108) $ (-1 (-108) |#4| (-585 |#4|))) NIL)) (-3249 (((-585 $) |#4| $) 79) (((-585 $) |#4| (-585 $)) NIL) (((-585 $) (-585 |#4|) $) NIL) (((-585 $) (-585 |#4|) (-585 $)) NIL)) (-1778 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-3059 (((-585 |#3|) $) NIL)) (-3736 (((-108) |#4| $) NIL)) (-3980 (((-108) |#3| $) 53)) (-1543 (((-108) $ $) NIL)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-949 |#1| |#2| |#3| |#4|) (-13 (-987 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3772 ((-585 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2548 ((-585 $) (-585 |#4|) (-108) (-108))) (-15 -2548 ((-585 $) (-585 |#4|) (-108) (-108) (-108) (-108))) (-15 -1749 ((-585 $) (-585 |#4|) (-108) (-108) (-108))) (-15 -2776 ((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-108) (-108))))) (-423) (-727) (-782) (-982 |#1| |#2| |#3|)) (T -949)) +((-3772 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 (-949 *5 *6 *7 *3))) (-5 *1 (-949 *5 *6 *7 *3)) (-4 *3 (-982 *5 *6 *7)))) (-2548 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 (-949 *5 *6 *7 *8))) (-5 *1 (-949 *5 *6 *7 *8)))) (-2548 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 (-949 *5 *6 *7 *8))) (-5 *1 (-949 *5 *6 *7 *8)))) (-1749 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 (-949 *5 *6 *7 *8))) (-5 *1 (-949 *5 *6 *7 *8)))) (-2776 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-982 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-949 *5 *6 *7 *8))))) (-5 *1 (-949 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) +(-13 (-987 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3772 ((-585 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2548 ((-585 $) (-585 |#4|) (-108) (-108))) (-15 -2548 ((-585 $) (-585 |#4|) (-108) (-108) (-108) (-108))) (-15 -1749 ((-585 $) (-585 |#4|) (-108) (-108) (-108))) (-15 -2776 ((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-108) (-108))))) +((-3203 (((-585 (-625 |#1|)) (-585 (-625 |#1|))) 57) (((-625 |#1|) (-625 |#1|)) 56) (((-585 (-625 |#1|)) (-585 (-625 |#1|)) (-585 (-625 |#1|))) 55) (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 52)) (-4192 (((-585 (-625 |#1|)) (-585 (-625 |#1|)) (-848)) 51) (((-625 |#1|) (-625 |#1|) (-848)) 50)) (-4000 (((-585 (-625 (-519))) (-585 (-585 (-519)))) 67) (((-585 (-625 (-519))) (-585 (-832 (-519))) (-519)) 66) (((-625 (-519)) (-585 (-519))) 63) (((-625 (-519)) (-832 (-519)) (-519)) 62)) (-2805 (((-625 (-879 |#1|)) (-705)) 80)) (-1608 (((-585 (-625 |#1|)) (-585 (-625 |#1|)) (-848)) 36 (|has| |#1| (-6 (-4223 "*")))) (((-625 |#1|) (-625 |#1|) (-848)) 34 (|has| |#1| (-6 (-4223 "*")))))) +(((-950 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4223 "*"))) (-15 -1608 ((-625 |#1|) (-625 |#1|) (-848))) |%noBranch|) (IF (|has| |#1| (-6 (-4223 "*"))) (-15 -1608 ((-585 (-625 |#1|)) (-585 (-625 |#1|)) (-848))) |%noBranch|) (-15 -2805 ((-625 (-879 |#1|)) (-705))) (-15 -4192 ((-625 |#1|) (-625 |#1|) (-848))) (-15 -4192 ((-585 (-625 |#1|)) (-585 (-625 |#1|)) (-848))) (-15 -3203 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -3203 ((-585 (-625 |#1|)) (-585 (-625 |#1|)) (-585 (-625 |#1|)))) (-15 -3203 ((-625 |#1|) (-625 |#1|))) (-15 -3203 ((-585 (-625 |#1|)) (-585 (-625 |#1|)))) (-15 -4000 ((-625 (-519)) (-832 (-519)) (-519))) (-15 -4000 ((-625 (-519)) (-585 (-519)))) (-15 -4000 ((-585 (-625 (-519))) (-585 (-832 (-519))) (-519))) (-15 -4000 ((-585 (-625 (-519))) (-585 (-585 (-519)))))) (-968)) (T -950)) +((-4000 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-519)))) (-5 *2 (-585 (-625 (-519)))) (-5 *1 (-950 *4)) (-4 *4 (-968)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-832 (-519)))) (-5 *4 (-519)) (-5 *2 (-585 (-625 *4))) (-5 *1 (-950 *5)) (-4 *5 (-968)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-625 (-519))) (-5 *1 (-950 *4)) (-4 *4 (-968)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-832 (-519))) (-5 *4 (-519)) (-5 *2 (-625 *4)) (-5 *1 (-950 *5)) (-4 *5 (-968)))) (-3203 (*1 *2 *2) (-12 (-5 *2 (-585 (-625 *3))) (-4 *3 (-968)) (-5 *1 (-950 *3)))) (-3203 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-950 *3)))) (-3203 (*1 *2 *2 *2) (-12 (-5 *2 (-585 (-625 *3))) (-4 *3 (-968)) (-5 *1 (-950 *3)))) (-3203 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-950 *3)))) (-4192 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-625 *4))) (-5 *3 (-848)) (-4 *4 (-968)) (-5 *1 (-950 *4)))) (-4192 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-848)) (-4 *4 (-968)) (-5 *1 (-950 *4)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-625 (-879 *4))) (-5 *1 (-950 *4)) (-4 *4 (-968)))) (-1608 (*1 *2 *2 *3) (-12 (-5 *2 (-585 (-625 *4))) (-5 *3 (-848)) (|has| *4 (-6 (-4223 "*"))) (-4 *4 (-968)) (-5 *1 (-950 *4)))) (-1608 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-848)) (|has| *4 (-6 (-4223 "*"))) (-4 *4 (-968)) (-5 *1 (-950 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4223 "*"))) (-15 -1608 ((-625 |#1|) (-625 |#1|) (-848))) |%noBranch|) (IF (|has| |#1| (-6 (-4223 "*"))) (-15 -1608 ((-585 (-625 |#1|)) (-585 (-625 |#1|)) (-848))) |%noBranch|) (-15 -2805 ((-625 (-879 |#1|)) (-705))) (-15 -4192 ((-625 |#1|) (-625 |#1|) (-848))) (-15 -4192 ((-585 (-625 |#1|)) (-585 (-625 |#1|)) (-848))) (-15 -3203 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -3203 ((-585 (-625 |#1|)) (-585 (-625 |#1|)) (-585 (-625 |#1|)))) (-15 -3203 ((-625 |#1|) (-625 |#1|))) (-15 -3203 ((-585 (-625 |#1|)) (-585 (-625 |#1|)))) (-15 -4000 ((-625 (-519)) (-832 (-519)) (-519))) (-15 -4000 ((-625 (-519)) (-585 (-519)))) (-15 -4000 ((-585 (-625 (-519))) (-585 (-832 (-519))) (-519))) (-15 -4000 ((-585 (-625 (-519))) (-585 (-585 (-519)))))) +((-1926 (((-625 |#1|) (-585 (-625 |#1|)) (-1163 |#1|)) 50 (|has| |#1| (-280)))) (-2482 (((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-1163 (-1163 |#1|))) 73 (|has| |#1| (-335))) (((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-1163 |#1|)) 71 (|has| |#1| (-335)))) (-1911 (((-1163 |#1|) (-585 (-1163 |#1|)) (-519)) 75 (-12 (|has| |#1| (-335)) (|has| |#1| (-340))))) (-2034 (((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-848)) 80 (-12 (|has| |#1| (-335)) (|has| |#1| (-340)))) (((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-108)) 78 (-12 (|has| |#1| (-335)) (|has| |#1| (-340)))) (((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|))) 77 (-12 (|has| |#1| (-335)) (|has| |#1| (-340)))) (((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-108) (-519) (-519)) 76 (-12 (|has| |#1| (-335)) (|has| |#1| (-340))))) (-4002 (((-108) (-585 (-625 |#1|))) 69 (|has| |#1| (-335))) (((-108) (-585 (-625 |#1|)) (-519)) 68 (|has| |#1| (-335)))) (-2225 (((-1163 (-1163 |#1|)) (-585 (-625 |#1|)) (-1163 |#1|)) 48 (|has| |#1| (-280)))) (-2710 (((-625 |#1|) (-585 (-625 |#1|)) (-625 |#1|)) 33)) (-2624 (((-625 |#1|) (-1163 (-1163 |#1|))) 30)) (-3165 (((-625 |#1|) (-585 (-625 |#1|)) (-585 (-625 |#1|)) (-519)) 64 (|has| |#1| (-335))) (((-625 |#1|) (-585 (-625 |#1|)) (-585 (-625 |#1|))) 63 (|has| |#1| (-335))) (((-625 |#1|) (-585 (-625 |#1|)) (-585 (-625 |#1|)) (-108) (-519)) 62 (|has| |#1| (-335))))) +(((-951 |#1|) (-10 -7 (-15 -2624 ((-625 |#1|) (-1163 (-1163 |#1|)))) (-15 -2710 ((-625 |#1|) (-585 (-625 |#1|)) (-625 |#1|))) (IF (|has| |#1| (-280)) (PROGN (-15 -2225 ((-1163 (-1163 |#1|)) (-585 (-625 |#1|)) (-1163 |#1|))) (-15 -1926 ((-625 |#1|) (-585 (-625 |#1|)) (-1163 |#1|)))) |%noBranch|) (IF (|has| |#1| (-335)) (PROGN (-15 -3165 ((-625 |#1|) (-585 (-625 |#1|)) (-585 (-625 |#1|)) (-108) (-519))) (-15 -3165 ((-625 |#1|) (-585 (-625 |#1|)) (-585 (-625 |#1|)))) (-15 -3165 ((-625 |#1|) (-585 (-625 |#1|)) (-585 (-625 |#1|)) (-519))) (-15 -4002 ((-108) (-585 (-625 |#1|)) (-519))) (-15 -4002 ((-108) (-585 (-625 |#1|)))) (-15 -2482 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-1163 |#1|))) (-15 -2482 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-1163 (-1163 |#1|))))) |%noBranch|) (IF (|has| |#1| (-340)) (IF (|has| |#1| (-335)) (PROGN (-15 -2034 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-108) (-519) (-519))) (-15 -2034 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)))) (-15 -2034 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-108))) (-15 -2034 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-848))) (-15 -1911 ((-1163 |#1|) (-585 (-1163 |#1|)) (-519)))) |%noBranch|) |%noBranch|)) (-968)) (T -951)) +((-1911 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1163 *5))) (-5 *4 (-519)) (-5 *2 (-1163 *5)) (-5 *1 (-951 *5)) (-4 *5 (-335)) (-4 *5 (-340)) (-4 *5 (-968)))) (-2034 (*1 *2 *3 *4) (-12 (-5 *4 (-848)) (-4 *5 (-335)) (-4 *5 (-340)) (-4 *5 (-968)) (-5 *2 (-585 (-585 (-625 *5)))) (-5 *1 (-951 *5)) (-5 *3 (-585 (-625 *5))))) (-2034 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-335)) (-4 *5 (-340)) (-4 *5 (-968)) (-5 *2 (-585 (-585 (-625 *5)))) (-5 *1 (-951 *5)) (-5 *3 (-585 (-625 *5))))) (-2034 (*1 *2 *3) (-12 (-4 *4 (-335)) (-4 *4 (-340)) (-4 *4 (-968)) (-5 *2 (-585 (-585 (-625 *4)))) (-5 *1 (-951 *4)) (-5 *3 (-585 (-625 *4))))) (-2034 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-519)) (-4 *6 (-335)) (-4 *6 (-340)) (-4 *6 (-968)) (-5 *2 (-585 (-585 (-625 *6)))) (-5 *1 (-951 *6)) (-5 *3 (-585 (-625 *6))))) (-2482 (*1 *2 *3 *4) (-12 (-5 *4 (-1163 (-1163 *5))) (-4 *5 (-335)) (-4 *5 (-968)) (-5 *2 (-585 (-585 (-625 *5)))) (-5 *1 (-951 *5)) (-5 *3 (-585 (-625 *5))))) (-2482 (*1 *2 *3 *4) (-12 (-5 *4 (-1163 *5)) (-4 *5 (-335)) (-4 *5 (-968)) (-5 *2 (-585 (-585 (-625 *5)))) (-5 *1 (-951 *5)) (-5 *3 (-585 (-625 *5))))) (-4002 (*1 *2 *3) (-12 (-5 *3 (-585 (-625 *4))) (-4 *4 (-335)) (-4 *4 (-968)) (-5 *2 (-108)) (-5 *1 (-951 *4)))) (-4002 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-625 *5))) (-5 *4 (-519)) (-4 *5 (-335)) (-4 *5 (-968)) (-5 *2 (-108)) (-5 *1 (-951 *5)))) (-3165 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-585 (-625 *5))) (-5 *4 (-519)) (-5 *2 (-625 *5)) (-5 *1 (-951 *5)) (-4 *5 (-335)) (-4 *5 (-968)))) (-3165 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-625 *4))) (-5 *2 (-625 *4)) (-5 *1 (-951 *4)) (-4 *4 (-335)) (-4 *4 (-968)))) (-3165 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-585 (-625 *6))) (-5 *4 (-108)) (-5 *5 (-519)) (-5 *2 (-625 *6)) (-5 *1 (-951 *6)) (-4 *6 (-335)) (-4 *6 (-968)))) (-1926 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-625 *5))) (-5 *4 (-1163 *5)) (-4 *5 (-280)) (-4 *5 (-968)) (-5 *2 (-625 *5)) (-5 *1 (-951 *5)))) (-2225 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-625 *5))) (-4 *5 (-280)) (-4 *5 (-968)) (-5 *2 (-1163 (-1163 *5))) (-5 *1 (-951 *5)) (-5 *4 (-1163 *5)))) (-2710 (*1 *2 *3 *2) (-12 (-5 *3 (-585 (-625 *4))) (-5 *2 (-625 *4)) (-4 *4 (-968)) (-5 *1 (-951 *4)))) (-2624 (*1 *2 *3) (-12 (-5 *3 (-1163 (-1163 *4))) (-4 *4 (-968)) (-5 *2 (-625 *4)) (-5 *1 (-951 *4))))) +(-10 -7 (-15 -2624 ((-625 |#1|) (-1163 (-1163 |#1|)))) (-15 -2710 ((-625 |#1|) (-585 (-625 |#1|)) (-625 |#1|))) (IF (|has| |#1| (-280)) (PROGN (-15 -2225 ((-1163 (-1163 |#1|)) (-585 (-625 |#1|)) (-1163 |#1|))) (-15 -1926 ((-625 |#1|) (-585 (-625 |#1|)) (-1163 |#1|)))) |%noBranch|) (IF (|has| |#1| (-335)) (PROGN (-15 -3165 ((-625 |#1|) (-585 (-625 |#1|)) (-585 (-625 |#1|)) (-108) (-519))) (-15 -3165 ((-625 |#1|) (-585 (-625 |#1|)) (-585 (-625 |#1|)))) (-15 -3165 ((-625 |#1|) (-585 (-625 |#1|)) (-585 (-625 |#1|)) (-519))) (-15 -4002 ((-108) (-585 (-625 |#1|)) (-519))) (-15 -4002 ((-108) (-585 (-625 |#1|)))) (-15 -2482 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-1163 |#1|))) (-15 -2482 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-1163 (-1163 |#1|))))) |%noBranch|) (IF (|has| |#1| (-340)) (IF (|has| |#1| (-335)) (PROGN (-15 -2034 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-108) (-519) (-519))) (-15 -2034 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)))) (-15 -2034 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-108))) (-15 -2034 ((-585 (-585 (-625 |#1|))) (-585 (-625 |#1|)) (-848))) (-15 -1911 ((-1163 |#1|) (-585 (-1163 |#1|)) (-519)))) |%noBranch|) |%noBranch|)) +((-3428 ((|#1| (-848) |#1|) 9))) +(((-952 |#1|) (-10 -7 (-15 -3428 (|#1| (-848) |#1|))) (-13 (-1011) (-10 -8 (-15 -1614 ($ $ $))))) (T -952)) +((-3428 (*1 *2 *3 *2) (-12 (-5 *3 (-848)) (-5 *1 (-952 *2)) (-4 *2 (-13 (-1011) (-10 -8 (-15 -1614 ($ $ $)))))))) +(-10 -7 (-15 -3428 (|#1| (-848) |#1|))) +((-2999 (((-585 (-2 (|:| |radval| (-288 (-519))) (|:| |radmult| (-519)) (|:| |radvect| (-585 (-625 (-288 (-519))))))) (-625 (-379 (-879 (-519))))) 58)) (-1861 (((-585 (-625 (-288 (-519)))) (-288 (-519)) (-625 (-379 (-879 (-519))))) 48)) (-3379 (((-585 (-288 (-519))) (-625 (-379 (-879 (-519))))) 41)) (-2962 (((-585 (-625 (-288 (-519)))) (-625 (-379 (-879 (-519))))) 68)) (-2402 (((-625 (-288 (-519))) (-625 (-288 (-519)))) 33)) (-1903 (((-585 (-625 (-288 (-519)))) (-585 (-625 (-288 (-519))))) 61)) (-2237 (((-3 (-625 (-288 (-519))) "failed") (-625 (-379 (-879 (-519))))) 65))) +(((-953) (-10 -7 (-15 -2999 ((-585 (-2 (|:| |radval| (-288 (-519))) (|:| |radmult| (-519)) (|:| |radvect| (-585 (-625 (-288 (-519))))))) (-625 (-379 (-879 (-519)))))) (-15 -1861 ((-585 (-625 (-288 (-519)))) (-288 (-519)) (-625 (-379 (-879 (-519)))))) (-15 -3379 ((-585 (-288 (-519))) (-625 (-379 (-879 (-519)))))) (-15 -2237 ((-3 (-625 (-288 (-519))) "failed") (-625 (-379 (-879 (-519)))))) (-15 -2402 ((-625 (-288 (-519))) (-625 (-288 (-519))))) (-15 -1903 ((-585 (-625 (-288 (-519)))) (-585 (-625 (-288 (-519)))))) (-15 -2962 ((-585 (-625 (-288 (-519)))) (-625 (-379 (-879 (-519)))))))) (T -953)) +((-2962 (*1 *2 *3) (-12 (-5 *3 (-625 (-379 (-879 (-519))))) (-5 *2 (-585 (-625 (-288 (-519))))) (-5 *1 (-953)))) (-1903 (*1 *2 *2) (-12 (-5 *2 (-585 (-625 (-288 (-519))))) (-5 *1 (-953)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-625 (-288 (-519)))) (-5 *1 (-953)))) (-2237 (*1 *2 *3) (|partial| -12 (-5 *3 (-625 (-379 (-879 (-519))))) (-5 *2 (-625 (-288 (-519)))) (-5 *1 (-953)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-625 (-379 (-879 (-519))))) (-5 *2 (-585 (-288 (-519)))) (-5 *1 (-953)))) (-1861 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-379 (-879 (-519))))) (-5 *2 (-585 (-625 (-288 (-519))))) (-5 *1 (-953)) (-5 *3 (-288 (-519))))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-625 (-379 (-879 (-519))))) (-5 *2 (-585 (-2 (|:| |radval| (-288 (-519))) (|:| |radmult| (-519)) (|:| |radvect| (-585 (-625 (-288 (-519)))))))) (-5 *1 (-953))))) +(-10 -7 (-15 -2999 ((-585 (-2 (|:| |radval| (-288 (-519))) (|:| |radmult| (-519)) (|:| |radvect| (-585 (-625 (-288 (-519))))))) (-625 (-379 (-879 (-519)))))) (-15 -1861 ((-585 (-625 (-288 (-519)))) (-288 (-519)) (-625 (-379 (-879 (-519)))))) (-15 -3379 ((-585 (-288 (-519))) (-625 (-379 (-879 (-519)))))) (-15 -2237 ((-3 (-625 (-288 (-519))) "failed") (-625 (-379 (-879 (-519)))))) (-15 -2402 ((-625 (-288 (-519))) (-625 (-288 (-519))))) (-15 -1903 ((-585 (-625 (-288 (-519)))) (-585 (-625 (-288 (-519)))))) (-15 -2962 ((-585 (-625 (-288 (-519)))) (-625 (-379 (-879 (-519))))))) +((-4128 ((|#1| |#1| (-848)) 9))) +(((-954 |#1|) (-10 -7 (-15 -4128 (|#1| |#1| (-848)))) (-13 (-1011) (-10 -8 (-15 * ($ $ $))))) (T -954)) +((-4128 (*1 *2 *2 *3) (-12 (-5 *3 (-848)) (-5 *1 (-954 *2)) (-4 *2 (-13 (-1011) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -4128 (|#1| |#1| (-848)))) +((-2217 ((|#1| (-284)) 11) (((-1168) |#1|) 9))) +(((-955 |#1|) (-10 -7 (-15 -2217 ((-1168) |#1|)) (-15 -2217 (|#1| (-284)))) (-1117)) (T -955)) +((-2217 (*1 *2 *3) (-12 (-5 *3 (-284)) (-5 *1 (-955 *2)) (-4 *2 (-1117)))) (-2217 (*1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *1 (-955 *3)) (-4 *3 (-1117))))) +(-10 -7 (-15 -2217 ((-1168) |#1|)) (-15 -2217 (|#1| (-284)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-3874 (($ |#4|) 25)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) NIL)) (-3860 ((|#4| $) 27)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 46) (($ (-519)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3594 (((-705)) 43)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 21 T CONST)) (-3611 (($) 23 T CONST)) (-1543 (((-108) $ $) 40)) (-1623 (($ $) 31) (($ $ $) NIL)) (-1614 (($ $ $) 29)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-956 |#1| |#2| |#3| |#4| |#5|) (-13 (-157) (-37 |#1|) (-10 -8 (-15 -3874 ($ |#4|)) (-15 -2217 ($ |#4|)) (-15 -3860 (|#4| $)))) (-335) (-727) (-782) (-876 |#1| |#2| |#3|) (-585 |#4|)) (T -956)) +((-3874 (*1 *1 *2) (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-956 *3 *4 *5 *2 *6)) (-4 *2 (-876 *3 *4 *5)) (-14 *6 (-585 *2)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-956 *3 *4 *5 *2 *6)) (-4 *2 (-876 *3 *4 *5)) (-14 *6 (-585 *2)))) (-3860 (*1 *2 *1) (-12 (-4 *2 (-876 *3 *4 *5)) (-5 *1 (-956 *3 *4 *5 *2 *6)) (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-14 *6 (-585 *2))))) +(-13 (-157) (-37 |#1|) (-10 -8 (-15 -3874 ($ |#4|)) (-15 -2217 ($ |#4|)) (-15 -3860 (|#4| $)))) +((-1430 (((-108) $ $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011))))) (-1812 (($) NIL) (($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) NIL)) (-1583 (((-1168) $ (-1082) (-1082)) NIL (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-3944 (((-108) (-108)) 39)) (-2050 (((-108) (-108)) 38)) (-2421 (((-51) $ (-1082) (-51)) NIL)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221)))) (-2802 (((-3 (-51) "failed") (-1082) $) NIL)) (-2249 (($) NIL T CONST)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011))))) (-2502 (($ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-3 (-51) "failed") (-1082) $) NIL)) (-1438 (($ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (((-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221)))) (-3865 (((-51) $ (-1082) (-51)) NIL (|has| $ (-6 -4222)))) (-3659 (((-51) $ (-1082)) NIL)) (-3844 (((-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-585 (-51)) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-1082) $) NIL (|has| (-1082) (-782)))) (-3725 (((-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-585 (-51)) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-51) (-1011))))) (-3890 (((-1082) $) NIL (|has| (-1082) (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4222))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011))))) (-3019 (((-585 (-1082)) $) 34)) (-4194 (((-108) (-1082) $) NIL)) (-4152 (((-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL)) (-1846 (($ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL)) (-3909 (((-585 (-1082)) $) NIL)) (-1506 (((-108) (-1082) $) NIL)) (-4139 (((-1029) $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011))))) (-2331 (((-51) $) NIL (|has| (-1082) (-782)))) (-2395 (((-3 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) "failed") (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL)) (-3640 (($ $ (-51)) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))))) NIL (-12 (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (($ $ (-267 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) NIL (-12 (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (($ $ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) NIL (-12 (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (($ $ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) NIL (-12 (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (($ $ (-585 (-51)) (-585 (-51))) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011)))) (($ $ (-267 (-51))) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011)))) (($ $ (-585 (-267 (-51)))) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-51) (-1011))))) (-2222 (((-585 (-51)) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 (((-51) $ (-1082)) 35) (((-51) $ (-1082) (-51)) NIL)) (-2436 (($) NIL) (($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) NIL)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (((-705) (-51) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-51) (-1011)))) (((-705) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) NIL)) (-2217 (((-790) $) 37 (-3730 (|has| (-51) (-559 (-790))) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-559 (-790)))))) (-3879 (($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) NIL)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011))))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-957) (-13 (-1094 (-1082) (-51)) (-10 -7 (-15 -3944 ((-108) (-108))) (-15 -2050 ((-108) (-108))) (-6 -4221)))) (T -957)) +((-3944 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-957)))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-957))))) +(-13 (-1094 (-1082) (-51)) (-10 -7 (-15 -3944 ((-108) (-108))) (-15 -2050 ((-108) (-108))) (-6 -4221))) +((-1499 ((|#2| $) 10))) +(((-958 |#1| |#2|) (-10 -8 (-15 -1499 (|#2| |#1|))) (-959 |#2|) (-1117)) (T -958)) +NIL +(-10 -8 (-15 -1499 (|#2| |#1|))) +((-1301 (((-3 |#1| "failed") $) 7)) (-1499 ((|#1| $) 8)) (-2217 (($ |#1|) 6))) +(((-959 |#1|) (-1194) (-1117)) (T -959)) +((-1499 (*1 *2 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-1117)))) (-1301 (*1 *2 *1) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1117)))) (-2217 (*1 *1 *2) (-12 (-4 *1 (-959 *2)) (-4 *2 (-1117))))) +(-13 (-10 -8 (-15 -2217 ($ |t#1|)) (-15 -1301 ((-3 |t#1| "failed") $)) (-15 -1499 (|t#1| $)))) +((-4045 (((-585 (-585 (-267 (-379 (-879 |#2|))))) (-585 (-879 |#2|)) (-585 (-1082))) 35))) +(((-960 |#1| |#2|) (-10 -7 (-15 -4045 ((-585 (-585 (-267 (-379 (-879 |#2|))))) (-585 (-879 |#2|)) (-585 (-1082))))) (-511) (-13 (-511) (-959 |#1|))) (T -960)) +((-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-879 *6))) (-5 *4 (-585 (-1082))) (-4 *6 (-13 (-511) (-959 *5))) (-4 *5 (-511)) (-5 *2 (-585 (-585 (-267 (-379 (-879 *6)))))) (-5 *1 (-960 *5 *6))))) +(-10 -7 (-15 -4045 ((-585 (-585 (-267 (-379 (-879 |#2|))))) (-585 (-879 |#2|)) (-585 (-1082))))) +((-3198 (((-351)) 15)) (-3402 (((-1 (-351)) (-351) (-351)) 20)) (-1652 (((-1 (-351)) (-705)) 43)) (-2727 (((-351)) 34)) (-3688 (((-1 (-351)) (-351) (-351)) 35)) (-3812 (((-351)) 26)) (-3807 (((-1 (-351)) (-351)) 27)) (-3310 (((-351) (-705)) 38)) (-3223 (((-1 (-351)) (-705)) 39)) (-4048 (((-1 (-351)) (-705) (-705)) 42)) (-2144 (((-1 (-351)) (-705) (-705)) 40))) +(((-961) (-10 -7 (-15 -3198 ((-351))) (-15 -2727 ((-351))) (-15 -3812 ((-351))) (-15 -3310 ((-351) (-705))) (-15 -3402 ((-1 (-351)) (-351) (-351))) (-15 -3688 ((-1 (-351)) (-351) (-351))) (-15 -3807 ((-1 (-351)) (-351))) (-15 -3223 ((-1 (-351)) (-705))) (-15 -2144 ((-1 (-351)) (-705) (-705))) (-15 -4048 ((-1 (-351)) (-705) (-705))) (-15 -1652 ((-1 (-351)) (-705))))) (T -961)) +((-1652 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1 (-351))) (-5 *1 (-961)))) (-4048 (*1 *2 *3 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1 (-351))) (-5 *1 (-961)))) (-2144 (*1 *2 *3 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1 (-351))) (-5 *1 (-961)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1 (-351))) (-5 *1 (-961)))) (-3807 (*1 *2 *3) (-12 (-5 *2 (-1 (-351))) (-5 *1 (-961)) (-5 *3 (-351)))) (-3688 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-351))) (-5 *1 (-961)) (-5 *3 (-351)))) (-3402 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-351))) (-5 *1 (-961)) (-5 *3 (-351)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-351)) (-5 *1 (-961)))) (-3812 (*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-961)))) (-2727 (*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-961)))) (-3198 (*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-961))))) +(-10 -7 (-15 -3198 ((-351))) (-15 -2727 ((-351))) (-15 -3812 ((-351))) (-15 -3310 ((-351) (-705))) (-15 -3402 ((-1 (-351)) (-351) (-351))) (-15 -3688 ((-1 (-351)) (-351) (-351))) (-15 -3807 ((-1 (-351)) (-351))) (-15 -3223 ((-1 (-351)) (-705))) (-15 -2144 ((-1 (-351)) (-705) (-705))) (-15 -4048 ((-1 (-351)) (-705) (-705))) (-15 -1652 ((-1 (-351)) (-705)))) +((-1921 (((-390 |#1|) |#1|) 31))) +(((-962 |#1|) (-10 -7 (-15 -1921 ((-390 |#1|) |#1|))) (-1139 (-379 (-879 (-519))))) (T -962)) +((-1921 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-962 *3)) (-4 *3 (-1139 (-379 (-879 (-519)))))))) +(-10 -7 (-15 -1921 ((-390 |#1|) |#1|))) +((-3832 (((-379 (-390 (-879 |#1|))) (-379 (-879 |#1|))) 14))) +(((-963 |#1|) (-10 -7 (-15 -3832 ((-379 (-390 (-879 |#1|))) (-379 (-879 |#1|))))) (-280)) (T -963)) +((-3832 (*1 *2 *3) (-12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-280)) (-5 *2 (-379 (-390 (-879 *4)))) (-5 *1 (-963 *4))))) +(-10 -7 (-15 -3832 ((-379 (-390 (-879 |#1|))) (-379 (-879 |#1|))))) +((-4083 (((-585 (-1082)) (-379 (-879 |#1|))) 15)) (-1283 (((-379 (-1078 (-379 (-879 |#1|)))) (-379 (-879 |#1|)) (-1082)) 22)) (-4066 (((-379 (-879 |#1|)) (-379 (-1078 (-379 (-879 |#1|)))) (-1082)) 24)) (-2635 (((-3 (-1082) "failed") (-379 (-879 |#1|))) 18)) (-2324 (((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-585 (-267 (-379 (-879 |#1|))))) 29) (((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|)))) 31) (((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-585 (-1082)) (-585 (-379 (-879 |#1|)))) 26) (((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-1082) (-379 (-879 |#1|))) 27)) (-2217 (((-379 (-879 |#1|)) |#1|) 11))) +(((-964 |#1|) (-10 -7 (-15 -4083 ((-585 (-1082)) (-379 (-879 |#1|)))) (-15 -2635 ((-3 (-1082) "failed") (-379 (-879 |#1|)))) (-15 -1283 ((-379 (-1078 (-379 (-879 |#1|)))) (-379 (-879 |#1|)) (-1082))) (-15 -4066 ((-379 (-879 |#1|)) (-379 (-1078 (-379 (-879 |#1|)))) (-1082))) (-15 -2324 ((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-1082) (-379 (-879 |#1|)))) (-15 -2324 ((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-585 (-1082)) (-585 (-379 (-879 |#1|))))) (-15 -2324 ((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|))))) (-15 -2324 ((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-585 (-267 (-379 (-879 |#1|)))))) (-15 -2217 ((-379 (-879 |#1|)) |#1|))) (-511)) (T -964)) +((-2217 (*1 *2 *3) (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-964 *3)) (-4 *3 (-511)))) (-2324 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-267 (-379 (-879 *4))))) (-5 *2 (-379 (-879 *4))) (-4 *4 (-511)) (-5 *1 (-964 *4)))) (-2324 (*1 *2 *2 *3) (-12 (-5 *3 (-267 (-379 (-879 *4)))) (-5 *2 (-379 (-879 *4))) (-4 *4 (-511)) (-5 *1 (-964 *4)))) (-2324 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-585 (-1082))) (-5 *4 (-585 (-379 (-879 *5)))) (-5 *2 (-379 (-879 *5))) (-4 *5 (-511)) (-5 *1 (-964 *5)))) (-2324 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-379 (-879 *4))) (-5 *3 (-1082)) (-4 *4 (-511)) (-5 *1 (-964 *4)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-1078 (-379 (-879 *5))))) (-5 *4 (-1082)) (-5 *2 (-379 (-879 *5))) (-5 *1 (-964 *5)) (-4 *5 (-511)))) (-1283 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-511)) (-5 *2 (-379 (-1078 (-379 (-879 *5))))) (-5 *1 (-964 *5)) (-5 *3 (-379 (-879 *5))))) (-2635 (*1 *2 *3) (|partial| -12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) (-5 *2 (-1082)) (-5 *1 (-964 *4)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) (-5 *2 (-585 (-1082))) (-5 *1 (-964 *4))))) +(-10 -7 (-15 -4083 ((-585 (-1082)) (-379 (-879 |#1|)))) (-15 -2635 ((-3 (-1082) "failed") (-379 (-879 |#1|)))) (-15 -1283 ((-379 (-1078 (-379 (-879 |#1|)))) (-379 (-879 |#1|)) (-1082))) (-15 -4066 ((-379 (-879 |#1|)) (-379 (-1078 (-379 (-879 |#1|)))) (-1082))) (-15 -2324 ((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-1082) (-379 (-879 |#1|)))) (-15 -2324 ((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-585 (-1082)) (-585 (-379 (-879 |#1|))))) (-15 -2324 ((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-267 (-379 (-879 |#1|))))) (-15 -2324 ((-379 (-879 |#1|)) (-379 (-879 |#1|)) (-585 (-267 (-379 (-879 |#1|)))))) (-15 -2217 ((-379 (-879 |#1|)) |#1|))) +((-1430 (((-108) $ $) NIL)) (-3106 (((-585 (-2 (|:| -1664 $) (|:| -1556 (-585 (-714 |#1| (-792 |#2|)))))) (-585 (-714 |#1| (-792 |#2|)))) NIL)) (-2548 (((-585 $) (-585 (-714 |#1| (-792 |#2|)))) NIL) (((-585 $) (-585 (-714 |#1| (-792 |#2|))) (-108)) NIL) (((-585 $) (-585 (-714 |#1| (-792 |#2|))) (-108) (-108)) NIL)) (-4083 (((-585 (-792 |#2|)) $) NIL)) (-2968 (((-108) $) NIL)) (-3146 (((-108) $) NIL (|has| |#1| (-511)))) (-2943 (((-108) (-714 |#1| (-792 |#2|)) $) NIL) (((-108) $) NIL)) (-4145 (((-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) $) NIL)) (-4043 (((-585 (-2 (|:| |val| (-714 |#1| (-792 |#2|))) (|:| -1890 $))) (-714 |#1| (-792 |#2|)) $) NIL)) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ (-792 |#2|)) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-1640 (($ (-1 (-108) (-714 |#1| (-792 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-3 (-714 |#1| (-792 |#2|)) "failed") $ (-792 |#2|)) NIL)) (-2249 (($) NIL T CONST)) (-3266 (((-108) $) NIL (|has| |#1| (-511)))) (-2542 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3609 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1276 (((-108) $) NIL (|has| |#1| (-511)))) (-4117 (((-585 (-714 |#1| (-792 |#2|))) (-585 (-714 |#1| (-792 |#2|))) $ (-1 (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|))) (-1 (-108) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)))) NIL)) (-1456 (((-585 (-714 |#1| (-792 |#2|))) (-585 (-714 |#1| (-792 |#2|))) $) NIL (|has| |#1| (-511)))) (-3596 (((-585 (-714 |#1| (-792 |#2|))) (-585 (-714 |#1| (-792 |#2|))) $) NIL (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 (-714 |#1| (-792 |#2|)))) NIL)) (-1499 (($ (-585 (-714 |#1| (-792 |#2|)))) NIL)) (-2343 (((-3 $ "failed") $) NIL)) (-1570 (((-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) $) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-714 |#1| (-792 |#2|)) (-1011))))) (-1438 (($ (-714 |#1| (-792 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-714 |#1| (-792 |#2|)) (-1011)))) (($ (-1 (-108) (-714 |#1| (-792 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-714 |#1| (-792 |#2|))) (|:| |den| |#1|)) (-714 |#1| (-792 |#2|)) $) NIL (|has| |#1| (-511)))) (-2459 (((-108) (-714 |#1| (-792 |#2|)) $ (-1 (-108) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)))) NIL)) (-3805 (((-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) $) NIL)) (-3874 (((-714 |#1| (-792 |#2|)) (-1 (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|))) $ (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-714 |#1| (-792 |#2|)) (-1011)))) (((-714 |#1| (-792 |#2|)) (-1 (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|))) $ (-714 |#1| (-792 |#2|))) NIL (|has| $ (-6 -4221))) (((-714 |#1| (-792 |#2|)) (-1 (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) $ (-1 (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|))) (-1 (-108) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)))) NIL)) (-2109 (((-2 (|:| -1664 (-585 (-714 |#1| (-792 |#2|)))) (|:| -1556 (-585 (-714 |#1| (-792 |#2|))))) $) NIL)) (-2674 (((-108) (-714 |#1| (-792 |#2|)) $) NIL)) (-2051 (((-108) (-714 |#1| (-792 |#2|)) $) NIL)) (-2167 (((-108) (-714 |#1| (-792 |#2|)) $) NIL) (((-108) $) NIL)) (-3844 (((-585 (-714 |#1| (-792 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3507 (((-108) (-714 |#1| (-792 |#2|)) $) NIL) (((-108) $) NIL)) (-4086 (((-792 |#2|) $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 (-714 |#1| (-792 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-714 |#1| (-792 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-714 |#1| (-792 |#2|)) (-1011))))) (-3850 (($ (-1 (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|))) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|))) $) NIL)) (-1360 (((-585 (-792 |#2|)) $) NIL)) (-1219 (((-108) (-792 |#2|) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-1196 (((-3 (-714 |#1| (-792 |#2|)) (-585 $)) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) $) NIL)) (-3296 (((-585 (-2 (|:| |val| (-714 |#1| (-792 |#2|))) (|:| -1890 $))) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) $) NIL)) (-1457 (((-3 (-714 |#1| (-792 |#2|)) "failed") $) NIL)) (-2975 (((-585 $) (-714 |#1| (-792 |#2|)) $) NIL)) (-3422 (((-3 (-108) (-585 $)) (-714 |#1| (-792 |#2|)) $) NIL)) (-2575 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 $))) (-714 |#1| (-792 |#2|)) $) NIL) (((-108) (-714 |#1| (-792 |#2|)) $) NIL)) (-3766 (((-585 $) (-714 |#1| (-792 |#2|)) $) NIL) (((-585 $) (-585 (-714 |#1| (-792 |#2|))) $) NIL) (((-585 $) (-585 (-714 |#1| (-792 |#2|))) (-585 $)) NIL) (((-585 $) (-714 |#1| (-792 |#2|)) (-585 $)) NIL)) (-3772 (($ (-714 |#1| (-792 |#2|)) $) NIL) (($ (-585 (-714 |#1| (-792 |#2|))) $) NIL)) (-4092 (((-585 (-714 |#1| (-792 |#2|))) $) NIL)) (-2921 (((-108) (-714 |#1| (-792 |#2|)) $) NIL) (((-108) $) NIL)) (-3369 (((-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) $) NIL)) (-3291 (((-108) $ $) NIL)) (-2573 (((-2 (|:| |num| (-714 |#1| (-792 |#2|))) (|:| |den| |#1|)) (-714 |#1| (-792 |#2|)) $) NIL (|has| |#1| (-511)))) (-3300 (((-108) (-714 |#1| (-792 |#2|)) $) NIL) (((-108) $) NIL)) (-1867 (((-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)) $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 (((-3 (-714 |#1| (-792 |#2|)) "failed") $) NIL)) (-2395 (((-3 (-714 |#1| (-792 |#2|)) "failed") (-1 (-108) (-714 |#1| (-792 |#2|))) $) NIL)) (-2781 (((-3 $ "failed") $ (-714 |#1| (-792 |#2|))) NIL)) (-3881 (($ $ (-714 |#1| (-792 |#2|))) NIL) (((-585 $) (-714 |#1| (-792 |#2|)) $) NIL) (((-585 $) (-714 |#1| (-792 |#2|)) (-585 $)) NIL) (((-585 $) (-585 (-714 |#1| (-792 |#2|))) $) NIL) (((-585 $) (-585 (-714 |#1| (-792 |#2|))) (-585 $)) NIL)) (-2379 (((-108) (-1 (-108) (-714 |#1| (-792 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-714 |#1| (-792 |#2|))) (-585 (-714 |#1| (-792 |#2|)))) NIL (-12 (|has| (-714 |#1| (-792 |#2|)) (-282 (-714 |#1| (-792 |#2|)))) (|has| (-714 |#1| (-792 |#2|)) (-1011)))) (($ $ (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|))) NIL (-12 (|has| (-714 |#1| (-792 |#2|)) (-282 (-714 |#1| (-792 |#2|)))) (|has| (-714 |#1| (-792 |#2|)) (-1011)))) (($ $ (-267 (-714 |#1| (-792 |#2|)))) NIL (-12 (|has| (-714 |#1| (-792 |#2|)) (-282 (-714 |#1| (-792 |#2|)))) (|has| (-714 |#1| (-792 |#2|)) (-1011)))) (($ $ (-585 (-267 (-714 |#1| (-792 |#2|))))) NIL (-12 (|has| (-714 |#1| (-792 |#2|)) (-282 (-714 |#1| (-792 |#2|)))) (|has| (-714 |#1| (-792 |#2|)) (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-4178 (((-705) $) NIL)) (-4155 (((-705) (-714 |#1| (-792 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-714 |#1| (-792 |#2|)) (-1011)))) (((-705) (-1 (-108) (-714 |#1| (-792 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-714 |#1| (-792 |#2|)) (-560 (-495))))) (-2228 (($ (-585 (-714 |#1| (-792 |#2|)))) NIL)) (-4175 (($ $ (-792 |#2|)) NIL)) (-1982 (($ $ (-792 |#2|)) NIL)) (-3282 (($ $) NIL)) (-1272 (($ $ (-792 |#2|)) NIL)) (-2217 (((-790) $) NIL) (((-585 (-714 |#1| (-792 |#2|))) $) NIL)) (-3156 (((-705) $) NIL (|has| (-792 |#2|) (-340)))) (-3541 (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 (-714 |#1| (-792 |#2|))))) "failed") (-585 (-714 |#1| (-792 |#2|))) (-1 (-108) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 (-714 |#1| (-792 |#2|))))) "failed") (-585 (-714 |#1| (-792 |#2|))) (-1 (-108) (-714 |#1| (-792 |#2|))) (-1 (-108) (-714 |#1| (-792 |#2|)) (-714 |#1| (-792 |#2|)))) NIL)) (-3735 (((-108) $ (-1 (-108) (-714 |#1| (-792 |#2|)) (-585 (-714 |#1| (-792 |#2|))))) NIL)) (-3249 (((-585 $) (-714 |#1| (-792 |#2|)) $) NIL) (((-585 $) (-714 |#1| (-792 |#2|)) (-585 $)) NIL) (((-585 $) (-585 (-714 |#1| (-792 |#2|))) $) NIL) (((-585 $) (-585 (-714 |#1| (-792 |#2|))) (-585 $)) NIL)) (-1778 (((-108) (-1 (-108) (-714 |#1| (-792 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3059 (((-585 (-792 |#2|)) $) NIL)) (-3736 (((-108) (-714 |#1| (-792 |#2|)) $) NIL)) (-3980 (((-108) (-792 |#2|) $) NIL)) (-1543 (((-108) $ $) NIL)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-965 |#1| |#2|) (-13 (-987 |#1| (-491 (-792 |#2|)) (-792 |#2|) (-714 |#1| (-792 |#2|))) (-10 -8 (-15 -2548 ((-585 $) (-585 (-714 |#1| (-792 |#2|))) (-108) (-108))))) (-423) (-585 (-1082))) (T -965)) +((-2548 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-714 *5 (-792 *6)))) (-5 *4 (-108)) (-4 *5 (-423)) (-14 *6 (-585 (-1082))) (-5 *2 (-585 (-965 *5 *6))) (-5 *1 (-965 *5 *6))))) +(-13 (-987 |#1| (-491 (-792 |#2|)) (-792 |#2|) (-714 |#1| (-792 |#2|))) (-10 -8 (-15 -2548 ((-585 $) (-585 (-714 |#1| (-792 |#2|))) (-108) (-108))))) +((-3402 (((-1 (-519)) (-1006 (-519))) 33)) (-1497 (((-519) (-519) (-519) (-519) (-519)) 30)) (-3360 (((-1 (-519)) |RationalNumber|) NIL)) (-2361 (((-1 (-519)) |RationalNumber|) NIL)) (-3563 (((-1 (-519)) (-519) |RationalNumber|) NIL))) +(((-966) (-10 -7 (-15 -3402 ((-1 (-519)) (-1006 (-519)))) (-15 -3563 ((-1 (-519)) (-519) |RationalNumber|)) (-15 -3360 ((-1 (-519)) |RationalNumber|)) (-15 -2361 ((-1 (-519)) |RationalNumber|)) (-15 -1497 ((-519) (-519) (-519) (-519) (-519))))) (T -966)) +((-1497 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-966)))) (-2361 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-519))) (-5 *1 (-966)))) (-3360 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-519))) (-5 *1 (-966)))) (-3563 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-519))) (-5 *1 (-966)) (-5 *3 (-519)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-1006 (-519))) (-5 *2 (-1 (-519))) (-5 *1 (-966))))) +(-10 -7 (-15 -3402 ((-1 (-519)) (-1006 (-519)))) (-15 -3563 ((-1 (-519)) (-519) |RationalNumber|)) (-15 -3360 ((-1 (-519)) |RationalNumber|)) (-15 -2361 ((-1 (-519)) |RationalNumber|)) (-15 -1497 ((-519) (-519) (-519) (-519) (-519)))) +((-2217 (((-790) $) NIL) (($ (-519)) 10))) +(((-967 |#1|) (-10 -8 (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) (-968)) (T -967)) +NIL +(-10 -8 (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 28)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-968) (-1194)) (T -968)) +((-3594 (*1 *2) (-12 (-4 *1 (-968)) (-5 *2 (-705)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-968))))) +(-13 (-975) (-661) (-587 $) (-10 -8 (-15 -3594 ((-705))) (-15 -2217 ($ (-519))) (-6 -4218))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 $) . T) ((-661) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-3841 (((-379 (-879 |#2|)) (-585 |#2|) (-585 |#2|) (-705) (-705)) 45))) +(((-969 |#1| |#2|) (-10 -7 (-15 -3841 ((-379 (-879 |#2|)) (-585 |#2|) (-585 |#2|) (-705) (-705)))) (-1082) (-335)) (T -969)) +((-3841 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-705)) (-4 *6 (-335)) (-5 *2 (-379 (-879 *6))) (-5 *1 (-969 *5 *6)) (-14 *5 (-1082))))) +(-10 -7 (-15 -3841 ((-379 (-879 |#2|)) (-585 |#2|) (-585 |#2|) (-705) (-705)))) +((-3411 (((-108) $) 28)) (-1413 (((-108) $) 16)) (-1426 (((-705) $) 13)) (-1437 (((-705) $) 14)) (-2464 (((-108) $) 26)) (-3238 (((-108) $) 30))) +(((-970 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1437 ((-705) |#1|)) (-15 -1426 ((-705) |#1|)) (-15 -3238 ((-108) |#1|)) (-15 -3411 ((-108) |#1|)) (-15 -2464 ((-108) |#1|)) (-15 -1413 ((-108) |#1|))) (-971 |#2| |#3| |#4| |#5| |#6|) (-705) (-705) (-968) (-214 |#3| |#4|) (-214 |#2| |#4|)) (T -970)) +NIL +(-10 -8 (-15 -1437 ((-705) |#1|)) (-15 -1426 ((-705) |#1|)) (-15 -3238 ((-108) |#1|)) (-15 -3411 ((-108) |#1|)) (-15 -2464 ((-108) |#1|)) (-15 -1413 ((-108) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3411 (((-108) $) 51)) (-3167 (((-3 $ "failed") $ $) 19)) (-1413 (((-108) $) 53)) (-1473 (((-108) $ (-705)) 61)) (-2249 (($) 17 T CONST)) (-3196 (($ $) 34 (|has| |#3| (-280)))) (-4159 ((|#4| $ (-519)) 39)) (-3229 (((-705) $) 33 (|has| |#3| (-511)))) (-3659 ((|#3| $ (-519) (-519)) 41)) (-3844 (((-585 |#3|) $) 68 (|has| $ (-6 -4221)))) (-2518 (((-705) $) 32 (|has| |#3| (-511)))) (-3885 (((-585 |#5|) $) 31 (|has| |#3| (-511)))) (-1426 (((-705) $) 45)) (-1437 (((-705) $) 44)) (-3878 (((-108) $ (-705)) 60)) (-4161 (((-519) $) 49)) (-2918 (((-519) $) 47)) (-3725 (((-585 |#3|) $) 69 (|has| $ (-6 -4221)))) (-1933 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1011)) (|has| $ (-6 -4221))))) (-1238 (((-519) $) 48)) (-2012 (((-519) $) 46)) (-1377 (($ (-585 (-585 |#3|))) 54)) (-3850 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2723 (((-585 (-585 |#3|)) $) 43)) (-2768 (((-108) $ (-705)) 59)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2261 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-511)))) (-2379 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#3|) (-585 |#3|)) 75 (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ (-267 |#3|)) 73 (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ (-585 (-267 |#3|))) 72 (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011))))) (-4091 (((-108) $ $) 55)) (-3108 (((-108) $) 58)) (-1548 (($) 57)) (-2598 ((|#3| $ (-519) (-519)) 42) ((|#3| $ (-519) (-519) |#3|) 40)) (-2464 (((-108) $) 52)) (-4155 (((-705) |#3| $) 70 (-12 (|has| |#3| (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4221)))) (-2449 (($ $) 56)) (-3067 ((|#5| $ (-519)) 38)) (-2217 (((-790) $) 11)) (-1778 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4221)))) (-3238 (((-108) $) 50)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#3|) 35 (|has| |#3| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3532 (((-705) $) 62 (|has| $ (-6 -4221))))) +(((-971 |#1| |#2| |#3| |#4| |#5|) (-1194) (-705) (-705) (-968) (-214 |t#2| |t#3|) (-214 |t#1| |t#3|)) (T -971)) +((-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *5))) (-4 *5 (-968)) (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)))) (-1413 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-519)))) (-1238 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-519)))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-519)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-519)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-705)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-705)))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-585 (-585 *5))))) (-2598 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-519)) (-4 *1 (-971 *4 *5 *2 *6 *7)) (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2)) (-4 *2 (-968)))) (-3659 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-519)) (-4 *1 (-971 *4 *5 *2 *6 *7)) (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2)) (-4 *2 (-968)))) (-2598 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-519)) (-4 *1 (-971 *4 *5 *2 *6 *7)) (-4 *2 (-968)) (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *1 (-971 *4 *5 *6 *2 *7)) (-4 *6 (-968)) (-4 *7 (-214 *4 *6)) (-4 *2 (-214 *5 *6)))) (-3067 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *1 (-971 *4 *5 *6 *7 *2)) (-4 *6 (-968)) (-4 *7 (-214 *5 *6)) (-4 *2 (-214 *4 *6)))) (-1405 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)))) (-2261 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-971 *3 *4 *2 *5 *6)) (-4 *2 (-968)) (-4 *5 (-214 *4 *2)) (-4 *6 (-214 *3 *2)) (-4 *2 (-511)))) (-1632 (*1 *1 *1 *2) (-12 (-4 *1 (-971 *3 *4 *2 *5 *6)) (-4 *2 (-968)) (-4 *5 (-214 *4 *2)) (-4 *6 (-214 *3 *2)) (-4 *2 (-335)))) (-3196 (*1 *1 *1) (-12 (-4 *1 (-971 *2 *3 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *2 *4)) (-4 *4 (-280)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-511)) (-5 *2 (-705)))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-511)) (-5 *2 (-705)))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-511)) (-5 *2 (-585 *7))))) +(-13 (-107 |t#3| |t#3|) (-458 |t#3|) (-10 -8 (-6 -4221) (IF (|has| |t#3| (-157)) (-6 (-652 |t#3|)) |%noBranch|) (-15 -1377 ($ (-585 (-585 |t#3|)))) (-15 -1413 ((-108) $)) (-15 -2464 ((-108) $)) (-15 -3411 ((-108) $)) (-15 -3238 ((-108) $)) (-15 -4161 ((-519) $)) (-15 -1238 ((-519) $)) (-15 -2918 ((-519) $)) (-15 -2012 ((-519) $)) (-15 -1426 ((-705) $)) (-15 -1437 ((-705) $)) (-15 -2723 ((-585 (-585 |t#3|)) $)) (-15 -2598 (|t#3| $ (-519) (-519))) (-15 -3659 (|t#3| $ (-519) (-519))) (-15 -2598 (|t#3| $ (-519) (-519) |t#3|)) (-15 -4159 (|t#4| $ (-519))) (-15 -3067 (|t#5| $ (-519))) (-15 -1405 ($ (-1 |t#3| |t#3|) $)) (-15 -1405 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-511)) (-15 -2261 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-335)) (-15 -1632 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-280)) (-15 -3196 ($ $)) |%noBranch|) (IF (|has| |t#3| (-511)) (PROGN (-15 -3229 ((-705) $)) (-15 -2518 ((-705) $)) (-15 -3885 ((-585 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-124) . T) ((-559 (-790)) . T) ((-282 |#3|) -12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011))) ((-458 |#3|) . T) ((-480 |#3| |#3|) -12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011))) ((-587 |#3|) . T) ((-652 |#3|) |has| |#3| (-157)) ((-974 |#3|) . T) ((-1011) . T) ((-1117) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3411 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1413 (((-108) $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-2249 (($) NIL T CONST)) (-3196 (($ $) 40 (|has| |#3| (-280)))) (-4159 (((-216 |#2| |#3|) $ (-519)) 29)) (-2414 (($ (-625 |#3|)) 38)) (-3229 (((-705) $) 42 (|has| |#3| (-511)))) (-3659 ((|#3| $ (-519) (-519)) NIL)) (-3844 (((-585 |#3|) $) NIL (|has| $ (-6 -4221)))) (-2518 (((-705) $) 44 (|has| |#3| (-511)))) (-3885 (((-585 (-216 |#1| |#3|)) $) 48 (|has| |#3| (-511)))) (-1426 (((-705) $) NIL)) (-1437 (((-705) $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-4161 (((-519) $) NIL)) (-2918 (((-519) $) NIL)) (-3725 (((-585 |#3|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#3| (-1011))))) (-1238 (((-519) $) NIL)) (-2012 (((-519) $) NIL)) (-1377 (($ (-585 (-585 |#3|))) 24)) (-3850 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2723 (((-585 (-585 |#3|)) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2261 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-511)))) (-2379 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ (-267 |#3|)) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ (-585 (-267 |#3|))) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#3| $ (-519) (-519)) NIL) ((|#3| $ (-519) (-519) |#3|) NIL)) (-2914 (((-126)) 51 (|has| |#3| (-335)))) (-2464 (((-108) $) NIL)) (-4155 (((-705) |#3| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#3| (-1011)))) (((-705) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) 60 (|has| |#3| (-560 (-495))))) (-3067 (((-216 |#1| |#3|) $ (-519)) 33)) (-2217 (((-790) $) 16) (((-625 |#3|) $) 35)) (-1778 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4221)))) (-3238 (((-108) $) NIL)) (-3602 (($) 13 T CONST)) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ |#3|) NIL (|has| |#3| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-972 |#1| |#2| |#3|) (-13 (-971 |#1| |#2| |#3| (-216 |#2| |#3|) (-216 |#1| |#3|)) (-559 (-625 |#3|)) (-10 -8 (IF (|has| |#3| (-335)) (-6 (-1170 |#3|)) |%noBranch|) (IF (|has| |#3| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|) (-15 -2414 ($ (-625 |#3|))) (-15 -2217 ((-625 |#3|) $)))) (-705) (-705) (-968)) (T -972)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-625 *5)) (-5 *1 (-972 *3 *4 *5)) (-14 *3 (-705)) (-14 *4 (-705)) (-4 *5 (-968)))) (-2414 (*1 *1 *2) (-12 (-5 *2 (-625 *5)) (-4 *5 (-968)) (-5 *1 (-972 *3 *4 *5)) (-14 *3 (-705)) (-14 *4 (-705))))) +(-13 (-971 |#1| |#2| |#3| (-216 |#2| |#3|) (-216 |#1| |#3|)) (-559 (-625 |#3|)) (-10 -8 (IF (|has| |#3| (-335)) (-6 (-1170 |#3|)) |%noBranch|) (IF (|has| |#3| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|) (-15 -2414 ($ (-625 |#3|))) (-15 -2217 ((-625 |#3|) $)))) +((-3874 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1405 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-973 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1405 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3874 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-705) (-705) (-968) (-214 |#2| |#3|) (-214 |#1| |#3|) (-971 |#1| |#2| |#3| |#4| |#5|) (-968) (-214 |#2| |#7|) (-214 |#1| |#7|) (-971 |#1| |#2| |#7| |#8| |#9|)) (T -973)) +((-3874 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-968)) (-4 *2 (-968)) (-14 *5 (-705)) (-14 *6 (-705)) (-4 *8 (-214 *6 *7)) (-4 *9 (-214 *5 *7)) (-4 *10 (-214 *6 *2)) (-4 *11 (-214 *5 *2)) (-5 *1 (-973 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-971 *5 *6 *7 *8 *9)) (-4 *12 (-971 *5 *6 *2 *10 *11)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-968)) (-4 *10 (-968)) (-14 *5 (-705)) (-14 *6 (-705)) (-4 *8 (-214 *6 *7)) (-4 *9 (-214 *5 *7)) (-4 *2 (-971 *5 *6 *10 *11 *12)) (-5 *1 (-973 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-971 *5 *6 *7 *8 *9)) (-4 *11 (-214 *6 *10)) (-4 *12 (-214 *5 *10))))) +(-10 -7 (-15 -1405 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3874 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ |#1|) 23))) +(((-974 |#1|) (-1194) (-975)) (T -974)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-974 *2)) (-4 *2 (-975))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-845)) 26)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-971) (-1189)) (T -971)) -NIL -(-13 (-21) (-1018)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1018) . T) ((-1006) . T)) -((-2147 (($ $) 16)) (-3164 (($ $) 22)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 49)) (-3522 (($ $) 24)) (-2590 (($ $) 11)) (-2713 (($ $) 38)) (-3367 (((-349) $) NIL) (((-199) $) NIL) (((-816 (-349)) $) 33)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 28) (($ (-517)) NIL) (($ (-377 (-517))) 28)) (-1818 (((-703)) 8)) (-3126 (($ $) 39))) -(((-972 |#1|) (-10 -8 (-15 -3164 (|#1| |#1|)) (-15 -2147 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2713 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -2262 ((-787) |#1|))) (-973)) (T -972)) -((-1818 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-972 *3)) (-4 *3 (-973))))) -(-10 -8 (-15 -3164 (|#1| |#1|)) (-15 -2147 (|#1| |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -2713 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -2939 ((-813 (-349) |#1|) |#1| (-816 (-349)) (-813 (-349) |#1|))) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 -3367 ((-199) |#1|)) (-15 -3367 ((-349) |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -1818 ((-703))) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2964 (((-517) $) 89)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2147 (($ $) 87)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-3908 (($ $) 97)) (-1765 (((-107) $ $) 59)) (-3502 (((-517) $) 114)) (-3038 (($) 17 T CONST)) (-3164 (($ $) 86)) (-3220 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3402 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2022 (((-107) $) 71)) (-2671 (((-107) $) 112)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 93)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 96)) (-3522 (($ $) 92)) (-2321 (((-107) $) 113)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3480 (($ $ $) 111)) (-4095 (($ $ $) 110)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-2590 (($ $) 88)) (-2713 (($ $) 90)) (-3896 (((-388 $) $) 74)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3367 (((-349) $) 105) (((-199) $) 104) (((-816 (-349)) $) 94)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-1818 (((-703)) 29)) (-3126 (($ $) 91)) (-2944 (((-107) $ $) 39)) (-2829 (($ $) 115)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1630 (((-107) $ $) 108)) (-1606 (((-107) $ $) 107)) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 109)) (-1596 (((-107) $ $) 106)) (-1692 (($ $ $) 64)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66))) -(((-973) (-1189)) (T -973)) -((-2829 (*1 *1 *1) (-4 *1 (-973))) (-3522 (*1 *1 *1) (-4 *1 (-973))) (-3126 (*1 *1 *1) (-4 *1 (-973))) (-2713 (*1 *1 *1) (-4 *1 (-973))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-517)))) (-2590 (*1 *1 *1) (-4 *1 (-973))) (-2147 (*1 *1 *1) (-4 *1 (-973))) (-3164 (*1 *1 *1) (-4 *1 (-973)))) -(-13 (-333) (-777) (-940) (-955 (-517)) (-955 (-377 (-517))) (-921) (-558 (-816 (-349))) (-810 (-349)) (-134) (-10 -8 (-15 -3522 ($ $)) (-15 -3126 ($ $)) (-15 -2713 ($ $)) (-15 -2964 ((-517) $)) (-15 -2590 ($ $)) (-15 -2147 ($ $)) (-15 -3164 ($ $)) (-15 -2829 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-816 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-810 (-349)) . T) ((-844) . T) ((-921) . T) ((-940) . T) ((-955 (-377 (-517))) . T) ((-955 (-517)) . T) ((-970 #0#) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) |#2| $) 23)) (-2390 ((|#1| $) 10)) (-3502 (((-517) |#2| $) 89)) (-1454 (((-3 $ "failed") |#2| (-845)) 58)) (-3302 ((|#1| $) 28)) (-2255 ((|#1| |#2| $ |#1|) 37)) (-2104 (($ $) 25)) (-3550 (((-3 |#2| "failed") |#2| $) 88)) (-2671 (((-107) |#2| $) NIL)) (-2321 (((-107) |#2| $) NIL)) (-3338 (((-107) |#2| $) 24)) (-2230 ((|#1| $) 90)) (-3287 ((|#1| $) 27)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2819 ((|#2| $) 80)) (-2262 (((-787) $) 71)) (-2194 ((|#1| |#2| $ |#1|) 38)) (-1244 (((-583 $) |#2|) 60)) (-1572 (((-107) $ $) 75))) -(((-974 |#1| |#2|) (-13 (-980 |#1| |#2|) (-10 -8 (-15 -3287 (|#1| $)) (-15 -3302 (|#1| $)) (-15 -2390 (|#1| $)) (-15 -2230 (|#1| $)) (-15 -2104 ($ $)) (-15 -3338 ((-107) |#2| $)) (-15 -2255 (|#1| |#2| $ |#1|)))) (-13 (-777) (-333)) (-1134 |#1|)) (T -974)) -((-2255 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-3287 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-3302 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-2390 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-2230 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-2104 (*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1134 *2)))) (-3338 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1134 *4))))) -(-13 (-980 |#1| |#2|) (-10 -8 (-15 -3287 (|#1| $)) (-15 -3302 (|#1| $)) (-15 -2390 (|#1| $)) (-15 -2230 (|#1| $)) (-15 -2104 ($ $)) (-15 -3338 ((-107) |#2| $)) (-15 -2255 (|#1| |#2| $ |#1|)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2199 (($ $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2800 (($ $ $ $) NIL)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL)) (-2127 (($ $ $) NIL)) (-3038 (($) NIL T CONST)) (-1389 (($ (-1077)) 10) (($ (-517)) 7)) (-3220 (((-3 (-517) "failed") $) NIL)) (-3402 (((-517) $) NIL)) (-2383 (($ $ $) NIL)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL)) (-3748 (((-107) $) NIL)) (-3727 (((-377 (-517)) $) NIL)) (-2192 (($) NIL) (($ $) NIL)) (-2356 (($ $ $) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1214 (($ $ $ $) NIL)) (-4146 (($ $ $) NIL)) (-2671 (((-107) $) NIL)) (-3624 (($ $ $) NIL)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL)) (-1690 (((-107) $) NIL)) (-3448 (((-107) $) NIL)) (-1639 (((-3 $ "failed") $) NIL)) (-2321 (((-107) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3721 (($ $ $ $) NIL)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-2628 (($ $) NIL)) (-3728 (($ $) NIL)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-3598 (($ $ $) NIL)) (-2578 (($) NIL T CONST)) (-4022 (($ $) NIL)) (-4130 (((-1024) $) NIL) (($ $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2038 (($ $) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-2909 (($ $) NIL)) (-2453 (($ $) NIL)) (-3367 (((-517) $) 16) (((-493) $) NIL) (((-816 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL) (($ (-1077)) 9)) (-2262 (((-787) $) 20) (($ (-517)) 6) (($ $) NIL) (($ (-517)) 6)) (-1818 (((-703)) NIL)) (-1638 (((-107) $ $) NIL)) (-1462 (($ $ $) NIL)) (-4003 (($) NIL)) (-2944 (((-107) $ $) NIL)) (-2006 (($ $ $ $) NIL)) (-2829 (($ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) NIL)) (-1680 (($ $) 19) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL))) -(((-975) (-13 (-502) (-10 -8 (-6 -4182) (-6 -4187) (-6 -4183) (-15 -3367 ($ (-1077))) (-15 -1389 ($ (-1077))) (-15 -1389 ($ (-517)))))) (T -975)) -((-3367 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-975)))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-975)))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-975))))) -(-13 (-502) (-10 -8 (-6 -4182) (-6 -4187) (-6 -4183) (-15 -3367 ($ (-1077))) (-15 -1389 ($ (-1077))) (-15 -1389 ($ (-517))))) -((-2105 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-3351 (((-1163) $ (-1077) (-1077)) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-3181 (($) 9)) (-2436 (((-51) $ (-1077) (-51)) NIL)) (-2393 (($ $) 23)) (-2541 (($ $) 21)) (-2814 (($ $) 20)) (-2721 (($ $) 22)) (-3563 (($ $) 25)) (-3144 (($ $) 26)) (-1345 (($ $) 19)) (-3075 (($ $) 24)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) 18 (|has| $ (-6 -4195)))) (-3599 (((-3 (-51) "failed") (-1077) $) 34)) (-3038 (($) NIL T CONST)) (-1212 (($) 7)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-1749 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) 46 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-3 (-51) "failed") (-1077) $) NIL)) (-1423 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195)))) (-2173 (((-3 (-1060) "failed") $ (-1060) (-517)) 59)) (-2750 (((-51) $ (-1077) (-51)) NIL (|has| $ (-6 -4196)))) (-2557 (((-51) $ (-1077)) NIL)) (-1525 (((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-1077) $) NIL (|has| (-1077) (-779)))) (-3687 (((-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) 28 (|has| $ (-6 -4195))) (((-583 (-51)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-1969 (((-1077) $) NIL (|has| (-1077) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4196))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-1869 (((-583 (-1077)) $) NIL)) (-2409 (((-107) (-1077) $) NIL)) (-2015 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL)) (-3439 (($ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) 37)) (-1449 (((-583 (-1077)) $) NIL)) (-3413 (((-107) (-1077) $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-1708 (((-349) $ (-1077)) 45)) (-4067 (((-583 (-1060)) $ (-1060)) 60)) (-2420 (((-51) $) NIL (|has| (-1077) (-779)))) (-1985 (((-3 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) "failed") (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL)) (-2837 (($ $ (-51)) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-265 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL (-12 (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-280 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006))))) (-2862 (((-583 (-51)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 (((-51) $ (-1077)) NIL) (((-51) $ (-1077) (-51)) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-2505 (($ $ (-1077)) 47)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-51) (-1006)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) 30)) (-4117 (($ $ $) 31)) (-2262 (((-787) $) NIL (-3786 (|has| (-51) (-557 (-787))) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-557 (-787)))))) (-3322 (($ $ (-1077) (-349)) 43)) (-1283 (($ $ (-1077) (-349)) 44)) (-2729 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 (-1077)) (|:| -1846 (-51)))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-51) (-1006)) (|has| (-2 (|:| -2576 (-1077)) (|:| -1846 (-51))) (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-976) (-13 (-1089 (-1077) (-51)) (-10 -8 (-15 -4117 ($ $ $)) (-15 -1212 ($)) (-15 -1345 ($ $)) (-15 -2814 ($ $)) (-15 -2541 ($ $)) (-15 -2721 ($ $)) (-15 -3075 ($ $)) (-15 -2393 ($ $)) (-15 -3563 ($ $)) (-15 -3144 ($ $)) (-15 -3322 ($ $ (-1077) (-349))) (-15 -1283 ($ $ (-1077) (-349))) (-15 -1708 ((-349) $ (-1077))) (-15 -4067 ((-583 (-1060)) $ (-1060))) (-15 -2505 ($ $ (-1077))) (-15 -3181 ($)) (-15 -2173 ((-3 (-1060) "failed") $ (-1060) (-517))) (-6 -4195)))) (T -976)) -((-4117 (*1 *1 *1 *1) (-5 *1 (-976))) (-1212 (*1 *1) (-5 *1 (-976))) (-1345 (*1 *1 *1) (-5 *1 (-976))) (-2814 (*1 *1 *1) (-5 *1 (-976))) (-2541 (*1 *1 *1) (-5 *1 (-976))) (-2721 (*1 *1 *1) (-5 *1 (-976))) (-3075 (*1 *1 *1) (-5 *1 (-976))) (-2393 (*1 *1 *1) (-5 *1 (-976))) (-3563 (*1 *1 *1) (-5 *1 (-976))) (-3144 (*1 *1 *1) (-5 *1 (-976))) (-3322 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-349)) (-5 *1 (-976)))) (-1283 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-349)) (-5 *1 (-976)))) (-1708 (*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-349)) (-5 *1 (-976)))) (-4067 (*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-976)) (-5 *3 (-1060)))) (-2505 (*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-976)))) (-3181 (*1 *1) (-5 *1 (-976))) (-2173 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-976))))) -(-13 (-1089 (-1077) (-51)) (-10 -8 (-15 -4117 ($ $ $)) (-15 -1212 ($)) (-15 -1345 ($ $)) (-15 -2814 ($ $)) (-15 -2541 ($ $)) (-15 -2721 ($ $)) (-15 -3075 ($ $)) (-15 -2393 ($ $)) (-15 -3563 ($ $)) (-15 -3144 ($ $)) (-15 -3322 ($ $ (-1077) (-349))) (-15 -1283 ($ $ (-1077) (-349))) (-15 -1708 ((-349) $ (-1077))) (-15 -4067 ((-583 (-1060)) $ (-1060))) (-15 -2505 ($ $ (-1077))) (-15 -3181 ($)) (-15 -2173 ((-3 (-1060) "failed") $ (-1060) (-517))) (-6 -4195))) -((-1529 (($ $) 45)) (-2660 (((-107) $ $) 74)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-876 (-377 (-517)))) 227) (((-3 $ "failed") (-876 (-517))) 226) (((-3 $ "failed") (-876 |#2|)) 229)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) NIL) (($ (-876 (-377 (-517)))) 215) (($ (-876 (-517))) 211) (($ (-876 |#2|)) 231)) (-2364 (($ $) NIL) (($ $ |#4|) 43)) (-3639 (((-107) $ $) 112) (((-107) $ (-583 $)) 113)) (-1727 (((-107) $) 56)) (-1868 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 107)) (-3589 (($ $) 138)) (-3345 (($ $) 134)) (-3869 (($ $) 133)) (-3092 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3156 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3142 (((-107) $ $) 121) (((-107) $ (-583 $)) 122)) (-2772 ((|#4| $) 33)) (-2561 (($ $ $) 110)) (-1837 (((-107) $) 55)) (-2213 (((-703) $) 35)) (-3801 (($ $) 152)) (-2768 (($ $) 149)) (-1330 (((-583 $) $) 68)) (-2655 (($ $) 57)) (-1604 (($ $) 145)) (-3620 (((-583 $) $) 65)) (-2841 (($ $) 59)) (-2336 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1732 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1762 (-703))) $ $) 111)) (-3028 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $) 108) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $ |#4|) 109)) (-1650 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $) 104) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $ |#4|) 105)) (-1530 (($ $ $) 89) (($ $ $ |#4|) 95)) (-1962 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3497 (((-583 $) $) 51)) (-1568 (((-107) $ $) 118) (((-107) $ (-583 $)) 119)) (-2930 (($ $ $) 103)) (-2578 (($ $) 37)) (-1579 (((-107) $ $) 72)) (-2788 (((-107) $ $) 114) (((-107) $ (-583 $)) 116)) (-3877 (($ $ $) 101)) (-2415 (($ $) 40)) (-2361 ((|#2| |#2| $) 142) (($ (-583 $)) NIL) (($ $ $) NIL)) (-2353 (($ $ |#2|) NIL) (($ $ $) 131)) (-3084 (($ $ |#2|) 126) (($ $ $) 129)) (-1216 (($ $) 48)) (-2858 (($ $) 52)) (-3367 (((-816 (-349)) $) NIL) (((-816 (-517)) $) NIL) (((-493) $) NIL) (($ (-876 (-377 (-517)))) 217) (($ (-876 (-517))) 213) (($ (-876 |#2|)) 228) (((-1060) $) 250) (((-876 |#2|) $) 162)) (-2262 (((-787) $) 30) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-876 |#2|) $) 163) (($ (-377 (-517))) NIL) (($ $) NIL)) (-4093 (((-3 (-107) "failed") $ $) 71))) -(((-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 ((-876 |#2|) |#1|)) (-15 -3367 ((-876 |#2|) |#1|)) (-15 -3367 ((-1060) |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -2768 (|#1| |#1|)) (-15 -1604 (|#1| |#1|)) (-15 -3589 (|#1| |#1|)) (-15 -2361 (|#2| |#2| |#1|)) (-15 -2353 (|#1| |#1| |#1|)) (-15 -3084 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1| |#2|)) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3345 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3367 (|#1| (-876 |#2|))) (-15 -3402 (|#1| (-876 |#2|))) (-15 -3220 ((-3 |#1| "failed") (-876 |#2|))) (-15 -3367 (|#1| (-876 (-517)))) (-15 -3402 (|#1| (-876 (-517)))) (-15 -3220 ((-3 |#1| "failed") (-876 (-517)))) (-15 -3367 (|#1| (-876 (-377 (-517))))) (-15 -3402 (|#1| (-876 (-377 (-517))))) (-15 -3220 ((-3 |#1| "failed") (-876 (-377 (-517))))) (-15 -2930 (|#1| |#1| |#1|)) (-15 -3877 (|#1| |#1| |#1|)) (-15 -1732 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1762 (-703))) |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -1868 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1650 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -1650 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1962 (|#1| |#1| |#1| |#4|)) (-15 -1530 (|#1| |#1| |#1| |#4|)) (-15 -1962 (|#1| |#1| |#1|)) (-15 -1530 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1| |#4|)) (-15 -3092 (|#1| |#1| |#1| |#4|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -3142 ((-107) |#1| (-583 |#1|))) (-15 -3142 ((-107) |#1| |#1|)) (-15 -1568 ((-107) |#1| (-583 |#1|))) (-15 -1568 ((-107) |#1| |#1|)) (-15 -2788 ((-107) |#1| (-583 |#1|))) (-15 -2788 ((-107) |#1| |#1|)) (-15 -3639 ((-107) |#1| (-583 |#1|))) (-15 -3639 ((-107) |#1| |#1|)) (-15 -2660 ((-107) |#1| |#1|)) (-15 -1579 ((-107) |#1| |#1|)) (-15 -4093 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1330 ((-583 |#1|) |#1|)) (-15 -3620 ((-583 |#1|) |#1|)) (-15 -2841 (|#1| |#1|)) (-15 -2655 (|#1| |#1|)) (-15 -1727 ((-107) |#1|)) (-15 -1837 ((-107) |#1|)) (-15 -2364 (|#1| |#1| |#4|)) (-15 -2336 (|#1| |#1| |#4|)) (-15 -2858 (|#1| |#1|)) (-15 -3497 ((-583 |#1|) |#1|)) (-15 -1216 (|#1| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -2578 (|#1| |#1|)) (-15 -2213 ((-703) |#1|)) (-15 -2772 (|#4| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3402 (|#4| |#1|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -2262 (|#1| |#4|)) (-15 -2336 (|#2| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-978 |#2| |#3| |#4|) (-964) (-725) (-779)) (T -977)) -NIL -(-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2361 (|#1| |#1| |#1|)) (-15 -2361 (|#1| (-583 |#1|))) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 ((-876 |#2|) |#1|)) (-15 -3367 ((-876 |#2|) |#1|)) (-15 -3367 ((-1060) |#1|)) (-15 -3801 (|#1| |#1|)) (-15 -2768 (|#1| |#1|)) (-15 -1604 (|#1| |#1|)) (-15 -3589 (|#1| |#1|)) (-15 -2361 (|#2| |#2| |#1|)) (-15 -2353 (|#1| |#1| |#1|)) (-15 -3084 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1| |#2|)) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3345 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3367 (|#1| (-876 |#2|))) (-15 -3402 (|#1| (-876 |#2|))) (-15 -3220 ((-3 |#1| "failed") (-876 |#2|))) (-15 -3367 (|#1| (-876 (-517)))) (-15 -3402 (|#1| (-876 (-517)))) (-15 -3220 ((-3 |#1| "failed") (-876 (-517)))) (-15 -3367 (|#1| (-876 (-377 (-517))))) (-15 -3402 (|#1| (-876 (-377 (-517))))) (-15 -3220 ((-3 |#1| "failed") (-876 (-377 (-517))))) (-15 -2930 (|#1| |#1| |#1|)) (-15 -3877 (|#1| |#1| |#1|)) (-15 -1732 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1762 (-703))) |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -1868 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -3028 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1650 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -3292 |#1|)) |#1| |#1| |#4|)) (-15 -1650 ((-2 (|:| -1570 |#1|) (|:| |gap| (-703)) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1962 (|#1| |#1| |#1| |#4|)) (-15 -1530 (|#1| |#1| |#1| |#4|)) (-15 -1962 (|#1| |#1| |#1|)) (-15 -1530 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1| |#4|)) (-15 -3092 (|#1| |#1| |#1| |#4|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -3142 ((-107) |#1| (-583 |#1|))) (-15 -3142 ((-107) |#1| |#1|)) (-15 -1568 ((-107) |#1| (-583 |#1|))) (-15 -1568 ((-107) |#1| |#1|)) (-15 -2788 ((-107) |#1| (-583 |#1|))) (-15 -2788 ((-107) |#1| |#1|)) (-15 -3639 ((-107) |#1| (-583 |#1|))) (-15 -3639 ((-107) |#1| |#1|)) (-15 -2660 ((-107) |#1| |#1|)) (-15 -1579 ((-107) |#1| |#1|)) (-15 -4093 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1330 ((-583 |#1|) |#1|)) (-15 -3620 ((-583 |#1|) |#1|)) (-15 -2841 (|#1| |#1|)) (-15 -2655 (|#1| |#1|)) (-15 -1727 ((-107) |#1|)) (-15 -1837 ((-107) |#1|)) (-15 -2364 (|#1| |#1| |#4|)) (-15 -2336 (|#1| |#1| |#4|)) (-15 -2858 (|#1| |#1|)) (-15 -3497 ((-583 |#1|) |#1|)) (-15 -1216 (|#1| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -2578 (|#1| |#1|)) (-15 -2213 ((-703) |#1|)) (-15 -2772 (|#4| |#1|)) (-15 -3367 ((-493) |#1|)) (-15 -3367 ((-816 (-517)) |#1|)) (-15 -3367 ((-816 (-349)) |#1|)) (-15 -3402 (|#4| |#1|)) (-15 -3220 ((-3 |#4| "failed") |#1|)) (-15 -2262 (|#1| |#4|)) (-15 -2336 (|#2| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 |#3|) $) 110)) (-1428 (((-1073 $) $ |#3|) 125) (((-1073 |#1|) $) 124)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2491 (($ $) 88 (|has| |#1| (-509)))) (-2025 (((-107) $) 90 (|has| |#1| (-509)))) (-2675 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-1529 (($ $) 271)) (-2660 (((-107) $ $) 257)) (-1783 (((-3 $ "failed") $ $) 19)) (-4068 (($ $ $) 216 (|has| |#1| (-509)))) (-3770 (((-583 $) $ $) 211 (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) 100 (|has| |#1| (-833)))) (-1322 (($ $) 98 (|has| |#1| (-421)))) (-3306 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 103 (|has| |#1| (-833)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-955 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-876 (-377 (-517)))) 231 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077))))) (((-3 $ "failed") (-876 (-517))) 228 (-3786 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1077)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077)))))) (((-3 $ "failed") (-876 |#1|)) 225 (-3786 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1077)))) (-12 (-2479 (|has| |#1| (-502))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1077)))) (-12 (-2479 (|has| |#1| (-912 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077))))))) (-3402 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-955 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-955 (-517)))) ((|#3| $) 135) (($ (-876 (-377 (-517)))) 230 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077))))) (($ (-876 (-517))) 227 (-3786 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1077)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077)))))) (($ (-876 |#1|)) 224 (-3786 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (-2479 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1077)))) (-12 (-2479 (|has| |#1| (-502))) (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1077)))) (-12 (-2479 (|has| |#1| (-912 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077))))))) (-2133 (($ $ $ |#3|) 108 (|has| |#1| (-156))) (($ $ $) 212 (|has| |#1| (-509)))) (-2364 (($ $) 154) (($ $ |#3|) 266)) (-2947 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3639 (((-107) $ $) 256) (((-107) $ (-583 $)) 255)) (-3550 (((-3 $ "failed") $) 34)) (-1727 (((-107) $) 264)) (-1868 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 236)) (-3589 (($ $) 205 (|has| |#1| (-421)))) (-4172 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-2350 (((-583 $) $) 109)) (-2022 (((-107) $) 96 (|has| |#1| (-833)))) (-3345 (($ $) 221 (|has| |#1| (-509)))) (-3869 (($ $) 222 (|has| |#1| (-509)))) (-3092 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3156 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1760 (($ $ |#1| |#2| $) 172)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 84 (-12 (|has| |#3| (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 83 (-12 (|has| |#3| (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-1690 (((-107) $) 31)) (-2516 (((-703) $) 169)) (-3142 (((-107) $ $) 250) (((-107) $ (-583 $)) 249)) (-1576 (($ $ $ $ $) 207 (|has| |#1| (-509)))) (-2772 ((|#3| $) 275)) (-2069 (($ (-1073 |#1|) |#3|) 117) (($ (-1073 $) |#3|) 116)) (-1300 (((-583 $) $) 126)) (-3022 (((-107) $) 152)) (-2059 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2561 (($ $ $) 235)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#3|) 120)) (-1837 (((-107) $) 265)) (-3942 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-3480 (($ $ $) 79 (|has| |#1| (-779)))) (-2213 (((-703) $) 274)) (-4095 (($ $ $) 78 (|has| |#1| (-779)))) (-1542 (($ (-1 |#2| |#2|) $) 171)) (-3312 (($ (-1 |#1| |#1|) $) 151)) (-1958 (((-3 |#3| "failed") $) 123)) (-3801 (($ $) 202 (|has| |#1| (-421)))) (-2768 (($ $) 203 (|has| |#1| (-421)))) (-1330 (((-583 $) $) 260)) (-2655 (($ $) 263)) (-1604 (($ $) 204 (|has| |#1| (-421)))) (-3620 (((-583 $) $) 261)) (-2841 (($ $) 262)) (-2325 (($ $) 149)) (-2336 ((|#1| $) 148) (($ $ |#3|) 267)) (-2323 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-1732 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1762 (-703))) $ $) 234)) (-3028 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $) 238) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $ |#3|) 237)) (-1650 (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $) 240) (((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $ |#3|) 239)) (-1530 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1962 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3232 (((-1060) $) 9)) (-1504 (($ $ $) 210 (|has| |#1| (-509)))) (-3497 (((-583 $) $) 269)) (-1743 (((-3 (-583 $) "failed") $) 114)) (-1442 (((-3 (-583 $) "failed") $) 115)) (-3044 (((-3 (-2 (|:| |var| |#3|) (|:| -1725 (-703))) "failed") $) 113)) (-1568 (((-107) $ $) 252) (((-107) $ (-583 $)) 251)) (-2930 (($ $ $) 232)) (-2578 (($ $) 273)) (-1579 (((-107) $ $) 258)) (-2788 (((-107) $ $) 254) (((-107) $ (-583 $)) 253)) (-3877 (($ $ $) 233)) (-2415 (($ $) 272)) (-4130 (((-1024) $) 10)) (-3249 (((-2 (|:| -2361 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-509)))) (-1850 (((-2 (|:| -2361 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-509)))) (-2301 (((-107) $) 166)) (-2311 ((|#1| $) 167)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 95 (|has| |#1| (-421)))) (-2361 ((|#1| |#1| $) 206 (|has| |#1| (-421))) (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 102 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 101 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 99 (|has| |#1| (-833)))) (-1567 (((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-509)))) (-2333 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2353 (($ $ |#1|) 219 (|has| |#1| (-509))) (($ $ $) 217 (|has| |#1| (-509)))) (-3084 (($ $ |#1|) 220 (|has| |#1| (-509))) (($ $ $) 218 (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3115 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2042 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-1191 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-1216 (($ $) 270)) (-2858 (($ $) 268)) (-3367 (((-816 (-349)) $) 82 (-12 (|has| |#3| (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) 81 (-12 (|has| |#3| (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493))))) (($ (-876 (-377 (-517)))) 229 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077))))) (($ (-876 (-517))) 226 (-3786 (-12 (-2479 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1077)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1077)))))) (($ (-876 |#1|)) 223 (|has| |#3| (-558 (-1077)))) (((-1060) $) 201 (-12 (|has| |#1| (-955 (-517))) (|has| |#3| (-558 (-1077))))) (((-876 |#1|) $) 200 (|has| |#3| (-558 (-1077))))) (-4094 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 104 (-4024 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-876 |#1|) $) 199 (|has| |#3| (-558 (-1077)))) (($ (-377 (-517))) 72 (-3786 (|has| |#1| (-955 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) 168)) (-1939 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-3385 (((-3 $ "failed") $) 73 (-3786 (-4024 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 29)) (-2308 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-4093 (((-3 (-107) "failed") $ $) 259)) (-3675 (($) 30 T CONST)) (-3828 (($ $ $ $ (-703)) 208 (|has| |#1| (-509)))) (-2494 (($ $ $ (-703)) 209 (|has| |#1| (-509)))) (-3348 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1630 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-978 |#1| |#2| |#3|) (-1189) (-964) (-725) (-779)) (T -978)) -((-2772 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2213 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-2578 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2415 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1529 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1216 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3497 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-978 *3 *4 *5)))) (-2858 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2336 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2655 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2841 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3620 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-978 *3 *4 *5)))) (-1330 (*1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-978 *3 *4 *5)))) (-4093 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1579 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2660 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3639 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3639 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-2788 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2788 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1568 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1568 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3142 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3142 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3092 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3156 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3092 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3156 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1530 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1962 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1530 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1962 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1650 (*1 *2 *1 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -3292 *1))) (-4 *1 (-978 *3 *4 *5)))) (-1650 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -3292 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3028 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-978 *4 *5 *3)))) (-1868 (*1 *2 *1 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-978 *3 *4 *5)))) (-2561 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1732 (*1 *2 *1 *1) (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1762 (-703)))) (-4 *1 (-978 *3 *4 *5)))) (-3877 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2930 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3220 (*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3220 (*1 *1 *2) (|partial| -3786 (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3402 (*1 *1 *2) (-3786 (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3367 (*1 *1 *2) (-3786 (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3220 (*1 *1 *2) (|partial| -3786 (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-502))) (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-912 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3402 (*1 *1 *2) (-3786 (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-502))) (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-876 *3)) (-12 (-2479 (-4 *3 (-912 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *5 (-558 (-1077))) (-4 *4 (-725)) (-4 *5 (-779)))) (-3869 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3345 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3084 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2353 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3084 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2353 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-4068 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1567 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2361 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-1850 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2361 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3249 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -2361 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-2133 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3770 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-978 *3 *4 *5)))) (-1504 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2494 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-3828 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-1576 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2361 (*1 *2 *2 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3589 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1604 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-2768 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3801 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421))))) -(-13 (-873 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2772 (|t#3| $)) (-15 -2213 ((-703) $)) (-15 -2578 ($ $)) (-15 -2415 ($ $)) (-15 -1529 ($ $)) (-15 -1216 ($ $)) (-15 -3497 ((-583 $) $)) (-15 -2858 ($ $)) (-15 -2336 ($ $ |t#3|)) (-15 -2364 ($ $ |t#3|)) (-15 -1837 ((-107) $)) (-15 -1727 ((-107) $)) (-15 -2655 ($ $)) (-15 -2841 ($ $)) (-15 -3620 ((-583 $) $)) (-15 -1330 ((-583 $) $)) (-15 -4093 ((-3 (-107) "failed") $ $)) (-15 -1579 ((-107) $ $)) (-15 -2660 ((-107) $ $)) (-15 -3639 ((-107) $ $)) (-15 -3639 ((-107) $ (-583 $))) (-15 -2788 ((-107) $ $)) (-15 -2788 ((-107) $ (-583 $))) (-15 -1568 ((-107) $ $)) (-15 -1568 ((-107) $ (-583 $))) (-15 -3142 ((-107) $ $)) (-15 -3142 ((-107) $ (-583 $))) (-15 -3092 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3092 ($ $ $ |t#3|)) (-15 -3156 ($ $ $ |t#3|)) (-15 -1530 ($ $ $)) (-15 -1962 ($ $ $)) (-15 -1530 ($ $ $ |t#3|)) (-15 -1962 ($ $ $ |t#3|)) (-15 -1650 ((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $)) (-15 -1650 ((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -3292 $)) $ $ |t#3|)) (-15 -3028 ((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -3028 ((-2 (|:| -1570 $) (|:| |gap| (-703)) (|:| -2773 $) (|:| -3292 $)) $ $ |t#3|)) (-15 -1868 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -2561 ($ $ $)) (-15 -1732 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1762 (-703))) $ $)) (-15 -3877 ($ $ $)) (-15 -2930 ($ $ $)) (IF (|has| |t#3| (-558 (-1077))) (PROGN (-6 (-557 (-876 |t#1|))) (-6 (-558 (-876 |t#1|))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3220 ((-3 $ "failed") (-876 (-377 (-517))))) (-15 -3402 ($ (-876 (-377 (-517))))) (-15 -3367 ($ (-876 (-377 (-517))))) (-15 -3220 ((-3 $ "failed") (-876 (-517)))) (-15 -3402 ($ (-876 (-517)))) (-15 -3367 ($ (-876 (-517)))) (IF (|has| |t#1| (-912 (-517))) |%noBranch| (PROGN (-15 -3220 ((-3 $ "failed") (-876 |t#1|))) (-15 -3402 ($ (-876 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-517))) (IF (|has| |t#1| (-37 (-377 (-517)))) |%noBranch| (PROGN (-15 -3220 ((-3 $ "failed") (-876 (-517)))) (-15 -3402 ($ (-876 (-517)))) (-15 -3367 ($ (-876 (-517)))) (IF (|has| |t#1| (-502)) |%noBranch| (PROGN (-15 -3220 ((-3 $ "failed") (-876 |t#1|))) (-15 -3402 ($ (-876 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-517))) |%noBranch| (IF (|has| |t#1| (-37 (-377 (-517)))) |%noBranch| (PROGN (-15 -3220 ((-3 $ "failed") (-876 |t#1|))) (-15 -3402 ($ (-876 |t#1|)))))) (-15 -3367 ($ (-876 |t#1|))) (IF (|has| |t#1| (-955 (-517))) (-6 (-558 (-1060))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -3869 ($ $)) (-15 -3345 ($ $)) (-15 -3084 ($ $ |t#1|)) (-15 -2353 ($ $ |t#1|)) (-15 -3084 ($ $ $)) (-15 -2353 ($ $ $)) (-15 -4068 ($ $ $)) (-15 -1567 ((-2 (|:| -2361 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1850 ((-2 (|:| -2361 $) (|:| |coef1| $)) $ $)) (-15 -3249 ((-2 (|:| -2361 $) (|:| |coef2| $)) $ $)) (-15 -2133 ($ $ $)) (-15 -3770 ((-583 $) $ $)) (-15 -1504 ($ $ $)) (-15 -2494 ($ $ $ (-703))) (-15 -3828 ($ $ $ $ (-703))) (-15 -1576 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -2361 (|t#1| |t#1| $)) (-15 -3589 ($ $)) (-15 -1604 ($ $)) (-15 -2768 ($ $)) (-15 -3801 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-557 (-876 |#1|)) |has| |#3| (-558 (-1077))) ((-156) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-816 (-349))) -12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#3| (-558 (-816 (-349))))) ((-558 (-816 (-517))) -12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#3| (-558 (-816 (-517))))) ((-558 (-876 |#1|)) |has| |#3| (-558 (-1077))) ((-558 (-1060)) -12 (|has| |#1| (-955 (-517))) (|has| |#3| (-558 (-1077)))) ((-262) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-833)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 |#3|) . T) ((-810 (-349)) -12 (|has| |#1| (-810 (-349))) (|has| |#3| (-810 (-349)))) ((-810 (-517)) -12 (|has| |#1| (-810 (-517))) (|has| |#3| (-810 (-517)))) ((-873 |#1| |#2| |#3|) . T) ((-833) |has| |#1| (-833)) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 |#1|) . T) ((-955 |#3|) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) |has| |#1| (-833))) -((-1992 (((-107) |#3| $) 13)) (-1454 (((-3 $ "failed") |#3| (-845)) 23)) (-3550 (((-3 |#3| "failed") |#3| $) 37)) (-2671 (((-107) |#3| $) 16)) (-2321 (((-107) |#3| $) 14))) -(((-979 |#1| |#2| |#3|) (-10 -8 (-15 -1454 ((-3 |#1| "failed") |#3| (-845))) (-15 -3550 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2671 ((-107) |#3| |#1|)) (-15 -2321 ((-107) |#3| |#1|)) (-15 -1992 ((-107) |#3| |#1|))) (-980 |#2| |#3|) (-13 (-777) (-333)) (-1134 |#2|)) (T -979)) -NIL -(-10 -8 (-15 -1454 ((-3 |#1| "failed") |#3| (-845))) (-15 -3550 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2671 ((-107) |#3| |#1|)) (-15 -2321 ((-107) |#3| |#1|)) (-15 -1992 ((-107) |#3| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) |#2| $) 21)) (-3502 (((-517) |#2| $) 22)) (-1454 (((-3 $ "failed") |#2| (-845)) 15)) (-2255 ((|#1| |#2| $ |#1|) 13)) (-3550 (((-3 |#2| "failed") |#2| $) 18)) (-2671 (((-107) |#2| $) 19)) (-2321 (((-107) |#2| $) 20)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2819 ((|#2| $) 17)) (-2262 (((-787) $) 11)) (-2194 ((|#1| |#2| $ |#1|) 14)) (-1244 (((-583 $) |#2|) 16)) (-1572 (((-107) $ $) 6))) -(((-980 |#1| |#2|) (-1189) (-13 (-777) (-333)) (-1134 |t#1|)) (T -980)) -((-3502 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-517)))) (-1992 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-107)))) (-2321 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-107)))) (-2671 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-107)))) (-3550 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1134 *3)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1134 *3)))) (-1244 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *3)))) (-1454 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-845)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-980 *4 *2)) (-4 *2 (-1134 *4)))) (-2194 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1134 *2)))) (-2255 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1134 *2))))) -(-13 (-1006) (-10 -8 (-15 -3502 ((-517) |t#2| $)) (-15 -1992 ((-107) |t#2| $)) (-15 -2321 ((-107) |t#2| $)) (-15 -2671 ((-107) |t#2| $)) (-15 -3550 ((-3 |t#2| "failed") |t#2| $)) (-15 -2819 (|t#2| $)) (-15 -1244 ((-583 $) |t#2|)) (-15 -1454 ((-3 $ "failed") |t#2| (-845))) (-15 -2194 (|t#1| |t#2| $ |t#1|)) (-15 -2255 (|t#1| |t#2| $ |t#1|)))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-3068 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703)) 96)) (-2172 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703)) 55)) (-2606 (((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703)) 87)) (-3532 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2329 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703)) 57) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107)) 59)) (-1784 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 78) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 79)) (-3367 (((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) 82)) (-2458 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-107)) 54)) (-1331 (((-703) (-583 |#4|) (-583 |#5|)) 19))) -(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1331 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3532 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2458 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-107))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3068 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703))) (-15 -3367 ((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -2606 ((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703)))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -981)) -((-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) (-5 *4 (-703)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1163)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1060)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-3068 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3864 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3864 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-981 *7 *8 *9 *10 *11)))) (-1784 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-1784 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-2329 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2329 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-2329 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) (-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2172 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-2458 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-981 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1331 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3532 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2458 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-107))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3068 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703))) (-15 -3367 ((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -2606 ((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703)))) -((-3901 (((-107) |#5| $) 21)) (-1426 (((-107) |#5| $) 24)) (-3403 (((-107) |#5| $) 16) (((-107) $) 45)) (-2187 (((-583 $) |#5| $) NIL) (((-583 $) (-583 |#5|) $) 77) (((-583 $) (-583 |#5|) (-583 $)) 75) (((-583 $) |#5| (-583 $)) 78)) (-3175 (($ $ |#5|) NIL) (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 60) (((-583 $) (-583 |#5|) $) 62) (((-583 $) (-583 |#5|) (-583 $)) 64)) (-2709 (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 54) (((-583 $) (-583 |#5|) $) 56) (((-583 $) (-583 |#5|) (-583 $)) 58)) (-2525 (((-107) |#5| $) 27))) -(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3175 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3175 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3175 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3175 ((-583 |#1|) |#5| |#1|)) (-15 -2709 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2709 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2709 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2709 ((-583 |#1|) |#5| |#1|)) (-15 -2187 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2187 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2187 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2187 ((-583 |#1|) |#5| |#1|)) (-15 -1426 ((-107) |#5| |#1|)) (-15 -3403 ((-107) |#1|)) (-15 -2525 ((-107) |#5| |#1|)) (-15 -3901 ((-107) |#5| |#1|)) (-15 -3403 ((-107) |#5| |#1|)) (-15 -3175 (|#1| |#1| |#5|))) (-983 |#2| |#3| |#4| |#5|) (-421) (-725) (-779) (-978 |#2| |#3| |#4|)) (T -982)) -NIL -(-10 -8 (-15 -3175 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3175 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3175 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3175 ((-583 |#1|) |#5| |#1|)) (-15 -2709 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2709 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2709 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2709 ((-583 |#1|) |#5| |#1|)) (-15 -2187 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -2187 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -2187 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -2187 ((-583 |#1|) |#5| |#1|)) (-15 -1426 ((-107) |#5| |#1|)) (-15 -3403 ((-107) |#1|)) (-15 -2525 ((-107) |#5| |#1|)) (-15 -3901 ((-107) |#5| |#1|)) (-15 -3403 ((-107) |#5| |#1|)) (-15 -3175 (|#1| |#1| |#5|))) -((-2105 (((-107) $ $) 7)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) 85)) (-3246 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) 101) (((-107) $) 97)) (-3710 ((|#4| |#4| $) 92)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 126)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 79)) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2429 (((-3 $ "failed") $) 82)) (-2195 ((|#4| |#4| $) 89)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4142 ((|#4| |#4| $) 87)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) 105)) (-3901 (((-107) |#4| $) 136)) (-1426 (((-107) |#4| $) 133)) (-3403 (((-107) |#4| $) 137) (((-107) $) 134)) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) 104) (((-107) $) 103)) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 127)) (-1447 (((-3 |#4| "failed") $) 83)) (-1243 (((-583 $) |#4| $) 129)) (-3398 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2187 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2642 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3846 (((-583 |#4|) $) 107)) (-1568 (((-107) |#4| $) 99) (((-107) $) 95)) (-2930 ((|#4| |#4| $) 90)) (-1579 (((-107) $ $) 110)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) 100) (((-107) $) 96)) (-3877 ((|#4| |#4| $) 91)) (-4130 (((-1024) $) 10)) (-2420 (((-3 |#4| "failed") $) 84)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-4059 (((-3 $ "failed") $ |#4|) 78)) (-3175 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-1191 (((-703) $) 106)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-4158 (($ $) 88)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3192 (((-703) $) 76 (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2709 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) 81)) (-2525 (((-107) |#4| $) 135)) (-3275 (((-107) |#3| $) 80)) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195))))) -(((-983 |#1| |#2| |#3| |#4|) (-1189) (-421) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -983)) -((-3403 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-3901 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-2525 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-1426 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-3398 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-2179 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-2179 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-1243 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-2211 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-1504 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-1322 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-2187 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-2187 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-2187 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)))) (-2187 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)))) (-2709 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-2709 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)))) (-2709 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-2709 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)))) (-2642 (*1 *1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-2642 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)))) (-3175 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3175 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)))) (-3175 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3175 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)))) (-3246 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-983 *5 *6 *7 *8))))) -(-13 (-1106 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3403 ((-107) |t#4| $)) (-15 -3901 ((-107) |t#4| $)) (-15 -2525 ((-107) |t#4| $)) (-15 -3403 ((-107) $)) (-15 -1426 ((-107) |t#4| $)) (-15 -3398 ((-3 (-107) (-583 $)) |t#4| $)) (-15 -2179 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |t#4| $)) (-15 -2179 ((-107) |t#4| $)) (-15 -1243 ((-583 $) |t#4| $)) (-15 -2211 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -1504 ((-583 (-2 (|:| |val| |t#4|) (|:| -3864 $))) |t#4| |t#4| $)) (-15 -1322 ((-583 (-2 (|:| |val| |t#4|) (|:| -3864 $))) |t#4| $)) (-15 -2187 ((-583 $) |t#4| $)) (-15 -2187 ((-583 $) (-583 |t#4|) $)) (-15 -2187 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2187 ((-583 $) |t#4| (-583 $))) (-15 -2709 ((-583 $) |t#4| $)) (-15 -2709 ((-583 $) |t#4| (-583 $))) (-15 -2709 ((-583 $) (-583 |t#4|) $)) (-15 -2709 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2642 ($ |t#4| $)) (-15 -2642 ($ (-583 |t#4|) $)) (-15 -3175 ((-583 $) |t#4| $)) (-15 -3175 ((-583 $) |t#4| (-583 $))) (-15 -3175 ((-583 $) (-583 |t#4|) $)) (-15 -3175 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3246 ((-583 $) (-583 |t#4|) (-107))))) -(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-896 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1106 |#1| |#2| |#3| |#4|) . T) ((-1112) . T)) -((-1464 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|) 81)) (-3103 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|) 113)) (-1932 (((-583 |#5|) |#4| |#5|) 70)) (-1889 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-2558 (((-1163)) 35)) (-1367 (((-1163)) 25)) (-3944 (((-1163) (-1060) (-1060) (-1060)) 31)) (-3404 (((-1163) (-1060) (-1060) (-1060)) 20)) (-2702 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|) 96)) (-1547 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107)) 107) (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-2051 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|) 102))) -(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3404 ((-1163) (-1060) (-1060) (-1060))) (-15 -1367 ((-1163))) (-15 -3944 ((-1163) (-1060) (-1060) (-1060))) (-15 -2558 ((-1163))) (-15 -2702 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1547 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1547 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107))) (-15 -2051 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -3103 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1889 ((-107) |#4| |#5|)) (-15 -1889 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1932 ((-583 |#5|) |#4| |#5|)) (-15 -1464 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -984)) -((-1464 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1932 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1889 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1889 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3103 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2051 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) (-5 *5 (-107)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3864 *9)))) (-5 *1 (-984 *6 *7 *4 *8 *9)))) (-1547 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-2702 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2558 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3944 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1367 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3404 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -(-10 -7 (-15 -3404 ((-1163) (-1060) (-1060) (-1060))) (-15 -1367 ((-1163))) (-15 -3944 ((-1163) (-1060) (-1060) (-1060))) (-15 -2558 ((-1163))) (-15 -2702 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1547 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1547 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107))) (-15 -2051 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -3103 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1889 ((-107) |#4| |#5|)) (-15 -1889 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1932 ((-583 |#5|) |#4| |#5|)) (-15 -1464 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|))) -((-2105 (((-107) $ $) NIL)) (-2981 (((-1077) $) 8)) (-3232 (((-1060) $) 16)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 13))) -(((-985 |#1|) (-13 (-1006) (-10 -8 (-15 -2981 ((-1077) $)))) (-1077)) (T -985)) -((-2981 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-985 *3)) (-14 *3 *2)))) -(-13 (-1006) (-10 -8 (-15 -2981 ((-1077) $)))) -((-2105 (((-107) $ $) NIL)) (-3594 (($ $ (-583 (-1077)) (-1 (-107) (-583 |#3|))) 29)) (-2021 (($ |#3| |#3|) 21) (($ |#3| |#3| (-583 (-1077))) 19)) (-2506 ((|#3| $) 13)) (-3220 (((-3 (-265 |#3|) "failed") $) 56)) (-3402 (((-265 |#3|) $) NIL)) (-2318 (((-583 (-1077)) $) 15)) (-1328 (((-816 |#1|) $) 11)) (-2499 ((|#3| $) 12)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2612 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-845)) 36)) (-2262 (((-787) $) 85) (($ (-265 |#3|)) 20)) (-1572 (((-107) $ $) 33))) -(((-986 |#1| |#2| |#3|) (-13 (-1006) (-258 |#3| |#3|) (-955 (-265 |#3|)) (-10 -8 (-15 -2021 ($ |#3| |#3|)) (-15 -2021 ($ |#3| |#3| (-583 (-1077)))) (-15 -3594 ($ $ (-583 (-1077)) (-1 (-107) (-583 |#3|)))) (-15 -1328 ((-816 |#1|) $)) (-15 -2499 (|#3| $)) (-15 -2506 (|#3| $)) (-15 -2612 (|#3| $ |#3| (-845))) (-15 -2318 ((-583 (-1077)) $)))) (-1006) (-13 (-964) (-810 |#1|) (-779) (-558 (-816 |#1|))) (-13 (-400 |#2|) (-810 |#1|) (-558 (-816 |#1|)))) (T -986)) -((-2021 (*1 *1 *2 *2) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))))) (-2021 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-5 *1 (-986 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))))) (-3594 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-5 *1 (-986 *4 *5 *6)))) (-1328 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 *2))) (-5 *2 (-816 *3)) (-5 *1 (-986 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-810 *3) (-558 *2))))) (-2499 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))))) (-2506 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))))) (-2612 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-845)) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-5 *1 (-986 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))))) (-2318 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) (-5 *2 (-583 (-1077))) (-5 *1 (-986 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3))))))) -(-13 (-1006) (-258 |#3| |#3|) (-955 (-265 |#3|)) (-10 -8 (-15 -2021 ($ |#3| |#3|)) (-15 -2021 ($ |#3| |#3| (-583 (-1077)))) (-15 -3594 ($ $ (-583 (-1077)) (-1 (-107) (-583 |#3|)))) (-15 -1328 ((-816 |#1|) $)) (-15 -2499 (|#3| $)) (-15 -2506 (|#3| $)) (-15 -2612 (|#3| $ |#3| (-845))) (-15 -2318 ((-583 (-1077)) $)))) -((-2105 (((-107) $ $) NIL)) (-3566 (($ (-583 (-986 |#1| |#2| |#3|))) 12)) (-3933 (((-583 (-986 |#1| |#2| |#3|)) $) 19)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2612 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-845)) 25)) (-2262 (((-787) $) 15)) (-1572 (((-107) $ $) 18))) -(((-987 |#1| |#2| |#3|) (-13 (-1006) (-258 |#3| |#3|) (-10 -8 (-15 -3566 ($ (-583 (-986 |#1| |#2| |#3|)))) (-15 -3933 ((-583 (-986 |#1| |#2| |#3|)) $)) (-15 -2612 (|#3| $ |#3| (-845))))) (-1006) (-13 (-964) (-810 |#1|) (-779) (-558 (-816 |#1|))) (-13 (-400 |#2|) (-810 |#1|) (-558 (-816 |#1|)))) (T -987)) -((-3566 (*1 *1 *2) (-12 (-5 *2 (-583 (-986 *3 *4 *5))) (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))) (-5 *1 (-987 *3 *4 *5)))) (-3933 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) (-5 *2 (-583 (-986 *3 *4 *5))) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))))) (-2612 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-845)) (-4 *4 (-1006)) (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4))))))) -(-13 (-1006) (-258 |#3| |#3|) (-10 -8 (-15 -3566 ($ (-583 (-986 |#1| |#2| |#3|)))) (-15 -3933 ((-583 (-986 |#1| |#2| |#3|)) $)) (-15 -2612 (|#3| $ |#3| (-845))))) -((-3327 (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107)) 74) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|))) 76) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107)) 75))) -(((-988 |#1| |#2|) (-10 -7 (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107))) (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107)))) (-13 (-278) (-134)) (-583 (-1077))) (T -988)) -((-3327 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) (-5 *1 (-988 *5 *6)) (-5 *3 (-583 (-876 *5))) (-14 *6 (-583 (-1077))))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4)))))) (-5 *1 (-988 *4 *5)) (-5 *3 (-583 (-876 *4))) (-14 *5 (-583 (-1077))))) (-3327 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) (-5 *1 (-988 *5 *6)) (-5 *3 (-583 (-876 *5))) (-14 *6 (-583 (-1077)))))) -(-10 -7 (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107))) (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -3327 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107)))) -((-3896 (((-388 |#3|) |#3|) 16))) -(((-989 |#1| |#2| |#3|) (-10 -7 (-15 -3896 ((-388 |#3|) |#3|))) (-1134 (-377 (-517))) (-13 (-333) (-134) (-657 (-377 (-517)) |#1|)) (-1134 |#2|)) (T -989)) -((-3896 (*1 *2 *3) (-12 (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-989 *4 *5 *3)) (-4 *3 (-1134 *5))))) -(-10 -7 (-15 -3896 ((-388 |#3|) |#3|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 125)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-333)))) (-2491 (($ $) NIL (|has| |#1| (-333)))) (-2025 (((-107) $) NIL (|has| |#1| (-333)))) (-1278 (((-623 |#1|) (-1158 $)) NIL) (((-623 |#1|)) 115)) (-1991 ((|#1| $) 119)) (-2461 (((-1086 (-845) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2390 (((-703)) 40 (|has| |#1| (-338)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-3539 (($ (-1158 |#1|) (-1158 $)) NIL) (($ (-1158 |#1|)) 43)) (-3735 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-4028 (((-623 |#1|) $ (-1158 $)) NIL) (((-623 |#1|) $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 106) (((-623 |#1|) (-623 $)) 100)) (-1510 (($ |#2|) 61) (((-3 $ "failed") (-377 |#2|)) NIL (|has| |#1| (-333)))) (-3550 (((-3 $ "failed") $) NIL)) (-3778 (((-845)) 77)) (-2192 (($) 44 (|has| |#1| (-338)))) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-4169 (($) NIL (|has| |#1| (-319)))) (-2634 (((-107) $) NIL (|has| |#1| (-319)))) (-2627 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3250 (((-845) $) NIL (|has| |#1| (-319))) (((-765 (-845)) $) NIL (|has| |#1| (-319)))) (-1690 (((-107) $) NIL)) (-3522 ((|#1| $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1914 ((|#2| $) 84 (|has| |#1| (-333)))) (-4161 (((-845) $) 130 (|has| |#1| (-338)))) (-1497 ((|#2| $) 58)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-2578 (($) NIL (|has| |#1| (-319)) CONST)) (-2803 (($ (-845)) 124 (|has| |#1| (-338)))) (-4130 (((-1024) $) NIL)) (-1306 (($) 121)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2445 (((-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517))))) NIL (|has| |#1| (-319)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-3115 ((|#1| (-1158 $)) NIL) ((|#1|) 109)) (-3667 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-2042 (($ $) NIL (-3786 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-3248 (((-623 |#1|) (-1158 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2819 ((|#2|) 73)) (-3718 (($) NIL (|has| |#1| (-319)))) (-1372 (((-1158 |#1|) $ (-1158 $)) 89) (((-623 |#1|) (-1158 $) (-1158 $)) NIL) (((-1158 |#1|) $) 71) (((-623 |#1|) (-1158 $)) 85)) (-3367 (((-1158 |#1|) $) NIL) (($ (-1158 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (|has| |#1| (-319)))) (-2262 (((-787) $) 57) (($ (-517)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-333))) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-333)) (|has| |#1| (-955 (-377 (-517))))))) (-3385 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3848 ((|#2| $) 82)) (-1818 (((-703)) 75)) (-3700 (((-1158 $)) 81)) (-2944 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 30 T CONST)) (-3675 (($) 19 T CONST)) (-3348 (($ $) NIL (-3786 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-824 (-1077))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-1572 (((-107) $ $) 63)) (-1692 (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) 67) (($ $ $) NIL)) (-1666 (($ $ $) 65)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))))) -(((-990 |#1| |#2| |#3|) (-657 |#1| |#2|) (-156) (-1134 |#1|) |#2|) (T -990)) -NIL -(-657 |#1| |#2|) -((-3896 (((-388 |#3|) |#3|) 16))) -(((-991 |#1| |#2| |#3|) (-10 -7 (-15 -3896 ((-388 |#3|) |#3|))) (-1134 (-377 (-876 (-517)))) (-13 (-333) (-134) (-657 (-377 (-876 (-517))) |#1|)) (-1134 |#2|)) (T -991)) -((-3896 (*1 *2 *3) (-12 (-4 *4 (-1134 (-377 (-876 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-876 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-991 *4 *5 *3)) (-4 *3 (-1134 *5))))) -(-10 -7 (-15 -3896 ((-388 |#3|) |#3|))) -((-2105 (((-107) $ $) NIL)) (-3480 (($ $ $) 14)) (-4095 (($ $ $) 15)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3154 (($) 6)) (-3367 (((-1077) $) 18)) (-2262 (((-787) $) 12)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 13)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 8))) -(((-992) (-13 (-779) (-10 -8 (-15 -3154 ($)) (-15 -3367 ((-1077) $))))) (T -992)) -((-3154 (*1 *1) (-5 *1 (-992))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-992))))) -(-13 (-779) (-10 -8 (-15 -3154 ($)) (-15 -3367 ((-1077) $)))) -((-2786 ((|#1| |#1| (-1 (-517) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-107) |#1|)) 20)) (-2280 (((-1163)) 15)) (-3851 (((-583 |#1|)) 9))) -(((-993 |#1|) (-10 -7 (-15 -2280 ((-1163))) (-15 -3851 ((-583 |#1|))) (-15 -2786 (|#1| |#1| (-1 (-107) |#1|))) (-15 -2786 (|#1| |#1| (-1 (-517) |#1| |#1|)))) (-124)) (T -993)) -((-2786 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-993 *2)))) (-2786 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-993 *2)))) (-3851 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-993 *3)) (-4 *3 (-124)))) (-2280 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-993 *3)) (-4 *3 (-124))))) -(-10 -7 (-15 -2280 ((-1163))) (-15 -3851 ((-583 |#1|))) (-15 -2786 (|#1| |#1| (-1 (-107) |#1|))) (-15 -2786 (|#1| |#1| (-1 (-517) |#1| |#1|)))) -((-3449 (((-1158 (-623 |#1|)) (-583 (-623 |#1|))) 41) (((-1158 (-623 (-876 |#1|))) (-583 (-1077)) (-623 (-876 |#1|))) 61) (((-1158 (-623 (-377 (-876 |#1|)))) (-583 (-1077)) (-623 (-377 (-876 |#1|)))) 77)) (-1372 (((-1158 |#1|) (-623 |#1|) (-583 (-623 |#1|))) 35))) -(((-994 |#1|) (-10 -7 (-15 -3449 ((-1158 (-623 (-377 (-876 |#1|)))) (-583 (-1077)) (-623 (-377 (-876 |#1|))))) (-15 -3449 ((-1158 (-623 (-876 |#1|))) (-583 (-1077)) (-623 (-876 |#1|)))) (-15 -3449 ((-1158 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1372 ((-1158 |#1|) (-623 |#1|) (-583 (-623 |#1|))))) (-333)) (T -994)) -((-1372 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1158 *5)) (-5 *1 (-994 *5)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1158 (-623 *4))) (-5 *1 (-994 *4)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1077))) (-4 *5 (-333)) (-5 *2 (-1158 (-623 (-876 *5)))) (-5 *1 (-994 *5)) (-5 *4 (-623 (-876 *5))))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1077))) (-4 *5 (-333)) (-5 *2 (-1158 (-623 (-377 (-876 *5))))) (-5 *1 (-994 *5)) (-5 *4 (-623 (-377 (-876 *5))))))) -(-10 -7 (-15 -3449 ((-1158 (-623 (-377 (-876 |#1|)))) (-583 (-1077)) (-623 (-377 (-876 |#1|))))) (-15 -3449 ((-1158 (-623 (-876 |#1|))) (-583 (-1077)) (-623 (-876 |#1|)))) (-15 -3449 ((-1158 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -1372 ((-1158 |#1|) (-623 |#1|) (-583 (-623 |#1|))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3974 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1077)) NIL)) (-3546 (((-703) $) NIL) (((-703) $ (-1077)) NIL)) (-2080 (((-583 (-996 (-1077))) $) NIL)) (-1428 (((-1073 $) $ (-996 (-1077))) NIL) (((-1073 |#1|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-996 (-1077)))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-2588 (($ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-996 (-1077)) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL) (((-3 (-1029 |#1| (-1077)) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-996 (-1077)) $) NIL) (((-1077) $) NIL) (((-1029 |#1| (-1077)) $) NIL)) (-2133 (($ $ $ (-996 (-1077))) NIL (|has| |#1| (-156)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ (-996 (-1077))) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-489 (-996 (-1077))) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-996 (-1077)) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-996 (-1077)) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ (-1077)) NIL) (((-703) $) NIL)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-2069 (($ (-1073 |#1|) (-996 (-1077))) NIL) (($ (-1073 $) (-996 (-1077))) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-489 (-996 (-1077)))) NIL) (($ $ (-996 (-1077)) (-703)) NIL) (($ $ (-583 (-996 (-1077))) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-996 (-1077))) NIL)) (-3942 (((-489 (-996 (-1077))) $) NIL) (((-703) $ (-996 (-1077))) NIL) (((-583 (-703)) $ (-583 (-996 (-1077)))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 (-996 (-1077))) (-489 (-996 (-1077)))) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1203 (((-1 $ (-703)) (-1077)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1958 (((-3 (-996 (-1077)) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3293 (((-996 (-1077)) $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1724 (((-107) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-996 (-1077))) (|:| -1725 (-703))) "failed") $) NIL)) (-2617 (($ $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-996 (-1077)) |#1|) NIL) (($ $ (-583 (-996 (-1077))) (-583 |#1|)) NIL) (($ $ (-996 (-1077)) $) NIL) (($ $ (-583 (-996 (-1077))) (-583 $)) NIL) (($ $ (-1077) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1077)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1077)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3115 (($ $ (-996 (-1077))) NIL (|has| |#1| (-156)))) (-2042 (($ $ (-996 (-1077))) NIL) (($ $ (-583 (-996 (-1077)))) NIL) (($ $ (-996 (-1077)) (-703)) NIL) (($ $ (-583 (-996 (-1077))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2125 (((-583 (-1077)) $) NIL)) (-1191 (((-489 (-996 (-1077))) $) NIL) (((-703) $ (-996 (-1077))) NIL) (((-583 (-703)) $ (-583 (-996 (-1077)))) NIL) (((-703) $ (-1077)) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-996 (-1077)) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-996 (-1077)) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-996 (-1077)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-996 (-1077))) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-996 (-1077))) NIL) (($ (-1077)) NIL) (($ (-1029 |#1| (-1077))) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-489 (-996 (-1077)))) NIL) (($ $ (-996 (-1077)) (-703)) NIL) (($ $ (-583 (-996 (-1077))) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-996 (-1077))) NIL) (($ $ (-583 (-996 (-1077)))) NIL) (($ $ (-996 (-1077)) (-703)) NIL) (($ $ (-583 (-996 (-1077))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-995 |#1|) (-13 (-226 |#1| (-1077) (-996 (-1077)) (-489 (-996 (-1077)))) (-955 (-1029 |#1| (-1077)))) (-964)) (T -995)) -NIL -(-13 (-226 |#1| (-1077) (-996 (-1077)) (-489 (-996 (-1077)))) (-955 (-1029 |#1| (-1077)))) -((-2105 (((-107) $ $) NIL)) (-3546 (((-703) $) NIL)) (-3791 ((|#1| $) 10)) (-3220 (((-3 |#1| "failed") $) NIL)) (-3402 ((|#1| $) NIL)) (-3250 (((-703) $) 11)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-1203 (($ |#1| (-703)) 9)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2042 (($ $) NIL) (($ $ (-703)) NIL)) (-2262 (((-787) $) NIL) (($ |#1|) NIL)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 15))) -(((-996 |#1|) (-239 |#1|) (-779)) (T -996)) -NIL -(-239 |#1|) -((-3312 (((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 24 (|has| |#1| (-777))) (((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 14))) -(((-997 |#1| |#2|) (-10 -7 (-15 -3312 ((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) (IF (|has| |#1| (-777)) (-15 -3312 ((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) |%noBranch|)) (-1112) (-1112)) (T -997)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-777)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-583 *6)) (-5 *1 (-997 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1001 *6)) (-5 *1 (-997 *5 *6))))) -(-10 -7 (-15 -3312 ((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) (IF (|has| |#1| (-777)) (-15 -3312 ((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) |%noBranch|)) -((-3312 (((-999 |#2|) (-1 |#2| |#1|) (-999 |#1|)) 19))) -(((-998 |#1| |#2|) (-10 -7 (-15 -3312 ((-999 |#2|) (-1 |#2| |#1|) (-999 |#1|)))) (-1112) (-1112)) (T -998)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-999 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-999 *6)) (-5 *1 (-998 *5 *6))))) -(-10 -7 (-15 -3312 ((-999 |#2|) (-1 |#2| |#1|) (-999 |#1|)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3791 (((-1077) $) 11)) (-2202 (((-1001 |#1|) $) 12)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2960 (($ (-1077) (-1001 |#1|)) 10)) (-2262 (((-787) $) 20 (|has| |#1| (-1006)))) (-1572 (((-107) $ $) 15 (|has| |#1| (-1006))))) -(((-999 |#1|) (-13 (-1112) (-10 -8 (-15 -2960 ($ (-1077) (-1001 |#1|))) (-15 -3791 ((-1077) $)) (-15 -2202 ((-1001 |#1|) $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|))) (-1112)) (T -999)) -((-2960 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1001 *4)) (-4 *4 (-1112)) (-5 *1 (-999 *4)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-999 *3)) (-4 *3 (-1112)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-999 *3)) (-4 *3 (-1112))))) -(-13 (-1112) (-10 -8 (-15 -2960 ($ (-1077) (-1001 |#1|))) (-15 -3791 ((-1077) $)) (-15 -2202 ((-1001 |#1|) $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|))) -((-2202 (($ |#1| |#1|) 7)) (-3315 ((|#1| $) 10)) (-2144 ((|#1| $) 12)) (-2154 (((-517) $) 8)) (-2370 ((|#1| $) 9)) (-2163 ((|#1| $) 11)) (-3367 (($ |#1|) 6)) (-1594 (($ |#1| |#1|) 14)) (-1315 (($ $ (-517)) 13))) -(((-1000 |#1|) (-1189) (-1112)) (T -1000)) -((-1594 (*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-1315 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1000 *3)) (-4 *3 (-1112)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-2154 (*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1112)) (-5 *2 (-517)))) (-2202 (*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112))))) -(-13 (-1112) (-10 -8 (-15 -1594 ($ |t#1| |t#1|)) (-15 -1315 ($ $ (-517))) (-15 -2144 (|t#1| $)) (-15 -2163 (|t#1| $)) (-15 -3315 (|t#1| $)) (-15 -2370 (|t#1| $)) (-15 -2154 ((-517) $)) (-15 -2202 ($ |t#1| |t#1|)) (-15 -3367 ($ |t#1|)))) -(((-1112) . T)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2202 (($ |#1| |#1|) 15)) (-3312 (((-583 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-777)))) (-3315 ((|#1| $) 10)) (-2144 ((|#1| $) 9)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2154 (((-517) $) 14)) (-2370 ((|#1| $) 12)) (-2163 ((|#1| $) 11)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2287 (((-583 |#1|) $) 36 (|has| |#1| (-777))) (((-583 |#1|) (-583 $)) 35 (|has| |#1| (-777)))) (-3367 (($ |#1|) 26)) (-2262 (((-787) $) 25 (|has| |#1| (-1006)))) (-1594 (($ |#1| |#1|) 8)) (-1315 (($ $ (-517)) 16)) (-1572 (((-107) $ $) 19 (|has| |#1| (-1006))))) -(((-1001 |#1|) (-13 (-1000 |#1|) (-10 -7 (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1002 |#1| (-583 |#1|))) |%noBranch|))) (-1112)) (T -1001)) -NIL -(-13 (-1000 |#1|) (-10 -7 (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1002 |#1| (-583 |#1|))) |%noBranch|))) -((-2202 (($ |#1| |#1|) 7)) (-3312 ((|#2| (-1 |#1| |#1|) $) 16)) (-3315 ((|#1| $) 10)) (-2144 ((|#1| $) 12)) (-2154 (((-517) $) 8)) (-2370 ((|#1| $) 9)) (-2163 ((|#1| $) 11)) (-2287 ((|#2| (-583 $)) 18) ((|#2| $) 17)) (-3367 (($ |#1|) 6)) (-1594 (($ |#1| |#1|) 14)) (-1315 (($ $ (-517)) 13))) -(((-1002 |#1| |#2|) (-1189) (-777) (-1051 |t#1|)) (T -1002)) -((-2287 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-1002 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1051 *4)))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1051 *3)))) (-3312 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1002 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1051 *4))))) -(-13 (-1000 |t#1|) (-10 -8 (-15 -2287 (|t#2| (-583 $))) (-15 -2287 (|t#2| $)) (-15 -3312 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1000 |#1|) . T) ((-1112) . T)) -((-2374 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4020 (($ $ $) 10)) (-1201 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1003 |#1| |#2|) (-10 -8 (-15 -2374 (|#1| |#2| |#1|)) (-15 -2374 (|#1| |#1| |#2|)) (-15 -2374 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#2|)) (-15 -1201 (|#1| |#1| |#1|))) (-1004 |#2|) (-1006)) (T -1003)) -NIL -(-10 -8 (-15 -2374 (|#1| |#2| |#1|)) (-15 -2374 (|#1| |#1| |#2|)) (-15 -2374 (|#1| |#1| |#1|)) (-15 -4020 (|#1| |#1| |#1|)) (-15 -1201 (|#1| |#1| |#2|)) (-15 -1201 (|#1| |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-2374 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-4020 (($ $ $) 20)) (-3873 (((-107) $ $) 19)) (-3443 (((-107) $ (-703)) 35)) (-1871 (($) 25) (($ (-583 |#1|)) 24)) (-2317 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4195)))) (-3038 (($) 36 T CONST)) (-2446 (($ $) 59 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4195)))) (-1525 (((-583 |#1|) $) 43 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 34)) (-3687 (((-583 |#1|) $) 44 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 46 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 38)) (-2328 (((-107) $ (-703)) 33)) (-3232 (((-1060) $) 9)) (-2187 (($ $ $) 23)) (-4130 (((-1024) $) 10)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 52)) (-3843 (((-107) (-1 (-107) |#1|) $) 41 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#1|) (-583 |#1|)) 50 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 48 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 (-265 |#1|))) 47 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 29)) (-1754 (((-107) $) 32)) (-2679 (($) 31)) (-1201 (($ $ $) 22) (($ $ |#1|) 21)) (-4140 (((-703) |#1| $) 45 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#1|) $) 42 (|has| $ (-6 -4195)))) (-2453 (($ $) 30)) (-3367 (((-493) $) 60 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 51)) (-2262 (((-787) $) 11)) (-3066 (($) 27) (($ (-583 |#1|)) 26)) (-1272 (((-107) (-1 (-107) |#1|) $) 40 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 6)) (-1596 (((-107) $ $) 28)) (-3573 (((-703) $) 37 (|has| $ (-6 -4195))))) -(((-1004 |#1|) (-1189) (-1006)) (T -1004)) -((-1596 (*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-107)))) (-3066 (*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3066 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3)))) (-1871 (*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-1871 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3)))) (-2187 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-1201 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-1201 (*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-4020 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3873 (*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-107)))) (-2374 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-2374 (*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-2374 (*1 *1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) -(-13 (-1006) (-138 |t#1|) (-10 -8 (-6 -4185) (-15 -1596 ((-107) $ $)) (-15 -3066 ($)) (-15 -3066 ($ (-583 |t#1|))) (-15 -1871 ($)) (-15 -1871 ($ (-583 |t#1|))) (-15 -2187 ($ $ $)) (-15 -1201 ($ $ $)) (-15 -1201 ($ $ |t#1|)) (-15 -4020 ($ $ $)) (-15 -3873 ((-107) $ $)) (-15 -2374 ($ $ $)) (-15 -2374 ($ $ |t#1|)) (-15 -2374 ($ |t#1| $)))) -(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) . T) ((-1112) . T)) -((-3232 (((-1060) $) 10)) (-4130 (((-1024) $) 8))) -(((-1005 |#1|) (-10 -8 (-15 -3232 ((-1060) |#1|)) (-15 -4130 ((-1024) |#1|))) (-1006)) (T -1005)) -NIL -(-10 -8 (-15 -3232 ((-1060) |#1|)) (-15 -4130 ((-1024) |#1|))) -((-2105 (((-107) $ $) 7)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6))) -(((-1006) (-1189)) (T -1006)) -((-4130 (*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1024)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1060))))) -(-13 (-97) (-557 (-787)) (-10 -8 (-15 -4130 ((-1024) $)) (-15 -3232 ((-1060) $)))) -(((-97) . T) ((-557 (-787)) . T)) -((-2105 (((-107) $ $) NIL)) (-2390 (((-703)) 30)) (-3580 (($ (-583 (-845))) 52)) (-1284 (((-3 $ "failed") $ (-845) (-845)) 57)) (-2192 (($) 32)) (-1949 (((-107) (-845) $) 35)) (-4161 (((-845) $) 50)) (-3232 (((-1060) $) NIL)) (-2803 (($ (-845)) 31)) (-3959 (((-3 $ "failed") $ (-845)) 55)) (-4130 (((-1024) $) NIL)) (-2058 (((-1158 $)) 40)) (-2463 (((-583 (-845)) $) 23)) (-1844 (((-703) $ (-845) (-845)) 56)) (-2262 (((-787) $) 29)) (-1572 (((-107) $ $) 21))) -(((-1007 |#1| |#2|) (-13 (-338) (-10 -8 (-15 -3959 ((-3 $ "failed") $ (-845))) (-15 -1284 ((-3 $ "failed") $ (-845) (-845))) (-15 -2463 ((-583 (-845)) $)) (-15 -3580 ($ (-583 (-845)))) (-15 -2058 ((-1158 $))) (-15 -1949 ((-107) (-845) $)) (-15 -1844 ((-703) $ (-845) (-845))))) (-845) (-845)) (T -1007)) -((-3959 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-845)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1284 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-845)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))) (-3580 (*1 *1 *2) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))) (-2058 (*1 *2) (-12 (-5 *2 (-1158 (-1007 *3 *4))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))) (-1949 (*1 *2 *3 *1) (-12 (-5 *3 (-845)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1844 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-703)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-338) (-10 -8 (-15 -3959 ((-3 $ "failed") $ (-845))) (-15 -1284 ((-3 $ "failed") $ (-845) (-845))) (-15 -2463 ((-583 (-845)) $)) (-15 -3580 ($ (-583 (-845)))) (-15 -2058 ((-1158 $))) (-15 -1949 ((-107) (-845) $)) (-15 -1844 ((-703) $ (-845) (-845))))) -((-2105 (((-107) $ $) NIL)) (-3963 (($) NIL (|has| |#1| (-338)))) (-2374 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-4020 (($ $ $) 72)) (-3873 (((-107) $ $) 73)) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#1| (-338)))) (-1871 (($ (-583 |#1|)) NIL) (($) 13)) (-2582 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1749 (($ |#1| $) 67 (|has| $ (-6 -4195))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4195)))) (-2192 (($) NIL (|has| |#1| (-338)))) (-1525 (((-583 |#1|) $) 19 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3480 ((|#1| $) 57 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 66 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-4095 ((|#1| $) 55 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 34)) (-4161 (((-845) $) NIL (|has| |#1| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2187 (($ $ $) 70)) (-2015 ((|#1| $) 25)) (-3439 (($ |#1| $) 65)) (-2803 (($ (-845)) NIL (|has| |#1| (-338)))) (-4130 (((-1024) $) NIL)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 31)) (-1551 ((|#1| $) 27)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 21)) (-2679 (($) 11)) (-1201 (($ $ |#1|) NIL) (($ $ $) 71)) (-3808 (($) NIL) (($ (-583 |#1|)) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 16)) (-3367 (((-493) $) 52 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 61)) (-2332 (($ $) NIL (|has| |#1| (-338)))) (-2262 (((-787) $) NIL)) (-3515 (((-703) $) NIL)) (-3066 (($ (-583 |#1|)) NIL) (($) 12)) (-2729 (($ (-583 |#1|)) NIL)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 54)) (-1596 (((-107) $ $) NIL)) (-3573 (((-703) $) 10 (|has| $ (-6 -4195))))) -(((-1008 |#1|) (-395 |#1|) (-1006)) (T -1008)) -NIL -(-395 |#1|) -((-2105 (((-107) $ $) 7)) (-2798 (((-107) $) 32)) (-2243 ((|#2| $) 27)) (-3844 (((-107) $) 33)) (-1507 ((|#1| $) 28)) (-3347 (((-107) $) 35)) (-2469 (((-107) $) 37)) (-1294 (((-107) $) 34)) (-3232 (((-1060) $) 9)) (-3744 (((-107) $) 31)) (-2258 ((|#3| $) 26)) (-4130 (((-1024) $) 10)) (-2965 (((-107) $) 30)) (-3202 ((|#4| $) 25)) (-3756 ((|#5| $) 24)) (-3817 (((-107) $ $) 38)) (-2612 (($ $ (-517)) 14) (($ $ (-583 (-517))) 13)) (-3964 (((-583 $) $) 29)) (-3367 (($ (-583 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2262 (((-787) $) 11)) (-3311 (($ $) 16)) (-3301 (($ $) 17)) (-4112 (((-107) $) 36)) (-1572 (((-107) $ $) 6)) (-3573 (((-517) $) 15))) -(((-1009 |#1| |#2| |#3| |#4| |#5|) (-1189) (-1006) (-1006) (-1006) (-1006) (-1006)) (T -1009)) -((-3817 (*1 *2 *1 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-1294 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107)))) (-3964 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-583 *1)) (-4 *1 (-1009 *3 *4 *5 *6 *7)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *2 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *2 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *2 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *2)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1009 *3 *2 *4 *5 *6)) (-4 *3 (-1006)) (-4 *2 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1009 *3 *4 *2 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *2 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1009 *3 *4 *5 *2 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *2 (-1006)) (-4 *6 (-1006)))) (-3367 (*1 *1 *2) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *2)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3301 (*1 *1 *1) (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3311 (*1 *1 *1) (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-517)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006))))) -(-13 (-1006) (-10 -8 (-15 -3817 ((-107) $ $)) (-15 -2469 ((-107) $)) (-15 -4112 ((-107) $)) (-15 -3347 ((-107) $)) (-15 -1294 ((-107) $)) (-15 -3844 ((-107) $)) (-15 -2798 ((-107) $)) (-15 -3744 ((-107) $)) (-15 -2965 ((-107) $)) (-15 -3964 ((-583 $) $)) (-15 -1507 (|t#1| $)) (-15 -2243 (|t#2| $)) (-15 -2258 (|t#3| $)) (-15 -3202 (|t#4| $)) (-15 -3756 (|t#5| $)) (-15 -3367 ($ (-583 $))) (-15 -3367 ($ |t#1|)) (-15 -3367 ($ |t#2|)) (-15 -3367 ($ |t#3|)) (-15 -3367 ($ |t#4|)) (-15 -3367 ($ |t#5|)) (-15 -3301 ($ $)) (-15 -3311 ($ $)) (-15 -3573 ((-517) $)) (-15 -2612 ($ $ (-517))) (-15 -2612 ($ $ (-583 (-517)))))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-2798 (((-107) $) NIL)) (-2243 (((-1077) $) NIL)) (-3844 (((-107) $) NIL)) (-1507 (((-1060) $) NIL)) (-3347 (((-107) $) NIL)) (-2469 (((-107) $) NIL)) (-1294 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-3744 (((-107) $) NIL)) (-2258 (((-517) $) NIL)) (-4130 (((-1024) $) NIL)) (-2965 (((-107) $) NIL)) (-3202 (((-199) $) NIL)) (-3756 (((-787) $) NIL)) (-3817 (((-107) $ $) NIL)) (-2612 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3964 (((-583 $) $) NIL)) (-3367 (($ (-583 $)) NIL) (($ (-1060)) NIL) (($ (-1077)) NIL) (($ (-517)) NIL) (($ (-199)) NIL) (($ (-787)) NIL)) (-2262 (((-787) $) NIL)) (-3311 (($ $) NIL)) (-3301 (($ $) NIL)) (-4112 (((-107) $) NIL)) (-1572 (((-107) $ $) NIL)) (-3573 (((-517) $) NIL))) -(((-1010) (-1009 (-1060) (-1077) (-517) (-199) (-787))) (T -1010)) -NIL -(-1009 (-1060) (-1077) (-517) (-199) (-787)) -((-2105 (((-107) $ $) NIL)) (-2798 (((-107) $) 38)) (-2243 ((|#2| $) 42)) (-3844 (((-107) $) 37)) (-1507 ((|#1| $) 41)) (-3347 (((-107) $) 35)) (-2469 (((-107) $) 14)) (-1294 (((-107) $) 36)) (-3232 (((-1060) $) NIL)) (-3744 (((-107) $) 39)) (-2258 ((|#3| $) 44)) (-4130 (((-1024) $) NIL)) (-2965 (((-107) $) 40)) (-3202 ((|#4| $) 43)) (-3756 ((|#5| $) 45)) (-3817 (((-107) $ $) 34)) (-2612 (($ $ (-517)) 56) (($ $ (-583 (-517))) 58)) (-3964 (((-583 $) $) 22)) (-3367 (($ (-583 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2262 (((-787) $) 23)) (-3311 (($ $) 21)) (-3301 (($ $) 52)) (-4112 (((-107) $) 18)) (-1572 (((-107) $ $) 33)) (-3573 (((-517) $) 54))) -(((-1011 |#1| |#2| |#3| |#4| |#5|) (-1009 |#1| |#2| |#3| |#4| |#5|) (-1006) (-1006) (-1006) (-1006) (-1006)) (T -1011)) -NIL -(-1009 |#1| |#2| |#3| |#4| |#5|) -((-1885 (((-1163) $) 23)) (-2693 (($ (-1077) (-404) |#2|) 11)) (-2262 (((-787) $) 16))) -(((-1012 |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2693 ($ (-1077) (-404) |#2|)))) (-779) (-400 |#1|)) (T -1012)) -((-2693 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1077)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1012 *5 *4)) (-4 *4 (-400 *5))))) -(-13 (-365) (-10 -8 (-15 -2693 ($ (-1077) (-404) |#2|)))) -((-1788 (((-107) |#5| |#5|) 38)) (-3752 (((-107) |#5| |#5|) 52)) (-3331 (((-107) |#5| (-583 |#5|)) 75) (((-107) |#5| |#5|) 61)) (-1361 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-2457 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) 63)) (-3455 (((-1163)) 33)) (-1533 (((-1163) (-1060) (-1060) (-1060)) 29)) (-3812 (((-583 |#5|) (-583 |#5|)) 82)) (-3825 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) 80)) (-1950 (((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 102)) (-1719 (((-107) |#5| |#5|) 47)) (-2451 (((-3 (-107) "failed") |#5| |#5|) 71)) (-1526 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-3818 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-1579 (((-107) (-583 |#4|) (-583 |#4|)) 60)) (-3673 (((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 98)) (-1908 (((-583 |#5|) (-583 |#5|)) 43))) -(((-1013 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1533 ((-1163) (-1060) (-1060) (-1060))) (-15 -3455 ((-1163))) (-15 -1788 ((-107) |#5| |#5|)) (-15 -1908 ((-583 |#5|) (-583 |#5|))) (-15 -1719 ((-107) |#5| |#5|)) (-15 -3752 ((-107) |#5| |#5|)) (-15 -1361 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1526 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3818 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1579 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2451 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3331 ((-107) |#5| |#5|)) (-15 -3331 ((-107) |#5| (-583 |#5|))) (-15 -3812 ((-583 |#5|) (-583 |#5|))) (-15 -2457 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -3825 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-15 -1950 ((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3673 ((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1013)) -((-3673 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3817 (-583 *9)) (|:| -3864 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1013 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-1950 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3817 (-583 *9)) (|:| -3864 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1013 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3864 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-2457 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *8)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-3331 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1013 *5 *6 *7 *8 *3)))) (-3331 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-2451 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1579 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3818 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1526 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1361 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3752 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1719 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-1788 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3455 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-1533 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -(-10 -7 (-15 -1533 ((-1163) (-1060) (-1060) (-1060))) (-15 -3455 ((-1163))) (-15 -1788 ((-107) |#5| |#5|)) (-15 -1908 ((-583 |#5|) (-583 |#5|))) (-15 -1719 ((-107) |#5| |#5|)) (-15 -3752 ((-107) |#5| |#5|)) (-15 -1361 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1526 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3818 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1579 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2451 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3331 ((-107) |#5| |#5|)) (-15 -3331 ((-107) |#5| (-583 |#5|))) (-15 -3812 ((-583 |#5|) (-583 |#5|))) (-15 -2457 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -3825 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-15 -1950 ((-583 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3673 ((-3 (-2 (|:| -3817 (-583 |#4|)) (|:| -3864 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) -((-4043 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|) 95)) (-2873 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|) 71)) (-1709 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|) 89)) (-3194 (((-583 |#5|) |#4| |#5|) 110)) (-1696 (((-583 |#5|) |#4| |#5|) 117)) (-3954 (((-583 |#5|) |#4| |#5|) 118)) (-2988 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|) 96)) (-2838 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|) 116)) (-2135 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-1948 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107)) 83) (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-1778 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|) 78)) (-2558 (((-1163)) 35)) (-1367 (((-1163)) 25)) (-3944 (((-1163) (-1060) (-1060) (-1060)) 31)) (-3404 (((-1163) (-1060) (-1060) (-1060)) 20))) -(((-1014 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3404 ((-1163) (-1060) (-1060) (-1060))) (-15 -1367 ((-1163))) (-15 -3944 ((-1163) (-1060) (-1060) (-1060))) (-15 -2558 ((-1163))) (-15 -2873 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1948 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1948 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107))) (-15 -1778 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1709 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -2135 ((-107) |#4| |#5|)) (-15 -2988 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -3194 ((-583 |#5|) |#4| |#5|)) (-15 -2838 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1696 ((-583 |#5|) |#4| |#5|)) (-15 -2135 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -3954 ((-583 |#5|) |#4| |#5|)) (-15 -4043 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1014)) -((-4043 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3954 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2135 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1696 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2838 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3194 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2988 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2135 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1709 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1778 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-1948 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) (-5 *5 (-107)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3864 *9)))) (-5 *1 (-1014 *6 *7 *4 *8 *9)))) (-1948 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-1014 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-2873 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))) (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2558 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3944 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-1014 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-1367 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) (-5 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3404 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) (-5 *1 (-1014 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -(-10 -7 (-15 -3404 ((-1163) (-1060) (-1060) (-1060))) (-15 -1367 ((-1163))) (-15 -3944 ((-1163) (-1060) (-1060) (-1060))) (-15 -2558 ((-1163))) (-15 -2873 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1948 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1948 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) |#3| (-107))) (-15 -1778 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -1709 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#4| |#5|)) (-15 -2135 ((-107) |#4| |#5|)) (-15 -2988 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -3194 ((-583 |#5|) |#4| |#5|)) (-15 -2838 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -1696 ((-583 |#5|) |#4| |#5|)) (-15 -2135 ((-583 (-2 (|:| |val| (-107)) (|:| -3864 |#5|))) |#4| |#5|)) (-15 -3954 ((-583 |#5|) |#4| |#5|)) (-15 -4043 ((-583 (-2 (|:| |val| |#4|) (|:| -3864 |#5|))) |#4| |#5|))) -((-2105 (((-107) $ $) 7)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) 85)) (-3246 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) 101) (((-107) $) 97)) (-3710 ((|#4| |#4| $) 92)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 126)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 79)) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2429 (((-3 $ "failed") $) 82)) (-2195 ((|#4| |#4| $) 89)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4142 ((|#4| |#4| $) 87)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) 105)) (-3901 (((-107) |#4| $) 136)) (-1426 (((-107) |#4| $) 133)) (-3403 (((-107) |#4| $) 137) (((-107) $) 134)) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) 104) (((-107) $) 103)) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 127)) (-1447 (((-3 |#4| "failed") $) 83)) (-1243 (((-583 $) |#4| $) 129)) (-3398 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2187 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2642 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3846 (((-583 |#4|) $) 107)) (-1568 (((-107) |#4| $) 99) (((-107) $) 95)) (-2930 ((|#4| |#4| $) 90)) (-1579 (((-107) $ $) 110)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) 100) (((-107) $) 96)) (-3877 ((|#4| |#4| $) 91)) (-4130 (((-1024) $) 10)) (-2420 (((-3 |#4| "failed") $) 84)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-4059 (((-3 $ "failed") $ |#4|) 78)) (-3175 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-1191 (((-703) $) 106)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-4158 (($ $) 88)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3192 (((-703) $) 76 (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2709 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) 81)) (-2525 (((-107) |#4| $) 135)) (-3275 (((-107) |#3| $) 80)) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195))))) -(((-1015 |#1| |#2| |#3| |#4|) (-1189) (-421) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -1015)) -NIL -(-13 (-983 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-896 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1106 |#1| |#2| |#3| |#4|) . T) ((-1112) . T)) -((-3206 (((-583 (-517)) (-517) (-517) (-517)) 22)) (-4103 (((-583 (-517)) (-517) (-517) (-517)) 12)) (-1506 (((-583 (-517)) (-517) (-517) (-517)) 18)) (-2281 (((-517) (-517) (-517)) 9)) (-3288 (((-1158 (-517)) (-583 (-517)) (-1158 (-517)) (-517)) 45) (((-1158 (-517)) (-1158 (-517)) (-1158 (-517)) (-517)) 40)) (-1390 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107)) 27)) (-1973 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 44)) (-3653 (((-623 (-517)) (-583 (-517)) (-583 (-517))) 32)) (-2185 (((-583 (-623 (-517))) (-583 (-517))) 34)) (-2651 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 47)) (-1643 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517))) 55))) -(((-1016) (-10 -7 (-15 -1643 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2651 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2185 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3653 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -1973 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -1390 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -3288 ((-1158 (-517)) (-1158 (-517)) (-1158 (-517)) (-517))) (-15 -3288 ((-1158 (-517)) (-583 (-517)) (-1158 (-517)) (-517))) (-15 -2281 ((-517) (-517) (-517))) (-15 -1506 ((-583 (-517)) (-517) (-517) (-517))) (-15 -4103 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3206 ((-583 (-517)) (-517) (-517) (-517))))) (T -1016)) -((-3206 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517)))) (-4103 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517)))) (-1506 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517)))) (-2281 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1016)))) (-3288 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1158 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1016)))) (-3288 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1158 (-517))) (-5 *3 (-517)) (-5 *1 (-1016)))) (-1390 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1016)))) (-1973 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1016)))) (-3653 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1016)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1016)))) (-2651 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1016)))) (-1643 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1016))))) -(-10 -7 (-15 -1643 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2651 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2185 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3653 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -1973 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -1390 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -3288 ((-1158 (-517)) (-1158 (-517)) (-1158 (-517)) (-517))) (-15 -3288 ((-1158 (-517)) (-583 (-517)) (-1158 (-517)) (-517))) (-15 -2281 ((-517) (-517) (-517))) (-15 -1506 ((-583 (-517)) (-517) (-517) (-517))) (-15 -4103 ((-583 (-517)) (-517) (-517) (-517))) (-15 -3206 ((-583 (-517)) (-517) (-517) (-517)))) -((-2806 (($ $ (-845)) 12)) (** (($ $ (-845)) 10))) -(((-1017 |#1|) (-10 -8 (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845)))) (-1018)) (T -1017)) -NIL -(-10 -8 (-15 -2806 (|#1| |#1| (-845))) (-15 ** (|#1| |#1| (-845)))) -((-2105 (((-107) $ $) 7)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-2806 (($ $ (-845)) 13)) (-1572 (((-107) $ $) 6)) (** (($ $ (-845)) 14)) (* (($ $ $) 15))) -(((-1018) (-1189)) (T -1018)) -((* (*1 *1 *1 *1) (-4 *1 (-1018))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-845)))) (-2806 (*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-845))))) -(-13 (-1006) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-845))) (-15 -2806 ($ $ (-845))))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL (|has| |#3| (-1006)))) (-1992 (((-107) $) NIL (|has| |#3| (-123)))) (-3622 (($ (-845)) NIL (|has| |#3| (-964)))) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-3505 (($ $ $) NIL (|has| |#3| (-725)))) (-1783 (((-3 $ "failed") $ $) NIL (|has| |#3| (-123)))) (-3443 (((-107) $ (-703)) NIL)) (-2390 (((-703)) NIL (|has| |#3| (-338)))) (-3502 (((-517) $) NIL (|has| |#3| (-777)))) (-2436 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1006)))) (-3402 (((-517) $) NIL (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006)))) ((|#3| $) NIL (|has| |#3| (-1006)))) (-2947 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-964)))) (((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 $) (-1158 $)) NIL (|has| |#3| (-964))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-964)))) (-3550 (((-3 $ "failed") $) NIL (|has| |#3| (-964)))) (-2192 (($) NIL (|has| |#3| (-338)))) (-2750 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#3| $ (-517)) 12)) (-2671 (((-107) $) NIL (|has| |#3| (-777)))) (-1525 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL (|has| |#3| (-964)))) (-2321 (((-107) $) NIL (|has| |#3| (-777)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-3687 (((-583 |#3|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2737 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#3| |#3|) $) NIL)) (-4161 (((-845) $) NIL (|has| |#3| (-338)))) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#3| (-1006)))) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-2803 (($ (-845)) NIL (|has| |#3| (-338)))) (-4130 (((-1024) $) NIL (|has| |#3| (-1006)))) (-2420 ((|#3| $) NIL (|has| (-517) (-779)))) (-2837 (($ $ |#3|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-2862 (((-583 |#3|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) NIL)) (-3912 ((|#3| $ $) NIL (|has| |#3| (-964)))) (-3935 (($ (-1158 |#3|)) NIL)) (-1470 (((-125)) NIL (|has| |#3| (-333)))) (-2042 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-964))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-964)))) (-4140 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#3| (-1006))))) (-2453 (($ $) NIL)) (-2262 (((-1158 |#3|) $) NIL) (($ (-517)) NIL (-3786 (-12 (|has| |#3| (-955 (-517))) (|has| |#3| (-1006))) (|has| |#3| (-964)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-955 (-377 (-517)))) (|has| |#3| (-1006)))) (($ |#3|) NIL (|has| |#3| (-1006))) (((-787) $) NIL (|has| |#3| (-557 (-787))))) (-1818 (((-703)) NIL (|has| |#3| (-964)))) (-1272 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4195)))) (-2829 (($ $) NIL (|has| |#3| (-777)))) (-2806 (($ $ (-703)) NIL (|has| |#3| (-964))) (($ $ (-845)) NIL (|has| |#3| (-964)))) (-3663 (($) NIL (|has| |#3| (-123)) CONST)) (-3675 (($) NIL (|has| |#3| (-964)) CONST)) (-3348 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-964)))) (($ $ (-1077)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#3| (-824 (-1077))) (|has| |#3| (-964)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-964))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-964)))) (-1630 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1606 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1572 (((-107) $ $) NIL (|has| |#3| (-1006)))) (-1618 (((-107) $ $) NIL (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1596 (((-107) $ $) 17 (-3786 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1692 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1680 (($ $ $) NIL (|has| |#3| (-964))) (($ $) NIL (|has| |#3| (-964)))) (-1666 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-703)) NIL (|has| |#3| (-964))) (($ $ (-845)) NIL (|has| |#3| (-964)))) (* (($ $ $) NIL (|has| |#3| (-964))) (($ (-517) $) NIL (|has| |#3| (-964))) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ (-703) $) NIL (|has| |#3| (-123))) (($ (-845) $) NIL (|has| |#3| (-25)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-1019 |#1| |#2| |#3|) (-212 |#1| |#3|) (-703) (-703) (-725)) (T -1019)) -NIL -(-212 |#1| |#3|) -((-2975 (((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|)) 37)) (-3780 (((-517) (-1131 |#2| |#1|)) 68 (|has| |#1| (-421)))) (-2989 (((-517) (-1131 |#2| |#1|)) 54)) (-4125 (((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|)) 45)) (-2417 (((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|)) 56 (|has| |#1| (-421)))) (-3993 (((-583 |#1|) (-1131 |#2| |#1|) (-1131 |#2| |#1|)) 48)) (-4076 (((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|)) 53))) -(((-1020 |#1| |#2|) (-10 -7 (-15 -2975 ((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -4125 ((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -3993 ((-583 |#1|) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -4076 ((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -2989 ((-517) (-1131 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2417 ((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -3780 ((-517) (-1131 |#2| |#1|)))) |%noBranch|)) (-752) (-1077)) (T -1020)) -((-3780 (*1 *2 *3) (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))) (-2417 (*1 *2 *3 *3) (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))) (-4076 (*1 *2 *3 *3) (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5)))) (-3993 (*1 *2 *3 *3) (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-583 *4)) (-5 *1 (-1020 *4 *5)))) (-4125 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-583 (-1131 *5 *4))) (-5 *1 (-1020 *4 *5)) (-5 *3 (-1131 *5 *4)))) (-2975 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-583 (-1131 *5 *4))) (-5 *1 (-1020 *4 *5)) (-5 *3 (-1131 *5 *4))))) -(-10 -7 (-15 -2975 ((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -4125 ((-583 (-1131 |#2| |#1|)) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -3993 ((-583 |#1|) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -4076 ((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -2989 ((-517) (-1131 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -2417 ((-517) (-1131 |#2| |#1|) (-1131 |#2| |#1|))) (-15 -3780 ((-517) (-1131 |#2| |#1|)))) |%noBranch|)) -((-3502 (((-3 (-517) "failed") |#2| (-1077) |#2| (-1060)) 16) (((-3 (-517) "failed") |#2| (-1077) (-772 |#2|)) 14) (((-3 (-517) "failed") |#2|) 51))) -(((-1021 |#1| |#2|) (-10 -7 (-15 -3502 ((-3 (-517) "failed") |#2|)) (-15 -3502 ((-3 (-517) "failed") |#2| (-1077) (-772 |#2|))) (-15 -3502 ((-3 (-517) "failed") |#2| (-1077) |#2| (-1060)))) (-13 (-509) (-779) (-955 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1098) (-400 |#1|))) (T -1021)) -((-3502 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-1060)) (-4 *6 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1021 *6 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))))) (-3502 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1021 *6 *3)))) (-3502 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1021 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4)))))) -(-10 -7 (-15 -3502 ((-3 (-517) "failed") |#2|)) (-15 -3502 ((-3 (-517) "failed") |#2| (-1077) (-772 |#2|))) (-15 -3502 ((-3 (-517) "failed") |#2| (-1077) |#2| (-1060)))) -((-3502 (((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|)) (-1060)) 34) (((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-772 (-377 (-876 |#1|)))) 29) (((-3 (-517) "failed") (-377 (-876 |#1|))) 12))) -(((-1022 |#1|) (-10 -7 (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)))) (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-772 (-377 (-876 |#1|))))) (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|)) (-1060)))) (-421)) (T -1022)) -((-3502 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-876 *6))) (-5 *4 (-1077)) (-5 *5 (-1060)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1022 *6)))) (-3502 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-772 (-377 (-876 *6)))) (-5 *3 (-377 (-876 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1022 *6)))) (-3502 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1022 *4))))) -(-10 -7 (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)))) (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-772 (-377 (-876 |#1|))))) (-15 -3502 ((-3 (-517) "failed") (-377 (-876 |#1|)) (-1077) (-377 (-876 |#1|)) (-1060)))) -((-2130 (((-286 (-517)) (-47)) 11))) -(((-1023) (-10 -7 (-15 -2130 ((-286 (-517)) (-47))))) (T -1023)) -((-2130 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1023))))) -(-10 -7 (-15 -2130 ((-286 (-517)) (-47)))) -((-2105 (((-107) $ $) NIL)) (-3670 (($ $) 41)) (-1992 (((-107) $) 65)) (-2284 (($ $ $) 48)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 84)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-2199 (($ $ $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2800 (($ $ $ $) 74)) (-1322 (($ $) NIL)) (-3306 (((-388 $) $) NIL)) (-1765 (((-107) $ $) NIL)) (-3502 (((-517) $) NIL)) (-2127 (($ $ $) 71)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL)) (-3402 (((-517) $) NIL)) (-2383 (($ $ $) 59)) (-2947 (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 78) (((-623 (-517)) (-623 $)) 28)) (-3550 (((-3 $ "failed") $) NIL)) (-3389 (((-3 (-377 (-517)) "failed") $) NIL)) (-3748 (((-107) $) NIL)) (-3727 (((-377 (-517)) $) NIL)) (-2192 (($) 81) (($ $) 82)) (-2356 (($ $ $) 58)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL)) (-2022 (((-107) $) NIL)) (-1214 (($ $ $ $) NIL)) (-4146 (($ $ $) 79)) (-2671 (((-107) $) NIL)) (-3624 (($ $ $) NIL)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL)) (-1690 (((-107) $) 66)) (-3448 (((-107) $) 64)) (-2479 (($ $) 42)) (-1639 (((-3 $ "failed") $) NIL)) (-2321 (((-107) $) 75)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3721 (($ $ $ $) 72)) (-3480 (($ $ $) 68) (($) 39)) (-4095 (($ $ $) 67) (($) 38)) (-2628 (($ $) NIL)) (-3728 (($ $) 70)) (-2323 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3232 (((-1060) $) NIL)) (-3598 (($ $ $) NIL)) (-2578 (($) NIL T CONST)) (-4022 (($ $) 50)) (-4130 (((-1024) $) NIL) (($ $) 69)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL)) (-2361 (($ $ $) 62) (($ (-583 $)) NIL)) (-2038 (($ $) NIL)) (-3896 (((-388 $) $) NIL)) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL)) (-2333 (((-3 $ "failed") $ $) NIL)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2278 (((-107) $) NIL)) (-3388 (((-703) $) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 61)) (-2042 (($ $ (-703)) NIL) (($ $) NIL)) (-2909 (($ $) 51)) (-2453 (($ $) NIL)) (-3367 (((-517) $) 32) (((-493) $) NIL) (((-816 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL)) (-2262 (((-787) $) 31) (($ (-517)) 80) (($ $) NIL) (($ (-517)) 80)) (-1818 (((-703)) NIL)) (-1638 (((-107) $ $) NIL)) (-1462 (($ $ $) NIL)) (-4003 (($) 37)) (-2944 (((-107) $ $) NIL)) (-2006 (($ $ $ $) 73)) (-2829 (($ $) 63)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3849 (($ $ $) 44)) (-3663 (($) 35 T CONST)) (-3940 (($ $ $) 47)) (-3675 (($) 36 T CONST)) (-2514 (((-1060) $) 21) (((-1060) $ (-107)) 23) (((-1163) (-754) $) 24) (((-1163) (-754) $ (-107)) 25)) (-3950 (($ $) 45)) (-3348 (($ $ (-703)) NIL) (($ $) NIL)) (-3927 (($ $ $) 46)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 40)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 49)) (-3838 (($ $ $) 43)) (-1680 (($ $) 52) (($ $ $) 54)) (-1666 (($ $ $) 53)) (** (($ $ (-845)) NIL) (($ $ (-703)) 57)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 55))) -(((-1024) (-13 (-502) (-598) (-760) (-10 -8 (-6 -4182) (-6 -4187) (-6 -4183) (-15 -4095 ($)) (-15 -3480 ($)) (-15 -2479 ($ $)) (-15 -3670 ($ $)) (-15 -3838 ($ $ $)) (-15 -3849 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -3950 ($ $)) (-15 -3927 ($ $ $)) (-15 -3940 ($ $ $))))) (T -1024)) -((-3849 (*1 *1 *1 *1) (-5 *1 (-1024))) (-3838 (*1 *1 *1 *1) (-5 *1 (-1024))) (-3670 (*1 *1 *1) (-5 *1 (-1024))) (-4095 (*1 *1) (-5 *1 (-1024))) (-3480 (*1 *1) (-5 *1 (-1024))) (-2479 (*1 *1 *1) (-5 *1 (-1024))) (-2284 (*1 *1 *1 *1) (-5 *1 (-1024))) (-3950 (*1 *1 *1) (-5 *1 (-1024))) (-3927 (*1 *1 *1 *1) (-5 *1 (-1024))) (-3940 (*1 *1 *1 *1) (-5 *1 (-1024)))) -(-13 (-502) (-598) (-760) (-10 -8 (-6 -4182) (-6 -4187) (-6 -4183) (-15 -4095 ($)) (-15 -3480 ($)) (-15 -2479 ($ $)) (-15 -3670 ($ $)) (-15 -3838 ($ $ $)) (-15 -3849 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -3950 ($ $)) (-15 -3927 ($ $ $)) (-15 -3940 ($ $ $)))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-2544 ((|#1| $) 44)) (-3443 (((-107) $ (-703)) 8)) (-3038 (($) 7 T CONST)) (-2098 ((|#1| |#1| $) 46)) (-3409 ((|#1| $) 45)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-2015 ((|#1| $) 39)) (-3439 (($ |#1| $) 40)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-1551 ((|#1| $) 41)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-3137 (((-703) $) 43)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) 42)) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-1025 |#1|) (-1189) (-1112)) (T -1025)) -((-2098 (*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112)))) (-2544 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1112)) (-5 *2 (-703))))) -(-13 (-102 |t#1|) (-10 -8 (-6 -4195) (-15 -2098 (|t#1| |t#1| $)) (-15 -3409 (|t#1| $)) (-15 -2544 (|t#1| $)) (-15 -3137 ((-703) $)))) -(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-1991 ((|#3| $) 76)) (-3220 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3402 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#3| $) 37)) (-2947 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL) (((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 $) (-1158 $)) 73) (((-623 |#3|) (-623 $)) 65)) (-2042 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-1455 ((|#3| $) 78)) (-1298 ((|#4| $) 32)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#3|) 16)) (** (($ $ (-845)) NIL) (($ $ (-703)) 15) (($ $ (-517)) 82))) -(((-1026 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1455 (|#3| |#1|)) (-15 -1991 (|#3| |#1|)) (-15 -1298 (|#4| |#1|)) (-15 -2947 ((-623 |#3|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -2262 (|#1| |#3|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2262 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845))) (-15 -2262 ((-787) |#1|))) (-1027 |#2| |#3| |#4| |#5|) (-703) (-964) (-212 |#2| |#3|) (-212 |#2| |#3|)) (T -1026)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1455 (|#3| |#1|)) (-15 -1991 (|#3| |#1|)) (-15 -1298 (|#4| |#1|)) (-15 -2947 ((-623 |#3|) (-623 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 |#3|)) (|:| |vec| (-1158 |#3|))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 |#1|) (-1158 |#1|))) (-15 -2947 ((-623 (-517)) (-623 |#1|))) (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -2262 (|#1| |#3|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-517) |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -2042 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2262 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845))) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1991 ((|#2| $) 72)) (-1912 (((-107) $) 112)) (-1783 (((-3 $ "failed") $ $) 19)) (-1256 (((-107) $) 110)) (-3443 (((-107) $ (-703)) 102)) (-1634 (($ |#2|) 75)) (-3038 (($) 17 T CONST)) (-1197 (($ $) 129 (|has| |#2| (-278)))) (-1397 ((|#3| $ (-517)) 124)) (-3220 (((-3 (-517) "failed") $) 86 (|has| |#2| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) 84 (|has| |#2| (-955 (-377 (-517))))) (((-3 |#2| "failed") $) 81)) (-3402 (((-517) $) 87 (|has| |#2| (-955 (-517)))) (((-377 (-517)) $) 85 (|has| |#2| (-955 (-377 (-517))))) ((|#2| $) 80)) (-2947 (((-623 (-517)) (-623 $)) 79 (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 78 (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 77) (((-623 |#2|) (-623 $)) 76)) (-3550 (((-3 $ "failed") $) 34)) (-3778 (((-703) $) 130 (|has| |#2| (-509)))) (-2557 ((|#2| $ (-517) (-517)) 122)) (-1525 (((-583 |#2|) $) 95 (|has| $ (-6 -4195)))) (-1690 (((-107) $) 31)) (-3850 (((-703) $) 131 (|has| |#2| (-509)))) (-1671 (((-583 |#4|) $) 132 (|has| |#2| (-509)))) (-1409 (((-703) $) 118)) (-1422 (((-703) $) 119)) (-2266 (((-107) $ (-703)) 103)) (-1779 ((|#2| $) 67 (|has| |#2| (-6 (-4197 "*"))))) (-2560 (((-517) $) 114)) (-2970 (((-517) $) 116)) (-3687 (((-583 |#2|) $) 94 (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) 92 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-2413 (((-517) $) 115)) (-1718 (((-517) $) 117)) (-2362 (($ (-583 (-583 |#2|))) 109)) (-2737 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3468 (((-583 (-583 |#2|)) $) 120)) (-2328 (((-107) $ (-703)) 104)) (-3232 (((-1060) $) 9)) (-2137 (((-3 $ "failed") $) 66 (|has| |#2| (-333)))) (-4130 (((-1024) $) 10)) (-2333 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-509)))) (-3843 (((-107) (-1 (-107) |#2|) $) 97 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) 91 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) 90 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) 88 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) 108)) (-1754 (((-107) $) 105)) (-2679 (($) 106)) (-2612 ((|#2| $ (-517) (-517) |#2|) 123) ((|#2| $ (-517) (-517)) 121)) (-2042 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-703)) 51) (($ $ (-583 (-1077)) (-583 (-703))) 44 (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) 43 (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) 42 (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) 41 (|has| |#2| (-824 (-1077)))) (($ $ (-703)) 39 (|has| |#2| (-207))) (($ $) 37 (|has| |#2| (-207)))) (-1455 ((|#2| $) 71)) (-4025 (($ (-583 |#2|)) 74)) (-1974 (((-107) $) 111)) (-1298 ((|#3| $) 73)) (-2533 ((|#2| $) 68 (|has| |#2| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#2|) $) 96 (|has| $ (-6 -4195))) (((-703) |#2| $) 93 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 107)) (-2295 ((|#4| $ (-517)) 125)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 83 (|has| |#2| (-955 (-377 (-517))))) (($ |#2|) 82)) (-1818 (((-703)) 29)) (-1272 (((-107) (-1 (-107) |#2|) $) 98 (|has| $ (-6 -4195)))) (-3007 (((-107) $) 113)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-703)) 49) (($ $ (-583 (-1077)) (-583 (-703))) 48 (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) 47 (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) 46 (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) 45 (|has| |#2| (-824 (-1077)))) (($ $ (-703)) 40 (|has| |#2| (-207))) (($ $) 38 (|has| |#2| (-207)))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#2|) 128 (|has| |#2| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 65 (|has| |#2| (-333)))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3573 (((-703) $) 101 (|has| $ (-6 -4195))))) -(((-1027 |#1| |#2| |#3| |#4|) (-1189) (-703) (-964) (-212 |t#1| |t#2|) (-212 |t#1| |t#2|)) (T -1027)) -((-1634 (*1 *1 *2) (-12 (-4 *2 (-964)) (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-964)) (-4 *1 (-1027 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-964)))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-964)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1027 *3 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-964)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))) (-2137 (*1 *1 *1) (|partial| -12 (-4 *1 (-1027 *2 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1027 *3 *4 *5 *6)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333))))) -(-13 (-205 |t#2|) (-106 |t#2| |t#2|) (-967 |t#1| |t#1| |t#2| |t#3| |t#4|) (-381 |t#2|) (-347 |t#2|) (-10 -8 (IF (|has| |t#2| (-156)) (-6 (-650 |t#2|)) |%noBranch|) (-15 -1634 ($ |t#2|)) (-15 -4025 ($ (-583 |t#2|))) (-15 -1298 (|t#3| $)) (-15 -1991 (|t#2| $)) (-15 -1455 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4197 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2533 (|t#2| $)) (-15 -1779 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-333)) (PROGN (-15 -2137 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4197 "*"))) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-205 |#2|) . T) ((-207) |has| |#2| (-207)) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-347 |#2|) . T) ((-381 |#2|) . T) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-585 |#2|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#2| (-579 (-517))) ((-579 |#2|) . T) ((-650 |#2|) -3786 (|has| |#2| (-156)) (|has| |#2| (-6 (-4197 "*")))) ((-659) . T) ((-824 (-1077)) |has| |#2| (-824 (-1077))) ((-967 |#1| |#1| |#2| |#3| |#4|) . T) ((-955 (-377 (-517))) |has| |#2| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#2| (-955 (-517))) ((-955 |#2|) . T) ((-970 |#2|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1112) . T)) -((-2112 ((|#4| |#4|) 68)) (-1686 ((|#4| |#4|) 63)) (-2084 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|) 76)) (-2520 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-2448 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65))) -(((-1028 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1686 (|#4| |#4|)) (-15 -2448 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2112 (|#4| |#4|)) (-15 -2520 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2084 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|))) (-278) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1028)) -((-2084 (*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) (-5 *1 (-1028 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-2520 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1028 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2112 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2448 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1028 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) -(-10 -7 (-15 -1686 (|#4| |#4|)) (-15 -2448 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2112 (|#4| |#4|)) (-15 -2520 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2084 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3700 (-583 |#3|))) |#4| |#3|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 17)) (-2080 (((-583 |#2|) $) 159)) (-1428 (((-1073 $) $ |#2|) 53) (((-1073 |#1|) $) 42)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 109 (|has| |#1| (-509)))) (-2491 (($ $) 111 (|has| |#1| (-509)))) (-2025 (((-107) $) 113 (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 |#2|)) 193)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) 156) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 |#2| "failed") $) NIL)) (-3402 ((|#1| $) 154) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) ((|#2| $) NIL)) (-2133 (($ $ $ |#2|) NIL (|has| |#1| (-156)))) (-2364 (($ $) 197)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) 81)) (-4172 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-489 |#2|) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| |#1| (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| |#1| (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-1690 (((-107) $) 19)) (-2516 (((-703) $) 26)) (-2069 (($ (-1073 |#1|) |#2|) 47) (($ (-1073 $) |#2|) 63)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) 31)) (-2059 (($ |#1| (-489 |#2|)) 70) (($ $ |#2| (-703)) 51) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ |#2|) NIL)) (-3942 (((-489 |#2|) $) 186) (((-703) $ |#2|) 187) (((-583 (-703)) $ (-583 |#2|)) 188)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) 121)) (-1958 (((-3 |#2| "failed") $) 161)) (-2325 (($ $) 196)) (-2336 ((|#1| $) 36)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| |#2|) (|:| -1725 (-703))) "failed") $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) 32)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 139 (|has| |#1| (-421)))) (-2361 (($ (-583 $)) 144 (|has| |#1| (-421))) (($ $ $) 131 (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#1| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-833)))) (-2333 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-509)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-583 |#2|) (-583 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-583 |#2|) (-583 $)) 176)) (-3115 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2042 (($ $ |#2|) 195) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1191 (((-489 |#2|) $) 182) (((-703) $ |#2|) 178) (((-583 (-703)) $ (-583 |#2|)) 180)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| |#1| (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| |#1| (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#1| $) 127 (|has| |#1| (-421))) (($ $ |#2|) 130 (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-2262 (((-787) $) 150) (($ (-517)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3186 (((-583 |#1|) $) 153)) (-1939 ((|#1| $ (-489 |#2|)) 72) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 78)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) 116 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 101) (($ $ (-703)) 103)) (-3663 (($) 12 T CONST)) (-3675 (($) 14 T CONST)) (-3348 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 96)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 125 (|has| |#1| (-333)))) (-1680 (($ $) 84) (($ $ $) 94)) (-1666 (($ $ $) 48)) (** (($ $ (-845)) 102) (($ $ (-703)) 99)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 87) (($ $ $) 64) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-1029 |#1| |#2|) (-873 |#1| (-489 |#2|) |#2|) (-964) (-779)) (T -1029)) -NIL -(-873 |#1| (-489 |#2|) |#2|) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 |#2|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-1636 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 114 (|has| |#1| (-37 (-377 (-517)))))) (-1659 (($ $) 146 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2905 (((-876 |#1|) $ (-703)) NIL) (((-876 |#1|) $ (-703) (-703)) NIL)) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $ |#2|) NIL) (((-703) $ |#2| (-703)) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3022 (((-107) $) NIL)) (-2059 (($ $ (-583 |#2|) (-583 (-489 |#2|))) NIL) (($ $ |#2| (-489 |#2|)) NIL) (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 58) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) 112 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-3296 (($ $ |#2|) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2497 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3175 (($ $ (-703)) 15)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3898 (($ $) 110 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (($ $ |#2| $) 96) (($ $ (-583 |#2|) (-583 $)) 89) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-2042 (($ $ |#2|) 99) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1191 (((-489 |#2|) $) NIL)) (-1926 (((-1 (-1058 |#3|) |#3|) (-583 |#2|) (-583 (-1058 |#3|))) 79)) (-1670 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 144 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 17)) (-2262 (((-787) $) 180) (($ (-517)) NIL) (($ |#1|) 44 (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#2|) 65) (($ |#3|) 63)) (-1939 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL) ((|#3| $ (-703)) 42)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-1706 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 152 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 18 T CONST)) (-3675 (($) 10 T CONST)) (-3348 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) 182 (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 61)) (** (($ $ (-845)) NIL) (($ $ (-703)) 70) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 102 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 60) (($ $ (-377 (-517))) 107 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 105 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) -(((-1030 |#1| |#2| |#3|) (-13 (-673 |#1| |#2|) (-10 -8 (-15 -1939 (|#3| $ (-703))) (-15 -2262 ($ |#2|)) (-15 -2262 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1926 ((-1 (-1058 |#3|) |#3|) (-583 |#2|) (-583 (-1058 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $ |#2| |#1|)) (-15 -2497 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-964) (-779) (-873 |#1| (-489 |#2|) |#2|)) (T -1030)) -((-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-873 *4 (-489 *5) *5)) (-5 *1 (-1030 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-779)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *2 (-779)) (-5 *1 (-1030 *3 *2 *4)) (-4 *4 (-873 *3 (-489 *2) *2)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-5 *1 (-1030 *3 *4 *2)) (-4 *2 (-873 *3 (-489 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-5 *1 (-1030 *3 *4 *2)) (-4 *2 (-873 *3 (-489 *4) *4)))) (-1926 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1058 *7))) (-4 *6 (-779)) (-4 *7 (-873 *5 (-489 *6) *6)) (-4 *5 (-964)) (-5 *2 (-1 (-1058 *7) *7)) (-5 *1 (-1030 *5 *6 *7)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-4 *2 (-779)) (-5 *1 (-1030 *3 *2 *4)) (-4 *4 (-873 *3 (-489 *2) *2)))) (-2497 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1030 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-964)) (-4 *3 (-779)) (-5 *1 (-1030 *4 *3 *5)) (-4 *5 (-873 *4 (-489 *3) *3))))) -(-13 (-673 |#1| |#2|) (-10 -8 (-15 -1939 (|#3| $ (-703))) (-15 -2262 ($ |#2|)) (-15 -2262 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1926 ((-1 (-1058 |#3|) |#3|) (-583 |#2|) (-583 (-1058 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $ |#2| |#1|)) (-15 -2497 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2105 (((-107) $ $) 7)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) 85)) (-3246 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) 101) (((-107) $) 97)) (-3710 ((|#4| |#4| $) 92)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 126)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 79)) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2429 (((-3 $ "failed") $) 82)) (-2195 ((|#4| |#4| $) 89)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4142 ((|#4| |#4| $) 87)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) 105)) (-3901 (((-107) |#4| $) 136)) (-1426 (((-107) |#4| $) 133)) (-3403 (((-107) |#4| $) 137) (((-107) $) 134)) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) 104) (((-107) $) 103)) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 127)) (-1447 (((-3 |#4| "failed") $) 83)) (-1243 (((-583 $) |#4| $) 129)) (-3398 (((-3 (-107) (-583 $)) |#4| $) 132)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-2187 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2642 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-3846 (((-583 |#4|) $) 107)) (-1568 (((-107) |#4| $) 99) (((-107) $) 95)) (-2930 ((|#4| |#4| $) 90)) (-1579 (((-107) $ $) 110)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) 100) (((-107) $) 96)) (-3877 ((|#4| |#4| $) 91)) (-4130 (((-1024) $) 10)) (-2420 (((-3 |#4| "failed") $) 84)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-4059 (((-3 $ "failed") $ |#4|) 78)) (-3175 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-1191 (((-703) $) 106)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-4158 (($ $) 88)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3192 (((-703) $) 76 (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-2709 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) 81)) (-2525 (((-107) |#4| $) 135)) (-3275 (((-107) |#3| $) 80)) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195))))) -(((-1031 |#1| |#2| |#3| |#4|) (-1189) (-421) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -1031)) -NIL -(-13 (-1015 |t#1| |t#2| |t#3| |t#4|) (-716 |t#1| |t#2| |t#3| |t#4|)) -(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-716 |#1| |#2| |#3| |#4|) . T) ((-896 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1015 |#1| |#2| |#3| |#4|) . T) ((-1106 |#1| |#2| |#3| |#4|) . T) ((-1112) . T)) -((-1993 (((-583 |#2|) |#1|) 12)) (-2359 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-583 |#2|) |#1|) 47)) (-3426 (((-583 |#2|) |#2| |#2| |#2|) 35) (((-583 |#2|) |#1|) 45)) (-3454 ((|#2| |#1|) 42)) (-3707 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2883 (((-583 |#2|) |#2| |#2|) 34) (((-583 |#2|) |#1|) 44)) (-3034 (((-583 |#2|) |#2| |#2| |#2| |#2|) 36) (((-583 |#2|) |#1|) 46)) (-1549 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-1763 ((|#2| |#2| |#2| |#2|) 39)) (-2946 ((|#2| |#2| |#2|) 38)) (-3173 ((|#2| |#2| |#2| |#2| |#2|) 40))) -(((-1032 |#1| |#2|) (-10 -7 (-15 -1993 ((-583 |#2|) |#1|)) (-15 -3454 (|#2| |#1|)) (-15 -3707 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2883 ((-583 |#2|) |#1|)) (-15 -3426 ((-583 |#2|) |#1|)) (-15 -3034 ((-583 |#2|) |#1|)) (-15 -2359 ((-583 |#2|) |#1|)) (-15 -2883 ((-583 |#2|) |#2| |#2|)) (-15 -3426 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3034 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2359 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2946 (|#2| |#2| |#2|)) (-15 -1763 (|#2| |#2| |#2| |#2|)) (-15 -3173 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1549 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1134 |#2|) (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (T -1032)) -((-1549 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))) (-3173 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))) (-1763 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))) (-2946 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))) (-2359 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))) (-3034 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))) (-3426 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))) (-2883 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3)))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) (-3034 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) (-2883 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) (-3707 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1032 *3 *5)) (-4 *3 (-1134 *5)))) (-3454 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2)))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4))))) -(-10 -7 (-15 -1993 ((-583 |#2|) |#1|)) (-15 -3454 (|#2| |#1|)) (-15 -3707 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2883 ((-583 |#2|) |#1|)) (-15 -3426 ((-583 |#2|) |#1|)) (-15 -3034 ((-583 |#2|) |#1|)) (-15 -2359 ((-583 |#2|) |#1|)) (-15 -2883 ((-583 |#2|) |#2| |#2|)) (-15 -3426 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3034 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2359 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2946 (|#2| |#2| |#2|)) (-15 -1763 (|#2| |#2| |#2| |#2|)) (-15 -3173 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1549 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3649 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|))))) 95) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077))) 94) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|)))) 92) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|))) (-583 (-1077))) 90) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|)))) 76) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|))) (-1077)) 77) (((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|))) 71) (((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|)) (-1077)) 60)) (-3215 (((-583 (-583 (-286 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077))) 88) (((-583 (-286 |#1|)) (-377 (-876 |#1|)) (-1077)) 43)) (-2599 (((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-876 |#1|)) (-1077)) 98) (((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077)) 97))) -(((-1033 |#1|) (-10 -7 (-15 -3649 ((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|)))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|))))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|))))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077)))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -3215 ((-583 (-286 |#1|)) (-377 (-876 |#1|)) (-1077))) (-15 -3215 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -2599 ((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -2599 ((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-876 |#1|)) (-1077)))) (-13 (-278) (-779) (-134))) (T -1033)) -((-2599 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1067 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5)))) (-2599 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-876 *5)))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1067 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1033 *5)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1033 *5)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-876 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1033 *4)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-876 *5))))) (-5 *4 (-583 (-1077))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-876 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1033 *4)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-876 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1033 *4)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-876 *5)))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1033 *5)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1033 *4)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1033 *5))))) -(-10 -7 (-15 -3649 ((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|)) (-1077))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-377 (-876 |#1|)))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -3649 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-876 |#1|))))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-876 |#1|))))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077)))) (-15 -3649 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -3215 ((-583 (-286 |#1|)) (-377 (-876 |#1|)) (-1077))) (-15 -3215 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -2599 ((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -2599 ((-1067 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-876 |#1|)) (-1077)))) -((-3365 (((-377 (-1073 (-286 |#1|))) (-1158 (-286 |#1|)) (-377 (-1073 (-286 |#1|))) (-517)) 27)) (-1922 (((-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|)))) 39))) -(((-1034 |#1|) (-10 -7 (-15 -1922 ((-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))))) (-15 -3365 ((-377 (-1073 (-286 |#1|))) (-1158 (-286 |#1|)) (-377 (-1073 (-286 |#1|))) (-517)))) (-13 (-509) (-779))) (T -1034)) -((-3365 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1073 (-286 *5)))) (-5 *3 (-1158 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1034 *5)))) (-1922 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1073 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1034 *3))))) -(-10 -7 (-15 -1922 ((-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))) (-377 (-1073 (-286 |#1|))))) (-15 -3365 ((-377 (-1073 (-286 |#1|))) (-1158 (-286 |#1|)) (-377 (-1073 (-286 |#1|))) (-517)))) -((-1993 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1077))) 217) (((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1077)) 20) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1077)) 26) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|))) 25) (((-583 (-265 (-286 |#1|))) (-286 |#1|)) 21))) -(((-1035 |#1|) (-10 -7 (-15 -1993 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1077))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1077))) (-15 -1993 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1077))))) (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (T -1035)) -((-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1077))) (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1035 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-286 *5)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-265 (-286 *5))))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1035 *4)) (-5 *3 (-265 (-286 *4))))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1035 *4)) (-5 *3 (-286 *4))))) -(-10 -7 (-15 -1993 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1077))) (-15 -1993 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1077))) (-15 -1993 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1077))))) -((-2253 ((|#2| |#2|) 20 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 16)) (-3244 ((|#2| |#2|) 19 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 15))) -(((-1036 |#1| |#2|) (-10 -7 (-15 -3244 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2253 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -3244 (|#2| |#2|)) (-15 -2253 (|#2| |#2|))) |%noBranch|)) (-1112) (-13 (-550 (-517) |#1|) (-10 -7 (-6 -4195) (-6 -4196)))) (T -1036)) -((-2253 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1112)) (-5 *1 (-1036 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4195) (-6 -4196)))))) (-3244 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1112)) (-5 *1 (-1036 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4195) (-6 -4196)))))) (-2253 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-1036 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4195) (-6 -4196)))))) (-3244 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-1036 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4195) (-6 -4196))))))) -(-10 -7 (-15 -3244 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2253 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -3244 (|#2| |#2|)) (-15 -2253 (|#2| |#2|))) |%noBranch|)) -((-2105 (((-107) $ $) NIL)) (-1247 (((-1066 3 |#1|) $) 106)) (-2331 (((-107) $) 72)) (-3711 (($ $ (-583 (-867 |#1|))) 20) (($ $ (-583 (-583 |#1|))) 75) (($ (-583 (-867 |#1|))) 74) (((-583 (-867 |#1|)) $) 73)) (-3688 (((-107) $) 41)) (-3432 (($ $ (-867 |#1|)) 46) (($ $ (-583 |#1|)) 51) (($ $ (-703)) 53) (($ (-867 |#1|)) 47) (((-867 |#1|) $) 45)) (-3991 (((-2 (|:| -1782 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 104)) (-2155 (((-703) $) 26)) (-3128 (((-703) $) 25)) (-2473 (($ $ (-703) (-867 |#1|)) 39)) (-2290 (((-107) $) 82)) (-2122 (($ $ (-583 (-583 (-867 |#1|))) (-583 (-155)) (-155)) 89) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 91) (($ $ (-583 (-583 (-867 |#1|))) (-107) (-107)) 85) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 93) (($ (-583 (-583 (-867 |#1|)))) 86) (($ (-583 (-583 (-867 |#1|))) (-107) (-107)) 87) (((-583 (-583 (-867 |#1|))) $) 84)) (-3824 (($ (-583 $)) 28) (($ $ $) 29)) (-2145 (((-583 (-155)) $) 102)) (-2775 (((-583 (-867 |#1|)) $) 97)) (-2503 (((-583 (-583 (-155))) $) 101)) (-2183 (((-583 (-583 (-583 (-867 |#1|)))) $) NIL)) (-4165 (((-583 (-583 (-583 (-703)))) $) 99)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2327 (((-703) $ (-583 (-867 |#1|))) 37)) (-2386 (((-107) $) 54)) (-1290 (($ $ (-583 (-867 |#1|))) 56) (($ $ (-583 (-583 |#1|))) 62) (($ (-583 (-867 |#1|))) 57) (((-583 (-867 |#1|)) $) 55)) (-3689 (($) 23) (($ (-1066 3 |#1|)) 24)) (-2453 (($ $) 35)) (-1400 (((-583 $) $) 34)) (-4150 (($ (-583 $)) 31)) (-3757 (((-583 $) $) 33)) (-2262 (((-787) $) 110)) (-1433 (((-107) $) 64)) (-1967 (($ $ (-583 (-867 |#1|))) 66) (($ $ (-583 (-583 |#1|))) 69) (($ (-583 (-867 |#1|))) 67) (((-583 (-867 |#1|)) $) 65)) (-1457 (($ $) 105)) (-1572 (((-107) $ $) NIL))) -(((-1037 |#1|) (-1038 |#1|) (-964)) (T -1037)) -NIL -(-1038 |#1|) -((-2105 (((-107) $ $) 7)) (-1247 (((-1066 3 |#1|) $) 13)) (-2331 (((-107) $) 29)) (-3711 (($ $ (-583 (-867 |#1|))) 33) (($ $ (-583 (-583 |#1|))) 32) (($ (-583 (-867 |#1|))) 31) (((-583 (-867 |#1|)) $) 30)) (-3688 (((-107) $) 44)) (-3432 (($ $ (-867 |#1|)) 49) (($ $ (-583 |#1|)) 48) (($ $ (-703)) 47) (($ (-867 |#1|)) 46) (((-867 |#1|) $) 45)) (-3991 (((-2 (|:| -1782 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 15)) (-2155 (((-703) $) 58)) (-3128 (((-703) $) 59)) (-2473 (($ $ (-703) (-867 |#1|)) 50)) (-2290 (((-107) $) 21)) (-2122 (($ $ (-583 (-583 (-867 |#1|))) (-583 (-155)) (-155)) 28) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 27) (($ $ (-583 (-583 (-867 |#1|))) (-107) (-107)) 26) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 25) (($ (-583 (-583 (-867 |#1|)))) 24) (($ (-583 (-583 (-867 |#1|))) (-107) (-107)) 23) (((-583 (-583 (-867 |#1|))) $) 22)) (-3824 (($ (-583 $)) 57) (($ $ $) 56)) (-2145 (((-583 (-155)) $) 16)) (-2775 (((-583 (-867 |#1|)) $) 20)) (-2503 (((-583 (-583 (-155))) $) 17)) (-2183 (((-583 (-583 (-583 (-867 |#1|)))) $) 18)) (-4165 (((-583 (-583 (-583 (-703)))) $) 19)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2327 (((-703) $ (-583 (-867 |#1|))) 51)) (-2386 (((-107) $) 39)) (-1290 (($ $ (-583 (-867 |#1|))) 43) (($ $ (-583 (-583 |#1|))) 42) (($ (-583 (-867 |#1|))) 41) (((-583 (-867 |#1|)) $) 40)) (-3689 (($) 61) (($ (-1066 3 |#1|)) 60)) (-2453 (($ $) 52)) (-1400 (((-583 $) $) 53)) (-4150 (($ (-583 $)) 55)) (-3757 (((-583 $) $) 54)) (-2262 (((-787) $) 11)) (-1433 (((-107) $) 34)) (-1967 (($ $ (-583 (-867 |#1|))) 38) (($ $ (-583 (-583 |#1|))) 37) (($ (-583 (-867 |#1|))) 36) (((-583 (-867 |#1|)) $) 35)) (-1457 (($ $) 14)) (-1572 (((-107) $ $) 6))) -(((-1038 |#1|) (-1189) (-964)) (T -1038)) -((-2262 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-787)))) (-3689 (*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-1066 3 *3)) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) (-3824 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3824 (*1 *1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3757 (*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)))) (-1400 (*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)))) (-2453 (*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))) (-2327 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-867 *4))) (-4 *1 (-1038 *4)) (-4 *4 (-964)) (-5 *2 (-703)))) (-2473 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-867 *4)) (-4 *1 (-1038 *4)) (-4 *4 (-964)))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-867 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3432 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-867 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))) (-1290 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-1290 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-1290 (*1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-1290 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))) (-2386 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))) (-1967 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-1967 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-1967 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) (-3711 (*1 *1 *2) (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))) (-2122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-867 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1038 *5)) (-4 *5 (-964)))) (-2122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1038 *5)) (-4 *5 (-964)))) (-2122 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-867 *4)))) (-5 *3 (-107)) (-4 *1 (-1038 *4)) (-4 *4 (-964)))) (-2122 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1038 *4)) (-4 *4 (-964)))) (-2122 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-867 *3)))) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) (-2122 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-867 *4)))) (-5 *3 (-107)) (-4 *4 (-964)) (-4 *1 (-1038 *4)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-583 (-867 *3)))))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))) (-4165 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-583 (-583 (-703))))))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-583 (-583 (-867 *3))))))) (-2503 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-583 (-155)))))) (-2145 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-155))))) (-3991 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -1782 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))) (-1457 (*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))) (-1247 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-1066 3 *3))))) -(-13 (-1006) (-10 -8 (-15 -3689 ($)) (-15 -3689 ($ (-1066 3 |t#1|))) (-15 -3128 ((-703) $)) (-15 -2155 ((-703) $)) (-15 -3824 ($ (-583 $))) (-15 -3824 ($ $ $)) (-15 -4150 ($ (-583 $))) (-15 -3757 ((-583 $) $)) (-15 -1400 ((-583 $) $)) (-15 -2453 ($ $)) (-15 -2327 ((-703) $ (-583 (-867 |t#1|)))) (-15 -2473 ($ $ (-703) (-867 |t#1|))) (-15 -3432 ($ $ (-867 |t#1|))) (-15 -3432 ($ $ (-583 |t#1|))) (-15 -3432 ($ $ (-703))) (-15 -3432 ($ (-867 |t#1|))) (-15 -3432 ((-867 |t#1|) $)) (-15 -3688 ((-107) $)) (-15 -1290 ($ $ (-583 (-867 |t#1|)))) (-15 -1290 ($ $ (-583 (-583 |t#1|)))) (-15 -1290 ($ (-583 (-867 |t#1|)))) (-15 -1290 ((-583 (-867 |t#1|)) $)) (-15 -2386 ((-107) $)) (-15 -1967 ($ $ (-583 (-867 |t#1|)))) (-15 -1967 ($ $ (-583 (-583 |t#1|)))) (-15 -1967 ($ (-583 (-867 |t#1|)))) (-15 -1967 ((-583 (-867 |t#1|)) $)) (-15 -1433 ((-107) $)) (-15 -3711 ($ $ (-583 (-867 |t#1|)))) (-15 -3711 ($ $ (-583 (-583 |t#1|)))) (-15 -3711 ($ (-583 (-867 |t#1|)))) (-15 -3711 ((-583 (-867 |t#1|)) $)) (-15 -2331 ((-107) $)) (-15 -2122 ($ $ (-583 (-583 (-867 |t#1|))) (-583 (-155)) (-155))) (-15 -2122 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-155)) (-155))) (-15 -2122 ($ $ (-583 (-583 (-867 |t#1|))) (-107) (-107))) (-15 -2122 ($ $ (-583 (-583 (-583 |t#1|))) (-107) (-107))) (-15 -2122 ($ (-583 (-583 (-867 |t#1|))))) (-15 -2122 ($ (-583 (-583 (-867 |t#1|))) (-107) (-107))) (-15 -2122 ((-583 (-583 (-867 |t#1|))) $)) (-15 -2290 ((-107) $)) (-15 -2775 ((-583 (-867 |t#1|)) $)) (-15 -4165 ((-583 (-583 (-583 (-703)))) $)) (-15 -2183 ((-583 (-583 (-583 (-867 |t#1|)))) $)) (-15 -2503 ((-583 (-583 (-155))) $)) (-15 -2145 ((-583 (-155)) $)) (-15 -3991 ((-2 (|:| -1782 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $)) (-15 -1457 ($ $)) (-15 -1247 ((-1066 3 |t#1|) $)) (-15 -2262 ((-787) $)))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-2637 (((-583 (-1082)) (-1060)) 8))) -(((-1039) (-10 -7 (-15 -2637 ((-583 (-1082)) (-1060))))) (T -1039)) -((-2637 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-583 (-1082))) (-5 *1 (-1039))))) -(-10 -7 (-15 -2637 ((-583 (-1082)) (-1060)))) -((-1623 (((-1163) (-583 (-787))) 23) (((-1163) (-787)) 22)) (-2957 (((-1163) (-583 (-787))) 21) (((-1163) (-787)) 20)) (-1885 (((-1163) (-583 (-787))) 19) (((-1163) (-787)) 11) (((-1163) (-1060) (-787)) 17))) -(((-1040) (-10 -7 (-15 -1885 ((-1163) (-1060) (-787))) (-15 -1885 ((-1163) (-787))) (-15 -2957 ((-1163) (-787))) (-15 -1623 ((-1163) (-787))) (-15 -1885 ((-1163) (-583 (-787)))) (-15 -2957 ((-1163) (-583 (-787)))) (-15 -1623 ((-1163) (-583 (-787)))))) (T -1040)) -((-1623 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *3 (-1060)) (-5 *4 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040))))) -(-10 -7 (-15 -1885 ((-1163) (-1060) (-787))) (-15 -1885 ((-1163) (-787))) (-15 -2957 ((-1163) (-787))) (-15 -1623 ((-1163) (-787))) (-15 -1885 ((-1163) (-583 (-787)))) (-15 -2957 ((-1163) (-583 (-787)))) (-15 -1623 ((-1163) (-583 (-787))))) -((-2922 (($ $ $) 10)) (-2581 (($ $) 9)) (-3746 (($ $ $) 13)) (-3518 (($ $ $) 15)) (-2672 (($ $ $) 12)) (-2747 (($ $ $) 14)) (-4113 (($ $) 17)) (-4084 (($ $) 16)) (-2829 (($ $) 6)) (-4097 (($ $ $) 11) (($ $) 7)) (-3466 (($ $ $) 8))) -(((-1041) (-1189)) (T -1041)) -((-4113 (*1 *1 *1) (-4 *1 (-1041))) (-4084 (*1 *1 *1) (-4 *1 (-1041))) (-3518 (*1 *1 *1 *1) (-4 *1 (-1041))) (-2747 (*1 *1 *1 *1) (-4 *1 (-1041))) (-3746 (*1 *1 *1 *1) (-4 *1 (-1041))) (-2672 (*1 *1 *1 *1) (-4 *1 (-1041))) (-4097 (*1 *1 *1 *1) (-4 *1 (-1041))) (-2922 (*1 *1 *1 *1) (-4 *1 (-1041))) (-2581 (*1 *1 *1) (-4 *1 (-1041))) (-3466 (*1 *1 *1 *1) (-4 *1 (-1041))) (-4097 (*1 *1 *1) (-4 *1 (-1041))) (-2829 (*1 *1 *1) (-4 *1 (-1041)))) -(-13 (-10 -8 (-15 -2829 ($ $)) (-15 -4097 ($ $)) (-15 -3466 ($ $ $)) (-15 -2581 ($ $)) (-15 -2922 ($ $ $)) (-15 -4097 ($ $ $)) (-15 -2672 ($ $ $)) (-15 -3746 ($ $ $)) (-15 -2747 ($ $ $)) (-15 -3518 ($ $ $)) (-15 -4084 ($ $)) (-15 -4113 ($ $)))) -((-2105 (((-107) $ $) 41)) (-3112 ((|#1| $) 15)) (-3957 (((-107) $ $ (-1 (-107) |#2| |#2|)) 36)) (-1558 (((-107) $) 17)) (-3726 (($ $ |#1|) 28)) (-4149 (($ $ (-107)) 30)) (-3909 (($ $) 31)) (-2743 (($ $ |#2|) 29)) (-3232 (((-1060) $) NIL)) (-3346 (((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|)) 35)) (-4130 (((-1024) $) NIL)) (-1754 (((-107) $) 14)) (-2679 (($) 10)) (-2453 (($ $) 27)) (-2279 (($ |#1| |#2| (-107)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3864 |#2|))) 21) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|)))) 24) (((-583 $) |#1| (-583 |#2|)) 26)) (-2382 ((|#2| $) 16)) (-2262 (((-787) $) 50)) (-1572 (((-107) $ $) 39))) -(((-1042 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -2679 ($)) (-15 -1754 ((-107) $)) (-15 -3112 (|#1| $)) (-15 -2382 (|#2| $)) (-15 -1558 ((-107) $)) (-15 -2279 ($ |#1| |#2| (-107))) (-15 -2279 ($ |#1| |#2|)) (-15 -2279 ($ (-2 (|:| |val| |#1|) (|:| -3864 |#2|)))) (-15 -2279 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|))))) (-15 -2279 ((-583 $) |#1| (-583 |#2|))) (-15 -2453 ($ $)) (-15 -3726 ($ $ |#1|)) (-15 -2743 ($ $ |#2|)) (-15 -4149 ($ $ (-107))) (-15 -3909 ($ $)) (-15 -3346 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -3957 ((-107) $ $ (-1 (-107) |#2| |#2|))))) (-13 (-1006) (-33)) (-13 (-1006) (-33))) (T -1042)) -((-2679 (*1 *1) (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))))) (-3112 (*1 *2 *1) (-12 (-4 *2 (-13 (-1006) (-33))) (-5 *1 (-1042 *2 *3)) (-4 *3 (-13 (-1006) (-33))))) (-2382 (*1 *2 *1) (-12 (-4 *2 (-13 (-1006) (-33))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-13 (-1006) (-33))))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))))) (-2279 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-2279 (*1 *1 *2 *3) (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3864 *4))) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1042 *3 *4)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3864 *5)))) (-4 *4 (-13 (-1006) (-33))) (-4 *5 (-13 (-1006) (-33))) (-5 *2 (-583 (-1042 *4 *5))) (-5 *1 (-1042 *4 *5)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1006) (-33))) (-5 *2 (-583 (-1042 *3 *5))) (-5 *1 (-1042 *3 *5)) (-4 *3 (-13 (-1006) (-33))))) (-2453 (*1 *1 *1) (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-3726 (*1 *1 *1 *2) (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-2743 (*1 *1 *1 *2) (-12 (-5 *1 (-1042 *3 *2)) (-4 *3 (-13 (-1006) (-33))) (-4 *2 (-13 (-1006) (-33))))) (-4149 (*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))))) (-3909 (*1 *1 *1) (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-3346 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1006) (-33))) (-4 *6 (-13 (-1006) (-33))) (-5 *2 (-107)) (-5 *1 (-1042 *5 *6)))) (-3957 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1006) (-33))) (-5 *2 (-107)) (-5 *1 (-1042 *4 *5)) (-4 *4 (-13 (-1006) (-33)))))) -(-13 (-1006) (-10 -8 (-15 -2679 ($)) (-15 -1754 ((-107) $)) (-15 -3112 (|#1| $)) (-15 -2382 (|#2| $)) (-15 -1558 ((-107) $)) (-15 -2279 ($ |#1| |#2| (-107))) (-15 -2279 ($ |#1| |#2|)) (-15 -2279 ($ (-2 (|:| |val| |#1|) (|:| -3864 |#2|)))) (-15 -2279 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|))))) (-15 -2279 ((-583 $) |#1| (-583 |#2|))) (-15 -2453 ($ $)) (-15 -3726 ($ $ |#1|)) (-15 -2743 ($ $ |#2|)) (-15 -4149 ($ $ (-107))) (-15 -3909 ($ $)) (-15 -3346 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -3957 ((-107) $ $ (-1 (-107) |#2| |#2|))))) -((-2105 (((-107) $ $) NIL (|has| (-1042 |#1| |#2|) (-1006)))) (-3112 (((-1042 |#1| |#2|) $) 25)) (-1190 (($ $) 76)) (-3263 (((-107) (-1042 |#1| |#2|) $ (-1 (-107) |#2| |#2|)) 85)) (-1646 (($ $ $ (-583 (-1042 |#1| |#2|))) 90) (($ $ $ (-583 (-1042 |#1| |#2|)) (-1 (-107) |#2| |#2|)) 91)) (-3443 (((-107) $ (-703)) NIL)) (-2226 (((-1042 |#1| |#2|) $ (-1042 |#1| |#2|)) 43 (|has| $ (-6 -4196)))) (-2436 (((-1042 |#1| |#2|) $ "value" (-1042 |#1| |#2|)) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-2462 (((-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|))) $) 80)) (-1749 (($ (-1042 |#1| |#2|) $) 39)) (-1423 (($ (-1042 |#1| |#2|) $) 31)) (-1525 (((-583 (-1042 |#1| |#2|)) $) NIL (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 51)) (-2088 (((-107) (-1042 |#1| |#2|) $) 82)) (-1700 (((-107) $ $) NIL (|has| (-1042 |#1| |#2|) (-1006)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 (-1042 |#1| |#2|)) $) 55 (|has| $ (-6 -4195)))) (-1949 (((-107) (-1042 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-1042 |#1| |#2|) (-1006))))) (-2737 (($ (-1 (-1042 |#1| |#2|) (-1042 |#1| |#2|)) $) 47 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-1042 |#1| |#2|) (-1042 |#1| |#2|)) $) 46)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 (-1042 |#1| |#2|)) $) 53)) (-3834 (((-107) $) 42)) (-3232 (((-1060) $) NIL (|has| (-1042 |#1| |#2|) (-1006)))) (-4130 (((-1024) $) NIL (|has| (-1042 |#1| |#2|) (-1006)))) (-3182 (((-3 $ "failed") $) 75)) (-3843 (((-107) (-1 (-107) (-1042 |#1| |#2|)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-1042 |#1| |#2|)))) NIL (-12 (|has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|))) (|has| (-1042 |#1| |#2|) (-1006)))) (($ $ (-265 (-1042 |#1| |#2|))) NIL (-12 (|has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|))) (|has| (-1042 |#1| |#2|) (-1006)))) (($ $ (-1042 |#1| |#2|) (-1042 |#1| |#2|)) NIL (-12 (|has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|))) (|has| (-1042 |#1| |#2|) (-1006)))) (($ $ (-583 (-1042 |#1| |#2|)) (-583 (-1042 |#1| |#2|))) NIL (-12 (|has| (-1042 |#1| |#2|) (-280 (-1042 |#1| |#2|))) (|has| (-1042 |#1| |#2|) (-1006))))) (-1770 (((-107) $ $) 50)) (-1754 (((-107) $) 22)) (-2679 (($) 24)) (-2612 (((-1042 |#1| |#2|) $ "value") NIL)) (-3868 (((-517) $ $) NIL)) (-1414 (((-107) $) 44)) (-4140 (((-703) (-1 (-107) (-1042 |#1| |#2|)) $) NIL (|has| $ (-6 -4195))) (((-703) (-1042 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-1042 |#1| |#2|) (-1006))))) (-2453 (($ $) 49)) (-2279 (($ (-1042 |#1| |#2|)) 9) (($ |#1| |#2| (-583 $)) 12) (($ |#1| |#2| (-583 (-1042 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-583 |#2|)) 17)) (-1910 (((-583 |#2|) $) 81)) (-2262 (((-787) $) 73 (|has| (-1042 |#1| |#2|) (-557 (-787))))) (-3234 (((-583 $) $) 28)) (-3224 (((-107) $ $) NIL (|has| (-1042 |#1| |#2|) (-1006)))) (-1272 (((-107) (-1 (-107) (-1042 |#1| |#2|)) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 64 (|has| (-1042 |#1| |#2|) (-1006)))) (-3573 (((-703) $) 58 (|has| $ (-6 -4195))))) -(((-1043 |#1| |#2|) (-13 (-929 (-1042 |#1| |#2|)) (-10 -8 (-6 -4196) (-6 -4195) (-15 -3182 ((-3 $ "failed") $)) (-15 -1190 ($ $)) (-15 -2279 ($ (-1042 |#1| |#2|))) (-15 -2279 ($ |#1| |#2| (-583 $))) (-15 -2279 ($ |#1| |#2| (-583 (-1042 |#1| |#2|)))) (-15 -2279 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -1910 ((-583 |#2|) $)) (-15 -2462 ((-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|))) $)) (-15 -2088 ((-107) (-1042 |#1| |#2|) $)) (-15 -3263 ((-107) (-1042 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1423 ($ (-1042 |#1| |#2|) $)) (-15 -1749 ($ (-1042 |#1| |#2|) $)) (-15 -1646 ($ $ $ (-583 (-1042 |#1| |#2|)))) (-15 -1646 ($ $ $ (-583 (-1042 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) (-13 (-1006) (-33)) (-13 (-1006) (-33))) (T -1043)) -((-3182 (*1 *1 *1) (|partial| -12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-1190 (*1 *1 *1) (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-2279 (*1 *1 *2) (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))) (-2279 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1043 *2 *3))) (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) (-2279 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1042 *2 *3))) (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))) (-5 *1 (-1043 *2 *3)))) (-2279 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1006) (-33))) (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33))))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))))) (-2088 (*1 *2 *3 *1) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-1006) (-33))) (-4 *5 (-13 (-1006) (-33))) (-5 *2 (-107)) (-5 *1 (-1043 *4 *5)))) (-3263 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1042 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1006) (-33))) (-4 *6 (-13 (-1006) (-33))) (-5 *2 (-107)) (-5 *1 (-1043 *5 *6)))) (-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))) (-1749 (*1 *1 *2 *1) (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))) (-1646 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1042 *3 *4))) (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))) (-1646 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1042 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1006) (-33))) (-4 *5 (-13 (-1006) (-33))) (-5 *1 (-1043 *4 *5))))) -(-13 (-929 (-1042 |#1| |#2|)) (-10 -8 (-6 -4196) (-6 -4195) (-15 -3182 ((-3 $ "failed") $)) (-15 -1190 ($ $)) (-15 -2279 ($ (-1042 |#1| |#2|))) (-15 -2279 ($ |#1| |#2| (-583 $))) (-15 -2279 ($ |#1| |#2| (-583 (-1042 |#1| |#2|)))) (-15 -2279 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -1910 ((-583 |#2|) $)) (-15 -2462 ((-583 (-2 (|:| |val| |#1|) (|:| -3864 |#2|))) $)) (-15 -2088 ((-107) (-1042 |#1| |#2|) $)) (-15 -3263 ((-107) (-1042 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1423 ($ (-1042 |#1| |#2|) $)) (-15 -1749 ($ (-1042 |#1| |#2|) $)) (-15 -1646 ($ $ $ (-583 (-1042 |#1| |#2|)))) (-15 -1646 ($ $ $ (-583 (-1042 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1911 (($ $) NIL)) (-1991 ((|#2| $) NIL)) (-1912 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-1882 (($ (-623 |#2|)) 45)) (-1256 (((-107) $) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-1634 (($ |#2|) 9)) (-3038 (($) NIL T CONST)) (-1197 (($ $) 58 (|has| |#2| (-278)))) (-1397 (((-214 |#1| |#2|) $ (-517)) 31)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) ((|#2| $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) 72)) (-3778 (((-703) $) 60 (|has| |#2| (-509)))) (-2557 ((|#2| $ (-517) (-517)) NIL)) (-1525 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1690 (((-107) $) NIL)) (-3850 (((-703) $) 62 (|has| |#2| (-509)))) (-1671 (((-583 (-214 |#1| |#2|)) $) 66 (|has| |#2| (-509)))) (-1409 (((-703) $) NIL)) (-1422 (((-703) $) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-1779 ((|#2| $) 56 (|has| |#2| (-6 (-4197 "*"))))) (-2560 (((-517) $) NIL)) (-2970 (((-517) $) NIL)) (-3687 (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2413 (((-517) $) NIL)) (-1718 (((-517) $) NIL)) (-2362 (($ (-583 (-583 |#2|))) 26)) (-2737 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3468 (((-583 (-583 |#2|)) $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2137 (((-3 $ "failed") $) 69 (|has| |#2| (-333)))) (-4130 (((-1024) $) NIL)) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3843 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) NIL)) (-2042 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1455 ((|#2| $) NIL)) (-4025 (($ (-583 |#2|)) 40)) (-1974 (((-107) $) NIL)) (-1298 (((-214 |#1| |#2|) $) NIL)) (-2533 ((|#2| $) 54 (|has| |#2| (-6 (-4197 "*"))))) (-4140 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2453 (($ $) NIL)) (-3367 (((-493) $) 81 (|has| |#2| (-558 (-493))))) (-2295 (((-214 |#1| |#2|) $ (-517)) 33)) (-2262 (((-787) $) 36) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-955 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) 42)) (-1818 (((-703)) 17)) (-1272 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3007 (((-107) $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 11 T CONST)) (-3675 (($) 14 T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) 52) (($ $ (-517)) 71 (|has| |#2| (-333)))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) 48) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) 50)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-1044 |#1| |#2|) (-13 (-1027 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -1911 ($ $)) (-15 -1882 ($ (-623 |#2|))) (-15 -2262 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4197 "*"))) (-6 -4184) |%noBranch|) (IF (|has| |#2| (-6 (-4197 "*"))) (IF (|has| |#2| (-6 -4192)) (-6 -4192) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) (-703) (-964)) (T -1044)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1044 *3 *4)) (-14 *3 (-703)) (-4 *4 (-964)))) (-1911 (*1 *1 *1) (-12 (-5 *1 (-1044 *2 *3)) (-14 *2 (-703)) (-4 *3 (-964)))) (-1882 (*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-964)) (-5 *1 (-1044 *3 *4)) (-14 *3 (-703))))) -(-13 (-1027 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -1911 ($ $)) (-15 -1882 ($ (-623 |#2|))) (-15 -2262 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4197 "*"))) (-6 -4184) |%noBranch|) (IF (|has| |#2| (-6 (-4197 "*"))) (IF (|has| |#2| (-6 -4192)) (-6 -4192) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |%noBranch|))) -((-2811 (($ $) 19)) (-3199 (($ $ (-131)) 10) (($ $ (-128)) 14)) (-2562 (((-107) $ $) 24)) (-3577 (($ $) 17)) (-2612 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1125 (-517))) NIL) (($ $ $) 29)) (-2262 (($ (-131)) 27) (((-787) $) NIL))) -(((-1045 |#1|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -3199 (|#1| |#1| (-128))) (-15 -3199 (|#1| |#1| (-131))) (-15 -2262 (|#1| (-131))) (-15 -2562 ((-107) |#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -2612 ((-131) |#1| (-517))) (-15 -2612 ((-131) |#1| (-517) (-131)))) (-1046)) (T -1045)) -NIL -(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -3199 (|#1| |#1| (-128))) (-15 -3199 (|#1| |#1| (-131))) (-15 -2262 (|#1| (-131))) (-15 -2562 ((-107) |#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -2612 ((-131) |#1| (-517))) (-15 -2612 ((-131) |#1| (-517) (-131)))) -((-2105 (((-107) $ $) 19 (|has| (-131) (-1006)))) (-3169 (($ $) 120)) (-2811 (($ $) 121)) (-3199 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2542 (((-107) $ $) 118)) (-3133 (((-107) $ $ (-517)) 117)) (-1975 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2508 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-4109 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4196))) (((-131) $ (-1125 (-517)) (-131)) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2899 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-3225 (($ $ (-1125 (-517)) $) 114)) (-2446 (($ $) 78 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ (-131) $) 77 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4195)))) (-1510 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4195)))) (-2750 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4196)))) (-2557 (((-131) $ (-517)) 51)) (-2562 (((-107) $ $) 119)) (-1210 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1006))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1006))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1525 (((-583 (-131)) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) (-131)) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| (-131) (-779)))) (-3824 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-3687 (((-583 (-131)) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| (-131) (-779)))) (-1436 (((-107) $ $ (-131)) 115)) (-1924 (((-703) $ $ (-131)) 116)) (-2737 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3410 (($ $) 122)) (-3577 (($ $) 123)) (-2328 (((-107) $ (-703)) 10)) (-2912 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3232 (((-1060) $) 22 (|has| (-131) (-1006)))) (-1734 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| (-131) (-1006)))) (-2420 (((-131) $) 42 (|has| (-517) (-779)))) (-1985 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2837 (($ $ (-131)) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-2862 (((-583 (-131)) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1125 (-517))) 63) (($ $ $) 102)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4195))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2279 (($ (-583 (-131))) 70)) (-4117 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (($ (-131)) 111) (((-787) $) 18 (|has| (-131) (-557 (-787))))) (-1272 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1606 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1572 (((-107) $ $) 20 (|has| (-131) (-1006)))) (-1618 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1596 (((-107) $ $) 82 (|has| (-131) (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-1046) (-1189)) (T -1046)) -((-3577 (*1 *1 *1) (-4 *1 (-1046))) (-3410 (*1 *1 *1) (-4 *1 (-1046))) (-2811 (*1 *1 *1) (-4 *1 (-1046))) (-3169 (*1 *1 *1) (-4 *1 (-1046))) (-2562 (*1 *2 *1 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-107)))) (-2542 (*1 *2 *1 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-107)))) (-3133 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-517)) (-5 *2 (-107)))) (-1924 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-131)) (-5 *2 (-703)))) (-1436 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-131)) (-5 *2 (-107)))) (-3225 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-1125 (-517))))) (-1210 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-517)))) (-1210 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-517)) (-5 *3 (-128)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1046)))) (-1975 (*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1046)))) (-1975 (*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1046)))) (-3199 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131)))) (-3199 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128)))) (-2899 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131)))) (-2899 (*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128)))) (-2612 (*1 *1 *1 *1) (-4 *1 (-1046)))) -(-13 (-19 (-131)) (-10 -8 (-15 -3577 ($ $)) (-15 -3410 ($ $)) (-15 -2811 ($ $)) (-15 -3169 ($ $)) (-15 -2562 ((-107) $ $)) (-15 -2542 ((-107) $ $)) (-15 -3133 ((-107) $ $ (-517))) (-15 -1924 ((-703) $ $ (-131))) (-15 -1436 ((-107) $ $ (-131))) (-15 -3225 ($ $ (-1125 (-517)) $)) (-15 -1210 ((-517) $ $ (-517))) (-15 -1210 ((-517) (-128) $ (-517))) (-15 -2262 ($ (-131))) (-15 -1975 ((-583 $) $ (-131))) (-15 -1975 ((-583 $) $ (-128))) (-15 -3199 ($ $ (-131))) (-15 -3199 ($ $ (-128))) (-15 -2912 ($ $ (-131))) (-15 -2912 ($ $ (-128))) (-15 -2899 ($ $ (-131))) (-15 -2899 ($ $ (-128))) (-15 -2612 ($ $ $)))) -(((-33) . T) ((-97) -3786 (|has| (-131) (-1006)) (|has| (-131) (-779))) ((-557 (-787)) -3786 (|has| (-131) (-1006)) (|has| (-131) (-779)) (|has| (-131) (-557 (-787)))) ((-138 #0=(-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))) ((-588 #0#) . T) ((-19 #0#) . T) ((-779) |has| (-131) (-779)) ((-1006) -3786 (|has| (-131) (-1006)) (|has| (-131) (-779))) ((-1112) . T)) -((-3068 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703)) 94)) (-2172 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703)) 53)) (-2606 (((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703)) 85)) (-3532 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2329 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703)) 55) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107)) 57)) (-1784 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 76) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 77)) (-3367 (((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) 80)) (-2458 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|) 52)) (-1331 (((-703) (-583 |#4|) (-583 |#5|)) 19))) -(((-1047 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1331 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3532 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2458 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3068 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703))) (-15 -3367 ((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -2606 ((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703)))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|) (-1015 |#1| |#2| |#3| |#4|)) (T -1047)) -((-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) (-5 *4 (-703)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1163)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1015 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1060)) (-5 *1 (-1047 *4 *5 *6 *7 *8)))) (-3068 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3864 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3864 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-1015 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1047 *7 *8 *9 *10 *11)))) (-1784 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))) (-1784 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))) (-2329 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3)))) (-2329 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *6 *7 *8 *3 *4)) (-4 *4 (-1015 *6 *7 *8 *3)))) (-2329 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *7 *8 *9 *3 *4)) (-4 *4 (-1015 *7 *8 *9 *3)))) (-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3)))) (-2172 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *6 *7 *8 *3 *4)) (-4 *4 (-1015 *6 *7 *8 *3)))) (-2458 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1047 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1331 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3532 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2458 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2172 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5| (-703))) (-15 -2329 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) |#4| |#5|)) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -1784 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3068 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))))) (-703))) (-15 -3367 ((-1060) (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|)))) (-15 -2606 ((-1163) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3864 |#5|))) (-703)))) -((-2105 (((-107) $ $) NIL)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3246 (((-583 $) (-583 |#4|)) 110) (((-583 $) (-583 |#4|) (-107)) 111) (((-583 $) (-583 |#4|) (-107) (-107)) 109) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 112)) (-2080 (((-583 |#3|) $) NIL)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3710 ((|#4| |#4| $) NIL)) (-1322 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| $) 84)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 62)) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) 26 (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2774 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3402 (($ (-583 |#4|)) NIL)) (-2429 (((-3 $ "failed") $) 39)) (-2195 ((|#4| |#4| $) 65)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4142 ((|#4| |#4| $) NIL)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) NIL)) (-3901 (((-107) |#4| $) NIL)) (-1426 (((-107) |#4| $) NIL)) (-3403 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-4145 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 124)) (-1525 (((-583 |#4|) $) 16 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2772 ((|#3| $) 33)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#4|) $) 17 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-2737 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 21)) (-1425 (((-583 |#3|) $) NIL)) (-1808 (((-107) |#3| $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-2211 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1504 (((-583 (-2 (|:| |val| |#4|) (|:| -3864 $))) |#4| |#4| $) 103)) (-1447 (((-3 |#4| "failed") $) 37)) (-1243 (((-583 $) |#4| $) 88)) (-3398 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-2179 (((-583 (-2 (|:| |val| (-107)) (|:| -3864 $))) |#4| $) 98) (((-107) |#4| $) 53)) (-2187 (((-583 $) |#4| $) 107) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 108) (((-583 $) |#4| (-583 $)) NIL)) (-3334 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 119)) (-2642 (($ |#4| $) 75) (($ (-583 |#4|) $) 76) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 74)) (-3846 (((-583 |#4|) $) NIL)) (-1568 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2930 ((|#4| |#4| $) NIL)) (-1579 (((-107) $ $) NIL)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3877 ((|#4| |#4| $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-3 |#4| "failed") $) 35)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-4059 (((-3 $ "failed") $ |#4|) 48)) (-3175 (($ $ |#4|) NIL) (((-583 $) |#4| $) 90) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 86)) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 15)) (-2679 (($) 13)) (-1191 (((-703) $) NIL)) (-4140 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) 12)) (-3367 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 20)) (-3231 (($ $ |#3|) 42)) (-2316 (($ $ |#3|) 44)) (-4158 (($ $) NIL)) (-3127 (($ $ |#3|) NIL)) (-2262 (((-787) $) 31) (((-583 |#4|) $) 40)) (-3192 (((-703) $) NIL (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-2709 (((-583 $) |#4| $) 54) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) NIL)) (-2525 (((-107) |#4| $) NIL)) (-3275 (((-107) |#3| $) 61)) (-1572 (((-107) $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-1048 |#1| |#2| |#3| |#4|) (-13 (-1015 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2642 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3334 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -4145 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -1048)) -((-2642 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3246 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3246 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3334 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-4145 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1048 *5 *6 *7 *8))))) (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) -(-13 (-1015 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2642 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -3246 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3334 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -4145 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2544 ((|#1| $) 34)) (-2857 (($ (-583 |#1|)) 39)) (-3443 (((-107) $ (-703)) NIL)) (-3038 (($) NIL T CONST)) (-2098 ((|#1| |#1| $) 36)) (-3409 ((|#1| $) 32)) (-1525 (((-583 |#1|) $) 18 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 22)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2015 ((|#1| $) 35)) (-3439 (($ |#1| $) 37)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-1551 ((|#1| $) 33)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 31)) (-2679 (($) 38)) (-3137 (((-703) $) 29)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 27)) (-2262 (((-787) $) 14 (|has| |#1| (-557 (-787))))) (-2729 (($ (-583 |#1|)) NIL)) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 17 (|has| |#1| (-1006)))) (-3573 (((-703) $) 30 (|has| $ (-6 -4195))))) -(((-1049 |#1|) (-13 (-1025 |#1|) (-10 -8 (-15 -2857 ($ (-583 |#1|))))) (-1112)) (T -1049)) -((-2857 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1049 *3))))) -(-13 (-1025 |#1|) (-10 -8 (-15 -2857 ($ (-583 |#1|))))) -((-2436 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1125 (-517)) |#2|) 44) ((|#2| $ (-517) |#2|) 41)) (-1655 (((-107) $) 12)) (-2737 (($ (-1 |#2| |#2|) $) 39)) (-2420 ((|#2| $) NIL) (($ $ (-703)) 17)) (-2837 (($ $ |#2|) 40)) (-2611 (((-107) $) 11)) (-2612 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1125 (-517))) 31) ((|#2| $ (-517)) 23) ((|#2| $ (-517) |#2|) NIL)) (-3495 (($ $ $) 47) (($ $ |#2|) NIL)) (-4117 (($ $ $) 33) (($ |#2| $) NIL) (($ (-583 $)) 36) (($ $ |#2|) NIL))) -(((-1050 |#1| |#2|) (-10 -8 (-15 -1655 ((-107) |#1|)) (-15 -2611 ((-107) |#1|)) (-15 -2436 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2837 (|#1| |#1| |#2|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -4117 (|#1| (-583 |#1|))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -2436 (|#2| |#1| (-1125 (-517)) |#2|)) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -3495 (|#1| |#1| |#2|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2612 (|#2| |#1| "last")) (-15 -2612 (|#1| |#1| "rest")) (-15 -2420 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "first")) (-15 -2420 (|#2| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -2612 (|#2| |#1| "value")) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|))) (-1051 |#2|) (-1112)) (T -1050)) -NIL -(-10 -8 (-15 -1655 ((-107) |#1|)) (-15 -2611 ((-107) |#1|)) (-15 -2436 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517) |#2|)) (-15 -2612 (|#2| |#1| (-517))) (-15 -2837 (|#1| |#1| |#2|)) (-15 -4117 (|#1| |#1| |#2|)) (-15 -4117 (|#1| (-583 |#1|))) (-15 -2612 (|#1| |#1| (-1125 (-517)))) (-15 -2436 (|#2| |#1| (-1125 (-517)) |#2|)) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -3495 (|#1| |#1| |#2|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2612 (|#2| |#1| "last")) (-15 -2612 (|#1| |#1| "rest")) (-15 -2420 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "first")) (-15 -2420 (|#2| |#1|)) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -2612 (|#2| |#1| "value")) (-15 -2737 (|#1| (-1 |#2| |#2|) |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-2577 ((|#1| $) 65)) (-1529 (($ $) 67)) (-3351 (((-1163) $ (-517) (-517)) 97 (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 52 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-1223 (($ $ $) 56 (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 58 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4196))) (($ $ "rest" $) 55 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 117 (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4195)))) (-2567 ((|#1| $) 66)) (-3038 (($) 7 T CONST)) (-2429 (($ $) 73) (($ $ (-703)) 71)) (-2446 (($ $) 99 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4195))) (($ |#1| $) 100 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2750 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 87)) (-1655 (((-107) $) 83)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) 108)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 95 (|has| (-517) (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 94 (|has| (-517) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1447 ((|#1| $) 70) (($ $ (-703)) 68)) (-1734 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1449 (((-583 (-517)) $) 92)) (-3413 (((-107) (-517) $) 91)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 76) (($ $ (-703)) 74)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2837 (($ $ |#1|) 96 (|has| $ (-6 -4196)))) (-2611 (((-107) $) 84)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 90)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1125 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-3868 (((-517) $ $) 44)) (-3779 (($ $ (-1125 (-517))) 114) (($ $ (-517)) 113)) (-1414 (((-107) $) 46)) (-2074 (($ $) 62)) (-4155 (($ $) 59 (|has| $ (-6 -4196)))) (-2792 (((-703) $) 63)) (-2736 (($ $) 64)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3367 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 107)) (-3495 (($ $ $) 61 (|has| $ (-6 -4196))) (($ $ |#1|) 60 (|has| $ (-6 -4196)))) (-4117 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-1051 |#1|) (-1189) (-1112)) (T -1051)) -((-2611 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1112)) (-5 *2 (-107))))) -(-13 (-1146 |t#1|) (-588 |t#1|) (-10 -8 (-15 -2611 ((-107) $)) (-15 -1655 ((-107) $)))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T) ((-1146 |#1|) . T)) -((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) NIL)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-1052 |#1| |#2| |#3|) (-1089 |#1| |#2|) (-1006) (-1006) |#2|) (T -1052)) -NIL -(-1089 |#1| |#2|) -((-2105 (((-107) $ $) 7)) (-1639 (((-3 $ "failed") $) 13)) (-3232 (((-1060) $) 9)) (-2578 (($) 14 T CONST)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11)) (-1572 (((-107) $ $) 6))) -(((-1053) (-1189)) (T -1053)) -((-2578 (*1 *1) (-4 *1 (-1053))) (-1639 (*1 *1 *1) (|partial| -4 *1 (-1053)))) -(-13 (-1006) (-10 -8 (-15 -2578 ($) -1373) (-15 -1639 ((-3 $ "failed") $)))) -(((-97) . T) ((-557 (-787)) . T) ((-1006) . T)) -((-3693 (((-1058 |#1|) (-1058 |#1|)) 17)) (-2658 (((-1058 |#1|) (-1058 |#1|)) 13)) (-2787 (((-1058 |#1|) (-1058 |#1|) (-517) (-517)) 20)) (-1520 (((-1058 |#1|) (-1058 |#1|)) 15))) -(((-1054 |#1|) (-10 -7 (-15 -2658 ((-1058 |#1|) (-1058 |#1|))) (-15 -1520 ((-1058 |#1|) (-1058 |#1|))) (-15 -3693 ((-1058 |#1|) (-1058 |#1|))) (-15 -2787 ((-1058 |#1|) (-1058 |#1|) (-517) (-517)))) (-13 (-509) (-134))) (T -1054)) -((-2787 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1054 *4)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1054 *3)))) (-1520 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1054 *3)))) (-2658 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1054 *3))))) -(-10 -7 (-15 -2658 ((-1058 |#1|) (-1058 |#1|))) (-15 -1520 ((-1058 |#1|) (-1058 |#1|))) (-15 -3693 ((-1058 |#1|) (-1058 |#1|))) (-15 -2787 ((-1058 |#1|) (-1058 |#1|) (-517) (-517)))) -((-4117 (((-1058 |#1|) (-1058 (-1058 |#1|))) 15))) -(((-1055 |#1|) (-10 -7 (-15 -4117 ((-1058 |#1|) (-1058 (-1058 |#1|))))) (-1112)) (T -1055)) -((-4117 (*1 *2 *3) (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1055 *4)) (-4 *4 (-1112))))) -(-10 -7 (-15 -4117 ((-1058 |#1|) (-1058 (-1058 |#1|))))) -((-1250 (((-1058 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|)) 25)) (-1510 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|)) 26)) (-3312 (((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|)) 16))) -(((-1056 |#1| |#2|) (-10 -7 (-15 -3312 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (-15 -1250 ((-1058 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|))) (-15 -1510 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|)))) (-1112) (-1112)) (T -1056)) -((-1510 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1058 *5)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-1056 *5 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1058 *6)) (-4 *6 (-1112)) (-4 *3 (-1112)) (-5 *2 (-1058 *3)) (-5 *1 (-1056 *6 *3)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1058 *6)) (-5 *1 (-1056 *5 *6))))) -(-10 -7 (-15 -3312 ((-1058 |#2|) (-1 |#2| |#1|) (-1058 |#1|))) (-15 -1250 ((-1058 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|))) (-15 -1510 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1058 |#1|)))) -((-3312 (((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-1058 |#2|)) 21))) -(((-1057 |#1| |#2| |#3|) (-10 -7 (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-1058 |#2|)))) (-1112) (-1112) (-1112)) (T -1057)) -((-3312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-1058 *7)) (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8)) (-5 *1 (-1057 *6 *7 *8))))) -(-10 -7 (-15 -3312 ((-1058 |#3|) (-1 |#3| |#1| |#2|) (-1058 |#1|) (-1058 |#2|)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) NIL)) (-2577 ((|#1| $) NIL)) (-1529 (($ $) 49)) (-3351 (((-1163) $ (-517) (-517)) 74 (|has| $ (-6 -4196)))) (-2070 (($ $ (-517)) 108 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-3932 (((-787) $) 38 (|has| |#1| (-1006)))) (-3831 (((-107)) 39 (|has| |#1| (-1006)))) (-2226 ((|#1| $ |#1|) NIL (|has| $ (-6 -4196)))) (-1223 (($ $ $) 96 (|has| $ (-6 -4196))) (($ $ (-517) $) 118)) (-1825 ((|#1| $ |#1|) 105 (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 100 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4196))) (($ $ "rest" $) 104 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 87 (|has| $ (-6 -4196))) ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 56)) (-2567 ((|#1| $) NIL)) (-3038 (($) NIL T CONST)) (-2314 (($ $) 14)) (-2429 (($ $) 29) (($ $ (-703)) 86)) (-2673 (((-107) (-583 |#1|) $) 113 (|has| |#1| (-1006)))) (-2597 (($ (-583 |#1|)) 110)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) 55)) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1655 (((-107) $) NIL)) (-1525 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2256 (((-1163) (-517) $) 117 (|has| |#1| (-1006)))) (-1813 (((-703) $) 115)) (-1823 (((-583 $) $) NIL)) (-1700 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2328 (((-107) $ (-703)) NIL)) (-1925 (((-583 |#1|) $) NIL)) (-3834 (((-107) $) NIL)) (-3619 (($ $) 88)) (-2217 (((-107) $) 13)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1447 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1734 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) 72)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2257 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-1839 ((|#1| $) 10)) (-2420 ((|#1| $) 28) (($ $ (-703)) 47)) (-2397 (((-2 (|:| |cycle?| (-107)) (|:| -4041 (-703)) (|:| |period| (-703))) (-703) $) 25)) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2297 (($ (-1 (-107) |#1|) $) 122)) (-2307 (($ (-1 (-107) |#1|) $) 123)) (-2837 (($ $ |#1|) 66 (|has| $ (-6 -4196)))) (-3175 (($ $ (-517)) 32)) (-2611 (((-107) $) 70)) (-3500 (((-107) $) 12)) (-3847 (((-107) $) 114)) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 20)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) 15)) (-2679 (($) 41)) (-2612 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1125 (-517))) NIL) ((|#1| $ (-517)) 52) ((|#1| $ (-517) |#1|) NIL)) (-3868 (((-517) $ $) 46)) (-3779 (($ $ (-1125 (-517))) NIL) (($ $ (-517)) NIL)) (-3406 (($ (-1 $)) 45)) (-1414 (((-107) $) 67)) (-2074 (($ $) 68)) (-4155 (($ $) 97 (|has| $ (-6 -4196)))) (-2792 (((-703) $) NIL)) (-2736 (($ $) NIL)) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 42)) (-3367 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 51)) (-2987 (($ |#1| $) 95)) (-3495 (($ $ $) 98 (|has| $ (-6 -4196))) (($ $ |#1|) 99 (|has| $ (-6 -4196)))) (-4117 (($ $ $) 76) (($ |#1| $) 43) (($ (-583 $)) 81) (($ $ |#1|) 75)) (-2384 (($ $) 48)) (-2262 (($ (-583 |#1|)) 109) (((-787) $) 40 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) NIL)) (-3224 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 112 (|has| |#1| (-1006)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-1058 |#1|) (-13 (-610 |#1|) (-10 -8 (-6 -4196) (-15 -2262 ($ (-583 |#1|))) (-15 -2597 ($ (-583 |#1|))) (IF (|has| |#1| (-1006)) (-15 -2673 ((-107) (-583 |#1|) $)) |%noBranch|) (-15 -2397 ((-2 (|:| |cycle?| (-107)) (|:| -4041 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -3406 ($ (-1 $))) (-15 -2987 ($ |#1| $)) (IF (|has| |#1| (-1006)) (PROGN (-15 -2256 ((-1163) (-517) $)) (-15 -3932 ((-787) $)) (-15 -3831 ((-107)))) |%noBranch|) (-15 -1223 ($ $ (-517) $)) (-15 -2257 ($ (-1 |#1|))) (-15 -2257 ($ (-1 |#1| |#1|) |#1|)) (-15 -2297 ($ (-1 (-107) |#1|) $)) (-15 -2307 ($ (-1 (-107) |#1|) $)))) (-1112)) (T -1058)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) (-2673 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-4 *4 (-1112)) (-5 *2 (-107)) (-5 *1 (-1058 *4)))) (-2397 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -4041 (-703)) (|:| |period| (-703)))) (-5 *1 (-1058 *4)) (-4 *4 (-1112)) (-5 *3 (-703)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-1 (-1058 *3))) (-5 *1 (-1058 *3)) (-4 *3 (-1112)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1112)))) (-2256 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1058 *4)) (-4 *4 (-1006)) (-4 *4 (-1112)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1058 *3)) (-4 *3 (-1006)) (-4 *3 (-1112)))) (-3831 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1058 *3)) (-4 *3 (-1006)) (-4 *3 (-1112)))) (-1223 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1058 *3)) (-4 *3 (-1112)))) (-2257 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) (-2257 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) (-2297 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) (-2307 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3))))) -(-13 (-610 |#1|) (-10 -8 (-6 -4196) (-15 -2262 ($ (-583 |#1|))) (-15 -2597 ($ (-583 |#1|))) (IF (|has| |#1| (-1006)) (-15 -2673 ((-107) (-583 |#1|) $)) |%noBranch|) (-15 -2397 ((-2 (|:| |cycle?| (-107)) (|:| -4041 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -3406 ($ (-1 $))) (-15 -2987 ($ |#1| $)) (IF (|has| |#1| (-1006)) (PROGN (-15 -2256 ((-1163) (-517) $)) (-15 -3932 ((-787) $)) (-15 -3831 ((-107)))) |%noBranch|) (-15 -1223 ($ $ (-517) $)) (-15 -2257 ($ (-1 |#1|))) (-15 -2257 ($ (-1 |#1| |#1|) |#1|)) (-15 -2297 ($ (-1 (-107) |#1|) $)) (-15 -2307 ($ (-1 (-107) |#1|) $)))) -((-2105 (((-107) $ $) 19)) (-3169 (($ $) 120)) (-2811 (($ $) 121)) (-3199 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2542 (((-107) $ $) 118)) (-3133 (((-107) $ $ (-517)) 117)) (-1507 (($ (-517)) 127)) (-1975 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2508 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-4109 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4196))) (((-131) $ (-1125 (-517)) (-131)) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-2899 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-3225 (($ $ (-1125 (-517)) $) 114)) (-2446 (($ $) 78 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ (-131) $) 77 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4195)))) (-1510 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4195)))) (-2750 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4196)))) (-2557 (((-131) $ (-517)) 51)) (-2562 (((-107) $ $) 119)) (-1210 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1006))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1006))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1525 (((-583 (-131)) $) 30 (|has| $ (-6 -4195)))) (-3204 (($ (-703) (-131)) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| (-131) (-779)))) (-3824 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-3687 (((-583 (-131)) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| (-131) (-779)))) (-1436 (((-107) $ $ (-131)) 115)) (-1924 (((-703) $ $ (-131)) 116)) (-2737 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3410 (($ $) 122)) (-3577 (($ $) 123)) (-2328 (((-107) $ (-703)) 10)) (-2912 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3232 (((-1060) $) 22)) (-1734 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21)) (-2420 (((-131) $) 42 (|has| (-517) (-779)))) (-1985 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2837 (($ $ (-131)) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-2862 (((-583 (-131)) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1125 (-517))) 63) (($ $ $) 102)) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-4140 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4195))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2279 (($ (-583 (-131))) 70)) (-4117 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (($ (-131)) 111) (((-787) $) 18)) (-1272 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4195)))) (-2514 (((-1060) $) 131) (((-1060) $ (-107)) 130) (((-1163) (-754) $) 129) (((-1163) (-754) $ (-107)) 128)) (-1630 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1606 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1572 (((-107) $ $) 20)) (-1618 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1596 (((-107) $ $) 82 (|has| (-131) (-779)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-1059) (-1189)) (T -1059)) -((-1507 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1059))))) -(-13 (-1046) (-1006) (-760) (-10 -8 (-15 -1507 ($ (-517))))) -(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 #0=(-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 #1=(-517) #0#) . T) ((-260 #1# #0#) . T) ((-280 #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))) ((-343 #0#) . T) ((-456 #0#) . T) ((-550 #1# #0#) . T) ((-478 #0# #0#) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))) ((-588 #0#) . T) ((-19 #0#) . T) ((-760) . T) ((-779) |has| (-131) (-779)) ((-1006) . T) ((-1046) . T) ((-1112) . T)) -((-2105 (((-107) $ $) NIL)) (-3169 (($ $) NIL)) (-2811 (($ $) NIL)) (-3199 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2542 (((-107) $ $) NIL)) (-3133 (((-107) $ $ (-517)) NIL)) (-1507 (($ (-517)) 7)) (-1975 (((-583 $) $ (-131)) NIL) (((-583 $) $ (-128)) NIL)) (-2508 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-4109 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| (-131) (-779))))) (-2149 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4196))) (((-131) $ (-1125 (-517)) (-131)) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-2899 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-3225 (($ $ (-1125 (-517)) $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1423 (($ (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4195))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4195)))) (-2750 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4196)))) (-2557 (((-131) $ (-517)) NIL)) (-2562 (((-107) $ $) NIL)) (-1210 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1006))) (((-517) (-131) $ (-517)) NIL (|has| (-131) (-1006))) (((-517) $ $ (-517)) NIL) (((-517) (-128) $ (-517)) NIL)) (-1525 (((-583 (-131)) $) NIL (|has| $ (-6 -4195)))) (-3204 (($ (-703) (-131)) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| (-131) (-779)))) (-3824 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-3687 (((-583 (-131)) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| (-131) (-779)))) (-1436 (((-107) $ $ (-131)) NIL)) (-1924 (((-703) $ $ (-131)) NIL)) (-2737 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3410 (($ $) NIL)) (-3577 (($ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-2912 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3232 (((-1060) $) NIL)) (-1734 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-131) $) NIL (|has| (-517) (-779)))) (-1985 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2837 (($ $ (-131)) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-2862 (((-583 (-131)) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1125 (-517))) NIL) (($ $ $) NIL)) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-4140 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-131) (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2279 (($ (-583 (-131))) NIL)) (-4117 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (($ (-131)) NIL) (((-787) $) NIL)) (-1272 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4195)))) (-2514 (((-1060) $) 18) (((-1060) $ (-107)) 20) (((-1163) (-754) $) 21) (((-1163) (-754) $ (-107)) 22)) (-1630 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1606 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1596 (((-107) $ $) NIL (|has| (-131) (-779)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-1060) (-1059)) (T -1060)) -NIL -(-1059) -((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)) (|has| |#1| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-3351 (((-1163) $ (-1060) (-1060)) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-1060) |#1|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#1| "failed") (-1060) $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#1| "failed") (-1060) $) NIL)) (-1423 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-1060) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-1060)) NIL)) (-1525 (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-1060) $) NIL (|has| (-1060) (-779)))) (-3687 (((-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-1060) $) NIL (|has| (-1060) (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)) (|has| |#1| (-1006))))) (-1869 (((-583 (-1060)) $) NIL)) (-2409 (((-107) (-1060) $) NIL)) (-2015 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-1449 (((-583 (-1060)) $) NIL)) (-3413 (((-107) (-1060) $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)) (|has| |#1| (-1006))))) (-2420 ((|#1| $) NIL (|has| (-1060) (-779)))) (-1985 (((-3 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) "failed") (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL (-12 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-280 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-1060)) NIL) ((|#1| $ (-1060) |#1|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-557 (-787))) (|has| |#1| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 (-1060)) (|:| -1846 |#1|)) (-1006)) (|has| |#1| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-1061 |#1|) (-13 (-1089 (-1060) |#1|) (-10 -7 (-6 -4195))) (-1006)) (T -1061)) -NIL -(-13 (-1089 (-1060) |#1|) (-10 -7 (-6 -4195))) -((-2285 (((-1058 |#1|) (-1058 |#1|)) 77)) (-3550 (((-3 (-1058 |#1|) "failed") (-1058 |#1|)) 37)) (-1476 (((-1058 |#1|) (-377 (-517)) (-1058 |#1|)) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1762 (((-1058 |#1|) |#1| (-1058 |#1|)) 121 (|has| |#1| (-333)))) (-3157 (((-1058 |#1|) (-1058 |#1|)) 90)) (-1387 (((-1058 (-517)) (-517)) 57)) (-2118 (((-1058 |#1|) (-1058 (-1058 |#1|))) 108 (|has| |#1| (-37 (-377 (-517)))))) (-1499 (((-1058 |#1|) (-517) (-517) (-1058 |#1|)) 95)) (-2416 (((-1058 |#1|) |#1| (-517)) 45)) (-1474 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 60)) (-2248 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 119 (|has| |#1| (-333)))) (-3671 (((-1058 |#1|) |#1| (-1 (-1058 |#1|))) 107 (|has| |#1| (-37 (-377 (-517)))))) (-3823 (((-1058 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1058 |#1|))) 120 (|has| |#1| (-333)))) (-1505 (((-1058 |#1|) (-1058 |#1|)) 89)) (-3266 (((-1058 |#1|) (-1058 |#1|)) 76)) (-3922 (((-1058 |#1|) (-517) (-517) (-1058 |#1|)) 96)) (-3296 (((-1058 |#1|) |#1| (-1058 |#1|)) 105 (|has| |#1| (-37 (-377 (-517)))))) (-2269 (((-1058 (-517)) (-517)) 56)) (-3462 (((-1058 |#1|) |#1|) 59)) (-2427 (((-1058 |#1|) (-1058 |#1|) (-517) (-517)) 92)) (-2044 (((-1058 |#1|) (-1 |#1| (-517)) (-1058 |#1|)) 66)) (-2333 (((-3 (-1058 |#1|) "failed") (-1058 |#1|) (-1058 |#1|)) 35)) (-3140 (((-1058 |#1|) (-1058 |#1|)) 91)) (-3552 (((-1058 |#1|) (-1058 |#1|) |#1|) 71)) (-3189 (((-1058 |#1|) (-1058 |#1|)) 62)) (-4077 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 72)) (-2262 (((-1058 |#1|) |#1|) 67)) (-2598 (((-1058 |#1|) (-1058 (-1058 |#1|))) 82)) (-1692 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 36)) (-1680 (((-1058 |#1|) (-1058 |#1|)) 21) (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 23)) (-1666 (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 17)) (* (((-1058 |#1|) (-1058 |#1|) |#1|) 29) (((-1058 |#1|) |#1| (-1058 |#1|)) 26) (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 27))) -(((-1062 |#1|) (-10 -7 (-15 -1666 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1680 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1680 ((-1058 |#1|) (-1058 |#1|))) (-15 * ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 * ((-1058 |#1|) |#1| (-1058 |#1|))) (-15 * ((-1058 |#1|) (-1058 |#1|) |#1|)) (-15 -2333 ((-3 (-1058 |#1|) "failed") (-1058 |#1|) (-1058 |#1|))) (-15 -1692 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3550 ((-3 (-1058 |#1|) "failed") (-1058 |#1|))) (-15 -2416 ((-1058 |#1|) |#1| (-517))) (-15 -2269 ((-1058 (-517)) (-517))) (-15 -1387 ((-1058 (-517)) (-517))) (-15 -3462 ((-1058 |#1|) |#1|)) (-15 -1474 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3189 ((-1058 |#1|) (-1058 |#1|))) (-15 -2044 ((-1058 |#1|) (-1 |#1| (-517)) (-1058 |#1|))) (-15 -2262 ((-1058 |#1|) |#1|)) (-15 -3552 ((-1058 |#1|) (-1058 |#1|) |#1|)) (-15 -4077 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3266 ((-1058 |#1|) (-1058 |#1|))) (-15 -2285 ((-1058 |#1|) (-1058 |#1|))) (-15 -2598 ((-1058 |#1|) (-1058 (-1058 |#1|)))) (-15 -1505 ((-1058 |#1|) (-1058 |#1|))) (-15 -3157 ((-1058 |#1|) (-1058 |#1|))) (-15 -3140 ((-1058 |#1|) (-1058 |#1|))) (-15 -2427 ((-1058 |#1|) (-1058 |#1|) (-517) (-517))) (-15 -1499 ((-1058 |#1|) (-517) (-517) (-1058 |#1|))) (-15 -3922 ((-1058 |#1|) (-517) (-517) (-1058 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ((-1058 |#1|) |#1| (-1058 |#1|))) (-15 -3671 ((-1058 |#1|) |#1| (-1 (-1058 |#1|)))) (-15 -2118 ((-1058 |#1|) (-1058 (-1058 |#1|)))) (-15 -1476 ((-1058 |#1|) (-377 (-517)) (-1058 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2248 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3823 ((-1058 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1058 |#1|)))) (-15 -1762 ((-1058 |#1|) |#1| (-1058 |#1|)))) |%noBranch|)) (-964)) (T -1062)) -((-1762 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-333)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1058 *4))) (-4 *4 (-333)) (-4 *4 (-964)) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4)))) (-2248 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-333)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1476 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *4)) (-4 *4 (-37 *3)) (-4 *4 (-964)) (-5 *3 (-377 (-517))) (-5 *1 (-1062 *4)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-964)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1058 *3))) (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)))) (-3296 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3922 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964)) (-5 *1 (-1062 *4)))) (-1499 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964)) (-5 *1 (-1062 *4)))) (-2427 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964)) (-5 *1 (-1062 *4)))) (-3140 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3157 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-2598 (*1 *2 *3) (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4)) (-4 *4 (-964)))) (-2285 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-4077 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3552 (*1 *2 *2 *3) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-2262 (*1 *2 *3) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-964)))) (-2044 (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-964)) (-5 *1 (-1062 *4)))) (-3189 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1474 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-3462 (*1 *2 *3) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-964)))) (-1387 (*1 *2 *3) (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-1062 *4)) (-4 *4 (-964)) (-5 *3 (-517)))) (-2269 (*1 *2 *3) (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-1062 *4)) (-4 *4 (-964)) (-5 *3 (-517)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-964)))) (-3550 (*1 *2 *2) (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1692 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-2333 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1680 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) (-1666 (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))) -(-10 -7 (-15 -1666 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1680 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1680 ((-1058 |#1|) (-1058 |#1|))) (-15 * ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 * ((-1058 |#1|) |#1| (-1058 |#1|))) (-15 * ((-1058 |#1|) (-1058 |#1|) |#1|)) (-15 -2333 ((-3 (-1058 |#1|) "failed") (-1058 |#1|) (-1058 |#1|))) (-15 -1692 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3550 ((-3 (-1058 |#1|) "failed") (-1058 |#1|))) (-15 -2416 ((-1058 |#1|) |#1| (-517))) (-15 -2269 ((-1058 (-517)) (-517))) (-15 -1387 ((-1058 (-517)) (-517))) (-15 -3462 ((-1058 |#1|) |#1|)) (-15 -1474 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3189 ((-1058 |#1|) (-1058 |#1|))) (-15 -2044 ((-1058 |#1|) (-1 |#1| (-517)) (-1058 |#1|))) (-15 -2262 ((-1058 |#1|) |#1|)) (-15 -3552 ((-1058 |#1|) (-1058 |#1|) |#1|)) (-15 -4077 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3266 ((-1058 |#1|) (-1058 |#1|))) (-15 -2285 ((-1058 |#1|) (-1058 |#1|))) (-15 -2598 ((-1058 |#1|) (-1058 (-1058 |#1|)))) (-15 -1505 ((-1058 |#1|) (-1058 |#1|))) (-15 -3157 ((-1058 |#1|) (-1058 |#1|))) (-15 -3140 ((-1058 |#1|) (-1058 |#1|))) (-15 -2427 ((-1058 |#1|) (-1058 |#1|) (-517) (-517))) (-15 -1499 ((-1058 |#1|) (-517) (-517) (-1058 |#1|))) (-15 -3922 ((-1058 |#1|) (-517) (-517) (-1058 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ((-1058 |#1|) |#1| (-1058 |#1|))) (-15 -3671 ((-1058 |#1|) |#1| (-1 (-1058 |#1|)))) (-15 -2118 ((-1058 |#1|) (-1058 (-1058 |#1|)))) (-15 -1476 ((-1058 |#1|) (-377 (-517)) (-1058 |#1|)))) |%noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2248 ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -3823 ((-1058 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1058 |#1|)))) (-15 -1762 ((-1058 |#1|) |#1| (-1058 |#1|)))) |%noBranch|)) -((-1636 (((-1058 |#1|) (-1058 |#1|)) 57)) (-1482 (((-1058 |#1|) (-1058 |#1|)) 39)) (-1612 (((-1058 |#1|) (-1058 |#1|)) 53)) (-1459 (((-1058 |#1|) (-1058 |#1|)) 35)) (-1659 (((-1058 |#1|) (-1058 |#1|)) 60)) (-1508 (((-1058 |#1|) (-1058 |#1|)) 42)) (-1232 (((-1058 |#1|) (-1058 |#1|)) 31)) (-3898 (((-1058 |#1|) (-1058 |#1|)) 27)) (-1670 (((-1058 |#1|) (-1058 |#1|)) 61)) (-1521 (((-1058 |#1|) (-1058 |#1|)) 43)) (-1647 (((-1058 |#1|) (-1058 |#1|)) 58)) (-1495 (((-1058 |#1|) (-1058 |#1|)) 40)) (-1622 (((-1058 |#1|) (-1058 |#1|)) 55)) (-1471 (((-1058 |#1|) (-1058 |#1|)) 37)) (-1706 (((-1058 |#1|) (-1058 |#1|)) 65)) (-1564 (((-1058 |#1|) (-1058 |#1|)) 47)) (-1685 (((-1058 |#1|) (-1058 |#1|)) 63)) (-1536 (((-1058 |#1|) (-1058 |#1|)) 45)) (-3517 (((-1058 |#1|) (-1058 |#1|)) 68)) (-1588 (((-1058 |#1|) (-1058 |#1|)) 50)) (-2815 (((-1058 |#1|) (-1058 |#1|)) 69)) (-1601 (((-1058 |#1|) (-1058 |#1|)) 51)) (-1722 (((-1058 |#1|) (-1058 |#1|)) 67)) (-1577 (((-1058 |#1|) (-1058 |#1|)) 49)) (-1698 (((-1058 |#1|) (-1058 |#1|)) 66)) (-1550 (((-1058 |#1|) (-1058 |#1|)) 48)) (** (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 33))) -(((-1063 |#1|) (-10 -7 (-15 -3898 ((-1058 |#1|) (-1058 |#1|))) (-15 -1232 ((-1058 |#1|) (-1058 |#1|))) (-15 ** ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1459 ((-1058 |#1|) (-1058 |#1|))) (-15 -1471 ((-1058 |#1|) (-1058 |#1|))) (-15 -1482 ((-1058 |#1|) (-1058 |#1|))) (-15 -1495 ((-1058 |#1|) (-1058 |#1|))) (-15 -1508 ((-1058 |#1|) (-1058 |#1|))) (-15 -1521 ((-1058 |#1|) (-1058 |#1|))) (-15 -1536 ((-1058 |#1|) (-1058 |#1|))) (-15 -1550 ((-1058 |#1|) (-1058 |#1|))) (-15 -1564 ((-1058 |#1|) (-1058 |#1|))) (-15 -1577 ((-1058 |#1|) (-1058 |#1|))) (-15 -1588 ((-1058 |#1|) (-1058 |#1|))) (-15 -1601 ((-1058 |#1|) (-1058 |#1|))) (-15 -1612 ((-1058 |#1|) (-1058 |#1|))) (-15 -1622 ((-1058 |#1|) (-1058 |#1|))) (-15 -1636 ((-1058 |#1|) (-1058 |#1|))) (-15 -1647 ((-1058 |#1|) (-1058 |#1|))) (-15 -1659 ((-1058 |#1|) (-1058 |#1|))) (-15 -1670 ((-1058 |#1|) (-1058 |#1|))) (-15 -1685 ((-1058 |#1|) (-1058 |#1|))) (-15 -1698 ((-1058 |#1|) (-1058 |#1|))) (-15 -1706 ((-1058 |#1|) (-1058 |#1|))) (-15 -1722 ((-1058 |#1|) (-1058 |#1|))) (-15 -3517 ((-1058 |#1|) (-1058 |#1|))) (-15 -2815 ((-1058 |#1|) (-1058 |#1|)))) (-37 (-377 (-517)))) (T -1063)) -((-2815 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-3517 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1698 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1647 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1601 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1588 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1508 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-1232 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1063 *3))))) -(-10 -7 (-15 -3898 ((-1058 |#1|) (-1058 |#1|))) (-15 -1232 ((-1058 |#1|) (-1058 |#1|))) (-15 ** ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -1459 ((-1058 |#1|) (-1058 |#1|))) (-15 -1471 ((-1058 |#1|) (-1058 |#1|))) (-15 -1482 ((-1058 |#1|) (-1058 |#1|))) (-15 -1495 ((-1058 |#1|) (-1058 |#1|))) (-15 -1508 ((-1058 |#1|) (-1058 |#1|))) (-15 -1521 ((-1058 |#1|) (-1058 |#1|))) (-15 -1536 ((-1058 |#1|) (-1058 |#1|))) (-15 -1550 ((-1058 |#1|) (-1058 |#1|))) (-15 -1564 ((-1058 |#1|) (-1058 |#1|))) (-15 -1577 ((-1058 |#1|) (-1058 |#1|))) (-15 -1588 ((-1058 |#1|) (-1058 |#1|))) (-15 -1601 ((-1058 |#1|) (-1058 |#1|))) (-15 -1612 ((-1058 |#1|) (-1058 |#1|))) (-15 -1622 ((-1058 |#1|) (-1058 |#1|))) (-15 -1636 ((-1058 |#1|) (-1058 |#1|))) (-15 -1647 ((-1058 |#1|) (-1058 |#1|))) (-15 -1659 ((-1058 |#1|) (-1058 |#1|))) (-15 -1670 ((-1058 |#1|) (-1058 |#1|))) (-15 -1685 ((-1058 |#1|) (-1058 |#1|))) (-15 -1698 ((-1058 |#1|) (-1058 |#1|))) (-15 -1706 ((-1058 |#1|) (-1058 |#1|))) (-15 -1722 ((-1058 |#1|) (-1058 |#1|))) (-15 -3517 ((-1058 |#1|) (-1058 |#1|))) (-15 -2815 ((-1058 |#1|) (-1058 |#1|)))) -((-1636 (((-1058 |#1|) (-1058 |#1|)) 100)) (-1482 (((-1058 |#1|) (-1058 |#1|)) 64)) (-2041 (((-2 (|:| -1612 (-1058 |#1|)) (|:| -1622 (-1058 |#1|))) (-1058 |#1|)) 96)) (-1612 (((-1058 |#1|) (-1058 |#1|)) 97)) (-2683 (((-2 (|:| -1459 (-1058 |#1|)) (|:| -1471 (-1058 |#1|))) (-1058 |#1|)) 53)) (-1459 (((-1058 |#1|) (-1058 |#1|)) 54)) (-1659 (((-1058 |#1|) (-1058 |#1|)) 102)) (-1508 (((-1058 |#1|) (-1058 |#1|)) 71)) (-1232 (((-1058 |#1|) (-1058 |#1|)) 39)) (-3898 (((-1058 |#1|) (-1058 |#1|)) 36)) (-1670 (((-1058 |#1|) (-1058 |#1|)) 103)) (-1521 (((-1058 |#1|) (-1058 |#1|)) 72)) (-1647 (((-1058 |#1|) (-1058 |#1|)) 101)) (-1495 (((-1058 |#1|) (-1058 |#1|)) 67)) (-1622 (((-1058 |#1|) (-1058 |#1|)) 98)) (-1471 (((-1058 |#1|) (-1058 |#1|)) 55)) (-1706 (((-1058 |#1|) (-1058 |#1|)) 111)) (-1564 (((-1058 |#1|) (-1058 |#1|)) 86)) (-1685 (((-1058 |#1|) (-1058 |#1|)) 105)) (-1536 (((-1058 |#1|) (-1058 |#1|)) 82)) (-3517 (((-1058 |#1|) (-1058 |#1|)) 115)) (-1588 (((-1058 |#1|) (-1058 |#1|)) 90)) (-2815 (((-1058 |#1|) (-1058 |#1|)) 117)) (-1601 (((-1058 |#1|) (-1058 |#1|)) 92)) (-1722 (((-1058 |#1|) (-1058 |#1|)) 113)) (-1577 (((-1058 |#1|) (-1058 |#1|)) 88)) (-1698 (((-1058 |#1|) (-1058 |#1|)) 107)) (-1550 (((-1058 |#1|) (-1058 |#1|)) 84)) (** (((-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) 40))) -(((-1064 |#1|) (-10 -7 (-15 -3898 ((-1058 |#1|) (-1058 |#1|))) (-15 -1232 ((-1058 |#1|) (-1058 |#1|))) (-15 ** ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -2683 ((-2 (|:| -1459 (-1058 |#1|)) (|:| -1471 (-1058 |#1|))) (-1058 |#1|))) (-15 -1459 ((-1058 |#1|) (-1058 |#1|))) (-15 -1471 ((-1058 |#1|) (-1058 |#1|))) (-15 -1482 ((-1058 |#1|) (-1058 |#1|))) (-15 -1495 ((-1058 |#1|) (-1058 |#1|))) (-15 -1508 ((-1058 |#1|) (-1058 |#1|))) (-15 -1521 ((-1058 |#1|) (-1058 |#1|))) (-15 -1536 ((-1058 |#1|) (-1058 |#1|))) (-15 -1550 ((-1058 |#1|) (-1058 |#1|))) (-15 -1564 ((-1058 |#1|) (-1058 |#1|))) (-15 -1577 ((-1058 |#1|) (-1058 |#1|))) (-15 -1588 ((-1058 |#1|) (-1058 |#1|))) (-15 -1601 ((-1058 |#1|) (-1058 |#1|))) (-15 -2041 ((-2 (|:| -1612 (-1058 |#1|)) (|:| -1622 (-1058 |#1|))) (-1058 |#1|))) (-15 -1612 ((-1058 |#1|) (-1058 |#1|))) (-15 -1622 ((-1058 |#1|) (-1058 |#1|))) (-15 -1636 ((-1058 |#1|) (-1058 |#1|))) (-15 -1647 ((-1058 |#1|) (-1058 |#1|))) (-15 -1659 ((-1058 |#1|) (-1058 |#1|))) (-15 -1670 ((-1058 |#1|) (-1058 |#1|))) (-15 -1685 ((-1058 |#1|) (-1058 |#1|))) (-15 -1698 ((-1058 |#1|) (-1058 |#1|))) (-15 -1706 ((-1058 |#1|) (-1058 |#1|))) (-15 -1722 ((-1058 |#1|) (-1058 |#1|))) (-15 -3517 ((-1058 |#1|) (-1058 |#1|))) (-15 -2815 ((-1058 |#1|) (-1058 |#1|)))) (-37 (-377 (-517)))) (T -1064)) -((-2815 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-3517 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1698 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1647 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-2041 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1612 (-1058 *4)) (|:| -1622 (-1058 *4)))) (-5 *1 (-1064 *4)) (-5 *3 (-1058 *4)))) (-1601 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1588 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1508 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1459 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-2683 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1459 (-1058 *4)) (|:| -1471 (-1058 *4)))) (-5 *1 (-1064 *4)) (-5 *3 (-1058 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-1232 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1064 *3))))) -(-10 -7 (-15 -3898 ((-1058 |#1|) (-1058 |#1|))) (-15 -1232 ((-1058 |#1|) (-1058 |#1|))) (-15 ** ((-1058 |#1|) (-1058 |#1|) (-1058 |#1|))) (-15 -2683 ((-2 (|:| -1459 (-1058 |#1|)) (|:| -1471 (-1058 |#1|))) (-1058 |#1|))) (-15 -1459 ((-1058 |#1|) (-1058 |#1|))) (-15 -1471 ((-1058 |#1|) (-1058 |#1|))) (-15 -1482 ((-1058 |#1|) (-1058 |#1|))) (-15 -1495 ((-1058 |#1|) (-1058 |#1|))) (-15 -1508 ((-1058 |#1|) (-1058 |#1|))) (-15 -1521 ((-1058 |#1|) (-1058 |#1|))) (-15 -1536 ((-1058 |#1|) (-1058 |#1|))) (-15 -1550 ((-1058 |#1|) (-1058 |#1|))) (-15 -1564 ((-1058 |#1|) (-1058 |#1|))) (-15 -1577 ((-1058 |#1|) (-1058 |#1|))) (-15 -1588 ((-1058 |#1|) (-1058 |#1|))) (-15 -1601 ((-1058 |#1|) (-1058 |#1|))) (-15 -2041 ((-2 (|:| -1612 (-1058 |#1|)) (|:| -1622 (-1058 |#1|))) (-1058 |#1|))) (-15 -1612 ((-1058 |#1|) (-1058 |#1|))) (-15 -1622 ((-1058 |#1|) (-1058 |#1|))) (-15 -1636 ((-1058 |#1|) (-1058 |#1|))) (-15 -1647 ((-1058 |#1|) (-1058 |#1|))) (-15 -1659 ((-1058 |#1|) (-1058 |#1|))) (-15 -1670 ((-1058 |#1|) (-1058 |#1|))) (-15 -1685 ((-1058 |#1|) (-1058 |#1|))) (-15 -1698 ((-1058 |#1|) (-1058 |#1|))) (-15 -1706 ((-1058 |#1|) (-1058 |#1|))) (-15 -1722 ((-1058 |#1|) (-1058 |#1|))) (-15 -3517 ((-1058 |#1|) (-1058 |#1|))) (-15 -2815 ((-1058 |#1|) (-1058 |#1|)))) -((-1405 (((-881 |#2|) |#2| |#2|) 36)) (-4172 ((|#2| |#2| |#1|) 19 (|has| |#1| (-278))))) -(((-1065 |#1| |#2|) (-10 -7 (-15 -1405 ((-881 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -4172 (|#2| |#2| |#1|)) |%noBranch|)) (-509) (-1134 |#1|)) (T -1065)) -((-4172 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1065 *3 *2)) (-4 *2 (-1134 *3)))) (-1405 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-881 *3)) (-5 *1 (-1065 *4 *3)) (-4 *3 (-1134 *4))))) -(-10 -7 (-15 -1405 ((-881 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -4172 (|#2| |#2| |#1|)) |%noBranch|)) -((-2105 (((-107) $ $) NIL)) (-3547 (($ $ (-583 (-703))) 67)) (-1247 (($) 26)) (-3412 (($ $) 42)) (-1421 (((-583 $) $) 51)) (-1819 (((-107) $) 16)) (-2888 (((-583 (-867 |#2|)) $) 74)) (-4166 (($ $) 68)) (-1884 (((-703) $) 37)) (-3204 (($) 25)) (-3262 (($ $ (-583 (-703)) (-867 |#2|)) 60) (($ $ (-583 (-703)) (-703)) 61) (($ $ (-703) (-867 |#2|)) 63)) (-3824 (($ $ $) 48) (($ (-583 $)) 50)) (-3280 (((-703) $) 75)) (-3834 (((-107) $) 15)) (-3232 (((-1060) $) NIL)) (-3890 (((-107) $) 18)) (-4130 (((-1024) $) NIL)) (-2982 (((-155) $) 73)) (-2733 (((-867 |#2|) $) 69)) (-3165 (((-703) $) 70)) (-3888 (((-107) $) 72)) (-1498 (($ $ (-583 (-703)) (-155)) 66)) (-1909 (($ $) 43)) (-2262 (((-787) $) 85)) (-4134 (($ $ (-583 (-703)) (-107)) 65)) (-3234 (((-583 $) $) 11)) (-1192 (($ $ (-703)) 36)) (-1465 (($ $) 32)) (-2884 (($ $ $ (-867 |#2|) (-703)) 56)) (-2509 (($ $ (-867 |#2|)) 55)) (-2360 (($ $ (-583 (-703)) (-867 |#2|)) 54) (($ $ (-583 (-703)) (-703)) 58) (((-703) $ (-867 |#2|)) 59)) (-1572 (((-107) $ $) 79))) -(((-1066 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -3834 ((-107) $)) (-15 -1819 ((-107) $)) (-15 -3890 ((-107) $)) (-15 -3204 ($)) (-15 -1247 ($)) (-15 -1465 ($ $)) (-15 -1192 ($ $ (-703))) (-15 -3234 ((-583 $) $)) (-15 -1884 ((-703) $)) (-15 -3412 ($ $)) (-15 -1909 ($ $)) (-15 -3824 ($ $ $)) (-15 -3824 ($ (-583 $))) (-15 -1421 ((-583 $) $)) (-15 -2360 ($ $ (-583 (-703)) (-867 |#2|))) (-15 -2509 ($ $ (-867 |#2|))) (-15 -2884 ($ $ $ (-867 |#2|) (-703))) (-15 -3262 ($ $ (-583 (-703)) (-867 |#2|))) (-15 -2360 ($ $ (-583 (-703)) (-703))) (-15 -3262 ($ $ (-583 (-703)) (-703))) (-15 -2360 ((-703) $ (-867 |#2|))) (-15 -3262 ($ $ (-703) (-867 |#2|))) (-15 -4134 ($ $ (-583 (-703)) (-107))) (-15 -1498 ($ $ (-583 (-703)) (-155))) (-15 -3547 ($ $ (-583 (-703)))) (-15 -2733 ((-867 |#2|) $)) (-15 -3165 ((-703) $)) (-15 -3888 ((-107) $)) (-15 -2982 ((-155) $)) (-15 -3280 ((-703) $)) (-15 -4166 ($ $)) (-15 -2888 ((-583 (-867 |#2|)) $)))) (-845) (-964)) (T -1066)) -((-3834 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3204 (*1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-1247 (*1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-1465 (*1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-1192 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-1909 (*1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-3824 (*1 *1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-3824 (*1 *1 *2) (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-2360 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-867 *5)) (-4 *5 (-964)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) (-2509 (*1 *1 *1 *2) (-12 (-5 *2 (-867 *4)) (-4 *4 (-964)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)))) (-2884 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-867 *5)) (-5 *3 (-703)) (-4 *5 (-964)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) (-3262 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-867 *5)) (-4 *5 (-964)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) (-2360 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)) (-4 *5 (-964)))) (-3262 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)) (-4 *5 (-964)))) (-2360 (*1 *2 *1 *3) (-12 (-5 *3 (-867 *5)) (-4 *5 (-964)) (-5 *2 (-703)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) (-3262 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-867 *5)) (-4 *5 (-964)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) (-4134 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)) (-4 *5 (-964)))) (-1498 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)) (-4 *5 (-964)))) (-3547 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-867 *4)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-3280 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964)))) (-4166 (*1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-583 (-867 *4))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) (-4 *4 (-964))))) -(-13 (-1006) (-10 -8 (-15 -3834 ((-107) $)) (-15 -1819 ((-107) $)) (-15 -3890 ((-107) $)) (-15 -3204 ($)) (-15 -1247 ($)) (-15 -1465 ($ $)) (-15 -1192 ($ $ (-703))) (-15 -3234 ((-583 $) $)) (-15 -1884 ((-703) $)) (-15 -3412 ($ $)) (-15 -1909 ($ $)) (-15 -3824 ($ $ $)) (-15 -3824 ($ (-583 $))) (-15 -1421 ((-583 $) $)) (-15 -2360 ($ $ (-583 (-703)) (-867 |#2|))) (-15 -2509 ($ $ (-867 |#2|))) (-15 -2884 ($ $ $ (-867 |#2|) (-703))) (-15 -3262 ($ $ (-583 (-703)) (-867 |#2|))) (-15 -2360 ($ $ (-583 (-703)) (-703))) (-15 -3262 ($ $ (-583 (-703)) (-703))) (-15 -2360 ((-703) $ (-867 |#2|))) (-15 -3262 ($ $ (-703) (-867 |#2|))) (-15 -4134 ($ $ (-583 (-703)) (-107))) (-15 -1498 ($ $ (-583 (-703)) (-155))) (-15 -3547 ($ $ (-583 (-703)))) (-15 -2733 ((-867 |#2|) $)) (-15 -3165 ((-703) $)) (-15 -3888 ((-107) $)) (-15 -2982 ((-155) $)) (-15 -3280 ((-703) $)) (-15 -4166 ($ $)) (-15 -2888 ((-583 (-867 |#2|)) $)))) -((-2105 (((-107) $ $) NIL)) (-2506 ((|#2| $) 11)) (-2499 ((|#1| $) 10)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2279 (($ |#1| |#2|) 9)) (-2262 (((-787) $) 16)) (-1572 (((-107) $ $) NIL))) -(((-1067 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -2279 ($ |#1| |#2|)) (-15 -2499 (|#1| $)) (-15 -2506 (|#2| $)))) (-1006) (-1006)) (T -1067)) -((-2279 (*1 *1 *2 *3) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-2499 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1006)))) (-2506 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-1067 *3 *2)) (-4 *3 (-1006))))) -(-13 (-1006) (-10 -8 (-15 -2279 ($ |#1| |#2|)) (-15 -2499 (|#1| $)) (-15 -2506 (|#2| $)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-1075 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 11)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2491 (($ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2025 (((-107) $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2147 (($ $ (-517)) NIL) (($ $ (-517) (-517)) 66)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-3416 (((-1075 |#1| |#2| |#3|) $) 36)) (-3666 (((-3 (-1075 |#1| |#2| |#3|) "failed") $) 29)) (-2131 (((-1075 |#1| |#2| |#3|) $) 30)) (-1636 (($ $) 107 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) 103 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-3502 (((-517) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-1075 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1077) "failed") $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))))) (-3402 (((-1075 |#1| |#2| |#3|) $) 131) (((-1077) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))))) (-2419 (($ $) 34) (($ (-517) $) 35)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-1075 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-1075 |#1| |#2| |#3|))) (|:| |vec| (-1158 (-1075 |#1| |#2| |#3|)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3550 (((-3 $ "failed") $) 48)) (-2586 (((-377 (-876 |#1|)) $ (-517)) 65 (|has| |#1| (-509))) (((-377 (-876 |#1|)) $ (-517) (-517)) 67 (|has| |#1| (-509)))) (-2192 (($) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-2671 (((-107) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3690 (((-107) $) 25)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-810 (-517))) (|has| |#1| (-333)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-810 (-349))) (|has| |#1| (-333))))) (-3250 (((-517) $) NIL) (((-517) $ (-517)) 24)) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL (|has| |#1| (-333)))) (-3858 (((-1075 |#1| |#2| |#3|) $) 38 (|has| |#1| (-333)))) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1639 (((-3 $ "failed") $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-333))))) (-2321 (((-107) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2113 (($ $ (-845)) NIL)) (-2603 (($ (-1 |#1| (-517)) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-517)) 18) (($ $ (-992) (-517)) NIL) (($ $ (-583 (-992)) (-583 (-517))) NIL)) (-3480 (($ $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-4095 (($ $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1232 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2140 (($ (-517) (-1075 |#1| |#2| |#3|)) 33)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) 70 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 71 (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-333))) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2590 (($ $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2713 (((-1075 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-517)) 145)) (-2333 (((-3 $ "failed") $ $) 49 (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1077) (-1075 |#1| |#2| |#3|)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-478 (-1077) (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 (-1075 |#1| |#2| |#3|))) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-478 (-1077) (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1075 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1075 |#1| |#2| |#3|))) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1075 |#1| |#2| |#3|)) (-583 (-1075 |#1| |#2| |#3|))) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-280 (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-517)) NIL) (($ $ $) 54 (|has| (-517) (-1018))) (($ $ (-1075 |#1| |#2| |#3|)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-258 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-1 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1154 |#2|)) 51) (($ $ (-703)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 50 (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1463 (($ $) NIL (|has| |#1| (-333)))) (-2082 (((-1075 |#1| |#2| |#3|) $) 41 (|has| |#1| (-333)))) (-1191 (((-517) $) 37)) (-1670 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-3367 (((-493) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-940)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-940)) (|has| |#1| (-333)))) (((-816 (-349)) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-558 (-816 (-349)))) (|has| |#1| (-333)))) (((-816 (-517)) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-558 (-816 (-517)))) (|has| |#1| (-333))))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) 149) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1075 |#1| |#2| |#3|)) 27) (($ (-1154 |#2|)) 23) (($ (-1077)) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (($ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-1939 ((|#1| $ (-517)) 68)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 12)) (-3126 (((-1075 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1706 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 95 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1685 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 99 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 101 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 97 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-2829 (($ $) NIL (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 20 T CONST)) (-3675 (($) 16 T CONST)) (-3348 (($ $ (-1 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1630 (((-107) $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1606 (((-107) $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1596 (((-107) $ $) NIL (-3786 (-12 (|has| (-1075 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1075 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 44 (|has| |#1| (-333))) (($ (-1075 |#1| |#2| |#3|) (-1075 |#1| |#2| |#3|)) 45 (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 21)) (** (($ $ (-845)) NIL) (($ $ (-703)) 53) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) 74 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1075 |#1| |#2| |#3|)) 43 (|has| |#1| (-333))) (($ (-1075 |#1| |#2| |#3|) $) 42 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-1068 |#1| |#2| |#3|) (-13 (-1120 |#1| (-1075 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1068)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))) -(-13 (-1120 |#1| (-1075 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) -((-3476 ((|#2| |#2| (-999 |#2|)) 26) ((|#2| |#2| (-1077)) 28))) -(((-1069 |#1| |#2|) (-10 -7 (-15 -3476 (|#2| |#2| (-1077))) (-15 -3476 (|#2| |#2| (-999 |#2|)))) (-13 (-509) (-779) (-955 (-517)) (-579 (-517))) (-13 (-400 |#1|) (-145) (-27) (-1098))) (T -1069)) -((-3476 (*1 *2 *2 *3) (-12 (-5 *3 (-999 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1098))) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1069 *4 *2)))) (-3476 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1069 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1098)))))) -(-10 -7 (-15 -3476 (|#2| |#2| (-1077))) (-15 -3476 (|#2| |#2| (-999 |#2|)))) -((-3476 (((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-999 (-377 (-876 |#1|)))) 30) (((-377 (-876 |#1|)) (-876 |#1|) (-999 (-876 |#1|))) 44) (((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-1077)) 32) (((-377 (-876 |#1|)) (-876 |#1|) (-1077)) 36))) -(((-1070 |#1|) (-10 -7 (-15 -3476 ((-377 (-876 |#1|)) (-876 |#1|) (-1077))) (-15 -3476 ((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-1077))) (-15 -3476 ((-377 (-876 |#1|)) (-876 |#1|) (-999 (-876 |#1|)))) (-15 -3476 ((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-999 (-377 (-876 |#1|)))))) (-13 (-509) (-779) (-955 (-517)))) (T -1070)) -((-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-999 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5))) (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1070 *5)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-999 (-876 *5))) (-5 *3 (-876 *5)) (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1070 *5)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-3 (-377 (-876 *5)) (-286 *5))) (-5 *1 (-1070 *5)) (-5 *3 (-377 (-876 *5))))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-377 (-876 *5))) (-5 *1 (-1070 *5)) (-5 *3 (-876 *5))))) -(-10 -7 (-15 -3476 ((-377 (-876 |#1|)) (-876 |#1|) (-1077))) (-15 -3476 ((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-1077))) (-15 -3476 ((-377 (-876 |#1|)) (-876 |#1|) (-999 (-876 |#1|)))) (-15 -3476 ((-3 (-377 (-876 |#1|)) (-286 |#1|)) (-377 (-876 |#1|)) (-999 (-377 (-876 |#1|)))))) -((-3312 (((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|)) 13))) -(((-1071 |#1| |#2|) (-10 -7 (-15 -3312 ((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|)))) (-964) (-964)) (T -1071)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-5 *2 (-1073 *6)) (-5 *1 (-1071 *5 *6))))) -(-10 -7 (-15 -3312 ((-1073 |#2|) (-1 |#2| |#1|) (-1073 |#1|)))) -((-3306 (((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|))) 50)) (-3896 (((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|))) 51))) -(((-1072 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3896 ((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|)))) (-15 -3306 ((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|))))) (-725) (-779) (-421) (-873 |#3| |#1| |#2|)) (T -1072)) -((-3306 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 (-377 *7)))) (-5 *1 (-1072 *4 *5 *6 *7)) (-5 *3 (-1073 (-377 *7))))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 (-377 *7)))) (-5 *1 (-1072 *4 *5 *6 *7)) (-5 *3 (-1073 (-377 *7)))))) -(-10 -7 (-15 -3896 ((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|)))) (-15 -3306 ((-388 (-1073 (-377 |#4|))) (-1073 (-377 |#4|))))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 30)) (-1335 (((-1158 |#1|) $ (-703)) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-4170 (($ (-1073 |#1|)) NIL)) (-1428 (((-1073 $) $ (-992)) 59) (((-1073 |#1|) $) 48)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) 133 (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-992))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-4068 (($ $ $) 127 (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) 72 (|has| |#1| (-833)))) (-1322 (($ $) NIL (|has| |#1| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 92 (|has| |#1| (-833)))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1401 (($ $ (-703)) 42)) (-1861 (($ $ (-703)) 43)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-992) "failed") $) NIL)) (-3402 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-992) $) NIL)) (-2133 (($ $ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $ $) 129 (|has| |#1| (-156)))) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) 57)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2776 (($ $ $) 105)) (-1554 (($ $ $) NIL (|has| |#1| (-509)))) (-1868 (((-2 (|:| -1570 |#1|) (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-4172 (($ $) 134 (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-703) $) 46)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-992) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-992) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-2449 (((-787) $ (-787)) 118)) (-3250 (((-703) $ $) NIL (|has| |#1| (-509)))) (-1690 (((-107) $) 32)) (-2516 (((-703) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#1| (-1053)))) (-2069 (($ (-1073 |#1|) (-992)) 50) (($ (-1073 $) (-992)) 66)) (-2113 (($ $ (-703)) 34)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) 64) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-992)) NIL) (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 122)) (-3942 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-1542 (($ (-1 (-703) (-703)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3634 (((-1073 |#1|) $) NIL)) (-1958 (((-3 (-992) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) 53)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3232 (((-1060) $) NIL)) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) 41)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-992)) (|:| -1725 (-703))) "failed") $) NIL)) (-3296 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) NIL (|has| |#1| (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) 33)) (-2311 ((|#1| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 80 (|has| |#1| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 136 (|has| |#1| (-421)))) (-2555 (($ $ (-703) |#1| $) 100)) (-3835 (((-388 (-1073 $)) (-1073 $)) 78 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 77 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 85 (|has| |#1| (-833)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-992) |#1|) NIL) (($ $ (-583 (-992)) (-583 |#1|)) NIL) (($ $ (-992) $) NIL) (($ $ (-583 (-992)) (-583 $)) NIL)) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3767 (((-3 $ "failed") $ (-703)) 37)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 139 (|has| |#1| (-333)))) (-3115 (($ $ (-992)) NIL (|has| |#1| (-156))) ((|#1| $) 125 (|has| |#1| (-156)))) (-2042 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1191 (((-703) $) 55) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-992) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) 131 (|has| |#1| (-421))) (($ $ (-992)) NIL (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-833))))) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2262 (((-787) $) 119) (($ (-517)) NIL) (($ |#1|) 54) (($ (-992)) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) 28 (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 15) (($ $ (-703)) 16)) (-3663 (($) 17 T CONST)) (-3675 (($) 18 T CONST)) (-3348 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 97)) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 140 (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 67)) (** (($ $ (-845)) 14) (($ $ (-703)) 12)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 27) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 103) (($ $ |#1|) NIL))) -(((-1073 |#1|) (-13 (-1134 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-787))) (-15 -2555 ($ $ (-703) |#1| $)))) (-964)) (T -1073)) -((-2449 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1073 *3)) (-4 *3 (-964)))) (-2555 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1073 *3)) (-4 *3 (-964))))) -(-13 (-1134 |#1|) (-10 -8 (-15 -2449 ((-787) $ (-787))) (-15 -2555 ($ $ (-703) |#1| $)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 11)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-1068 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1075 |#1| |#2| |#3|) "failed") $) 35)) (-3402 (((-1068 |#1| |#2| |#3|) $) NIL) (((-1075 |#1| |#2| |#3|) $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2120 (((-377 (-517)) $) 55)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2151 (($ (-377 (-517)) (-1068 |#1| |#2| |#3|)) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) NIL) (($ $ (-377 (-517))) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-377 (-517))) 19) (($ $ (-992) (-377 (-517))) NIL) (($ $ (-583 (-992)) (-583 (-377 (-517)))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3002 (((-1068 |#1| |#2| |#3|) $) 40)) (-1875 (((-3 (-1068 |#1| |#2| |#3|) "failed") $) NIL)) (-2140 (((-1068 |#1| |#2| |#3|) $) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1154 |#2|)) 37)) (-1191 (((-377 (-517)) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) 58) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1068 |#1| |#2| |#3|)) 29) (($ (-1075 |#1| |#2| |#3|)) 30) (($ (-1154 |#2|)) 25) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 12)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 21 T CONST)) (-3675 (($) 16 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 23)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-1074 |#1| |#2| |#3|) (-13 (-1141 |#1| (-1068 |#1| |#2| |#3|)) (-955 (-1075 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1074)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))) -(-13 (-1141 |#1| (-1068 |#1| |#2| |#3|)) (-955 (-1075 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 125)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 116)) (-1764 (((-1131 |#2| |#1|) $ (-703)) 63)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-703)) 79) (($ $ (-703) (-703)) 76)) (-3747 (((-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 102)) (-1636 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 115) (($ (-1058 |#1|)) 110)) (-1659 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) 23)) (-2804 (($ $) 26)) (-2905 (((-876 |#1|) $ (-703)) 75) (((-876 |#1|) $ (-703) (-703)) 77)) (-3690 (((-107) $) 120)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $) 122) (((-703) $ (-703)) 124)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) NIL)) (-2603 (($ (-1 |#1| (-517)) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) 13) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-3296 (($ $) 129 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 130 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-3175 (($ $ (-703)) 15)) (-2333 (((-3 $ "failed") $ $) 24 (|has| |#1| (-509)))) (-3898 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2612 ((|#1| $ (-703)) 119) (($ $ $) 128 (|has| (-703) (-1018)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1154 |#2|)) 29)) (-1191 (((-703) $) NIL)) (-1670 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) 201) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 126 (|has| |#1| (-156))) (($ (-1131 |#2| |#1|)) 51) (($ (-1154 |#2|)) 32)) (-3186 (((-1058 |#1|) $) 98)) (-1939 ((|#1| $ (-703)) 118)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 54)) (-1706 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-703)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 17 T CONST)) (-3675 (($) 19 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) 194)) (-1666 (($ $ $) 31)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 198 (|has| |#1| (-333))) (($ $ $) 134 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 137 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-1075 |#1| |#2| |#3|) (-13 (-1149 |#1|) (-10 -8 (-15 -2262 ($ (-1131 |#2| |#1|))) (-15 -1764 ((-1131 |#2| |#1|) $ (-703))) (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1075)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1131 *4 *3)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3) (-5 *1 (-1075 *3 *4 *5)))) (-1764 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1131 *5 *4)) (-5 *1 (-1075 *4 *5 *6)) (-4 *4 (-964)) (-14 *5 (-1077)) (-14 *6 *4))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))) -(-13 (-1149 |#1|) (-10 -8 (-15 -2262 ($ (-1131 |#2| |#1|))) (-15 -1764 ((-1131 |#2| |#1|) $ (-703))) (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) -((-2262 (((-787) $) 22) (($ (-1077)) 24)) (-3786 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 35)) (-3776 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 28) (($ $) 29)) (-3299 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 30)) (-3286 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 32)) (-3273 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 31)) (-3264 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 33)) (-3213 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 34))) -(((-1076) (-13 (-557 (-787)) (-10 -8 (-15 -2262 ($ (-1077))) (-15 -3299 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3273 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3286 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3264 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3786 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3213 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3776 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3776 ($ $))))) (T -1076)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1076)))) (-3299 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3273 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3286 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3264 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3786 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3213 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3776 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) (-5 *1 (-1076)))) (-3776 (*1 *1 *1) (-5 *1 (-1076)))) -(-13 (-557 (-787)) (-10 -8 (-15 -2262 ($ (-1077))) (-15 -3299 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3273 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3286 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3264 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3786 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3213 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3776 ($ (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3776 ($ $)))) -((-2105 (((-107) $ $) NIL)) (-2210 (($ $ (-583 (-787))) 58)) (-1835 (($ $ (-583 (-787))) 56)) (-1507 (((-1060) $) 82)) (-3738 (((-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787)))) $) 85)) (-2174 (((-107) $) 21)) (-2834 (($ $ (-583 (-583 (-787)))) 54) (($ $ (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787))))) 80)) (-3038 (($) 123 T CONST)) (-3294 (((-1163)) 104)) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 65) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 71)) (-3204 (($) 93) (($ $) 99)) (-2981 (($ $) 81)) (-3480 (($ $ $) NIL)) (-4095 (($ $ $) NIL)) (-2315 (((-583 $) $) 105)) (-3232 (((-1060) $) 88)) (-4130 (((-1024) $) NIL)) (-2612 (($ $ (-583 (-787))) 57)) (-3367 (((-493) $) 45) (((-1077) $) 46) (((-816 (-517)) $) 75) (((-816 (-349)) $) 73)) (-2262 (((-787) $) 52) (($ (-1060)) 47)) (-4032 (($ $ (-583 (-787))) 59)) (-2514 (((-1060) $) 33) (((-1060) $ (-107)) 34) (((-1163) (-754) $) 35) (((-1163) (-754) $ (-107)) 36)) (-1630 (((-107) $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 48)) (-1618 (((-107) $ $) NIL)) (-1596 (((-107) $ $) 49))) -(((-1077) (-13 (-779) (-558 (-493)) (-760) (-558 (-1077)) (-558 (-816 (-517))) (-558 (-816 (-349))) (-810 (-517)) (-810 (-349)) (-10 -8 (-15 -3204 ($)) (-15 -3204 ($ $)) (-15 -3294 ((-1163))) (-15 -2262 ($ (-1060))) (-15 -2981 ($ $)) (-15 -2174 ((-107) $)) (-15 -3738 ((-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -2834 ($ $ (-583 (-583 (-787))))) (-15 -2834 ($ $ (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -1835 ($ $ (-583 (-787)))) (-15 -2210 ($ $ (-583 (-787)))) (-15 -4032 ($ $ (-583 (-787)))) (-15 -2612 ($ $ (-583 (-787)))) (-15 -1507 ((-1060) $)) (-15 -2315 ((-583 $) $)) (-15 -3038 ($) -1373)))) (T -1077)) -((-3204 (*1 *1) (-5 *1 (-1077))) (-3204 (*1 *1 *1) (-5 *1 (-1077))) (-3294 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1077)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1077)))) (-2981 (*1 *1 *1) (-5 *1 (-1077))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1077)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1077)))) (-2834 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1077)))) (-2834 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1077)))) (-1835 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))) (-2210 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))) (-4032 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1077)))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1077)))) (-3038 (*1 *1) (-5 *1 (-1077)))) -(-13 (-779) (-558 (-493)) (-760) (-558 (-1077)) (-558 (-816 (-517))) (-558 (-816 (-349))) (-810 (-517)) (-810 (-349)) (-10 -8 (-15 -3204 ($)) (-15 -3204 ($ $)) (-15 -3294 ((-1163))) (-15 -2262 ($ (-1060))) (-15 -2981 ($ $)) (-15 -2174 ((-107) $)) (-15 -3738 ((-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -2834 ($ $ (-583 (-583 (-787))))) (-15 -2834 ($ $ (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -1835 ($ $ (-583 (-787)))) (-15 -2210 ($ $ (-583 (-787)))) (-15 -4032 ($ $ (-583 (-787)))) (-15 -2612 ($ $ (-583 (-787)))) (-15 -1507 ((-1060) $)) (-15 -2315 ((-583 $) $)) (-15 -3038 ($) -1373))) -((-2607 (((-1158 |#1|) |#1| (-845)) 16) (((-1158 |#1|) (-583 |#1|)) 20))) -(((-1078 |#1|) (-10 -7 (-15 -2607 ((-1158 |#1|) (-583 |#1|))) (-15 -2607 ((-1158 |#1|) |#1| (-845)))) (-964)) (T -1078)) -((-2607 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-5 *2 (-1158 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-964)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-964)) (-5 *2 (-1158 *4)) (-5 *1 (-1078 *4))))) -(-10 -7 (-15 -2607 ((-1158 |#1|) (-583 |#1|))) (-15 -2607 ((-1158 |#1|) |#1| (-845)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| |#1| (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-955 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3402 (((-517) $) NIL (|has| |#1| (-955 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-955 (-377 (-517))))) ((|#1| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-421)))) (-1760 (($ $ |#1| (-891) $) NIL)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-891)) NIL)) (-3942 (((-891) $) NIL)) (-1542 (($ (-1 (-891) (-891)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#1| $) NIL)) (-2555 (($ $ (-891) |#1| $) NIL (-12 (|has| (-891) (-123)) (|has| |#1| (-509))))) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1191 (((-891) $) NIL)) (-4094 ((|#1| $) NIL (|has| |#1| (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3786 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-955 (-377 (-517))))))) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ (-891)) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 9 T CONST)) (-3675 (($) 14 T CONST)) (-1572 (((-107) $ $) 16)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 19)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-1079 |#1|) (-13 (-296 |#1| (-891)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-891) (-123)) (-15 -2555 ($ $ (-891) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|))) (-964)) (T -1079)) -((-2555 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-891)) (-4 *2 (-123)) (-5 *1 (-1079 *3)) (-4 *3 (-509)) (-4 *3 (-964))))) -(-13 (-296 |#1| (-891)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-891) (-123)) (-15 -2555 ($ $ (-891) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|))) -((-1213 (((-1081) (-1077) $) 24)) (-2781 (($) 28)) (-1995 (((-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-1077) $) 21)) (-4083 (((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")) $) 40) (((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) 41) (((-1163) (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) 42)) (-1307 (((-1163) (-1077)) 57)) (-3349 (((-1163) (-1077) $) 54) (((-1163) (-1077)) 55) (((-1163)) 56)) (-3033 (((-1163) (-1077)) 36)) (-3701 (((-1077)) 35)) (-2679 (($) 33)) (-3903 (((-407) (-1077) (-407) (-1077) $) 44) (((-407) (-583 (-1077)) (-407) (-1077) $) 48) (((-407) (-1077) (-407)) 45) (((-407) (-1077) (-407) (-1077)) 49)) (-3659 (((-1077)) 34)) (-2262 (((-787) $) 27)) (-1614 (((-1163)) 29) (((-1163) (-1077)) 32)) (-1672 (((-583 (-1077)) (-1077) $) 23)) (-1258 (((-1163) (-1077) (-583 (-1077)) $) 37) (((-1163) (-1077) (-583 (-1077))) 38) (((-1163) (-583 (-1077))) 39))) -(((-1080) (-13 (-557 (-787)) (-10 -8 (-15 -2781 ($)) (-15 -1614 ((-1163))) (-15 -1614 ((-1163) (-1077))) (-15 -3903 ((-407) (-1077) (-407) (-1077) $)) (-15 -3903 ((-407) (-583 (-1077)) (-407) (-1077) $)) (-15 -3903 ((-407) (-1077) (-407))) (-15 -3903 ((-407) (-1077) (-407) (-1077))) (-15 -3033 ((-1163) (-1077))) (-15 -3659 ((-1077))) (-15 -3701 ((-1077))) (-15 -1258 ((-1163) (-1077) (-583 (-1077)) $)) (-15 -1258 ((-1163) (-1077) (-583 (-1077)))) (-15 -1258 ((-1163) (-583 (-1077)))) (-15 -4083 ((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")) $)) (-15 -4083 ((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")))) (-15 -4083 ((-1163) (-3 (|:| |fst| (-404)) (|:| -2026 "void")))) (-15 -3349 ((-1163) (-1077) $)) (-15 -3349 ((-1163) (-1077))) (-15 -3349 ((-1163))) (-15 -1307 ((-1163) (-1077))) (-15 -2679 ($)) (-15 -1995 ((-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-1077) $)) (-15 -1672 ((-583 (-1077)) (-1077) $)) (-15 -1213 ((-1081) (-1077) $))))) (T -1080)) -((-2781 (*1 *1) (-5 *1 (-1080))) (-1614 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1080)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-3903 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080)))) (-3903 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1077))) (-5 *4 (-1077)) (-5 *1 (-1080)))) (-3903 (*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080)))) (-3903 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-3659 (*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1080)))) (-3701 (*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1080)))) (-1258 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-1258 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-1258 (*1 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-4083 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1077)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-3349 (*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-3349 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1080)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) (-2679 (*1 *1) (-5 *1 (-1080))) (-1995 (*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *1 (-1080)))) (-1672 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1080)) (-5 *3 (-1077)))) (-1213 (*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-1081)) (-5 *1 (-1080))))) -(-13 (-557 (-787)) (-10 -8 (-15 -2781 ($)) (-15 -1614 ((-1163))) (-15 -1614 ((-1163) (-1077))) (-15 -3903 ((-407) (-1077) (-407) (-1077) $)) (-15 -3903 ((-407) (-583 (-1077)) (-407) (-1077) $)) (-15 -3903 ((-407) (-1077) (-407))) (-15 -3903 ((-407) (-1077) (-407) (-1077))) (-15 -3033 ((-1163) (-1077))) (-15 -3659 ((-1077))) (-15 -3701 ((-1077))) (-15 -1258 ((-1163) (-1077) (-583 (-1077)) $)) (-15 -1258 ((-1163) (-1077) (-583 (-1077)))) (-15 -1258 ((-1163) (-583 (-1077)))) (-15 -4083 ((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")) $)) (-15 -4083 ((-1163) (-1077) (-3 (|:| |fst| (-404)) (|:| -2026 "void")))) (-15 -4083 ((-1163) (-3 (|:| |fst| (-404)) (|:| -2026 "void")))) (-15 -3349 ((-1163) (-1077) $)) (-15 -3349 ((-1163) (-1077))) (-15 -3349 ((-1163))) (-15 -1307 ((-1163) (-1077))) (-15 -2679 ($)) (-15 -1995 ((-3 (|:| |fst| (-404)) (|:| -2026 "void")) (-1077) $)) (-15 -1672 ((-583 (-1077)) (-1077) $)) (-15 -1213 ((-1081) (-1077) $)))) -((-3760 (((-583 (-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517))))))))) $) 57)) (-2246 (((-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517)))))))) (-404) $) 40)) (-1832 (($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-407))))) 15)) (-1307 (((-1163) $) 65)) (-2337 (((-583 (-1077)) $) 20)) (-1593 (((-1010) $) 53)) (-1897 (((-407) (-1077) $) 27)) (-1702 (((-583 (-1077)) $) 30)) (-2679 (($) 17)) (-3903 (((-407) (-583 (-1077)) (-407) $) 25) (((-407) (-1077) (-407) $) 24)) (-2262 (((-787) $) 9) (((-1086 (-1077) (-407)) $) 11))) -(((-1081) (-13 (-557 (-787)) (-10 -8 (-15 -2262 ((-1086 (-1077) (-407)) $)) (-15 -2679 ($)) (-15 -3903 ((-407) (-583 (-1077)) (-407) $)) (-15 -3903 ((-407) (-1077) (-407) $)) (-15 -1897 ((-407) (-1077) $)) (-15 -2337 ((-583 (-1077)) $)) (-15 -2246 ((-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517)))))))) (-404) $)) (-15 -1702 ((-583 (-1077)) $)) (-15 -3760 ((-583 (-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517))))))))) $)) (-15 -1593 ((-1010) $)) (-15 -1307 ((-1163) $)) (-15 -1832 ($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-407))))))))) (T -1081)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-1086 (-1077) (-407))) (-5 *1 (-1081)))) (-2679 (*1 *1) (-5 *1 (-1081))) (-3903 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1077))) (-5 *1 (-1081)))) (-3903 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1081)))) (-1897 (*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-407)) (-5 *1 (-1081)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1081)))) (-2246 (*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517))))))))) (-5 *1 (-1081)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1081)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517)))))))))) (-5 *1 (-1081)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-1081)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1081)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-407))))) (-5 *1 (-1081))))) -(-13 (-557 (-787)) (-10 -8 (-15 -2262 ((-1086 (-1077) (-407)) $)) (-15 -2679 ($)) (-15 -3903 ((-407) (-583 (-1077)) (-407) $)) (-15 -3903 ((-407) (-1077) (-407) $)) (-15 -1897 ((-407) (-1077) $)) (-15 -2337 ((-583 (-1077)) $)) (-15 -2246 ((-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517)))))))) (-404) $)) (-15 -1702 ((-583 (-1077)) $)) (-15 -3760 ((-583 (-583 (-3 (|:| -2981 (-1077)) (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517))))))))) $)) (-15 -1593 ((-1010) $)) (-15 -1307 ((-1163) $)) (-15 -1832 ($ (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-407)))))))) -((-3247 (((-107) $) 43)) (-1759 (((-3 (-517) (-199) (-1077) (-1060) $) $) 51)) (-3486 (((-583 $) $) 56)) (-3367 (((-1010) $) 19) (($ (-1010)) 20)) (-1381 (((-107) $) 53)) (-2262 (((-787) $) NIL) (($ (-517)) 22) (((-517) $) 24) (($ (-199)) 26) (((-199) $) 28) (($ (-1077)) 30) (((-1077) $) 32) (($ (-1060)) 34) (((-1060) $) 36)) (-2276 (((-107) $ (|[\|\|]| (-517))) 9) (((-107) $ (|[\|\|]| (-199))) 12) (((-107) $ (|[\|\|]| (-1077))) 18) (((-107) $ (|[\|\|]| (-1060))) 15)) (-1740 (($ (-1077) (-583 $)) 40) (($ $ (-583 $)) 41)) (-2482 (((-517) $) 23) (((-199) $) 27) (((-1077) $) 31) (((-1060) $) 35))) -(((-1082) (-13 (-1153) (-557 (-787)) (-10 -8 (-15 -3367 ((-1010) $)) (-15 -3367 ($ (-1010))) (-15 -2262 ($ (-517))) (-15 -2262 ((-517) $)) (-15 -2482 ((-517) $)) (-15 -2262 ($ (-199))) (-15 -2262 ((-199) $)) (-15 -2482 ((-199) $)) (-15 -2262 ($ (-1077))) (-15 -2262 ((-1077) $)) (-15 -2482 ((-1077) $)) (-15 -2262 ($ (-1060))) (-15 -2262 ((-1060) $)) (-15 -2482 ((-1060) $)) (-15 -1740 ($ (-1077) (-583 $))) (-15 -1740 ($ $ (-583 $))) (-15 -3247 ((-107) $)) (-15 -1759 ((-3 (-517) (-199) (-1077) (-1060) $) $)) (-15 -3486 ((-583 $) $)) (-15 -1381 ((-107) $)) (-15 -2276 ((-107) $ (|[\|\|]| (-517)))) (-15 -2276 ((-107) $ (|[\|\|]| (-199)))) (-15 -2276 ((-107) $ (|[\|\|]| (-1077)))) (-15 -2276 ((-107) $ (|[\|\|]| (-1060))))))) (T -1082)) -((-3367 (*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-1082)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-1082)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1082)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1082)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1082)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1082)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1082)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1082)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1082)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1082)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1082)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1082)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1082)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1082)))) (-1740 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-1082))) (-5 *1 (-1082)))) (-1740 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1082))) (-5 *1 (-1082)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1082)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1077) (-1060) (-1082))) (-5 *1 (-1082)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-583 (-1082))) (-5 *1 (-1082)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1082)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-107)) (-5 *1 (-1082)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-199))) (-5 *2 (-107)) (-5 *1 (-1082)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-107)) (-5 *1 (-1082)))) (-2276 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-107)) (-5 *1 (-1082))))) -(-13 (-1153) (-557 (-787)) (-10 -8 (-15 -3367 ((-1010) $)) (-15 -3367 ($ (-1010))) (-15 -2262 ($ (-517))) (-15 -2262 ((-517) $)) (-15 -2482 ((-517) $)) (-15 -2262 ($ (-199))) (-15 -2262 ((-199) $)) (-15 -2482 ((-199) $)) (-15 -2262 ($ (-1077))) (-15 -2262 ((-1077) $)) (-15 -2482 ((-1077) $)) (-15 -2262 ($ (-1060))) (-15 -2262 ((-1060) $)) (-15 -2482 ((-1060) $)) (-15 -1740 ($ (-1077) (-583 $))) (-15 -1740 ($ $ (-583 $))) (-15 -3247 ((-107) $)) (-15 -1759 ((-3 (-517) (-199) (-1077) (-1060) $) $)) (-15 -3486 ((-583 $) $)) (-15 -1381 ((-107) $)) (-15 -2276 ((-107) $ (|[\|\|]| (-517)))) (-15 -2276 ((-107) $ (|[\|\|]| (-199)))) (-15 -2276 ((-107) $ (|[\|\|]| (-1077)))) (-15 -2276 ((-107) $ (|[\|\|]| (-1060)))))) -((-3269 (((-583 (-583 (-876 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077))) 55)) (-1993 (((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|)))) 67) (((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|))) 63) (((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077)) 68) (((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077)) 62) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|))))) 92) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|)))) 91) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077))) 93) (((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|))) (-583 (-1077))) 90))) -(((-1083 |#1|) (-10 -7 (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|))))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|)))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|))))) (-15 -3269 ((-583 (-583 (-876 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077))))) (-509)) (T -1083)) -((-3269 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-876 *5)))) (-5 *1 (-1083 *5)))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *4))))) (-5 *1 (-1083 *4)) (-5 *3 (-265 (-377 (-876 *4)))))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *4))))) (-5 *1 (-1083 *4)) (-5 *3 (-377 (-876 *4))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *5))))) (-5 *1 (-1083 *5)) (-5 *3 (-265 (-377 (-876 *5)))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-1077)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *5))))) (-5 *1 (-1083 *5)) (-5 *3 (-377 (-876 *5))))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-1083 *4)) (-5 *3 (-583 (-265 (-377 (-876 *4))))))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-876 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-1083 *4)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1077))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-1083 *5)) (-5 *3 (-583 (-265 (-377 (-876 *5))))))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-1083 *5))))) -(-10 -7 (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|))) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|)))) (-583 (-1077)))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-377 (-876 |#1|))))) (-15 -1993 ((-583 (-583 (-265 (-377 (-876 |#1|))))) (-583 (-265 (-377 (-876 |#1|)))))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|)) (-1077))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|))) (-1077))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-377 (-876 |#1|)))) (-15 -1993 ((-583 (-265 (-377 (-876 |#1|)))) (-265 (-377 (-876 |#1|))))) (-15 -3269 ((-583 (-583 (-876 |#1|))) (-583 (-377 (-876 |#1|))) (-583 (-1077))))) -((-2602 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 38)) (-3350 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 24)) (-4139 (((-1085 (-583 |#1|)) (-583 |#1|)) 34)) (-3238 (((-583 (-583 |#1|)) (-583 |#1|)) 30)) (-1336 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 37)) (-2319 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 36)) (-4007 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 28)) (-2137 (((-583 |#1|) (-583 |#1|)) 31)) (-2991 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 18)) (-2810 (((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 15)) (-3654 (((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 13)) (-4104 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 39)) (-2937 (((-583 (-583 |#1|)) (-1085 (-583 |#1|))) 41))) -(((-1084 |#1|) (-10 -7 (-15 -3654 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2810 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2991 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2602 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -4104 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -2937 ((-583 (-583 |#1|)) (-1085 (-583 |#1|)))) (-15 -3350 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -4139 ((-1085 (-583 |#1|)) (-583 |#1|))) (-15 -4007 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3238 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2137 ((-583 |#1|) (-583 |#1|))) (-15 -2319 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -1336 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-779)) (T -1084)) -((-1336 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1084 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-2319 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1084 *6)) (-5 *4 (-583 *5)))) (-2137 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1084 *3)))) (-3238 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1084 *4)) (-5 *3 (-583 *4)))) (-4007 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1084 *3)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1085 (-583 *4))) (-5 *1 (-1084 *4)) (-5 *3 (-583 *4)))) (-3350 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1084 *4)) (-5 *3 (-583 (-583 *4))))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-1085 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1084 *4)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1084 *4)) (-4 *4 (-779)))) (-2602 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1084 *4)))) (-2991 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1084 *4)))) (-2810 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1084 *5)))) (-3654 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1084 *6)) (-5 *5 (-583 *4))))) -(-10 -7 (-15 -3654 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2810 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2991 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -2602 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -4104 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -2937 ((-583 (-583 |#1|)) (-1085 (-583 |#1|)))) (-15 -3350 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -4139 ((-1085 (-583 |#1|)) (-583 |#1|))) (-15 -4007 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3238 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2137 ((-583 |#1|) (-583 |#1|))) (-15 -2319 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -1336 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) -((-1628 (($ (-583 (-583 |#1|))) 9)) (-3468 (((-583 (-583 |#1|)) $) 10)) (-2262 (((-787) $) 25))) -(((-1085 |#1|) (-10 -8 (-15 -1628 ($ (-583 (-583 |#1|)))) (-15 -3468 ((-583 (-583 |#1|)) $)) (-15 -2262 ((-787) $))) (-1006)) (T -1085)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1085 *3)) (-4 *3 (-1006)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1085 *3)) (-4 *3 (-1006)))) (-1628 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-1085 *3))))) -(-10 -8 (-15 -1628 ($ (-583 (-583 |#1|)))) (-15 -3468 ((-583 (-583 |#1|)) $)) (-15 -2262 ((-787) $))) -((-2105 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3195 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-3351 (((-1163) $ |#1| |#1|) NIL (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#2| $ |#1| |#2|) NIL)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) NIL)) (-3038 (($) NIL T CONST)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) NIL)) (-3531 ((|#1| $) NIL (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-583 |#2|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-1969 ((|#1| $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-1869 (((-583 |#1|) $) NIL)) (-2409 (((-107) |#1| $) NIL)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-1449 (((-583 |#1|) $) NIL)) (-3413 (((-107) |#1| $) NIL)) (-4130 (((-1024) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-2420 ((|#2| $) NIL (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL)) (-2837 (($ $ |#2|) NIL (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3808 (($) NIL) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) NIL (-12 (|has| $ (-6 -4195)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-2262 (((-787) $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787))) (|has| |#2| (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) NIL)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) NIL (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) NIL (-3786 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| |#2| (-1006))))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-1086 |#1| |#2|) (-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) (-1006) (-1006)) (T -1086)) -NIL -(-13 (-1089 |#1| |#2|) (-10 -7 (-6 -4195))) -((-1494 ((|#1| (-583 |#1|)) 32)) (-3085 ((|#1| |#1| (-517)) 18)) (-3414 (((-1073 |#1|) |#1| (-845)) 15))) -(((-1087 |#1|) (-10 -7 (-15 -1494 (|#1| (-583 |#1|))) (-15 -3414 ((-1073 |#1|) |#1| (-845))) (-15 -3085 (|#1| |#1| (-517)))) (-333)) (T -1087)) -((-3085 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1087 *2)) (-4 *2 (-333)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-845)) (-5 *2 (-1073 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-333)))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1087 *2)) (-4 *2 (-333))))) -(-10 -7 (-15 -1494 (|#1| (-583 |#1|))) (-15 -3414 ((-1073 |#1|) |#1| (-845))) (-15 -3085 (|#1| |#1| (-517)))) -((-3195 (($) 10) (($ (-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)))) 14)) (-1749 (($ (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) 60) (($ (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1525 (((-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) 39) (((-583 |#3|) $) 41)) (-2737 (($ (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-3312 (($ (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2015 (((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) 53)) (-3439 (($ (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) 16)) (-1449 (((-583 |#2|) $) 19)) (-3413 (((-107) |#2| $) 58)) (-1985 (((-3 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) "failed") (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) 57)) (-1551 (((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) 62)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 66)) (-2862 (((-583 |#3|) $) 43)) (-2612 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) NIL) (((-703) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) $) NIL) (((-703) |#3| $) NIL) (((-703) (-1 (-107) |#3|) $) 67)) (-2262 (((-787) $) 27)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 64)) (-1572 (((-107) $ $) 48))) -(((-1088 |#1| |#2| |#3|) (-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3195 (|#1| (-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))))) (-15 -3195 (|#1|)) (-15 -3312 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2737 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1525 ((-583 |#3|) |#1|)) (-15 -4140 ((-703) |#3| |#1|)) (-15 -2612 (|#3| |#1| |#2| |#3|)) (-15 -2612 (|#3| |#1| |#2|)) (-15 -2862 ((-583 |#3|) |#1|)) (-15 -3413 ((-107) |#2| |#1|)) (-15 -1449 ((-583 |#2|) |#1|)) (-15 -1749 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1749 (|#1| (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -1749 (|#1| (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1985 ((-3 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) "failed") (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -2015 ((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -3439 (|#1| (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1551 ((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -4140 ((-703) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1525 ((-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -4140 ((-703) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -3843 ((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -1272 ((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -2737 (|#1| (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -3312 (|#1| (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|))) (-1089 |#2| |#3|) (-1006) (-1006)) (T -1088)) -NIL -(-10 -8 (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3312 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3195 (|#1| (-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))))) (-15 -3195 (|#1|)) (-15 -3312 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2737 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1272 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3843 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -4140 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1525 ((-583 |#3|) |#1|)) (-15 -4140 ((-703) |#3| |#1|)) (-15 -2612 (|#3| |#1| |#2| |#3|)) (-15 -2612 (|#3| |#1| |#2|)) (-15 -2862 ((-583 |#3|) |#1|)) (-15 -3413 ((-107) |#2| |#1|)) (-15 -1449 ((-583 |#2|) |#1|)) (-15 -1749 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1749 (|#1| (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -1749 (|#1| (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1985 ((-3 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) "failed") (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -2015 ((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -3439 (|#1| (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1551 ((-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -4140 ((-703) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) |#1|)) (-15 -1525 ((-583 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -4140 ((-703) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -3843 ((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -1272 ((-107) (-1 (-107) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -2737 (|#1| (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|)) (-15 -3312 (|#1| (-1 (-2 (|:| -2576 |#2|) (|:| -1846 |#3|)) (-2 (|:| -2576 |#2|) (|:| -1846 |#3|))) |#1|))) -((-2105 (((-107) $ $) 19 (-3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-3195 (($) 72) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 71)) (-3351 (((-1163) $ |#1| |#1|) 99 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#2| $ |#1| |#2|) 73)) (-2582 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 45 (|has| $ (-6 -4195)))) (-2317 (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 55 (|has| $ (-6 -4195)))) (-3599 (((-3 |#2| "failed") |#1| $) 61)) (-3038 (($) 7 T CONST)) (-2446 (($ $) 58 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195))))) (-1749 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 47 (|has| $ (-6 -4195))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 46 (|has| $ (-6 -4195))) (((-3 |#2| "failed") |#1| $) 62)) (-1423 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 54 (|has| $ (-6 -4195)))) (-1510 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 56 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 53 (|has| $ (-6 -4195))) (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 52 (|has| $ (-6 -4195)))) (-2750 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4196)))) (-2557 ((|#2| $ |#1|) 88)) (-1525 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 30 (|has| $ (-6 -4195))) (((-583 |#2|) $) 79 (|has| $ (-6 -4195)))) (-2266 (((-107) $ (-703)) 9)) (-3531 ((|#1| $) 96 (|has| |#1| (-779)))) (-3687 (((-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 29 (|has| $ (-6 -4195))) (((-583 |#2|) $) 80 (|has| $ (-6 -4195)))) (-1949 (((-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195))))) (-1969 ((|#1| $) 95 (|has| |#1| (-779)))) (-2737 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 34 (|has| $ (-6 -4196))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4196)))) (-3312 (($ (-1 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2328 (((-107) $ (-703)) 10)) (-3232 (((-1060) $) 22 (-3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-1869 (((-583 |#1|) $) 63)) (-2409 (((-107) |#1| $) 64)) (-2015 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 39)) (-3439 (($ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 40)) (-1449 (((-583 |#1|) $) 93)) (-3413 (((-107) |#1| $) 92)) (-4130 (((-1024) $) 21 (-3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-2420 ((|#2| $) 97 (|has| |#1| (-779)))) (-1985 (((-3 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) "failed") (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 51)) (-2837 (($ $ |#2|) 98 (|has| $ (-6 -4196)))) (-1551 (((-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 41)) (-3843 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 32 (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))))) 26 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-265 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 25 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) 24 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 23 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4195)) (|has| |#2| (-1006))))) (-2862 (((-583 |#2|) $) 91)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3808 (($) 49) (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 48)) (-4140 (((-703) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 31 (|has| $ (-6 -4195))) (((-703) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| $ (-6 -4195)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4195)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 59 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))))) (-2279 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 50)) (-2262 (((-787) $) 18 (-3786 (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787)))))) (-2729 (($ (-583 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) 42)) (-1272 (((-107) (-1 (-107) (-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) $) 33 (|has| $ (-6 -4195))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (-3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-1089 |#1| |#2|) (-1189) (-1006) (-1006)) (T -1089)) -((-2436 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-3195 (*1 *1) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-3195 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2576 *3) (|:| -1846 *4)))) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *1 (-1089 *3 *4)))) (-3312 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1089 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) -(-13 (-554 |t#1| |t#2|) (-550 |t#1| |t#2|) (-10 -8 (-15 -2436 (|t#2| $ |t#1| |t#2|)) (-15 -3195 ($)) (-15 -3195 ($ (-583 (-2 (|:| -2576 |t#1|) (|:| -1846 |t#2|))))) (-15 -3312 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-33) . T) ((-102 #0=(-2 (|:| -2576 |#1|) (|:| -1846 |#2|))) . T) ((-97) -3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-557 (-787)) -3786 (|has| |#2| (-1006)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-557 (-787)))) ((-138 #0#) . T) ((-558 (-493)) |has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-558 (-493))) ((-203 #0#) . T) ((-209 #0#) . T) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 #0#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-456 #0#) . T) ((-456 |#2|) . T) ((-550 |#1| |#2|) . T) ((-478 #0# #0#) -12 (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-280 (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)))) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1006))) ((-554 |#1| |#2|) . T) ((-1006) -3786 (|has| |#2| (-1006)) (|has| (-2 (|:| -2576 |#1|) (|:| -1846 |#2|)) (-1006))) ((-1112) . T)) -((-2024 (((-107)) 24)) (-2661 (((-1163) (-1060)) 26)) (-2181 (((-107)) 36)) (-1408 (((-1163)) 34)) (-2047 (((-1163) (-1060) (-1060)) 25)) (-3159 (((-107)) 37)) (-3439 (((-1163) |#1| |#2|) 44)) (-2852 (((-1163)) 20)) (-4144 (((-3 |#2| "failed") |#1|) 42)) (-2608 (((-1163)) 35))) -(((-1090 |#1| |#2|) (-10 -7 (-15 -2852 ((-1163))) (-15 -2047 ((-1163) (-1060) (-1060))) (-15 -2661 ((-1163) (-1060))) (-15 -1408 ((-1163))) (-15 -2608 ((-1163))) (-15 -2024 ((-107))) (-15 -2181 ((-107))) (-15 -3159 ((-107))) (-15 -4144 ((-3 |#2| "failed") |#1|)) (-15 -3439 ((-1163) |#1| |#2|))) (-1006) (-1006)) (T -1090)) -((-3439 (*1 *2 *3 *4) (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-4144 (*1 *2 *3) (|partial| -12 (-4 *2 (-1006)) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1006)))) (-3159 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-2181 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-2024 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-2608 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-1408 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1090 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)))) (-2047 (*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1090 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)))) (-2852 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) -(-10 -7 (-15 -2852 ((-1163))) (-15 -2047 ((-1163) (-1060) (-1060))) (-15 -2661 ((-1163) (-1060))) (-15 -1408 ((-1163))) (-15 -2608 ((-1163))) (-15 -2024 ((-107))) (-15 -2181 ((-107))) (-15 -3159 ((-107))) (-15 -4144 ((-3 |#2| "failed") |#1|)) (-15 -3439 ((-1163) |#1| |#2|))) -((-1721 (((-1060) (-1060)) 18)) (-1403 (((-51) (-1060)) 21))) -(((-1091) (-10 -7 (-15 -1403 ((-51) (-1060))) (-15 -1721 ((-1060) (-1060))))) (T -1091)) -((-1721 (*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1091)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-1091))))) -(-10 -7 (-15 -1403 ((-51) (-1060))) (-15 -1721 ((-1060) (-1060)))) -((-2262 (((-1093) |#1|) 11))) -(((-1092 |#1|) (-10 -7 (-15 -2262 ((-1093) |#1|))) (-1006)) (T -1092)) -((-2262 (*1 *2 *3) (-12 (-5 *2 (-1093)) (-5 *1 (-1092 *3)) (-4 *3 (-1006))))) -(-10 -7 (-15 -2262 ((-1093) |#1|))) -((-2105 (((-107) $ $) NIL)) (-2870 (((-583 (-1060)) $) 33)) (-1437 (((-583 (-1060)) $ (-583 (-1060))) 36)) (-3999 (((-583 (-1060)) $ (-583 (-1060))) 35)) (-4128 (((-583 (-1060)) $ (-583 (-1060))) 37)) (-2969 (((-583 (-1060)) $) 32)) (-3204 (($) 22)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3504 (((-583 (-1060)) $) 34)) (-1744 (((-1163) $ (-517)) 29) (((-1163) $) 30)) (-3367 (($ (-787) (-517)) 26) (($ (-787) (-517) (-787)) NIL)) (-2262 (((-787) $) 39) (($ (-787)) 24)) (-1572 (((-107) $ $) NIL))) -(((-1093) (-13 (-1006) (-10 -8 (-15 -2262 ($ (-787))) (-15 -3367 ($ (-787) (-517))) (-15 -3367 ($ (-787) (-517) (-787))) (-15 -1744 ((-1163) $ (-517))) (-15 -1744 ((-1163) $)) (-15 -3504 ((-583 (-1060)) $)) (-15 -2870 ((-583 (-1060)) $)) (-15 -3204 ($)) (-15 -2969 ((-583 (-1060)) $)) (-15 -4128 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -1437 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -3999 ((-583 (-1060)) $ (-583 (-1060))))))) (T -1093)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1093)))) (-3367 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1093)))) (-3367 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1093)))) (-1744 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1093)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1093)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))) (-3204 (*1 *1) (-5 *1 (-1093))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))) (-4128 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))) (-1437 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093)))) (-3999 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093))))) -(-13 (-1006) (-10 -8 (-15 -2262 ($ (-787))) (-15 -3367 ($ (-787) (-517))) (-15 -3367 ($ (-787) (-517) (-787))) (-15 -1744 ((-1163) $ (-517))) (-15 -1744 ((-1163) $)) (-15 -3504 ((-583 (-1060)) $)) (-15 -2870 ((-583 (-1060)) $)) (-15 -3204 ($)) (-15 -2969 ((-583 (-1060)) $)) (-15 -4128 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -1437 ((-583 (-1060)) $ (-583 (-1060)))) (-15 -3999 ((-583 (-1060)) $ (-583 (-1060)))))) -((-2105 (((-107) $ $) NIL)) (-1308 (((-1060) $ (-1060)) 15) (((-1060) $) 14)) (-3188 (((-1060) $ (-1060)) 13)) (-3010 (($ $ (-1060)) NIL)) (-3805 (((-3 (-1060) "failed") $) 11)) (-1624 (((-1060) $) 8)) (-1774 (((-3 (-1060) "failed") $) 12)) (-2872 (((-1060) $) 9)) (-3723 (($ (-358)) NIL) (($ (-358) (-1060)) NIL)) (-2981 (((-358) $) NIL)) (-3232 (((-1060) $) NIL)) (-3048 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3372 (((-107) $) 17)) (-2262 (((-787) $) NIL)) (-3604 (($ $) NIL)) (-1572 (((-107) $ $) NIL))) -(((-1094) (-13 (-334 (-358) (-1060)) (-10 -8 (-15 -1308 ((-1060) $ (-1060))) (-15 -1308 ((-1060) $)) (-15 -1624 ((-1060) $)) (-15 -3805 ((-3 (-1060) "failed") $)) (-15 -1774 ((-3 (-1060) "failed") $)) (-15 -3372 ((-107) $))))) (T -1094)) -((-1308 (*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1094)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1094)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1094)))) (-3805 (*1 *2 *1) (|partial| -12 (-5 *2 (-1060)) (-5 *1 (-1094)))) (-1774 (*1 *2 *1) (|partial| -12 (-5 *2 (-1060)) (-5 *1 (-1094)))) (-3372 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1094))))) -(-13 (-334 (-358) (-1060)) (-10 -8 (-15 -1308 ((-1060) $ (-1060))) (-15 -1308 ((-1060) $)) (-15 -1624 ((-1060) $)) (-15 -3805 ((-3 (-1060) "failed") $)) (-15 -1774 ((-3 (-1060) "failed") $)) (-15 -3372 ((-107) $)))) -((-3502 (((-3 (-517) "failed") |#1|) 19)) (-4123 (((-3 (-517) "failed") |#1|) 13)) (-2472 (((-517) (-1060)) 28))) -(((-1095 |#1|) (-10 -7 (-15 -3502 ((-3 (-517) "failed") |#1|)) (-15 -4123 ((-3 (-517) "failed") |#1|)) (-15 -2472 ((-517) (-1060)))) (-964)) (T -1095)) -((-2472 (*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-517)) (-5 *1 (-1095 *4)) (-4 *4 (-964)))) (-4123 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1095 *3)) (-4 *3 (-964)))) (-3502 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1095 *3)) (-4 *3 (-964))))) -(-10 -7 (-15 -3502 ((-3 (-517) "failed") |#1|)) (-15 -4123 ((-3 (-517) "failed") |#1|)) (-15 -2472 ((-517) (-1060)))) -((-3172 (((-1037 (-199))) 8))) -(((-1096) (-10 -7 (-15 -3172 ((-1037 (-199)))))) (T -1096)) -((-3172 (*1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1096))))) -(-10 -7 (-15 -3172 ((-1037 (-199))))) -((-2102 (($) 11)) (-1706 (($ $) 35)) (-1685 (($ $) 33)) (-1536 (($ $) 25)) (-3517 (($ $) 17)) (-2815 (($ $) 15)) (-1722 (($ $) 19)) (-1577 (($ $) 30)) (-1698 (($ $) 34)) (-1550 (($ $) 29))) -(((-1097 |#1|) (-10 -8 (-15 -2102 (|#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1550 (|#1| |#1|))) (-1098)) (T -1097)) -NIL -(-10 -8 (-15 -2102 (|#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1550 (|#1| |#1|))) -((-1636 (($ $) 26)) (-1482 (($ $) 11)) (-1612 (($ $) 27)) (-1459 (($ $) 10)) (-1659 (($ $) 28)) (-1508 (($ $) 9)) (-2102 (($) 16)) (-1232 (($ $) 19)) (-3898 (($ $) 18)) (-1670 (($ $) 29)) (-1521 (($ $) 8)) (-1647 (($ $) 30)) (-1495 (($ $) 7)) (-1622 (($ $) 31)) (-1471 (($ $) 6)) (-1706 (($ $) 20)) (-1564 (($ $) 32)) (-1685 (($ $) 21)) (-1536 (($ $) 33)) (-3517 (($ $) 22)) (-1588 (($ $) 34)) (-2815 (($ $) 23)) (-1601 (($ $) 35)) (-1722 (($ $) 24)) (-1577 (($ $) 36)) (-1698 (($ $) 25)) (-1550 (($ $) 37)) (** (($ $ $) 17))) -(((-1098) (-1189)) (T -1098)) -((-2102 (*1 *1) (-4 *1 (-1098)))) -(-13 (-1101) (-91) (-458) (-34) (-256) (-10 -8 (-15 -2102 ($)))) -(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-1101) . T)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3112 ((|#1| $) 17)) (-1233 (($ |#1| (-583 $)) 23) (($ (-583 |#1|)) 27) (($ |#1|) 25)) (-3443 (((-107) $ (-703)) 47)) (-2226 ((|#1| $ |#1|) 14 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 13 (|has| $ (-6 -4196)))) (-3038 (($) NIL T CONST)) (-1525 (((-583 |#1|) $) 51 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 42)) (-1700 (((-107) $ $) 33 (|has| |#1| (-1006)))) (-2266 (((-107) $ (-703)) 40)) (-3687 (((-583 |#1|) $) 52 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 50 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2737 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 22)) (-2328 (((-107) $ (-703)) 39)) (-1925 (((-583 |#1|) $) 37)) (-3834 (((-107) $) 36)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3843 (((-107) (-1 (-107) |#1|) $) 49 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 74)) (-1754 (((-107) $) 9)) (-2679 (($) 10)) (-2612 ((|#1| $ "value") NIL)) (-3868 (((-517) $ $) 32)) (-2613 (((-583 $) $) 58)) (-2101 (((-107) $ $) 76)) (-2368 (((-583 $) $) 71)) (-2808 (($ $) 72)) (-1414 (((-107) $) 55)) (-4140 (((-703) (-1 (-107) |#1|) $) 20 (|has| $ (-6 -4195))) (((-703) |#1| $) 16 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2453 (($ $) 57)) (-2262 (((-787) $) 60 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 12)) (-3224 (((-107) $ $) 29 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 48 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 28 (|has| |#1| (-1006)))) (-3573 (((-703) $) 38 (|has| $ (-6 -4195))))) -(((-1099 |#1|) (-13 (-929 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -1233 ($ |#1| (-583 $))) (-15 -1233 ($ (-583 |#1|))) (-15 -1233 ($ |#1|)) (-15 -1414 ((-107) $)) (-15 -2808 ($ $)) (-15 -2368 ((-583 $) $)) (-15 -2101 ((-107) $ $)) (-15 -2613 ((-583 $) $)))) (-1006)) (T -1099)) -((-1414 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1099 *3)) (-4 *3 (-1006)))) (-1233 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1099 *2))) (-5 *1 (-1099 *2)) (-4 *2 (-1006)))) (-1233 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-1099 *3)))) (-1233 (*1 *1 *2) (-12 (-5 *1 (-1099 *2)) (-4 *2 (-1006)))) (-2808 (*1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-4 *2 (-1006)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-583 (-1099 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1006)))) (-2101 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1099 *3)) (-4 *3 (-1006)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-583 (-1099 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1006))))) -(-13 (-929 |#1|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -1233 ($ |#1| (-583 $))) (-15 -1233 ($ (-583 |#1|))) (-15 -1233 ($ |#1|)) (-15 -1414 ((-107) $)) (-15 -2808 ($ $)) (-15 -2368 ((-583 $) $)) (-15 -2101 ((-107) $ $)) (-15 -2613 ((-583 $) $)))) -((-1482 (($ $) 15)) (-1508 (($ $) 12)) (-1521 (($ $) 10)) (-1495 (($ $) 17))) -(((-1100 |#1|) (-10 -8 (-15 -1495 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -1482 (|#1| |#1|))) (-1101)) (T -1100)) -NIL -(-10 -8 (-15 -1495 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -1482 (|#1| |#1|))) -((-1482 (($ $) 11)) (-1459 (($ $) 10)) (-1508 (($ $) 9)) (-1521 (($ $) 8)) (-1495 (($ $) 7)) (-1471 (($ $) 6))) -(((-1101) (-1189)) (T -1101)) -((-1482 (*1 *1 *1) (-4 *1 (-1101))) (-1459 (*1 *1 *1) (-4 *1 (-1101))) (-1508 (*1 *1 *1) (-4 *1 (-1101))) (-1521 (*1 *1 *1) (-4 *1 (-1101))) (-1495 (*1 *1 *1) (-4 *1 (-1101))) (-1471 (*1 *1 *1) (-4 *1 (-1101)))) -(-13 (-10 -8 (-15 -1471 ($ $)) (-15 -1495 ($ $)) (-15 -1521 ($ $)) (-15 -1508 ($ $)) (-15 -1459 ($ $)) (-15 -1482 ($ $)))) -((-3955 ((|#2| |#2|) 85)) (-3511 (((-107) |#2|) 25)) (-3919 ((|#2| |#2|) 29)) (-3931 ((|#2| |#2|) 31)) (-1789 ((|#2| |#2| (-1077)) 79) ((|#2| |#2|) 80)) (-3295 (((-153 |#2|) |#2|) 27)) (-3646 ((|#2| |#2| (-1077)) 81) ((|#2| |#2|) 82))) -(((-1102 |#1| |#2|) (-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1077))) (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1077))) (-15 -3955 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3511 ((-107) |#2|)) (-15 -3295 ((-153 |#2|) |#2|))) (-13 (-421) (-779) (-955 (-517)) (-579 (-517))) (-13 (-27) (-1098) (-400 |#1|))) (T -1102)) -((-3295 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1102 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1102 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *4))))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) (-3646 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) (-1789 (*1 *2 *2 *3) (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) (-1789 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3)))))) -(-10 -7 (-15 -1789 (|#2| |#2|)) (-15 -1789 (|#2| |#2| (-1077))) (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1077))) (-15 -3955 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3511 ((-107) |#2|)) (-15 -3295 ((-153 |#2|) |#2|))) -((-1220 ((|#4| |#4| |#1|) 27)) (-2764 ((|#4| |#4| |#1|) 28))) -(((-1103 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1220 (|#4| |#4| |#1|)) (-15 -2764 (|#4| |#4| |#1|))) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1103)) -((-2764 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1220 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) -(-10 -7 (-15 -1220 (|#4| |#4| |#1|)) (-15 -2764 (|#4| |#4| |#1|))) -((-3887 ((|#2| |#2|) 132)) (-1987 ((|#2| |#2|) 129)) (-2687 ((|#2| |#2|) 120)) (-2821 ((|#2| |#2|) 117)) (-3304 ((|#2| |#2|) 125)) (-3621 ((|#2| |#2|) 113)) (-1766 ((|#2| |#2|) 42)) (-2979 ((|#2| |#2|) 93)) (-2130 ((|#2| |#2|) 73)) (-3393 ((|#2| |#2|) 127)) (-3145 ((|#2| |#2|) 115)) (-1431 ((|#2| |#2|) 137)) (-2369 ((|#2| |#2|) 135)) (-2554 ((|#2| |#2|) 136)) (-2794 ((|#2| |#2|) 134)) (-3431 ((|#2| |#2|) 146)) (-2935 ((|#2| |#2|) 30 (-12 (|has| |#2| (-558 (-816 |#1|))) (|has| |#2| (-810 |#1|)) (|has| |#1| (-558 (-816 |#1|))) (|has| |#1| (-810 |#1|))))) (-3122 ((|#2| |#2|) 74)) (-2662 ((|#2| |#2|) 138)) (-2287 ((|#2| |#2|) 139)) (-4107 ((|#2| |#2|) 126)) (-3067 ((|#2| |#2|) 114)) (-2460 ((|#2| |#2|) 133)) (-3929 ((|#2| |#2|) 131)) (-2372 ((|#2| |#2|) 121)) (-1767 ((|#2| |#2|) 119)) (-1820 ((|#2| |#2|) 123)) (-2335 ((|#2| |#2|) 111))) -(((-1104 |#1| |#2|) (-10 -7 (-15 -2287 (|#2| |#2|)) (-15 -2130 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -1766 (|#2| |#2|)) (-15 -3122 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -2372 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -3145 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -2687 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -1987 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -1431 (|#2| |#2|)) (IF (|has| |#1| (-810 |#1|)) (IF (|has| |#1| (-558 (-816 |#1|))) (IF (|has| |#2| (-558 (-816 |#1|))) (IF (|has| |#2| (-810 |#1|)) (-15 -2935 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-779) (-421)) (-13 (-400 |#1|) (-1098))) (T -1104)) -((-2935 (*1 *2 *2) (-12 (-4 *3 (-558 (-816 *3))) (-4 *3 (-810 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-558 (-816 *3))) (-4 *2 (-810 *3)) (-4 *2 (-13 (-400 *3) (-1098))))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2554 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-1987 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3887 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2687 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3304 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3145 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-4107 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2372 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-1820 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3122 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-1766 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2979 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-3431 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2130 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-400 *3) (-1098)))))) -(-10 -7 (-15 -2287 (|#2| |#2|)) (-15 -2130 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -1766 (|#2| |#2|)) (-15 -3122 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -2372 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -3145 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -3304 (|#2| |#2|)) (-15 -2687 (|#2| |#2|)) (-15 -3887 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -1987 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -2554 (|#2| |#2|)) (-15 -1431 (|#2| |#2|)) (IF (|has| |#1| (-810 |#1|)) (IF (|has| |#1| (-558 (-816 |#1|))) (IF (|has| |#2| (-558 (-816 |#1|))) (IF (|has| |#2| (-810 |#1|)) (-15 -2935 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3240 (((-107) |#5| $) 60) (((-107) $) 102)) (-3710 ((|#5| |#5| $) 75)) (-2317 (($ (-1 (-107) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2622 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 73)) (-3220 (((-3 $ "failed") (-583 |#5|)) 126)) (-2429 (((-3 $ "failed") $) 112)) (-2195 ((|#5| |#5| $) 94)) (-3639 (((-107) |#5| $ (-1 (-107) |#5| |#5|)) 31)) (-4142 ((|#5| |#5| $) 98)) (-1510 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 69)) (-1954 (((-2 (|:| -1712 (-583 |#5|)) (|:| -3723 (-583 |#5|))) $) 55)) (-3142 (((-107) |#5| $) 58) (((-107) $) 103)) (-2772 ((|#4| $) 108)) (-1447 (((-3 |#5| "failed") $) 110)) (-3846 (((-583 |#5|) $) 49)) (-1568 (((-107) |#5| $) 67) (((-107) $) 107)) (-2930 ((|#5| |#5| $) 81)) (-1579 (((-107) $ $) 27)) (-2788 (((-107) |#5| $) 63) (((-107) $) 105)) (-3877 ((|#5| |#5| $) 78)) (-2420 (((-3 |#5| "failed") $) 109)) (-3175 (($ $ |#5|) 127)) (-1191 (((-703) $) 52)) (-2279 (($ (-583 |#5|)) 124)) (-3231 (($ $ |#4|) 122)) (-2316 (($ $ |#4|) 121)) (-4158 (($ $) 120)) (-2262 (((-787) $) NIL) (((-583 |#5|) $) 113)) (-3192 (((-703) $) 130)) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|)) 45)) (-1217 (((-107) $ (-1 (-107) |#5| (-583 |#5|))) 100)) (-4070 (((-583 |#4|) $) 115)) (-3275 (((-107) |#4| $) 118)) (-1572 (((-107) $ $) 19))) -(((-1105 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3192 ((-703) |#1|)) (-15 -3175 (|#1| |#1| |#5|)) (-15 -2317 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3275 ((-107) |#4| |#1|)) (-15 -4070 ((-583 |#4|) |#1|)) (-15 -2429 ((-3 |#1| "failed") |#1|)) (-15 -1447 ((-3 |#5| "failed") |#1|)) (-15 -2420 ((-3 |#5| "failed") |#1|)) (-15 -4142 (|#5| |#5| |#1|)) (-15 -4158 (|#1| |#1|)) (-15 -2195 (|#5| |#5| |#1|)) (-15 -2930 (|#5| |#5| |#1|)) (-15 -3877 (|#5| |#5| |#1|)) (-15 -3710 (|#5| |#5| |#1|)) (-15 -2622 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1510 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1568 ((-107) |#1|)) (-15 -2788 ((-107) |#1|)) (-15 -3240 ((-107) |#1|)) (-15 -1217 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -1568 ((-107) |#5| |#1|)) (-15 -2788 ((-107) |#5| |#1|)) (-15 -3240 ((-107) |#5| |#1|)) (-15 -3639 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -3142 ((-107) |#1|)) (-15 -3142 ((-107) |#5| |#1|)) (-15 -1954 ((-2 (|:| -1712 (-583 |#5|)) (|:| -3723 (-583 |#5|))) |#1|)) (-15 -1191 ((-703) |#1|)) (-15 -3846 ((-583 |#5|) |#1|)) (-15 -3026 ((-3 (-2 (|:| |bas| |#1|) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -3026 ((-3 (-2 (|:| |bas| |#1|) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -1579 ((-107) |#1| |#1|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -2772 (|#4| |#1|)) (-15 -3220 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2262 ((-583 |#5|) |#1|)) (-15 -2279 (|#1| (-583 |#5|))) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2317 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) (-1106 |#2| |#3| |#4| |#5|) (-509) (-725) (-779) (-978 |#2| |#3| |#4|)) (T -1105)) -NIL -(-10 -8 (-15 -3192 ((-703) |#1|)) (-15 -3175 (|#1| |#1| |#5|)) (-15 -2317 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3275 ((-107) |#4| |#1|)) (-15 -4070 ((-583 |#4|) |#1|)) (-15 -2429 ((-3 |#1| "failed") |#1|)) (-15 -1447 ((-3 |#5| "failed") |#1|)) (-15 -2420 ((-3 |#5| "failed") |#1|)) (-15 -4142 (|#5| |#5| |#1|)) (-15 -4158 (|#1| |#1|)) (-15 -2195 (|#5| |#5| |#1|)) (-15 -2930 (|#5| |#5| |#1|)) (-15 -3877 (|#5| |#5| |#1|)) (-15 -3710 (|#5| |#5| |#1|)) (-15 -2622 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1510 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1568 ((-107) |#1|)) (-15 -2788 ((-107) |#1|)) (-15 -3240 ((-107) |#1|)) (-15 -1217 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -1568 ((-107) |#5| |#1|)) (-15 -2788 ((-107) |#5| |#1|)) (-15 -3240 ((-107) |#5| |#1|)) (-15 -3639 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -3142 ((-107) |#1|)) (-15 -3142 ((-107) |#5| |#1|)) (-15 -1954 ((-2 (|:| -1712 (-583 |#5|)) (|:| -3723 (-583 |#5|))) |#1|)) (-15 -1191 ((-703) |#1|)) (-15 -3846 ((-583 |#5|) |#1|)) (-15 -3026 ((-3 (-2 (|:| |bas| |#1|) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -3026 ((-3 (-2 (|:| |bas| |#1|) (|:| -2544 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -1579 ((-107) |#1| |#1|)) (-15 -3231 (|#1| |#1| |#4|)) (-15 -2316 (|#1| |#1| |#4|)) (-15 -2772 (|#4| |#1|)) (-15 -3220 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2262 ((-583 |#5|) |#1|)) (-15 -2279 (|#1| (-583 |#5|))) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2317 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -1510 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2262 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|))) -((-2105 (((-107) $ $) 7)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) 85)) (-3246 (((-583 $) (-583 |#4|)) 86)) (-2080 (((-583 |#3|) $) 33)) (-3538 (((-107) $) 26)) (-4001 (((-107) $) 17 (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) 101) (((-107) $) 97)) (-3710 ((|#4| |#4| $) 92)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) 27)) (-3443 (((-107) $ (-703)) 44)) (-2317 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) 79)) (-3038 (($) 45 T CONST)) (-2697 (((-107) $) 22 (|has| |#1| (-509)))) (-2171 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3000 (((-107) $ $) 23 (|has| |#1| (-509)))) (-3764 (((-107) $) 25 (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-2774 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) 36)) (-3402 (($ (-583 |#4|)) 35)) (-2429 (((-3 $ "failed") $) 82)) (-2195 ((|#4| |#4| $) 89)) (-2446 (($ $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4142 ((|#4| |#4| $) 87)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) 105)) (-1525 (((-583 |#4|) $) 52 (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) 104) (((-107) $) 103)) (-2772 ((|#3| $) 34)) (-2266 (((-107) $ (-703)) 43)) (-3687 (((-583 |#4|) $) 53 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) 47)) (-1425 (((-583 |#3|) $) 32)) (-1808 (((-107) |#3| $) 31)) (-2328 (((-107) $ (-703)) 42)) (-3232 (((-1060) $) 9)) (-1447 (((-3 |#4| "failed") $) 83)) (-3846 (((-583 |#4|) $) 107)) (-1568 (((-107) |#4| $) 99) (((-107) $) 95)) (-2930 ((|#4| |#4| $) 90)) (-1579 (((-107) $ $) 110)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) 100) (((-107) $) 96)) (-3877 ((|#4| |#4| $) 91)) (-4130 (((-1024) $) 10)) (-2420 (((-3 |#4| "failed") $) 84)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-4059 (((-3 $ "failed") $ |#4|) 78)) (-3175 (($ $ |#4|) 77)) (-3843 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) 38)) (-1754 (((-107) $) 41)) (-2679 (($) 40)) (-1191 (((-703) $) 106)) (-4140 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -4195)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4195)))) (-2453 (($ $) 39)) (-3367 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) 60)) (-3231 (($ $ |#3|) 28)) (-2316 (($ $ |#3|) 30)) (-4158 (($ $) 88)) (-3127 (($ $ |#3|) 29)) (-2262 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3192 (((-703) $) 76 (|has| |#3| (-338)))) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-1272 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) 81)) (-3275 (((-107) |#3| $) 80)) (-1572 (((-107) $ $) 6)) (-3573 (((-703) $) 46 (|has| $ (-6 -4195))))) -(((-1106 |#1| |#2| |#3| |#4|) (-1189) (-509) (-725) (-779) (-978 |t#1| |t#2| |t#3|)) (T -1106)) -((-1579 (*1 *2 *1 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-3026 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2544 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1106 *5 *6 *7 *8)))) (-3026 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2544 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1106 *6 *7 *8 *9)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *6)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-703)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-2 (|:| -1712 (-583 *6)) (|:| -3723 (-583 *6)))))) (-3142 (*1 *2 *3 *1) (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-3639 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1106 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-107)))) (-3240 (*1 *2 *3 *1) (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-2788 (*1 *2 *3 *1) (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-1568 (*1 *2 *3 *1) (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-1217 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1106 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-2788 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) (-1510 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1106 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-978 *5 *6 *7)))) (-2622 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1106 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)))) (-3710 (*1 *2 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-3877 (*1 *2 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-2930 (*1 *2 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-2195 (*1 *2 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-4158 (*1 *1 *1) (-12 (-4 *1 (-1106 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-978 *2 *3 *4)))) (-4142 (*1 *2 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1106 *4 *5 *6 *7)))) (-1394 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1712 *1) (|:| -3723 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1106 *4 *5 *6 *7)))) (-2420 (*1 *2 *1) (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-1447 (*1 *2 *1) (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-2429 (*1 *1 *1) (|partial| -12 (-4 *1 (-1106 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-978 *2 *3 *4)))) (-4070 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3275 (*1 *2 *3 *1) (-12 (-4 *1 (-1106 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-107)))) (-2317 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1106 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-978 *4 *5 *3)))) (-4059 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703))))) -(-13 (-896 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4195) (-6 -4196) (-15 -1579 ((-107) $ $)) (-15 -3026 ((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3026 ((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3846 ((-583 |t#4|) $)) (-15 -1191 ((-703) $)) (-15 -1954 ((-2 (|:| -1712 (-583 |t#4|)) (|:| -3723 (-583 |t#4|))) $)) (-15 -3142 ((-107) |t#4| $)) (-15 -3142 ((-107) $)) (-15 -3639 ((-107) |t#4| $ (-1 (-107) |t#4| |t#4|))) (-15 -3240 ((-107) |t#4| $)) (-15 -2788 ((-107) |t#4| $)) (-15 -1568 ((-107) |t#4| $)) (-15 -1217 ((-107) $ (-1 (-107) |t#4| (-583 |t#4|)))) (-15 -3240 ((-107) $)) (-15 -2788 ((-107) $)) (-15 -1568 ((-107) $)) (-15 -1510 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2622 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3710 (|t#4| |t#4| $)) (-15 -3877 (|t#4| |t#4| $)) (-15 -2930 (|t#4| |t#4| $)) (-15 -2195 (|t#4| |t#4| $)) (-15 -4158 ($ $)) (-15 -4142 (|t#4| |t#4| $)) (-15 -3246 ((-583 $) (-583 |t#4|))) (-15 -1394 ((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |t#4|)))) (-583 |t#4|))) (-15 -2420 ((-3 |t#4| "failed") $)) (-15 -1447 ((-3 |t#4| "failed") $)) (-15 -2429 ((-3 $ "failed") $)) (-15 -4070 ((-583 |t#3|) $)) (-15 -3275 ((-107) |t#3| $)) (-15 -2317 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4059 ((-3 $ "failed") $ |t#4|)) (-15 -3175 ($ $ |t#4|)) (IF (|has| |t#3| (-338)) (-15 -3192 ((-703) $)) |%noBranch|))) -(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))) ((-896 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1112) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-1077)) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2905 (((-876 |#1|) $ (-703)) 17) (((-876 |#1|) $ (-703) (-703)) NIL)) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $ (-1077)) NIL) (((-703) $ (-1077) (-703)) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3022 (((-107) $) NIL)) (-2059 (($ $ (-583 (-1077)) (-583 (-489 (-1077)))) NIL) (($ $ (-1077) (-489 (-1077))) NIL) (($ |#1| (-489 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-3296 (($ $ (-1077)) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2497 (($ (-1 $) (-1077) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3175 (($ $ (-703)) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (($ $ (-1077) $) NIL) (($ $ (-583 (-1077)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-2042 (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-1191 (((-489 (-1077)) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-1077)) NIL) (($ (-876 |#1|)) NIL)) (-1939 ((|#1| $ (-489 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (((-876 |#1|) $ (-703)) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) NIL T CONST)) (-3348 (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1107 |#1|) (-13 (-673 |#1| (-1077)) (-10 -8 (-15 -1939 ((-876 |#1|) $ (-703))) (-15 -2262 ($ (-1077))) (-15 -2262 ($ (-876 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $ (-1077) |#1|)) (-15 -2497 ($ (-1 $) (-1077) |#1|))) |%noBranch|))) (-964)) (T -1107)) -((-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-876 *4)) (-5 *1 (-1107 *4)) (-4 *4 (-964)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1107 *3)) (-4 *3 (-964)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-5 *1 (-1107 *3)))) (-3296 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *1 (-1107 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)))) (-2497 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1107 *4))) (-5 *3 (-1077)) (-5 *1 (-1107 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-964))))) -(-13 (-673 |#1| (-1077)) (-10 -8 (-15 -1939 ((-876 |#1|) $ (-703))) (-15 -2262 ($ (-1077))) (-15 -2262 ($ (-876 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $ (-1077) |#1|)) (-15 -2497 ($ (-1 $) (-1077) |#1|))) |%noBranch|))) -((-3062 (($ |#1| (-583 (-583 (-867 (-199)))) (-107)) 16)) (-3555 (((-107) $ (-107)) 15)) (-2504 (((-107) $) 14)) (-1429 (((-583 (-583 (-867 (-199)))) $) 10)) (-1592 ((|#1| $) 8)) (-1603 (((-107) $) 12))) -(((-1108 |#1|) (-10 -8 (-15 -1592 (|#1| $)) (-15 -1429 ((-583 (-583 (-867 (-199)))) $)) (-15 -1603 ((-107) $)) (-15 -2504 ((-107) $)) (-15 -3555 ((-107) $ (-107))) (-15 -3062 ($ |#1| (-583 (-583 (-867 (-199)))) (-107)))) (-894)) (T -1108)) -((-3062 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-107)) (-5 *1 (-1108 *2)) (-4 *2 (-894)))) (-3555 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-1108 *3)) (-4 *3 (-894)))) (-1592 (*1 *2 *1) (-12 (-5 *1 (-1108 *2)) (-4 *2 (-894))))) -(-10 -8 (-15 -1592 (|#1| $)) (-15 -1429 ((-583 (-583 (-867 (-199)))) $)) (-15 -1603 ((-107) $)) (-15 -2504 ((-107) $)) (-15 -3555 ((-107) $ (-107))) (-15 -3062 ($ |#1| (-583 (-583 (-867 (-199)))) (-107)))) -((-3622 (((-867 (-199)) (-867 (-199))) 25)) (-3432 (((-867 (-199)) (-199) (-199) (-199) (-199)) 10)) (-2532 (((-583 (-867 (-199))) (-867 (-199)) (-867 (-199)) (-867 (-199)) (-199) (-583 (-583 (-199)))) 37)) (-3912 (((-199) (-867 (-199)) (-867 (-199))) 21)) (-1305 (((-867 (-199)) (-867 (-199)) (-867 (-199))) 22)) (-1343 (((-583 (-583 (-199))) (-517)) 31)) (-1680 (((-867 (-199)) (-867 (-199)) (-867 (-199))) 20)) (-1666 (((-867 (-199)) (-867 (-199)) (-867 (-199))) 19)) (* (((-867 (-199)) (-199) (-867 (-199))) 18))) -(((-1109) (-10 -7 (-15 -3432 ((-867 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-867 (-199)) (-199) (-867 (-199)))) (-15 -1666 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -1680 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -3912 ((-199) (-867 (-199)) (-867 (-199)))) (-15 -1305 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -3622 ((-867 (-199)) (-867 (-199)))) (-15 -1343 ((-583 (-583 (-199))) (-517))) (-15 -2532 ((-583 (-867 (-199))) (-867 (-199)) (-867 (-199)) (-867 (-199)) (-199) (-583 (-583 (-199))))))) (T -1109)) -((-2532 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-867 *4))) (-5 *1 (-1109)) (-5 *3 (-867 *4)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1109)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))) (-1305 (*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))) (-3912 (*1 *2 *3 *3) (-12 (-5 *3 (-867 (-199))) (-5 *2 (-199)) (-5 *1 (-1109)))) (-1680 (*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))) (-1666 (*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-867 (-199))) (-5 *3 (-199)) (-5 *1 (-1109)))) (-3432 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)) (-5 *3 (-199))))) -(-10 -7 (-15 -3432 ((-867 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-867 (-199)) (-199) (-867 (-199)))) (-15 -1666 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -1680 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -3912 ((-199) (-867 (-199)) (-867 (-199)))) (-15 -1305 ((-867 (-199)) (-867 (-199)) (-867 (-199)))) (-15 -3622 ((-867 (-199)) (-867 (-199)))) (-15 -1343 ((-583 (-583 (-199))) (-517))) (-15 -2532 ((-583 (-867 (-199))) (-867 (-199)) (-867 (-199)) (-867 (-199)) (-199) (-583 (-583 (-199)))))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2317 ((|#1| $ (-703)) 13)) (-3728 (((-703) $) 12)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2262 (((-881 |#1|) $) 10) (($ (-881 |#1|)) 9) (((-787) $) 23 (|has| |#1| (-557 (-787))))) (-1572 (((-107) $ $) 16 (|has| |#1| (-1006))))) -(((-1110 |#1|) (-13 (-557 (-881 |#1|)) (-10 -8 (-15 -2262 ($ (-881 |#1|))) (-15 -2317 (|#1| $ (-703))) (-15 -3728 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|))) (-1112)) (T -1110)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-1112)) (-5 *1 (-1110 *3)))) (-2317 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1110 *2)) (-4 *2 (-1112)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1110 *3)) (-4 *3 (-1112))))) -(-13 (-557 (-881 |#1|)) (-10 -8 (-15 -2262 ($ (-881 |#1|))) (-15 -2317 (|#1| $ (-703))) (-15 -3728 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |%noBranch|) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|))) -((-2812 (((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)) (-517)) 79)) (-2040 (((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|))) 73)) (-1355 (((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|))) 58))) -(((-1111 |#1|) (-10 -7 (-15 -2040 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)))) (-15 -1355 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)))) (-15 -2812 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)) (-517)))) (-319)) (T -1111)) -((-2812 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1073 (-1073 *5)))) (-5 *1 (-1111 *5)) (-5 *3 (-1073 (-1073 *5))))) (-1355 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1073 (-1073 *4)))) (-5 *1 (-1111 *4)) (-5 *3 (-1073 (-1073 *4))))) (-2040 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1073 (-1073 *4)))) (-5 *1 (-1111 *4)) (-5 *3 (-1073 (-1073 *4)))))) -(-10 -7 (-15 -2040 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)))) (-15 -1355 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)))) (-15 -2812 ((-388 (-1073 (-1073 |#1|))) (-1073 (-1073 |#1|)) (-517)))) -NIL -(((-1112) (-1189)) (T -1112)) -NIL -(-13 (-10 -7 (-6 -2169))) -((-1824 (((-107)) 15)) (-1814 (((-1163) (-583 |#1|) (-583 |#1|)) 19) (((-1163) (-583 |#1|)) 20)) (-2266 (((-107) |#1| |#1|) 31 (|has| |#1| (-779)))) (-2328 (((-107) |#1| |#1| (-1 (-107) |#1| |#1|)) 27) (((-3 (-107) "failed") |#1| |#1|) 25)) (-2371 ((|#1| (-583 |#1|)) 32 (|has| |#1| (-779))) ((|#1| (-583 |#1|) (-1 (-107) |#1| |#1|)) 28)) (-3300 (((-2 (|:| -3315 (-583 |#1|)) (|:| -2370 (-583 |#1|)))) 17))) -(((-1113 |#1|) (-10 -7 (-15 -1814 ((-1163) (-583 |#1|))) (-15 -1814 ((-1163) (-583 |#1|) (-583 |#1|))) (-15 -3300 ((-2 (|:| -3315 (-583 |#1|)) (|:| -2370 (-583 |#1|))))) (-15 -2328 ((-3 (-107) "failed") |#1| |#1|)) (-15 -2328 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -2371 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -1824 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -2371 (|#1| (-583 |#1|))) (-15 -2266 ((-107) |#1| |#1|))) |%noBranch|)) (-1006)) (T -1113)) -((-2266 (*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-779)) (-4 *3 (-1006)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-779)) (-5 *1 (-1113 *2)))) (-1824 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-1006)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1113 *2)) (-4 *2 (-1006)))) (-2328 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1006)) (-5 *2 (-107)) (-5 *1 (-1113 *3)))) (-2328 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-1006)))) (-3300 (*1 *2) (-12 (-5 *2 (-2 (|:| -3315 (-583 *3)) (|:| -2370 (-583 *3)))) (-5 *1 (-1113 *3)) (-4 *3 (-1006)))) (-1814 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-5 *2 (-1163)) (-5 *1 (-1113 *4)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-5 *2 (-1163)) (-5 *1 (-1113 *4))))) -(-10 -7 (-15 -1814 ((-1163) (-583 |#1|))) (-15 -1814 ((-1163) (-583 |#1|) (-583 |#1|))) (-15 -3300 ((-2 (|:| -3315 (-583 |#1|)) (|:| -2370 (-583 |#1|))))) (-15 -2328 ((-3 (-107) "failed") |#1| |#1|)) (-15 -2328 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -2371 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -1824 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -2371 (|#1| (-583 |#1|))) (-15 -2266 ((-107) |#1| |#1|))) |%noBranch|)) -((-2868 (((-1163) (-583 (-1077)) (-583 (-1077))) 12) (((-1163) (-583 (-1077))) 10)) (-3705 (((-1163)) 13)) (-3305 (((-2 (|:| -2370 (-583 (-1077))) (|:| -3315 (-583 (-1077))))) 17))) -(((-1114) (-10 -7 (-15 -2868 ((-1163) (-583 (-1077)))) (-15 -2868 ((-1163) (-583 (-1077)) (-583 (-1077)))) (-15 -3305 ((-2 (|:| -2370 (-583 (-1077))) (|:| -3315 (-583 (-1077)))))) (-15 -3705 ((-1163))))) (T -1114)) -((-3705 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1114)))) (-3305 (*1 *2) (-12 (-5 *2 (-2 (|:| -2370 (-583 (-1077))) (|:| -3315 (-583 (-1077))))) (-5 *1 (-1114)))) (-2868 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1114)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1114))))) -(-10 -7 (-15 -2868 ((-1163) (-583 (-1077)))) (-15 -2868 ((-1163) (-583 (-1077)) (-583 (-1077)))) (-15 -3305 ((-2 (|:| -2370 (-583 (-1077))) (|:| -3315 (-583 (-1077)))))) (-15 -3705 ((-1163)))) -((-1322 (($ $) 16)) (-2022 (((-107) $) 23))) -(((-1115 |#1|) (-10 -8 (-15 -1322 (|#1| |#1|)) (-15 -2022 ((-107) |#1|))) (-1116)) (T -1115)) -NIL -(-10 -8 (-15 -1322 (|#1| |#1|)) (-15 -2022 ((-107) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 51)) (-3306 (((-388 $) $) 52)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-2022 (((-107) $) 53)) (-1690 (((-107) $) 31)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3896 (((-388 $) $) 50)) (-2333 (((-3 $ "failed") $ $) 42)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24))) -(((-1116) (-1189)) (T -1116)) -((-2022 (*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-107)))) (-3306 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1116)))) (-1322 (*1 *1 *1) (-4 *1 (-1116))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1116))))) -(-13 (-421) (-10 -8 (-15 -2022 ((-107) $)) (-15 -3306 ((-388 $) $)) (-15 -1322 ($ $)) (-15 -3896 ((-388 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-3312 (((-1122 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1122 |#1| |#3| |#5|)) 23))) -(((-1117 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3312 ((-1122 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1122 |#1| |#3| |#5|)))) (-964) (-964) (-1077) (-1077) |#1| |#2|) (T -1117)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5 *7 *9)) (-4 *5 (-964)) (-4 *6 (-964)) (-14 *7 (-1077)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1122 *6 *8 *10)) (-5 *1 (-1117 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1077))))) -(-10 -7 (-15 -3312 ((-1122 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1122 |#1| |#3| |#5|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1636 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 162 (|has| |#1| (-333)))) (-3306 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3908 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1612 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1659 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-2586 (((-377 (-876 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-876 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2356 (($ $ $) 156 (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2022 (((-107) $) 164 (|has| |#1| (-333)))) (-3690 (((-107) $) 73)) (-2102 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-517) $) 100) (((-517) $ (-517)) 99)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) 101)) (-2603 (($ (-1 |#1| (-517)) $) 173)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3022 (((-107) $) 62)) (-2059 (($ |#1| (-517)) 61) (($ $ (-992) (-517)) 76) (($ $ (-583 (-992)) (-583 (-517))) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-1232 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-2323 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 165 (|has| |#1| (-333)))) (-3296 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 169 (-3786 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-882)) (|has| |#1| (-1098)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 150 (|has| |#1| (-333)))) (-2361 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3896 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 158 (|has| |#1| (-333)))) (-3175 (($ $ (-517)) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3898 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-3388 (((-703) $) 154 (|has| |#1| (-333)))) (-2612 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 155 (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 89 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1077) (-703)) 88 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077))) 87 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1077)) 86 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1191 (((-517) $) 64)) (-1670 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1939 ((|#1| $ (-517)) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-1706 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1685 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 93 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1077) (-703)) 92 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077))) 91 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1077)) 90 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) -(((-1118 |#1|) (-1189) (-964)) (T -1118)) -((-3452 (*1 *1 *2) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-964)) (-4 *1 (-1118 *3)))) (-2603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1118 *3)) (-4 *3 (-964)))) (-2586 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1118 *4)) (-4 *4 (-964)) (-4 *4 (-509)) (-5 *2 (-377 (-876 *4))))) (-2586 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1118 *4)) (-4 *4 (-964)) (-4 *4 (-509)) (-5 *2 (-377 (-876 *4))))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517)))))) (-3296 (*1 *1 *1 *2) (-3786 (-12 (-5 *2 (-1077)) (-4 *1 (-1118 *3)) (-4 *3 (-964)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1077)) (-4 *1 (-1118 *3)) (-4 *3 (-964)) (-12 (|has| *3 (-15 -2080 ((-583 *2) *3))) (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))) -(-13 (-1136 |t#1| (-517)) (-10 -8 (-15 -3452 ($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |t#1|))))) (-15 -2603 ($ (-1 |t#1| (-517)) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -2586 ((-377 (-876 |t#1|)) $ (-517))) (-15 -2586 ((-377 (-876 |t#1|)) $ (-517) (-517)))) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $)) (IF (|has| |t#1| (-15 -3296 (|t#1| |t#1| (-1077)))) (IF (|has| |t#1| (-15 -2080 ((-583 (-1077)) |t#1|))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1098)) (IF (|has| |t#1| (-882)) (IF (|has| |t#1| (-29 (-517))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-921)) (-6 (-1098))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-517)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-517) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-517) (-1018)) ((-262) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))) ((-893 |#1| #0# (-992)) . T) ((-844) |has| |#1| (-333)) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-970 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517)))) ((-1116) |has| |#1| (-333)) ((-1136 |#1| #0#) . T)) -((-1992 (((-107) $) 12)) (-3220 (((-3 |#3| "failed") $) 17) (((-3 (-1077) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL)) (-3402 ((|#3| $) 14) (((-1077) $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL))) -(((-1119 |#1| |#2| |#3|) (-10 -8 (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -1992 ((-107) |#1|))) (-1120 |#2| |#3|) (-964) (-1149 |#2|)) (T -1119)) -NIL -(-10 -8 (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3402 ((-1077) |#1|)) (-15 -3220 ((-3 (-1077) "failed") |#1|)) (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -1992 ((-107) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2964 ((|#2| $) 231 (-4024 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-3416 ((|#2| $) 267)) (-3666 (((-3 |#2| "failed") $) 263)) (-2131 ((|#2| $) 264)) (-1636 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-1453 (((-388 (-1073 $)) (-1073 $)) 240 (-4024 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1322 (($ $) 162 (|has| |#1| (-333)))) (-3306 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3908 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 237 (-4024 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1612 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3502 (((-517) $) 249 (-4024 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1659 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#2| "failed") $) 270) (((-3 (-517) "failed") $) 259 (-4024 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) 257 (-4024 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-1077) "failed") $) 242 (-4024 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333))))) (-3402 ((|#2| $) 269) (((-517) $) 260 (-4024 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) 258 (-4024 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-1077) $) 243 (-4024 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333))))) (-2419 (($ $) 266) (($ (-517) $) 265)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-2364 (($ $) 60)) (-2947 (((-623 |#2|) (-623 $)) 221 (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) 220 (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 219 (-4024 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) 218 (-4024 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3550 (((-3 $ "failed") $) 34)) (-2586 (((-377 (-876 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-876 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2192 (($) 233 (-4024 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2356 (($ $ $) 156 (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2022 (((-107) $) 164 (|has| |#1| (-333)))) (-2671 (((-107) $) 247 (-4024 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3690 (((-107) $) 73)) (-2102 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 225 (-4024 (|has| |#2| (-810 (-349))) (|has| |#1| (-333)))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 224 (-4024 (|has| |#2| (-810 (-517))) (|has| |#1| (-333))))) (-3250 (((-517) $) 100) (((-517) $ (-517)) 99)) (-1690 (((-107) $) 31)) (-3662 (($ $) 229 (|has| |#1| (-333)))) (-3858 ((|#2| $) 227 (|has| |#1| (-333)))) (-2940 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-1639 (((-3 $ "failed") $) 261 (-4024 (|has| |#2| (-1053)) (|has| |#1| (-333))))) (-2321 (((-107) $) 248 (-4024 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2113 (($ $ (-845)) 101)) (-2603 (($ (-1 |#1| (-517)) $) 173)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3022 (((-107) $) 62)) (-2059 (($ |#1| (-517)) 61) (($ $ (-992) (-517)) 76) (($ $ (-583 (-992)) (-583 (-517))) 75)) (-3480 (($ $ $) 251 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-4095 (($ $ $) 252 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3312 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-333)))) (-1232 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-2323 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-2140 (($ (-517) |#2|) 268)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 165 (|has| |#1| (-333)))) (-3296 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 169 (-3786 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-882)) (|has| |#1| (-1098)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-37 (-377 (-517)))))))) (-2578 (($) 262 (-4024 (|has| |#2| (-1053)) (|has| |#1| (-333))) CONST)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 150 (|has| |#1| (-333)))) (-2361 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-2590 (($ $) 232 (-4024 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2713 ((|#2| $) 235 (-4024 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3835 (((-388 (-1073 $)) (-1073 $)) 238 (-4024 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1195 (((-388 (-1073 $)) (-1073 $)) 239 (-4024 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-3896 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 158 (|has| |#1| (-333)))) (-3175 (($ $ (-517)) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3898 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1077) |#2|) 212 (-4024 (|has| |#2| (-478 (-1077) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 |#2|)) 211 (-4024 (|has| |#2| (-478 (-1077) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) 210 (-4024 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) 209 (-4024 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) 208 (-4024 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) 207 (-4024 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3388 (((-703) $) 154 (|has| |#1| (-333)))) (-2612 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1018))) (($ $ |#2|) 206 (-4024 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 155 (|has| |#1| (-333)))) (-2042 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 216 (|has| |#1| (-333))) (($ $ (-703)) 84 (-3786 (-4024 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 82 (-3786 (-4024 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) 89 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1077) (-703)) 88 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1077))) 87 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1077)) 86 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1463 (($ $) 230 (|has| |#1| (-333)))) (-2082 ((|#2| $) 228 (|has| |#1| (-333)))) (-1191 (((-517) $) 64)) (-1670 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3367 (((-199) $) 246 (-4024 (|has| |#2| (-940)) (|has| |#1| (-333)))) (((-349) $) 245 (-4024 (|has| |#2| (-940)) (|has| |#1| (-333)))) (((-493) $) 244 (-4024 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-816 (-349)) $) 223 (-4024 (|has| |#2| (-558 (-816 (-349)))) (|has| |#1| (-333)))) (((-816 (-517)) $) 222 (-4024 (|has| |#2| (-558 (-816 (-517)))) (|has| |#1| (-333))))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 236 (-4024 (-4024 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#1| (-333))))) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 271) (($ (-1077)) 241 (-4024 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333)))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1939 ((|#1| $ (-517)) 59)) (-3385 (((-3 $ "failed") $) 48 (-3786 (-4024 (-3786 (|has| |#2| (-132)) (-4024 (|has| $ (-132)) (|has| |#2| (-833)))) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-3126 ((|#2| $) 234 (-4024 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1706 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1685 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2829 (($ $) 250 (-4024 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 214 (|has| |#1| (-333))) (($ $ (-703)) 85 (-3786 (-4024 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 83 (-3786 (-4024 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) 93 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1077) (-703)) 92 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1077))) 91 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1077)) 90 (-3786 (-4024 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1630 (((-107) $ $) 254 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1606 (((-107) $ $) 255 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 253 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1596 (((-107) $ $) 256 (-4024 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333))) (($ |#2| |#2|) 226 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-333))) (($ |#2| $) 204 (|has| |#1| (-333))) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) -(((-1120 |#1| |#2|) (-1189) (-964) (-1149 |t#1|)) (T -1120)) -((-1191 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1149 *3)) (-5 *2 (-517)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *1 (-1120 *3 *2)) (-4 *2 (-1149 *3)))) (-2140 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-964)) (-4 *1 (-1120 *4 *3)) (-4 *3 (-1149 *4)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1149 *3)))) (-2419 (*1 *1 *1) (-12 (-4 *1 (-1120 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1149 *2)))) (-2419 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1120 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1149 *3)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1149 *3)))) (-3666 (*1 *2 *1) (|partial| -12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1149 *3))))) -(-13 (-1118 |t#1|) (-955 |t#2|) (-10 -8 (-15 -2140 ($ (-517) |t#2|)) (-15 -1191 ((-517) $)) (-15 -3416 (|t#2| $)) (-15 -2419 ($ $)) (-15 -2419 ($ (-517) $)) (-15 -2262 ($ |t#2|)) (-15 -2131 (|t#2| $)) (-15 -3666 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-333)) (-6 (-912 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-517)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 |#2|) |has| |#1| (-333)) ((-37 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 |#2| |#2|) |has| |#1| (-333)) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) -3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-132))) (|has| |#1| (-132))) ((-134) -3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-940))) ((-558 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-940))) ((-558 (-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))) ((-558 (-816 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-816 (-349))))) ((-558 (-816 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-816 (-517))))) ((-205 |#2|) |has| |#1| (-333)) ((-207) -3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-207))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 |#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) ((-258 $ $) |has| (-517) (-1018)) ((-262) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-333) |has| |#1| (-333)) ((-308 |#2|) |has| |#1| (-333)) ((-347 |#2|) |has| |#1| (-333)) ((-370 |#2|) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 (-1077) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1077) |#2|))) ((-478 |#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-509) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-333)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((-579 |#2|) |has| |#1| (-333)) ((-650 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 |#2|) |has| |#1| (-333)) ((-650 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-723) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-724) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-726) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-727) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-752) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-777) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-779) -3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-779))) (-12 (|has| |#1| (-333)) (|has| |#2| (-752)))) ((-824 (-1077)) -3786 (-12 (|has| |#1| (-333)) (|has| |#2| (-824 (-1077)))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))) ((-810 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-810 (-349)))) ((-810 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-810 (-517)))) ((-808 |#2|) |has| |#1| (-333)) ((-833) -12 (|has| |#1| (-333)) (|has| |#2| (-833))) ((-893 |#1| #0# (-992)) . T) ((-844) |has| |#1| (-333)) ((-912 |#2|) |has| |#1| (-333)) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-940) -12 (|has| |#1| (-333)) (|has| |#2| (-940))) ((-955 (-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-517)))) ((-955 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-517)))) ((-955 (-1077)) -12 (|has| |#1| (-333)) (|has| |#2| (-955 (-1077)))) ((-955 |#2|) . T) ((-970 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-970 |#1|) . T) ((-970 |#2|) |has| |#1| (-333)) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) -12 (|has| |#1| (-333)) (|has| |#2| (-1053))) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517)))) ((-1112) |has| |#1| (-333)) ((-1116) |has| |#1| (-333)) ((-1118 |#1|) . T) ((-1136 |#1| #0#) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 70)) (-2964 ((|#2| $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 88)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-517)) 97) (($ $ (-517) (-517)) 99)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 47)) (-3416 ((|#2| $) 11)) (-3666 (((-3 |#2| "failed") $) 30)) (-2131 ((|#2| $) 31)) (-1636 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3502 (((-517) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 57)) (-1659 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) 144) (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-1077) "failed") $) NIL (-12 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333))))) (-3402 ((|#2| $) 143) (((-517) $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-955 (-517))) (|has| |#1| (-333)))) (((-1077) $) NIL (-12 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333))))) (-2419 (($ $) 61) (($ (-517) $) 24)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-2947 (((-623 |#2|) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3550 (((-3 $ "failed") $) 77)) (-2586 (((-377 (-876 |#1|)) $ (-517)) 112 (|has| |#1| (-509))) (((-377 (-876 |#1|)) $ (-517) (-517)) 114 (|has| |#1| (-509)))) (-2192 (($) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-2671 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3690 (((-107) $) 64)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| |#2| (-810 (-349))) (|has| |#1| (-333)))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| |#2| (-810 (-517))) (|has| |#1| (-333))))) (-3250 (((-517) $) 93) (((-517) $ (-517)) 95)) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL (|has| |#1| (-333)))) (-3858 ((|#2| $) 151 (|has| |#1| (-333)))) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1639 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1053)) (|has| |#1| (-333))))) (-2321 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2113 (($ $ (-845)) 136)) (-2603 (($ (-1 |#1| (-517)) $) 132)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-517)) 19) (($ $ (-992) (-517)) NIL) (($ $ (-583 (-992)) (-583 (-517))) NIL)) (-3480 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-4095 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3312 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-333)))) (-1232 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2140 (($ (-517) |#2|) 10)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 145 (|has| |#1| (-333)))) (-3296 (($ $) 214 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 219 (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098)))))) (-2578 (($) NIL (-12 (|has| |#2| (-1053)) (|has| |#1| (-333))) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2590 (($ $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2713 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-333))))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-517)) 126)) (-2333 (((-3 $ "failed") $ $) 116 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1077) |#2|) NIL (-12 (|has| |#2| (-478 (-1077) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 |#2|)) NIL (-12 (|has| |#2| (-478 (-1077) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-517)) 91) (($ $ $) 79 (|has| (-517) (-1018))) (($ $ |#2|) NIL (-12 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 137 (-3786 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) 140 (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1463 (($ $) NIL (|has| |#1| (-333)))) (-2082 ((|#2| $) 152 (|has| |#1| (-333)))) (-1191 (((-517) $) 12)) (-1670 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-3367 (((-199) $) NIL (-12 (|has| |#2| (-940)) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| |#2| (-940)) (|has| |#1| (-333)))) (((-493) $) NIL (-12 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-816 (-349)) $) NIL (-12 (|has| |#2| (-558 (-816 (-349)))) (|has| |#1| (-333)))) (((-816 (-517)) $) NIL (-12 (|has| |#2| (-558 (-816 (-517)))) (|has| |#1| (-333))))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833)) (|has| |#1| (-333))))) (-2384 (($ $) 124)) (-2262 (((-787) $) 243) (($ (-517)) 23) (($ |#1|) 21 (|has| |#1| (-156))) (($ |#2|) 20) (($ (-1077)) NIL (-12 (|has| |#2| (-955 (-1077))) (|has| |#1| (-333)))) (($ (-377 (-517))) 155 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-517)) 74)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833)) (|has| |#1| (-333))) (-12 (|has| |#2| (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1818 (((-703)) 142)) (-3605 ((|#1| $) 90)) (-3126 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-1706 (($ $) 204 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 208 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-517)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 210 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 206 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-2829 (($ $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 13 T CONST)) (-3675 (($) 17 T CONST)) (-3348 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3786 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3786 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#2| (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1630 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1606 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1572 (((-107) $ $) 63)) (-1618 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1596 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 149 (|has| |#1| (-333))) (($ |#2| |#2|) 150 (|has| |#1| (-333)))) (-1680 (($ $) 213) (($ $ $) 68)) (-1666 (($ $ $) 66)) (** (($ $ (-845)) NIL) (($ $ (-703)) 73) (($ $ (-517)) 146 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-333))) (($ |#2| $) 147 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-1121 |#1| |#2|) (-1120 |#1| |#2|) (-964) (-1149 |#1|)) (T -1121)) -NIL -(-1120 |#1| |#2|) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2964 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 10)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2491 (($ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2025 (((-107) $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2147 (($ $ (-517)) NIL) (($ $ (-517) (-517)) NIL)) (-3747 (((-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-3416 (((-1150 |#1| |#2| |#3|) $) NIL)) (-3666 (((-3 (-1150 |#1| |#2| |#3|) "failed") $) NIL)) (-2131 (((-1150 |#1| |#2| |#3|) $) NIL)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3502 (((-517) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3452 (($ (-1058 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-1150 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1077) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))))) (-3402 (((-1150 |#1| |#2| |#3|) $) NIL) (((-1077) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))))) (-2419 (($ $) NIL) (($ (-517) $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-1150 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-1150 |#1| |#2| |#3|))) (|:| |vec| (-1158 (-1150 |#1| |#2| |#3|)))) (-623 $) (-1158 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3550 (((-3 $ "failed") $) NIL)) (-2586 (((-377 (-876 |#1|)) $ (-517)) NIL (|has| |#1| (-509))) (((-377 (-876 |#1|)) $ (-517) (-517)) NIL (|has| |#1| (-509)))) (-2192 (($) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-2671 (((-107) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2939 (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-810 (-517))) (|has| |#1| (-333)))) (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-810 (-349))) (|has| |#1| (-333))))) (-3250 (((-517) $) NIL) (((-517) $ (-517)) NIL)) (-1690 (((-107) $) NIL)) (-3662 (($ $) NIL (|has| |#1| (-333)))) (-3858 (((-1150 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1639 (((-3 $ "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-333))))) (-2321 (((-107) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2113 (($ $ (-845)) NIL)) (-2603 (($ (-1 |#1| (-517)) $) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-517)) 17) (($ $ (-992) (-517)) NIL) (($ $ (-583 (-992)) (-583 (-517))) NIL)) (-3480 (($ $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-4095 (($ $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2140 (($ (-517) (-1150 |#1| |#2| |#3|)) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) 25 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 26 (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1053)) (|has| |#1| (-333))) CONST)) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-2590 (($ $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2713 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-517)) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1077) (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-478 (-1077) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1077)) (-583 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-478 (-1077) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1150 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1150 |#1| |#2| |#3|)) (-583 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-517)) NIL) (($ $ $) NIL (|has| (-517) (-1018))) (($ $ (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-258 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1154 |#2|)) 24) (($ $ (-703)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 23 (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1463 (($ $) NIL (|has| |#1| (-333)))) (-2082 (((-1150 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-1191 (((-517) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3367 (((-493) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-940)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-940)) (|has| |#1| (-333)))) (((-816 (-349)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-558 (-816 (-349)))) (|has| |#1| (-333)))) (((-816 (-517)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-558 (-816 (-517)))) (|has| |#1| (-333))))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1150 |#1| |#2| |#3|)) NIL) (($ (-1154 |#2|)) 22) (($ (-1077)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-1077))) (|has| |#1| (-333)))) (($ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-955 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-1939 ((|#1| $ (-517)) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 11)) (-3126 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-833)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2829 (($ $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 19 T CONST)) (-3675 (($) 15 T CONST)) (-3348 (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077) (-703)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-583 (-1077))) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077)))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-824 (-1077))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-824 (-1077))))))) (-1630 (((-107) $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1606 (((-107) $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1596 (((-107) $ $) NIL (-3786 (-12 (|has| (-1150 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333))) (($ (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 20)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1150 |#1| |#2| |#3|)) NIL (|has| |#1| (-333))) (($ (-1150 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-1122 |#1| |#2| |#3|) (-13 (-1120 |#1| (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1122)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))) -(-13 (-1120 |#1| (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) -((-3185 (((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107)) 10)) (-2470 (((-388 |#1|) |#1|) 21)) (-3896 (((-388 |#1|) |#1|) 20))) -(((-1123 |#1|) (-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1|)) (-15 -3185 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107)))) (-1134 (-517))) (T -1123)) -((-3185 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517))))) (-2470 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517))))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517)))))) -(-10 -7 (-15 -3896 ((-388 |#1|) |#1|)) (-15 -2470 ((-388 |#1|) |#1|)) (-15 -3185 ((-2 (|:| |contp| (-517)) (|:| -2283 (-583 (-2 (|:| |irr| |#1|) (|:| -1332 (-517)))))) |#1| (-107)))) -((-3312 (((-1058 |#2|) (-1 |#2| |#1|) (-1125 |#1|)) 23 (|has| |#1| (-777))) (((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|)) 17))) -(((-1124 |#1| |#2|) (-10 -7 (-15 -3312 ((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) (IF (|has| |#1| (-777)) (-15 -3312 ((-1058 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) |%noBranch|)) (-1112) (-1112)) (T -1124)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-777)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1058 *6)) (-5 *1 (-1124 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1125 *6)) (-5 *1 (-1124 *5 *6))))) -(-10 -7 (-15 -3312 ((-1125 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) (IF (|has| |#1| (-777)) (-15 -3312 ((-1058 |#2|) (-1 |#2| |#1|) (-1125 |#1|))) |%noBranch|)) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-2202 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3312 (((-1058 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-777)))) (-3315 ((|#1| $) 14)) (-2144 ((|#1| $) 10)) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-2154 (((-517) $) 18)) (-2370 ((|#1| $) 17)) (-2163 ((|#1| $) 11)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-3545 (((-107) $) 16)) (-2287 (((-1058 |#1|) $) 38 (|has| |#1| (-777))) (((-1058 |#1|) (-583 $)) 37 (|has| |#1| (-777)))) (-3367 (($ |#1|) 25)) (-2262 (($ (-1001 |#1|)) 24) (((-787) $) 34 (|has| |#1| (-1006)))) (-1594 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1315 (($ $ (-517)) 13)) (-1572 (((-107) $ $) 27 (|has| |#1| (-1006))))) -(((-1125 |#1|) (-13 (-1000 |#1|) (-10 -8 (-15 -1594 ($ |#1|)) (-15 -2202 ($ |#1|)) (-15 -2262 ($ (-1001 |#1|))) (-15 -3545 ((-107) $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1002 |#1| (-1058 |#1|))) |%noBranch|))) (-1112)) (T -1125)) -((-1594 (*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1112)))) (-2202 (*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1112)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1112)) (-5 *1 (-1125 *3)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1125 *3)) (-4 *3 (-1112))))) -(-13 (-1000 |#1|) (-10 -8 (-15 -1594 ($ |#1|)) (-15 -2202 ($ |#1|)) (-15 -2262 ($ (-1001 |#1|))) (-15 -3545 ((-107) $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |#1| (-777)) (-6 (-1002 |#1| (-1058 |#1|))) |%noBranch|))) -((-3312 (((-1131 |#3| |#4|) (-1 |#4| |#2|) (-1131 |#1| |#2|)) 15))) -(((-1126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 ((-1131 |#3| |#4|) (-1 |#4| |#2|) (-1131 |#1| |#2|)))) (-1077) (-964) (-1077) (-964)) (T -1126)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1131 *5 *6)) (-14 *5 (-1077)) (-4 *6 (-964)) (-4 *8 (-964)) (-5 *2 (-1131 *7 *8)) (-5 *1 (-1126 *5 *6 *7 *8)) (-14 *7 (-1077))))) -(-10 -7 (-15 -3312 ((-1131 |#3| |#4|) (-1 |#4| |#2|) (-1131 |#1| |#2|)))) -((-1955 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1703 ((|#1| |#3|) 13)) (-3253 ((|#3| |#3|) 19))) -(((-1127 |#1| |#2| |#3|) (-10 -7 (-15 -1703 (|#1| |#3|)) (-15 -3253 (|#3| |#3|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-912 |#1|) (-1134 |#2|)) (T -1127)) -((-1955 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1127 *4 *5 *3)) (-4 *3 (-1134 *5)))) (-3253 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-912 *3)) (-5 *1 (-1127 *3 *4 *2)) (-4 *2 (-1134 *4)))) (-1703 (*1 *2 *3) (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-1127 *2 *4 *3)) (-4 *3 (-1134 *4))))) -(-10 -7 (-15 -1703 (|#1| |#3|)) (-15 -3253 (|#3| |#3|)) (-15 -1955 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3274 (((-3 |#2| "failed") |#2| (-703) |#1|) 29)) (-1898 (((-3 |#2| "failed") |#2| (-703)) 30)) (-3042 (((-3 (-2 (|:| -3287 |#2|) (|:| -3302 |#2|)) "failed") |#2|) 43)) (-1312 (((-583 |#2|) |#2|) 45)) (-3370 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1128 |#1| |#2|) (-10 -7 (-15 -1898 ((-3 |#2| "failed") |#2| (-703))) (-15 -3274 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -3370 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3042 ((-3 (-2 (|:| -3287 |#2|) (|:| -3302 |#2|)) "failed") |#2|)) (-15 -1312 ((-583 |#2|) |#2|))) (-13 (-509) (-134)) (-1134 |#1|)) (T -1128)) -((-1312 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1128 *4 *3)) (-4 *3 (-1134 *4)))) (-3042 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3287 *3) (|:| -3302 *3))) (-5 *1 (-1128 *4 *3)) (-4 *3 (-1134 *4)))) (-3370 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-1134 *3)))) (-3274 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1128 *4 *2)) (-4 *2 (-1134 *4)))) (-1898 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1128 *4 *2)) (-4 *2 (-1134 *4))))) -(-10 -7 (-15 -1898 ((-3 |#2| "failed") |#2| (-703))) (-15 -3274 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -3370 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3042 ((-3 (-2 (|:| -3287 |#2|) (|:| -3302 |#2|)) "failed") |#2|)) (-15 -1312 ((-583 |#2|) |#2|))) -((-3920 (((-3 (-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) "failed") |#2| |#2|) 32))) -(((-1129 |#1| |#2|) (-10 -7 (-15 -3920 ((-3 (-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) "failed") |#2| |#2|))) (-509) (-1134 |#1|)) (T -1129)) -((-3920 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-1129 *4 *3)) (-4 *3 (-1134 *4))))) -(-10 -7 (-15 -3920 ((-3 (-2 (|:| -2773 |#2|) (|:| -3292 |#2|)) "failed") |#2| |#2|))) -((-1443 ((|#2| |#2| |#2|) 19)) (-2486 ((|#2| |#2| |#2|) 30)) (-2367 ((|#2| |#2| |#2| (-703) (-703)) 36))) -(((-1130 |#1| |#2|) (-10 -7 (-15 -1443 (|#2| |#2| |#2|)) (-15 -2486 (|#2| |#2| |#2|)) (-15 -2367 (|#2| |#2| |#2| (-703) (-703)))) (-964) (-1134 |#1|)) (T -1130)) -((-2367 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-964)) (-5 *1 (-1130 *4 *2)) (-4 *2 (-1134 *4)))) (-2486 (*1 *2 *2 *2) (-12 (-4 *3 (-964)) (-5 *1 (-1130 *3 *2)) (-4 *2 (-1134 *3)))) (-1443 (*1 *2 *2 *2) (-12 (-4 *3 (-964)) (-5 *1 (-1130 *3 *2)) (-4 *2 (-1134 *3))))) -(-10 -7 (-15 -1443 (|#2| |#2| |#2|)) (-15 -2486 (|#2| |#2| |#2|)) (-15 -2367 (|#2| |#2| |#2| (-703) (-703)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1335 (((-1158 |#2|) $ (-703)) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-4170 (($ (-1073 |#2|)) NIL)) (-1428 (((-1073 $) $ (-992)) NIL) (((-1073 |#2|) $) NIL)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-2491 (($ $) NIL (|has| |#2| (-509)))) (-2025 (((-107) $) NIL (|has| |#2| (-509)))) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-992))) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-4068 (($ $ $) NIL (|has| |#2| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1322 (($ $) NIL (|has| |#2| (-421)))) (-3306 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1765 (((-107) $ $) NIL (|has| |#2| (-333)))) (-1401 (($ $ (-703)) NIL)) (-1861 (($ $ (-703)) NIL)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-421)))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-955 (-517)))) (((-3 (-992) "failed") $) NIL)) (-3402 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-955 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-955 (-517)))) (((-992) $) NIL)) (-2133 (($ $ $ (-992)) NIL (|has| |#2| (-156))) ((|#2| $ $) NIL (|has| |#2| (-156)))) (-2383 (($ $ $) NIL (|has| |#2| (-333)))) (-2364 (($ $) NIL)) (-2947 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#2|)) (|:| |vec| (-1158 |#2|))) (-623 $) (-1158 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#2| (-333)))) (-2776 (($ $ $) NIL)) (-1554 (($ $ $) NIL (|has| |#2| (-509)))) (-1868 (((-2 (|:| -1570 |#2|) (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-4172 (($ $) NIL (|has| |#2| (-421))) (($ $ (-992)) NIL (|has| |#2| (-421)))) (-2350 (((-583 $) $) NIL)) (-2022 (((-107) $) NIL (|has| |#2| (-833)))) (-1760 (($ $ |#2| (-703) $) NIL)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) NIL (-12 (|has| (-992) (-810 (-349))) (|has| |#2| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) NIL (-12 (|has| (-992) (-810 (-517))) (|has| |#2| (-810 (-517)))))) (-3250 (((-703) $ $) NIL (|has| |#2| (-509)))) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1639 (((-3 $ "failed") $) NIL (|has| |#2| (-1053)))) (-2069 (($ (-1073 |#2|) (-992)) NIL) (($ (-1073 $) (-992)) NIL)) (-2113 (($ $ (-703)) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2059 (($ |#2| (-703)) 17) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-992)) NIL) (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL)) (-3942 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3480 (($ $ $) NIL (|has| |#2| (-779)))) (-4095 (($ $ $) NIL (|has| |#2| (-779)))) (-1542 (($ (-1 (-703) (-703)) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-3634 (((-1073 |#2|) $) NIL)) (-1958 (((-3 (-992) "failed") $) NIL)) (-2325 (($ $) NIL)) (-2336 ((|#2| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3232 (((-1060) $) NIL)) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) NIL)) (-1743 (((-3 (-583 $) "failed") $) NIL)) (-1442 (((-3 (-583 $) "failed") $) NIL)) (-3044 (((-3 (-2 (|:| |var| (-992)) (|:| -1725 (-703))) "failed") $) NIL)) (-3296 (($ $) NIL (|has| |#2| (-37 (-377 (-517)))))) (-2578 (($) NIL (|has| |#2| (-1053)) CONST)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 ((|#2| $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#2| (-421)))) (-2361 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2555 (($ $ (-703) |#2| $) NIL)) (-3835 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) NIL (|has| |#2| (-833)))) (-3896 (((-388 $) $) NIL (|has| |#2| (-833)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#2| (-333)))) (-2333 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3552 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-992) |#2|) NIL) (($ $ (-583 (-992)) (-583 |#2|)) NIL) (($ $ (-992) $) NIL) (($ $ (-583 (-992)) (-583 $)) NIL)) (-3388 (((-703) $) NIL (|has| |#2| (-333)))) (-2612 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#2| (-509))) ((|#2| (-377 $) |#2|) NIL (|has| |#2| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#2| (-509)))) (-3767 (((-3 $ "failed") $ (-703)) NIL)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#2| (-333)))) (-3115 (($ $ (-992)) NIL (|has| |#2| (-156))) ((|#2| $) NIL (|has| |#2| (-156)))) (-2042 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1191 (((-703) $) NIL) (((-703) $ (-992)) NIL) (((-583 (-703)) $ (-583 (-992))) NIL)) (-3367 (((-816 (-349)) $) NIL (-12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#2| (-558 (-816 (-349)))))) (((-816 (-517)) $) NIL (-12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#2| (-558 (-816 (-517)))))) (((-493) $) NIL (-12 (|has| (-992) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-4094 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-992)) NIL (|has| |#2| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-833))))) (-4150 (((-3 $ "failed") $ $) NIL (|has| |#2| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#2| (-509)))) (-2262 (((-787) $) 13) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-992)) NIL) (($ (-1154 |#1|)) 19) (($ (-377 (-517))) NIL (-3786 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-955 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-703)) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3385 (((-3 $ "failed") $) NIL (-3786 (-12 (|has| $ (-132)) (|has| |#2| (-833))) (|has| |#2| (-132))))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-2944 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-3675 (($) 14 T CONST)) (-3348 (($ $ (-992)) NIL) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1077)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1077) (-703)) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) NIL (|has| |#2| (-824 (-1077)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1630 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL)) (-1618 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1692 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1131 |#1| |#2|) (-13 (-1134 |#2|) (-10 -8 (-15 -2262 ($ (-1154 |#1|))) (-15 -2555 ($ $ (-703) |#2| $)))) (-1077) (-964)) (T -1131)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *3)) (-14 *3 (-1077)) (-5 *1 (-1131 *3 *4)) (-4 *4 (-964)))) (-2555 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1131 *4 *3)) (-14 *4 (-1077)) (-4 *3 (-964))))) -(-13 (-1134 |#2|) (-10 -8 (-15 -2262 ($ (-1154 |#1|))) (-15 -2555 ($ $ (-703) |#2| $)))) -((-3312 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-1132 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|))) (-964) (-1134 |#1|) (-964) (-1134 |#3|)) (T -1132)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-4 *2 (-1134 *6)) (-5 *1 (-1132 *5 *4 *6 *2)) (-4 *4 (-1134 *5))))) -(-10 -7 (-15 -3312 (|#4| (-1 |#3| |#1|) |#2|))) -((-1335 (((-1158 |#2|) $ (-703)) 113)) (-2080 (((-583 (-992)) $) 15)) (-4170 (($ (-1073 |#2|)) 66)) (-2675 (((-703) $) NIL) (((-703) $ (-583 (-992))) 18)) (-1453 (((-388 (-1073 $)) (-1073 $)) 184)) (-1322 (($ $) 174)) (-3306 (((-388 $) $) 172)) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 81)) (-1401 (($ $ (-703)) 70)) (-1861 (($ $ (-703)) 72)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-3220 (((-3 |#2| "failed") $) 116) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-992) "failed") $) NIL)) (-3402 ((|#2| $) 114) (((-377 (-517)) $) NIL) (((-517) $) NIL) (((-992) $) NIL)) (-1554 (($ $ $) 150)) (-1868 (((-2 (|:| -1570 |#2|) (|:| -2773 $) (|:| -3292 $)) $ $) 152)) (-3250 (((-703) $ $) 169)) (-1639 (((-3 $ "failed") $) 122)) (-2059 (($ |#2| (-703)) NIL) (($ $ (-992) (-703)) 46) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3942 (((-703) $) NIL) (((-703) $ (-992)) 41) (((-583 (-703)) $ (-583 (-992))) 42)) (-3634 (((-1073 |#2|) $) 58)) (-1958 (((-3 (-992) "failed") $) 39)) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) 69)) (-3296 (($ $) 195)) (-2578 (($) 118)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 181)) (-3835 (((-388 (-1073 $)) (-1073 $)) 87)) (-1195 (((-388 (-1073 $)) (-1073 $)) 85)) (-3896 (((-388 $) $) 105)) (-3552 (($ $ (-583 (-265 $))) 38) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-992) |#2|) 31) (($ $ (-583 (-992)) (-583 |#2|)) 28) (($ $ (-992) $) 25) (($ $ (-583 (-992)) (-583 $)) 23)) (-3388 (((-703) $) 187)) (-2612 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) 146) ((|#2| (-377 $) |#2|) 186) (((-377 $) $ (-377 $)) 168)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 190)) (-2042 (($ $ (-992)) 139) (($ $ (-583 (-992))) NIL) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) 137) (($ $ (-1077)) NIL) (($ $ (-583 (-1077))) NIL) (($ $ (-1077) (-703)) NIL) (($ $ (-583 (-1077)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-1191 (((-703) $) NIL) (((-703) $ (-992)) 16) (((-583 (-703)) $ (-583 (-992))) 20)) (-4094 ((|#2| $) NIL) (($ $ (-992)) 124)) (-4150 (((-3 $ "failed") $ $) 160) (((-3 (-377 $) "failed") (-377 $) $) 156)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-992)) 50) (($ (-377 (-517))) NIL) (($ $) NIL))) -(((-1133 |#1| |#2|) (-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -2612 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3388 ((-703) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -2612 (|#2| (-377 |#1|) |#2|)) (-15 -1421 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1868 ((-2 (|:| -1570 |#2|) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1554 (|#1| |#1| |#1|)) (-15 -4150 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -4150 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3250 ((-703) |#1| |#1|)) (-15 -2612 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1861 (|#1| |#1| (-703))) (-15 -1401 (|#1| |#1| (-703))) (-15 -1976 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| (-703))) (-15 -4170 (|#1| (-1073 |#2|))) (-15 -3634 ((-1073 |#2|) |#1|)) (-15 -1335 ((-1158 |#2|) |#1| (-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| |#1|)) (-15 -2612 (|#2| |#1| |#2|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1453 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -4094 (|#1| |#1| (-992))) (-15 -2080 ((-583 (-992)) |#1|)) (-15 -2675 ((-703) |#1| (-583 (-992)))) (-15 -2675 ((-703) |#1|)) (-15 -2059 (|#1| |#1| (-583 (-992)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-992) (-703))) (-15 -3942 ((-583 (-703)) |#1| (-583 (-992)))) (-15 -3942 ((-703) |#1| (-992))) (-15 -1958 ((-3 (-992) "failed") |#1|)) (-15 -1191 ((-583 (-703)) |#1| (-583 (-992)))) (-15 -1191 ((-703) |#1| (-992))) (-15 -3402 ((-992) |#1|)) (-15 -3220 ((-3 (-992) "failed") |#1|)) (-15 -2262 (|#1| (-992))) (-15 -3552 (|#1| |#1| (-583 (-992)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-992) |#1|)) (-15 -3552 (|#1| |#1| (-583 (-992)) (-583 |#2|))) (-15 -3552 (|#1| |#1| (-992) |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1191 ((-703) |#1|)) (-15 -2059 (|#1| |#2| (-703))) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3942 ((-703) |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2042 (|#1| |#1| (-583 (-992)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-992) (-703))) (-15 -2042 (|#1| |#1| (-583 (-992)))) (-15 -2042 (|#1| |#1| (-992))) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) (-1134 |#2|) (-964)) (T -1133)) -NIL -(-10 -8 (-15 -2262 (|#1| |#1|)) (-15 -2664 ((-1073 |#1|) (-1073 |#1|) (-1073 |#1|))) (-15 -3306 ((-388 |#1|) |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2578 (|#1|)) (-15 -1639 ((-3 |#1| "failed") |#1|)) (-15 -2612 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3388 ((-703) |#1|)) (-15 -2018 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -3296 (|#1| |#1|)) (-15 -2612 (|#2| (-377 |#1|) |#2|)) (-15 -1421 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1868 ((-2 (|:| -1570 |#2|) (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| |#1|)) (-15 -1554 (|#1| |#1| |#1|)) (-15 -4150 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -4150 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3250 ((-703) |#1| |#1|)) (-15 -2612 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1861 (|#1| |#1| (-703))) (-15 -1401 (|#1| |#1| (-703))) (-15 -1976 ((-2 (|:| -2773 |#1|) (|:| -3292 |#1|)) |#1| (-703))) (-15 -4170 (|#1| (-1073 |#2|))) (-15 -3634 ((-1073 |#2|) |#1|)) (-15 -1335 ((-1158 |#2|) |#1| (-703))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2042 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-1077) (-703))) (-15 -2042 (|#1| |#1| (-583 (-1077)))) (-15 -2042 (|#1| |#1| (-1077))) (-15 -2042 (|#1| |#1|)) (-15 -2042 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| |#1|)) (-15 -2612 (|#2| |#1| |#2|)) (-15 -3896 ((-388 |#1|) |#1|)) (-15 -1453 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -1195 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3835 ((-388 (-1073 |#1|)) (-1073 |#1|))) (-15 -3862 ((-3 (-583 (-1073 |#1|)) "failed") (-583 (-1073 |#1|)) (-1073 |#1|))) (-15 -4094 (|#1| |#1| (-992))) (-15 -2080 ((-583 (-992)) |#1|)) (-15 -2675 ((-703) |#1| (-583 (-992)))) (-15 -2675 ((-703) |#1|)) (-15 -2059 (|#1| |#1| (-583 (-992)) (-583 (-703)))) (-15 -2059 (|#1| |#1| (-992) (-703))) (-15 -3942 ((-583 (-703)) |#1| (-583 (-992)))) (-15 -3942 ((-703) |#1| (-992))) (-15 -1958 ((-3 (-992) "failed") |#1|)) (-15 -1191 ((-583 (-703)) |#1| (-583 (-992)))) (-15 -1191 ((-703) |#1| (-992))) (-15 -3402 ((-992) |#1|)) (-15 -3220 ((-3 (-992) "failed") |#1|)) (-15 -2262 (|#1| (-992))) (-15 -3552 (|#1| |#1| (-583 (-992)) (-583 |#1|))) (-15 -3552 (|#1| |#1| (-992) |#1|)) (-15 -3552 (|#1| |#1| (-583 (-992)) (-583 |#2|))) (-15 -3552 (|#1| |#1| (-992) |#2|)) (-15 -3552 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3552 (|#1| |#1| |#1| |#1|)) (-15 -3552 (|#1| |#1| (-265 |#1|))) (-15 -3552 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1191 ((-703) |#1|)) (-15 -2059 (|#1| |#2| (-703))) (-15 -3402 ((-517) |#1|)) (-15 -3220 ((-3 (-517) "failed") |#1|)) (-15 -3402 ((-377 (-517)) |#1|)) (-15 -3220 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2262 (|#1| |#2|)) (-15 -3220 ((-3 |#2| "failed") |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -3942 ((-703) |#1|)) (-15 -4094 (|#2| |#1|)) (-15 -2042 (|#1| |#1| (-583 (-992)) (-583 (-703)))) (-15 -2042 (|#1| |#1| (-992) (-703))) (-15 -2042 (|#1| |#1| (-583 (-992)))) (-15 -2042 (|#1| |#1| (-992))) (-15 -2262 (|#1| (-517))) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1335 (((-1158 |#1|) $ (-703)) 238)) (-2080 (((-583 (-992)) $) 110)) (-4170 (($ (-1073 |#1|)) 236)) (-1428 (((-1073 $) $ (-992)) 125) (((-1073 |#1|) $) 124)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-2491 (($ $) 88 (|has| |#1| (-509)))) (-2025 (((-107) $) 90 (|has| |#1| (-509)))) (-2675 (((-703) $) 112) (((-703) $ (-583 (-992))) 111)) (-1783 (((-3 $ "failed") $ $) 19)) (-4068 (($ $ $) 223 (|has| |#1| (-509)))) (-1453 (((-388 (-1073 $)) (-1073 $)) 100 (|has| |#1| (-833)))) (-1322 (($ $) 98 (|has| |#1| (-421)))) (-3306 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3862 (((-3 (-583 (-1073 $)) "failed") (-583 (-1073 $)) (-1073 $)) 103 (|has| |#1| (-833)))) (-1765 (((-107) $ $) 208 (|has| |#1| (-333)))) (-1401 (($ $ (-703)) 231)) (-1861 (($ $ (-703)) 230)) (-1421 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-421)))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-955 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-955 (-517)))) (((-3 (-992) "failed") $) 136)) (-3402 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-955 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-955 (-517)))) (((-992) $) 135)) (-2133 (($ $ $ (-992)) 108 (|has| |#1| (-156))) ((|#1| $ $) 226 (|has| |#1| (-156)))) (-2383 (($ $ $) 212 (|has| |#1| (-333)))) (-2364 (($ $) 154)) (-2947 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 (-517))) (|:| |vec| (-1158 (-517)))) (-623 $) (-1158 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -3725 (-623 |#1|)) (|:| |vec| (-1158 |#1|))) (-623 $) (-1158 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 211 (|has| |#1| (-333)))) (-2776 (($ $ $) 229)) (-1554 (($ $ $) 220 (|has| |#1| (-509)))) (-1868 (((-2 (|:| -1570 |#1|) (|:| -2773 $) (|:| -3292 $)) $ $) 219 (|has| |#1| (-509)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 206 (|has| |#1| (-333)))) (-4172 (($ $) 176 (|has| |#1| (-421))) (($ $ (-992)) 105 (|has| |#1| (-421)))) (-2350 (((-583 $) $) 109)) (-2022 (((-107) $) 96 (|has| |#1| (-833)))) (-1760 (($ $ |#1| (-703) $) 172)) (-2939 (((-813 (-349) $) $ (-816 (-349)) (-813 (-349) $)) 84 (-12 (|has| (-992) (-810 (-349))) (|has| |#1| (-810 (-349))))) (((-813 (-517) $) $ (-816 (-517)) (-813 (-517) $)) 83 (-12 (|has| (-992) (-810 (-517))) (|has| |#1| (-810 (-517)))))) (-3250 (((-703) $ $) 224 (|has| |#1| (-509)))) (-1690 (((-107) $) 31)) (-2516 (((-703) $) 169)) (-1639 (((-3 $ "failed") $) 204 (|has| |#1| (-1053)))) (-2069 (($ (-1073 |#1|) (-992)) 117) (($ (-1073 $) (-992)) 116)) (-2113 (($ $ (-703)) 235)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 215 (|has| |#1| (-333)))) (-1300 (((-583 $) $) 126)) (-3022 (((-107) $) 152)) (-2059 (($ |#1| (-703)) 153) (($ $ (-992) (-703)) 119) (($ $ (-583 (-992)) (-583 (-703))) 118)) (-2302 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $ (-992)) 120) (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 233)) (-3942 (((-703) $) 170) (((-703) $ (-992)) 122) (((-583 (-703)) $ (-583 (-992))) 121)) (-3480 (($ $ $) 79 (|has| |#1| (-779)))) (-4095 (($ $ $) 78 (|has| |#1| (-779)))) (-1542 (($ (-1 (-703) (-703)) $) 171)) (-3312 (($ (-1 |#1| |#1|) $) 151)) (-3634 (((-1073 |#1|) $) 237)) (-1958 (((-3 (-992) "failed") $) 123)) (-2325 (($ $) 149)) (-2336 ((|#1| $) 148)) (-2323 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3232 (((-1060) $) 9)) (-1976 (((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703)) 232)) (-1743 (((-3 (-583 $) "failed") $) 114)) (-1442 (((-3 (-583 $) "failed") $) 115)) (-3044 (((-3 (-2 (|:| |var| (-992)) (|:| -1725 (-703))) "failed") $) 113)) (-3296 (($ $) 216 (|has| |#1| (-37 (-377 (-517)))))) (-2578 (($) 203 (|has| |#1| (-1053)) CONST)) (-4130 (((-1024) $) 10)) (-2301 (((-107) $) 166)) (-2311 ((|#1| $) 167)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 95 (|has| |#1| (-421)))) (-2361 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-3835 (((-388 (-1073 $)) (-1073 $)) 102 (|has| |#1| (-833)))) (-1195 (((-388 (-1073 $)) (-1073 $)) 101 (|has| |#1| (-833)))) (-3896 (((-388 $) $) 99 (|has| |#1| (-833)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 213 (|has| |#1| (-333)))) (-2333 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 207 (|has| |#1| (-333)))) (-3552 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ (-992) |#1|) 141) (($ $ (-583 (-992)) (-583 |#1|)) 140) (($ $ (-992) $) 139) (($ $ (-583 (-992)) (-583 $)) 138)) (-3388 (((-703) $) 209 (|has| |#1| (-333)))) (-2612 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-377 $) (-377 $) (-377 $)) 225 (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) 217 (|has| |#1| (-333))) (((-377 $) $ (-377 $)) 205 (|has| |#1| (-509)))) (-3767 (((-3 $ "failed") $ (-703)) 234)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 210 (|has| |#1| (-333)))) (-3115 (($ $ (-992)) 107 (|has| |#1| (-156))) ((|#1| $) 227 (|has| |#1| (-156)))) (-2042 (($ $ (-992)) 42) (($ $ (-583 (-992))) 41) (($ $ (-992) (-703)) 40) (($ $ (-583 (-992)) (-583 (-703))) 39) (($ $ (-703)) 253) (($ $) 251) (($ $ (-1077)) 250 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 249 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 248 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 247 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-1191 (((-703) $) 150) (((-703) $ (-992)) 130) (((-583 (-703)) $ (-583 (-992))) 129)) (-3367 (((-816 (-349)) $) 82 (-12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349)))))) (((-816 (-517)) $) 81 (-12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517)))))) (((-493) $) 80 (-12 (|has| (-992) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-4094 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ (-992)) 106 (|has| |#1| (-421)))) (-2767 (((-3 (-1158 $) "failed") (-623 $)) 104 (-4024 (|has| $ (-132)) (|has| |#1| (-833))))) (-4150 (((-3 $ "failed") $ $) 222 (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) 221 (|has| |#1| (-509)))) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ (-992)) 137) (($ (-377 (-517))) 72 (-3786 (|has| |#1| (-955 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-3186 (((-583 |#1|) $) 168)) (-1939 ((|#1| $ (-703)) 155) (($ $ (-992) (-703)) 128) (($ $ (-583 (-992)) (-583 (-703))) 127)) (-3385 (((-3 $ "failed") $) 73 (-3786 (-4024 (|has| $ (-132)) (|has| |#1| (-833))) (|has| |#1| (-132))))) (-1818 (((-703)) 29)) (-2308 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-2944 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-992)) 38) (($ $ (-583 (-992))) 37) (($ $ (-992) (-703)) 36) (($ $ (-583 (-992)) (-583 (-703))) 35) (($ $ (-703)) 254) (($ $) 252) (($ $ (-1077)) 246 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077))) 245 (|has| |#1| (-824 (-1077)))) (($ $ (-1077) (-703)) 244 (|has| |#1| (-824 (-1077)))) (($ $ (-583 (-1077)) (-583 (-703))) 243 (|has| |#1| (-824 (-1077)))) (($ $ (-1 |#1| |#1|) (-703)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1630 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 6)) (-1618 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1692 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1134 |#1|) (-1189) (-964)) (T -1134)) -((-1335 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1134 *4)) (-4 *4 (-964)) (-5 *2 (-1158 *4)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-5 *2 (-1073 *3)))) (-4170 (*1 *1 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-964)) (-4 *1 (-1134 *3)))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) (-3767 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) (-2302 (*1 *2 *1 *1) (-12 (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-1134 *3)))) (-1976 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-1134 *4)))) (-1401 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) (-1861 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) (-2776 (*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)))) (-2042 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-156)))) (-2133 (*1 *2 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-156)))) (-2612 (*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-4 *3 (-509)))) (-3250 (*1 *2 *1 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-4 *3 (-509)) (-5 *2 (-703)))) (-4068 (*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509)))) (-4150 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509)))) (-4150 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-4 *3 (-509)))) (-1554 (*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509)))) (-1868 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-5 *2 (-2 (|:| -1570 *3) (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-1134 *3)))) (-1421 (*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-964)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1134 *3)))) (-2612 (*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517))))))) -(-13 (-873 |t#1| (-703) (-992)) (-258 |t#1| |t#1|) (-258 $ $) (-207) (-205 |t#1|) (-10 -8 (-15 -1335 ((-1158 |t#1|) $ (-703))) (-15 -3634 ((-1073 |t#1|) $)) (-15 -4170 ($ (-1073 |t#1|))) (-15 -2113 ($ $ (-703))) (-15 -3767 ((-3 $ "failed") $ (-703))) (-15 -2302 ((-2 (|:| -2773 $) (|:| -3292 $)) $ $)) (-15 -1976 ((-2 (|:| -2773 $) (|:| -3292 $)) $ (-703))) (-15 -1401 ($ $ (-703))) (-15 -1861 ($ $ (-703))) (-15 -2776 ($ $ $)) (-15 -2042 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1053)) (-6 (-1053)) |%noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -3115 (|t#1| $)) (-15 -2133 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-258 (-377 $) (-377 $))) (-15 -2612 ((-377 $) (-377 $) (-377 $))) (-15 -3250 ((-703) $ $)) (-15 -4068 ($ $ $)) (-15 -4150 ((-3 $ "failed") $ $)) (-15 -4150 ((-3 (-377 $) "failed") (-377 $) $)) (-15 -1554 ($ $ $)) (-15 -1868 ((-2 (|:| -1570 |t#1|) (|:| -2773 $) (|:| -3292 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-421)) (-15 -1421 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-278)) (-6 -4191) (-15 -2612 (|t#1| (-377 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-15 -3296 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-703)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| (-992) (-558 (-493))) (|has| |#1| (-558 (-493)))) ((-558 (-816 (-349))) -12 (|has| (-992) (-558 (-816 (-349)))) (|has| |#1| (-558 (-816 (-349))))) ((-558 (-816 (-517))) -12 (|has| (-992) (-558 (-816 (-517)))) (|has| |#1| (-558 (-816 (-517))))) ((-205 |#1|) . T) ((-207) . T) ((-258 (-377 $) (-377 $)) |has| |#1| (-509)) ((-258 |#1| |#1|) . T) ((-258 $ $) . T) ((-262) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 $) . T) ((-296 |#1| #0#) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3786 (|has| |#1| (-833)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-478 #2=(-992) |#1|) . T) ((-478 #2# $) . T) ((-478 $ $) . T) ((-509) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-824 #2#) . T) ((-824 (-1077)) |has| |#1| (-824 (-1077))) ((-810 (-349)) -12 (|has| (-992) (-810 (-349))) (|has| |#1| (-810 (-349)))) ((-810 (-517)) -12 (|has| (-992) (-810 (-517))) (|has| |#1| (-810 (-517)))) ((-873 |#1| #0# #2#) . T) ((-833) |has| |#1| (-833)) ((-844) |has| |#1| (-333)) ((-955 (-377 (-517))) |has| |#1| (-955 (-377 (-517)))) ((-955 (-517)) |has| |#1| (-955 (-517))) ((-955 #2#) . T) ((-955 |#1|) . T) ((-970 #1#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-833)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1053) |has| |#1| (-1053)) ((-1116) |has| |#1| (-833))) -((-2080 (((-583 (-992)) $) 28)) (-2364 (($ $) 25)) (-2059 (($ |#2| |#3|) NIL) (($ $ (-992) |#3|) 22) (($ $ (-583 (-992)) (-583 |#3|)) 20)) (-2325 (($ $) 14)) (-2336 ((|#2| $) 12)) (-1191 ((|#3| $) 10))) -(((-1135 |#1| |#2| |#3|) (-10 -8 (-15 -2080 ((-583 (-992)) |#1|)) (-15 -2059 (|#1| |#1| (-583 (-992)) (-583 |#3|))) (-15 -2059 (|#1| |#1| (-992) |#3|)) (-15 -2364 (|#1| |#1|)) (-15 -2059 (|#1| |#2| |#3|)) (-15 -1191 (|#3| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -2336 (|#2| |#1|))) (-1136 |#2| |#3|) (-964) (-724)) (T -1135)) -NIL -(-10 -8 (-15 -2080 ((-583 (-992)) |#1|)) (-15 -2059 (|#1| |#1| (-583 (-992)) (-583 |#3|))) (-15 -2059 (|#1| |#1| (-992) |#3|)) (-15 -2364 (|#1| |#1|)) (-15 -2059 (|#1| |#2| |#3|)) (-15 -1191 (|#3| |#1|)) (-15 -2325 (|#1| |#1|)) (-15 -2336 (|#2| |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-3747 (((-1058 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-3690 (((-107) $) 73)) (-3250 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-1690 (((-107) $) 31)) (-2113 (($ $ (-845)) 101)) (-3022 (((-107) $) 62)) (-2059 (($ |#1| |#2|) 61) (($ $ (-992) |#2|) 76) (($ $ (-583 (-992)) (-583 |#2|)) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-3175 (($ $ |#2|) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2612 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1018)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 89 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1077) (-703)) 88 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1077))) 87 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1077)) 86 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1191 ((|#2| $) 64)) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1939 ((|#1| $ |#2|) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2194 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 93 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1077) (-703)) 92 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1077))) 91 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1077)) 90 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) -(((-1136 |#1| |#2|) (-1189) (-964) (-724)) (T -1136)) -((-3747 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-1058 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2612 (*1 *2 *1 *3) (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (-5 *2 (-1077)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-3250 (*1 *2 *1 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-2147 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2262 (*2 (-1077)))) (-4 *2 (-964)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) (-3552 (*1 *2 *1 *3) (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1058 *3))))) -(-13 (-893 |t#1| |t#2| (-992)) (-10 -8 (-15 -3747 ((-1058 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2612 (|t#1| $ |t#2|)) (-15 -3791 ((-1077) $)) (-15 -3605 (|t#1| $)) (-15 -2113 ($ $ (-845))) (-15 -3250 (|t#2| $)) (-15 -3250 (|t#2| $ |t#2|)) (-15 -2147 ($ $ |t#2|)) (-15 -2147 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2262 (|t#1| (-1077)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2194 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3175 ($ $ |t#2|)) (IF (|has| |t#2| (-1018)) (-6 (-258 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-207)) (IF (|has| |t#1| (-824 (-1077))) (-6 (-824 (-1077))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3552 ((-1058 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 #0# #0#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-258 $ $) |has| |#2| (-1018)) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 #0#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-824 (-1077)))) ((-893 |#1| |#2| (-992)) . T) ((-970 #0#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-1322 ((|#2| |#2|) 12)) (-3306 (((-388 |#2|) |#2|) 14)) (-1528 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))) 30))) -(((-1137 |#1| |#2|) (-10 -7 (-15 -3306 ((-388 |#2|) |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1528 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))))) (-509) (-13 (-1134 |#1|) (-509) (-10 -8 (-15 -2361 ($ $ $))))) (T -1137)) -((-1528 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1134 *3) (-509) (-10 -8 (-15 -2361 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1137 *3 *4)))) (-1322 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1137 *3 *2)) (-4 *2 (-13 (-1134 *3) (-509) (-10 -8 (-15 -2361 ($ $ $))))))) (-3306 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1137 *4 *3)) (-4 *3 (-13 (-1134 *4) (-509) (-10 -8 (-15 -2361 ($ $ $)))))))) -(-10 -7 (-15 -3306 ((-388 |#2|) |#2|)) (-15 -1322 (|#2| |#2|)) (-15 -1528 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))))) -((-3312 (((-1143 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1143 |#1| |#3| |#5|)) 23))) -(((-1138 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3312 ((-1143 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1143 |#1| |#3| |#5|)))) (-964) (-964) (-1077) (-1077) |#1| |#2|) (T -1138)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5 *7 *9)) (-4 *5 (-964)) (-4 *6 (-964)) (-14 *7 (-1077)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1143 *6 *8 *10)) (-5 *1 (-1138 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1077))))) -(-10 -7 (-15 -3312 ((-1143 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1143 |#1| |#3| |#5|)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1636 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 162 (|has| |#1| (-333)))) (-3306 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3908 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1612 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1659 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 156 (|has| |#1| (-333)))) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2022 (((-107) $) 164 (|has| |#1| (-333)))) (-3690 (((-107) $) 73)) (-2102 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) 101) (($ $ (-377 (-517))) 171)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3022 (((-107) $) 62)) (-2059 (($ |#1| (-377 (-517))) 61) (($ $ (-992) (-377 (-517))) 76) (($ $ (-583 (-992)) (-583 (-377 (-517)))) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-1232 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-2323 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3232 (((-1060) $) 9)) (-2291 (($ $) 165 (|has| |#1| (-333)))) (-3296 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 169 (-3786 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-882)) (|has| |#1| (-1098)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 150 (|has| |#1| (-333)))) (-2361 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3896 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 158 (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3898 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) 154 (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 155 (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 89 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077) (-703)) 88 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1077))) 87 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077)) 86 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1191 (((-377 (-517)) $) 64)) (-1670 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-1706 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1685 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 93 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077) (-703)) 92 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1077))) 91 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077)) 90 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) -(((-1139 |#1|) (-1189) (-964)) (T -1139)) -((-3452 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-964)) (-4 *1 (-1139 *4)))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1139 *3)) (-4 *3 (-964)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517)))))) (-3296 (*1 *1 *1 *2) (-3786 (-12 (-5 *2 (-1077)) (-4 *1 (-1139 *3)) (-4 *3 (-964)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1077)) (-4 *1 (-1139 *3)) (-4 *3 (-964)) (-12 (|has| *3 (-15 -2080 ((-583 *2) *3))) (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))) -(-13 (-1136 |t#1| (-377 (-517))) (-10 -8 (-15 -3452 ($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |t#1|))))) (-15 -2113 ($ $ (-377 (-517)))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $)) (IF (|has| |t#1| (-15 -3296 (|t#1| |t#1| (-1077)))) (IF (|has| |t#1| (-15 -2080 ((-583 (-1077)) |t#1|))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1098)) (IF (|has| |t#1| (-882)) (IF (|has| |t#1| (-29 (-517))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-921)) (-6 (-1098))) |%noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-377 (-517))) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1018)) ((-262) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077)))) ((-893 |#1| #0# (-992)) . T) ((-844) |has| |#1| (-333)) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-970 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517)))) ((-1116) |has| |#1| (-333)) ((-1136 |#1| #0#) . T)) -((-1992 (((-107) $) 12)) (-3220 (((-3 |#3| "failed") $) 17)) (-3402 ((|#3| $) 14))) -(((-1140 |#1| |#2| |#3|) (-10 -8 (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -1992 ((-107) |#1|))) (-1141 |#2| |#3|) (-964) (-1118 |#2|)) (T -1140)) -NIL -(-10 -8 (-15 -3402 (|#3| |#1|)) (-15 -3220 ((-3 |#3| "failed") |#1|)) (-15 -1992 ((-107) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1636 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 162 (|has| |#1| (-333)))) (-3306 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3908 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1612 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1659 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#2| "failed") $) 183)) (-3402 ((|#2| $) 182)) (-2383 (($ $ $) 157 (|has| |#1| (-333)))) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-2120 (((-377 (-517)) $) 180)) (-2356 (($ $ $) 156 (|has| |#1| (-333)))) (-2151 (($ (-377 (-517)) |#2|) 181)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-2022 (((-107) $) 164 (|has| |#1| (-333)))) (-3690 (((-107) $) 73)) (-2102 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) 101) (($ $ (-377 (-517))) 171)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-3022 (((-107) $) 62)) (-2059 (($ |#1| (-377 (-517))) 61) (($ $ (-992) (-377 (-517))) 76) (($ $ (-583 (-992)) (-583 (-377 (-517)))) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-1232 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-2323 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3002 ((|#2| $) 179)) (-1875 (((-3 |#2| "failed") $) 177)) (-2140 ((|#2| $) 178)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 165 (|has| |#1| (-333)))) (-3296 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 169 (-3786 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-882)) (|has| |#1| (-1098)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 150 (|has| |#1| (-333)))) (-2361 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3896 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 158 (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-3898 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) 154 (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 155 (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 89 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077) (-703)) 88 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1077))) 87 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077)) 86 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1191 (((-377 (-517)) $) 64)) (-1670 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 184) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-1706 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1685 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 93 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077) (-703)) 92 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1077))) 91 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1077)) 90 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) -(((-1141 |#1| |#2|) (-1189) (-964) (-1118 |t#1|)) (T -1141)) -((-1191 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1118 *3)) (-5 *2 (-377 (-517))))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *1 (-1141 *3 *2)) (-4 *2 (-1118 *3)))) (-2151 (*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-964)) (-4 *1 (-1141 *4 *3)) (-4 *3 (-1118 *4)))) (-2120 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1118 *3)) (-5 *2 (-377 (-517))))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1118 *3)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1118 *3)))) (-1875 (*1 *2 *1) (|partial| -12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1118 *3))))) -(-13 (-1139 |t#1|) (-955 |t#2|) (-10 -8 (-15 -2151 ($ (-377 (-517)) |t#2|)) (-15 -2120 ((-377 (-517)) $)) (-15 -3002 (|t#2| $)) (-15 -1191 ((-377 (-517)) $)) (-15 -2262 ($ |t#2|)) (-15 -2140 (|t#2| $)) (-15 -1875 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-377 (-517))) . T) ((-25) . T) ((-37 #1=(-377 (-517))) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1018)) ((-262) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077)))) ((-893 |#1| #0# (-992)) . T) ((-844) |has| |#1| (-333)) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-955 |#2|) . T) ((-970 #1#) -3786 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517)))) ((-1116) |has| |#1| (-333)) ((-1136 |#1| #0#) . T) ((-1139 |#1|) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 96)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) 106) (($ $ (-377 (-517)) (-377 (-517))) 108)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 51)) (-1636 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 61)) (-1659 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL)) (-3402 ((|#2| $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) 79)) (-2120 (((-377 (-517)) $) 12)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2151 (($ (-377 (-517)) |#2|) 10)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3690 (((-107) $) 68)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) 103) (((-377 (-517)) $ (-377 (-517))) 104)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) 120) (($ $ (-377 (-517))) 118)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-377 (-517))) 31) (($ $ (-992) (-377 (-517))) NIL) (($ $ (-583 (-992)) (-583 (-377 (-517)))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) 115)) (-1232 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3002 ((|#2| $) 11)) (-1875 (((-3 |#2| "failed") $) 41)) (-2140 ((|#2| $) 42)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) 93 (|has| |#1| (-333)))) (-3296 (($ $) 135 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 140 (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098)))))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) 112)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) 100) (($ $ $) 86 (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) 127 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1191 (((-377 (-517)) $) 16)) (-1670 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 110)) (-2262 (((-787) $) NIL) (($ (-517)) 35) (($ |#1|) 27 (|has| |#1| (-156))) (($ |#2|) 32) (($ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) 99)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) 117)) (-3605 ((|#1| $) 98)) (-1706 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 197 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 21 T CONST)) (-3675 (($) 17 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) 66)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 92 (|has| |#1| (-333)))) (-1680 (($ $) 131) (($ $ $) 72)) (-1666 (($ $ $) 70)) (** (($ $ (-845)) NIL) (($ $ (-703)) 76) (($ $ (-517)) 144 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 145 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-1142 |#1| |#2|) (-1141 |#1| |#2|) (-964) (-1118 |#1|)) (T -1142)) -NIL -(-1141 |#1| |#2|) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 11)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) NIL (|has| |#1| (-509)))) (-2147 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-3747 (((-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-1322 (($ $) NIL (|has| |#1| (-333)))) (-3306 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-703) (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-1122 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1150 |#1| |#2| |#3|) "failed") $) 22)) (-3402 (((-1122 |#1| |#2| |#3|) $) NIL) (((-1150 |#1| |#2| |#3|) $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-333)))) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2120 (((-377 (-517)) $) 57)) (-2356 (($ $ $) NIL (|has| |#1| (-333)))) (-2151 (($ (-377 (-517)) (-1122 |#1| |#2| |#3|)) NIL)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-2022 (((-107) $) NIL (|has| |#1| (-333)))) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-1690 (((-107) $) NIL)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) NIL) (($ $ (-377 (-517))) NIL)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-377 (-517))) 29) (($ $ (-992) (-377 (-517))) NIL) (($ $ (-583 (-992)) (-583 (-377 (-517)))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-2323 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3002 (((-1122 |#1| |#2| |#3|) $) 60)) (-1875 (((-3 (-1122 |#1| |#2| |#3|) "failed") $) NIL)) (-2140 (((-1122 |#1| |#2| |#3|) $) NIL)) (-3232 (((-1060) $) NIL)) (-2291 (($ $) NIL (|has| |#1| (-333)))) (-3296 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) NIL (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) NIL (|has| |#1| (-333)))) (-2361 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3896 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2501 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) NIL (|has| |#1| (-333)))) (-3175 (($ $ (-377 (-517))) NIL)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2677 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3388 (((-703) $) NIL (|has| |#1| (-333)))) (-2612 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1018)))) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) NIL (|has| |#1| (-333)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1154 |#2|)) 37)) (-1191 (((-377 (-517)) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) NIL)) (-2262 (((-787) $) 88) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1122 |#1| |#2| |#3|)) 16) (($ (-1150 |#1| |#2| |#3|)) 17) (($ (-1154 |#2|)) 35) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-1939 ((|#1| $ (-377 (-517))) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 12)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-377 (-517))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-3663 (($) 31 T CONST)) (-3675 (($) 26 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 33)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-1143 |#1| |#2| |#3|) (-13 (-1141 |#1| (-1122 |#1| |#2| |#3|)) (-955 (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1143)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))) -(-13 (-1141 |#1| (-1122 |#1| |#2| |#3|)) (-955 (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 32)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL)) (-2491 (($ $) NIL)) (-2025 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 (-517) "failed") $) NIL (|has| (-1143 |#2| |#3| |#4|) (-955 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1143 |#2| |#3| |#4|) (-955 (-377 (-517))))) (((-3 (-1143 |#2| |#3| |#4|) "failed") $) 20)) (-3402 (((-517) $) NIL (|has| (-1143 |#2| |#3| |#4|) (-955 (-517)))) (((-377 (-517)) $) NIL (|has| (-1143 |#2| |#3| |#4|) (-955 (-377 (-517))))) (((-1143 |#2| |#3| |#4|) $) NIL)) (-2364 (($ $) 33)) (-3550 (((-3 $ "failed") $) 25)) (-4172 (($ $) NIL (|has| (-1143 |#2| |#3| |#4|) (-421)))) (-1760 (($ $ (-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|) $) NIL)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) 11)) (-3022 (((-107) $) NIL)) (-2059 (($ (-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) 23)) (-3942 (((-289 |#2| |#3| |#4|) $) NIL)) (-1542 (($ (-1 (-289 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) $) NIL)) (-3312 (($ (-1 (-1143 |#2| |#3| |#4|) (-1143 |#2| |#3| |#4|)) $) NIL)) (-3588 (((-3 (-772 |#2|) "failed") $) 73)) (-2325 (($ $) NIL)) (-2336 (((-1143 |#2| |#3| |#4|) $) 18)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2301 (((-107) $) NIL)) (-2311 (((-1143 |#2| |#3| |#4|) $) NIL)) (-2333 (((-3 $ "failed") $ (-1143 |#2| |#3| |#4|)) NIL (|has| (-1143 |#2| |#3| |#4|) (-509))) (((-3 $ "failed") $ $) NIL)) (-2732 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1143 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1060))) "failed") $) 56)) (-1191 (((-289 |#2| |#3| |#4|) $) 14)) (-4094 (((-1143 |#2| |#3| |#4|) $) NIL (|has| (-1143 |#2| |#3| |#4|) (-421)))) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ (-1143 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL (-3786 (|has| (-1143 |#2| |#3| |#4|) (-37 (-377 (-517)))) (|has| (-1143 |#2| |#3| |#4|) (-955 (-377 (-517))))))) (-3186 (((-583 (-1143 |#2| |#3| |#4|)) $) NIL)) (-1939 (((-1143 |#2| |#3| |#4|) $ (-289 |#2| |#3| |#4|)) NIL)) (-3385 (((-3 $ "failed") $) NIL (|has| (-1143 |#2| |#3| |#4|) (-132)))) (-1818 (((-703)) NIL)) (-2308 (($ $ $ (-703)) NIL (|has| (-1143 |#2| |#3| |#4|) (-156)))) (-2944 (((-107) $ $) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 61 T CONST)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ (-1143 |#2| |#3| |#4|)) NIL (|has| (-1143 |#2| |#3| |#4|) (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-1143 |#2| |#3| |#4|)) NIL) (($ (-1143 |#2| |#3| |#4|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-1143 |#2| |#3| |#4|) (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| (-1143 |#2| |#3| |#4|) (-37 (-377 (-517))))))) -(((-1144 |#1| |#2| |#3| |#4|) (-13 (-296 (-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -3588 ((-3 (-772 |#2|) "failed") $)) (-15 -2732 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1143 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1060))) "failed") $)))) (-13 (-779) (-955 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1098) (-400 |#1|)) (-1077) |#2|) (T -1144)) -((-3588 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077)) (-14 *6 *4))) (-2732 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1143 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1060)))) (-5 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077)) (-14 *6 *4)))) -(-13 (-296 (-1143 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -3588 ((-3 (-772 |#2|) "failed") $)) (-15 -2732 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1143 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1060))) "failed") $)))) -((-3112 ((|#2| $) 29)) (-2577 ((|#2| $) 18)) (-1529 (($ $) 36)) (-2070 (($ $ (-517)) 64)) (-3443 (((-107) $ (-703)) 33)) (-2226 ((|#2| $ |#2|) 61)) (-1825 ((|#2| $ |#2|) 59)) (-2436 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2638 (($ $ (-583 $)) 60)) (-2567 ((|#2| $) 17)) (-2429 (($ $) NIL) (($ $ (-703)) 42)) (-1823 (((-583 $) $) 26)) (-1700 (((-107) $ $) 50)) (-2266 (((-107) $ (-703)) 32)) (-2328 (((-107) $ (-703)) 31)) (-3834 (((-107) $) 28)) (-1447 ((|#2| $) 24) (($ $ (-703)) 46)) (-2612 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1414 (((-107) $) 22)) (-2074 (($ $) 39)) (-4155 (($ $) 65)) (-2792 (((-703) $) 41)) (-2736 (($ $) 40)) (-4117 (($ $ $) 58) (($ |#2| $) NIL)) (-3234 (((-583 $) $) 27)) (-1572 (((-107) $ $) 48)) (-3573 (((-703) $) 35))) -(((-1145 |#1| |#2|) (-10 -8 (-15 -2070 (|#1| |#1| (-517))) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -1825 (|#2| |#1| |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -4155 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2792 ((-703) |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -2577 (|#2| |#1|)) (-15 -2567 (|#2| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -1447 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "last")) (-15 -1447 (|#2| |#1|)) (-15 -2429 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| "rest")) (-15 -2429 (|#1| |#1|)) (-15 -2612 (|#2| |#1| "first")) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2226 (|#2| |#1| |#2|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -2638 (|#1| |#1| (-583 |#1|))) (-15 -1700 ((-107) |#1| |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3112 (|#2| |#1|)) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703)))) (-1146 |#2|) (-1112)) (T -1145)) -NIL -(-10 -8 (-15 -2070 (|#1| |#1| (-517))) (-15 -2436 (|#2| |#1| "last" |#2|)) (-15 -1825 (|#2| |#1| |#2|)) (-15 -2436 (|#1| |#1| "rest" |#1|)) (-15 -2436 (|#2| |#1| "first" |#2|)) (-15 -4155 (|#1| |#1|)) (-15 -2074 (|#1| |#1|)) (-15 -2792 ((-703) |#1|)) (-15 -2736 (|#1| |#1|)) (-15 -2577 (|#2| |#1|)) (-15 -2567 (|#2| |#1|)) (-15 -1529 (|#1| |#1|)) (-15 -1447 (|#1| |#1| (-703))) (-15 -2612 (|#2| |#1| "last")) (-15 -1447 (|#2| |#1|)) (-15 -2429 (|#1| |#1| (-703))) (-15 -2612 (|#1| |#1| "rest")) (-15 -2429 (|#1| |#1|)) (-15 -2612 (|#2| |#1| "first")) (-15 -4117 (|#1| |#2| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -2226 (|#2| |#1| |#2|)) (-15 -2436 (|#2| |#1| "value" |#2|)) (-15 -2638 (|#1| |#1| (-583 |#1|))) (-15 -1700 ((-107) |#1| |#1|)) (-15 -1414 ((-107) |#1|)) (-15 -2612 (|#2| |#1| "value")) (-15 -3112 (|#2| |#1|)) (-15 -3834 ((-107) |#1|)) (-15 -1823 ((-583 |#1|) |#1|)) (-15 -3234 ((-583 |#1|) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3573 ((-703) |#1|)) (-15 -3443 ((-107) |#1| (-703))) (-15 -2266 ((-107) |#1| (-703))) (-15 -2328 ((-107) |#1| (-703)))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3112 ((|#1| $) 48)) (-2577 ((|#1| $) 65)) (-1529 (($ $) 67)) (-2070 (($ $ (-517)) 52 (|has| $ (-6 -4196)))) (-3443 (((-107) $ (-703)) 8)) (-2226 ((|#1| $ |#1|) 39 (|has| $ (-6 -4196)))) (-1223 (($ $ $) 56 (|has| $ (-6 -4196)))) (-1825 ((|#1| $ |#1|) 54 (|has| $ (-6 -4196)))) (-1218 ((|#1| $ |#1|) 58 (|has| $ (-6 -4196)))) (-2436 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4196))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4196))) (($ $ "rest" $) 55 (|has| $ (-6 -4196))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4196)))) (-2638 (($ $ (-583 $)) 41 (|has| $ (-6 -4196)))) (-2567 ((|#1| $) 66)) (-3038 (($) 7 T CONST)) (-2429 (($ $) 73) (($ $ (-703)) 71)) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-1823 (((-583 $) $) 50)) (-1700 (((-107) $ $) 42 (|has| |#1| (-1006)))) (-2266 (((-107) $ (-703)) 9)) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35)) (-2328 (((-107) $ (-703)) 10)) (-1925 (((-583 |#1|) $) 45)) (-3834 (((-107) $) 49)) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1447 ((|#1| $) 70) (($ $ (-703)) 68)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 76) (($ $ (-703)) 74)) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3868 (((-517) $ $) 44)) (-1414 (((-107) $) 46)) (-2074 (($ $) 62)) (-4155 (($ $) 59 (|has| $ (-6 -4196)))) (-2792 (((-703) $) 63)) (-2736 (($ $) 64)) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-2453 (($ $) 13)) (-3495 (($ $ $) 61 (|has| $ (-6 -4196))) (($ $ |#1|) 60 (|has| $ (-6 -4196)))) (-4117 (($ $ $) 78) (($ |#1| $) 77)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3234 (((-583 $) $) 51)) (-3224 (((-107) $ $) 43 (|has| |#1| (-1006)))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-1146 |#1|) (-1189) (-1112)) (T -1146)) -((-4117 (*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-4117 (*1 *1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2420 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) (-2429 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2612 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) (-2429 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) (-1529 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2736 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2792 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))) (-2074 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-3495 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-3495 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-4155 (*1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-1218 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-1223 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2436 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) (-1825 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2436 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4196)) (-4 *1 (-1146 *3)) (-4 *3 (-1112))))) -(-13 (-929 |t#1|) (-10 -8 (-15 -4117 ($ $ $)) (-15 -4117 ($ |t#1| $)) (-15 -2420 (|t#1| $)) (-15 -2612 (|t#1| $ "first")) (-15 -2420 ($ $ (-703))) (-15 -2429 ($ $)) (-15 -2612 ($ $ "rest")) (-15 -2429 ($ $ (-703))) (-15 -1447 (|t#1| $)) (-15 -2612 (|t#1| $ "last")) (-15 -1447 ($ $ (-703))) (-15 -1529 ($ $)) (-15 -2567 (|t#1| $)) (-15 -2577 (|t#1| $)) (-15 -2736 ($ $)) (-15 -2792 ((-703) $)) (-15 -2074 ($ $)) (IF (|has| $ (-6 -4196)) (PROGN (-15 -3495 ($ $ $)) (-15 -3495 ($ $ |t#1|)) (-15 -4155 ($ $)) (-15 -1218 (|t#1| $ |t#1|)) (-15 -2436 (|t#1| $ "first" |t#1|)) (-15 -1223 ($ $ $)) (-15 -2436 ($ $ "rest" $)) (-15 -1825 (|t#1| $ |t#1|)) (-15 -2436 (|t#1| $ "last" |t#1|)) (-15 -2070 ($ $ (-517)))) |%noBranch|))) -(((-33) . T) ((-97) |has| |#1| (-1006)) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-929 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1112) . T)) -((-3312 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1147 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#4| (-1 |#2| |#1|) |#3|))) (-964) (-964) (-1149 |#1|) (-1149 |#2|)) (T -1147)) -((-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-964)) (-4 *6 (-964)) (-4 *2 (-1149 *6)) (-5 *1 (-1147 *5 *6 *4 *2)) (-4 *4 (-1149 *5))))) -(-10 -7 (-15 -3312 (|#4| (-1 |#2| |#1|) |#3|))) -((-1992 (((-107) $) 15)) (-1636 (($ $) 91)) (-1482 (($ $) 67)) (-1612 (($ $) 87)) (-1459 (($ $) 63)) (-1659 (($ $) 95)) (-1508 (($ $) 71)) (-1232 (($ $) 61)) (-3898 (($ $) 59)) (-1670 (($ $) 97)) (-1521 (($ $) 73)) (-1647 (($ $) 93)) (-1495 (($ $) 69)) (-1622 (($ $) 89)) (-1471 (($ $) 65)) (-2262 (((-787) $) 47) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1706 (($ $) 103)) (-1564 (($ $) 79)) (-1685 (($ $) 99)) (-1536 (($ $) 75)) (-3517 (($ $) 107)) (-1588 (($ $) 83)) (-2815 (($ $) 109)) (-1601 (($ $) 85)) (-1722 (($ $) 105)) (-1577 (($ $) 81)) (-1698 (($ $) 101)) (-1550 (($ $) 77)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-377 (-517))) 57))) -(((-1148 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1482 (|#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1601 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845))) (-15 -1992 ((-107) |#1|)) (-15 -2262 ((-787) |#1|))) (-1149 |#2|) (-964)) (T -1148)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1482 (|#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -1508 (|#1| |#1|)) (-15 -1521 (|#1| |#1|)) (-15 -1495 (|#1| |#1|)) (-15 -1471 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1601 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1536 (|#1| |#1|)) (-15 -1564 (|#1| |#1|)) (-15 -1622 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1670 (|#1| |#1|)) (-15 -1659 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1636 (|#1| |#1|)) (-15 -1698 (|#1| |#1|)) (-15 -1722 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -1685 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1232 (|#1| |#1|)) (-15 -3898 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2262 (|#1| |#2|)) (-15 -2262 (|#1| |#1|)) (-15 -2262 (|#1| (-377 (-517)))) (-15 -2262 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-845))) (-15 -1992 ((-107) |#1|)) (-15 -2262 ((-787) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-2080 (((-583 (-992)) $) 74)) (-3791 (((-1077) $) 103)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-2491 (($ $) 52 (|has| |#1| (-509)))) (-2025 (((-107) $) 54 (|has| |#1| (-509)))) (-2147 (($ $ (-703)) 98) (($ $ (-703) (-703)) 97)) (-3747 (((-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 105)) (-1636 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) 19)) (-3908 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 155) (($ (-1058 |#1|)) 153)) (-1659 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) 17 T CONST)) (-2364 (($ $) 60)) (-3550 (((-3 $ "failed") $) 34)) (-2804 (($ $) 152)) (-2905 (((-876 |#1|) $ (-703)) 150) (((-876 |#1|) $ (-703) (-703)) 149)) (-3690 (((-107) $) 73)) (-2102 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $) 100) (((-703) $ (-703)) 99)) (-1690 (((-107) $) 31)) (-2940 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-2113 (($ $ (-845)) 101)) (-2603 (($ (-1 |#1| (-517)) $) 151)) (-3022 (((-107) $) 62)) (-2059 (($ |#1| (-703)) 61) (($ $ (-992) (-703)) 76) (($ $ (-583 (-992)) (-583 (-703))) 75)) (-3312 (($ (-1 |#1| |#1|) $) 63)) (-1232 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) 65)) (-2336 ((|#1| $) 66)) (-3232 (((-1060) $) 9)) (-3296 (($ $) 147 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 146 (-3786 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-882)) (|has| |#1| (-1098)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-37 (-377 (-517)))))))) (-4130 (((-1024) $) 10)) (-3175 (($ $ (-703)) 95)) (-2333 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3898 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-3552 (((-1058 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2612 ((|#1| $ (-703)) 104) (($ $ $) 81 (|has| (-703) (-1018)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) 89 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1077) (-703)) 88 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1077))) 87 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1077)) 86 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1191 (((-703) $) 64)) (-1670 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 72)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-3186 (((-1058 |#1|) $) 154)) (-1939 ((|#1| $ (-703)) 59)) (-3385 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-1818 (((-703)) 29)) (-3605 ((|#1| $) 102)) (-1706 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) 53 (|has| |#1| (-509)))) (-1685 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-703)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) 93 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1077) (-703)) 92 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1077))) 91 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1077)) 90 (-12 (|has| |#1| (-824 (-1077))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ |#1|) 148 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517))))))) -(((-1149 |#1|) (-1189) (-964)) (T -1149)) -((-3452 (*1 *1 *2) (-12 (-5 *2 (-1058 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-964)) (-4 *1 (-1149 *3)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-964)) (-5 *2 (-1058 *3)))) (-3452 (*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-4 *1 (-1149 *3)))) (-2804 (*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964)))) (-2603 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1149 *3)) (-4 *3 (-964)))) (-2905 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1149 *4)) (-4 *4 (-964)) (-5 *2 (-876 *4)))) (-2905 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1149 *4)) (-4 *4 (-964)) (-5 *2 (-876 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) (-3296 (*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517)))))) (-3296 (*1 *1 *1 *2) (-3786 (-12 (-5 *2 (-1077)) (-4 *1 (-1149 *3)) (-4 *3 (-964)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1077)) (-4 *1 (-1149 *3)) (-4 *3 (-964)) (-12 (|has| *3 (-15 -2080 ((-583 *2) *3))) (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517))))))))) -(-13 (-1136 |t#1| (-703)) (-10 -8 (-15 -3452 ($ (-1058 (-2 (|:| |k| (-703)) (|:| |c| |t#1|))))) (-15 -3186 ((-1058 |t#1|) $)) (-15 -3452 ($ (-1058 |t#1|))) (-15 -2804 ($ $)) (-15 -2603 ($ (-1 |t#1| (-517)) $)) (-15 -2905 ((-876 |t#1|) $ (-703))) (-15 -2905 ((-876 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-333)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -3296 ($ $)) (IF (|has| |t#1| (-15 -3296 (|t#1| |t#1| (-1077)))) (IF (|has| |t#1| (-15 -2080 ((-583 (-1077)) |t#1|))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1098)) (IF (|has| |t#1| (-882)) (IF (|has| |t#1| (-29 (-517))) (-15 -3296 ($ $ (-1077))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-921)) (-6 (-1098))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-703)) . T) ((-25) . T) ((-37 #1=(-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 #1# #1#) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-703) |#1|))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-703) (-1018)) ((-262) |has| |#1| (-509)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) |has| |#1| (-509)) ((-585 #1#) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #1#) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-824 (-1077)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077)))) ((-893 |#1| #0# (-992)) . T) ((-921) |has| |#1| (-37 (-377 (-517)))) ((-970 #1#) |has| |#1| (-37 (-377 (-517)))) ((-970 |#1|) . T) ((-970 $) -3786 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1098) |has| |#1| (-37 (-377 (-517)))) ((-1101) |has| |#1| (-37 (-377 (-517)))) ((-1136 |#1| #0#) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-2080 (((-583 (-992)) $) NIL)) (-3791 (((-1077) $) 87)) (-1764 (((-1131 |#2| |#1|) $ (-703)) 73)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-2491 (($ $) NIL (|has| |#1| (-509)))) (-2025 (((-107) $) 136 (|has| |#1| (-509)))) (-2147 (($ $ (-703)) 121) (($ $ (-703) (-703)) 123)) (-3747 (((-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 42)) (-1636 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1482 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1783 (((-3 $ "failed") $ $) NIL)) (-3908 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1612 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1459 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3452 (($ (-1058 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 53) (($ (-1058 |#1|)) NIL)) (-1659 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1508 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3038 (($) NIL T CONST)) (-2285 (($ $) 127)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2804 (($ $) 134)) (-2905 (((-876 |#1|) $ (-703)) 63) (((-876 |#1|) $ (-703) (-703)) 65)) (-3690 (((-107) $) NIL)) (-2102 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3250 (((-703) $) NIL) (((-703) $ (-703)) NIL)) (-1690 (((-107) $) NIL)) (-3157 (($ $) 111)) (-2940 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1499 (($ (-517) (-517) $) 129)) (-2113 (($ $ (-845)) 133)) (-2603 (($ (-1 |#1| (-517)) $) 105)) (-3022 (((-107) $) NIL)) (-2059 (($ |#1| (-703)) 15) (($ $ (-992) (-703)) NIL) (($ $ (-583 (-992)) (-583 (-703))) NIL)) (-3312 (($ (-1 |#1| |#1|) $) 93)) (-1232 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2325 (($ $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-1505 (($ $) 109)) (-3266 (($ $) 107)) (-3922 (($ (-517) (-517) $) 131)) (-3296 (($ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1077)) 150 (-3786 (-12 (|has| |#1| (-15 -3296 (|#1| |#1| (-1077)))) (|has| |#1| (-15 -2080 ((-583 (-1077)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-882)) (|has| |#1| (-1098))))) (($ $ (-1154 |#2|)) 145 (|has| |#1| (-37 (-377 (-517)))))) (-4130 (((-1024) $) NIL)) (-2427 (($ $ (-517) (-517)) 115)) (-3175 (($ $ (-703)) 117)) (-2333 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-3898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3140 (($ $) 113)) (-3552 (((-1058 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-2612 ((|#1| $ (-703)) 90) (($ $ $) 125 (|has| (-703) (-1018)))) (-2042 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) 102 (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1154 |#2|)) 98)) (-1191 (((-703) $) NIL)) (-1670 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1521 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1647 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1495 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1622 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1471 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2384 (($ $) 119)) (-2262 (((-787) $) NIL) (($ (-517)) 24) (($ (-377 (-517))) 142 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 23 (|has| |#1| (-156))) (($ (-1131 |#2| |#1|)) 80) (($ (-1154 |#2|)) 20)) (-3186 (((-1058 |#1|) $) NIL)) (-1939 ((|#1| $ (-703)) 89)) (-3385 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-1818 (((-703)) NIL)) (-3605 ((|#1| $) 88)) (-1706 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1564 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2944 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1685 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1536 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3517 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1588 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2194 ((|#1| $ (-703)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2262 (|#1| (-1077))))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1601 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1722 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1577 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1698 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1550 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 17 T CONST)) (-3675 (($) 13 T CONST)) (-3348 (($ $ (-583 (-1077)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-583 (-1077))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-1077)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-824 (-1077))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1572 (((-107) $ $) NIL)) (-1692 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) 101)) (-1666 (($ $ $) 18)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 139 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))))) -(((-1150 |#1| |#2| |#3|) (-13 (-1149 |#1|) (-10 -8 (-15 -2262 ($ (-1131 |#2| |#1|))) (-15 -1764 ((-1131 |#2| |#1|) $ (-703))) (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (-15 -3266 ($ $)) (-15 -1505 ($ $)) (-15 -3157 ($ $)) (-15 -3140 ($ $)) (-15 -2427 ($ $ (-517) (-517))) (-15 -2285 ($ $)) (-15 -1499 ($ (-517) (-517) $)) (-15 -3922 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) (-964) (-1077) |#1|) (T -1150)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-1131 *4 *3)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3) (-5 *1 (-1150 *3 *4 *5)))) (-1764 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1131 *5 *4)) (-5 *1 (-1150 *4 *5 *6)) (-4 *4 (-964)) (-14 *5 (-1077)) (-14 *6 *4))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-2042 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) (-14 *5 *3))) (-3266 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) (-14 *4 *2))) (-1505 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) (-14 *4 *2))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) (-14 *4 *2))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) (-14 *4 *2))) (-2427 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3))) (-2285 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) (-14 *4 *2))) (-1499 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3))) (-3922 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-1077)) (-14 *5 *3))) (-3296 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))) -(-13 (-1149 |#1|) (-10 -8 (-15 -2262 ($ (-1131 |#2| |#1|))) (-15 -1764 ((-1131 |#2| |#1|) $ (-703))) (-15 -2262 ($ (-1154 |#2|))) (-15 -2042 ($ $ (-1154 |#2|))) (-15 -3266 ($ $)) (-15 -1505 ($ $)) (-15 -3157 ($ $)) (-15 -3140 ($ $)) (-15 -2427 ($ $ (-517) (-517))) (-15 -2285 ($ $)) (-15 -1499 ($ (-517) (-517) $)) (-15 -3922 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -3296 ($ $ (-1154 |#2|))) |%noBranch|))) -((-1841 (((-1 (-1058 |#1|) (-583 (-1058 |#1|))) (-1 |#2| (-583 |#2|))) 24)) (-2704 (((-1 (-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3251 (((-1 (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2|)) 13)) (-3089 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3237 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3737 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 54)) (-1684 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 61)) (-1473 ((|#2| |#2| |#2|) 43))) -(((-1151 |#1| |#2|) (-10 -7 (-15 -3251 ((-1 (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2|))) (-15 -2704 ((-1 (-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1841 ((-1 (-1058 |#1|) (-583 (-1058 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -1473 (|#2| |#2| |#2|)) (-15 -3237 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3089 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3737 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -1684 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-37 (-377 (-517))) (-1149 |#1|)) (T -1151)) -((-1684 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1149 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1151 *5 *6)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1149 *5)) (-5 *1 (-1151 *5 *2)))) (-3089 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-1151 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-3237 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-1151 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-1473 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1149 *3)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1149 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1058 *4) (-583 (-1058 *4)))) (-5 *1 (-1151 *4 *5)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1058 *4) (-1058 *4) (-1058 *4))) (-5 *1 (-1151 *4 *5)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1058 *4) (-1058 *4))) (-5 *1 (-1151 *4 *5))))) -(-10 -7 (-15 -3251 ((-1 (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2|))) (-15 -2704 ((-1 (-1058 |#1|) (-1058 |#1|) (-1058 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1841 ((-1 (-1058 |#1|) (-583 (-1058 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -1473 (|#2| |#2| |#2|)) (-15 -3237 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3089 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3737 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -1684 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) -((-1379 ((|#2| |#4| (-703)) 30)) (-3921 ((|#4| |#2|) 25)) (-3268 ((|#4| (-377 |#2|)) 51 (|has| |#1| (-509)))) (-1935 (((-1 |#4| (-583 |#4|)) |#3|) 45))) -(((-1152 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3921 (|#4| |#2|)) (-15 -1379 (|#2| |#4| (-703))) (-15 -1935 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3268 (|#4| (-377 |#2|))) |%noBranch|)) (-964) (-1134 |#1|) (-593 |#2|) (-1149 |#1|)) (T -1152)) -((-3268 (*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-509)) (-4 *4 (-964)) (-4 *2 (-1149 *4)) (-5 *1 (-1152 *4 *5 *6 *2)) (-4 *6 (-593 *5)))) (-1935 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *5 (-1134 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1152 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1149 *4)))) (-1379 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-964)) (-4 *2 (-1134 *5)) (-5 *1 (-1152 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1149 *5)))) (-3921 (*1 *2 *3) (-12 (-4 *4 (-964)) (-4 *3 (-1134 *4)) (-4 *2 (-1149 *4)) (-5 *1 (-1152 *4 *3 *5 *2)) (-4 *5 (-593 *3))))) -(-10 -7 (-15 -3921 (|#4| |#2|)) (-15 -1379 (|#2| |#4| (-703))) (-15 -1935 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3268 (|#4| (-377 |#2|))) |%noBranch|)) -NIL -(((-1153) (-1189)) (T -1153)) -NIL -(-13 (-10 -7 (-6 -2169))) -((-2105 (((-107) $ $) NIL)) (-3791 (((-1077)) 12)) (-3232 (((-1060) $) 17)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 11) (((-1077) $) 8)) (-1572 (((-107) $ $) 14))) -(((-1154 |#1|) (-13 (-1006) (-557 (-1077)) (-10 -8 (-15 -2262 ((-1077) $)) (-15 -3791 ((-1077))))) (-1077)) (T -1154)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1154 *3)) (-14 *3 *2))) (-3791 (*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1154 *3)) (-14 *3 *2)))) -(-13 (-1006) (-557 (-1077)) (-10 -8 (-15 -2262 ((-1077) $)) (-15 -3791 ((-1077))))) -((-3904 (($ (-703)) 16)) (-2681 (((-623 |#2|) $ $) 37)) (-1492 ((|#2| $) 46)) (-3728 ((|#2| $) 45)) (-3912 ((|#2| $ $) 33)) (-1305 (($ $ $) 42)) (-1680 (($ $) 20) (($ $ $) 26)) (-1666 (($ $ $) 13)) (* (($ (-517) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28))) -(((-1155 |#1| |#2|) (-10 -8 (-15 -1492 (|#2| |#1|)) (-15 -3728 (|#2| |#1|)) (-15 -1305 (|#1| |#1| |#1|)) (-15 -2681 ((-623 |#2|) |#1| |#1|)) (-15 -3912 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -3904 (|#1| (-703))) (-15 -1666 (|#1| |#1| |#1|))) (-1156 |#2|) (-1112)) (T -1155)) -NIL -(-10 -8 (-15 -1492 (|#2| |#1|)) (-15 -3728 (|#2| |#1|)) (-15 -1305 (|#1| |#1| |#1|)) (-15 -2681 ((-623 |#2|) |#1| |#1|)) (-15 -3912 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1680 (|#1| |#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -3904 (|#1| (-703))) (-15 -1666 (|#1| |#1| |#1|))) -((-2105 (((-107) $ $) 19 (|has| |#1| (-1006)))) (-3904 (($ (-703)) 112 (|has| |#1| (-23)))) (-3351 (((-1163) $ (-517) (-517)) 40 (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4196))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4196))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) 8)) (-2436 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) 58 (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4195)))) (-3038 (($) 7 T CONST)) (-3797 (($ $) 90 (|has| $ (-6 -4196)))) (-1894 (($ $) 100)) (-2446 (($ $) 78 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) 51)) (-1210 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) 30 (|has| $ (-6 -4195)))) (-2681 (((-623 |#1|) $ $) 105 (|has| |#1| (-964)))) (-3204 (($ (-703) |#1|) 69)) (-2266 (((-107) $ (-703)) 9)) (-3531 (((-517) $) 43 (|has| (-517) (-779)))) (-3480 (($ $ $) 87 (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1969 (((-517) $) 44 (|has| (-517) (-779)))) (-4095 (($ $ $) 86 (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1492 ((|#1| $) 102 (-12 (|has| |#1| (-964)) (|has| |#1| (-921))))) (-2328 (((-107) $ (-703)) 10)) (-3728 ((|#1| $) 103 (-12 (|has| |#1| (-964)) (|has| |#1| (-921))))) (-3232 (((-1060) $) 22 (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1449 (((-583 (-517)) $) 46)) (-3413 (((-107) (-517) $) 47)) (-4130 (((-1024) $) 21 (|has| |#1| (-1006)))) (-2420 ((|#1| $) 42 (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2837 (($ $ |#1|) 41 (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) 14)) (-2124 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) 48)) (-1754 (((-107) $) 11)) (-2679 (($) 12)) (-2612 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1125 (-517))) 63)) (-3912 ((|#1| $ $) 106 (|has| |#1| (-964)))) (-3779 (($ $ (-517)) 62) (($ $ (-1125 (-517))) 61)) (-1305 (($ $ $) 104 (|has| |#1| (-964)))) (-4140 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4195))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -4195))))) (-1704 (($ $ $ (-517)) 91 (|has| $ (-6 -4196)))) (-2453 (($ $) 13)) (-3367 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 70)) (-4117 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2262 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1606 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 20 (|has| |#1| (-1006)))) (-1618 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1596 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1680 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1666 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-3573 (((-703) $) 6 (|has| $ (-6 -4195))))) -(((-1156 |#1|) (-1189) (-1112)) (T -1156)) -((-1666 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-25)))) (-3904 (*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1156 *3)) (-4 *3 (-23)) (-4 *3 (-1112)))) (-1680 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-21)))) (-1680 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1156 *3)) (-4 *3 (-1112)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-659)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-659)))) (-3912 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-964)))) (-2681 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1112)) (-4 *3 (-964)) (-5 *2 (-623 *3)))) (-1305 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-964)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-921)) (-4 *2 (-964)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-921)) (-4 *2 (-964))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1666 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3904 ($ (-703))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1680 ($ $)) (-15 -1680 ($ $ $)) (-15 * ($ (-517) $))) |%noBranch|) (IF (|has| |t#1| (-659)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-964)) (PROGN (-15 -3912 (|t#1| $ $)) (-15 -2681 ((-623 |t#1|) $ $)) (-15 -1305 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-921)) (IF (|has| |t#1| (-964)) (PROGN (-15 -3728 (|t#1| $)) (-15 -1492 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-33) . T) ((-97) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-557 (-787)) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 #0=(-517) |#1|) . T) ((-260 #0# |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 #0# |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1006) -3786 (|has| |#1| (-1006)) (|has| |#1| (-779))) ((-1112) . T)) -((-1250 (((-1158 |#2|) (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|) 13)) (-1510 ((|#2| (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|) 15)) (-3312 (((-3 (-1158 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1158 |#1|)) 28) (((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|)) 18))) -(((-1157 |#1| |#2|) (-10 -7 (-15 -1250 ((-1158 |#2|) (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|)) (-15 -3312 ((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|))) (-15 -3312 ((-3 (-1158 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1158 |#1|)))) (-1112) (-1112)) (T -1157)) -((-3312 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1158 *6)) (-5 *1 (-1157 *5 *6)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1158 *6)) (-5 *1 (-1157 *5 *6)))) (-1510 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1158 *5)) (-4 *5 (-1112)) (-4 *2 (-1112)) (-5 *1 (-1157 *5 *2)))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1158 *6)) (-4 *6 (-1112)) (-4 *5 (-1112)) (-5 *2 (-1158 *5)) (-5 *1 (-1157 *6 *5))))) -(-10 -7 (-15 -1250 ((-1158 |#2|) (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|)) (-15 -1510 (|#2| (-1 |#2| |#1| |#2|) (-1158 |#1|) |#2|)) (-15 -3312 ((-1158 |#2|) (-1 |#2| |#1|) (-1158 |#1|))) (-15 -3312 ((-3 (-1158 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1158 |#1|)))) -((-2105 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-3904 (($ (-703)) NIL (|has| |#1| (-23)))) (-2030 (($ (-583 |#1|)) 9)) (-3351 (((-1163) $ (-517) (-517)) NIL (|has| $ (-6 -4196)))) (-2508 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-4109 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4196))) (($ $) NIL (-12 (|has| $ (-6 -4196)) (|has| |#1| (-779))))) (-2149 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-3443 (((-107) $ (-703)) NIL)) (-2436 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196))) ((|#1| $ (-1125 (-517)) |#1|) NIL (|has| $ (-6 -4196)))) (-2317 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3038 (($) NIL T CONST)) (-3797 (($ $) NIL (|has| $ (-6 -4196)))) (-1894 (($ $) NIL)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1510 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4195))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4195)))) (-2750 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4196)))) (-2557 ((|#1| $ (-517)) NIL)) (-1210 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1006))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1006)))) (-1525 (((-583 |#1|) $) 15 (|has| $ (-6 -4195)))) (-2681 (((-623 |#1|) $ $) NIL (|has| |#1| (-964)))) (-3204 (($ (-703) |#1|) NIL)) (-2266 (((-107) $ (-703)) NIL)) (-3531 (((-517) $) NIL (|has| (-517) (-779)))) (-3480 (($ $ $) NIL (|has| |#1| (-779)))) (-3824 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-3687 (((-583 |#1|) $) NIL (|has| $ (-6 -4195)))) (-1949 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1969 (((-517) $) NIL (|has| (-517) (-779)))) (-4095 (($ $ $) NIL (|has| |#1| (-779)))) (-2737 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1492 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-2328 (((-107) $ (-703)) NIL)) (-3728 ((|#1| $) NIL (-12 (|has| |#1| (-921)) (|has| |#1| (-964))))) (-3232 (((-1060) $) NIL (|has| |#1| (-1006)))) (-1734 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1449 (((-583 (-517)) $) NIL)) (-3413 (((-107) (-517) $) NIL)) (-4130 (((-1024) $) NIL (|has| |#1| (-1006)))) (-2420 ((|#1| $) NIL (|has| (-517) (-779)))) (-1985 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2837 (($ $ |#1|) NIL (|has| $ (-6 -4196)))) (-3843 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1006))))) (-1770 (((-107) $ $) NIL)) (-2124 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-2862 (((-583 |#1|) $) NIL)) (-1754 (((-107) $) NIL)) (-2679 (($) NIL)) (-2612 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-3912 ((|#1| $ $) NIL (|has| |#1| (-964)))) (-3779 (($ $ (-517)) NIL) (($ $ (-1125 (-517))) NIL)) (-1305 (($ $ $) NIL (|has| |#1| (-964)))) (-4140 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#1| (-1006))))) (-1704 (($ $ $ (-517)) NIL (|has| $ (-6 -4196)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) 19 (|has| |#1| (-558 (-493))))) (-2279 (($ (-583 |#1|)) 8)) (-4117 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2262 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1272 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4195)))) (-1630 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-1006)))) (-1618 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1596 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1680 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1666 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-1158 |#1|) (-13 (-1156 |#1|) (-10 -8 (-15 -2030 ($ (-583 |#1|))))) (-1112)) (T -1158)) -((-2030 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1158 *3))))) -(-13 (-1156 |#1|) (-10 -8 (-15 -2030 ($ (-583 |#1|))))) -((-2105 (((-107) $ $) NIL)) (-1660 (((-1060) $ (-1060)) 87) (((-1060) $ (-1060) (-1060)) 85) (((-1060) $ (-1060) (-583 (-1060))) 84)) (-2880 (($) 56)) (-2526 (((-1163) $ (-437) (-845)) 42)) (-2464 (((-1163) $ (-845) (-1060)) 70) (((-1163) $ (-845) (-798)) 71)) (-3183 (((-1163) $ (-845) (-349) (-349)) 45)) (-3086 (((-1163) $ (-1060)) 66)) (-1971 (((-1163) $ (-845) (-1060)) 75)) (-2029 (((-1163) $ (-845) (-349) (-349)) 46)) (-3467 (((-1163) $ (-845) (-845)) 43)) (-1637 (((-1163) $) 67)) (-1302 (((-1163) $ (-845) (-1060)) 74)) (-3871 (((-1163) $ (-437) (-845)) 30)) (-1782 (((-1163) $ (-845) (-1060)) 73)) (-2587 (((-583 (-236)) $) 22) (($ $ (-583 (-236))) 23)) (-3418 (((-1163) $ (-703) (-703)) 40)) (-2216 (($ $) 57) (($ (-437) (-583 (-236))) 58)) (-3232 (((-1060) $) NIL)) (-2576 (((-517) $) 37)) (-4130 (((-1024) $) NIL)) (-3356 (((-1158 (-3 (-437) "undefined")) $) 36)) (-1711 (((-1158 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1782 (-517)) (|:| -2850 (-517)) (|:| |spline| (-517)) (|:| -3541 (-517)) (|:| |axesColor| (-798)) (|:| -2464 (-517)) (|:| |unitsColor| (-798)) (|:| |showing| (-517)))) $) 35)) (-2918 (((-1163) $ (-845) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-798) (-517) (-798) (-517)) 65)) (-1620 (((-583 (-867 (-199))) $) NIL)) (-3714 (((-437) $ (-845)) 32)) (-3876 (((-1163) $ (-703) (-703) (-845) (-845)) 39)) (-2571 (((-1163) $ (-1060)) 76)) (-2850 (((-1163) $ (-845) (-1060)) 72)) (-2262 (((-787) $) 82)) (-1712 (((-1163) $) 77)) (-3541 (((-1163) $ (-845) (-1060)) 68) (((-1163) $ (-845) (-798)) 69)) (-1572 (((-107) $ $) NIL))) -(((-1159) (-13 (-1006) (-10 -8 (-15 -1620 ((-583 (-867 (-199))) $)) (-15 -2880 ($)) (-15 -2216 ($ $)) (-15 -2587 ((-583 (-236)) $)) (-15 -2587 ($ $ (-583 (-236)))) (-15 -2216 ($ (-437) (-583 (-236)))) (-15 -2918 ((-1163) $ (-845) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-798) (-517) (-798) (-517))) (-15 -1711 ((-1158 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1782 (-517)) (|:| -2850 (-517)) (|:| |spline| (-517)) (|:| -3541 (-517)) (|:| |axesColor| (-798)) (|:| -2464 (-517)) (|:| |unitsColor| (-798)) (|:| |showing| (-517)))) $)) (-15 -3356 ((-1158 (-3 (-437) "undefined")) $)) (-15 -3086 ((-1163) $ (-1060))) (-15 -3871 ((-1163) $ (-437) (-845))) (-15 -3714 ((-437) $ (-845))) (-15 -3541 ((-1163) $ (-845) (-1060))) (-15 -3541 ((-1163) $ (-845) (-798))) (-15 -2464 ((-1163) $ (-845) (-1060))) (-15 -2464 ((-1163) $ (-845) (-798))) (-15 -1782 ((-1163) $ (-845) (-1060))) (-15 -1302 ((-1163) $ (-845) (-1060))) (-15 -2850 ((-1163) $ (-845) (-1060))) (-15 -2571 ((-1163) $ (-1060))) (-15 -1712 ((-1163) $)) (-15 -3876 ((-1163) $ (-703) (-703) (-845) (-845))) (-15 -2029 ((-1163) $ (-845) (-349) (-349))) (-15 -3183 ((-1163) $ (-845) (-349) (-349))) (-15 -1971 ((-1163) $ (-845) (-1060))) (-15 -3418 ((-1163) $ (-703) (-703))) (-15 -2526 ((-1163) $ (-437) (-845))) (-15 -3467 ((-1163) $ (-845) (-845))) (-15 -1660 ((-1060) $ (-1060))) (-15 -1660 ((-1060) $ (-1060) (-1060))) (-15 -1660 ((-1060) $ (-1060) (-583 (-1060)))) (-15 -1637 ((-1163) $)) (-15 -2576 ((-517) $)) (-15 -2262 ((-787) $))))) (T -1159)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1159)))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-583 (-867 (-199)))) (-5 *1 (-1159)))) (-2880 (*1 *1) (-5 *1 (-1159))) (-2216 (*1 *1 *1) (-5 *1 (-1159))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159)))) (-2587 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159)))) (-2216 (*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1159)))) (-2918 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-845)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-798)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1158 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1782 (-517)) (|:| -2850 (-517)) (|:| |spline| (-517)) (|:| -3541 (-517)) (|:| |axesColor| (-798)) (|:| -2464 (-517)) (|:| |unitsColor| (-798)) (|:| |showing| (-517))))) (-5 *1 (-1159)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-1158 (-3 (-437) "undefined"))) (-5 *1 (-1159)))) (-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3871 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (-845)) (-5 *2 (-437)) (-5 *1 (-1159)))) (-3541 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3541 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-798)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2464 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2464 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-798)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1782 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1302 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2571 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3876 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2029 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3183 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1971 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3418 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2526 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-3467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))) (-1660 (*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1159)))) (-1660 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1159)))) (-1660 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-1159)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1159)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1159))))) -(-13 (-1006) (-10 -8 (-15 -1620 ((-583 (-867 (-199))) $)) (-15 -2880 ($)) (-15 -2216 ($ $)) (-15 -2587 ((-583 (-236)) $)) (-15 -2587 ($ $ (-583 (-236)))) (-15 -2216 ($ (-437) (-583 (-236)))) (-15 -2918 ((-1163) $ (-845) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-798) (-517) (-798) (-517))) (-15 -1711 ((-1158 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1782 (-517)) (|:| -2850 (-517)) (|:| |spline| (-517)) (|:| -3541 (-517)) (|:| |axesColor| (-798)) (|:| -2464 (-517)) (|:| |unitsColor| (-798)) (|:| |showing| (-517)))) $)) (-15 -3356 ((-1158 (-3 (-437) "undefined")) $)) (-15 -3086 ((-1163) $ (-1060))) (-15 -3871 ((-1163) $ (-437) (-845))) (-15 -3714 ((-437) $ (-845))) (-15 -3541 ((-1163) $ (-845) (-1060))) (-15 -3541 ((-1163) $ (-845) (-798))) (-15 -2464 ((-1163) $ (-845) (-1060))) (-15 -2464 ((-1163) $ (-845) (-798))) (-15 -1782 ((-1163) $ (-845) (-1060))) (-15 -1302 ((-1163) $ (-845) (-1060))) (-15 -2850 ((-1163) $ (-845) (-1060))) (-15 -2571 ((-1163) $ (-1060))) (-15 -1712 ((-1163) $)) (-15 -3876 ((-1163) $ (-703) (-703) (-845) (-845))) (-15 -2029 ((-1163) $ (-845) (-349) (-349))) (-15 -3183 ((-1163) $ (-845) (-349) (-349))) (-15 -1971 ((-1163) $ (-845) (-1060))) (-15 -3418 ((-1163) $ (-703) (-703))) (-15 -2526 ((-1163) $ (-437) (-845))) (-15 -3467 ((-1163) $ (-845) (-845))) (-15 -1660 ((-1060) $ (-1060))) (-15 -1660 ((-1060) $ (-1060) (-1060))) (-15 -1660 ((-1060) $ (-1060) (-583 (-1060)))) (-15 -1637 ((-1163) $)) (-15 -2576 ((-517) $)) (-15 -2262 ((-787) $)))) -((-2105 (((-107) $ $) NIL)) (-2954 (((-1163) $ (-349)) 138) (((-1163) $ (-349) (-349) (-349)) 139)) (-1660 (((-1060) $ (-1060)) 146) (((-1060) $ (-1060) (-1060)) 144) (((-1060) $ (-1060) (-583 (-1060))) 143)) (-1714 (($) 49)) (-3427 (((-1163) $ (-349) (-349) (-349) (-349) (-349)) 114) (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $) 112) (((-1163) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 113) (((-1163) $ (-517) (-517) (-349) (-349) (-349)) 115) (((-1163) $ (-349) (-349)) 116) (((-1163) $ (-349) (-349) (-349)) 123)) (-2887 (((-349)) 96) (((-349) (-349)) 97)) (-2078 (((-349)) 91) (((-349) (-349)) 93)) (-3906 (((-349)) 94) (((-349) (-349)) 95)) (-1341 (((-349)) 100) (((-349) (-349)) 101)) (-2346 (((-349)) 98) (((-349) (-349)) 99)) (-3183 (((-1163) $ (-349) (-349)) 140)) (-3086 (((-1163) $ (-1060)) 124)) (-1247 (((-1037 (-199)) $) 50) (($ $ (-1037 (-199))) 51)) (-3938 (((-1163) $ (-1060)) 152)) (-2519 (((-1163) $ (-1060)) 153)) (-1255 (((-1163) $ (-349) (-349)) 122) (((-1163) $ (-517) (-517)) 137)) (-3467 (((-1163) $ (-845) (-845)) 130)) (-1637 (((-1163) $) 110)) (-1707 (((-1163) $ (-1060)) 151)) (-1605 (((-1163) $ (-1060)) 107)) (-2587 (((-583 (-236)) $) 52) (($ $ (-583 (-236))) 53)) (-3418 (((-1163) $ (-703) (-703)) 129)) (-2473 (((-1163) $ (-703) (-867 (-199))) 158)) (-3568 (($ $) 56) (($ (-1037 (-199)) (-1060)) 57) (($ (-1037 (-199)) (-583 (-236))) 58)) (-3254 (((-1163) $ (-349) (-349) (-349)) 104)) (-3232 (((-1060) $) NIL)) (-2576 (((-517) $) 102)) (-3323 (((-1163) $ (-349)) 141)) (-1741 (((-1163) $ (-349)) 156)) (-4130 (((-1024) $) NIL)) (-3734 (((-1163) $ (-349)) 155)) (-3242 (((-1163) $ (-1060)) 109)) (-3876 (((-1163) $ (-703) (-703) (-845) (-845)) 128)) (-2959 (((-1163) $ (-1060)) 106)) (-2571 (((-1163) $ (-1060)) 108)) (-1904 (((-1163) $ (-142) (-142)) 127)) (-2262 (((-787) $) 135)) (-1712 (((-1163) $) 111)) (-3765 (((-1163) $ (-1060)) 154)) (-3541 (((-1163) $ (-1060)) 105)) (-1572 (((-107) $ $) NIL))) -(((-1160) (-13 (-1006) (-10 -8 (-15 -2078 ((-349))) (-15 -2078 ((-349) (-349))) (-15 -3906 ((-349))) (-15 -3906 ((-349) (-349))) (-15 -2887 ((-349))) (-15 -2887 ((-349) (-349))) (-15 -2346 ((-349))) (-15 -2346 ((-349) (-349))) (-15 -1341 ((-349))) (-15 -1341 ((-349) (-349))) (-15 -1714 ($)) (-15 -3568 ($ $)) (-15 -3568 ($ (-1037 (-199)) (-1060))) (-15 -3568 ($ (-1037 (-199)) (-583 (-236)))) (-15 -1247 ((-1037 (-199)) $)) (-15 -1247 ($ $ (-1037 (-199)))) (-15 -2473 ((-1163) $ (-703) (-867 (-199)))) (-15 -2587 ((-583 (-236)) $)) (-15 -2587 ($ $ (-583 (-236)))) (-15 -3418 ((-1163) $ (-703) (-703))) (-15 -3467 ((-1163) $ (-845) (-845))) (-15 -3086 ((-1163) $ (-1060))) (-15 -3876 ((-1163) $ (-703) (-703) (-845) (-845))) (-15 -3427 ((-1163) $ (-349) (-349) (-349) (-349) (-349))) (-15 -3427 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -3427 ((-1163) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3427 ((-1163) $ (-517) (-517) (-349) (-349) (-349))) (-15 -3427 ((-1163) $ (-349) (-349))) (-15 -3427 ((-1163) $ (-349) (-349) (-349))) (-15 -2571 ((-1163) $ (-1060))) (-15 -3541 ((-1163) $ (-1060))) (-15 -2959 ((-1163) $ (-1060))) (-15 -1605 ((-1163) $ (-1060))) (-15 -3242 ((-1163) $ (-1060))) (-15 -1255 ((-1163) $ (-349) (-349))) (-15 -1255 ((-1163) $ (-517) (-517))) (-15 -2954 ((-1163) $ (-349))) (-15 -2954 ((-1163) $ (-349) (-349) (-349))) (-15 -3183 ((-1163) $ (-349) (-349))) (-15 -1707 ((-1163) $ (-1060))) (-15 -3734 ((-1163) $ (-349))) (-15 -1741 ((-1163) $ (-349))) (-15 -3938 ((-1163) $ (-1060))) (-15 -2519 ((-1163) $ (-1060))) (-15 -3765 ((-1163) $ (-1060))) (-15 -3254 ((-1163) $ (-349) (-349) (-349))) (-15 -3323 ((-1163) $ (-349))) (-15 -1637 ((-1163) $)) (-15 -1904 ((-1163) $ (-142) (-142))) (-15 -1660 ((-1060) $ (-1060))) (-15 -1660 ((-1060) $ (-1060) (-1060))) (-15 -1660 ((-1060) $ (-1060) (-583 (-1060)))) (-15 -1712 ((-1163) $)) (-15 -2576 ((-517) $))))) (T -1160)) -((-2078 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-2078 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-3906 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-2887 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-2887 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-2346 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-1341 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-1341 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) (-1714 (*1 *1) (-5 *1 (-1160))) (-3568 (*1 *1 *1) (-5 *1 (-1160))) (-3568 (*1 *1 *2 *3) (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-1060)) (-5 *1 (-1160)))) (-3568 (*1 *1 *2 *3) (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1160)))) (-1247 (*1 *2 *1) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1160)))) (-1247 (*1 *1 *1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1160)))) (-2473 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-867 (-199))) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1160)))) (-2587 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1160)))) (-3418 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3086 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3876 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3427 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3427 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1160)))) (-3427 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3427 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3427 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3427 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2571 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3541 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2959 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1605 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3242 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1255 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1255 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2954 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2954 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3183 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1707 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3734 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1741 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3938 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2519 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3765 (*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3254 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-3323 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1904 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1163)) (-5 *1 (-1160)))) (-1660 (*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1160)))) (-1660 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1160)))) (-1660 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-1160)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1160)))) (-2576 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1160))))) -(-13 (-1006) (-10 -8 (-15 -2078 ((-349))) (-15 -2078 ((-349) (-349))) (-15 -3906 ((-349))) (-15 -3906 ((-349) (-349))) (-15 -2887 ((-349))) (-15 -2887 ((-349) (-349))) (-15 -2346 ((-349))) (-15 -2346 ((-349) (-349))) (-15 -1341 ((-349))) (-15 -1341 ((-349) (-349))) (-15 -1714 ($)) (-15 -3568 ($ $)) (-15 -3568 ($ (-1037 (-199)) (-1060))) (-15 -3568 ($ (-1037 (-199)) (-583 (-236)))) (-15 -1247 ((-1037 (-199)) $)) (-15 -1247 ($ $ (-1037 (-199)))) (-15 -2473 ((-1163) $ (-703) (-867 (-199)))) (-15 -2587 ((-583 (-236)) $)) (-15 -2587 ($ $ (-583 (-236)))) (-15 -3418 ((-1163) $ (-703) (-703))) (-15 -3467 ((-1163) $ (-845) (-845))) (-15 -3086 ((-1163) $ (-1060))) (-15 -3876 ((-1163) $ (-703) (-703) (-845) (-845))) (-15 -3427 ((-1163) $ (-349) (-349) (-349) (-349) (-349))) (-15 -3427 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -3427 ((-1163) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3427 ((-1163) $ (-517) (-517) (-349) (-349) (-349))) (-15 -3427 ((-1163) $ (-349) (-349))) (-15 -3427 ((-1163) $ (-349) (-349) (-349))) (-15 -2571 ((-1163) $ (-1060))) (-15 -3541 ((-1163) $ (-1060))) (-15 -2959 ((-1163) $ (-1060))) (-15 -1605 ((-1163) $ (-1060))) (-15 -3242 ((-1163) $ (-1060))) (-15 -1255 ((-1163) $ (-349) (-349))) (-15 -1255 ((-1163) $ (-517) (-517))) (-15 -2954 ((-1163) $ (-349))) (-15 -2954 ((-1163) $ (-349) (-349) (-349))) (-15 -3183 ((-1163) $ (-349) (-349))) (-15 -1707 ((-1163) $ (-1060))) (-15 -3734 ((-1163) $ (-349))) (-15 -1741 ((-1163) $ (-349))) (-15 -3938 ((-1163) $ (-1060))) (-15 -2519 ((-1163) $ (-1060))) (-15 -3765 ((-1163) $ (-1060))) (-15 -3254 ((-1163) $ (-349) (-349) (-349))) (-15 -3323 ((-1163) $ (-349))) (-15 -1637 ((-1163) $)) (-15 -1904 ((-1163) $ (-142) (-142))) (-15 -1660 ((-1060) $ (-1060))) (-15 -1660 ((-1060) $ (-1060) (-1060))) (-15 -1660 ((-1060) $ (-1060) (-583 (-1060)))) (-15 -1712 ((-1163) $)) (-15 -2576 ((-517) $)))) -((-2430 (((-583 (-1060)) (-583 (-1060))) 94) (((-583 (-1060))) 89)) (-4121 (((-583 (-1060))) 87)) (-2856 (((-583 (-845)) (-583 (-845))) 62) (((-583 (-845))) 59)) (-2973 (((-583 (-703)) (-583 (-703))) 56) (((-583 (-703))) 52)) (-2906 (((-1163)) 64)) (-2089 (((-845) (-845)) 80) (((-845)) 79)) (-1280 (((-845) (-845)) 78) (((-845)) 77)) (-1342 (((-798) (-798)) 74) (((-798)) 73)) (-3309 (((-199)) 84) (((-199) (-349)) 86)) (-1407 (((-845)) 81) (((-845) (-845)) 82)) (-1339 (((-845) (-845)) 76) (((-845)) 75)) (-1468 (((-798) (-798)) 68) (((-798)) 66)) (-3793 (((-798) (-798)) 70) (((-798)) 69)) (-4108 (((-798) (-798)) 72) (((-798)) 71))) -(((-1161) (-10 -7 (-15 -1468 ((-798))) (-15 -1468 ((-798) (-798))) (-15 -3793 ((-798))) (-15 -3793 ((-798) (-798))) (-15 -4108 ((-798))) (-15 -4108 ((-798) (-798))) (-15 -1342 ((-798))) (-15 -1342 ((-798) (-798))) (-15 -1339 ((-845))) (-15 -1339 ((-845) (-845))) (-15 -2973 ((-583 (-703)))) (-15 -2973 ((-583 (-703)) (-583 (-703)))) (-15 -2856 ((-583 (-845)))) (-15 -2856 ((-583 (-845)) (-583 (-845)))) (-15 -2906 ((-1163))) (-15 -2430 ((-583 (-1060)))) (-15 -2430 ((-583 (-1060)) (-583 (-1060)))) (-15 -4121 ((-583 (-1060)))) (-15 -1280 ((-845))) (-15 -2089 ((-845))) (-15 -1280 ((-845) (-845))) (-15 -2089 ((-845) (-845))) (-15 -1407 ((-845) (-845))) (-15 -1407 ((-845))) (-15 -3309 ((-199) (-349))) (-15 -3309 ((-199))))) (T -1161)) -((-3309 (*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1161)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1161)))) (-1407 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-2089 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-1280 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-2089 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-1280 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-4121 (*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161)))) (-2430 (*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161)))) (-2430 (*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161)))) (-2906 (*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1161)))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1161)))) (-2856 (*1 *2) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1161)))) (-2973 (*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1161)))) (-2973 (*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1161)))) (-1339 (*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-1339 (*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) (-1342 (*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-1342 (*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-4108 (*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-4108 (*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-3793 (*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) (-1468 (*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161))))) -(-10 -7 (-15 -1468 ((-798))) (-15 -1468 ((-798) (-798))) (-15 -3793 ((-798))) (-15 -3793 ((-798) (-798))) (-15 -4108 ((-798))) (-15 -4108 ((-798) (-798))) (-15 -1342 ((-798))) (-15 -1342 ((-798) (-798))) (-15 -1339 ((-845))) (-15 -1339 ((-845) (-845))) (-15 -2973 ((-583 (-703)))) (-15 -2973 ((-583 (-703)) (-583 (-703)))) (-15 -2856 ((-583 (-845)))) (-15 -2856 ((-583 (-845)) (-583 (-845)))) (-15 -2906 ((-1163))) (-15 -2430 ((-583 (-1060)))) (-15 -2430 ((-583 (-1060)) (-583 (-1060)))) (-15 -4121 ((-583 (-1060)))) (-15 -1280 ((-845))) (-15 -2089 ((-845))) (-15 -1280 ((-845) (-845))) (-15 -2089 ((-845) (-845))) (-15 -1407 ((-845) (-845))) (-15 -1407 ((-845))) (-15 -3309 ((-199) (-349))) (-15 -3309 ((-199)))) -((-4085 (((-437) (-583 (-583 (-867 (-199)))) (-583 (-236))) 17) (((-437) (-583 (-583 (-867 (-199))))) 16) (((-437) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236))) 15)) (-1452 (((-1159) (-583 (-583 (-867 (-199)))) (-583 (-236))) 23) (((-1159) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236))) 22)) (-2262 (((-1159) (-437)) 34))) -(((-1162) (-10 -7 (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236)))) (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))))) (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))) (-583 (-236)))) (-15 -1452 ((-1159) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236)))) (-15 -1452 ((-1159) (-583 (-583 (-867 (-199)))) (-583 (-236)))) (-15 -2262 ((-1159) (-437))))) (T -1162)) -((-2262 (*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1159)) (-5 *1 (-1162)))) (-1452 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-1162)))) (-1452 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-798)) (-5 *5 (-845)) (-5 *6 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-1162)))) (-4085 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1162)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *2 (-437)) (-5 *1 (-1162)))) (-4085 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-798)) (-5 *5 (-845)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1162))))) -(-10 -7 (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236)))) (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))))) (-15 -4085 ((-437) (-583 (-583 (-867 (-199)))) (-583 (-236)))) (-15 -1452 ((-1159) (-583 (-583 (-867 (-199)))) (-798) (-798) (-845) (-583 (-236)))) (-15 -1452 ((-1159) (-583 (-583 (-867 (-199)))) (-583 (-236)))) (-15 -2262 ((-1159) (-437)))) -((-2026 (($) 7)) (-2262 (((-787) $) 10))) -(((-1163) (-10 -8 (-15 -2026 ($)) (-15 -2262 ((-787) $)))) (T -1163)) -((-2262 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1163)))) (-2026 (*1 *1) (-5 *1 (-1163)))) -(-10 -8 (-15 -2026 ($)) (-15 -2262 ((-787) $))) -((-1692 (($ $ |#2|) 10))) -(((-1164 |#1| |#2|) (-10 -8 (-15 -1692 (|#1| |#1| |#2|))) (-1165 |#2|) (-333)) (T -1164)) -NIL -(-10 -8 (-15 -1692 (|#1| |#1| |#2|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1470 (((-125)) 28)) (-2262 (((-787) $) 11)) (-3663 (($) 18 T CONST)) (-1572 (((-107) $ $) 6)) (-1692 (($ $ |#1|) 29)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1165 |#1|) (-1189) (-333)) (T -1165)) -((-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-333)))) (-1470 (*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-333)) (-5 *2 (-125))))) -(-13 (-650 |t#1|) (-10 -8 (-15 -1692 ($ $ |t#1|)) (-15 -1470 ((-125))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-970 |#1|) . T) ((-1006) . T)) -((-1263 (((-583 (-1107 |#1|)) (-1077) (-1107 |#1|)) 78)) (-2985 (((-1058 (-1058 (-876 |#1|))) (-1077) (-1058 (-876 |#1|))) 57)) (-3648 (((-1 (-1058 (-1107 |#1|)) (-1058 (-1107 |#1|))) (-703) (-1107 |#1|) (-1058 (-1107 |#1|))) 68)) (-1644 (((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703)) 59)) (-1960 (((-1 (-1073 (-876 |#1|)) (-876 |#1|)) (-1077)) 27)) (-2864 (((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703)) 58))) -(((-1166 |#1|) (-10 -7 (-15 -1644 ((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703))) (-15 -2864 ((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703))) (-15 -2985 ((-1058 (-1058 (-876 |#1|))) (-1077) (-1058 (-876 |#1|)))) (-15 -1960 ((-1 (-1073 (-876 |#1|)) (-876 |#1|)) (-1077))) (-15 -1263 ((-583 (-1107 |#1|)) (-1077) (-1107 |#1|))) (-15 -3648 ((-1 (-1058 (-1107 |#1|)) (-1058 (-1107 |#1|))) (-703) (-1107 |#1|) (-1058 (-1107 |#1|))))) (-333)) (T -1166)) -((-3648 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1107 *6)) (-5 *2 (-1 (-1058 *4) (-1058 *4))) (-5 *1 (-1166 *6)) (-5 *5 (-1058 *4)))) (-1263 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-4 *5 (-333)) (-5 *2 (-583 (-1107 *5))) (-5 *1 (-1166 *5)) (-5 *4 (-1107 *5)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1 (-1073 (-876 *4)) (-876 *4))) (-5 *1 (-1166 *4)) (-4 *4 (-333)))) (-2985 (*1 *2 *3 *4) (-12 (-5 *3 (-1077)) (-4 *5 (-333)) (-5 *2 (-1058 (-1058 (-876 *5)))) (-5 *1 (-1166 *5)) (-5 *4 (-1058 (-876 *5))))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1058 (-876 *4)) (-1058 (-876 *4)))) (-5 *1 (-1166 *4)) (-4 *4 (-333)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1058 (-876 *4)) (-1058 (-876 *4)))) (-5 *1 (-1166 *4)) (-4 *4 (-333))))) -(-10 -7 (-15 -1644 ((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703))) (-15 -2864 ((-1 (-1058 (-876 |#1|)) (-1058 (-876 |#1|))) (-703))) (-15 -2985 ((-1058 (-1058 (-876 |#1|))) (-1077) (-1058 (-876 |#1|)))) (-15 -1960 ((-1 (-1073 (-876 |#1|)) (-876 |#1|)) (-1077))) (-15 -1263 ((-583 (-1107 |#1|)) (-1077) (-1107 |#1|))) (-15 -3648 ((-1 (-1058 (-1107 |#1|)) (-1058 (-1107 |#1|))) (-703) (-1107 |#1|) (-1058 (-1107 |#1|))))) -((-1486 (((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 74)) (-2734 (((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 73))) -(((-1167 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|))) (-319) (-1134 |#1|) (-1134 |#2|) (-379 |#2| |#3|)) (T -1167)) -((-1486 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 *3)) (-5 *2 (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1167 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))) (-2734 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 *4)) (-5 *2 (-2 (|:| -3700 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5))))) -(-10 -7 (-15 -2734 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -1486 ((-2 (|:| -3700 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 42)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) NIL)) (-1690 (((-107) $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2262 (((-787) $) 63) (($ (-517)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-156)))) (-1818 (((-703)) NIL)) (-3018 (((-1163) (-703)) 16)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 27 T CONST)) (-3675 (($) 66 T CONST)) (-1572 (((-107) $ $) 68)) (-1692 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1680 (($ $) 70) (($ $ $) NIL)) (-1666 (($ $ $) 46)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))))) -(((-1168 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-964) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2262 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1692 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2262 ($ |#4|)) (-15 -3018 ((-1163) (-703))))) (-964) (-779) (-725) (-873 |#1| |#3| |#2|) (-583 |#2|) (-583 (-703)) (-703)) (T -1168)) -((-2262 (*1 *2 *1) (-12 (-4 *2 (-873 *3 *5 *4)) (-5 *1 (-1168 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-1692 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-964)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1168 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-873 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2262 (*1 *1 *2) (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1168 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-873 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-964)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1163)) (-5 *1 (-1168 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-873 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3)))) -(-13 (-964) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2262 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1692 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2262 ($ |#4|)) (-15 -3018 ((-1163) (-703))))) -((-2105 (((-107) $ $) NIL)) (-1394 (((-583 (-2 (|:| -1712 $) (|:| -3723 (-583 |#4|)))) (-583 |#4|)) NIL)) (-3246 (((-583 $) (-583 |#4|)) 88)) (-2080 (((-583 |#3|) $) NIL)) (-3538 (((-107) $) NIL)) (-4001 (((-107) $) NIL (|has| |#1| (-509)))) (-3240 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3710 ((|#4| |#4| $) NIL)) (-2149 (((-2 (|:| |under| $) (|:| -2713 $) (|:| |upper| $)) $ |#3|) NIL)) (-3443 (((-107) $ (-703)) NIL)) (-2317 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3038 (($) NIL T CONST)) (-2697 (((-107) $) NIL (|has| |#1| (-509)))) (-2171 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3000 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3764 (((-107) $) NIL (|has| |#1| (-509)))) (-2622 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 28)) (-2774 (((-583 |#4|) (-583 |#4|) $) 25 (|has| |#1| (-509)))) (-3821 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-3220 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3402 (($ (-583 |#4|)) NIL)) (-2429 (((-3 $ "failed") $) 70)) (-2195 ((|#4| |#4| $) 75)) (-2446 (($ $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3292 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3639 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4142 ((|#4| |#4| $) NIL)) (-1510 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4195))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4195))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1954 (((-2 (|:| -1712 (-583 |#4|)) (|:| -3723 (-583 |#4|))) $) NIL)) (-1525 (((-583 |#4|) $) NIL (|has| $ (-6 -4195)))) (-3142 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2772 ((|#3| $) 76)) (-2266 (((-107) $ (-703)) NIL)) (-3687 (((-583 |#4|) $) 29 (|has| $ (-6 -4195)))) (-1949 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006))))) (-3804 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-583 |#4|)) 35)) (-2737 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4196)))) (-3312 (($ (-1 |#4| |#4|) $) NIL)) (-1425 (((-583 |#3|) $) NIL)) (-1808 (((-107) |#3| $) NIL)) (-2328 (((-107) $ (-703)) NIL)) (-3232 (((-1060) $) NIL)) (-1447 (((-3 |#4| "failed") $) NIL)) (-3846 (((-583 |#4|) $) 50)) (-1568 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2930 ((|#4| |#4| $) 74)) (-1579 (((-107) $ $) 85)) (-2236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-2788 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3877 ((|#4| |#4| $) NIL)) (-4130 (((-1024) $) NIL)) (-2420 (((-3 |#4| "failed") $) 69)) (-1985 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-4059 (((-3 $ "failed") $ |#4|) NIL)) (-3175 (($ $ |#4|) NIL)) (-3843 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-3552 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1006))))) (-1770 (((-107) $ $) NIL)) (-1754 (((-107) $) 67)) (-2679 (($) 42)) (-1191 (((-703) $) NIL)) (-4140 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4195)) (|has| |#4| (-1006)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-2453 (($ $) NIL)) (-3367 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2279 (($ (-583 |#4|)) NIL)) (-3231 (($ $ |#3|) NIL)) (-2316 (($ $ |#3|) NIL)) (-4158 (($ $) NIL)) (-3127 (($ $ |#3|) NIL)) (-2262 (((-787) $) NIL) (((-583 |#4|) $) 57)) (-3192 (((-703) $) NIL (|has| |#3| (-338)))) (-3353 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-583 |#4|)) 41)) (-3800 (((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-583 $) (-583 |#4|)) 66)) (-3026 (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2544 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1217 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-1272 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4195)))) (-4070 (((-583 |#3|) $) NIL)) (-3275 (((-107) |#3| $) NIL)) (-1572 (((-107) $ $) NIL)) (-3573 (((-703) $) NIL (|has| $ (-6 -4195))))) -(((-1169 |#1| |#2| |#3| |#4|) (-13 (-1106 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3804 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3804 ((-3 $ "failed") (-583 |#4|))) (-15 -3353 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3353 ((-3 $ "failed") (-583 |#4|))) (-15 -3800 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3800 ((-583 $) (-583 |#4|))))) (-509) (-725) (-779) (-978 |#1| |#2| |#3|)) (T -1169)) -((-3804 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1169 *5 *6 *7 *8)))) (-3804 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1169 *3 *4 *5 *6)))) (-3353 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1169 *5 *6 *7 *8)))) (-3353 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1169 *3 *4 *5 *6)))) (-3800 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1169 *6 *7 *8 *9))) (-5 *1 (-1169 *6 *7 *8 *9)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1169 *4 *5 *6 *7))) (-5 *1 (-1169 *4 *5 *6 *7))))) -(-13 (-1106 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3804 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3804 ((-3 $ "failed") (-583 |#4|))) (-15 -3353 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3353 ((-3 $ "failed") (-583 |#4|))) (-15 -3800 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3800 ((-583 $) (-583 |#4|))))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-1783 (((-3 $ "failed") $ $) 19)) (-3038 (($) 17 T CONST)) (-3550 (((-3 $ "failed") $) 34)) (-1690 (((-107) $) 31)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-1170 |#1|) (-1189) (-964)) (T -1170)) -((-2262 (*1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-964))))) -(-13 (-964) (-106 |t#1| |t#1|) (-10 -8 (-15 -2262 ($ |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-970 |#1|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3375 (((-583 |#1|) $) 45)) (-1855 (($ $ (-703)) 39)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2517 (($ $ (-703)) 17 (|has| |#2| (-156))) (($ $ $) 18 (|has| |#2| (-156)))) (-3038 (($) NIL T CONST)) (-1586 (($ $ $) 62) (($ $ (-751 |#1|)) 49) (($ $ |#1|) 53)) (-3220 (((-3 (-751 |#1|) "failed") $) NIL)) (-3402 (((-751 |#1|) $) NIL)) (-2364 (($ $) 32)) (-3550 (((-3 $ "failed") $) NIL)) (-2843 (((-107) $) NIL)) (-1320 (($ $) NIL)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ (-751 |#1|) |#2|) 31)) (-2833 (($ $) 33)) (-1488 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 11)) (-4114 (((-751 |#1|) $) NIL)) (-3614 (((-751 |#1|) $) 34)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-2388 (($ $ $) 61) (($ $ (-751 |#1|)) 51) (($ $ |#1|) 55)) (-3758 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2325 (((-751 |#1|) $) 28)) (-2336 ((|#2| $) 30)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1191 (((-703) $) 36)) (-1968 (((-107) $) 40)) (-1373 ((|#2| $) NIL)) (-2262 (((-787) $) NIL) (($ (-751 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-517)) NIL)) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-751 |#1|)) NIL)) (-1570 ((|#2| $ $) 64) ((|#2| $ (-751 |#1|)) NIL)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (-3663 (($) 12 T CONST)) (-3675 (($) 14 T CONST)) (-1226 (((-583 (-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1572 (((-107) $ $) 38)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 21)) (** (($ $ (-703)) NIL) (($ $ (-845)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-751 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1171 |#1| |#2|) (-13 (-352 |#2| (-751 |#1|)) (-1177 |#1| |#2|)) (-779) (-964)) (T -1171)) -NIL -(-13 (-352 |#2| (-751 |#1|)) (-1177 |#1| |#2|)) -((-1232 ((|#3| |#3| (-703)) 23)) (-3898 ((|#3| |#3| (-703)) 28)) (-2943 ((|#3| |#3| |#3| (-703)) 29))) -(((-1172 |#1| |#2| |#3|) (-10 -7 (-15 -3898 (|#3| |#3| (-703))) (-15 -1232 (|#3| |#3| (-703))) (-15 -2943 (|#3| |#3| |#3| (-703)))) (-13 (-964) (-650 (-377 (-517)))) (-779) (-1177 |#2| |#1|)) (T -1172)) -((-2943 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4)))) (-1232 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4)))) (-3898 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4))))) -(-10 -7 (-15 -3898 (|#3| |#3| (-703))) (-15 -1232 (|#3| |#3| (-703))) (-15 -2943 (|#3| |#3| |#3| (-703)))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3375 (((-583 |#1|) $) 40)) (-1783 (((-3 $ "failed") $ $) 19)) (-2517 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3038 (($) 17 T CONST)) (-1586 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-3220 (((-3 (-751 |#1|) "failed") $) 64)) (-3402 (((-751 |#1|) $) 63)) (-3550 (((-3 $ "failed") $) 34)) (-2843 (((-107) $) 45)) (-1320 (($ $) 44)) (-1690 (((-107) $) 31)) (-3022 (((-107) $) 50)) (-2416 (($ (-751 |#1|) |#2|) 51)) (-2833 (($ $) 49)) (-1488 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-4114 (((-751 |#1|) $) 61)) (-3312 (($ (-1 |#2| |#2|) $) 41)) (-2388 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1968 (((-107) $) 47)) (-1373 ((|#2| $) 46)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1570 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) -(((-1173 |#1| |#2|) (-1189) (-779) (-964)) (T -1173)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-751 *3)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))) (-1570 (*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1173 *4 *2)) (-4 *4 (-779)) (-4 *2 (-964)))) (-1570 (*1 *2 *1 *1) (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964)))) (-2388 (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)))) (-2388 (*1 *1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-1586 (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-1586 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)))) (-1586 (*1 *1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-2416 (*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1173 *4 *3)) (-4 *3 (-964)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-107)))) (-2833 (*1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-2262 (*1 *1 *2) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-107)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-107)))) (-1320 (*1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) (-2517 (*1 *1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)) (-4 *3 (-156)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-4 *4 (-156)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-583 *3))))) -(-13 (-964) (-1170 |t#2|) (-955 (-751 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4114 ((-751 |t#1|) $)) (-15 -1488 ((-2 (|:| |k| (-751 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1570 (|t#2| $ (-751 |t#1|))) (-15 -1570 (|t#2| $ $)) (-15 -2388 ($ $ |t#1|)) (-15 -2388 ($ $ (-751 |t#1|))) (-15 -2388 ($ $ $)) (-15 -1586 ($ $ |t#1|)) (-15 -1586 ($ $ (-751 |t#1|))) (-15 -1586 ($ $ $)) (-15 -2416 ($ (-751 |t#1|) |t#2|)) (-15 -3022 ((-107) $)) (-15 -2833 ($ $)) (-15 -2262 ($ |t#1|)) (-15 -1968 ((-107) $)) (-15 -1373 (|t#2| $)) (-15 -2843 ((-107) $)) (-15 -1320 ($ $)) (IF (|has| |t#2| (-156)) (PROGN (-15 -2517 ($ $ $)) (-15 -2517 ($ $ (-703)))) |%noBranch|) (-15 -3312 ($ (-1 |t#2| |t#2|) $)) (-15 -3375 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -4188)) (-6 -4188) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-955 (-751 |#1|)) . T) ((-970 |#2|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1170 |#2|) . T)) -((-2090 (((-107) $) 14)) (-3275 (((-107) $) 13)) (-4115 (($ $) 18) (($ $ (-703)) 19))) -(((-1174 |#1| |#2|) (-10 -8 (-15 -4115 (|#1| |#1| (-703))) (-15 -4115 (|#1| |#1|)) (-15 -2090 ((-107) |#1|)) (-15 -3275 ((-107) |#1|))) (-1175 |#2|) (-333)) (T -1174)) -NIL -(-10 -8 (-15 -4115 (|#1| |#1| (-703))) (-15 -4115 (|#1| |#1|)) (-15 -2090 ((-107) |#1|)) (-15 -3275 ((-107) |#1|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3479 (((-2 (|:| -1966 $) (|:| -4182 $) (|:| |associate| $)) $) 41)) (-2491 (($ $) 40)) (-2025 (((-107) $) 38)) (-2090 (((-107) $) 94)) (-3578 (((-703)) 90)) (-1783 (((-3 $ "failed") $ $) 19)) (-1322 (($ $) 73)) (-3306 (((-388 $) $) 72)) (-1765 (((-107) $ $) 59)) (-3038 (($) 17 T CONST)) (-3220 (((-3 |#1| "failed") $) 101)) (-3402 ((|#1| $) 100)) (-2383 (($ $ $) 55)) (-3550 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-3106 (((-2 (|:| -1570 (-583 $)) (|:| -1306 $)) (-583 $)) 51)) (-2627 (($ $ (-703)) 87 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2022 (((-107) $) 71)) (-3250 (((-765 (-845)) $) 84 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1690 (((-107) $) 31)) (-1731 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2323 (($ $ $) 46) (($ (-583 $)) 45)) (-3232 (((-1060) $) 9)) (-2291 (($ $) 70)) (-1333 (((-107) $) 93)) (-4130 (((-1024) $) 10)) (-2664 (((-1073 $) (-1073 $) (-1073 $)) 44)) (-2361 (($ $ $) 48) (($ (-583 $)) 47)) (-3896 (((-388 $) $) 74)) (-2177 (((-765 (-845))) 91)) (-2501 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1306 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2333 (((-3 $ "failed") $ $) 42)) (-2677 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3388 (((-703) $) 58)) (-2018 (((-2 (|:| -2773 $) (|:| -3292 $)) $ $) 57)) (-3667 (((-3 (-703) "failed") $ $) 85 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1470 (((-125)) 99)) (-1191 (((-765 (-845)) $) 92)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-3385 (((-3 $ "failed") $) 83 (-3786 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-1818 (((-703)) 29)) (-2944 (((-107) $ $) 39)) (-3275 (((-107) $) 95)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-4115 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-1572 (((-107) $ $) 6)) (-1692 (($ $ $) 64) (($ $ |#1|) 98)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) -(((-1175 |#1|) (-1189) (-333)) (T -1175)) -((-3275 (*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-2090 (*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-1333 (*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-845))))) (-2177 (*1 *2) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-845))))) (-3578 (*1 *2) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-703)))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-333)) (-4 *2 (-338)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-4 *3 (-338))))) -(-13 (-333) (-955 |t#1|) (-1165 |t#1|) (-10 -8 (IF (|has| |t#1| (-134)) (-6 (-134)) |%noBranch|) (IF (|has| |t#1| (-132)) (-6 (-372)) |%noBranch|) (-15 -3275 ((-107) $)) (-15 -2090 ((-107) $)) (-15 -1333 ((-107) $)) (-15 -1191 ((-765 (-845)) $)) (-15 -2177 ((-765 (-845)))) (-15 -3578 ((-703))) (IF (|has| |t#1| (-338)) (PROGN (-6 (-372)) (-15 -4115 ($ $)) (-15 -4115 ($ $ (-703)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 #0# #0#) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3786 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) -3786 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-421) . T) ((-509) . T) ((-585 #0#) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 #0#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-844) . T) ((-955 |#1|) . T) ((-970 #0#) . T) ((-970 |#1|) . T) ((-970 $) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1116) . T) ((-1165 |#1|) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3375 (((-583 |#1|) $) 85)) (-1855 (($ $ (-703)) 88)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2517 (($ $ $) NIL (|has| |#2| (-156))) (($ $ (-703)) NIL (|has| |#2| (-156)))) (-3038 (($) NIL T CONST)) (-1586 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-3220 (((-3 (-751 |#1|) "failed") $) NIL) (((-3 (-817 |#1|) "failed") $) NIL)) (-3402 (((-751 |#1|) $) NIL) (((-817 |#1|) $) NIL)) (-2364 (($ $) 87)) (-3550 (((-3 $ "failed") $) NIL)) (-2843 (((-107) $) 76)) (-1320 (($ $) 80)) (-1983 (($ $ $ (-703)) 89)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ (-751 |#1|) |#2|) NIL) (($ (-817 |#1|) |#2|) 26)) (-2833 (($ $) 102)) (-1488 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4114 (((-751 |#1|) $) NIL)) (-3614 (((-751 |#1|) $) NIL)) (-3312 (($ (-1 |#2| |#2|) $) NIL)) (-2388 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1232 (($ $ (-703)) 96 (|has| |#2| (-650 (-377 (-517)))))) (-3758 (((-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2325 (((-817 |#1|) $) 70)) (-2336 ((|#2| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-3898 (($ $ (-703)) 93 (|has| |#2| (-650 (-377 (-517)))))) (-1191 (((-703) $) 86)) (-1968 (((-107) $) 71)) (-1373 ((|#2| $) 75)) (-2262 (((-787) $) 57) (($ (-517)) NIL) (($ |#2|) 51) (($ (-751 |#1|)) NIL) (($ |#1|) 59) (($ (-817 |#1|)) NIL) (($ (-601 |#1| |#2|)) 43) (((-1171 |#1| |#2|) $) 64) (((-1180 |#1| |#2|) $) 69)) (-3186 (((-583 |#2|) $) NIL)) (-1939 ((|#2| $ (-817 |#1|)) NIL)) (-1570 ((|#2| $ (-751 |#1|)) NIL) ((|#2| $ $) NIL)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 21 T CONST)) (-3675 (($) 25 T CONST)) (-1226 (((-583 (-2 (|:| |k| (-817 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1391 (((-3 (-601 |#1| |#2|) "failed") $) 101)) (-1572 (((-107) $ $) 65)) (-1680 (($ $) 95) (($ $ $) 94)) (-1666 (($ $ $) 20)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-817 |#1|)) NIL))) -(((-1176 |#1| |#2|) (-13 (-1177 |#1| |#2|) (-352 |#2| (-817 |#1|)) (-10 -8 (-15 -2262 ($ (-601 |#1| |#2|))) (-15 -2262 ((-1171 |#1| |#2|) $)) (-15 -2262 ((-1180 |#1| |#2|) $)) (-15 -1391 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -1983 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -3898 ($ $ (-703))) (-15 -1232 ($ $ (-703)))) |%noBranch|))) (-779) (-156)) (T -1176)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1176 *3 *4)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1180 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1391 (*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1983 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3898 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))) (-1232 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156))))) -(-13 (-1177 |#1| |#2|) (-352 |#2| (-817 |#1|)) (-10 -8 (-15 -2262 ($ (-601 |#1| |#2|))) (-15 -2262 ((-1171 |#1| |#2|) $)) (-15 -2262 ((-1180 |#1| |#2|) $)) (-15 -1391 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -1983 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -3898 ($ $ (-703))) (-15 -1232 ($ $ (-703)))) |%noBranch|))) -((-2105 (((-107) $ $) 7)) (-1992 (((-107) $) 16)) (-3375 (((-583 |#1|) $) 40)) (-1855 (($ $ (-703)) 73)) (-1783 (((-3 $ "failed") $ $) 19)) (-2517 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3038 (($) 17 T CONST)) (-1586 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-3220 (((-3 (-751 |#1|) "failed") $) 64)) (-3402 (((-751 |#1|) $) 63)) (-3550 (((-3 $ "failed") $) 34)) (-2843 (((-107) $) 45)) (-1320 (($ $) 44)) (-1690 (((-107) $) 31)) (-3022 (((-107) $) 50)) (-2416 (($ (-751 |#1|) |#2|) 51)) (-2833 (($ $) 49)) (-1488 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-4114 (((-751 |#1|) $) 61)) (-3614 (((-751 |#1|) $) 75)) (-3312 (($ (-1 |#2| |#2|) $) 41)) (-2388 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3232 (((-1060) $) 9)) (-4130 (((-1024) $) 10)) (-1191 (((-703) $) 74)) (-1968 (((-107) $) 47)) (-1373 ((|#2| $) 46)) (-2262 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1570 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-1818 (((-703)) 29)) (-2806 (($ $ (-845)) 26) (($ $ (-703)) 33)) (-3663 (($) 18 T CONST)) (-3675 (($) 30 T CONST)) (-1572 (((-107) $ $) 6)) (-1680 (($ $) 22) (($ $ $) 21)) (-1666 (($ $ $) 14)) (** (($ $ (-845)) 25) (($ $ (-703)) 32)) (* (($ (-845) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) -(((-1177 |#1| |#2|) (-1189) (-779) (-964)) (T -1177)) -((-3614 (*1 *2 *1) (-12 (-4 *1 (-1177 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-751 *3)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-1177 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *2 (-703)))) (-1855 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1177 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))))) -(-13 (-1173 |t#1| |t#2|) (-10 -8 (-15 -3614 ((-751 |t#1|) $)) (-15 -1191 ((-703) $)) (-15 -1855 ($ $ (-703))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-955 (-751 |#1|)) . T) ((-970 |#2|) . T) ((-964) . T) ((-971) . T) ((-1018) . T) ((-1006) . T) ((-1170 |#2|) . T) ((-1173 |#1| |#2|) . T)) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3375 (((-583 (-1077)) $) NIL)) (-2260 (($ (-1171 (-1077) |#1|)) NIL)) (-1855 (($ $ (-703)) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2517 (($ $ $) NIL (|has| |#1| (-156))) (($ $ (-703)) NIL (|has| |#1| (-156)))) (-3038 (($) NIL T CONST)) (-1586 (($ $ (-1077)) NIL) (($ $ (-751 (-1077))) NIL) (($ $ $) NIL)) (-3220 (((-3 (-751 (-1077)) "failed") $) NIL)) (-3402 (((-751 (-1077)) $) NIL)) (-3550 (((-3 $ "failed") $) NIL)) (-2843 (((-107) $) NIL)) (-1320 (($ $) NIL)) (-1690 (((-107) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ (-751 (-1077)) |#1|) NIL)) (-2833 (($ $) NIL)) (-1488 (((-2 (|:| |k| (-751 (-1077))) (|:| |c| |#1|)) $) NIL)) (-4114 (((-751 (-1077)) $) NIL)) (-3614 (((-751 (-1077)) $) NIL)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-2388 (($ $ (-1077)) NIL) (($ $ (-751 (-1077))) NIL) (($ $ $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2287 (((-1171 (-1077) |#1|) $) NIL)) (-1191 (((-703) $) NIL)) (-1968 (((-107) $) NIL)) (-1373 ((|#1| $) NIL)) (-2262 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-751 (-1077))) NIL) (($ (-1077)) NIL)) (-1570 ((|#1| $ (-751 (-1077))) NIL) ((|#1| $ $) NIL)) (-1818 (((-703)) NIL)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) NIL T CONST)) (-2342 (((-583 (-2 (|:| |k| (-1077)) (|:| |c| $))) $) NIL)) (-3675 (($) NIL T CONST)) (-1572 (((-107) $ $) NIL)) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) NIL)) (** (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1077) $) NIL))) -(((-1178 |#1|) (-13 (-1177 (-1077) |#1|) (-10 -8 (-15 -2287 ((-1171 (-1077) |#1|) $)) (-15 -2260 ($ (-1171 (-1077) |#1|))) (-15 -2342 ((-583 (-2 (|:| |k| (-1077)) (|:| |c| $))) $)))) (-964)) (T -1178)) -((-2287 (*1 *2 *1) (-12 (-5 *2 (-1171 (-1077) *3)) (-5 *1 (-1178 *3)) (-4 *3 (-964)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-1171 (-1077) *3)) (-4 *3 (-964)) (-5 *1 (-1178 *3)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1077)) (|:| |c| (-1178 *3))))) (-5 *1 (-1178 *3)) (-4 *3 (-964))))) -(-13 (-1177 (-1077) |#1|) (-10 -8 (-15 -2287 ((-1171 (-1077) |#1|) $)) (-15 -2260 ($ (-1171 (-1077) |#1|))) (-15 -2342 ((-583 (-2 (|:| |k| (-1077)) (|:| |c| $))) $)))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-1783 (((-3 $ "failed") $ $) NIL)) (-3038 (($) NIL T CONST)) (-3220 (((-3 |#2| "failed") $) NIL)) (-3402 ((|#2| $) NIL)) (-2364 (($ $) NIL)) (-3550 (((-3 $ "failed") $) 35)) (-2843 (((-107) $) 30)) (-1320 (($ $) 31)) (-1690 (((-107) $) NIL)) (-2516 (((-703) $) NIL)) (-1300 (((-583 $) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ |#2| |#1|) NIL)) (-4114 ((|#2| $) 19)) (-3614 ((|#2| $) 16)) (-3312 (($ (-1 |#1| |#1|) $) NIL)) (-3758 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2325 ((|#2| $) NIL)) (-2336 ((|#1| $) NIL)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-1968 (((-107) $) 27)) (-1373 ((|#1| $) 28)) (-2262 (((-787) $) 54) (($ (-517)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-3186 (((-583 |#1|) $) NIL)) (-1939 ((|#1| $ |#2|) NIL)) (-1570 ((|#1| $ |#2|) 24)) (-1818 (((-703)) 14)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 25 T CONST)) (-3675 (($) 11 T CONST)) (-1226 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1572 (((-107) $ $) 26)) (-1692 (($ $ |#1|) 56 (|has| |#1| (-333)))) (-1680 (($ $) NIL) (($ $ $) NIL)) (-1666 (($ $ $) 43)) (** (($ $ (-845)) NIL) (($ $ (-703)) 45)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3573 (((-703) $) 15))) -(((-1179 |#1| |#2|) (-13 (-964) (-1170 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3573 ((-703) $)) (-15 -2262 ($ |#2|)) (-15 -3614 (|#2| $)) (-15 -4114 (|#2| $)) (-15 -2364 ($ $)) (-15 -1570 (|#1| $ |#2|)) (-15 -1968 ((-107) $)) (-15 -1373 (|#1| $)) (-15 -2843 ((-107) $)) (-15 -1320 ($ $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1692 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4188)) (-6 -4188) |%noBranch|) (IF (|has| |#1| (-6 -4192)) (-6 -4192) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|))) (-964) (-775)) (T -1179)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775)))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775)))) (-3312 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-1179 *3 *4)) (-4 *4 (-775)))) (-2262 (*1 *1 *2) (-12 (-5 *1 (-1179 *3 *2)) (-4 *3 (-964)) (-4 *2 (-775)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964)) (-4 *4 (-775)))) (-3614 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-964)))) (-4114 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-964)))) (-1570 (*1 *2 *1 *3) (-12 (-4 *2 (-964)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-775)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964)) (-4 *4 (-775)))) (-1373 (*1 *2 *1) (-12 (-4 *2 (-964)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-775)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964)) (-4 *4 (-775)))) (-1320 (*1 *1 *1) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775)))) (-1692 (*1 *1 *1 *2) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-333)) (-4 *2 (-964)) (-4 *3 (-775))))) -(-13 (-964) (-1170 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3573 ((-703) $)) (-15 -2262 ($ |#2|)) (-15 -3614 (|#2| $)) (-15 -4114 (|#2| $)) (-15 -2364 ($ $)) (-15 -1570 (|#1| $ |#2|)) (-15 -1968 ((-107) $)) (-15 -1373 (|#1| $)) (-15 -2843 ((-107) $)) (-15 -1320 ($ $)) (-15 -3312 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1692 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4188)) (-6 -4188) |%noBranch|) (IF (|has| |#1| (-6 -4192)) (-6 -4192) |%noBranch|) (IF (|has| |#1| (-6 -4193)) (-6 -4193) |%noBranch|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) NIL)) (-3375 (((-583 |#1|) $) 120)) (-2260 (($ (-1171 |#1| |#2|)) 44)) (-1855 (($ $ (-703)) 32)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2517 (($ $ $) 48 (|has| |#2| (-156))) (($ $ (-703)) 46 (|has| |#2| (-156)))) (-3038 (($) NIL T CONST)) (-1586 (($ $ |#1|) 102) (($ $ (-751 |#1|)) 103) (($ $ $) 25)) (-3220 (((-3 (-751 |#1|) "failed") $) NIL)) (-3402 (((-751 |#1|) $) NIL)) (-3550 (((-3 $ "failed") $) 110)) (-2843 (((-107) $) 105)) (-1320 (($ $) 106)) (-1690 (((-107) $) NIL)) (-3022 (((-107) $) NIL)) (-2416 (($ (-751 |#1|) |#2|) 19)) (-2833 (($ $) NIL)) (-1488 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4114 (((-751 |#1|) $) 111)) (-3614 (((-751 |#1|) $) 114)) (-3312 (($ (-1 |#2| |#2|) $) 119)) (-2388 (($ $ |#1|) 100) (($ $ (-751 |#1|)) 101) (($ $ $) 56)) (-3232 (((-1060) $) NIL)) (-4130 (((-1024) $) NIL)) (-2287 (((-1171 |#1| |#2|) $) 84)) (-1191 (((-703) $) 117)) (-1968 (((-107) $) 70)) (-1373 ((|#2| $) 28)) (-2262 (((-787) $) 63) (($ (-517)) 77) (($ |#2|) 74) (($ (-751 |#1|)) 17) (($ |#1|) 73)) (-1570 ((|#2| $ (-751 |#1|)) 104) ((|#2| $ $) 27)) (-1818 (((-703)) 108)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 14 T CONST)) (-2342 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3675 (($) 29 T CONST)) (-1572 (((-107) $ $) 13)) (-1680 (($ $) 88) (($ $ $) 91)) (-1666 (($ $ $) 55)) (** (($ $ (-845)) NIL) (($ $ (-703)) 49)) (* (($ (-845) $) NIL) (($ (-703) $) 47) (($ (-517) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1180 |#1| |#2|) (-13 (-1177 |#1| |#2|) (-10 -8 (-15 -2287 ((-1171 |#1| |#2|) $)) (-15 -2260 ($ (-1171 |#1| |#2|))) (-15 -2342 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-779) (-964)) (T -1180)) -((-2287 (*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1180 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) (-5 *1 (-1180 *3 *4)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1180 *3 *4))))) (-5 *1 (-1180 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))))) -(-13 (-1177 |#1| |#2|) (-10 -8 (-15 -2287 ((-1171 |#1| |#2|) $)) (-15 -2260 ($ (-1171 |#1| |#2|))) (-15 -2342 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1318 (((-583 (-1058 |#1|)) (-1 (-583 (-1058 |#1|)) (-583 (-1058 |#1|))) (-517)) 15) (((-1058 |#1|) (-1 (-1058 |#1|) (-1058 |#1|))) 11))) -(((-1181 |#1|) (-10 -7 (-15 -1318 ((-1058 |#1|) (-1 (-1058 |#1|) (-1058 |#1|)))) (-15 -1318 ((-583 (-1058 |#1|)) (-1 (-583 (-1058 |#1|)) (-583 (-1058 |#1|))) (-517)))) (-1112)) (T -1181)) -((-1318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1058 *5)) (-583 (-1058 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1058 *5))) (-5 *1 (-1181 *5)) (-4 *5 (-1112)))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-1 (-1058 *4) (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-1112))))) -(-10 -7 (-15 -1318 ((-1058 |#1|) (-1 (-1058 |#1|) (-1058 |#1|)))) (-15 -1318 ((-583 (-1058 |#1|)) (-1 (-583 (-1058 |#1|)) (-583 (-1058 |#1|))) (-517)))) -((-1317 (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|))) 146) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107)) 145) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107)) 144) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107) (-107)) 143) (((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-961 |#1| |#2|)) 128)) (-2244 (((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|))) 71) (((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107)) 70) (((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107) (-107)) 69)) (-3306 (((-583 (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-961 |#1| |#2|)) 60)) (-3695 (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|))) 113) (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107)) 112) (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107)) 111) (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107) (-107)) 110) (((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|)) 105)) (-2136 (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|))) 118) (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107)) 117) (((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107)) 116) (((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|)) 115)) (-3367 (((-583 (-712 |#1| (-789 |#3|))) (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) 97) (((-1073 (-942 (-377 |#1|))) (-1073 |#1|)) 88) (((-876 (-942 (-377 |#1|))) (-712 |#1| (-789 |#3|))) 95) (((-876 (-942 (-377 |#1|))) (-876 |#1|)) 93) (((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|))) 33))) -(((-1182 |#1| |#2| |#3|) (-10 -7 (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107) (-107))) (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107))) (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-961 |#1| |#2|))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)))) (-15 -3306 ((-583 (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-961 |#1| |#2|))) (-15 -3367 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3367 ((-876 (-942 (-377 |#1|))) (-876 |#1|))) (-15 -3367 ((-876 (-942 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3367 ((-1073 (-942 (-377 |#1|))) (-1073 |#1|))) (-15 -3367 ((-583 (-712 |#1| (-789 |#3|))) (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))))) (-13 (-777) (-278) (-134) (-940)) (-583 (-1077)) (-583 (-1077))) (T -1182)) -((-3367 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-1073 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-1073 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *6 (-583 (-1077))) (-5 *2 (-876 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-876 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-876 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-1048 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-2136 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-2136 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-3695 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-3695 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-3695 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) (-1317 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4)))))) (-5 *1 (-1182 *4 *5 *6)) (-5 *3 (-583 (-876 *4))) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-1317 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5))) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-1317 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5))) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-1317 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5))) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4)))))) (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-961 *4 *5))) (-5 *1 (-1182 *4 *5 *6)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) (-2244 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) (-2244 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-1182 *5 *6 *7)) (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077)))))) -(-10 -7 (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107) (-107))) (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)) (-107))) (-15 -2244 ((-583 (-961 |#1| |#2|)) (-583 (-876 |#1|)))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-961 |#1| |#2|))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)) (-107))) (-15 -1317 ((-583 (-2 (|:| -2914 (-1073 |#1|)) (|:| -1372 (-583 (-876 |#1|))))) (-583 (-876 |#1|)))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107))) (-15 -3695 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-961 |#1| |#2|))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107) (-107))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)) (-107))) (-15 -2136 ((-583 (-583 (-942 (-377 |#1|)))) (-583 (-876 |#1|)))) (-15 -3306 ((-583 (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-961 |#1| |#2|))) (-15 -3367 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3367 ((-876 (-942 (-377 |#1|))) (-876 |#1|))) (-15 -3367 ((-876 (-942 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3367 ((-1073 (-942 (-377 |#1|))) (-1073 |#1|))) (-15 -3367 ((-583 (-712 |#1| (-789 |#3|))) (-1048 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))))) -((-2405 (((-3 (-1158 (-377 (-517))) "failed") (-1158 |#1|) |#1|) 17)) (-3201 (((-107) (-1158 |#1|)) 11)) (-2994 (((-3 (-1158 (-517)) "failed") (-1158 |#1|)) 14))) -(((-1183 |#1|) (-10 -7 (-15 -3201 ((-107) (-1158 |#1|))) (-15 -2994 ((-3 (-1158 (-517)) "failed") (-1158 |#1|))) (-15 -2405 ((-3 (-1158 (-377 (-517))) "failed") (-1158 |#1|) |#1|))) (-579 (-517))) (T -1183)) -((-2405 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1158 (-377 (-517)))) (-5 *1 (-1183 *4)))) (-2994 (*1 *2 *3) (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1158 (-517))) (-5 *1 (-1183 *4)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1183 *4))))) -(-10 -7 (-15 -3201 ((-107) (-1158 |#1|))) (-15 -2994 ((-3 (-1158 (-517)) "failed") (-1158 |#1|))) (-15 -2405 ((-3 (-1158 (-377 (-517))) "failed") (-1158 |#1|) |#1|))) -((-2105 (((-107) $ $) NIL)) (-1992 (((-107) $) 11)) (-1783 (((-3 $ "failed") $ $) NIL)) (-2390 (((-703)) 8)) (-3038 (($) NIL T CONST)) (-3550 (((-3 $ "failed") $) 43)) (-2192 (($) 36)) (-1690 (((-107) $) NIL)) (-1639 (((-3 $ "failed") $) 29)) (-4161 (((-845) $) 15)) (-3232 (((-1060) $) NIL)) (-2578 (($) 25 T CONST)) (-2803 (($ (-845)) 37)) (-4130 (((-1024) $) NIL)) (-3367 (((-517) $) 13)) (-2262 (((-787) $) 22) (($ (-517)) 19)) (-1818 (((-703)) 9)) (-2806 (($ $ (-845)) NIL) (($ $ (-703)) NIL)) (-3663 (($) 23 T CONST)) (-3675 (($) 24 T CONST)) (-1572 (((-107) $ $) 27)) (-1680 (($ $) 38) (($ $ $) 35)) (-1666 (($ $ $) 26)) (** (($ $ (-845)) NIL) (($ $ (-703)) 40)) (* (($ (-845) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 32) (($ $ $) 31))) -(((-1184 |#1|) (-13 (-156) (-338) (-558 (-517)) (-1053)) (-845)) (T -1184)) -NIL -(-13 (-156) (-338) (-558 (-517)) (-1053)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-1189 3128685 3128690 3128695 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3128670 3128675 3128680 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3128655 3128660 3128665 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3128640 3128645 3128650 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3128625 3128630 3128635 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1184 3127755 3128500 3128577 "ZMOD" 3128582 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1183 3126865 3127029 3127238 "ZLINDEP" 3127587 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1182 3116269 3118014 3119966 "ZDSOLVE" 3125014 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1181 3115515 3115656 3115845 "YSTREAM" 3116115 NIL YSTREAM (NIL T) -7 NIL NIL) (-1180 3113283 3114820 3115023 "XRPOLY" 3115358 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1179 3109745 3111074 3111656 "XPR" 3112747 NIL XPR (NIL T T) -8 NIL NIL) (-1178 3107459 3109080 3109283 "XPOLY" 3109576 NIL XPOLY (NIL T) -8 NIL NIL) (-1177 3105272 3106650 3106705 "XPOLYC" 3106990 NIL XPOLYC (NIL T T) -9 NIL 3107103) (-1176 3101644 3103789 3104177 "XPBWPOLY" 3104930 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1175 3097571 3099884 3099927 "XF" 3100548 NIL XF (NIL T) -9 NIL 3100947) (-1174 3097192 3097280 3097449 "XF-" 3097454 NIL XF- (NIL T T) -8 NIL NIL) (-1173 3092571 3093870 3093925 "XFALG" 3096073 NIL XFALG (NIL T T) -9 NIL 3096860) (-1172 3091708 3091812 3092016 "XEXPPKG" 3092463 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1171 3089806 3091559 3091654 "XDPOLY" 3091659 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1170 3088684 3089294 3089337 "XALG" 3089399 NIL XALG (NIL T) -9 NIL 3089518) (-1169 3082160 3086668 3087161 "WUTSET" 3088276 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1168 3079972 3080779 3081130 "WP" 3081942 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1167 3078858 3079056 3079351 "WFFINTBS" 3079769 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1166 3076762 3077189 3077651 "WEIER" 3078430 NIL WEIER (NIL T) -7 NIL NIL) (-1165 3075910 3076334 3076377 "VSPACE" 3076513 NIL VSPACE (NIL T) -9 NIL 3076587) (-1164 3075748 3075775 3075866 "VSPACE-" 3075871 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1163 3075494 3075537 3075608 "VOID" 3075699 T VOID (NIL) -8 NIL NIL) (-1162 3073630 3073989 3074395 "VIEW" 3075110 T VIEW (NIL) -7 NIL NIL) (-1161 3070055 3070693 3071430 "VIEWDEF" 3072915 T VIEWDEF (NIL) -7 NIL NIL) (-1160 3059394 3061603 3063776 "VIEW3D" 3067904 T VIEW3D (NIL) -8 NIL NIL) (-1159 3051676 3053305 3054884 "VIEW2D" 3057837 T VIEW2D (NIL) -8 NIL NIL) (-1158 3047085 3051446 3051538 "VECTOR" 3051619 NIL VECTOR (NIL T) -8 NIL NIL) (-1157 3045662 3045921 3046239 "VECTOR2" 3046815 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1156 3039201 3043453 3043497 "VECTCAT" 3044485 NIL VECTCAT (NIL T) -9 NIL 3045069) (-1155 3038215 3038469 3038859 "VECTCAT-" 3038864 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1154 3037696 3037866 3037986 "VARIABLE" 3038130 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1153 3037628 3037633 3037664 "UTYPE" 3037669 T UTYPE (NIL) -9 NIL NIL) (-1152 3036463 3036617 3036878 "UTSODETL" 3037454 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1151 3033903 3034363 3034887 "UTSODE" 3036004 NIL UTSODE (NIL T T) -7 NIL NIL) (-1150 3025750 3031543 3032031 "UTS" 3033472 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1149 3017098 3022460 3022503 "UTSCAT" 3023604 NIL UTSCAT (NIL T) -9 NIL 3024361) (-1148 3014454 3015169 3016157 "UTSCAT-" 3016162 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1147 3014085 3014128 3014259 "UTS2" 3014405 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1146 3008360 3010925 3010969 "URAGG" 3013039 NIL URAGG (NIL T) -9 NIL 3013761) (-1145 3005299 3006162 3007285 "URAGG-" 3007290 NIL URAGG- (NIL T T) -8 NIL NIL) (-1144 3000985 3003916 3004387 "UPXSSING" 3004963 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1143 2992879 3000106 3000386 "UPXS" 3000762 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1142 2985911 2992784 2992855 "UPXSCONS" 2992860 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1141 2976203 2983030 2983092 "UPXSCCA" 2983741 NIL UPXSCCA (NIL T T) -9 NIL 2983982) (-1140 2975842 2975927 2976100 "UPXSCCA-" 2976105 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1139 2966056 2972656 2972699 "UPXSCAT" 2973342 NIL UPXSCAT (NIL T) -9 NIL 2973950) (-1138 2965490 2965569 2965746 "UPXS2" 2965971 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1137 2964144 2964397 2964748 "UPSQFREE" 2965233 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1136 2958039 2961091 2961146 "UPSCAT" 2962295 NIL UPSCAT (NIL T T) -9 NIL 2963068) (-1135 2957253 2957457 2957780 "UPSCAT-" 2957785 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1134 2943385 2951382 2951425 "UPOLYC" 2953503 NIL UPOLYC (NIL T) -9 NIL 2954723) (-1133 2934778 2937182 2940307 "UPOLYC-" 2940312 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1132 2934409 2934452 2934583 "UPOLYC2" 2934729 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1131 2925868 2933978 2934115 "UP" 2934319 NIL UP (NIL NIL T) -8 NIL NIL) (-1130 2925211 2925318 2925481 "UPMP" 2925757 NIL UPMP (NIL T T) -7 NIL NIL) (-1129 2924764 2924845 2924984 "UPDIVP" 2925124 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1128 2923332 2923581 2923897 "UPDECOMP" 2924513 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1127 2922567 2922679 2922864 "UPCDEN" 2923216 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1126 2922090 2922159 2922306 "UP2" 2922492 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1125 2920607 2921294 2921571 "UNISEG" 2921848 NIL UNISEG (NIL T) -8 NIL NIL) (-1124 2919822 2919949 2920154 "UNISEG2" 2920450 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1123 2918882 2919062 2919288 "UNIFACT" 2919638 NIL UNIFACT (NIL T) -7 NIL NIL) (-1122 2902781 2918063 2918313 "ULS" 2918689 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1121 2890749 2902686 2902757 "ULSCONS" 2902762 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1120 2873502 2885512 2885574 "ULSCCAT" 2886286 NIL ULSCCAT (NIL T T) -9 NIL 2886582) (-1119 2872553 2872798 2873185 "ULSCCAT-" 2873190 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1118 2862546 2869060 2869103 "ULSCAT" 2869959 NIL ULSCAT (NIL T) -9 NIL 2870689) (-1117 2861980 2862059 2862236 "ULS2" 2862461 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1116 2860377 2861344 2861375 "UFD" 2861587 T UFD (NIL) -9 NIL 2861701) (-1115 2860171 2860217 2860312 "UFD-" 2860317 NIL UFD- (NIL T) -8 NIL NIL) (-1114 2859253 2859436 2859652 "UDVO" 2859977 T UDVO (NIL) -7 NIL NIL) (-1113 2857069 2857478 2857949 "UDPO" 2858817 NIL UDPO (NIL T) -7 NIL NIL) (-1112 2857001 2857006 2857037 "TYPE" 2857042 T TYPE (NIL) -9 NIL NIL) (-1111 2855972 2856174 2856414 "TWOFACT" 2856795 NIL TWOFACT (NIL T) -7 NIL NIL) (-1110 2854910 2855247 2855510 "TUPLE" 2855744 NIL TUPLE (NIL T) -8 NIL NIL) (-1109 2852601 2853120 2853659 "TUBETOOL" 2854393 T TUBETOOL (NIL) -7 NIL NIL) (-1108 2851450 2851655 2851896 "TUBE" 2852394 NIL TUBE (NIL T) -8 NIL NIL) (-1107 2846174 2850428 2850710 "TS" 2851202 NIL TS (NIL T) -8 NIL NIL) (-1106 2834877 2838969 2839066 "TSETCAT" 2844300 NIL TSETCAT (NIL T T T T) -9 NIL 2845831) (-1105 2829612 2831210 2833100 "TSETCAT-" 2833105 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1104 2823875 2824721 2825663 "TRMANIP" 2828748 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1103 2823316 2823379 2823542 "TRIMAT" 2823807 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1102 2821122 2821359 2821722 "TRIGMNIP" 2823065 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1101 2820641 2820754 2820785 "TRIGCAT" 2820998 T TRIGCAT (NIL) -9 NIL NIL) (-1100 2820310 2820389 2820530 "TRIGCAT-" 2820535 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1099 2817209 2819170 2819450 "TREE" 2820065 NIL TREE (NIL T) -8 NIL NIL) (-1098 2816482 2817010 2817041 "TRANFUN" 2817076 T TRANFUN (NIL) -9 NIL 2817142) (-1097 2815761 2815952 2816232 "TRANFUN-" 2816237 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1096 2815565 2815597 2815658 "TOPSP" 2815722 T TOPSP (NIL) -7 NIL NIL) (-1095 2814917 2815032 2815185 "TOOLSIGN" 2815446 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1094 2813578 2814094 2814333 "TEXTFILE" 2814700 T TEXTFILE (NIL) -8 NIL NIL) (-1093 2811443 2811957 2812395 "TEX" 2813162 T TEX (NIL) -8 NIL NIL) (-1092 2811224 2811255 2811327 "TEX1" 2811406 NIL TEX1 (NIL T) -7 NIL NIL) (-1091 2810872 2810935 2811025 "TEMUTL" 2811156 T TEMUTL (NIL) -7 NIL NIL) (-1090 2809026 2809306 2809631 "TBCMPPK" 2810595 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1089 2800914 2807186 2807243 "TBAGG" 2807643 NIL TBAGG (NIL T T) -9 NIL 2807854) (-1088 2795984 2797472 2799226 "TBAGG-" 2799231 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1087 2795368 2795475 2795620 "TANEXP" 2795873 NIL TANEXP (NIL T) -7 NIL NIL) (-1086 2788869 2795225 2795318 "TABLE" 2795323 NIL TABLE (NIL T T) -8 NIL NIL) (-1085 2788282 2788380 2788518 "TABLEAU" 2788766 NIL TABLEAU (NIL T) -8 NIL NIL) (-1084 2782890 2784110 2785358 "TABLBUMP" 2787068 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1083 2779353 2780048 2780831 "SYSSOLP" 2782141 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1082 2775737 2776340 2777080 "SYNTAX" 2778635 T SYNTAX (NIL) -8 NIL NIL) (-1081 2772871 2773479 2774117 "SYMTAB" 2775121 T SYMTAB (NIL) -8 NIL NIL) (-1080 2768120 2769022 2770005 "SYMS" 2771910 T SYMS (NIL) -8 NIL NIL) (-1079 2765353 2767580 2767809 "SYMPOLY" 2767925 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1078 2764873 2764948 2765070 "SYMFUNC" 2765265 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1077 2760851 2762110 2762932 "SYMBOL" 2764073 T SYMBOL (NIL) -8 NIL NIL) (-1076 2754390 2756079 2757799 "SWITCH" 2759153 T SWITCH (NIL) -8 NIL NIL) (-1075 2747623 2753217 2753519 "SUTS" 2754145 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1074 2739516 2746744 2747024 "SUPXS" 2747400 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1073 2731048 2739137 2739262 "SUP" 2739425 NIL SUP (NIL T) -8 NIL NIL) (-1072 2730207 2730334 2730551 "SUPFRACF" 2730916 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1071 2729832 2729891 2730002 "SUP2" 2730142 NIL SUP2 (NIL T T) -7 NIL NIL) (-1070 2728258 2728530 2728890 "SUMRF" 2729533 NIL SUMRF (NIL T) -7 NIL NIL) (-1069 2727579 2727644 2727841 "SUMFS" 2728180 NIL SUMFS (NIL T T) -7 NIL NIL) (-1068 2711518 2726760 2727010 "SULS" 2727386 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1067 2710840 2711043 2711183 "SUCH" 2711426 NIL SUCH (NIL T T) -8 NIL NIL) (-1066 2704767 2705779 2706737 "SUBSPACE" 2709928 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1065 2704197 2704287 2704451 "SUBRESP" 2704655 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1064 2697566 2698862 2700173 "STTF" 2702933 NIL STTF (NIL T) -7 NIL NIL) (-1063 2691739 2692859 2694006 "STTFNC" 2696466 NIL STTFNC (NIL T) -7 NIL NIL) (-1062 2683090 2684957 2686750 "STTAYLOR" 2689980 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1061 2676334 2682954 2683037 "STRTBL" 2683042 NIL STRTBL (NIL T) -8 NIL NIL) (-1060 2671725 2676289 2676320 "STRING" 2676325 T STRING (NIL) -8 NIL NIL) (-1059 2666613 2671098 2671129 "STRICAT" 2671188 T STRICAT (NIL) -9 NIL 2671250) (-1058 2659329 2664136 2664756 "STREAM" 2666028 NIL STREAM (NIL T) -8 NIL NIL) (-1057 2658839 2658916 2659060 "STREAM3" 2659246 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1056 2657821 2658004 2658239 "STREAM2" 2658652 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1055 2657509 2657561 2657654 "STREAM1" 2657763 NIL STREAM1 (NIL T) -7 NIL NIL) (-1054 2656525 2656706 2656937 "STINPROD" 2657325 NIL STINPROD (NIL T) -7 NIL NIL) (-1053 2656103 2656287 2656318 "STEP" 2656398 T STEP (NIL) -9 NIL 2656476) (-1052 2649646 2656002 2656079 "STBL" 2656084 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1051 2644821 2648868 2648912 "STAGG" 2649065 NIL STAGG (NIL T) -9 NIL 2649154) (-1050 2642523 2643125 2643997 "STAGG-" 2644002 NIL STAGG- (NIL T T) -8 NIL NIL) (-1049 2640718 2642293 2642385 "STACK" 2642466 NIL STACK (NIL T) -8 NIL NIL) (-1048 2633449 2638865 2639320 "SREGSET" 2640348 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1047 2625889 2627257 2628769 "SRDCMPK" 2632055 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1046 2618856 2623329 2623360 "SRAGG" 2624663 T SRAGG (NIL) -9 NIL 2625271) (-1045 2617873 2618128 2618507 "SRAGG-" 2618512 NIL SRAGG- (NIL T) -8 NIL NIL) (-1044 2612322 2616792 2617219 "SQMATRIX" 2617492 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1043 2606074 2609042 2609768 "SPLTREE" 2611668 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1042 2602064 2602730 2603376 "SPLNODE" 2605500 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1041 2601110 2601343 2601374 "SPFCAT" 2601818 T SPFCAT (NIL) -9 NIL NIL) (-1040 2599847 2600057 2600321 "SPECOUT" 2600868 T SPECOUT (NIL) -7 NIL NIL) (-1039 2599608 2599648 2599717 "SPADPRSR" 2599800 T SPADPRSR (NIL) -7 NIL NIL) (-1038 2591630 2593377 2593420 "SPACEC" 2597743 NIL SPACEC (NIL T) -9 NIL 2599559) (-1037 2589802 2591563 2591611 "SPACE3" 2591616 NIL SPACE3 (NIL T) -8 NIL NIL) (-1036 2588554 2588725 2589016 "SORTPAK" 2589607 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1035 2586610 2586913 2587331 "SOLVETRA" 2588218 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1034 2585621 2585843 2586117 "SOLVESER" 2586383 NIL SOLVESER (NIL T) -7 NIL NIL) (-1033 2580841 2581722 2582724 "SOLVERAD" 2584673 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1032 2576656 2577265 2577994 "SOLVEFOR" 2580208 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1031 2570955 2576007 2576104 "SNTSCAT" 2576109 NIL SNTSCAT (NIL T T T T) -9 NIL 2576179) (-1030 2565060 2569286 2569676 "SMTS" 2570645 NIL SMTS (NIL T T T) -8 NIL NIL) (-1029 2559471 2564949 2565025 "SMP" 2565030 NIL SMP (NIL T T) -8 NIL NIL) (-1028 2557630 2557931 2558329 "SMITH" 2559168 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1027 2550594 2554790 2554893 "SMATCAT" 2556233 NIL SMATCAT (NIL NIL T T T) -9 NIL 2556782) (-1026 2547535 2548358 2549535 "SMATCAT-" 2549540 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1025 2545248 2546771 2546815 "SKAGG" 2547076 NIL SKAGG (NIL T) -9 NIL 2547211) (-1024 2541306 2544352 2544630 "SINT" 2544992 T SINT (NIL) -8 NIL NIL) (-1023 2541078 2541116 2541182 "SIMPAN" 2541262 T SIMPAN (NIL) -7 NIL NIL) (-1022 2539916 2540137 2540412 "SIGNRF" 2540837 NIL SIGNRF (NIL T) -7 NIL NIL) (-1021 2538725 2538876 2539166 "SIGNEF" 2539745 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1020 2536415 2536869 2537375 "SHP" 2538266 NIL SHP (NIL T NIL) -7 NIL NIL) (-1019 2530268 2536316 2536392 "SHDP" 2536397 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1018 2529757 2529949 2529980 "SGROUP" 2530132 T SGROUP (NIL) -9 NIL 2530219) (-1017 2529527 2529579 2529683 "SGROUP-" 2529688 NIL SGROUP- (NIL T) -8 NIL NIL) (-1016 2526363 2527060 2527783 "SGCF" 2528826 T SGCF (NIL) -7 NIL NIL) (-1015 2520761 2525813 2525910 "SFRTCAT" 2525915 NIL SFRTCAT (NIL T T T T) -9 NIL 2525953) (-1014 2514221 2515236 2516370 "SFRGCD" 2519744 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1013 2507387 2508458 2509642 "SFQCMPK" 2513154 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1012 2507009 2507098 2507208 "SFORT" 2507328 NIL SFORT (NIL T T) -8 NIL NIL) (-1011 2506154 2506849 2506970 "SEXOF" 2506975 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1010 2505288 2506035 2506103 "SEX" 2506108 T SEX (NIL) -8 NIL NIL) (-1009 2500064 2500753 2500849 "SEXCAT" 2504620 NIL SEXCAT (NIL T T T T T) -9 NIL 2505239) (-1008 2497244 2499998 2500046 "SET" 2500051 NIL SET (NIL T) -8 NIL NIL) (-1007 2495495 2495957 2496262 "SETMN" 2496985 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1006 2495102 2495228 2495259 "SETCAT" 2495376 T SETCAT (NIL) -9 NIL 2495460) (-1005 2494882 2494934 2495033 "SETCAT-" 2495038 NIL SETCAT- (NIL T) -8 NIL NIL) (-1004 2491269 2493343 2493387 "SETAGG" 2494257 NIL SETAGG (NIL T) -9 NIL 2494597) (-1003 2490727 2490843 2491080 "SETAGG-" 2491085 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1002 2489930 2490223 2490285 "SEGXCAT" 2490571 NIL SEGXCAT (NIL T T) -9 NIL 2490691) (-1001 2488986 2489596 2489778 "SEG" 2489783 NIL SEG (NIL T) -8 NIL NIL) (-1000 2487892 2488105 2488149 "SEGCAT" 2488731 NIL SEGCAT (NIL T) -9 NIL 2488969) (-999 2486946 2487276 2487474 "SEGBIND" 2487727 NIL SEGBIND (NIL T) -8 NIL NIL) (-998 2486578 2486635 2486744 "SEGBIND2" 2486883 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-997 2485801 2485927 2486129 "SEG2" 2486422 NIL SEG2 (NIL T T) -7 NIL NIL) (-996 2485240 2485738 2485783 "SDVAR" 2485788 NIL SDVAR (NIL T) -8 NIL NIL) (-995 2477546 2485019 2485143 "SDPOL" 2485148 NIL SDPOL (NIL T) -8 NIL NIL) (-994 2476145 2476411 2476728 "SCPKG" 2477261 NIL SCPKG (NIL T) -7 NIL NIL) (-993 2475372 2475505 2475682 "SCACHE" 2476000 NIL SCACHE (NIL T) -7 NIL NIL) (-992 2474815 2475136 2475219 "SAOS" 2475309 T SAOS (NIL) -8 NIL NIL) (-991 2474383 2474418 2474589 "SAERFFC" 2474774 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-990 2468279 2474282 2474360 "SAE" 2474365 NIL SAE (NIL T T NIL) -8 NIL NIL) (-989 2467875 2467910 2468067 "SAEFACT" 2468238 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-988 2466201 2466515 2466914 "RURPK" 2467541 NIL RURPK (NIL T NIL) -7 NIL NIL) (-987 2464854 2465131 2465438 "RULESET" 2466037 NIL RULESET (NIL T T T) -8 NIL NIL) (-986 2462062 2462565 2463026 "RULE" 2464536 NIL RULE (NIL T T T) -8 NIL NIL) (-985 2461704 2461859 2461940 "RULECOLD" 2462014 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-984 2456596 2457390 2458306 "RSETGCD" 2460903 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-983 2445910 2450962 2451057 "RSETCAT" 2455122 NIL RSETCAT (NIL T T T T) -9 NIL 2456219) (-982 2443841 2444380 2445200 "RSETCAT-" 2445205 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-981 2436271 2437646 2439162 "RSDCMPK" 2442440 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-980 2434288 2434729 2434802 "RRCC" 2435878 NIL RRCC (NIL T T) -9 NIL 2436222) (-979 2433642 2433816 2434092 "RRCC-" 2434097 NIL RRCC- (NIL T T T) -8 NIL NIL) (-978 2408008 2417633 2417698 "RPOLCAT" 2428200 NIL RPOLCAT (NIL T T T) -9 NIL 2431358) (-977 2399512 2401850 2404968 "RPOLCAT-" 2404973 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-976 2390578 2397742 2398222 "ROUTINE" 2399052 T ROUTINE (NIL) -8 NIL NIL) (-975 2387283 2390134 2390281 "ROMAN" 2390451 T ROMAN (NIL) -8 NIL NIL) (-974 2385569 2386154 2386411 "ROIRC" 2387089 NIL ROIRC (NIL T T) -8 NIL NIL) (-973 2381973 2384277 2384306 "RNS" 2384602 T RNS (NIL) -9 NIL 2384872) (-972 2380487 2380870 2381401 "RNS-" 2381474 NIL RNS- (NIL T) -8 NIL NIL) (-971 2379912 2380320 2380349 "RNG" 2380354 T RNG (NIL) -9 NIL 2380375) (-970 2379309 2379671 2379712 "RMODULE" 2379772 NIL RMODULE (NIL T) -9 NIL 2379814) (-969 2378161 2378255 2378585 "RMCAT2" 2379210 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-968 2374875 2377344 2377665 "RMATRIX" 2377896 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-967 2367871 2370105 2370218 "RMATCAT" 2373527 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2374509) (-966 2367250 2367397 2367700 "RMATCAT-" 2367705 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-965 2366820 2366895 2367021 "RINTERP" 2367169 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-964 2365870 2366434 2366463 "RING" 2366573 T RING (NIL) -9 NIL 2366667) (-963 2365665 2365709 2365803 "RING-" 2365808 NIL RING- (NIL T) -8 NIL NIL) (-962 2364513 2364750 2365006 "RIDIST" 2365429 T RIDIST (NIL) -7 NIL NIL) (-961 2355835 2363987 2364190 "RGCHAIN" 2364362 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-960 2352840 2353454 2354122 "RF" 2355199 NIL RF (NIL T) -7 NIL NIL) (-959 2352489 2352552 2352653 "RFFACTOR" 2352771 NIL RFFACTOR (NIL T) -7 NIL NIL) (-958 2352217 2352252 2352347 "RFFACT" 2352448 NIL RFFACT (NIL T) -7 NIL NIL) (-957 2350347 2350711 2351091 "RFDIST" 2351857 T RFDIST (NIL) -7 NIL NIL) (-956 2349805 2349897 2350057 "RETSOL" 2350249 NIL RETSOL (NIL T T) -7 NIL NIL) (-955 2349397 2349477 2349519 "RETRACT" 2349709 NIL RETRACT (NIL T) -9 NIL NIL) (-954 2349249 2349274 2349358 "RETRACT-" 2349363 NIL RETRACT- (NIL T T) -8 NIL NIL) (-953 2342107 2348906 2349031 "RESULT" 2349144 T RESULT (NIL) -8 NIL NIL) (-952 2340692 2341381 2341578 "RESRING" 2342010 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-951 2340332 2340381 2340477 "RESLATC" 2340629 NIL RESLATC (NIL T) -7 NIL NIL) (-950 2340041 2340075 2340180 "REPSQ" 2340291 NIL REPSQ (NIL T) -7 NIL NIL) (-949 2337472 2338052 2338652 "REP" 2339461 T REP (NIL) -7 NIL NIL) (-948 2337173 2337207 2337316 "REPDB" 2337431 NIL REPDB (NIL T) -7 NIL NIL) (-947 2331118 2332497 2333717 "REP2" 2335985 NIL REP2 (NIL T) -7 NIL NIL) (-946 2327524 2328205 2329010 "REP1" 2330345 NIL REP1 (NIL T) -7 NIL NIL) (-945 2320270 2325685 2326137 "REGSET" 2327155 NIL REGSET (NIL T T T T) -8 NIL NIL) (-944 2319091 2319426 2319674 "REF" 2320055 NIL REF (NIL T) -8 NIL NIL) (-943 2318472 2318575 2318740 "REDORDER" 2318975 NIL REDORDER (NIL T T) -7 NIL NIL) (-942 2314441 2317706 2317927 "RECLOS" 2318303 NIL RECLOS (NIL T) -8 NIL NIL) (-941 2313498 2313679 2313892 "REALSOLV" 2314248 T REALSOLV (NIL) -7 NIL NIL) (-940 2313345 2313386 2313415 "REAL" 2313420 T REAL (NIL) -9 NIL 2313455) (-939 2309836 2310638 2311520 "REAL0Q" 2312510 NIL REAL0Q (NIL T) -7 NIL NIL) (-938 2305447 2306435 2307494 "REAL0" 2308817 NIL REAL0 (NIL T) -7 NIL NIL) (-937 2304855 2304927 2305132 "RDIV" 2305369 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-936 2303928 2304102 2304313 "RDIST" 2304677 NIL RDIST (NIL T) -7 NIL NIL) (-935 2302532 2302819 2303188 "RDETRS" 2303636 NIL RDETRS (NIL T T) -7 NIL NIL) (-934 2300353 2300807 2301342 "RDETR" 2302074 NIL RDETR (NIL T T) -7 NIL NIL) (-933 2298969 2299247 2299648 "RDEEFS" 2300069 NIL RDEEFS (NIL T T) -7 NIL NIL) (-932 2297469 2297775 2298204 "RDEEF" 2298657 NIL RDEEF (NIL T T) -7 NIL NIL) (-931 2291753 2294685 2294714 "RCFIELD" 2295991 T RCFIELD (NIL) -9 NIL 2296721) (-930 2289822 2290326 2291019 "RCFIELD-" 2291092 NIL RCFIELD- (NIL T) -8 NIL NIL) (-929 2286153 2287938 2287980 "RCAGG" 2289051 NIL RCAGG (NIL T) -9 NIL 2289516) (-928 2285784 2285878 2286038 "RCAGG-" 2286043 NIL RCAGG- (NIL T T) -8 NIL NIL) (-927 2285129 2285240 2285402 "RATRET" 2285668 NIL RATRET (NIL T) -7 NIL NIL) (-926 2284686 2284753 2284872 "RATFACT" 2285057 NIL RATFACT (NIL T) -7 NIL NIL) (-925 2284001 2284121 2284271 "RANDSRC" 2284556 T RANDSRC (NIL) -7 NIL NIL) (-924 2283738 2283782 2283853 "RADUTIL" 2283950 T RADUTIL (NIL) -7 NIL NIL) (-923 2276745 2282481 2282798 "RADIX" 2283453 NIL RADIX (NIL NIL) -8 NIL NIL) (-922 2268315 2276589 2276717 "RADFF" 2276722 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-921 2267966 2268041 2268070 "RADCAT" 2268227 T RADCAT (NIL) -9 NIL NIL) (-920 2267751 2267799 2267896 "RADCAT-" 2267901 NIL RADCAT- (NIL T) -8 NIL NIL) (-919 2265902 2267526 2267615 "QUEUE" 2267695 NIL QUEUE (NIL T) -8 NIL NIL) (-918 2262399 2265839 2265884 "QUAT" 2265889 NIL QUAT (NIL T) -8 NIL NIL) (-917 2262037 2262080 2262207 "QUATCT2" 2262350 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-916 2255830 2259210 2259251 "QUATCAT" 2260030 NIL QUATCAT (NIL T) -9 NIL 2260795) (-915 2251974 2253011 2254398 "QUATCAT-" 2254492 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-914 2249494 2251058 2251100 "QUAGG" 2251475 NIL QUAGG (NIL T) -9 NIL 2251650) (-913 2248419 2248892 2249064 "QFORM" 2249366 NIL QFORM (NIL NIL T) -8 NIL NIL) (-912 2239715 2244973 2245014 "QFCAT" 2245672 NIL QFCAT (NIL T) -9 NIL 2246665) (-911 2235287 2236488 2238079 "QFCAT-" 2238173 NIL QFCAT- (NIL T T) -8 NIL NIL) (-910 2234925 2234968 2235095 "QFCAT2" 2235238 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-909 2234385 2234495 2234625 "QEQUAT" 2234815 T QEQUAT (NIL) -8 NIL NIL) (-908 2227571 2228642 2229824 "QCMPACK" 2233318 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-907 2225147 2225568 2225996 "QALGSET" 2227226 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-906 2224392 2224566 2224798 "QALGSET2" 2224967 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-905 2223083 2223306 2223623 "PWFFINTB" 2224165 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-904 2221271 2221439 2221792 "PUSHVAR" 2222897 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-903 2217188 2218242 2218284 "PTRANFN" 2220168 NIL PTRANFN (NIL T) -9 NIL NIL) (-902 2215600 2215891 2216212 "PTPACK" 2216899 NIL PTPACK (NIL T) -7 NIL NIL) (-901 2215236 2215293 2215400 "PTFUNC2" 2215537 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-900 2209712 2214053 2214094 "PTCAT" 2214462 NIL PTCAT (NIL T) -9 NIL 2214624) (-899 2209370 2209405 2209529 "PSQFR" 2209671 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-898 2207965 2208263 2208597 "PSEUDLIN" 2209068 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-897 2194773 2197137 2199460 "PSETPK" 2205725 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-896 2187859 2190573 2190668 "PSETCAT" 2193649 NIL PSETCAT (NIL T T T T) -9 NIL 2194463) (-895 2185697 2186331 2187150 "PSETCAT-" 2187155 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-894 2185045 2185210 2185239 "PSCURVE" 2185507 T PSCURVE (NIL) -9 NIL 2185674) (-893 2181496 2183022 2183087 "PSCAT" 2183923 NIL PSCAT (NIL T T T) -9 NIL 2184163) (-892 2180560 2180776 2181175 "PSCAT-" 2181180 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-891 2179213 2179845 2180059 "PRTITION" 2180366 T PRTITION (NIL) -8 NIL NIL) (-890 2168311 2170517 2172705 "PRS" 2177075 NIL PRS (NIL T T) -7 NIL NIL) (-889 2166169 2167661 2167702 "PRQAGG" 2167885 NIL PRQAGG (NIL T) -9 NIL 2167987) (-888 2165739 2165841 2165870 "PROPLOG" 2166055 T PROPLOG (NIL) -9 NIL NIL) (-887 2159513 2163905 2164725 "PRODUCT" 2164965 NIL PRODUCT (NIL T T) -8 NIL NIL) (-886 2156789 2158973 2159206 "PR" 2159324 NIL PR (NIL T T) -8 NIL NIL) (-885 2156585 2156617 2156676 "PRINT" 2156750 T PRINT (NIL) -7 NIL NIL) (-884 2155925 2156042 2156194 "PRIMES" 2156465 NIL PRIMES (NIL T) -7 NIL NIL) (-883 2153990 2154391 2154857 "PRIMELT" 2155504 NIL PRIMELT (NIL T) -7 NIL NIL) (-882 2153721 2153769 2153798 "PRIMCAT" 2153921 T PRIMCAT (NIL) -9 NIL NIL) (-881 2149882 2153659 2153704 "PRIMARR" 2153709 NIL PRIMARR (NIL T) -8 NIL NIL) (-880 2148889 2149067 2149295 "PRIMARR2" 2149700 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-879 2148532 2148588 2148699 "PREASSOC" 2148827 NIL PREASSOC (NIL T T) -7 NIL NIL) (-878 2148006 2148139 2148168 "PPCURVE" 2148373 T PPCURVE (NIL) -9 NIL 2148509) (-877 2145365 2145764 2146356 "POLYROOT" 2147587 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-876 2139271 2144971 2145130 "POLY" 2145238 NIL POLY (NIL T) -8 NIL NIL) (-875 2138656 2138714 2138947 "POLYLIFT" 2139207 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-874 2134941 2135390 2136018 "POLYCATQ" 2138201 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-873 2121981 2127378 2127443 "POLYCAT" 2130928 NIL POLYCAT (NIL T T T) -9 NIL 2132855) (-872 2115432 2117293 2119676 "POLYCAT-" 2119681 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-871 2115021 2115089 2115208 "POLY2UP" 2115358 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-870 2114657 2114714 2114821 "POLY2" 2114958 NIL POLY2 (NIL T T) -7 NIL NIL) (-869 2113342 2113581 2113857 "POLUTIL" 2114431 NIL POLUTIL (NIL T T) -7 NIL NIL) (-868 2111704 2111981 2112311 "POLTOPOL" 2113064 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-867 2107227 2111641 2111686 "POINT" 2111691 NIL POINT (NIL T) -8 NIL NIL) (-866 2105414 2105771 2106146 "PNTHEORY" 2106872 T PNTHEORY (NIL) -7 NIL NIL) (-865 2103842 2104139 2104548 "PMTOOLS" 2105112 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-864 2103435 2103513 2103630 "PMSYM" 2103758 NIL PMSYM (NIL T) -7 NIL NIL) (-863 2102945 2103014 2103188 "PMQFCAT" 2103360 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-862 2102300 2102410 2102566 "PMPRED" 2102822 NIL PMPRED (NIL T) -7 NIL NIL) (-861 2101696 2101782 2101943 "PMPREDFS" 2102201 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-860 2100342 2100550 2100934 "PMPLCAT" 2101458 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-859 2099874 2099953 2100105 "PMLSAGG" 2100257 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-858 2099351 2099427 2099607 "PMKERNEL" 2099792 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-857 2098968 2099043 2099156 "PMINS" 2099270 NIL PMINS (NIL T) -7 NIL NIL) (-856 2098398 2098467 2098682 "PMFS" 2098893 NIL PMFS (NIL T T T) -7 NIL NIL) (-855 2097629 2097747 2097951 "PMDOWN" 2098275 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-854 2096792 2096951 2097133 "PMASS" 2097467 T PMASS (NIL) -7 NIL NIL) (-853 2096066 2096177 2096340 "PMASSFS" 2096678 NIL PMASSFS (NIL T T) -7 NIL NIL) (-852 2095721 2095789 2095883 "PLOTTOOL" 2095992 T PLOTTOOL (NIL) -7 NIL NIL) (-851 2090343 2091532 2092680 "PLOT" 2094593 T PLOT (NIL) -8 NIL NIL) (-850 2086157 2087191 2088112 "PLOT3D" 2089442 T PLOT3D (NIL) -8 NIL NIL) (-849 2085069 2085246 2085481 "PLOT1" 2085961 NIL PLOT1 (NIL T) -7 NIL NIL) (-848 2060464 2065135 2069986 "PLEQN" 2080335 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-847 2059782 2059904 2060084 "PINTERP" 2060329 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-846 2059475 2059522 2059625 "PINTERPA" 2059729 NIL PINTERPA (NIL T T) -7 NIL NIL) (-845 2058702 2059269 2059362 "PI" 2059402 T PI (NIL) -8 NIL NIL) (-844 2057093 2058078 2058107 "PID" 2058289 T PID (NIL) -9 NIL 2058423) (-843 2056818 2056855 2056943 "PICOERCE" 2057050 NIL PICOERCE (NIL T) -7 NIL NIL) (-842 2056139 2056277 2056453 "PGROEB" 2056674 NIL PGROEB (NIL T) -7 NIL NIL) (-841 2051726 2052540 2053445 "PGE" 2055254 T PGE (NIL) -7 NIL NIL) (-840 2049850 2050096 2050462 "PGCD" 2051443 NIL PGCD (NIL T T T T) -7 NIL NIL) (-839 2049188 2049291 2049452 "PFRPAC" 2049734 NIL PFRPAC (NIL T) -7 NIL NIL) (-838 2045803 2047736 2048089 "PFR" 2048867 NIL PFR (NIL T) -8 NIL NIL) (-837 2044192 2044436 2044761 "PFOTOOLS" 2045550 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-836 2042725 2042964 2043315 "PFOQ" 2043949 NIL PFOQ (NIL T T T) -7 NIL NIL) (-835 2041202 2041414 2041776 "PFO" 2042509 NIL PFO (NIL T T T T T) -7 NIL NIL) (-834 2037725 2041091 2041160 "PF" 2041165 NIL PF (NIL NIL) -8 NIL NIL) (-833 2035153 2036434 2036463 "PFECAT" 2037048 T PFECAT (NIL) -9 NIL 2037432) (-832 2034598 2034752 2034966 "PFECAT-" 2034971 NIL PFECAT- (NIL T) -8 NIL NIL) (-831 2033202 2033453 2033754 "PFBRU" 2034347 NIL PFBRU (NIL T T) -7 NIL NIL) (-830 2031069 2031420 2031852 "PFBR" 2032853 NIL PFBR (NIL T T T T) -7 NIL NIL) (-829 2026921 2028445 2029121 "PERM" 2030426 NIL PERM (NIL T) -8 NIL NIL) (-828 2022187 2023128 2023998 "PERMGRP" 2026084 NIL PERMGRP (NIL T) -8 NIL NIL) (-827 2020257 2021250 2021292 "PERMCAT" 2021738 NIL PERMCAT (NIL T) -9 NIL 2022043) (-826 2019912 2019953 2020076 "PERMAN" 2020210 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-825 2017352 2019481 2019612 "PENDTREE" 2019814 NIL PENDTREE (NIL T) -8 NIL NIL) (-824 2015424 2016202 2016244 "PDRING" 2016901 NIL PDRING (NIL T) -9 NIL 2017186) (-823 2014527 2014745 2015107 "PDRING-" 2015112 NIL PDRING- (NIL T T) -8 NIL NIL) (-822 2011669 2012419 2013110 "PDEPROB" 2013856 T PDEPROB (NIL) -8 NIL NIL) (-821 2009240 2009736 2010285 "PDEPACK" 2011140 T PDEPACK (NIL) -7 NIL NIL) (-820 2008152 2008342 2008593 "PDECOMP" 2009039 NIL PDECOMP (NIL T T) -7 NIL NIL) (-819 2005763 2006578 2006607 "PDECAT" 2007392 T PDECAT (NIL) -9 NIL 2008103) (-818 2005516 2005549 2005638 "PCOMP" 2005724 NIL PCOMP (NIL T T) -7 NIL NIL) (-817 2003723 2004319 2004615 "PBWLB" 2005246 NIL PBWLB (NIL T) -8 NIL NIL) (-816 1996232 1997800 1999136 "PATTERN" 2002408 NIL PATTERN (NIL T) -8 NIL NIL) (-815 1995864 1995921 1996030 "PATTERN2" 1996169 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-814 1993621 1994009 1994466 "PATTERN1" 1995453 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-813 1991016 1991570 1992051 "PATRES" 1993186 NIL PATRES (NIL T T) -8 NIL NIL) (-812 1990580 1990647 1990779 "PATRES2" 1990943 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-811 1988477 1988877 1989282 "PATMATCH" 1990249 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-810 1988013 1988196 1988238 "PATMAB" 1988345 NIL PATMAB (NIL T) -9 NIL 1988428) (-809 1986558 1986867 1987125 "PATLRES" 1987818 NIL PATLRES (NIL T T T) -8 NIL NIL) (-808 1986103 1986226 1986268 "PATAB" 1986273 NIL PATAB (NIL T) -9 NIL 1986445) (-807 1983584 1984116 1984689 "PARTPERM" 1985550 T PARTPERM (NIL) -7 NIL NIL) (-806 1983205 1983268 1983370 "PARSURF" 1983515 NIL PARSURF (NIL T) -8 NIL NIL) (-805 1982837 1982894 1983003 "PARSU2" 1983142 NIL PARSU2 (NIL T T) -7 NIL NIL) (-804 1982601 1982641 1982708 "PARSER" 1982790 T PARSER (NIL) -7 NIL NIL) (-803 1982222 1982285 1982387 "PARSCURV" 1982532 NIL PARSCURV (NIL T) -8 NIL NIL) (-802 1981854 1981911 1982020 "PARSC2" 1982159 NIL PARSC2 (NIL T T) -7 NIL NIL) (-801 1981493 1981551 1981648 "PARPCURV" 1981790 NIL PARPCURV (NIL T) -8 NIL NIL) (-800 1981125 1981182 1981291 "PARPC2" 1981430 NIL PARPC2 (NIL T T) -7 NIL NIL) (-799 1980645 1980731 1980850 "PAN2EXPR" 1981026 T PAN2EXPR (NIL) -7 NIL NIL) (-798 1979451 1979766 1979994 "PALETTE" 1980437 T PALETTE (NIL) -8 NIL NIL) (-797 1977919 1978456 1978816 "PAIR" 1979137 NIL PAIR (NIL T T) -8 NIL NIL) (-796 1971769 1977178 1977372 "PADICRC" 1977774 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-795 1964977 1971115 1971299 "PADICRAT" 1971617 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-794 1963281 1964914 1964959 "PADIC" 1964964 NIL PADIC (NIL NIL) -8 NIL NIL) (-793 1960485 1962059 1962100 "PADICCT" 1962681 NIL PADICCT (NIL NIL) -9 NIL 1962963) (-792 1959442 1959642 1959910 "PADEPAC" 1960272 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-791 1958654 1958787 1958993 "PADE" 1959304 NIL PADE (NIL T T T) -7 NIL NIL) (-790 1956665 1957497 1957812 "OWP" 1958422 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-789 1955774 1956270 1956442 "OVAR" 1956533 NIL OVAR (NIL NIL) -8 NIL NIL) (-788 1955038 1955159 1955320 "OUT" 1955633 T OUT (NIL) -7 NIL NIL) (-787 1944084 1946263 1948433 "OUTFORM" 1952888 T OUTFORM (NIL) -8 NIL NIL) (-786 1943492 1943813 1943902 "OSI" 1944015 T OSI (NIL) -8 NIL NIL) (-785 1942237 1942464 1942749 "ORTHPOL" 1943239 NIL ORTHPOL (NIL T) -7 NIL NIL) (-784 1939608 1941898 1942036 "OREUP" 1942180 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-783 1937004 1939301 1939427 "ORESUP" 1939550 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-782 1934539 1935039 1935599 "OREPCTO" 1936493 NIL OREPCTO (NIL T T) -7 NIL NIL) (-781 1928448 1930654 1930695 "OREPCAT" 1933016 NIL OREPCAT (NIL T) -9 NIL 1934119) (-780 1925596 1926378 1927435 "OREPCAT-" 1927440 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-779 1924773 1925045 1925074 "ORDSET" 1925383 T ORDSET (NIL) -9 NIL 1925547) (-778 1924292 1924414 1924607 "ORDSET-" 1924612 NIL ORDSET- (NIL T) -8 NIL NIL) (-777 1922905 1923706 1923735 "ORDRING" 1923937 T ORDRING (NIL) -9 NIL 1924061) (-776 1922550 1922644 1922788 "ORDRING-" 1922793 NIL ORDRING- (NIL T) -8 NIL NIL) (-775 1921925 1922406 1922435 "ORDMON" 1922440 T ORDMON (NIL) -9 NIL 1922461) (-774 1921087 1921234 1921429 "ORDFUNS" 1921774 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-773 1920598 1920957 1920986 "ORDFIN" 1920991 T ORDFIN (NIL) -9 NIL 1921012) (-772 1917110 1919184 1919593 "ORDCOMP" 1920222 NIL ORDCOMP (NIL T) -8 NIL NIL) (-771 1916376 1916503 1916689 "ORDCOMP2" 1916970 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-770 1912884 1913766 1914603 "OPTPROB" 1915559 T OPTPROB (NIL) -8 NIL NIL) (-769 1909726 1910355 1911049 "OPTPACK" 1912210 T OPTPACK (NIL) -7 NIL NIL) (-768 1907451 1908187 1908216 "OPTCAT" 1909031 T OPTCAT (NIL) -9 NIL 1909677) (-767 1907219 1907258 1907324 "OPQUERY" 1907405 T OPQUERY (NIL) -7 NIL NIL) (-766 1904355 1905546 1906046 "OP" 1906751 NIL OP (NIL T) -8 NIL NIL) (-765 1901120 1903152 1903521 "ONECOMP" 1904019 NIL ONECOMP (NIL T) -8 NIL NIL) (-764 1900425 1900540 1900714 "ONECOMP2" 1900992 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-763 1899844 1899950 1900080 "OMSERVER" 1900315 T OMSERVER (NIL) -7 NIL NIL) (-762 1896732 1899284 1899325 "OMSAGG" 1899386 NIL OMSAGG (NIL T) -9 NIL 1899450) (-761 1895355 1895618 1895900 "OMPKG" 1896470 T OMPKG (NIL) -7 NIL NIL) (-760 1894784 1894887 1894916 "OM" 1895215 T OM (NIL) -9 NIL NIL) (-759 1893323 1894336 1894504 "OMLO" 1894665 NIL OMLO (NIL T T) -8 NIL NIL) (-758 1892253 1892400 1892626 "OMEXPR" 1893149 NIL OMEXPR (NIL T) -7 NIL NIL) (-757 1891571 1891799 1891935 "OMERR" 1892137 T OMERR (NIL) -8 NIL NIL) (-756 1890749 1890992 1891152 "OMERRK" 1891431 T OMERRK (NIL) -8 NIL NIL) (-755 1890227 1890426 1890534 "OMENC" 1890661 T OMENC (NIL) -8 NIL NIL) (-754 1884122 1885307 1886478 "OMDEV" 1889076 T OMDEV (NIL) -8 NIL NIL) (-753 1883191 1883362 1883556 "OMCONN" 1883948 T OMCONN (NIL) -8 NIL NIL) (-752 1881806 1882792 1882821 "OINTDOM" 1882826 T OINTDOM (NIL) -9 NIL 1882847) (-751 1877568 1878798 1879513 "OFMONOID" 1881123 NIL OFMONOID (NIL T) -8 NIL NIL) (-750 1877006 1877505 1877550 "ODVAR" 1877555 NIL ODVAR (NIL T) -8 NIL NIL) (-749 1874131 1876503 1876688 "ODR" 1876881 NIL ODR (NIL T T NIL) -8 NIL NIL) (-748 1866437 1873910 1874034 "ODPOL" 1874039 NIL ODPOL (NIL T) -8 NIL NIL) (-747 1860260 1866309 1866414 "ODP" 1866419 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-746 1859026 1859241 1859516 "ODETOOLS" 1860034 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-745 1855995 1856651 1857367 "ODESYS" 1858359 NIL ODESYS (NIL T T) -7 NIL NIL) (-744 1850899 1851807 1852830 "ODERTRIC" 1855070 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-743 1850325 1850407 1850601 "ODERED" 1850811 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-742 1847227 1847775 1848450 "ODERAT" 1849748 NIL ODERAT (NIL T T) -7 NIL NIL) (-741 1844195 1844659 1845255 "ODEPRRIC" 1846756 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-740 1842066 1842633 1843142 "ODEPROB" 1843706 T ODEPROB (NIL) -8 NIL NIL) (-739 1838598 1839081 1839727 "ODEPRIM" 1841545 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-738 1837851 1837953 1838211 "ODEPAL" 1838490 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-737 1834053 1834834 1835688 "ODEPACK" 1837017 T ODEPACK (NIL) -7 NIL NIL) (-736 1833090 1833197 1833425 "ODEINT" 1833942 NIL ODEINT (NIL T T) -7 NIL NIL) (-735 1827191 1828616 1830063 "ODEIFTBL" 1831663 T ODEIFTBL (NIL) -8 NIL NIL) (-734 1822535 1823321 1824279 "ODEEF" 1826350 NIL ODEEF (NIL T T) -7 NIL NIL) (-733 1821872 1821961 1822190 "ODECONST" 1822440 NIL ODECONST (NIL T T T) -7 NIL NIL) (-732 1820029 1820662 1820691 "ODECAT" 1821294 T ODECAT (NIL) -9 NIL 1821823) (-731 1816901 1819741 1819860 "OCT" 1819942 NIL OCT (NIL T) -8 NIL NIL) (-730 1816539 1816582 1816709 "OCTCT2" 1816852 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-729 1811372 1813810 1813851 "OC" 1814947 NIL OC (NIL T) -9 NIL 1815804) (-728 1808599 1809347 1810337 "OC-" 1810431 NIL OC- (NIL T T) -8 NIL NIL) (-727 1807977 1808419 1808448 "OCAMON" 1808453 T OCAMON (NIL) -9 NIL 1808474) (-726 1807430 1807837 1807866 "OASGP" 1807871 T OASGP (NIL) -9 NIL 1807891) (-725 1806717 1807180 1807209 "OAMONS" 1807249 T OAMONS (NIL) -9 NIL 1807292) (-724 1806157 1806564 1806593 "OAMON" 1806598 T OAMON (NIL) -9 NIL 1806618) (-723 1805461 1805953 1805982 "OAGROUP" 1805987 T OAGROUP (NIL) -9 NIL 1806007) (-722 1805151 1805201 1805289 "NUMTUBE" 1805405 NIL NUMTUBE (NIL T) -7 NIL NIL) (-721 1798724 1800242 1801778 "NUMQUAD" 1803635 T NUMQUAD (NIL) -7 NIL NIL) (-720 1794480 1795468 1796493 "NUMODE" 1797719 T NUMODE (NIL) -7 NIL NIL) (-719 1791883 1792729 1792758 "NUMINT" 1793675 T NUMINT (NIL) -9 NIL 1794431) (-718 1790831 1791028 1791246 "NUMFMT" 1791685 T NUMFMT (NIL) -7 NIL NIL) (-717 1777213 1780147 1782677 "NUMERIC" 1788340 NIL NUMERIC (NIL T) -7 NIL NIL) (-716 1771613 1776665 1776760 "NTSCAT" 1776765 NIL NTSCAT (NIL T T T T) -9 NIL 1776803) (-715 1770807 1770972 1771165 "NTPOLFN" 1771452 NIL NTPOLFN (NIL T) -7 NIL NIL) (-714 1758663 1767649 1768459 "NSUP" 1770029 NIL NSUP (NIL T) -8 NIL NIL) (-713 1758299 1758356 1758463 "NSUP2" 1758600 NIL NSUP2 (NIL T T) -7 NIL NIL) (-712 1748261 1758078 1758208 "NSMP" 1758213 NIL NSMP (NIL T T) -8 NIL NIL) (-711 1746693 1746994 1747351 "NREP" 1747949 NIL NREP (NIL T) -7 NIL NIL) (-710 1745284 1745536 1745894 "NPCOEF" 1746436 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-709 1744350 1744465 1744681 "NORMRETR" 1745165 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-708 1742403 1742693 1743100 "NORMPK" 1744058 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-707 1742088 1742116 1742240 "NORMMA" 1742369 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-706 1741915 1742045 1742074 "NONE" 1742079 T NONE (NIL) -8 NIL NIL) (-705 1741704 1741733 1741802 "NONE1" 1741879 NIL NONE1 (NIL T) -7 NIL NIL) (-704 1741189 1741251 1741436 "NODE1" 1741636 NIL NODE1 (NIL T T) -7 NIL NIL) (-703 1739482 1740352 1740607 "NNI" 1740954 T NNI (NIL) -8 NIL NIL) (-702 1737902 1738215 1738579 "NLINSOL" 1739150 NIL NLINSOL (NIL T) -7 NIL NIL) (-701 1734070 1735037 1735959 "NIPROB" 1737000 T NIPROB (NIL) -8 NIL NIL) (-700 1732827 1733061 1733363 "NFINTBAS" 1733832 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-699 1731535 1731766 1732047 "NCODIV" 1732595 NIL NCODIV (NIL T T) -7 NIL NIL) (-698 1731297 1731334 1731409 "NCNTFRAC" 1731492 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-697 1729477 1729841 1730261 "NCEP" 1730922 NIL NCEP (NIL T) -7 NIL NIL) (-696 1728388 1729127 1729156 "NASRING" 1729266 T NASRING (NIL) -9 NIL 1729340) (-695 1728183 1728227 1728321 "NASRING-" 1728326 NIL NASRING- (NIL T) -8 NIL NIL) (-694 1727336 1727835 1727864 "NARNG" 1727981 T NARNG (NIL) -9 NIL 1728072) (-693 1727028 1727095 1727229 "NARNG-" 1727234 NIL NARNG- (NIL T) -8 NIL NIL) (-692 1725907 1726114 1726349 "NAGSP" 1726813 T NAGSP (NIL) -7 NIL NIL) (-691 1717331 1718977 1720612 "NAGS" 1724292 T NAGS (NIL) -7 NIL NIL) (-690 1715895 1716199 1716526 "NAGF07" 1717024 T NAGF07 (NIL) -7 NIL NIL) (-689 1710477 1711757 1713053 "NAGF04" 1714619 T NAGF04 (NIL) -7 NIL NIL) (-688 1703509 1705107 1706724 "NAGF02" 1708880 T NAGF02 (NIL) -7 NIL NIL) (-687 1698773 1699863 1700970 "NAGF01" 1702422 T NAGF01 (NIL) -7 NIL NIL) (-686 1692433 1693991 1695568 "NAGE04" 1697216 T NAGE04 (NIL) -7 NIL NIL) (-685 1683674 1685777 1687889 "NAGE02" 1690341 T NAGE02 (NIL) -7 NIL NIL) (-684 1679667 1680604 1681558 "NAGE01" 1682740 T NAGE01 (NIL) -7 NIL NIL) (-683 1677474 1678005 1678560 "NAGD03" 1679132 T NAGD03 (NIL) -7 NIL NIL) (-682 1669260 1671179 1673124 "NAGD02" 1675549 T NAGD02 (NIL) -7 NIL NIL) (-681 1663119 1664532 1665960 "NAGD01" 1667852 T NAGD01 (NIL) -7 NIL NIL) (-680 1659376 1660186 1661011 "NAGC06" 1662314 T NAGC06 (NIL) -7 NIL NIL) (-679 1657853 1658182 1658535 "NAGC05" 1659043 T NAGC05 (NIL) -7 NIL NIL) (-678 1657237 1657354 1657496 "NAGC02" 1657731 T NAGC02 (NIL) -7 NIL NIL) (-677 1656298 1656855 1656896 "NAALG" 1656975 NIL NAALG (NIL T) -9 NIL 1657036) (-676 1656133 1656162 1656252 "NAALG-" 1656257 NIL NAALG- (NIL T T) -8 NIL NIL) (-675 1650083 1651191 1652378 "MULTSQFR" 1655029 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-674 1649402 1649477 1649661 "MULTFACT" 1649995 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-673 1642595 1646506 1646559 "MTSCAT" 1647619 NIL MTSCAT (NIL T T) -9 NIL 1648133) (-672 1642307 1642361 1642453 "MTHING" 1642535 NIL MTHING (NIL T) -7 NIL NIL) (-671 1642099 1642132 1642192 "MSYSCMD" 1642267 T MSYSCMD (NIL) -7 NIL NIL) (-670 1638211 1640854 1641174 "MSET" 1641812 NIL MSET (NIL T) -8 NIL NIL) (-669 1635306 1637772 1637814 "MSETAGG" 1637819 NIL MSETAGG (NIL T) -9 NIL 1637853) (-668 1631162 1632704 1633445 "MRING" 1634609 NIL MRING (NIL T T) -8 NIL NIL) (-667 1630732 1630799 1630928 "MRF2" 1631089 NIL MRF2 (NIL T T T) -7 NIL NIL) (-666 1630350 1630385 1630529 "MRATFAC" 1630691 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-665 1627962 1628257 1628688 "MPRFF" 1630055 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-664 1621982 1627817 1627913 "MPOLY" 1627918 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-663 1621472 1621507 1621715 "MPCPF" 1621941 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-662 1620988 1621031 1621214 "MPC3" 1621423 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-661 1620189 1620270 1620489 "MPC2" 1620903 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-660 1618490 1618827 1619217 "MONOTOOL" 1619849 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-659 1617614 1617949 1617978 "MONOID" 1618255 T MONOID (NIL) -9 NIL 1618427) (-658 1616992 1617155 1617398 "MONOID-" 1617403 NIL MONOID- (NIL T) -8 NIL NIL) (-657 1607972 1613958 1614018 "MONOGEN" 1614692 NIL MONOGEN (NIL T T) -9 NIL 1615148) (-656 1605190 1605925 1606925 "MONOGEN-" 1607044 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-655 1604049 1604469 1604498 "MONADWU" 1604890 T MONADWU (NIL) -9 NIL 1605128) (-654 1603421 1603580 1603828 "MONADWU-" 1603833 NIL MONADWU- (NIL T) -8 NIL NIL) (-653 1602806 1603024 1603053 "MONAD" 1603260 T MONAD (NIL) -9 NIL 1603372) (-652 1602491 1602569 1602701 "MONAD-" 1602706 NIL MONAD- (NIL T) -8 NIL NIL) (-651 1600742 1601404 1601683 "MOEBIUS" 1602244 NIL MOEBIUS (NIL T) -8 NIL NIL) (-650 1600135 1600513 1600554 "MODULE" 1600559 NIL MODULE (NIL T) -9 NIL 1600585) (-649 1599703 1599799 1599989 "MODULE-" 1599994 NIL MODULE- (NIL T T) -8 NIL NIL) (-648 1597374 1598069 1598395 "MODRING" 1599528 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-647 1594330 1595495 1596012 "MODOP" 1596906 NIL MODOP (NIL T T) -8 NIL NIL) (-646 1592517 1592969 1593310 "MODMONOM" 1594129 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-645 1582235 1590721 1591143 "MODMON" 1592145 NIL MODMON (NIL T T) -8 NIL NIL) (-644 1579361 1581079 1581355 "MODFIELD" 1582110 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-643 1578887 1578930 1579109 "MMAP" 1579312 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-642 1577123 1577900 1577941 "MLO" 1578358 NIL MLO (NIL T) -9 NIL 1578599) (-641 1574490 1575005 1575607 "MLIFT" 1576604 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-640 1573881 1573965 1574119 "MKUCFUNC" 1574401 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-639 1573480 1573550 1573673 "MKRECORD" 1573804 NIL MKRECORD (NIL T T) -7 NIL NIL) (-638 1572528 1572689 1572917 "MKFUNC" 1573291 NIL MKFUNC (NIL T) -7 NIL NIL) (-637 1571916 1572020 1572176 "MKFLCFN" 1572411 NIL MKFLCFN (NIL T) -7 NIL NIL) (-636 1571342 1571709 1571798 "MKCHSET" 1571860 NIL MKCHSET (NIL T) -8 NIL NIL) (-635 1570619 1570721 1570906 "MKBCFUNC" 1571235 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-634 1567303 1570173 1570309 "MINT" 1570503 T MINT (NIL) -8 NIL NIL) (-633 1566115 1566358 1566635 "MHROWRED" 1567058 NIL MHROWRED (NIL T) -7 NIL NIL) (-632 1561386 1564560 1564984 "MFLOAT" 1565711 T MFLOAT (NIL) -8 NIL NIL) (-631 1560743 1560819 1560990 "MFINFACT" 1561298 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-630 1557058 1557906 1558790 "MESH" 1559879 T MESH (NIL) -7 NIL NIL) (-629 1555448 1555760 1556113 "MDDFACT" 1556745 NIL MDDFACT (NIL T) -7 NIL NIL) (-628 1552290 1554607 1554649 "MDAGG" 1554904 NIL MDAGG (NIL T) -9 NIL 1555047) (-627 1541988 1551583 1551790 "MCMPLX" 1552103 T MCMPLX (NIL) -8 NIL NIL) (-626 1541129 1541275 1541475 "MCDEN" 1541837 NIL MCDEN (NIL T T) -7 NIL NIL) (-625 1539019 1539289 1539669 "MCALCFN" 1540859 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-624 1536641 1537164 1537725 "MATSTOR" 1538490 NIL MATSTOR (NIL T) -7 NIL NIL) (-623 1532649 1536016 1536263 "MATRIX" 1536426 NIL MATRIX (NIL T) -8 NIL NIL) (-622 1528419 1529122 1529858 "MATLIN" 1532006 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-621 1518616 1521754 1521831 "MATCAT" 1526669 NIL MATCAT (NIL T T T) -9 NIL 1528086) (-620 1514981 1515994 1517349 "MATCAT-" 1517354 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-619 1513583 1513736 1514067 "MATCAT2" 1514816 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-618 1511695 1512019 1512403 "MAPPKG3" 1513258 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-617 1510676 1510849 1511071 "MAPPKG2" 1511519 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-616 1509175 1509459 1509786 "MAPPKG1" 1510382 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-615 1508786 1508844 1508967 "MAPHACK3" 1509111 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-614 1508378 1508439 1508553 "MAPHACK2" 1508718 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-613 1507816 1507919 1508061 "MAPHACK1" 1508269 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-612 1505924 1506518 1506821 "MAGMA" 1507545 NIL MAGMA (NIL T) -8 NIL NIL) (-611 1502398 1504168 1504628 "M3D" 1505497 NIL M3D (NIL T) -8 NIL NIL) (-610 1496553 1500768 1500810 "LZSTAGG" 1501592 NIL LZSTAGG (NIL T) -9 NIL 1501887) (-609 1492526 1493684 1495141 "LZSTAGG-" 1495146 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-608 1489642 1490419 1490905 "LWORD" 1492072 NIL LWORD (NIL T) -8 NIL NIL) (-607 1482802 1489413 1489547 "LSQM" 1489552 NIL LSQM (NIL NIL T) -8 NIL NIL) (-606 1482026 1482165 1482393 "LSPP" 1482657 NIL LSPP (NIL T T T T) -7 NIL NIL) (-605 1479838 1480139 1480595 "LSMP" 1481715 NIL LSMP (NIL T T T T) -7 NIL NIL) (-604 1476617 1477291 1478021 "LSMP1" 1479140 NIL LSMP1 (NIL T) -7 NIL NIL) (-603 1470543 1475785 1475827 "LSAGG" 1475889 NIL LSAGG (NIL T) -9 NIL 1475967) (-602 1467238 1468162 1469375 "LSAGG-" 1469380 NIL LSAGG- (NIL T T) -8 NIL NIL) (-601 1464864 1466382 1466631 "LPOLY" 1467033 NIL LPOLY (NIL T T) -8 NIL NIL) (-600 1464446 1464531 1464654 "LPEFRAC" 1464773 NIL LPEFRAC (NIL T) -7 NIL NIL) (-599 1462793 1463540 1463793 "LO" 1464278 NIL LO (NIL T T T) -8 NIL NIL) (-598 1462446 1462558 1462587 "LOGIC" 1462698 T LOGIC (NIL) -9 NIL 1462778) (-597 1462308 1462331 1462402 "LOGIC-" 1462407 NIL LOGIC- (NIL T) -8 NIL NIL) (-596 1461501 1461641 1461834 "LODOOPS" 1462164 NIL LODOOPS (NIL T T) -7 NIL NIL) (-595 1458919 1461418 1461483 "LODO" 1461488 NIL LODO (NIL T NIL) -8 NIL NIL) (-594 1457465 1457700 1458051 "LODOF" 1458666 NIL LODOF (NIL T T) -7 NIL NIL) (-593 1453884 1456320 1456361 "LODOCAT" 1456793 NIL LODOCAT (NIL T) -9 NIL 1457004) (-592 1453618 1453676 1453802 "LODOCAT-" 1453807 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-591 1450932 1453459 1453577 "LODO2" 1453582 NIL LODO2 (NIL T T) -8 NIL NIL) (-590 1448361 1450869 1450914 "LODO1" 1450919 NIL LODO1 (NIL T) -8 NIL NIL) (-589 1447224 1447389 1447700 "LODEEF" 1448184 NIL LODEEF (NIL T T T) -7 NIL NIL) (-588 1442510 1445354 1445396 "LNAGG" 1446343 NIL LNAGG (NIL T) -9 NIL 1446787) (-587 1441657 1441871 1442213 "LNAGG-" 1442218 NIL LNAGG- (NIL T T) -8 NIL NIL) (-586 1437822 1438584 1439222 "LMOPS" 1441073 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-585 1437219 1437581 1437622 "LMODULE" 1437682 NIL LMODULE (NIL T) -9 NIL 1437724) (-584 1434465 1436864 1436987 "LMDICT" 1437129 NIL LMDICT (NIL T) -8 NIL NIL) (-583 1427692 1433411 1433709 "LIST" 1434200 NIL LIST (NIL T) -8 NIL NIL) (-582 1427217 1427291 1427430 "LIST3" 1427612 NIL LIST3 (NIL T T T) -7 NIL NIL) (-581 1426224 1426402 1426630 "LIST2" 1427035 NIL LIST2 (NIL T T) -7 NIL NIL) (-580 1424358 1424670 1425069 "LIST2MAP" 1425871 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-579 1423070 1423750 1423791 "LINEXP" 1424044 NIL LINEXP (NIL T) -9 NIL 1424192) (-578 1421717 1421977 1422274 "LINDEP" 1422822 NIL LINDEP (NIL T T) -7 NIL NIL) (-577 1418484 1419203 1419980 "LIMITRF" 1420972 NIL LIMITRF (NIL T) -7 NIL NIL) (-576 1416764 1417059 1417474 "LIMITPS" 1418179 NIL LIMITPS (NIL T T) -7 NIL NIL) (-575 1411219 1416275 1416503 "LIE" 1416585 NIL LIE (NIL T T) -8 NIL NIL) (-574 1410269 1410712 1410753 "LIECAT" 1410893 NIL LIECAT (NIL T) -9 NIL 1411044) (-573 1410110 1410137 1410225 "LIECAT-" 1410230 NIL LIECAT- (NIL T T) -8 NIL NIL) (-572 1402722 1409559 1409724 "LIB" 1409965 T LIB (NIL) -8 NIL NIL) (-571 1398359 1399240 1400175 "LGROBP" 1401839 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-570 1396229 1396502 1396863 "LF" 1398081 NIL LF (NIL T T) -7 NIL NIL) (-569 1395069 1395760 1395789 "LFCAT" 1395996 T LFCAT (NIL) -9 NIL 1396135) (-568 1391981 1392607 1393293 "LEXTRIPK" 1394435 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-567 1388687 1389551 1390054 "LEXP" 1391561 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-566 1387085 1387398 1387799 "LEADCDET" 1388369 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-565 1386281 1386355 1386582 "LAZM3PK" 1387006 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-564 1381197 1384360 1384897 "LAUPOL" 1385794 NIL LAUPOL (NIL T T) -8 NIL NIL) (-563 1380764 1380808 1380975 "LAPLACE" 1381147 NIL LAPLACE (NIL T T) -7 NIL NIL) (-562 1378692 1379865 1380116 "LA" 1380597 NIL LA (NIL T T T) -8 NIL NIL) (-561 1377754 1378348 1378389 "LALG" 1378450 NIL LALG (NIL T) -9 NIL 1378508) (-560 1377469 1377528 1377663 "LALG-" 1377668 NIL LALG- (NIL T T) -8 NIL NIL) (-559 1376379 1376566 1376863 "KOVACIC" 1377269 NIL KOVACIC (NIL T T) -7 NIL NIL) (-558 1376213 1376237 1376279 "KONVERT" 1376341 NIL KONVERT (NIL T) -9 NIL NIL) (-557 1376047 1376071 1376113 "KOERCE" 1376175 NIL KOERCE (NIL T) -9 NIL NIL) (-556 1373781 1374541 1374934 "KERNEL" 1375686 NIL KERNEL (NIL T) -8 NIL NIL) (-555 1373283 1373364 1373494 "KERNEL2" 1373695 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-554 1367134 1371822 1371877 "KDAGG" 1372254 NIL KDAGG (NIL T T) -9 NIL 1372460) (-553 1366663 1366787 1366992 "KDAGG-" 1366997 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-552 1359838 1366324 1366479 "KAFILE" 1366541 NIL KAFILE (NIL T) -8 NIL NIL) (-551 1354293 1359349 1359577 "JORDAN" 1359659 NIL JORDAN (NIL T T) -8 NIL NIL) (-550 1350592 1352498 1352553 "IXAGG" 1353482 NIL IXAGG (NIL T T) -9 NIL 1353941) (-549 1349511 1349817 1350236 "IXAGG-" 1350241 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-548 1345096 1349433 1349492 "IVECTOR" 1349497 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-547 1343862 1344099 1344365 "ITUPLE" 1344863 NIL ITUPLE (NIL T) -8 NIL NIL) (-546 1342298 1342475 1342781 "ITRIGMNP" 1343684 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-545 1341043 1341247 1341530 "ITFUN3" 1342074 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-544 1340675 1340732 1340841 "ITFUN2" 1340980 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-543 1338477 1339548 1339845 "ITAYLOR" 1340410 NIL ITAYLOR (NIL T) -8 NIL NIL) (-542 1327468 1332663 1333822 "ISUPS" 1337350 NIL ISUPS (NIL T) -8 NIL NIL) (-541 1326572 1326712 1326948 "ISUMP" 1327315 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-540 1321836 1326373 1326452 "ISTRING" 1326525 NIL ISTRING (NIL NIL) -8 NIL NIL) (-539 1321049 1321130 1321345 "IRURPK" 1321750 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-538 1319985 1320186 1320426 "IRSN" 1320829 T IRSN (NIL) -7 NIL NIL) (-537 1318020 1318375 1318810 "IRRF2F" 1319623 NIL IRRF2F (NIL T) -7 NIL NIL) (-536 1317767 1317805 1317881 "IRREDFFX" 1317976 NIL IRREDFFX (NIL T) -7 NIL NIL) (-535 1316382 1316641 1316940 "IROOT" 1317500 NIL IROOT (NIL T) -7 NIL NIL) (-534 1313020 1314071 1314761 "IR" 1315724 NIL IR (NIL T) -8 NIL NIL) (-533 1310633 1311128 1311694 "IR2" 1312498 NIL IR2 (NIL T T) -7 NIL NIL) (-532 1309709 1309822 1310042 "IR2F" 1310516 NIL IR2F (NIL T T) -7 NIL NIL) (-531 1309500 1309534 1309594 "IPRNTPK" 1309669 T IPRNTPK (NIL) -7 NIL NIL) (-530 1306054 1309389 1309458 "IPF" 1309463 NIL IPF (NIL NIL) -8 NIL NIL) (-529 1304371 1305979 1306036 "IPADIC" 1306041 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-528 1303870 1303928 1304117 "INVLAPLA" 1304307 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-527 1293519 1295872 1298258 "INTTR" 1301534 NIL INTTR (NIL T T) -7 NIL NIL) (-526 1289867 1290608 1291471 "INTTOOLS" 1292705 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-525 1289453 1289544 1289661 "INTSLPE" 1289770 T INTSLPE (NIL) -7 NIL NIL) (-524 1287403 1289376 1289435 "INTRVL" 1289440 NIL INTRVL (NIL T) -8 NIL NIL) (-523 1285010 1285522 1286096 "INTRF" 1286888 NIL INTRF (NIL T) -7 NIL NIL) (-522 1284425 1284522 1284663 "INTRET" 1284908 NIL INTRET (NIL T) -7 NIL NIL) (-521 1282427 1282816 1283285 "INTRAT" 1284033 NIL INTRAT (NIL T T) -7 NIL NIL) (-520 1279660 1280243 1280868 "INTPM" 1281912 NIL INTPM (NIL T T) -7 NIL NIL) (-519 1276369 1276968 1277712 "INTPAF" 1279046 NIL INTPAF (NIL T T T) -7 NIL NIL) (-518 1271620 1272564 1273597 "INTPACK" 1275356 T INTPACK (NIL) -7 NIL NIL) (-517 1268474 1271349 1271476 "INT" 1271513 T INT (NIL) -8 NIL NIL) (-516 1267726 1267878 1268086 "INTHERTR" 1268316 NIL INTHERTR (NIL T T) -7 NIL NIL) (-515 1267165 1267245 1267433 "INTHERAL" 1267640 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-514 1265011 1265454 1265911 "INTHEORY" 1266728 T INTHEORY (NIL) -7 NIL NIL) (-513 1256334 1257954 1259732 "INTG0" 1263363 NIL INTG0 (NIL T T T) -7 NIL NIL) (-512 1236907 1241697 1246507 "INTFTBL" 1251544 T INTFTBL (NIL) -8 NIL NIL) (-511 1236156 1236294 1236467 "INTFACT" 1236766 NIL INTFACT (NIL T) -7 NIL NIL) (-510 1233547 1233993 1234556 "INTEF" 1235710 NIL INTEF (NIL T T) -7 NIL NIL) (-509 1232008 1232757 1232786 "INTDOM" 1233087 T INTDOM (NIL) -9 NIL 1233294) (-508 1231377 1231551 1231793 "INTDOM-" 1231798 NIL INTDOM- (NIL T) -8 NIL NIL) (-507 1227869 1229801 1229856 "INTCAT" 1230655 NIL INTCAT (NIL T) -9 NIL 1230974) (-506 1227342 1227444 1227572 "INTBIT" 1227761 T INTBIT (NIL) -7 NIL NIL) (-505 1226017 1226171 1226484 "INTALG" 1227187 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-504 1225474 1225564 1225734 "INTAF" 1225921 NIL INTAF (NIL T T) -7 NIL NIL) (-503 1218928 1225284 1225424 "INTABL" 1225429 NIL INTABL (NIL T T T) -8 NIL NIL) (-502 1213878 1216607 1216636 "INS" 1217604 T INS (NIL) -9 NIL 1218285) (-501 1211118 1211889 1212863 "INS-" 1212936 NIL INS- (NIL T) -8 NIL NIL) (-500 1209897 1210124 1210421 "INPSIGN" 1210871 NIL INPSIGN (NIL T T) -7 NIL NIL) (-499 1209015 1209132 1209329 "INPRODPF" 1209777 NIL INPRODPF (NIL T T) -7 NIL NIL) (-498 1207909 1208026 1208263 "INPRODFF" 1208895 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-497 1206909 1207061 1207321 "INNMFACT" 1207745 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-496 1206106 1206203 1206391 "INMODGCD" 1206808 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-495 1204615 1204859 1205183 "INFSP" 1205851 NIL INFSP (NIL T T T) -7 NIL NIL) (-494 1203799 1203916 1204099 "INFPROD0" 1204495 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-493 1200809 1201968 1202459 "INFORM" 1203316 T INFORM (NIL) -8 NIL NIL) (-492 1200419 1200479 1200577 "INFORM1" 1200744 NIL INFORM1 (NIL T) -7 NIL NIL) (-491 1199942 1200031 1200145 "INFINITY" 1200325 T INFINITY (NIL) -7 NIL NIL) (-490 1198560 1198808 1199129 "INEP" 1199690 NIL INEP (NIL T T T) -7 NIL NIL) (-489 1197836 1198457 1198522 "INDE" 1198527 NIL INDE (NIL T) -8 NIL NIL) (-488 1197400 1197468 1197585 "INCRMAPS" 1197763 NIL INCRMAPS (NIL T) -7 NIL NIL) (-487 1192711 1193636 1194580 "INBFF" 1196488 NIL INBFF (NIL T) -7 NIL NIL) (-486 1189206 1192556 1192659 "IMATRIX" 1192664 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-485 1187918 1188041 1188356 "IMATQF" 1189062 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-484 1186138 1186365 1186702 "IMATLIN" 1187674 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-483 1180764 1186062 1186120 "ILIST" 1186125 NIL ILIST (NIL T NIL) -8 NIL NIL) (-482 1178717 1180624 1180737 "IIARRAY2" 1180742 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-481 1174085 1178628 1178692 "IFF" 1178697 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-480 1169128 1173377 1173565 "IFARRAY" 1173942 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-479 1168335 1169032 1169105 "IFAMON" 1169110 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-478 1167918 1167983 1168038 "IEVALAB" 1168245 NIL IEVALAB (NIL T T) -9 NIL NIL) (-477 1167593 1167661 1167821 "IEVALAB-" 1167826 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-476 1167251 1167507 1167570 "IDPO" 1167575 NIL IDPO (NIL T T) -8 NIL NIL) (-475 1166528 1167140 1167215 "IDPOAMS" 1167220 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-474 1165862 1166417 1166492 "IDPOAM" 1166497 NIL IDPOAM (NIL T T) -8 NIL NIL) (-473 1164947 1165197 1165251 "IDPC" 1165664 NIL IDPC (NIL T T) -9 NIL 1165813) (-472 1164443 1164839 1164912 "IDPAM" 1164917 NIL IDPAM (NIL T T) -8 NIL NIL) (-471 1163846 1164335 1164408 "IDPAG" 1164413 NIL IDPAG (NIL T T) -8 NIL NIL) (-470 1160101 1160949 1161844 "IDECOMP" 1163003 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-469 1152975 1154024 1155071 "IDEAL" 1159137 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-468 1152139 1152251 1152450 "ICDEN" 1152859 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-467 1151238 1151619 1151766 "ICARD" 1152012 T ICARD (NIL) -8 NIL NIL) (-466 1149310 1149623 1150026 "IBPTOOLS" 1150915 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-465 1144924 1148930 1149043 "IBITS" 1149229 NIL IBITS (NIL NIL) -8 NIL NIL) (-464 1141647 1142223 1142918 "IBATOOL" 1144341 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-463 1139427 1139888 1140421 "IBACHIN" 1141182 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-462 1137304 1139273 1139376 "IARRAY2" 1139381 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-461 1133457 1137230 1137287 "IARRAY1" 1137292 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-460 1127396 1131875 1132353 "IAN" 1132999 T IAN (NIL) -8 NIL NIL) (-459 1126907 1126964 1127137 "IALGFACT" 1127333 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-458 1126434 1126547 1126576 "HYPCAT" 1126783 T HYPCAT (NIL) -9 NIL NIL) (-457 1125972 1126089 1126275 "HYPCAT-" 1126280 NIL HYPCAT- (NIL T) -8 NIL NIL) (-456 1122651 1123982 1124024 "HOAGG" 1125005 NIL HOAGG (NIL T) -9 NIL 1125684) (-455 1121245 1121644 1122170 "HOAGG-" 1122175 NIL HOAGG- (NIL T T) -8 NIL NIL) (-454 1115076 1120686 1120852 "HEXADEC" 1121099 T HEXADEC (NIL) -8 NIL NIL) (-453 1113824 1114046 1114309 "HEUGCD" 1114853 NIL HEUGCD (NIL T) -7 NIL NIL) (-452 1112927 1113661 1113791 "HELLFDIV" 1113796 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-451 1111155 1112704 1112792 "HEAP" 1112871 NIL HEAP (NIL T) -8 NIL NIL) (-450 1105022 1111070 1111132 "HDP" 1111137 NIL HDP (NIL NIL T) -8 NIL NIL) (-449 1098734 1104659 1104810 "HDMP" 1104923 NIL HDMP (NIL NIL T) -8 NIL NIL) (-448 1098059 1098198 1098362 "HB" 1098590 T HB (NIL) -7 NIL NIL) (-447 1091556 1097905 1098009 "HASHTBL" 1098014 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-446 1089309 1091184 1091363 "HACKPI" 1091397 T HACKPI (NIL) -8 NIL NIL) (-445 1085005 1089163 1089275 "GTSET" 1089280 NIL GTSET (NIL T T T T) -8 NIL NIL) (-444 1078531 1084883 1084981 "GSTBL" 1084986 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-443 1070767 1077567 1077831 "GSERIES" 1078322 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-442 1069789 1070242 1070271 "GROUP" 1070532 T GROUP (NIL) -9 NIL 1070691) (-441 1068905 1069128 1069472 "GROUP-" 1069477 NIL GROUP- (NIL T) -8 NIL NIL) (-440 1067274 1067593 1067980 "GROEBSOL" 1068582 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-439 1066214 1066476 1066528 "GRMOD" 1067057 NIL GRMOD (NIL T T) -9 NIL 1067225) (-438 1065982 1066018 1066146 "GRMOD-" 1066151 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-437 1061310 1062336 1063336 "GRIMAGE" 1065002 T GRIMAGE (NIL) -8 NIL NIL) (-436 1059777 1060037 1060361 "GRDEF" 1061006 T GRDEF (NIL) -7 NIL NIL) (-435 1059221 1059337 1059478 "GRAY" 1059656 T GRAY (NIL) -7 NIL NIL) (-434 1058454 1058834 1058886 "GRALG" 1059039 NIL GRALG (NIL T T) -9 NIL 1059131) (-433 1058115 1058188 1058351 "GRALG-" 1058356 NIL GRALG- (NIL T T T) -8 NIL NIL) (-432 1054923 1057704 1057880 "GPOLSET" 1058022 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-431 1054279 1054336 1054593 "GOSPER" 1054860 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-430 1050038 1050717 1051243 "GMODPOL" 1053978 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-429 1049043 1049227 1049465 "GHENSEL" 1049850 NIL GHENSEL (NIL T T) -7 NIL NIL) (-428 1043109 1043952 1044978 "GENUPS" 1048127 NIL GENUPS (NIL T T) -7 NIL NIL) (-427 1042806 1042857 1042946 "GENUFACT" 1043052 NIL GENUFACT (NIL T) -7 NIL NIL) (-426 1042218 1042295 1042460 "GENPGCD" 1042724 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-425 1041692 1041727 1041940 "GENMFACT" 1042177 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-424 1040260 1040515 1040822 "GENEEZ" 1041435 NIL GENEEZ (NIL T T) -7 NIL NIL) (-423 1034134 1039873 1040034 "GDMP" 1040183 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-422 1023516 1027905 1029011 "GCNAALG" 1033117 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-421 1021937 1022809 1022838 "GCDDOM" 1023093 T GCDDOM (NIL) -9 NIL 1023250) (-420 1021407 1021534 1021749 "GCDDOM-" 1021754 NIL GCDDOM- (NIL T) -8 NIL NIL) (-419 1020079 1020264 1020568 "GB" 1021186 NIL GB (NIL T T T T) -7 NIL NIL) (-418 1008699 1011025 1013417 "GBINTERN" 1017770 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-417 1006536 1006828 1007249 "GBF" 1008374 NIL GBF (NIL T T T T) -7 NIL NIL) (-416 1005317 1005482 1005749 "GBEUCLID" 1006352 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-415 1004666 1004791 1004940 "GAUSSFAC" 1005188 T GAUSSFAC (NIL) -7 NIL NIL) (-414 1003043 1003345 1003658 "GALUTIL" 1004385 NIL GALUTIL (NIL T) -7 NIL NIL) (-413 1001360 1001634 1001957 "GALPOLYU" 1002770 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-412 998749 999039 999444 "GALFACTU" 1001057 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-411 990555 992054 993662 "GALFACT" 997181 NIL GALFACT (NIL T) -7 NIL NIL) (-410 987942 988600 988629 "FVFUN" 989785 T FVFUN (NIL) -9 NIL 990505) (-409 987207 987389 987418 "FVC" 987709 T FVC (NIL) -9 NIL 987892) (-408 986849 987004 987085 "FUNCTION" 987159 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-407 984519 985070 985559 "FT" 986380 T FT (NIL) -8 NIL NIL) (-406 983337 983820 984023 "FTEM" 984336 T FTEM (NIL) -8 NIL NIL) (-405 981602 981890 982292 "FSUPFACT" 983029 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-404 979999 980288 980620 "FST" 981290 T FST (NIL) -8 NIL NIL) (-403 979174 979280 979474 "FSRED" 979881 NIL FSRED (NIL T T) -7 NIL NIL) (-402 977853 978108 978462 "FSPRMELT" 978889 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-401 974938 975376 975875 "FSPECF" 977416 NIL FSPECF (NIL T T) -7 NIL NIL) (-400 957311 965868 965909 "FS" 969747 NIL FS (NIL T) -9 NIL 972029) (-399 945961 948951 953007 "FS-" 953304 NIL FS- (NIL T T) -8 NIL NIL) (-398 945477 945531 945707 "FSINT" 945902 NIL FSINT (NIL T T) -7 NIL NIL) (-397 943758 944470 944773 "FSERIES" 945256 NIL FSERIES (NIL T T) -8 NIL NIL) (-396 942776 942892 943122 "FSCINT" 943638 NIL FSCINT (NIL T T) -7 NIL NIL) (-395 939010 941720 941762 "FSAGG" 942132 NIL FSAGG (NIL T) -9 NIL 942391) (-394 936772 937373 938169 "FSAGG-" 938264 NIL FSAGG- (NIL T T) -8 NIL NIL) (-393 935814 935957 936184 "FSAGG2" 936625 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-392 933473 933752 934305 "FS2UPS" 935532 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-391 933059 933102 933255 "FS2" 933424 NIL FS2 (NIL T T T T) -7 NIL NIL) (-390 931919 932090 932398 "FS2EXPXP" 932884 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-389 931345 931460 931612 "FRUTIL" 931799 NIL FRUTIL (NIL T) -7 NIL NIL) (-388 922766 926844 928200 "FR" 930021 NIL FR (NIL T) -8 NIL NIL) (-387 917842 920485 920526 "FRNAALG" 921922 NIL FRNAALG (NIL T) -9 NIL 922529) (-386 913521 914591 915866 "FRNAALG-" 916616 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-385 913159 913202 913329 "FRNAAF2" 913472 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-384 911524 912016 912310 "FRMOD" 912972 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-383 909247 909915 910231 "FRIDEAL" 911315 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-382 908446 908533 908820 "FRIDEAL2" 909154 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-381 907703 908111 908153 "FRETRCT" 908158 NIL FRETRCT (NIL T) -9 NIL 908329) (-380 906815 907046 907397 "FRETRCT-" 907402 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-379 904024 905244 905304 "FRAMALG" 906186 NIL FRAMALG (NIL T T) -9 NIL 906478) (-378 902157 902613 903243 "FRAMALG-" 903466 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-377 896059 901632 901908 "FRAC" 901913 NIL FRAC (NIL T) -8 NIL NIL) (-376 895695 895752 895859 "FRAC2" 895996 NIL FRAC2 (NIL T T) -7 NIL NIL) (-375 895331 895388 895495 "FR2" 895632 NIL FR2 (NIL T T) -7 NIL NIL) (-374 890004 892917 892946 "FPS" 894065 T FPS (NIL) -9 NIL 894621) (-373 889453 889562 889726 "FPS-" 889872 NIL FPS- (NIL T) -8 NIL NIL) (-372 886901 888598 888627 "FPC" 888852 T FPC (NIL) -9 NIL 888994) (-371 886694 886734 886831 "FPC-" 886836 NIL FPC- (NIL T) -8 NIL NIL) (-370 885572 886182 886224 "FPATMAB" 886229 NIL FPATMAB (NIL T) -9 NIL 886381) (-369 883272 883748 884174 "FPARFRAC" 885209 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-368 878667 879164 879846 "FORTRAN" 882704 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-367 876383 876883 877422 "FORT" 878148 T FORT (NIL) -7 NIL NIL) (-366 874058 874620 874649 "FORTFN" 875709 T FORTFN (NIL) -9 NIL 876333) (-365 873821 873871 873900 "FORTCAT" 873959 T FORTCAT (NIL) -9 NIL 874021) (-364 871881 872364 872763 "FORMULA" 873442 T FORMULA (NIL) -8 NIL NIL) (-363 871669 871699 871768 "FORMULA1" 871845 NIL FORMULA1 (NIL T) -7 NIL NIL) (-362 871192 871244 871417 "FORDER" 871611 NIL FORDER (NIL T T T T) -7 NIL NIL) (-361 870288 870452 870645 "FOP" 871019 T FOP (NIL) -7 NIL NIL) (-360 868896 869568 869742 "FNLA" 870170 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-359 867564 867953 867982 "FNCAT" 868554 T FNCAT (NIL) -9 NIL 868847) (-358 867130 867523 867551 "FNAME" 867556 T FNAME (NIL) -8 NIL NIL) (-357 865789 866762 866791 "FMTC" 866796 T FMTC (NIL) -9 NIL 866831) (-356 862107 863314 863942 "FMONOID" 865194 NIL FMONOID (NIL T) -8 NIL NIL) (-355 861327 861850 861998 "FM" 862003 NIL FM (NIL T T) -8 NIL NIL) (-354 858750 859396 859425 "FMFUN" 860569 T FMFUN (NIL) -9 NIL 861277) (-353 858018 858199 858228 "FMC" 858518 T FMC (NIL) -9 NIL 858700) (-352 855247 856081 856135 "FMCAT" 857317 NIL FMCAT (NIL T T) -9 NIL 857811) (-351 854142 855015 855114 "FM1" 855192 NIL FM1 (NIL T T) -8 NIL NIL) (-350 851916 852332 852826 "FLOATRP" 853693 NIL FLOATRP (NIL T) -7 NIL NIL) (-349 845402 849572 850202 "FLOAT" 851306 T FLOAT (NIL) -8 NIL NIL) (-348 842840 843340 843918 "FLOATCP" 844869 NIL FLOATCP (NIL T) -7 NIL NIL) (-347 841628 842476 842517 "FLINEXP" 842522 NIL FLINEXP (NIL T) -9 NIL 842615) (-346 840783 841018 841345 "FLINEXP-" 841350 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-345 839859 840003 840227 "FLASORT" 840635 NIL FLASORT (NIL T T) -7 NIL NIL) (-344 837077 837919 837972 "FLALG" 839199 NIL FLALG (NIL T T) -9 NIL 839666) (-343 830861 834563 834605 "FLAGG" 835867 NIL FLAGG (NIL T) -9 NIL 836519) (-342 829587 829926 830416 "FLAGG-" 830421 NIL FLAGG- (NIL T T) -8 NIL NIL) (-341 828629 828772 828999 "FLAGG2" 829440 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-340 825601 826619 826679 "FINRALG" 827807 NIL FINRALG (NIL T T) -9 NIL 828315) (-339 824761 824990 825329 "FINRALG-" 825334 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-338 824167 824380 824409 "FINITE" 824605 T FINITE (NIL) -9 NIL 824712) (-337 816626 818787 818828 "FINAALG" 822495 NIL FINAALG (NIL T) -9 NIL 823948) (-336 811967 813008 814152 "FINAALG-" 815531 NIL FINAALG- (NIL T T) -8 NIL NIL) (-335 811362 811722 811825 "FILE" 811897 NIL FILE (NIL T) -8 NIL NIL) (-334 810046 810358 810413 "FILECAT" 811097 NIL FILECAT (NIL T T) -9 NIL 811313) (-333 807908 809464 809493 "FIELD" 809533 T FIELD (NIL) -9 NIL 809613) (-332 806528 806913 807424 "FIELD-" 807429 NIL FIELD- (NIL T) -8 NIL NIL) (-331 804343 805165 805511 "FGROUP" 806215 NIL FGROUP (NIL T) -8 NIL NIL) (-330 803433 803597 803817 "FGLMICPK" 804175 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-329 799235 803358 803415 "FFX" 803420 NIL FFX (NIL T NIL) -8 NIL NIL) (-328 798836 798897 799032 "FFSLPE" 799168 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-327 794831 795608 796404 "FFPOLY" 798072 NIL FFPOLY (NIL T) -7 NIL NIL) (-326 794335 794371 794580 "FFPOLY2" 794789 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-325 790157 794254 794317 "FFP" 794322 NIL FFP (NIL T NIL) -8 NIL NIL) (-324 785525 790068 790132 "FF" 790137 NIL FF (NIL NIL NIL) -8 NIL NIL) (-323 780621 784868 785058 "FFNBX" 785379 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-322 775531 779756 780014 "FFNBP" 780475 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-321 770134 774815 775026 "FFNB" 775364 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-320 768966 769164 769479 "FFINTBAS" 769931 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-319 765189 767429 767458 "FFIELDC" 768078 T FFIELDC (NIL) -9 NIL 768454) (-318 763852 764222 764719 "FFIELDC-" 764724 NIL FFIELDC- (NIL T) -8 NIL NIL) (-317 763422 763467 763591 "FFHOM" 763794 NIL FFHOM (NIL T T T) -7 NIL NIL) (-316 761120 761604 762121 "FFF" 762937 NIL FFF (NIL T) -7 NIL NIL) (-315 756708 760862 760963 "FFCGX" 761063 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-314 752310 756440 756547 "FFCGP" 756651 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-313 747463 752037 752145 "FFCG" 752246 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-312 729408 738531 738618 "FFCAT" 743783 NIL FFCAT (NIL T T T) -9 NIL 745270) (-311 724606 725653 726967 "FFCAT-" 728197 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-310 724017 724060 724295 "FFCAT2" 724557 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-309 713217 717007 718224 "FEXPR" 722872 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-308 712216 712651 712693 "FEVALAB" 712777 NIL FEVALAB (NIL T) -9 NIL 713038) (-307 711375 711585 711923 "FEVALAB-" 711928 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-306 709968 710758 710961 "FDIV" 711274 NIL FDIV (NIL T T T T) -8 NIL NIL) (-305 707034 707749 707865 "FDIVCAT" 709433 NIL FDIVCAT (NIL T T T T) -9 NIL 709870) (-304 706796 706823 706993 "FDIVCAT-" 706998 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-303 706016 706103 706380 "FDIV2" 706703 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-302 704709 704966 705253 "FCPAK1" 705749 T FCPAK1 (NIL) -7 NIL NIL) (-301 703837 704209 704350 "FCOMP" 704600 NIL FCOMP (NIL T) -8 NIL NIL) (-300 687477 690889 694449 "FC" 700297 T FC (NIL) -8 NIL NIL) (-299 680072 684118 684159 "FAXF" 685961 NIL FAXF (NIL T) -9 NIL 686652) (-298 677351 678006 678831 "FAXF-" 679296 NIL FAXF- (NIL T T) -8 NIL NIL) (-297 672451 676727 676903 "FARRAY" 677208 NIL FARRAY (NIL T) -8 NIL NIL) (-296 667841 669912 669965 "FAMR" 670977 NIL FAMR (NIL T T) -9 NIL 671437) (-295 666732 667034 667468 "FAMR-" 667473 NIL FAMR- (NIL T T T) -8 NIL NIL) (-294 665928 666654 666707 "FAMONOID" 666712 NIL FAMONOID (NIL T) -8 NIL NIL) (-293 663760 664444 664498 "FAMONC" 665439 NIL FAMONC (NIL T T) -9 NIL 665824) (-292 662452 663514 663651 "FAGROUP" 663656 NIL FAGROUP (NIL T) -8 NIL NIL) (-291 660255 660574 660976 "FACUTIL" 662133 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-290 659354 659539 659761 "FACTFUNC" 660065 NIL FACTFUNC (NIL T) -7 NIL NIL) (-289 651677 658605 658817 "EXPUPXS" 659210 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-288 649160 649700 650286 "EXPRTUBE" 651111 T EXPRTUBE (NIL) -7 NIL NIL) (-287 645354 645946 646683 "EXPRODE" 648499 NIL EXPRODE (NIL T T) -7 NIL NIL) (-286 630516 644013 644439 "EXPR" 644960 NIL EXPR (NIL T) -8 NIL NIL) (-285 624944 625531 626343 "EXPR2UPS" 629814 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-284 624580 624637 624744 "EXPR2" 624881 NIL EXPR2 (NIL T T) -7 NIL NIL) (-283 615934 623717 624012 "EXPEXPAN" 624418 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-282 615761 615891 615920 "EXIT" 615925 T EXIT (NIL) -8 NIL NIL) (-281 615388 615450 615563 "EVALCYC" 615693 NIL EVALCYC (NIL T) -7 NIL NIL) (-280 614928 615046 615088 "EVALAB" 615258 NIL EVALAB (NIL T) -9 NIL 615362) (-279 614409 614531 614752 "EVALAB-" 614757 NIL EVALAB- (NIL T T) -8 NIL NIL) (-278 611871 613183 613212 "EUCDOM" 613767 T EUCDOM (NIL) -9 NIL 614117) (-277 610276 610718 611308 "EUCDOM-" 611313 NIL EUCDOM- (NIL T) -8 NIL NIL) (-276 597854 600602 603342 "ESTOOLS" 607556 T ESTOOLS (NIL) -7 NIL NIL) (-275 597490 597547 597654 "ESTOOLS2" 597791 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-274 597241 597283 597363 "ESTOOLS1" 597442 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-273 591178 592902 592931 "ES" 595695 T ES (NIL) -9 NIL 597101) (-272 586126 587412 589229 "ES-" 589393 NIL ES- (NIL T) -8 NIL NIL) (-271 582501 583261 584041 "ESCONT" 585366 T ESCONT (NIL) -7 NIL NIL) (-270 582246 582278 582360 "ESCONT1" 582463 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-269 581921 581971 582071 "ES2" 582190 NIL ES2 (NIL T T) -7 NIL NIL) (-268 581551 581609 581718 "ES1" 581857 NIL ES1 (NIL T T) -7 NIL NIL) (-267 580767 580896 581072 "ERROR" 581395 T ERROR (NIL) -7 NIL NIL) (-266 574270 580626 580717 "EQTBL" 580722 NIL EQTBL (NIL T T) -8 NIL NIL) (-265 566707 569588 571035 "EQ" 572856 NIL -3213 (NIL T) -8 NIL NIL) (-264 566339 566396 566505 "EQ2" 566644 NIL EQ2 (NIL T T) -7 NIL NIL) (-263 561631 562677 563770 "EP" 565278 NIL EP (NIL T) -7 NIL NIL) (-262 560790 561354 561383 "ENTIRER" 561388 T ENTIRER (NIL) -9 NIL 561433) (-261 557246 558745 559115 "EMR" 560589 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-260 556389 556574 556629 "ELTAGG" 557009 NIL ELTAGG (NIL T T) -9 NIL 557220) (-259 556108 556170 556311 "ELTAGG-" 556316 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-258 555896 555925 555980 "ELTAB" 556064 NIL ELTAB (NIL T T) -9 NIL NIL) (-257 555022 555168 555367 "ELFUTS" 555747 NIL ELFUTS (NIL T T) -7 NIL NIL) (-256 554763 554819 554848 "ELEMFUN" 554953 T ELEMFUN (NIL) -9 NIL NIL) (-255 554633 554654 554722 "ELEMFUN-" 554727 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-254 549524 552733 552775 "ELAGG" 553715 NIL ELAGG (NIL T) -9 NIL 554178) (-253 547809 548243 548906 "ELAGG-" 548911 NIL ELAGG- (NIL T T) -8 NIL NIL) (-252 540677 542476 543303 "EFUPXS" 547085 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-251 534127 535928 536738 "EFULS" 539953 NIL EFULS (NIL T T T) -8 NIL NIL) (-250 531558 531916 532394 "EFSTRUC" 533759 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-249 520630 522195 523755 "EF" 530073 NIL EF (NIL T T) -7 NIL NIL) (-248 519731 520115 520264 "EAB" 520501 T EAB (NIL) -8 NIL NIL) (-247 518944 519690 519718 "E04UCFA" 519723 T E04UCFA (NIL) -8 NIL NIL) (-246 518157 518903 518931 "E04NAFA" 518936 T E04NAFA (NIL) -8 NIL NIL) (-245 517370 518116 518144 "E04MBFA" 518149 T E04MBFA (NIL) -8 NIL NIL) (-244 516583 517329 517357 "E04JAFA" 517362 T E04JAFA (NIL) -8 NIL NIL) (-243 515798 516542 516570 "E04GCFA" 516575 T E04GCFA (NIL) -8 NIL NIL) (-242 515013 515757 515785 "E04FDFA" 515790 T E04FDFA (NIL) -8 NIL NIL) (-241 514226 514972 515000 "E04DGFA" 515005 T E04DGFA (NIL) -8 NIL NIL) (-240 508411 509756 511118 "E04AGNT" 512884 T E04AGNT (NIL) -7 NIL NIL) (-239 507137 507617 507658 "DVARCAT" 508133 NIL DVARCAT (NIL T) -9 NIL 508331) (-238 506341 506553 506867 "DVARCAT-" 506872 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-237 499203 506143 506270 "DSMP" 506275 NIL DSMP (NIL T T T) -8 NIL NIL) (-236 494013 495148 496216 "DROPT" 498155 T DROPT (NIL) -8 NIL NIL) (-235 493678 493737 493835 "DROPT1" 493948 NIL DROPT1 (NIL T) -7 NIL NIL) (-234 488793 489919 491056 "DROPT0" 492561 T DROPT0 (NIL) -7 NIL NIL) (-233 487138 487463 487849 "DRAWPT" 488427 T DRAWPT (NIL) -7 NIL NIL) (-232 481813 482712 483767 "DRAW" 486136 NIL DRAW (NIL T) -7 NIL NIL) (-231 481454 481505 481621 "DRAWHACK" 481756 NIL DRAWHACK (NIL T) -7 NIL NIL) (-230 480185 480454 480745 "DRAWCX" 481183 T DRAWCX (NIL) -7 NIL NIL) (-229 479703 479771 479921 "DRAWCURV" 480111 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-228 470175 472133 474248 "DRAWCFUN" 477608 T DRAWCFUN (NIL) -7 NIL NIL) (-227 466988 468870 468912 "DQAGG" 469541 NIL DQAGG (NIL T) -9 NIL 469814) (-226 455494 462232 462315 "DPOLCAT" 464153 NIL DPOLCAT (NIL T T T T) -9 NIL 464697) (-225 450334 451680 453637 "DPOLCAT-" 453642 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-224 444418 450196 450293 "DPMO" 450298 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-223 438405 444199 444365 "DPMM" 444370 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-222 438038 438114 438212 "DOMAIN" 438327 T DOMAIN (NIL) -8 NIL NIL) (-221 431750 437675 437826 "DMP" 437939 NIL DMP (NIL NIL T) -8 NIL NIL) (-220 431350 431406 431550 "DLP" 431688 NIL DLP (NIL T) -7 NIL NIL) (-219 424994 430451 430678 "DLIST" 431155 NIL DLIST (NIL T) -8 NIL NIL) (-218 421840 423849 423891 "DLAGG" 424441 NIL DLAGG (NIL T) -9 NIL 424670) (-217 420549 421241 421270 "DIVRING" 421420 T DIVRING (NIL) -9 NIL 421528) (-216 419537 419790 420183 "DIVRING-" 420188 NIL DIVRING- (NIL T) -8 NIL NIL) (-215 417639 417996 418402 "DISPLAY" 419151 T DISPLAY (NIL) -7 NIL NIL) (-214 411528 417553 417616 "DIRPROD" 417621 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-213 410376 410579 410844 "DIRPROD2" 411321 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-212 400006 406011 406065 "DIRPCAT" 406473 NIL DIRPCAT (NIL NIL T) -9 NIL 407300) (-211 397332 397974 398855 "DIRPCAT-" 399192 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-210 396619 396779 396965 "DIOSP" 397166 T DIOSP (NIL) -7 NIL NIL) (-209 393321 395531 395573 "DIOPS" 396007 NIL DIOPS (NIL T) -9 NIL 396236) (-208 392870 392984 393175 "DIOPS-" 393180 NIL DIOPS- (NIL T T) -8 NIL NIL) (-207 391741 392379 392408 "DIFRING" 392595 T DIFRING (NIL) -9 NIL 392704) (-206 391387 391464 391616 "DIFRING-" 391621 NIL DIFRING- (NIL T) -8 NIL NIL) (-205 389176 390458 390499 "DIFEXT" 390858 NIL DIFEXT (NIL T) -9 NIL 391151) (-204 387462 387890 388555 "DIFEXT-" 388560 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-203 384784 386994 387036 "DIAGG" 387041 NIL DIAGG (NIL T) -9 NIL 387061) (-202 384168 384325 384577 "DIAGG-" 384582 NIL DIAGG- (NIL T T) -8 NIL NIL) (-201 379633 383127 383404 "DHMATRIX" 383937 NIL DHMATRIX (NIL T) -8 NIL NIL) (-200 375245 376154 377164 "DFSFUN" 378643 T DFSFUN (NIL) -7 NIL NIL) (-199 370031 373959 374324 "DFLOAT" 374900 T DFLOAT (NIL) -8 NIL NIL) (-198 368264 368545 368940 "DFINTTLS" 369739 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-197 365297 366299 366697 "DERHAM" 367931 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-196 363146 365072 365161 "DEQUEUE" 365241 NIL DEQUEUE (NIL T) -8 NIL NIL) (-195 362364 362497 362692 "DEGRED" 363008 NIL DEGRED (NIL T T) -7 NIL NIL) (-194 358780 359521 360369 "DEFINTRF" 361596 NIL DEFINTRF (NIL T) -7 NIL NIL) (-193 356319 356786 357382 "DEFINTEF" 358301 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-192 350150 355760 355926 "DECIMAL" 356173 T DECIMAL (NIL) -8 NIL NIL) (-191 347662 348120 348626 "DDFACT" 349694 NIL DDFACT (NIL T T) -7 NIL NIL) (-190 347258 347301 347452 "DBLRESP" 347613 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-189 344968 345302 345671 "DBASE" 347016 NIL DBASE (NIL T) -8 NIL NIL) (-188 344103 344927 344955 "D03FAFA" 344960 T D03FAFA (NIL) -8 NIL NIL) (-187 343239 344062 344090 "D03EEFA" 344095 T D03EEFA (NIL) -8 NIL NIL) (-186 341189 341655 342144 "D03AGNT" 342770 T D03AGNT (NIL) -7 NIL NIL) (-185 340507 341148 341176 "D02EJFA" 341181 T D02EJFA (NIL) -8 NIL NIL) (-184 339825 340466 340494 "D02CJFA" 340499 T D02CJFA (NIL) -8 NIL NIL) (-183 339143 339784 339812 "D02BHFA" 339817 T D02BHFA (NIL) -8 NIL NIL) (-182 338461 339102 339130 "D02BBFA" 339135 T D02BBFA (NIL) -8 NIL NIL) (-181 331659 333247 334853 "D02AGNT" 336875 T D02AGNT (NIL) -7 NIL NIL) (-180 329428 329950 330496 "D01WGTS" 331133 T D01WGTS (NIL) -7 NIL NIL) (-179 328531 329387 329415 "D01TRNS" 329420 T D01TRNS (NIL) -8 NIL NIL) (-178 327634 328490 328518 "D01GBFA" 328523 T D01GBFA (NIL) -8 NIL NIL) (-177 326737 327593 327621 "D01FCFA" 327626 T D01FCFA (NIL) -8 NIL NIL) (-176 325840 326696 326724 "D01ASFA" 326729 T D01ASFA (NIL) -8 NIL NIL) (-175 324943 325799 325827 "D01AQFA" 325832 T D01AQFA (NIL) -8 NIL NIL) (-174 324046 324902 324930 "D01APFA" 324935 T D01APFA (NIL) -8 NIL NIL) (-173 323149 324005 324033 "D01ANFA" 324038 T D01ANFA (NIL) -8 NIL NIL) (-172 322252 323108 323136 "D01AMFA" 323141 T D01AMFA (NIL) -8 NIL NIL) (-171 321355 322211 322239 "D01ALFA" 322244 T D01ALFA (NIL) -8 NIL NIL) (-170 320458 321314 321342 "D01AKFA" 321347 T D01AKFA (NIL) -8 NIL NIL) (-169 319561 320417 320445 "D01AJFA" 320450 T D01AJFA (NIL) -8 NIL NIL) (-168 312865 314414 315973 "D01AGNT" 318022 T D01AGNT (NIL) -7 NIL NIL) (-167 312202 312330 312482 "CYCLOTOM" 312733 T CYCLOTOM (NIL) -7 NIL NIL) (-166 308937 309650 310377 "CYCLES" 311495 T CYCLES (NIL) -7 NIL NIL) (-165 308249 308383 308554 "CVMP" 308798 NIL CVMP (NIL T) -7 NIL NIL) (-164 306031 306288 306663 "CTRIGMNP" 307977 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-163 305405 305504 305657 "CSTTOOLS" 305928 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-162 301204 301861 302619 "CRFP" 304717 NIL CRFP (NIL T T) -7 NIL NIL) (-161 300251 300436 300664 "CRAPACK" 301008 NIL CRAPACK (NIL T) -7 NIL NIL) (-160 299635 299736 299940 "CPMATCH" 300127 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-159 299360 299388 299494 "CPIMA" 299601 NIL CPIMA (NIL T T T) -7 NIL NIL) (-158 295724 296396 297114 "COORDSYS" 298695 NIL COORDSYS (NIL T) -7 NIL NIL) (-157 291585 293727 294219 "CONTFRAC" 295264 NIL CONTFRAC (NIL T) -8 NIL NIL) (-156 290738 291302 291331 "COMRING" 291336 T COMRING (NIL) -9 NIL 291387) (-155 289819 290096 290280 "COMPPROP" 290574 T COMPPROP (NIL) -8 NIL NIL) (-154 289480 289515 289643 "COMPLPAT" 289778 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-153 279461 289289 289398 "COMPLEX" 289403 NIL COMPLEX (NIL T) -8 NIL NIL) (-152 279097 279154 279261 "COMPLEX2" 279398 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-151 278815 278850 278948 "COMPFACT" 279056 NIL COMPFACT (NIL T T) -7 NIL NIL) (-150 263149 273443 273484 "COMPCAT" 274486 NIL COMPCAT (NIL T) -9 NIL 275879) (-149 252664 255588 259215 "COMPCAT-" 259571 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-148 252395 252423 252525 "COMMUPC" 252630 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-147 252190 252223 252282 "COMMONOP" 252356 T COMMONOP (NIL) -7 NIL NIL) (-146 251773 251941 252028 "COMM" 252123 T COMM (NIL) -8 NIL NIL) (-145 251027 251219 251248 "COMBOPC" 251584 T COMBOPC (NIL) -9 NIL 251757) (-144 249923 250133 250375 "COMBINAT" 250817 NIL COMBINAT (NIL T) -7 NIL NIL) (-143 246129 246700 247338 "COMBF" 249347 NIL COMBF (NIL T T) -7 NIL NIL) (-142 244915 245245 245480 "COLOR" 245914 T COLOR (NIL) -8 NIL NIL) (-141 244555 244602 244727 "CMPLXRT" 244862 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-140 240057 241085 242165 "CLIP" 243495 T CLIP (NIL) -7 NIL NIL) (-139 238395 239165 239403 "CLIF" 239885 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-138 234617 236541 236583 "CLAGG" 237512 NIL CLAGG (NIL T) -9 NIL 238048) (-137 233039 233496 234079 "CLAGG-" 234084 NIL CLAGG- (NIL T T) -8 NIL NIL) (-136 232583 232668 232808 "CINTSLPE" 232948 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-135 230084 230555 231103 "CHVAR" 232111 NIL CHVAR (NIL T T T) -7 NIL NIL) (-134 229306 229870 229899 "CHARZ" 229904 T CHARZ (NIL) -9 NIL 229918) (-133 229060 229100 229178 "CHARPOL" 229260 NIL CHARPOL (NIL T) -7 NIL NIL) (-132 228166 228763 228792 "CHARNZ" 228839 T CHARNZ (NIL) -9 NIL 228894) (-131 226189 226856 227191 "CHAR" 227851 T CHAR (NIL) -8 NIL NIL) (-130 225914 225975 226004 "CFCAT" 226115 T CFCAT (NIL) -9 NIL NIL) (-129 225159 225270 225452 "CDEN" 225798 NIL CDEN (NIL T T T) -7 NIL NIL) (-128 221151 224312 224592 "CCLASS" 224899 T CCLASS (NIL) -8 NIL NIL) (-127 216204 217180 217933 "CARTEN" 220454 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-126 215312 215460 215681 "CARTEN2" 216051 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-125 213609 214464 214720 "CARD" 215076 T CARD (NIL) -8 NIL NIL) (-124 212981 213309 213338 "CACHSET" 213470 T CACHSET (NIL) -9 NIL 213547) (-123 212477 212773 212802 "CABMON" 212852 T CABMON (NIL) -9 NIL 212908) (-122 210034 212169 212276 "BTREE" 212403 NIL BTREE (NIL T) -8 NIL NIL) (-121 207532 209682 209804 "BTOURN" 209944 NIL BTOURN (NIL T) -8 NIL NIL) (-120 204950 207003 207045 "BTCAT" 207113 NIL BTCAT (NIL T) -9 NIL 207190) (-119 204617 204697 204846 "BTCAT-" 204851 NIL BTCAT- (NIL T T) -8 NIL NIL) (-118 199837 203708 203737 "BTAGG" 203993 T BTAGG (NIL) -9 NIL 204172) (-117 199260 199404 199634 "BTAGG-" 199639 NIL BTAGG- (NIL T) -8 NIL NIL) (-116 196304 198538 198753 "BSTREE" 199077 NIL BSTREE (NIL T) -8 NIL NIL) (-115 195442 195568 195752 "BRILL" 196160 NIL BRILL (NIL T) -7 NIL NIL) (-114 192143 194170 194212 "BRAGG" 194861 NIL BRAGG (NIL T) -9 NIL 195118) (-113 190672 191078 191633 "BRAGG-" 191638 NIL BRAGG- (NIL T T) -8 NIL NIL) (-112 183880 190018 190202 "BPADICRT" 190520 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-111 182184 183817 183862 "BPADIC" 183867 NIL BPADIC (NIL NIL) -8 NIL NIL) (-110 181884 181914 182027 "BOUNDZRO" 182148 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-109 177399 178490 179357 "BOP" 181037 T BOP (NIL) -8 NIL NIL) (-108 175020 175464 175984 "BOP1" 176912 NIL BOP1 (NIL T) -7 NIL NIL) (-107 173639 174350 174573 "BOOLEAN" 174817 T BOOLEAN (NIL) -8 NIL NIL) (-106 173005 173383 173436 "BMODULE" 173441 NIL BMODULE (NIL T T) -9 NIL 173505) (-105 168815 172803 172876 "BITS" 172952 T BITS (NIL) -8 NIL NIL) (-104 167912 168347 168499 "BINFILE" 168683 T BINFILE (NIL) -8 NIL NIL) (-103 161747 167356 167521 "BINARY" 167767 T BINARY (NIL) -8 NIL NIL) (-102 159574 161002 161044 "BGAGG" 161304 NIL BGAGG (NIL T) -9 NIL 161441) (-101 159405 159437 159528 "BGAGG-" 159533 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158503 158789 158994 "BFUNCT" 159220 T BFUNCT (NIL) -8 NIL NIL) (-99 157204 157382 157667 "BEZOUT" 158327 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 153729 156064 156392 "BBTREE" 156907 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153466 153519 153546 "BASTYPE" 153663 T BASTYPE (NIL) -9 NIL NIL) (-96 153321 153350 153420 "BASTYPE-" 153425 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 152759 152835 152985 "BALFACT" 153232 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151581 152178 152363 "AUTOMOR" 152604 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151306 151311 151338 "ATTREG" 151343 T ATTREG (NIL) -9 NIL NIL) (-92 149585 150003 150355 "ATTRBUT" 150972 T ATTRBUT (NIL) -8 NIL NIL) (-91 149120 149233 149260 "ATRIG" 149461 T ATRIG (NIL) -9 NIL NIL) (-90 148929 148970 149057 "ATRIG-" 149062 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147126 148705 148793 "ASTACK" 148872 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145631 145928 146293 "ASSOCEQ" 146808 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144663 145290 145414 "ASP9" 145538 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144427 144611 144650 "ASP8" 144655 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143297 144032 144174 "ASP80" 144316 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142196 142932 143064 "ASP7" 143196 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141152 141873 141991 "ASP78" 142109 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140123 140832 140949 "ASP77" 141066 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139038 139761 139892 "ASP74" 140023 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137939 138673 138805 "ASP73" 138937 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136894 137616 137734 "ASP6" 137852 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135843 136571 136689 "ASP55" 136807 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134793 135517 135636 "ASP50" 135755 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133881 134494 134604 "ASP4" 134714 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132969 133582 133692 "ASP49" 133802 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131754 132508 132676 "ASP42" 132858 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130532 131287 131457 "ASP41" 131641 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129484 130209 130327 "ASP35" 130445 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129249 129432 129471 "ASP34" 129476 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128986 129053 129129 "ASP33" 129204 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127882 128621 128753 "ASP31" 128885 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127647 127830 127869 "ASP30" 127874 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127382 127451 127527 "ASP29" 127602 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127147 127330 127369 "ASP28" 127374 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126912 127095 127134 "ASP27" 127139 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125996 126610 126721 "ASP24" 126832 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124913 125637 125767 "ASP20" 125897 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124001 124614 124724 "ASP1" 124834 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122945 123675 123794 "ASP19" 123913 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122682 122749 122825 "ASP12" 122900 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121535 122281 122425 "ASP10" 122569 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119434 121379 121470 "ARRAY2" 121475 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115250 119082 119196 "ARRAY1" 119351 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114282 114455 114676 "ARRAY12" 115073 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108641 110512 110588 "ARR2CAT" 113218 NIL ARR2CAT (NIL T T T) -9 NIL 113976) (-54 106075 106819 107773 "ARR2CAT-" 107778 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104835 104985 105288 "APPRULE" 105913 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104488 104536 104654 "APPLYORE" 104781 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103462 103753 103948 "ANY" 104311 T ANY (NIL) -8 NIL NIL) (-50 102740 102863 103020 "ANY1" 103336 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100272 101190 101515 "ANTISYM" 102465 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100099 100231 100258 "ANON" 100263 T ANON (NIL) -8 NIL NIL) (-47 94176 98644 99095 "AN" 99666 T AN (NIL) -8 NIL NIL) (-46 90529 91927 91978 "AMR" 92717 NIL AMR (NIL T T) -9 NIL 93316) (-45 89642 89863 90225 "AMR-" 90230 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74192 89559 89620 "ALIST" 89625 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71029 73786 73955 "ALGSC" 74110 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67585 68139 68746 "ALGPKG" 70469 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66862 66963 67147 "ALGMFACT" 67471 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62612 63292 63946 "ALGMANIP" 66386 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53931 62238 62388 "ALGFF" 62545 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53127 53258 53437 "ALGFACT" 53789 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52117 52727 52766 "ALGEBRA" 52826 NIL ALGEBRA (NIL T) -9 NIL 52884) (-36 51835 51894 52026 "ALGEBRA-" 52031 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34095 49838 49891 "ALAGG" 50027 NIL ALAGG (NIL T T) -9 NIL 50188) (-34 33630 33743 33770 "AHYP" 33971 T AHYP (NIL) -9 NIL NIL) (-33 32560 32808 32835 "AGG" 33334 T AGG (NIL) -9 NIL 33613) (-32 31994 32156 32370 "AGG-" 32375 NIL AGG- (NIL T) -8 NIL NIL) (-31 29681 30099 30516 "AF" 31637 NIL AF (NIL T T) -7 NIL NIL) (-30 28950 29208 29364 "ACPLOT" 29543 T ACPLOT (NIL) -8 NIL NIL) (-29 18416 26362 26414 "ACFS" 27125 NIL ACFS (NIL T) -9 NIL 27364) (-28 16430 16920 17695 "ACFS-" 17700 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14653 14680 "ACF" 15559 T ACF (NIL) -9 NIL 15971) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11195 "ABELSG" 11287 T ABELSG (NIL) -9 NIL 11352) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10523 "ABELMON" 10693 T ABELMON (NIL) -9 NIL 10805) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9606 "ABELGRP" 9731 T ABELGRP (NIL) -9 NIL 9813) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8075 "A1AGG" 8080 NIL A1AGG (NIL T) -9 NIL 8120) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3559 (($ $ (-848)) 26)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-975) (-1194)) (T -975)) +NIL +(-13 (-21) (-1023)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-559 (-790)) . T) ((-1023) . T) ((-1011) . T)) +((-4057 (($ $) 16)) (-3925 (($ $) 22)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 49)) (-3681 (($ $) 24)) (-3326 (($ $) 11)) (-1525 (($ $) 38)) (-1446 (((-351) $) NIL) (((-201) $) NIL) (((-819 (-351)) $) 33)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL) (($ (-379 (-519))) 28) (($ (-519)) NIL) (($ (-379 (-519))) 28)) (-3594 (((-705)) 8)) (-3617 (($ $) 39))) +(((-976 |#1|) (-10 -8 (-15 -3925 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -3326 (|#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -4068 ((-816 (-351) |#1|) |#1| (-819 (-351)) (-816 (-351) |#1|))) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| (-519))) (-15 -1446 ((-201) |#1|)) (-15 -1446 ((-351) |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-519))) (-15 -3594 ((-705))) (-15 -2217 ((-790) |#1|))) (-977)) (T -976)) +((-3594 (*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-976 *3)) (-4 *3 (-977))))) +(-10 -8 (-15 -3925 (|#1| |#1|)) (-15 -4057 (|#1| |#1|)) (-15 -3326 (|#1| |#1|)) (-15 -1525 (|#1| |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -4068 ((-816 (-351) |#1|) |#1| (-819 (-351)) (-816 (-351) |#1|))) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| (-519))) (-15 -1446 ((-201) |#1|)) (-15 -1446 ((-351) |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-519))) (-15 -3594 ((-705))) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-2157 (((-519) $) 89)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-4057 (($ $) 87)) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 73)) (-3093 (((-390 $) $) 72)) (-1934 (($ $) 97)) (-3409 (((-108) $ $) 59)) (-2287 (((-519) $) 114)) (-2249 (($) 17 T CONST)) (-3925 (($ $) 86)) (-1301 (((-3 (-519) "failed") $) 102) (((-3 (-379 (-519)) "failed") $) 99)) (-1499 (((-519) $) 101) (((-379 (-519)) $) 98)) (-2311 (($ $ $) 55)) (-4193 (((-3 $ "failed") $) 34)) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-1320 (((-108) $) 71)) (-3419 (((-108) $) 112)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 93)) (-1568 (((-108) $) 31)) (-1517 (($ $ (-519)) 96)) (-3681 (($ $) 92)) (-2143 (((-108) $) 113)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-2864 (($ $ $) 111)) (-2489 (($ $ $) 110)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 70)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-3326 (($ $) 88)) (-1525 (($ $) 90)) (-1921 (((-390 $) $) 74)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-3129 (((-705) $) 58)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-1446 (((-351) $) 105) (((-201) $) 104) (((-819 (-351)) $) 94)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-379 (-519))) 65) (($ (-519)) 103) (($ (-379 (-519))) 100)) (-3594 (((-705)) 29)) (-3617 (($ $) 91)) (-1617 (((-108) $ $) 39)) (-1478 (($ $) 115)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 69)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1586 (((-108) $ $) 108)) (-1569 (((-108) $ $) 107)) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 109)) (-1561 (((-108) $ $) 106)) (-1632 (($ $ $) 64)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 68) (($ $ (-379 (-519))) 95)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 67) (($ (-379 (-519)) $) 66))) +(((-977) (-1194)) (T -977)) +((-1478 (*1 *1 *1) (-4 *1 (-977))) (-3681 (*1 *1 *1) (-4 *1 (-977))) (-3617 (*1 *1 *1) (-4 *1 (-977))) (-1525 (*1 *1 *1) (-4 *1 (-977))) (-2157 (*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-519)))) (-3326 (*1 *1 *1) (-4 *1 (-977))) (-4057 (*1 *1 *1) (-4 *1 (-977))) (-3925 (*1 *1 *1) (-4 *1 (-977)))) +(-13 (-335) (-780) (-944) (-959 (-519)) (-959 (-379 (-519))) (-925) (-560 (-819 (-351))) (-813 (-351)) (-135) (-10 -8 (-15 -3681 ($ $)) (-15 -3617 ($ $)) (-15 -1525 ($ $)) (-15 -2157 ((-519) $)) (-15 -3326 ($ $)) (-15 -4057 ($ $)) (-15 -3925 ($ $)) (-15 -1478 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-559 (-790)) . T) ((-157) . T) ((-560 (-201)) . T) ((-560 (-351)) . T) ((-560 (-819 (-351))) . T) ((-219) . T) ((-264) . T) ((-280) . T) ((-335) . T) ((-423) . T) ((-511) . T) ((-587 #0#) . T) ((-587 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-661) . T) ((-725) . T) ((-726) . T) ((-728) . T) ((-730) . T) ((-780) . T) ((-782) . T) ((-813 (-351)) . T) ((-847) . T) ((-925) . T) ((-944) . T) ((-959 (-379 (-519))) . T) ((-959 (-519)) . T) ((-974 #0#) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1121) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) |#2| $) 23)) (-1642 ((|#1| $) 10)) (-2287 (((-519) |#2| $) 89)) (-4027 (((-3 $ "failed") |#2| (-848)) 58)) (-1931 ((|#1| $) 28)) (-1353 ((|#1| |#2| $ |#1|) 37)) (-3171 (($ $) 25)) (-4193 (((-3 |#2| "failed") |#2| $) 88)) (-3419 (((-108) |#2| $) NIL)) (-2143 (((-108) |#2| $) NIL)) (-3831 (((-108) |#2| $) 24)) (-1770 ((|#1| $) 90)) (-1917 ((|#1| $) 27)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1462 ((|#2| $) 80)) (-2217 (((-790) $) 71)) (-3905 ((|#1| |#2| $ |#1|) 38)) (-2721 (((-585 $) |#2|) 60)) (-1543 (((-108) $ $) 75))) +(((-978 |#1| |#2|) (-13 (-984 |#1| |#2|) (-10 -8 (-15 -1917 (|#1| $)) (-15 -1931 (|#1| $)) (-15 -1642 (|#1| $)) (-15 -1770 (|#1| $)) (-15 -3171 ($ $)) (-15 -3831 ((-108) |#2| $)) (-15 -1353 (|#1| |#2| $ |#1|)))) (-13 (-780) (-335)) (-1139 |#1|)) (T -978)) +((-1353 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1139 *2)))) (-1917 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1139 *2)))) (-1931 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1139 *2)))) (-1642 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1139 *2)))) (-1770 (*1 *2 *1) (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1139 *2)))) (-3171 (*1 *1 *1) (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) (-4 *3 (-1139 *2)))) (-3831 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-780) (-335))) (-5 *2 (-108)) (-5 *1 (-978 *4 *3)) (-4 *3 (-1139 *4))))) +(-13 (-984 |#1| |#2|) (-10 -8 (-15 -1917 (|#1| $)) (-15 -1931 (|#1| $)) (-15 -1642 (|#1| $)) (-15 -1770 (|#1| $)) (-15 -3171 ($ $)) (-15 -3831 ((-108) |#2| $)) (-15 -1353 (|#1| |#2| $ |#1|)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3133 (($ $ $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2131 (($ $ $ $) NIL)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL)) (-1674 (($ $ $) NIL)) (-2249 (($) NIL T CONST)) (-1993 (($ (-1082)) 10) (($ (-519)) 7)) (-1301 (((-3 (-519) "failed") $) NIL)) (-1499 (((-519) $) NIL)) (-2311 (($ $ $) NIL)) (-1562 (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-625 (-519)) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-1631 (((-3 (-379 (-519)) "failed") $) NIL)) (-2102 (((-108) $) NIL)) (-2506 (((-379 (-519)) $) NIL)) (-3314 (($) NIL) (($ $) NIL)) (-2286 (($ $ $) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3504 (($ $ $ $) NIL)) (-2233 (($ $ $) NIL)) (-3419 (((-108) $) NIL)) (-3449 (($ $ $) NIL)) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL)) (-1568 (((-108) $) NIL)) (-3164 (((-108) $) NIL)) (-1675 (((-3 $ "failed") $) NIL)) (-2143 (((-108) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1843 (($ $ $ $) NIL)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-3900 (($ $) NIL)) (-2568 (($ $) NIL)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-2691 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-3011 (($ $) NIL)) (-4139 (((-1029) $) NIL) (($ $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1314 (($ $) NIL)) (-1921 (((-390 $) $) NIL)) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1295 (((-108) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-2181 (($ $ (-705)) NIL) (($ $) NIL)) (-3104 (($ $) NIL)) (-2449 (($ $) NIL)) (-1446 (((-519) $) 16) (((-495) $) NIL) (((-819 (-519)) $) NIL) (((-351) $) NIL) (((-201) $) NIL) (($ (-1082)) 9)) (-2217 (((-790) $) 20) (($ (-519)) 6) (($ $) NIL) (($ (-519)) 6)) (-3594 (((-705)) NIL)) (-4200 (((-108) $ $) NIL)) (-3563 (($ $ $) NIL)) (-3414 (($) NIL)) (-1617 (((-108) $ $) NIL)) (-1748 (($ $ $ $) NIL)) (-1478 (($ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-705)) NIL) (($ $) NIL)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) NIL)) (-1623 (($ $) 19) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL))) +(((-979) (-13 (-504) (-10 -8 (-6 -4208) (-6 -4213) (-6 -4209) (-15 -1446 ($ (-1082))) (-15 -1993 ($ (-1082))) (-15 -1993 ($ (-519)))))) (T -979)) +((-1446 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-979)))) (-1993 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-979)))) (-1993 (*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-979))))) +(-13 (-504) (-10 -8 (-6 -4208) (-6 -4213) (-6 -4209) (-15 -1446 ($ (-1082))) (-15 -1993 ($ (-1082))) (-15 -1993 ($ (-519))))) +((-1430 (((-108) $ $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011))))) (-1812 (($) NIL) (($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) NIL)) (-1583 (((-1168) $ (-1082) (-1082)) NIL (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-2847 (($) 9)) (-2421 (((-51) $ (-1082) (-51)) NIL)) (-2993 (($ $) 23)) (-2135 (($ $) 21)) (-1897 (($ $) 20)) (-2540 (($ $) 22)) (-2194 (($ $) 25)) (-1619 (($ $) 26)) (-1342 (($ $) 19)) (-3415 (($ $) 24)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) 18 (|has| $ (-6 -4221)))) (-2802 (((-3 (-51) "failed") (-1082) $) 34)) (-2249 (($) NIL T CONST)) (-2604 (($) 7)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011))))) (-2502 (($ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) 46 (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-3 (-51) "failed") (-1082) $) NIL)) (-1438 (($ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (((-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221)))) (-2627 (((-3 (-1065) "failed") $ (-1065) (-519)) 59)) (-3865 (((-51) $ (-1082) (-51)) NIL (|has| $ (-6 -4222)))) (-3659 (((-51) $ (-1082)) NIL)) (-3844 (((-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-585 (-51)) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-1082) $) NIL (|has| (-1082) (-782)))) (-3725 (((-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) 28 (|has| $ (-6 -4221))) (((-585 (-51)) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-51) (-1011))))) (-3890 (((-1082) $) NIL (|has| (-1082) (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4222))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011))))) (-3019 (((-585 (-1082)) $) NIL)) (-4194 (((-108) (-1082) $) NIL)) (-4152 (((-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL)) (-1846 (($ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) 37)) (-3909 (((-585 (-1082)) $) NIL)) (-1506 (((-108) (-1082) $) NIL)) (-4139 (((-1029) $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011))))) (-1495 (((-351) $ (-1082)) 45)) (-1884 (((-585 (-1065)) $ (-1065)) 60)) (-2331 (((-51) $) NIL (|has| (-1082) (-782)))) (-2395 (((-3 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) "failed") (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL)) (-3640 (($ $ (-51)) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))))) NIL (-12 (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (($ $ (-267 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) NIL (-12 (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (($ $ (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) NIL (-12 (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (($ $ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) NIL (-12 (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-282 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (($ $ (-585 (-51)) (-585 (-51))) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011)))) (($ $ (-267 (-51))) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011)))) (($ $ (-585 (-267 (-51)))) NIL (-12 (|has| (-51) (-282 (-51))) (|has| (-51) (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-51) (-1011))))) (-2222 (((-585 (-51)) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 (((-51) $ (-1082)) NIL) (((-51) $ (-1082) (-51)) NIL)) (-2436 (($) NIL) (($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) NIL)) (-3753 (($ $ (-1082)) 47)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011)))) (((-705) (-51) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-51) (-1011)))) (((-705) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) 30)) (-4150 (($ $ $) 31)) (-2217 (((-790) $) NIL (-3730 (|has| (-51) (-559 (-790))) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-559 (-790)))))) (-2950 (($ $ (-1082) (-351)) 43)) (-2052 (($ $ (-1082) (-351)) 44)) (-3879 (($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))))) NIL)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 (-1082)) (|:| -3100 (-51)))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (-3730 (|has| (-51) (-1011)) (|has| (-2 (|:| -2583 (-1082)) (|:| -3100 (-51))) (-1011))))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-980) (-13 (-1094 (-1082) (-51)) (-10 -8 (-15 -4150 ($ $ $)) (-15 -2604 ($)) (-15 -1342 ($ $)) (-15 -1897 ($ $)) (-15 -2135 ($ $)) (-15 -2540 ($ $)) (-15 -3415 ($ $)) (-15 -2993 ($ $)) (-15 -2194 ($ $)) (-15 -1619 ($ $)) (-15 -2950 ($ $ (-1082) (-351))) (-15 -2052 ($ $ (-1082) (-351))) (-15 -1495 ((-351) $ (-1082))) (-15 -1884 ((-585 (-1065)) $ (-1065))) (-15 -3753 ($ $ (-1082))) (-15 -2847 ($)) (-15 -2627 ((-3 (-1065) "failed") $ (-1065) (-519))) (-6 -4221)))) (T -980)) +((-4150 (*1 *1 *1 *1) (-5 *1 (-980))) (-2604 (*1 *1) (-5 *1 (-980))) (-1342 (*1 *1 *1) (-5 *1 (-980))) (-1897 (*1 *1 *1) (-5 *1 (-980))) (-2135 (*1 *1 *1) (-5 *1 (-980))) (-2540 (*1 *1 *1) (-5 *1 (-980))) (-3415 (*1 *1 *1) (-5 *1 (-980))) (-2993 (*1 *1 *1) (-5 *1 (-980))) (-2194 (*1 *1 *1) (-5 *1 (-980))) (-1619 (*1 *1 *1) (-5 *1 (-980))) (-2950 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-351)) (-5 *1 (-980)))) (-2052 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-351)) (-5 *1 (-980)))) (-1495 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-351)) (-5 *1 (-980)))) (-1884 (*1 *2 *1 *3) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-980)) (-5 *3 (-1065)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-980)))) (-2847 (*1 *1) (-5 *1 (-980))) (-2627 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1065)) (-5 *3 (-519)) (-5 *1 (-980))))) +(-13 (-1094 (-1082) (-51)) (-10 -8 (-15 -4150 ($ $ $)) (-15 -2604 ($)) (-15 -1342 ($ $)) (-15 -1897 ($ $)) (-15 -2135 ($ $)) (-15 -2540 ($ $)) (-15 -3415 ($ $)) (-15 -2993 ($ $)) (-15 -2194 ($ $)) (-15 -1619 ($ $)) (-15 -2950 ($ $ (-1082) (-351))) (-15 -2052 ($ $ (-1082) (-351))) (-15 -1495 ((-351) $ (-1082))) (-15 -1884 ((-585 (-1065)) $ (-1065))) (-15 -3753 ($ $ (-1082))) (-15 -2847 ($)) (-15 -2627 ((-3 (-1065) "failed") $ (-1065) (-519))) (-6 -4221))) +((-3847 (($ $) 45)) (-1343 (((-108) $ $) 74)) (-1301 (((-3 |#2| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 (-519) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-879 (-379 (-519)))) 227) (((-3 $ "failed") (-879 (-519))) 226) (((-3 $ "failed") (-879 |#2|)) 229)) (-1499 ((|#2| $) NIL) (((-379 (-519)) $) NIL) (((-519) $) NIL) ((|#4| $) NIL) (($ (-879 (-379 (-519)))) 215) (($ (-879 (-519))) 211) (($ (-879 |#2|)) 231)) (-3218 (($ $) NIL) (($ $ |#4|) 43)) (-2459 (((-108) $ $) 112) (((-108) $ (-585 $)) 113)) (-2460 (((-108) $) 56)) (-2964 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 107)) (-3754 (($ $) 138)) (-2179 (($ $) 134)) (-1312 (($ $) 133)) (-3234 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2079 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3507 (((-108) $ $) 121) (((-108) $ (-585 $)) 122)) (-4086 ((|#4| $) 33)) (-3391 (($ $ $) 110)) (-2734 (((-108) $) 55)) (-1925 (((-705) $) 35)) (-3683 (($ $) 152)) (-3356 (($ $) 149)) (-3199 (((-585 $) $) 68)) (-3883 (($ $) 57)) (-3811 (($ $) 145)) (-3323 (((-585 $) $) 65)) (-1573 (($ $) 59)) (-3197 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3478 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1860 (-705))) $ $) 111)) (-1660 (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -3573 $) (|:| -1354 $)) $ $) 108) (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -3573 $) (|:| -1354 $)) $ $ |#4|) 109)) (-3533 (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -1354 $)) $ $) 104) (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -1354 $)) $ $ |#4|) 105)) (-4005 (($ $ $) 89) (($ $ $ |#4|) 95)) (-1712 (($ $ $) 90) (($ $ $ |#4|) 96)) (-2685 (((-585 $) $) 51)) (-2921 (((-108) $ $) 118) (((-108) $ (-585 $)) 119)) (-3369 (($ $ $) 103)) (-3816 (($ $) 37)) (-3291 (((-108) $ $) 72)) (-3300 (((-108) $ $) 114) (((-108) $ (-585 $)) 116)) (-1867 (($ $ $) 101)) (-3048 (($ $) 40)) (-2292 ((|#2| |#2| $) 142) (($ (-585 $)) NIL) (($ $ $) NIL)) (-1854 (($ $ |#2|) NIL) (($ $ $) 131)) (-1857 (($ $ |#2|) 126) (($ $ $) 129)) (-3127 (($ $) 48)) (-3553 (($ $) 52)) (-1446 (((-819 (-351)) $) NIL) (((-819 (-519)) $) NIL) (((-495) $) NIL) (($ (-879 (-379 (-519)))) 217) (($ (-879 (-519))) 213) (($ (-879 |#2|)) 228) (((-1065) $) 250) (((-879 |#2|) $) 162)) (-2217 (((-790) $) 30) (($ (-519)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-879 |#2|) $) 163) (($ (-379 (-519))) NIL) (($ $) NIL)) (-2594 (((-3 (-108) "failed") $ $) 71))) +(((-981 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -2292 (|#1| |#1| |#1|)) (-15 -2292 (|#1| (-585 |#1|))) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 ((-879 |#2|) |#1|)) (-15 -1446 ((-879 |#2|) |#1|)) (-15 -1446 ((-1065) |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3356 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3754 (|#1| |#1|)) (-15 -2292 (|#2| |#2| |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -1857 (|#1| |#1| |#1|)) (-15 -1854 (|#1| |#1| |#2|)) (-15 -1857 (|#1| |#1| |#2|)) (-15 -2179 (|#1| |#1|)) (-15 -1312 (|#1| |#1|)) (-15 -1446 (|#1| (-879 |#2|))) (-15 -1499 (|#1| (-879 |#2|))) (-15 -1301 ((-3 |#1| "failed") (-879 |#2|))) (-15 -1446 (|#1| (-879 (-519)))) (-15 -1499 (|#1| (-879 (-519)))) (-15 -1301 ((-3 |#1| "failed") (-879 (-519)))) (-15 -1446 (|#1| (-879 (-379 (-519))))) (-15 -1499 (|#1| (-879 (-379 (-519))))) (-15 -1301 ((-3 |#1| "failed") (-879 (-379 (-519))))) (-15 -3369 (|#1| |#1| |#1|)) (-15 -1867 (|#1| |#1| |#1|)) (-15 -3478 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1860 (-705))) |#1| |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -2964 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -1660 ((-2 (|:| -3031 |#1|) (|:| |gap| (-705)) (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1| |#4|)) (-15 -1660 ((-2 (|:| -3031 |#1|) (|:| |gap| (-705)) (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -3533 ((-2 (|:| -3031 |#1|) (|:| |gap| (-705)) (|:| -1354 |#1|)) |#1| |#1| |#4|)) (-15 -3533 ((-2 (|:| -3031 |#1|) (|:| |gap| (-705)) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -1712 (|#1| |#1| |#1| |#4|)) (-15 -4005 (|#1| |#1| |#1| |#4|)) (-15 -1712 (|#1| |#1| |#1|)) (-15 -4005 (|#1| |#1| |#1|)) (-15 -2079 (|#1| |#1| |#1| |#4|)) (-15 -3234 (|#1| |#1| |#1| |#4|)) (-15 -2079 (|#1| |#1| |#1|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3507 ((-108) |#1| (-585 |#1|))) (-15 -3507 ((-108) |#1| |#1|)) (-15 -2921 ((-108) |#1| (-585 |#1|))) (-15 -2921 ((-108) |#1| |#1|)) (-15 -3300 ((-108) |#1| (-585 |#1|))) (-15 -3300 ((-108) |#1| |#1|)) (-15 -2459 ((-108) |#1| (-585 |#1|))) (-15 -2459 ((-108) |#1| |#1|)) (-15 -1343 ((-108) |#1| |#1|)) (-15 -3291 ((-108) |#1| |#1|)) (-15 -2594 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3199 ((-585 |#1|) |#1|)) (-15 -3323 ((-585 |#1|) |#1|)) (-15 -1573 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -2460 ((-108) |#1|)) (-15 -2734 ((-108) |#1|)) (-15 -3218 (|#1| |#1| |#4|)) (-15 -3197 (|#1| |#1| |#4|)) (-15 -3553 (|#1| |#1|)) (-15 -2685 ((-585 |#1|) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3048 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -1925 ((-705) |#1|)) (-15 -4086 (|#4| |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -1499 (|#4| |#1|)) (-15 -1301 ((-3 |#4| "failed") |#1|)) (-15 -2217 (|#1| |#4|)) (-15 -3197 (|#2| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) (-982 |#2| |#3| |#4|) (-968) (-727) (-782)) (T -981)) +NIL +(-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -2292 (|#1| |#1| |#1|)) (-15 -2292 (|#1| (-585 |#1|))) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 ((-879 |#2|) |#1|)) (-15 -1446 ((-879 |#2|) |#1|)) (-15 -1446 ((-1065) |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3356 (|#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -3754 (|#1| |#1|)) (-15 -2292 (|#2| |#2| |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -1857 (|#1| |#1| |#1|)) (-15 -1854 (|#1| |#1| |#2|)) (-15 -1857 (|#1| |#1| |#2|)) (-15 -2179 (|#1| |#1|)) (-15 -1312 (|#1| |#1|)) (-15 -1446 (|#1| (-879 |#2|))) (-15 -1499 (|#1| (-879 |#2|))) (-15 -1301 ((-3 |#1| "failed") (-879 |#2|))) (-15 -1446 (|#1| (-879 (-519)))) (-15 -1499 (|#1| (-879 (-519)))) (-15 -1301 ((-3 |#1| "failed") (-879 (-519)))) (-15 -1446 (|#1| (-879 (-379 (-519))))) (-15 -1499 (|#1| (-879 (-379 (-519))))) (-15 -1301 ((-3 |#1| "failed") (-879 (-379 (-519))))) (-15 -3369 (|#1| |#1| |#1|)) (-15 -1867 (|#1| |#1| |#1|)) (-15 -3478 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1860 (-705))) |#1| |#1|)) (-15 -3391 (|#1| |#1| |#1|)) (-15 -2964 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -1660 ((-2 (|:| -3031 |#1|) (|:| |gap| (-705)) (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1| |#4|)) (-15 -1660 ((-2 (|:| -3031 |#1|) (|:| |gap| (-705)) (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -3533 ((-2 (|:| -3031 |#1|) (|:| |gap| (-705)) (|:| -1354 |#1|)) |#1| |#1| |#4|)) (-15 -3533 ((-2 (|:| -3031 |#1|) (|:| |gap| (-705)) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -1712 (|#1| |#1| |#1| |#4|)) (-15 -4005 (|#1| |#1| |#1| |#4|)) (-15 -1712 (|#1| |#1| |#1|)) (-15 -4005 (|#1| |#1| |#1|)) (-15 -2079 (|#1| |#1| |#1| |#4|)) (-15 -3234 (|#1| |#1| |#1| |#4|)) (-15 -2079 (|#1| |#1| |#1|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3507 ((-108) |#1| (-585 |#1|))) (-15 -3507 ((-108) |#1| |#1|)) (-15 -2921 ((-108) |#1| (-585 |#1|))) (-15 -2921 ((-108) |#1| |#1|)) (-15 -3300 ((-108) |#1| (-585 |#1|))) (-15 -3300 ((-108) |#1| |#1|)) (-15 -2459 ((-108) |#1| (-585 |#1|))) (-15 -2459 ((-108) |#1| |#1|)) (-15 -1343 ((-108) |#1| |#1|)) (-15 -3291 ((-108) |#1| |#1|)) (-15 -2594 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3199 ((-585 |#1|) |#1|)) (-15 -3323 ((-585 |#1|) |#1|)) (-15 -1573 (|#1| |#1|)) (-15 -3883 (|#1| |#1|)) (-15 -2460 ((-108) |#1|)) (-15 -2734 ((-108) |#1|)) (-15 -3218 (|#1| |#1| |#4|)) (-15 -3197 (|#1| |#1| |#4|)) (-15 -3553 (|#1| |#1|)) (-15 -2685 ((-585 |#1|) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3048 (|#1| |#1|)) (-15 -3816 (|#1| |#1|)) (-15 -1925 ((-705) |#1|)) (-15 -4086 (|#4| |#1|)) (-15 -1446 ((-495) |#1|)) (-15 -1446 ((-819 (-519)) |#1|)) (-15 -1446 ((-819 (-351)) |#1|)) (-15 -1499 (|#4| |#1|)) (-15 -1301 ((-3 |#4| "failed") |#1|)) (-15 -2217 (|#1| |#4|)) (-15 -3197 (|#2| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4083 (((-585 |#3|) $) 110)) (-1283 (((-1078 $) $ |#3|) 125) (((-1078 |#1|) $) 124)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 87 (|has| |#1| (-511)))) (-1410 (($ $) 88 (|has| |#1| (-511)))) (-3060 (((-108) $) 90 (|has| |#1| (-511)))) (-1976 (((-705) $) 112) (((-705) $ (-585 |#3|)) 111)) (-3847 (($ $) 271)) (-1343 (((-108) $ $) 257)) (-3167 (((-3 $ "failed") $ $) 19)) (-1218 (($ $ $) 216 (|has| |#1| (-511)))) (-2565 (((-585 $) $ $) 211 (|has| |#1| (-511)))) (-1958 (((-390 (-1078 $)) (-1078 $)) 100 (|has| |#1| (-836)))) (-4043 (($ $) 98 (|has| |#1| (-423)))) (-3093 (((-390 $) $) 97 (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 103 (|has| |#1| (-836)))) (-2249 (($) 17 T CONST)) (-1301 (((-3 |#1| "failed") $) 164) (((-3 (-379 (-519)) "failed") $) 162 (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) 160 (|has| |#1| (-959 (-519)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-879 (-379 (-519)))) 231 (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#3| (-560 (-1082))))) (((-3 $ "failed") (-879 (-519))) 228 (-3730 (-12 (-2445 (|has| |#1| (-37 (-379 (-519))))) (|has| |#1| (-37 (-519))) (|has| |#3| (-560 (-1082)))) (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#3| (-560 (-1082)))))) (((-3 $ "failed") (-879 |#1|)) 225 (-3730 (-12 (-2445 (|has| |#1| (-37 (-379 (-519))))) (-2445 (|has| |#1| (-37 (-519)))) (|has| |#3| (-560 (-1082)))) (-12 (-2445 (|has| |#1| (-504))) (-2445 (|has| |#1| (-37 (-379 (-519))))) (|has| |#1| (-37 (-519))) (|has| |#3| (-560 (-1082)))) (-12 (-2445 (|has| |#1| (-916 (-519)))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#3| (-560 (-1082))))))) (-1499 ((|#1| $) 165) (((-379 (-519)) $) 161 (|has| |#1| (-959 (-379 (-519))))) (((-519) $) 159 (|has| |#1| (-959 (-519)))) ((|#3| $) 135) (($ (-879 (-379 (-519)))) 230 (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#3| (-560 (-1082))))) (($ (-879 (-519))) 227 (-3730 (-12 (-2445 (|has| |#1| (-37 (-379 (-519))))) (|has| |#1| (-37 (-519))) (|has| |#3| (-560 (-1082)))) (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#3| (-560 (-1082)))))) (($ (-879 |#1|)) 224 (-3730 (-12 (-2445 (|has| |#1| (-37 (-379 (-519))))) (-2445 (|has| |#1| (-37 (-519)))) (|has| |#3| (-560 (-1082)))) (-12 (-2445 (|has| |#1| (-504))) (-2445 (|has| |#1| (-37 (-379 (-519))))) (|has| |#1| (-37 (-519))) (|has| |#3| (-560 (-1082)))) (-12 (-2445 (|has| |#1| (-916 (-519)))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#3| (-560 (-1082))))))) (-1286 (($ $ $ |#3|) 108 (|has| |#1| (-157))) (($ $ $) 212 (|has| |#1| (-511)))) (-3218 (($ $) 154) (($ $ |#3|) 266)) (-1562 (((-625 (-519)) (-625 $)) 134 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 133 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 132) (((-625 |#1|) (-625 $)) 131)) (-2459 (((-108) $ $) 256) (((-108) $ (-585 $)) 255)) (-4193 (((-3 $ "failed") $) 34)) (-2460 (((-108) $) 264)) (-2964 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 236)) (-3754 (($ $) 205 (|has| |#1| (-423)))) (-2177 (($ $) 176 (|has| |#1| (-423))) (($ $ |#3|) 105 (|has| |#1| (-423)))) (-3208 (((-585 $) $) 109)) (-1320 (((-108) $) 96 (|has| |#1| (-836)))) (-2179 (($ $) 221 (|has| |#1| (-511)))) (-1312 (($ $) 222 (|has| |#1| (-511)))) (-3234 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2079 (($ $ $) 247) (($ $ $ |#3|) 245)) (-4015 (($ $ |#1| |#2| $) 172)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 84 (-12 (|has| |#3| (-813 (-351))) (|has| |#1| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 83 (-12 (|has| |#3| (-813 (-519))) (|has| |#1| (-813 (-519)))))) (-1568 (((-108) $) 31)) (-3798 (((-705) $) 169)) (-3507 (((-108) $ $) 250) (((-108) $ (-585 $)) 249)) (-3542 (($ $ $ $ $) 207 (|has| |#1| (-511)))) (-4086 ((|#3| $) 275)) (-4066 (($ (-1078 |#1|) |#3|) 117) (($ (-1078 $) |#3|) 116)) (-2089 (((-585 $) $) 126)) (-2642 (((-108) $) 152)) (-4042 (($ |#1| |#2|) 153) (($ $ |#3| (-705)) 119) (($ $ (-585 |#3|) (-585 (-705))) 118)) (-3391 (($ $ $) 235)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ |#3|) 120)) (-2734 (((-108) $) 265)) (-3695 ((|#2| $) 170) (((-705) $ |#3|) 122) (((-585 (-705)) $ (-585 |#3|)) 121)) (-2864 (($ $ $) 79 (|has| |#1| (-782)))) (-1925 (((-705) $) 274)) (-2489 (($ $ $) 78 (|has| |#1| (-782)))) (-3737 (($ (-1 |#2| |#2|) $) 171)) (-1405 (($ (-1 |#1| |#1|) $) 151)) (-2635 (((-3 |#3| "failed") $) 123)) (-3683 (($ $) 202 (|has| |#1| (-423)))) (-3356 (($ $) 203 (|has| |#1| (-423)))) (-3199 (((-585 $) $) 260)) (-3883 (($ $) 263)) (-3811 (($ $) 204 (|has| |#1| (-423)))) (-3323 (((-585 $) $) 261)) (-1573 (($ $) 262)) (-3185 (($ $) 149)) (-3197 ((|#1| $) 148) (($ $ |#3|) 267)) (-2254 (($ (-585 $)) 94 (|has| |#1| (-423))) (($ $ $) 93 (|has| |#1| (-423)))) (-3478 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1860 (-705))) $ $) 234)) (-1660 (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -3573 $) (|:| -1354 $)) $ $) 238) (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -3573 $) (|:| -1354 $)) $ $ |#3|) 237)) (-3533 (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -1354 $)) $ $) 240) (((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -1354 $)) $ $ |#3|) 239)) (-4005 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1712 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1266 (((-1065) $) 9)) (-3296 (($ $ $) 210 (|has| |#1| (-511)))) (-2685 (((-585 $) $) 269)) (-3499 (((-3 (-585 $) "failed") $) 114)) (-2100 (((-3 (-585 $) "failed") $) 115)) (-2669 (((-3 (-2 (|:| |var| |#3|) (|:| -1690 (-705))) "failed") $) 113)) (-2921 (((-108) $ $) 252) (((-108) $ (-585 $)) 251)) (-3369 (($ $ $) 232)) (-3816 (($ $) 273)) (-3291 (((-108) $ $) 258)) (-3300 (((-108) $ $) 254) (((-108) $ (-585 $)) 253)) (-1867 (($ $ $) 233)) (-3048 (($ $) 272)) (-4139 (((-1029) $) 10)) (-1358 (((-2 (|:| -2292 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-511)))) (-2202 (((-2 (|:| -2292 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-511)))) (-3162 (((-108) $) 166)) (-3173 ((|#1| $) 167)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 95 (|has| |#1| (-423)))) (-2292 ((|#1| |#1| $) 206 (|has| |#1| (-423))) (($ (-585 $)) 92 (|has| |#1| (-423))) (($ $ $) 91 (|has| |#1| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) 102 (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) 101 (|has| |#1| (-836)))) (-1921 (((-390 $) $) 99 (|has| |#1| (-836)))) (-2758 (((-2 (|:| -2292 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-511)))) (-2261 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-511))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-511)))) (-1854 (($ $ |#1|) 219 (|has| |#1| (-511))) (($ $ $) 217 (|has| |#1| (-511)))) (-1857 (($ $ |#1|) 220 (|has| |#1| (-511))) (($ $ $) 218 (|has| |#1| (-511)))) (-2324 (($ $ (-585 (-267 $))) 145) (($ $ (-267 $)) 144) (($ $ $ $) 143) (($ $ (-585 $) (-585 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-585 |#3|) (-585 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-585 |#3|) (-585 $)) 138)) (-3677 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2181 (($ $ |#3|) 42) (($ $ (-585 |#3|)) 41) (($ $ |#3| (-705)) 40) (($ $ (-585 |#3|) (-585 (-705))) 39)) (-4178 ((|#2| $) 150) (((-705) $ |#3|) 130) (((-585 (-705)) $ (-585 |#3|)) 129)) (-3127 (($ $) 270)) (-3553 (($ $) 268)) (-1446 (((-819 (-351)) $) 82 (-12 (|has| |#3| (-560 (-819 (-351)))) (|has| |#1| (-560 (-819 (-351)))))) (((-819 (-519)) $) 81 (-12 (|has| |#3| (-560 (-819 (-519)))) (|has| |#1| (-560 (-819 (-519)))))) (((-495) $) 80 (-12 (|has| |#3| (-560 (-495))) (|has| |#1| (-560 (-495))))) (($ (-879 (-379 (-519)))) 229 (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#3| (-560 (-1082))))) (($ (-879 (-519))) 226 (-3730 (-12 (-2445 (|has| |#1| (-37 (-379 (-519))))) (|has| |#1| (-37 (-519))) (|has| |#3| (-560 (-1082)))) (-12 (|has| |#1| (-37 (-379 (-519)))) (|has| |#3| (-560 (-1082)))))) (($ (-879 |#1|)) 223 (|has| |#3| (-560 (-1082)))) (((-1065) $) 201 (-12 (|has| |#1| (-959 (-519))) (|has| |#3| (-560 (-1082))))) (((-879 |#1|) $) 200 (|has| |#3| (-560 (-1082))))) (-3939 ((|#1| $) 175 (|has| |#1| (-423))) (($ $ |#3|) 106 (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 104 (-4012 (|has| $ (-133)) (|has| |#1| (-836))))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-879 |#1|) $) 199 (|has| |#3| (-560 (-1082)))) (($ (-379 (-519))) 72 (-3730 (|has| |#1| (-959 (-379 (-519)))) (|has| |#1| (-37 (-379 (-519)))))) (($ $) 85 (|has| |#1| (-511)))) (-2988 (((-585 |#1|) $) 168)) (-1220 ((|#1| $ |#2|) 155) (($ $ |#3| (-705)) 128) (($ $ (-585 |#3|) (-585 (-705))) 127)) (-3773 (((-3 $ "failed") $) 73 (-3730 (-4012 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) 29)) (-1487 (($ $ $ (-705)) 173 (|has| |#1| (-157)))) (-1617 (((-108) $ $) 89 (|has| |#1| (-511)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-2594 (((-3 (-108) "failed") $ $) 259)) (-3611 (($) 30 T CONST)) (-3080 (($ $ $ $ (-705)) 208 (|has| |#1| (-511)))) (-3118 (($ $ $ (-705)) 209 (|has| |#1| (-511)))) (-2242 (($ $ |#3|) 38) (($ $ (-585 |#3|)) 37) (($ $ |#3| (-705)) 36) (($ $ (-585 |#3|) (-585 (-705))) 35)) (-1586 (((-108) $ $) 76 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 75 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 77 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 74 (|has| |#1| (-782)))) (-1632 (($ $ |#1|) 156 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 158 (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) 157 (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-982 |#1| |#2| |#3|) (-1194) (-968) (-727) (-782)) (T -982)) +((-4086 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-705)))) (-3816 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-3048 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-3847 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-3127 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-2685 (*1 *2 *1) (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-982 *3 *4 *5)))) (-3553 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-3197 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)))) (-3218 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)))) (-2460 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)))) (-3883 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-1573 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-3323 (*1 *2 *1) (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-982 *3 *4 *5)))) (-3199 (*1 *2 *1) (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-982 *3 *4 *5)))) (-2594 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)))) (-3291 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)))) (-1343 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)))) (-2459 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)))) (-2459 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-982 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)))) (-3300 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)))) (-3300 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-982 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)))) (-2921 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)))) (-2921 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-982 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)))) (-3507 (*1 *2 *1 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)))) (-3507 (*1 *2 *1 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-982 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)))) (-3234 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-2079 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-3234 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)))) (-2079 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)))) (-4005 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-1712 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-4005 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)))) (-1712 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *2 (-782)))) (-3533 (*1 *2 *1 *1) (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-2 (|:| -3031 *1) (|:| |gap| (-705)) (|:| -1354 *1))) (-4 *1 (-982 *3 *4 *5)))) (-3533 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) (-5 *2 (-2 (|:| -3031 *1) (|:| |gap| (-705)) (|:| -1354 *1))) (-4 *1 (-982 *4 *5 *3)))) (-1660 (*1 *2 *1 *1) (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-2 (|:| -3031 *1) (|:| |gap| (-705)) (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-982 *3 *4 *5)))) (-1660 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) (-5 *2 (-2 (|:| -3031 *1) (|:| |gap| (-705)) (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-982 *4 *5 *3)))) (-2964 (*1 *2 *1 *1) (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-982 *3 *4 *5)))) (-3391 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-3478 (*1 *2 *1 *1) (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1860 (-705)))) (-4 *1 (-982 *3 *4 *5)))) (-1867 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-3369 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)))) (-1301 (*1 *1 *2) (|partial| -12 (-5 *2 (-879 (-379 (-519)))) (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082))) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-879 (-379 (-519)))) (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082))) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-879 (-379 (-519)))) (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082))) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)))) (-1301 (*1 *1 *2) (|partial| -3730 (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) (-12 (-2445 (-4 *3 (-37 (-379 (-519))))) (-4 *3 (-37 (-519))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))) (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))))) (-1499 (*1 *1 *2) (-3730 (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) (-12 (-2445 (-4 *3 (-37 (-379 (-519))))) (-4 *3 (-37 (-519))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))) (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))))) (-1446 (*1 *1 *2) (-3730 (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) (-12 (-2445 (-4 *3 (-37 (-379 (-519))))) (-4 *3 (-37 (-519))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))) (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))))) (-1301 (*1 *1 *2) (|partial| -3730 (-12 (-5 *2 (-879 *3)) (-12 (-2445 (-4 *3 (-37 (-379 (-519))))) (-2445 (-4 *3 (-37 (-519)))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) (-4 *5 (-782))) (-12 (-5 *2 (-879 *3)) (-12 (-2445 (-4 *3 (-504))) (-2445 (-4 *3 (-37 (-379 (-519))))) (-4 *3 (-37 (-519))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) (-4 *5 (-782))) (-12 (-5 *2 (-879 *3)) (-12 (-2445 (-4 *3 (-916 (-519)))) (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) (-4 *5 (-782))))) (-1499 (*1 *1 *2) (-3730 (-12 (-5 *2 (-879 *3)) (-12 (-2445 (-4 *3 (-37 (-379 (-519))))) (-2445 (-4 *3 (-37 (-519)))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) (-4 *5 (-782))) (-12 (-5 *2 (-879 *3)) (-12 (-2445 (-4 *3 (-504))) (-2445 (-4 *3 (-37 (-379 (-519))))) (-4 *3 (-37 (-519))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) (-4 *5 (-782))) (-12 (-5 *2 (-879 *3)) (-12 (-2445 (-4 *3 (-916 (-519)))) (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082)))) (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) (-4 *5 (-782))))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *5 (-560 (-1082))) (-4 *4 (-727)) (-4 *5 (-782)))) (-1312 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-511)))) (-2179 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-511)))) (-1857 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-511)))) (-1854 (*1 *1 *1 *2) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-511)))) (-1857 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-511)))) (-1854 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-511)))) (-1218 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-511)))) (-2758 (*1 *2 *1 *1) (-12 (-4 *3 (-511)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-2 (|:| -2292 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-982 *3 *4 *5)))) (-2202 (*1 *2 *1 *1) (-12 (-4 *3 (-511)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-2 (|:| -2292 *1) (|:| |coef1| *1))) (-4 *1 (-982 *3 *4 *5)))) (-1358 (*1 *2 *1 *1) (-12 (-4 *3 (-511)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-2 (|:| -2292 *1) (|:| |coef2| *1))) (-4 *1 (-982 *3 *4 *5)))) (-1286 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-511)))) (-2565 (*1 *2 *1 *1) (-12 (-4 *3 (-511)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-982 *3 *4 *5)))) (-3296 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-511)))) (-3118 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *3 (-511)))) (-3080 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *3 (-511)))) (-3542 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-511)))) (-2292 (*1 *2 *2 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-423)))) (-3754 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-423)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-423)))) (-3356 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-423)))) (-3683 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-423))))) +(-13 (-876 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4086 (|t#3| $)) (-15 -1925 ((-705) $)) (-15 -3816 ($ $)) (-15 -3048 ($ $)) (-15 -3847 ($ $)) (-15 -3127 ($ $)) (-15 -2685 ((-585 $) $)) (-15 -3553 ($ $)) (-15 -3197 ($ $ |t#3|)) (-15 -3218 ($ $ |t#3|)) (-15 -2734 ((-108) $)) (-15 -2460 ((-108) $)) (-15 -3883 ($ $)) (-15 -1573 ($ $)) (-15 -3323 ((-585 $) $)) (-15 -3199 ((-585 $) $)) (-15 -2594 ((-3 (-108) "failed") $ $)) (-15 -3291 ((-108) $ $)) (-15 -1343 ((-108) $ $)) (-15 -2459 ((-108) $ $)) (-15 -2459 ((-108) $ (-585 $))) (-15 -3300 ((-108) $ $)) (-15 -3300 ((-108) $ (-585 $))) (-15 -2921 ((-108) $ $)) (-15 -2921 ((-108) $ (-585 $))) (-15 -3507 ((-108) $ $)) (-15 -3507 ((-108) $ (-585 $))) (-15 -3234 ($ $ $)) (-15 -2079 ($ $ $)) (-15 -3234 ($ $ $ |t#3|)) (-15 -2079 ($ $ $ |t#3|)) (-15 -4005 ($ $ $)) (-15 -1712 ($ $ $)) (-15 -4005 ($ $ $ |t#3|)) (-15 -1712 ($ $ $ |t#3|)) (-15 -3533 ((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -1354 $)) $ $)) (-15 -3533 ((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -1354 $)) $ $ |t#3|)) (-15 -1660 ((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -3573 $) (|:| -1354 $)) $ $)) (-15 -1660 ((-2 (|:| -3031 $) (|:| |gap| (-705)) (|:| -3573 $) (|:| -1354 $)) $ $ |t#3|)) (-15 -2964 ((-2 (|:| -3573 $) (|:| -1354 $)) $ $)) (-15 -3391 ($ $ $)) (-15 -3478 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1860 (-705))) $ $)) (-15 -1867 ($ $ $)) (-15 -3369 ($ $ $)) (IF (|has| |t#3| (-560 (-1082))) (PROGN (-6 (-559 (-879 |t#1|))) (-6 (-560 (-879 |t#1|))) (IF (|has| |t#1| (-37 (-379 (-519)))) (PROGN (-15 -1301 ((-3 $ "failed") (-879 (-379 (-519))))) (-15 -1499 ($ (-879 (-379 (-519))))) (-15 -1446 ($ (-879 (-379 (-519))))) (-15 -1301 ((-3 $ "failed") (-879 (-519)))) (-15 -1499 ($ (-879 (-519)))) (-15 -1446 ($ (-879 (-519)))) (IF (|has| |t#1| (-916 (-519))) |%noBranch| (PROGN (-15 -1301 ((-3 $ "failed") (-879 |t#1|))) (-15 -1499 ($ (-879 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-519))) (IF (|has| |t#1| (-37 (-379 (-519)))) |%noBranch| (PROGN (-15 -1301 ((-3 $ "failed") (-879 (-519)))) (-15 -1499 ($ (-879 (-519)))) (-15 -1446 ($ (-879 (-519)))) (IF (|has| |t#1| (-504)) |%noBranch| (PROGN (-15 -1301 ((-3 $ "failed") (-879 |t#1|))) (-15 -1499 ($ (-879 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-519))) |%noBranch| (IF (|has| |t#1| (-37 (-379 (-519)))) |%noBranch| (PROGN (-15 -1301 ((-3 $ "failed") (-879 |t#1|))) (-15 -1499 ($ (-879 |t#1|)))))) (-15 -1446 ($ (-879 |t#1|))) (IF (|has| |t#1| (-959 (-519))) (-6 (-560 (-1065))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-511)) (PROGN (-15 -1312 ($ $)) (-15 -2179 ($ $)) (-15 -1857 ($ $ |t#1|)) (-15 -1854 ($ $ |t#1|)) (-15 -1857 ($ $ $)) (-15 -1854 ($ $ $)) (-15 -1218 ($ $ $)) (-15 -2758 ((-2 (|:| -2292 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2202 ((-2 (|:| -2292 $) (|:| |coef1| $)) $ $)) (-15 -1358 ((-2 (|:| -2292 $) (|:| |coef2| $)) $ $)) (-15 -1286 ($ $ $)) (-15 -2565 ((-585 $) $ $)) (-15 -3296 ($ $ $)) (-15 -3118 ($ $ $ (-705))) (-15 -3080 ($ $ $ $ (-705))) (-15 -3542 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-423)) (PROGN (-15 -2292 (|t#1| |t#1| $)) (-15 -3754 ($ $)) (-15 -3811 ($ $)) (-15 -3356 ($ $)) (-15 -3683 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-379 (-519)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-559 (-879 |#1|)) |has| |#3| (-560 (-1082))) ((-157) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-157))) ((-560 (-495)) -12 (|has| |#1| (-560 (-495))) (|has| |#3| (-560 (-495)))) ((-560 (-819 (-351))) -12 (|has| |#1| (-560 (-819 (-351)))) (|has| |#3| (-560 (-819 (-351))))) ((-560 (-819 (-519))) -12 (|has| |#1| (-560 (-819 (-519)))) (|has| |#3| (-560 (-819 (-519))))) ((-560 (-879 |#1|)) |has| |#3| (-560 (-1082))) ((-560 (-1065)) -12 (|has| |#1| (-959 (-519))) (|has| |#3| (-560 (-1082)))) ((-264) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-282 $) . T) ((-298 |#1| |#2|) . T) ((-349 |#1|) . T) ((-383 |#1|) . T) ((-423) -3730 (|has| |#1| (-836)) (|has| |#1| (-423))) ((-480 |#3| |#1|) . T) ((-480 |#3| $) . T) ((-480 $ $) . T) ((-511) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-587 #0#) |has| |#1| (-37 (-379 (-519)))) ((-587 |#1|) . T) ((-587 $) . T) ((-581 (-519)) |has| |#1| (-581 (-519))) ((-581 |#1|) . T) ((-652 #0#) |has| |#1| (-37 (-379 (-519)))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423))) ((-661) . T) ((-782) |has| |#1| (-782)) ((-827 |#3|) . T) ((-813 (-351)) -12 (|has| |#1| (-813 (-351))) (|has| |#3| (-813 (-351)))) ((-813 (-519)) -12 (|has| |#1| (-813 (-519))) (|has| |#3| (-813 (-519)))) ((-876 |#1| |#2| |#3|) . T) ((-836) |has| |#1| (-836)) ((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 |#1|) . T) ((-959 |#3|) . T) ((-974 #0#) |has| |#1| (-37 (-379 (-519)))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1121) |has| |#1| (-836))) +((-3569 (((-108) |#3| $) 13)) (-4027 (((-3 $ "failed") |#3| (-848)) 23)) (-4193 (((-3 |#3| "failed") |#3| $) 37)) (-3419 (((-108) |#3| $) 16)) (-2143 (((-108) |#3| $) 14))) +(((-983 |#1| |#2| |#3|) (-10 -8 (-15 -4027 ((-3 |#1| "failed") |#3| (-848))) (-15 -4193 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3419 ((-108) |#3| |#1|)) (-15 -2143 ((-108) |#3| |#1|)) (-15 -3569 ((-108) |#3| |#1|))) (-984 |#2| |#3|) (-13 (-780) (-335)) (-1139 |#2|)) (T -983)) +NIL +(-10 -8 (-15 -4027 ((-3 |#1| "failed") |#3| (-848))) (-15 -4193 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3419 ((-108) |#3| |#1|)) (-15 -2143 ((-108) |#3| |#1|)) (-15 -3569 ((-108) |#3| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) |#2| $) 21)) (-2287 (((-519) |#2| $) 22)) (-4027 (((-3 $ "failed") |#2| (-848)) 15)) (-1353 ((|#1| |#2| $ |#1|) 13)) (-4193 (((-3 |#2| "failed") |#2| $) 18)) (-3419 (((-108) |#2| $) 19)) (-2143 (((-108) |#2| $) 20)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-1462 ((|#2| $) 17)) (-2217 (((-790) $) 11)) (-3905 ((|#1| |#2| $ |#1|) 14)) (-2721 (((-585 $) |#2|) 16)) (-1543 (((-108) $ $) 6))) +(((-984 |#1| |#2|) (-1194) (-13 (-780) (-335)) (-1139 |t#1|)) (T -984)) +((-2287 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-780) (-335))) (-4 *3 (-1139 *4)) (-5 *2 (-519)))) (-3569 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-780) (-335))) (-4 *3 (-1139 *4)) (-5 *2 (-108)))) (-2143 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-780) (-335))) (-4 *3 (-1139 *4)) (-5 *2 (-108)))) (-3419 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-780) (-335))) (-4 *3 (-1139 *4)) (-5 *2 (-108)))) (-4193 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-984 *3 *2)) (-4 *3 (-13 (-780) (-335))) (-4 *2 (-1139 *3)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *2)) (-4 *3 (-13 (-780) (-335))) (-4 *2 (-1139 *3)))) (-2721 (*1 *2 *3) (-12 (-4 *4 (-13 (-780) (-335))) (-4 *3 (-1139 *4)) (-5 *2 (-585 *1)) (-4 *1 (-984 *4 *3)))) (-4027 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-848)) (-4 *4 (-13 (-780) (-335))) (-4 *1 (-984 *4 *2)) (-4 *2 (-1139 *4)))) (-3905 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-984 *2 *3)) (-4 *2 (-13 (-780) (-335))) (-4 *3 (-1139 *2)))) (-1353 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-984 *2 *3)) (-4 *2 (-13 (-780) (-335))) (-4 *3 (-1139 *2))))) +(-13 (-1011) (-10 -8 (-15 -2287 ((-519) |t#2| $)) (-15 -3569 ((-108) |t#2| $)) (-15 -2143 ((-108) |t#2| $)) (-15 -3419 ((-108) |t#2| $)) (-15 -4193 ((-3 |t#2| "failed") |t#2| $)) (-15 -1462 (|t#2| $)) (-15 -2721 ((-585 $) |t#2|)) (-15 -4027 ((-3 $ "failed") |t#2| (-848))) (-15 -3905 (|t#1| |t#2| $ |t#1|)) (-15 -1353 (|t#1| |t#2| $ |t#1|)))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-2783 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) (-705)) 96)) (-3390 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705)) 55)) (-1909 (((-1168) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-705)) 87)) (-1995 (((-705) (-585 |#4|) (-585 |#5|)) 27)) (-1294 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705)) 57) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705) (-108)) 59)) (-2285 (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108)) 79)) (-1446 (((-1065) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) 82)) (-3639 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-108)) 54)) (-2907 (((-705) (-585 |#4|) (-585 |#5|)) 19))) +(((-985 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2907 ((-705) (-585 |#4|) (-585 |#5|))) (-15 -1995 ((-705) (-585 |#4|) (-585 |#5|))) (-15 -3639 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-108))) (-15 -3390 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705))) (-15 -3390 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|)) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705) (-108))) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705))) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|)) (-15 -2285 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108))) (-15 -2285 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -2783 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) (-705))) (-15 -1446 ((-1065) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)))) (-15 -1909 ((-1168) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-705)))) (-423) (-727) (-782) (-982 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -985)) +((-1909 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1890 *9)))) (-5 *4 (-705)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-1168)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1890 *8))) (-4 *7 (-982 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-1065)) (-5 *1 (-985 *4 *5 *6 *7 *8)))) (-2783 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-585 *11)) (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1890 *11)))))) (-5 *6 (-705)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1890 *11)))) (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-982 *7 *8 *9)) (-4 *11 (-987 *7 *8 *9 *10)) (-4 *7 (-423)) (-4 *8 (-727)) (-4 *9 (-782)) (-5 *1 (-985 *7 *8 *9 *10 *11)))) (-2285 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) (-2285 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) (-1294 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-1294 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-705)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *3 (-982 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) (-1294 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-705)) (-5 *6 (-108)) (-4 *7 (-423)) (-4 *8 (-727)) (-4 *9 (-782)) (-4 *3 (-982 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-985 *7 *8 *9 *3 *4)) (-4 *4 (-987 *7 *8 *9 *3)))) (-3390 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-705)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *3 (-982 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) (-3639 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *3 (-982 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) (-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-705)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-705)) (-5 *1 (-985 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2907 ((-705) (-585 |#4|) (-585 |#5|))) (-15 -1995 ((-705) (-585 |#4|) (-585 |#5|))) (-15 -3639 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-108))) (-15 -3390 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705))) (-15 -3390 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|)) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705) (-108))) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705))) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|)) (-15 -2285 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108))) (-15 -2285 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -2783 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) (-705))) (-15 -1446 ((-1065) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)))) (-15 -1909 ((-1168) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-705)))) +((-2674 (((-108) |#5| $) 21)) (-2051 (((-108) |#5| $) 24)) (-2167 (((-108) |#5| $) 16) (((-108) $) 45)) (-3766 (((-585 $) |#5| $) NIL) (((-585 $) (-585 |#5|) $) 77) (((-585 $) (-585 |#5|) (-585 $)) 75) (((-585 $) |#5| (-585 $)) 78)) (-3881 (($ $ |#5|) NIL) (((-585 $) |#5| $) NIL) (((-585 $) |#5| (-585 $)) 60) (((-585 $) (-585 |#5|) $) 62) (((-585 $) (-585 |#5|) (-585 $)) 64)) (-3249 (((-585 $) |#5| $) NIL) (((-585 $) |#5| (-585 $)) 54) (((-585 $) (-585 |#5|) $) 56) (((-585 $) (-585 |#5|) (-585 $)) 58)) (-3736 (((-108) |#5| $) 27))) +(((-986 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3881 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3881 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3881 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3881 ((-585 |#1|) |#5| |#1|)) (-15 -3249 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3249 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3249 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3249 ((-585 |#1|) |#5| |#1|)) (-15 -3766 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3766 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3766 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3766 ((-585 |#1|) |#5| |#1|)) (-15 -2051 ((-108) |#5| |#1|)) (-15 -2167 ((-108) |#1|)) (-15 -3736 ((-108) |#5| |#1|)) (-15 -2674 ((-108) |#5| |#1|)) (-15 -2167 ((-108) |#5| |#1|)) (-15 -3881 (|#1| |#1| |#5|))) (-987 |#2| |#3| |#4| |#5|) (-423) (-727) (-782) (-982 |#2| |#3| |#4|)) (T -986)) +NIL +(-10 -8 (-15 -3881 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3881 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3881 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3881 ((-585 |#1|) |#5| |#1|)) (-15 -3249 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3249 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3249 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3249 ((-585 |#1|) |#5| |#1|)) (-15 -3766 ((-585 |#1|) |#5| (-585 |#1|))) (-15 -3766 ((-585 |#1|) (-585 |#5|) (-585 |#1|))) (-15 -3766 ((-585 |#1|) (-585 |#5|) |#1|)) (-15 -3766 ((-585 |#1|) |#5| |#1|)) (-15 -2051 ((-108) |#5| |#1|)) (-15 -2167 ((-108) |#1|)) (-15 -3736 ((-108) |#5| |#1|)) (-15 -2674 ((-108) |#5| |#1|)) (-15 -2167 ((-108) |#5| |#1|)) (-15 -3881 (|#1| |#1| |#5|))) +((-1430 (((-108) $ $) 7)) (-3106 (((-585 (-2 (|:| -1664 $) (|:| -1556 (-585 |#4|)))) (-585 |#4|)) 85)) (-2548 (((-585 $) (-585 |#4|)) 86) (((-585 $) (-585 |#4|) (-108)) 111)) (-4083 (((-585 |#3|) $) 33)) (-2968 (((-108) $) 26)) (-3146 (((-108) $) 17 (|has| |#1| (-511)))) (-2943 (((-108) |#4| $) 101) (((-108) $) 97)) (-4145 ((|#4| |#4| $) 92)) (-4043 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| $) 126)) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#3|) 27)) (-1473 (((-108) $ (-705)) 44)) (-1640 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4221))) (((-3 |#4| "failed") $ |#3|) 79)) (-2249 (($) 45 T CONST)) (-3266 (((-108) $) 22 (|has| |#1| (-511)))) (-2542 (((-108) $ $) 24 (|has| |#1| (-511)))) (-3609 (((-108) $ $) 23 (|has| |#1| (-511)))) (-1276 (((-108) $) 25 (|has| |#1| (-511)))) (-4117 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1456 (((-585 |#4|) (-585 |#4|) $) 18 (|has| |#1| (-511)))) (-3596 (((-585 |#4|) (-585 |#4|) $) 19 (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 |#4|)) 36)) (-1499 (($ (-585 |#4|)) 35)) (-2343 (((-3 $ "failed") $) 82)) (-1570 ((|#4| |#4| $) 89)) (-2366 (($ $) 68 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#4| $) 67 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-511)))) (-2459 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3805 ((|#4| |#4| $) 87)) (-3874 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4221))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4221))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2109 (((-2 (|:| -1664 (-585 |#4|)) (|:| -1556 (-585 |#4|))) $) 105)) (-2674 (((-108) |#4| $) 136)) (-2051 (((-108) |#4| $) 133)) (-2167 (((-108) |#4| $) 137) (((-108) $) 134)) (-3844 (((-585 |#4|) $) 52 (|has| $ (-6 -4221)))) (-3507 (((-108) |#4| $) 104) (((-108) $) 103)) (-4086 ((|#3| $) 34)) (-3878 (((-108) $ (-705)) 43)) (-3725 (((-585 |#4|) $) 53 (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) 47)) (-1360 (((-585 |#3|) $) 32)) (-1219 (((-108) |#3| $) 31)) (-2768 (((-108) $ (-705)) 42)) (-1266 (((-1065) $) 9)) (-1196 (((-3 |#4| (-585 $)) |#4| |#4| $) 128)) (-3296 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| |#4| $) 127)) (-1457 (((-3 |#4| "failed") $) 83)) (-2975 (((-585 $) |#4| $) 129)) (-3422 (((-3 (-108) (-585 $)) |#4| $) 132)) (-2575 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3766 (((-585 $) |#4| $) 125) (((-585 $) (-585 |#4|) $) 124) (((-585 $) (-585 |#4|) (-585 $)) 123) (((-585 $) |#4| (-585 $)) 122)) (-3772 (($ |#4| $) 117) (($ (-585 |#4|) $) 116)) (-4092 (((-585 |#4|) $) 107)) (-2921 (((-108) |#4| $) 99) (((-108) $) 95)) (-3369 ((|#4| |#4| $) 90)) (-3291 (((-108) $ $) 110)) (-2573 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-511)))) (-3300 (((-108) |#4| $) 100) (((-108) $) 96)) (-1867 ((|#4| |#4| $) 91)) (-4139 (((-1029) $) 10)) (-2331 (((-3 |#4| "failed") $) 84)) (-2395 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2781 (((-3 $ "failed") $ |#4|) 78)) (-3881 (($ $ |#4|) 77) (((-585 $) |#4| $) 115) (((-585 $) |#4| (-585 $)) 114) (((-585 $) (-585 |#4|) $) 113) (((-585 $) (-585 |#4|) (-585 $)) 112)) (-2379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#4|) (-585 |#4|)) 59 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) 57 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 (-267 |#4|))) 56 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) 38)) (-3108 (((-108) $) 41)) (-1548 (($) 40)) (-4178 (((-705) $) 106)) (-4155 (((-705) |#4| $) 54 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4221)))) (-2449 (($ $) 39)) (-1446 (((-495) $) 69 (|has| |#4| (-560 (-495))))) (-2228 (($ (-585 |#4|)) 60)) (-4175 (($ $ |#3|) 28)) (-1982 (($ $ |#3|) 30)) (-3282 (($ $) 88)) (-1272 (($ $ |#3|) 29)) (-2217 (((-790) $) 11) (((-585 |#4|) $) 37)) (-3156 (((-705) $) 76 (|has| |#3| (-340)))) (-3541 (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3735 (((-108) $ (-1 (-108) |#4| (-585 |#4|))) 98)) (-3249 (((-585 $) |#4| $) 121) (((-585 $) |#4| (-585 $)) 120) (((-585 $) (-585 |#4|) $) 119) (((-585 $) (-585 |#4|) (-585 $)) 118)) (-1778 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4221)))) (-3059 (((-585 |#3|) $) 81)) (-3736 (((-108) |#4| $) 135)) (-3980 (((-108) |#3| $) 80)) (-1543 (((-108) $ $) 6)) (-3532 (((-705) $) 46 (|has| $ (-6 -4221))))) +(((-987 |#1| |#2| |#3| |#4|) (-1194) (-423) (-727) (-782) (-982 |t#1| |t#2| |t#3|)) (T -987)) +((-2167 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108)))) (-2674 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108)))) (-3736 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108)))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) (-2051 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108)))) (-3422 (*1 *2 *3 *1) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-3 (-108) (-585 *1))) (-4 *1 (-987 *4 *5 *6 *3)))) (-2575 (*1 *2 *3 *1) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *1)))) (-4 *1 (-987 *4 *5 *6 *3)))) (-2575 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108)))) (-2975 (*1 *2 *3 *1) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *3)))) (-1196 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-3 *3 (-585 *1))) (-4 *1 (-987 *4 *5 *6 *3)))) (-3296 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *1)))) (-4 *1 (-987 *4 *5 *6 *3)))) (-4043 (*1 *2 *3 *1) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *1)))) (-4 *1 (-987 *4 *5 *6 *3)))) (-3766 (*1 *2 *3 *1) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *3)))) (-3766 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *7)))) (-3766 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-987 *4 *5 *6 *7)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)))) (-3766 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)))) (-3249 (*1 *2 *3 *1) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *3)))) (-3249 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)))) (-3249 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *7)))) (-3249 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-987 *4 *5 *6 *7)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)))) (-3772 (*1 *1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *2)) (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) (-3772 (*1 *1 *2 *1) (-12 (-5 *2 (-585 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)))) (-3881 (*1 *2 *3 *1) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *3)))) (-3881 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)))) (-3881 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *7)))) (-3881 (*1 *2 *3 *2) (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-987 *4 *5 *6 *7)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-987 *5 *6 *7 *8))))) +(-13 (-1111 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2167 ((-108) |t#4| $)) (-15 -2674 ((-108) |t#4| $)) (-15 -3736 ((-108) |t#4| $)) (-15 -2167 ((-108) $)) (-15 -2051 ((-108) |t#4| $)) (-15 -3422 ((-3 (-108) (-585 $)) |t#4| $)) (-15 -2575 ((-585 (-2 (|:| |val| (-108)) (|:| -1890 $))) |t#4| $)) (-15 -2575 ((-108) |t#4| $)) (-15 -2975 ((-585 $) |t#4| $)) (-15 -1196 ((-3 |t#4| (-585 $)) |t#4| |t#4| $)) (-15 -3296 ((-585 (-2 (|:| |val| |t#4|) (|:| -1890 $))) |t#4| |t#4| $)) (-15 -4043 ((-585 (-2 (|:| |val| |t#4|) (|:| -1890 $))) |t#4| $)) (-15 -3766 ((-585 $) |t#4| $)) (-15 -3766 ((-585 $) (-585 |t#4|) $)) (-15 -3766 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -3766 ((-585 $) |t#4| (-585 $))) (-15 -3249 ((-585 $) |t#4| $)) (-15 -3249 ((-585 $) |t#4| (-585 $))) (-15 -3249 ((-585 $) (-585 |t#4|) $)) (-15 -3249 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -3772 ($ |t#4| $)) (-15 -3772 ($ (-585 |t#4|) $)) (-15 -3881 ((-585 $) |t#4| $)) (-15 -3881 ((-585 $) |t#4| (-585 $))) (-15 -3881 ((-585 $) (-585 |t#4|) $)) (-15 -3881 ((-585 $) (-585 |t#4|) (-585 $))) (-15 -2548 ((-585 $) (-585 |t#4|) (-108))))) +(((-33) . T) ((-97) . T) ((-559 (-585 |#4|)) . T) ((-559 (-790)) . T) ((-139 |#4|) . T) ((-560 (-495)) |has| |#4| (-560 (-495))) ((-282 |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-458 |#4|) . T) ((-480 |#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-900 |#1| |#2| |#3| |#4|) . T) ((-1011) . T) ((-1111 |#1| |#2| |#3| |#4|) . T) ((-1117) . T)) +((-2393 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#5|) 81)) (-1335 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|) 113)) (-1997 (((-585 |#5|) |#4| |#5|) 70)) (-3769 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-2478 (((-1168)) 35)) (-3827 (((-1168)) 25)) (-1488 (((-1168) (-1065) (-1065) (-1065)) 31)) (-2380 (((-1168) (-1065) (-1065) (-1065)) 20)) (-3075 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#4| |#4| |#5|) 96)) (-2427 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#3| (-108)) 107) (((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-3103 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|) 102))) +(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2380 ((-1168) (-1065) (-1065) (-1065))) (-15 -3827 ((-1168))) (-15 -1488 ((-1168) (-1065) (-1065) (-1065))) (-15 -2478 ((-1168))) (-15 -3075 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -2427 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2427 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#3| (-108))) (-15 -3103 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -1335 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -3769 ((-108) |#4| |#5|)) (-15 -3769 ((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|)) (-15 -1997 ((-585 |#5|) |#4| |#5|)) (-15 -2393 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#5|))) (-423) (-727) (-782) (-982 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -988)) +((-2393 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-1997 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3769 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *4)))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3769 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-1335 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3103 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-2427 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1890 *9)))) (-5 *5 (-108)) (-4 *8 (-982 *6 *7 *4)) (-4 *9 (-987 *6 *7 *4 *8)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *4 (-782)) (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1890 *9)))) (-5 *1 (-988 *6 *7 *4 *8 *9)))) (-2427 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *3 (-982 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) (-3075 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-2478 (*1 *2) (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-1488 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3827 (*1 *2) (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-2380 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +(-10 -7 (-15 -2380 ((-1168) (-1065) (-1065) (-1065))) (-15 -3827 ((-1168))) (-15 -1488 ((-1168) (-1065) (-1065) (-1065))) (-15 -2478 ((-1168))) (-15 -3075 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -2427 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2427 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#3| (-108))) (-15 -3103 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -1335 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -3769 ((-108) |#4| |#5|)) (-15 -3769 ((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|)) (-15 -1997 ((-585 |#5|) |#4| |#5|)) (-15 -2393 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#5|))) +((-1430 (((-108) $ $) NIL)) (-2938 (((-1082) $) 8)) (-1266 (((-1065) $) 16)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 11)) (-1543 (((-108) $ $) 13))) +(((-989 |#1|) (-13 (-1011) (-10 -8 (-15 -2938 ((-1082) $)))) (-1082)) (T -989)) +((-2938 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-989 *3)) (-14 *3 *2)))) +(-13 (-1011) (-10 -8 (-15 -2938 ((-1082) $)))) +((-1430 (((-108) $ $) NIL)) (-1875 (($ $ (-585 (-1082)) (-1 (-108) (-585 |#3|))) 29)) (-1372 (($ |#3| |#3|) 21) (($ |#3| |#3| (-585 (-1082))) 19)) (-3634 ((|#3| $) 13)) (-1301 (((-3 (-267 |#3|) "failed") $) 56)) (-1499 (((-267 |#3|) $) NIL)) (-1850 (((-585 (-1082)) $) 15)) (-1391 (((-819 |#1|) $) 11)) (-3625 ((|#3| $) 12)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2598 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-848)) 36)) (-2217 (((-790) $) 85) (($ (-267 |#3|)) 20)) (-1543 (((-108) $ $) 33))) +(((-990 |#1| |#2| |#3|) (-13 (-1011) (-260 |#3| |#3|) (-959 (-267 |#3|)) (-10 -8 (-15 -1372 ($ |#3| |#3|)) (-15 -1372 ($ |#3| |#3| (-585 (-1082)))) (-15 -1875 ($ $ (-585 (-1082)) (-1 (-108) (-585 |#3|)))) (-15 -1391 ((-819 |#1|) $)) (-15 -3625 (|#3| $)) (-15 -3634 (|#3| $)) (-15 -2598 (|#3| $ |#3| (-848))) (-15 -1850 ((-585 (-1082)) $)))) (-1011) (-13 (-968) (-813 |#1|) (-782) (-560 (-819 |#1|))) (-13 (-402 |#2|) (-813 |#1|) (-560 (-819 |#1|)))) (T -990)) +((-1372 (*1 *1 *2 *2) (-12 (-4 *3 (-1011)) (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))) (-5 *1 (-990 *3 *4 *2)) (-4 *2 (-13 (-402 *4) (-813 *3) (-560 (-819 *3)))))) (-1372 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-585 (-1082))) (-4 *4 (-1011)) (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) (-5 *1 (-990 *4 *5 *2)) (-4 *2 (-13 (-402 *5) (-813 *4) (-560 (-819 *4)))))) (-1875 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-1 (-108) (-585 *6))) (-4 *6 (-13 (-402 *5) (-813 *4) (-560 (-819 *4)))) (-4 *4 (-1011)) (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) (-5 *1 (-990 *4 *5 *6)))) (-1391 (*1 *2 *1) (-12 (-4 *3 (-1011)) (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 *2))) (-5 *2 (-819 *3)) (-5 *1 (-990 *3 *4 *5)) (-4 *5 (-13 (-402 *4) (-813 *3) (-560 *2))))) (-3625 (*1 *2 *1) (-12 (-4 *3 (-1011)) (-4 *2 (-13 (-402 *4) (-813 *3) (-560 (-819 *3)))) (-5 *1 (-990 *3 *4 *2)) (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))))) (-3634 (*1 *2 *1) (-12 (-4 *3 (-1011)) (-4 *2 (-13 (-402 *4) (-813 *3) (-560 (-819 *3)))) (-5 *1 (-990 *3 *4 *2)) (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))))) (-2598 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-848)) (-4 *4 (-1011)) (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) (-5 *1 (-990 *4 *5 *2)) (-4 *2 (-13 (-402 *5) (-813 *4) (-560 (-819 *4)))))) (-1850 (*1 *2 *1) (-12 (-4 *3 (-1011)) (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))) (-5 *2 (-585 (-1082))) (-5 *1 (-990 *3 *4 *5)) (-4 *5 (-13 (-402 *4) (-813 *3) (-560 (-819 *3))))))) +(-13 (-1011) (-260 |#3| |#3|) (-959 (-267 |#3|)) (-10 -8 (-15 -1372 ($ |#3| |#3|)) (-15 -1372 ($ |#3| |#3| (-585 (-1082)))) (-15 -1875 ($ $ (-585 (-1082)) (-1 (-108) (-585 |#3|)))) (-15 -1391 ((-819 |#1|) $)) (-15 -3625 (|#3| $)) (-15 -3634 (|#3| $)) (-15 -2598 (|#3| $ |#3| (-848))) (-15 -1850 ((-585 (-1082)) $)))) +((-1430 (((-108) $ $) NIL)) (-1845 (($ (-585 (-990 |#1| |#2| |#3|))) 12)) (-3358 (((-585 (-990 |#1| |#2| |#3|)) $) 19)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2598 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-848)) 25)) (-2217 (((-790) $) 15)) (-1543 (((-108) $ $) 18))) +(((-991 |#1| |#2| |#3|) (-13 (-1011) (-260 |#3| |#3|) (-10 -8 (-15 -1845 ($ (-585 (-990 |#1| |#2| |#3|)))) (-15 -3358 ((-585 (-990 |#1| |#2| |#3|)) $)) (-15 -2598 (|#3| $ |#3| (-848))))) (-1011) (-13 (-968) (-813 |#1|) (-782) (-560 (-819 |#1|))) (-13 (-402 |#2|) (-813 |#1|) (-560 (-819 |#1|)))) (T -991)) +((-1845 (*1 *1 *2) (-12 (-5 *2 (-585 (-990 *3 *4 *5))) (-4 *3 (-1011)) (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))) (-4 *5 (-13 (-402 *4) (-813 *3) (-560 (-819 *3)))) (-5 *1 (-991 *3 *4 *5)))) (-3358 (*1 *2 *1) (-12 (-4 *3 (-1011)) (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))) (-5 *2 (-585 (-990 *3 *4 *5))) (-5 *1 (-991 *3 *4 *5)) (-4 *5 (-13 (-402 *4) (-813 *3) (-560 (-819 *3)))))) (-2598 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-848)) (-4 *4 (-1011)) (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) (-5 *1 (-991 *4 *5 *2)) (-4 *2 (-13 (-402 *5) (-813 *4) (-560 (-819 *4))))))) +(-13 (-1011) (-260 |#3| |#3|) (-10 -8 (-15 -1845 ($ (-585 (-990 |#1| |#2| |#3|)))) (-15 -3358 ((-585 (-990 |#1| |#2| |#3|)) $)) (-15 -2598 (|#3| $ |#3| (-848))))) +((-3459 (((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108) (-108)) 74) (((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|))) 76) (((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108)) 75))) +(((-992 |#1| |#2|) (-10 -7 (-15 -3459 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108))) (-15 -3459 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)))) (-15 -3459 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108) (-108)))) (-13 (-280) (-135)) (-585 (-1082))) (T -992)) +((-3459 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) (-5 *2 (-585 (-2 (|:| -2948 (-1078 *5)) (|:| -3399 (-585 (-879 *5)))))) (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-879 *5))) (-14 *6 (-585 (-1082))))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-13 (-280) (-135))) (-5 *2 (-585 (-2 (|:| -2948 (-1078 *4)) (|:| -3399 (-585 (-879 *4)))))) (-5 *1 (-992 *4 *5)) (-5 *3 (-585 (-879 *4))) (-14 *5 (-585 (-1082))))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) (-5 *2 (-585 (-2 (|:| -2948 (-1078 *5)) (|:| -3399 (-585 (-879 *5)))))) (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-879 *5))) (-14 *6 (-585 (-1082)))))) +(-10 -7 (-15 -3459 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108))) (-15 -3459 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)))) (-15 -3459 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108) (-108)))) +((-1921 (((-390 |#3|) |#3|) 16))) +(((-993 |#1| |#2| |#3|) (-10 -7 (-15 -1921 ((-390 |#3|) |#3|))) (-1139 (-379 (-519))) (-13 (-335) (-135) (-659 (-379 (-519)) |#1|)) (-1139 |#2|)) (T -993)) +((-1921 (*1 *2 *3) (-12 (-4 *4 (-1139 (-379 (-519)))) (-4 *5 (-13 (-335) (-135) (-659 (-379 (-519)) *4))) (-5 *2 (-390 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1139 *5))))) +(-10 -7 (-15 -1921 ((-390 |#3|) |#3|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 125)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-335)))) (-1410 (($ $) NIL (|has| |#1| (-335)))) (-3060 (((-108) $) NIL (|has| |#1| (-335)))) (-2935 (((-625 |#1|) (-1163 $)) NIL) (((-625 |#1|)) 115)) (-1871 ((|#1| $) 119)) (-3263 (((-1091 (-848) (-705)) (-519)) NIL (|has| |#1| (-321)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL (|has| |#1| (-335)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-335)))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-1642 (((-705)) 40 (|has| |#1| (-340)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) NIL)) (-2528 (($ (-1163 |#1|) (-1163 $)) NIL) (($ (-1163 |#1|)) 43)) (-1249 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-321)))) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3771 (((-625 |#1|) $ (-1163 $)) NIL) (((-625 |#1|) $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 106) (((-625 |#1|) (-625 $)) 100)) (-3874 (($ |#2|) 61) (((-3 $ "failed") (-379 |#2|)) NIL (|has| |#1| (-335)))) (-4193 (((-3 $ "failed") $) NIL)) (-3229 (((-848)) 77)) (-3314 (($) 44 (|has| |#1| (-340)))) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-1625 (($) NIL (|has| |#1| (-321)))) (-4156 (((-108) $) NIL (|has| |#1| (-321)))) (-3824 (($ $ (-705)) NIL (|has| |#1| (-321))) (($ $) NIL (|has| |#1| (-321)))) (-1320 (((-108) $) NIL (|has| |#1| (-335)))) (-3709 (((-848) $) NIL (|has| |#1| (-321))) (((-768 (-848)) $) NIL (|has| |#1| (-321)))) (-1568 (((-108) $) NIL)) (-3681 ((|#1| $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-321)))) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-3437 ((|#2| $) 84 (|has| |#1| (-335)))) (-3334 (((-848) $) 130 (|has| |#1| (-340)))) (-3860 ((|#2| $) 58)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL (|has| |#1| (-335)))) (-3816 (($) NIL (|has| |#1| (-321)) CONST)) (-2770 (($ (-848)) 124 (|has| |#1| (-340)))) (-4139 (((-1029) $) NIL)) (-1397 (($) 121)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-335)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1666 (((-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519))))) NIL (|has| |#1| (-321)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-335)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-3677 ((|#1| (-1163 $)) NIL) ((|#1|) 109)) (-2867 (((-705) $) NIL (|has| |#1| (-321))) (((-3 (-705) "failed") $ $) NIL (|has| |#1| (-321)))) (-2181 (($ $) NIL (-3730 (-12 (|has| |#1| (-209)) (|has| |#1| (-335))) (|has| |#1| (-321)))) (($ $ (-705)) NIL (-3730 (-12 (|has| |#1| (-209)) (|has| |#1| (-335))) (|has| |#1| (-321)))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))))) (($ $ (-1 |#1| |#1|) (-705)) NIL (|has| |#1| (-335))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-335)))) (-1611 (((-625 |#1|) (-1163 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-335)))) (-1462 ((|#2|) 73)) (-3132 (($) NIL (|has| |#1| (-321)))) (-3399 (((-1163 |#1|) $ (-1163 $)) 89) (((-625 |#1|) (-1163 $) (-1163 $)) NIL) (((-1163 |#1|) $) 71) (((-625 |#1|) (-1163 $)) 85)) (-1446 (((-1163 |#1|) $) NIL) (($ (-1163 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (|has| |#1| (-321)))) (-2217 (((-790) $) 57) (($ (-519)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-335))) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-335)) (|has| |#1| (-959 (-379 (-519))))))) (-3773 (($ $) NIL (|has| |#1| (-321))) (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2165 ((|#2| $) 82)) (-3594 (((-705)) 75)) (-2070 (((-1163 $)) 81)) (-1617 (((-108) $ $) NIL (|has| |#1| (-335)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (-3602 (($) 30 T CONST)) (-3611 (($) 19 T CONST)) (-2242 (($ $) NIL (-3730 (-12 (|has| |#1| (-209)) (|has| |#1| (-335))) (|has| |#1| (-321)))) (($ $ (-705)) NIL (-3730 (-12 (|has| |#1| (-209)) (|has| |#1| (-335))) (|has| |#1| (-321)))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-335)) (|has| |#1| (-827 (-1082))))) (($ $ (-1 |#1| |#1|) (-705)) NIL (|has| |#1| (-335))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-335)))) (-1543 (((-108) $ $) 63)) (-1632 (($ $ $) NIL (|has| |#1| (-335)))) (-1623 (($ $) 67) (($ $ $) NIL)) (-1614 (($ $ $) 65)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-379 (-519)) $) NIL (|has| |#1| (-335))) (($ $ (-379 (-519))) NIL (|has| |#1| (-335))))) +(((-994 |#1| |#2| |#3|) (-659 |#1| |#2|) (-157) (-1139 |#1|) |#2|) (T -994)) +NIL +(-659 |#1| |#2|) +((-1921 (((-390 |#3|) |#3|) 16))) +(((-995 |#1| |#2| |#3|) (-10 -7 (-15 -1921 ((-390 |#3|) |#3|))) (-1139 (-379 (-879 (-519)))) (-13 (-335) (-135) (-659 (-379 (-879 (-519))) |#1|)) (-1139 |#2|)) (T -995)) +((-1921 (*1 *2 *3) (-12 (-4 *4 (-1139 (-379 (-879 (-519))))) (-4 *5 (-13 (-335) (-135) (-659 (-379 (-879 (-519))) *4))) (-5 *2 (-390 *3)) (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1139 *5))))) +(-10 -7 (-15 -1921 ((-390 |#3|) |#3|))) +((-1430 (((-108) $ $) NIL)) (-2864 (($ $ $) 14)) (-2489 (($ $ $) 15)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1912 (($) 6)) (-1446 (((-1082) $) 18)) (-2217 (((-790) $) 12)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 13)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 8))) +(((-996) (-13 (-782) (-10 -8 (-15 -1912 ($)) (-15 -1446 ((-1082) $))))) (T -996)) +((-1912 (*1 *1) (-5 *1 (-996))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-996))))) +(-13 (-782) (-10 -8 (-15 -1912 ($)) (-15 -1446 ((-1082) $)))) +((-1849 ((|#1| |#1| (-1 (-519) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-1560 (((-1168)) 15)) (-2924 (((-585 |#1|)) 9))) +(((-997 |#1|) (-10 -7 (-15 -1560 ((-1168))) (-15 -2924 ((-585 |#1|))) (-15 -1849 (|#1| |#1| (-1 (-108) |#1|))) (-15 -1849 (|#1| |#1| (-1 (-519) |#1| |#1|)))) (-125)) (T -997)) +((-1849 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-519) *2 *2)) (-4 *2 (-125)) (-5 *1 (-997 *2)))) (-1849 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-997 *2)))) (-2924 (*1 *2) (-12 (-5 *2 (-585 *3)) (-5 *1 (-997 *3)) (-4 *3 (-125)))) (-1560 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-997 *3)) (-4 *3 (-125))))) +(-10 -7 (-15 -1560 ((-1168))) (-15 -2924 ((-585 |#1|))) (-15 -1849 (|#1| |#1| (-1 (-108) |#1|))) (-15 -1849 (|#1| |#1| (-1 (-519) |#1| |#1|)))) +((-2497 (($ (-104) $) 15)) (-3394 (((-3 (-104) "failed") (-1082) $) 13)) (-1548 (($) 6)) (-2508 (($) 16)) (-2519 (($) 17)) (-2527 (((-585 (-159)) $) 8)) (-2217 (((-790) $) 20))) +(((-998) (-13 (-559 (-790)) (-10 -8 (-15 -1548 ($)) (-15 -2527 ((-585 (-159)) $)) (-15 -3394 ((-3 (-104) "failed") (-1082) $)) (-15 -2497 ($ (-104) $)) (-15 -2508 ($)) (-15 -2519 ($))))) (T -998)) +((-1548 (*1 *1) (-5 *1 (-998))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-585 (-159))) (-5 *1 (-998)))) (-3394 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-104)) (-5 *1 (-998)))) (-2497 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-998)))) (-2508 (*1 *1) (-5 *1 (-998))) (-2519 (*1 *1) (-5 *1 (-998)))) +(-13 (-559 (-790)) (-10 -8 (-15 -1548 ($)) (-15 -2527 ((-585 (-159)) $)) (-15 -3394 ((-3 (-104) "failed") (-1082) $)) (-15 -2497 ($ (-104) $)) (-15 -2508 ($)) (-15 -2519 ($)))) +((-2329 (((-1163 (-625 |#1|)) (-585 (-625 |#1|))) 41) (((-1163 (-625 (-879 |#1|))) (-585 (-1082)) (-625 (-879 |#1|))) 61) (((-1163 (-625 (-379 (-879 |#1|)))) (-585 (-1082)) (-625 (-379 (-879 |#1|)))) 77)) (-3399 (((-1163 |#1|) (-625 |#1|) (-585 (-625 |#1|))) 35))) +(((-999 |#1|) (-10 -7 (-15 -2329 ((-1163 (-625 (-379 (-879 |#1|)))) (-585 (-1082)) (-625 (-379 (-879 |#1|))))) (-15 -2329 ((-1163 (-625 (-879 |#1|))) (-585 (-1082)) (-625 (-879 |#1|)))) (-15 -2329 ((-1163 (-625 |#1|)) (-585 (-625 |#1|)))) (-15 -3399 ((-1163 |#1|) (-625 |#1|) (-585 (-625 |#1|))))) (-335)) (T -999)) +((-3399 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-625 *5))) (-5 *3 (-625 *5)) (-4 *5 (-335)) (-5 *2 (-1163 *5)) (-5 *1 (-999 *5)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-585 (-625 *4))) (-4 *4 (-335)) (-5 *2 (-1163 (-625 *4))) (-5 *1 (-999 *4)))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1082))) (-4 *5 (-335)) (-5 *2 (-1163 (-625 (-879 *5)))) (-5 *1 (-999 *5)) (-5 *4 (-625 (-879 *5))))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-1082))) (-4 *5 (-335)) (-5 *2 (-1163 (-625 (-379 (-879 *5))))) (-5 *1 (-999 *5)) (-5 *4 (-625 (-379 (-879 *5))))))) +(-10 -7 (-15 -2329 ((-1163 (-625 (-379 (-879 |#1|)))) (-585 (-1082)) (-625 (-379 (-879 |#1|))))) (-15 -2329 ((-1163 (-625 (-879 |#1|))) (-585 (-1082)) (-625 (-879 |#1|)))) (-15 -2329 ((-1163 (-625 |#1|)) (-585 (-625 |#1|)))) (-15 -3399 ((-1163 |#1|) (-625 |#1|) (-585 (-625 |#1|))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2801 (((-585 (-705)) $) NIL) (((-585 (-705)) $ (-1082)) NIL)) (-3711 (((-705) $) NIL) (((-705) $ (-1082)) NIL)) (-4083 (((-585 (-1001 (-1082))) $) NIL)) (-1283 (((-1078 $) $ (-1001 (-1082))) NIL) (((-1078 |#1|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 (-1001 (-1082)))) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-4043 (($ $) NIL (|has| |#1| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-2504 (($ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-1001 (-1082)) "failed") $) NIL) (((-3 (-1082) "failed") $) NIL) (((-3 (-1034 |#1| (-1082)) "failed") $) NIL)) (-1499 ((|#1| $) NIL) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-1001 (-1082)) $) NIL) (((-1082) $) NIL) (((-1034 |#1| (-1082)) $) NIL)) (-1286 (($ $ $ (-1001 (-1082))) NIL (|has| |#1| (-157)))) (-3218 (($ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-423))) (($ $ (-1001 (-1082))) NIL (|has| |#1| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#1| (-836)))) (-4015 (($ $ |#1| (-491 (-1001 (-1082))) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-1001 (-1082)) (-813 (-351))) (|has| |#1| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-1001 (-1082)) (-813 (-519))) (|has| |#1| (-813 (-519)))))) (-3709 (((-705) $ (-1082)) NIL) (((-705) $) NIL)) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-4066 (($ (-1078 |#1|) (-1001 (-1082))) NIL) (($ (-1078 $) (-1001 (-1082))) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-491 (-1001 (-1082)))) NIL) (($ $ (-1001 (-1082)) (-705)) NIL) (($ $ (-585 (-1001 (-1082))) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-1001 (-1082))) NIL)) (-3695 (((-491 (-1001 (-1082))) $) NIL) (((-705) $ (-1001 (-1082))) NIL) (((-585 (-705)) $ (-585 (-1001 (-1082)))) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3737 (($ (-1 (-491 (-1001 (-1082))) (-491 (-1001 (-1082)))) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2243 (((-1 $ (-705)) (-1082)) NIL) (((-1 $ (-705)) $) NIL (|has| |#1| (-209)))) (-2635 (((-3 (-1001 (-1082)) "failed") $) NIL)) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-1582 (((-1001 (-1082)) $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1266 (((-1065) $) NIL)) (-2799 (((-108) $) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| (-1001 (-1082))) (|:| -1690 (-705))) "failed") $) NIL)) (-1904 (($ $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) NIL)) (-3173 ((|#1| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-836)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-1001 (-1082)) |#1|) NIL) (($ $ (-585 (-1001 (-1082))) (-585 |#1|)) NIL) (($ $ (-1001 (-1082)) $) NIL) (($ $ (-585 (-1001 (-1082))) (-585 $)) NIL) (($ $ (-1082) $) NIL (|has| |#1| (-209))) (($ $ (-585 (-1082)) (-585 $)) NIL (|has| |#1| (-209))) (($ $ (-1082) |#1|) NIL (|has| |#1| (-209))) (($ $ (-585 (-1082)) (-585 |#1|)) NIL (|has| |#1| (-209)))) (-3677 (($ $ (-1001 (-1082))) NIL (|has| |#1| (-157)))) (-2181 (($ $ (-1001 (-1082))) NIL) (($ $ (-585 (-1001 (-1082)))) NIL) (($ $ (-1001 (-1082)) (-705)) NIL) (($ $ (-585 (-1001 (-1082))) (-585 (-705))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1938 (((-585 (-1082)) $) NIL)) (-4178 (((-491 (-1001 (-1082))) $) NIL) (((-705) $ (-1001 (-1082))) NIL) (((-585 (-705)) $ (-585 (-1001 (-1082)))) NIL) (((-705) $ (-1082)) NIL)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| (-1001 (-1082)) (-560 (-819 (-351)))) (|has| |#1| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| (-1001 (-1082)) (-560 (-819 (-519)))) (|has| |#1| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| (-1001 (-1082)) (-560 (-495))) (|has| |#1| (-560 (-495)))))) (-3939 ((|#1| $) NIL (|has| |#1| (-423))) (($ $ (-1001 (-1082))) NIL (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-836))))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL) (($ (-1001 (-1082))) NIL) (($ (-1082)) NIL) (($ (-1034 |#1| (-1082))) NIL) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#1| (-511)))) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-491 (-1001 (-1082)))) NIL) (($ $ (-1001 (-1082)) (-705)) NIL) (($ $ (-585 (-1001 (-1082))) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#1| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-1001 (-1082))) NIL) (($ $ (-585 (-1001 (-1082)))) NIL) (($ $ (-1001 (-1082)) (-705)) NIL) (($ $ (-585 (-1001 (-1082))) (-585 (-705))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-705)) NIL (|has| |#1| (-209))) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1000 |#1|) (-13 (-228 |#1| (-1082) (-1001 (-1082)) (-491 (-1001 (-1082)))) (-959 (-1034 |#1| (-1082)))) (-968)) (T -1000)) +NIL +(-13 (-228 |#1| (-1082) (-1001 (-1082)) (-491 (-1001 (-1082)))) (-959 (-1034 |#1| (-1082)))) +((-1430 (((-108) $ $) NIL)) (-3711 (((-705) $) NIL)) (-1622 ((|#1| $) 10)) (-1301 (((-3 |#1| "failed") $) NIL)) (-1499 ((|#1| $) NIL)) (-3709 (((-705) $) 11)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-2243 (($ |#1| (-705)) 9)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2181 (($ $) NIL) (($ $ (-705)) NIL)) (-2217 (((-790) $) NIL) (($ |#1|) NIL)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 15))) +(((-1001 |#1|) (-241 |#1|) (-782)) (T -1001)) +NIL +(-241 |#1|) +((-1405 (((-585 |#2|) (-1 |#2| |#1|) (-1006 |#1|)) 24 (|has| |#1| (-780))) (((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|)) 14))) +(((-1002 |#1| |#2|) (-10 -7 (-15 -1405 ((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|))) (IF (|has| |#1| (-780)) (-15 -1405 ((-585 |#2|) (-1 |#2| |#1|) (-1006 |#1|))) |%noBranch|)) (-1117) (-1117)) (T -1002)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-780)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-585 *6)) (-5 *1 (-1002 *5 *6)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1006 *6)) (-5 *1 (-1002 *5 *6))))) +(-10 -7 (-15 -1405 ((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|))) (IF (|has| |#1| (-780)) (-15 -1405 ((-585 |#2|) (-1 |#2| |#1|) (-1006 |#1|))) |%noBranch|)) +((-1405 (((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)) 19))) +(((-1003 |#1| |#2|) (-10 -7 (-15 -1405 ((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)))) (-1117) (-1117)) (T -1003)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1004 *6)) (-5 *1 (-1003 *5 *6))))) +(-10 -7 (-15 -1405 ((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1622 (((-1082) $) 11)) (-1550 (((-1006 |#1|) $) 12)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-1620 (($ (-1082) (-1006 |#1|)) 10)) (-2217 (((-790) $) 20 (|has| |#1| (-1011)))) (-1543 (((-108) $ $) 15 (|has| |#1| (-1011))))) +(((-1004 |#1|) (-13 (-1117) (-10 -8 (-15 -1620 ($ (-1082) (-1006 |#1|))) (-15 -1622 ((-1082) $)) (-15 -1550 ((-1006 |#1|) $)) (IF (|has| |#1| (-1011)) (-6 (-1011)) |%noBranch|))) (-1117)) (T -1004)) +((-1620 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1006 *4)) (-4 *4 (-1117)) (-5 *1 (-1004 *4)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1004 *3)) (-4 *3 (-1117)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-1006 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1117))))) +(-13 (-1117) (-10 -8 (-15 -1620 ($ (-1082) (-1006 |#1|))) (-15 -1622 ((-1082) $)) (-15 -1550 ((-1006 |#1|) $)) (IF (|has| |#1| (-1011)) (-6 (-1011)) |%noBranch|))) +((-1550 (($ |#1| |#1|) 7)) (-2966 ((|#1| $) 10)) (-1463 ((|#1| $) 12)) (-1475 (((-519) $) 8)) (-2057 ((|#1| $) 9)) (-1486 ((|#1| $) 11)) (-1446 (($ |#1|) 6)) (-1686 (($ |#1| |#1|) 14)) (-1356 (($ $ (-519)) 13))) +(((-1005 |#1|) (-1194) (-1117)) (T -1005)) +((-1686 (*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117)))) (-1356 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-1005 *3)) (-4 *3 (-1117)))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1117)) (-5 *2 (-519)))) (-1550 (*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117)))) (-1446 (*1 *1 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117))))) +(-13 (-1117) (-10 -8 (-15 -1686 ($ |t#1| |t#1|)) (-15 -1356 ($ $ (-519))) (-15 -1463 (|t#1| $)) (-15 -1486 (|t#1| $)) (-15 -2966 (|t#1| $)) (-15 -2057 (|t#1| $)) (-15 -1475 ((-519) $)) (-15 -1550 ($ |t#1| |t#1|)) (-15 -1446 ($ |t#1|)))) +(((-1117) . T)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1550 (($ |#1| |#1|) 15)) (-1405 (((-585 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-780)))) (-2966 ((|#1| $) 10)) (-1463 ((|#1| $) 9)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1475 (((-519) $) 14)) (-2057 ((|#1| $) 12)) (-1486 ((|#1| $) 11)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-1616 (((-585 |#1|) $) 36 (|has| |#1| (-780))) (((-585 |#1|) (-585 $)) 35 (|has| |#1| (-780)))) (-1446 (($ |#1|) 26)) (-2217 (((-790) $) 25 (|has| |#1| (-1011)))) (-1686 (($ |#1| |#1|) 8)) (-1356 (($ $ (-519)) 16)) (-1543 (((-108) $ $) 19 (|has| |#1| (-1011))))) +(((-1006 |#1|) (-13 (-1005 |#1|) (-10 -7 (IF (|has| |#1| (-1011)) (-6 (-1011)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-1007 |#1| (-585 |#1|))) |%noBranch|))) (-1117)) (T -1006)) +NIL +(-13 (-1005 |#1|) (-10 -7 (IF (|has| |#1| (-1011)) (-6 (-1011)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-1007 |#1| (-585 |#1|))) |%noBranch|))) +((-1550 (($ |#1| |#1|) 7)) (-1405 ((|#2| (-1 |#1| |#1|) $) 16)) (-2966 ((|#1| $) 10)) (-1463 ((|#1| $) 12)) (-1475 (((-519) $) 8)) (-2057 ((|#1| $) 9)) (-1486 ((|#1| $) 11)) (-1616 ((|#2| (-585 $)) 18) ((|#2| $) 17)) (-1446 (($ |#1|) 6)) (-1686 (($ |#1| |#1|) 14)) (-1356 (($ $ (-519)) 13))) +(((-1007 |#1| |#2|) (-1194) (-780) (-1056 |t#1|)) (T -1007)) +((-1616 (*1 *2 *3) (-12 (-5 *3 (-585 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-780)) (-4 *2 (-1056 *4)))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-780)) (-4 *2 (-1056 *3)))) (-1405 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-780)) (-4 *2 (-1056 *4))))) +(-13 (-1005 |t#1|) (-10 -8 (-15 -1616 (|t#2| (-585 $))) (-15 -1616 (|t#2| $)) (-15 -1405 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1005 |#1|) . T) ((-1117) . T)) +((-2304 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1415 (($ $ $) 10)) (-2019 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1008 |#1| |#2|) (-10 -8 (-15 -2304 (|#1| |#2| |#1|)) (-15 -2304 (|#1| |#1| |#2|)) (-15 -2304 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -2019 (|#1| |#1| |#2|)) (-15 -2019 (|#1| |#1| |#1|))) (-1009 |#2|) (-1011)) (T -1008)) +NIL +(-10 -8 (-15 -2304 (|#1| |#2| |#1|)) (-15 -2304 (|#1| |#1| |#2|)) (-15 -2304 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -2019 (|#1| |#1| |#2|)) (-15 -2019 (|#1| |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-2304 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1415 (($ $ $) 20)) (-3466 (((-108) $ $) 19)) (-1473 (((-108) $ (-705)) 35)) (-1780 (($) 25) (($ (-585 |#1|)) 24)) (-1640 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4221)))) (-2249 (($) 36 T CONST)) (-2366 (($ $) 59 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#1| $) 58 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4221)))) (-3844 (((-585 |#1|) $) 43 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 34)) (-3725 (((-585 |#1|) $) 44 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 38)) (-2768 (((-108) $ (-705)) 33)) (-1266 (((-1065) $) 9)) (-3766 (($ $ $) 23)) (-4139 (((-1029) $) 10)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-2379 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#1|) (-585 |#1|)) 50 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 48 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 (-267 |#1|))) 47 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 29)) (-3108 (((-108) $) 32)) (-1548 (($) 31)) (-2019 (($ $ $) 22) (($ $ |#1|) 21)) (-4155 (((-705) |#1| $) 45 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4221)))) (-2449 (($ $) 30)) (-1446 (((-495) $) 60 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 51)) (-2217 (((-790) $) 11)) (-3451 (($) 27) (($ (-585 |#1|)) 26)) (-1778 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 6)) (-1561 (((-108) $ $) 28)) (-3532 (((-705) $) 37 (|has| $ (-6 -4221))))) +(((-1009 |#1|) (-1194) (-1011)) (T -1009)) +((-1561 (*1 *2 *1 *1) (-12 (-4 *1 (-1009 *3)) (-4 *3 (-1011)) (-5 *2 (-108)))) (-3451 (*1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011)))) (-3451 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-4 *1 (-1009 *3)))) (-1780 (*1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011)))) (-1780 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-4 *1 (-1009 *3)))) (-3766 (*1 *1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011)))) (-2019 (*1 *1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011)))) (-2019 (*1 *1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011)))) (-1415 (*1 *1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011)))) (-3466 (*1 *2 *1 *1) (-12 (-4 *1 (-1009 *3)) (-4 *3 (-1011)) (-5 *2 (-108)))) (-2304 (*1 *1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011)))) (-2304 (*1 *1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011)))) (-2304 (*1 *1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011))))) +(-13 (-1011) (-139 |t#1|) (-10 -8 (-6 -4211) (-15 -1561 ((-108) $ $)) (-15 -3451 ($)) (-15 -3451 ($ (-585 |t#1|))) (-15 -1780 ($)) (-15 -1780 ($ (-585 |t#1|))) (-15 -3766 ($ $ $)) (-15 -2019 ($ $ $)) (-15 -2019 ($ $ |t#1|)) (-15 -1415 ($ $ $)) (-15 -3466 ((-108) $ $)) (-15 -2304 ($ $ $)) (-15 -2304 ($ $ |t#1|)) (-15 -2304 ($ |t#1| $)))) +(((-33) . T) ((-97) . T) ((-559 (-790)) . T) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) . T) ((-1117) . T)) +((-1266 (((-1065) $) 10)) (-4139 (((-1029) $) 8))) +(((-1010 |#1|) (-10 -8 (-15 -1266 ((-1065) |#1|)) (-15 -4139 ((-1029) |#1|))) (-1011)) (T -1010)) +NIL +(-10 -8 (-15 -1266 ((-1065) |#1|)) (-15 -4139 ((-1029) |#1|))) +((-1430 (((-108) $ $) 7)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1543 (((-108) $ $) 6))) +(((-1011) (-1194)) (T -1011)) +((-4139 (*1 *2 *1) (-12 (-4 *1 (-1011)) (-5 *2 (-1029)))) (-1266 (*1 *2 *1) (-12 (-4 *1 (-1011)) (-5 *2 (-1065))))) +(-13 (-97) (-559 (-790)) (-10 -8 (-15 -4139 ((-1029) $)) (-15 -1266 ((-1065) $)))) +(((-97) . T) ((-559 (-790)) . T)) +((-1430 (((-108) $ $) NIL)) (-1642 (((-705)) 30)) (-1327 (($ (-585 (-848))) 52)) (-3708 (((-3 $ "failed") $ (-848) (-848)) 57)) (-3314 (($) 32)) (-1933 (((-108) (-848) $) 35)) (-3334 (((-848) $) 50)) (-1266 (((-1065) $) NIL)) (-2770 (($ (-848)) 31)) (-3729 (((-3 $ "failed") $ (-848)) 55)) (-4139 (((-1029) $) NIL)) (-1278 (((-1163 $)) 40)) (-3126 (((-585 (-848)) $) 23)) (-1200 (((-705) $ (-848) (-848)) 56)) (-2217 (((-790) $) 29)) (-1543 (((-108) $ $) 21))) +(((-1012 |#1| |#2|) (-13 (-340) (-10 -8 (-15 -3729 ((-3 $ "failed") $ (-848))) (-15 -3708 ((-3 $ "failed") $ (-848) (-848))) (-15 -3126 ((-585 (-848)) $)) (-15 -1327 ($ (-585 (-848)))) (-15 -1278 ((-1163 $))) (-15 -1933 ((-108) (-848) $)) (-15 -1200 ((-705) $ (-848) (-848))))) (-848) (-848)) (T -1012)) +((-3729 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-848)) (-5 *1 (-1012 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3708 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-848)) (-5 *1 (-1012 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-585 (-848))) (-5 *1 (-1012 *3 *4)) (-14 *3 (-848)) (-14 *4 (-848)))) (-1327 (*1 *1 *2) (-12 (-5 *2 (-585 (-848))) (-5 *1 (-1012 *3 *4)) (-14 *3 (-848)) (-14 *4 (-848)))) (-1278 (*1 *2) (-12 (-5 *2 (-1163 (-1012 *3 *4))) (-5 *1 (-1012 *3 *4)) (-14 *3 (-848)) (-14 *4 (-848)))) (-1933 (*1 *2 *3 *1) (-12 (-5 *3 (-848)) (-5 *2 (-108)) (-5 *1 (-1012 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1200 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-848)) (-5 *2 (-705)) (-5 *1 (-1012 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-340) (-10 -8 (-15 -3729 ((-3 $ "failed") $ (-848))) (-15 -3708 ((-3 $ "failed") $ (-848) (-848))) (-15 -3126 ((-585 (-848)) $)) (-15 -1327 ($ (-585 (-848)))) (-15 -1278 ((-1163 $))) (-15 -1933 ((-108) (-848) $)) (-15 -1200 ((-705) $ (-848) (-848))))) +((-1430 (((-108) $ $) NIL)) (-3956 (($) NIL (|has| |#1| (-340)))) (-2304 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1415 (($ $ $) 72)) (-3466 (((-108) $ $) 73)) (-1473 (((-108) $ (-705)) NIL)) (-1642 (((-705)) NIL (|has| |#1| (-340)))) (-1780 (($ (-585 |#1|)) NIL) (($) 13)) (-2846 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2502 (($ |#1| $) 67 (|has| $ (-6 -4221))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4221)))) (-3314 (($) NIL (|has| |#1| (-340)))) (-3844 (((-585 |#1|) $) 19 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2864 ((|#1| $) 57 (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2489 ((|#1| $) 55 (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 34)) (-3334 (((-848) $) NIL (|has| |#1| (-340)))) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-3766 (($ $ $) 70)) (-4152 ((|#1| $) 25)) (-1846 (($ |#1| $) 65)) (-2770 (($ (-848)) NIL (|has| |#1| (-340)))) (-4139 (((-1029) $) NIL)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-3212 ((|#1| $) 27)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 21)) (-1548 (($) 11)) (-2019 (($ $ |#1|) NIL) (($ $ $) 71)) (-2436 (($) NIL) (($ (-585 |#1|)) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) 16)) (-1446 (((-495) $) 52 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 61)) (-4132 (($ $) NIL (|has| |#1| (-340)))) (-2217 (((-790) $) NIL)) (-1383 (((-705) $) NIL)) (-3451 (($ (-585 |#1|)) NIL) (($) 12)) (-3879 (($ (-585 |#1|)) NIL)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 54)) (-1561 (((-108) $ $) NIL)) (-3532 (((-705) $) 10 (|has| $ (-6 -4221))))) +(((-1013 |#1|) (-397 |#1|) (-1011)) (T -1013)) +NIL +(-397 |#1|) +((-1430 (((-108) $ $) 7)) (-1465 (((-108) $) 32)) (-1505 ((|#2| $) 27)) (-2626 (((-108) $) 33)) (-1522 ((|#1| $) 28)) (-1701 (((-108) $) 35)) (-3757 (((-108) $) 37)) (-1918 (((-108) $) 34)) (-1266 (((-1065) $) 9)) (-2226 (((-108) $) 31)) (-1523 ((|#3| $) 26)) (-4139 (((-1029) $) 10)) (-1251 (((-108) $) 30)) (-3123 ((|#4| $) 25)) (-1587 ((|#5| $) 24)) (-3257 (((-108) $ $) 38)) (-2598 (($ $ (-519)) 14) (($ $ (-585 (-519))) 13)) (-2002 (((-585 $) $) 29)) (-1446 (($ (-585 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2217 (((-790) $) 11)) (-3272 (($ $) 16)) (-3262 (($ $) 17)) (-3520 (((-108) $) 36)) (-1543 (((-108) $ $) 6)) (-3532 (((-519) $) 15))) +(((-1014 |#1| |#2| |#3| |#4| |#5|) (-1194) (-1011) (-1011) (-1011) (-1011) (-1011)) (T -1014)) +((-3257 (*1 *2 *1 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108)))) (-1701 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108)))) (-1918 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108)))) (-2226 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108)))) (-2002 (*1 *2 *1) (-12 (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-585 *1)) (-4 *1 (-1014 *3 *4 *5 *6 *7)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-1014 *2 *3 *4 *5 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *2 *4 *5 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *2 *5 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *2 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *2)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)))) (-1446 (*1 *1 *2) (-12 (-4 *1 (-1014 *2 *3 *4 *5 *6)) (-4 *2 (-1011)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)))) (-1446 (*1 *1 *2) (-12 (-4 *1 (-1014 *3 *2 *4 *5 *6)) (-4 *3 (-1011)) (-4 *2 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)))) (-1446 (*1 *1 *2) (-12 (-4 *1 (-1014 *3 *4 *2 *5 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *2 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)))) (-1446 (*1 *1 *2) (-12 (-4 *1 (-1014 *3 *4 *5 *2 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *2 (-1011)) (-4 *6 (-1011)))) (-1446 (*1 *1 *2) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *2)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011)))) (-3262 (*1 *1 *1) (-12 (-4 *1 (-1014 *2 *3 *4 *5 *6)) (-4 *2 (-1011)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)))) (-3272 (*1 *1 *1) (-12 (-4 *1 (-1014 *2 *3 *4 *5 *6)) (-4 *2 (-1011)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-519)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-519))) (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011))))) +(-13 (-1011) (-10 -8 (-15 -3257 ((-108) $ $)) (-15 -3757 ((-108) $)) (-15 -3520 ((-108) $)) (-15 -1701 ((-108) $)) (-15 -1918 ((-108) $)) (-15 -2626 ((-108) $)) (-15 -1465 ((-108) $)) (-15 -2226 ((-108) $)) (-15 -1251 ((-108) $)) (-15 -2002 ((-585 $) $)) (-15 -1522 (|t#1| $)) (-15 -1505 (|t#2| $)) (-15 -1523 (|t#3| $)) (-15 -3123 (|t#4| $)) (-15 -1587 (|t#5| $)) (-15 -1446 ($ (-585 $))) (-15 -1446 ($ |t#1|)) (-15 -1446 ($ |t#2|)) (-15 -1446 ($ |t#3|)) (-15 -1446 ($ |t#4|)) (-15 -1446 ($ |t#5|)) (-15 -3262 ($ $)) (-15 -3272 ($ $)) (-15 -3532 ((-519) $)) (-15 -2598 ($ $ (-519))) (-15 -2598 ($ $ (-585 (-519)))))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-1465 (((-108) $) NIL)) (-1505 (((-1082) $) NIL)) (-2626 (((-108) $) NIL)) (-1522 (((-1065) $) NIL)) (-1701 (((-108) $) NIL)) (-3757 (((-108) $) NIL)) (-1918 (((-108) $) NIL)) (-1266 (((-1065) $) NIL)) (-2226 (((-108) $) NIL)) (-1523 (((-519) $) NIL)) (-4139 (((-1029) $) NIL)) (-1251 (((-108) $) NIL)) (-3123 (((-201) $) NIL)) (-1587 (((-790) $) NIL)) (-3257 (((-108) $ $) NIL)) (-2598 (($ $ (-519)) NIL) (($ $ (-585 (-519))) NIL)) (-2002 (((-585 $) $) NIL)) (-1446 (($ (-585 $)) NIL) (($ (-1065)) NIL) (($ (-1082)) NIL) (($ (-519)) NIL) (($ (-201)) NIL) (($ (-790)) NIL)) (-2217 (((-790) $) NIL)) (-3272 (($ $) NIL)) (-3262 (($ $) NIL)) (-3520 (((-108) $) NIL)) (-1543 (((-108) $ $) NIL)) (-3532 (((-519) $) NIL))) +(((-1015) (-1014 (-1065) (-1082) (-519) (-201) (-790))) (T -1015)) +NIL +(-1014 (-1065) (-1082) (-519) (-201) (-790)) +((-1430 (((-108) $ $) NIL)) (-1465 (((-108) $) 38)) (-1505 ((|#2| $) 42)) (-2626 (((-108) $) 37)) (-1522 ((|#1| $) 41)) (-1701 (((-108) $) 35)) (-3757 (((-108) $) 14)) (-1918 (((-108) $) 36)) (-1266 (((-1065) $) NIL)) (-2226 (((-108) $) 39)) (-1523 ((|#3| $) 44)) (-4139 (((-1029) $) NIL)) (-1251 (((-108) $) 40)) (-3123 ((|#4| $) 43)) (-1587 ((|#5| $) 45)) (-3257 (((-108) $ $) 34)) (-2598 (($ $ (-519)) 56) (($ $ (-585 (-519))) 58)) (-2002 (((-585 $) $) 22)) (-1446 (($ (-585 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2217 (((-790) $) 23)) (-3272 (($ $) 21)) (-3262 (($ $) 52)) (-3520 (((-108) $) 18)) (-1543 (((-108) $ $) 33)) (-3532 (((-519) $) 54))) +(((-1016 |#1| |#2| |#3| |#4| |#5|) (-1014 |#1| |#2| |#3| |#4| |#5|) (-1011) (-1011) (-1011) (-1011) (-1011)) (T -1016)) +NIL +(-1014 |#1| |#2| |#3| |#4| |#5|) +((-2021 (((-1168) $) 23)) (-1479 (($ (-1082) (-406) |#2|) 11)) (-2217 (((-790) $) 16))) +(((-1017 |#1| |#2|) (-13 (-367) (-10 -8 (-15 -1479 ($ (-1082) (-406) |#2|)))) (-782) (-402 |#1|)) (T -1017)) +((-1479 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1082)) (-5 *3 (-406)) (-4 *5 (-782)) (-5 *1 (-1017 *5 *4)) (-4 *4 (-402 *5))))) +(-13 (-367) (-10 -8 (-15 -1479 ($ (-1082) (-406) |#2|)))) +((-1256 (((-108) |#5| |#5|) 38)) (-3549 (((-108) |#5| |#5|) 52)) (-2490 (((-108) |#5| (-585 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-1796 (((-108) (-585 |#4|) (-585 |#4|)) 58)) (-2916 (((-108) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) 63)) (-3380 (((-1168)) 33)) (-3400 (((-1168) (-1065) (-1065) (-1065)) 29)) (-2746 (((-585 |#5|) (-585 |#5|)) 82)) (-3038 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)))) 80)) (-1630 (((-585 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-108) (-108)) 102)) (-1799 (((-108) |#5| |#5|) 47)) (-1502 (((-3 (-108) "failed") |#5| |#5|) 71)) (-1960 (((-108) (-585 |#4|) (-585 |#4|)) 57)) (-3802 (((-108) (-585 |#4|) (-585 |#4|)) 59)) (-3291 (((-108) (-585 |#4|) (-585 |#4|)) 60)) (-2919 (((-3 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|))) "failed") (-585 |#4|) |#5| (-585 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-3996 (((-585 |#5|) (-585 |#5|)) 43))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3400 ((-1168) (-1065) (-1065) (-1065))) (-15 -3380 ((-1168))) (-15 -1256 ((-108) |#5| |#5|)) (-15 -3996 ((-585 |#5|) (-585 |#5|))) (-15 -1799 ((-108) |#5| |#5|)) (-15 -3549 ((-108) |#5| |#5|)) (-15 -1796 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -1960 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -3802 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -3291 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -1502 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2490 ((-108) |#5| |#5|)) (-15 -2490 ((-108) |#5| (-585 |#5|))) (-15 -2746 ((-585 |#5|) (-585 |#5|))) (-15 -2916 ((-108) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)))) (-15 -3038 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) (-15 -1630 ((-585 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-108) (-108))) (-15 -2919 ((-3 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|))) "failed") (-585 |#4|) |#5| (-585 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-423) (-727) (-782) (-982 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -1018)) +((-2919 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *9 (-982 *6 *7 *8)) (-5 *2 (-2 (|:| -3257 (-585 *9)) (|:| -1890 *4) (|:| |ineq| (-585 *9)))) (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) (-4 *4 (-987 *6 *7 *8 *9)))) (-1630 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-585 *10)) (-5 *5 (-108)) (-4 *10 (-987 *6 *7 *8 *9)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *9 (-982 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| -3257 (-585 *9)) (|:| -1890 *10) (|:| |ineq| (-585 *9))))) (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1890 *7)))) (-4 *6 (-982 *3 *4 *5)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-2916 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1890 *8))) (-4 *7 (-982 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))) (-2746 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-982 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) (-2490 (*1 *2 *3 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-1502 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3291 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3802 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-1960 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-1796 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3549 (*1 *2 *3 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-1799 (*1 *2 *3 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-585 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-1256 (*1 *2 *3 *3) (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) (-3380 (*1 *2) (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-3400 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +(-10 -7 (-15 -3400 ((-1168) (-1065) (-1065) (-1065))) (-15 -3380 ((-1168))) (-15 -1256 ((-108) |#5| |#5|)) (-15 -3996 ((-585 |#5|) (-585 |#5|))) (-15 -1799 ((-108) |#5| |#5|)) (-15 -3549 ((-108) |#5| |#5|)) (-15 -1796 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -1960 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -3802 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -3291 ((-108) (-585 |#4|) (-585 |#4|))) (-15 -1502 ((-3 (-108) "failed") |#5| |#5|)) (-15 -2490 ((-108) |#5| |#5|)) (-15 -2490 ((-108) |#5| (-585 |#5|))) (-15 -2746 ((-585 |#5|) (-585 |#5|))) (-15 -2916 ((-108) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)))) (-15 -3038 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) (-15 -1630 ((-585 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|)))) (-585 |#4|) (-585 |#5|) (-108) (-108))) (-15 -2919 ((-3 (-2 (|:| -3257 (-585 |#4|)) (|:| -1890 |#5|) (|:| |ineq| (-585 |#4|))) "failed") (-585 |#4|) |#5| (-585 |#4|) (-108) (-108) (-108) (-108) (-108)))) +((-1224 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#5|) 95)) (-1946 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#4| |#4| |#5|) 71)) (-3813 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|) 89)) (-3490 (((-585 |#5|) |#4| |#5|) 110)) (-3254 (((-585 |#5|) |#4| |#5|) 117)) (-2780 (((-585 |#5|) |#4| |#5|) 118)) (-2555 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|) 96)) (-2940 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|) 116)) (-1891 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-2461 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#3| (-108)) 83) (((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-1419 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|) 78)) (-2478 (((-1168)) 35)) (-3827 (((-1168)) 25)) (-1488 (((-1168) (-1065) (-1065) (-1065)) 31)) (-2380 (((-1168) (-1065) (-1065) (-1065)) 20))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2380 ((-1168) (-1065) (-1065) (-1065))) (-15 -3827 ((-1168))) (-15 -1488 ((-1168) (-1065) (-1065) (-1065))) (-15 -2478 ((-1168))) (-15 -1946 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -2461 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2461 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#3| (-108))) (-15 -1419 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -3813 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -1891 ((-108) |#4| |#5|)) (-15 -2555 ((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|)) (-15 -3490 ((-585 |#5|) |#4| |#5|)) (-15 -2940 ((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|)) (-15 -3254 ((-585 |#5|) |#4| |#5|)) (-15 -1891 ((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|)) (-15 -2780 ((-585 |#5|) |#4| |#5|)) (-15 -1224 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#5|))) (-423) (-727) (-782) (-982 |#1| |#2| |#3|) (-987 |#1| |#2| |#3| |#4|)) (T -1019)) +((-1224 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-2780 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-1891 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3254 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-2940 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3490 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-2555 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-1891 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-3813 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-1419 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-2461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1890 *9)))) (-5 *5 (-108)) (-4 *8 (-982 *6 *7 *4)) (-4 *9 (-987 *6 *7 *4 *8)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *4 (-782)) (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1890 *9)))) (-5 *1 (-1019 *6 *7 *4 *8 *9)))) (-2461 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *3 (-982 *6 *7 *8)) (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) (-1946 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) (-2478 (*1 *2) (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-1488 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) (-3827 (*1 *2) (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) (-2380 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +(-10 -7 (-15 -2380 ((-1168) (-1065) (-1065) (-1065))) (-15 -3827 ((-1168))) (-15 -1488 ((-1168) (-1065) (-1065) (-1065))) (-15 -2478 ((-1168))) (-15 -1946 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -2461 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2461 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) |#3| (-108))) (-15 -1419 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -3813 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#4| |#5|)) (-15 -1891 ((-108) |#4| |#5|)) (-15 -2555 ((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|)) (-15 -3490 ((-585 |#5|) |#4| |#5|)) (-15 -2940 ((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|)) (-15 -3254 ((-585 |#5|) |#4| |#5|)) (-15 -1891 ((-585 (-2 (|:| |val| (-108)) (|:| -1890 |#5|))) |#4| |#5|)) (-15 -2780 ((-585 |#5|) |#4| |#5|)) (-15 -1224 ((-585 (-2 (|:| |val| |#4|) (|:| -1890 |#5|))) |#4| |#5|))) +((-1430 (((-108) $ $) 7)) (-3106 (((-585 (-2 (|:| -1664 $) (|:| -1556 (-585 |#4|)))) (-585 |#4|)) 85)) (-2548 (((-585 $) (-585 |#4|)) 86) (((-585 $) (-585 |#4|) (-108)) 111)) (-4083 (((-585 |#3|) $) 33)) (-2968 (((-108) $) 26)) (-3146 (((-108) $) 17 (|has| |#1| (-511)))) (-2943 (((-108) |#4| $) 101) (((-108) $) 97)) (-4145 ((|#4| |#4| $) 92)) (-4043 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| $) 126)) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#3|) 27)) (-1473 (((-108) $ (-705)) 44)) (-1640 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4221))) (((-3 |#4| "failed") $ |#3|) 79)) (-2249 (($) 45 T CONST)) (-3266 (((-108) $) 22 (|has| |#1| (-511)))) (-2542 (((-108) $ $) 24 (|has| |#1| (-511)))) (-3609 (((-108) $ $) 23 (|has| |#1| (-511)))) (-1276 (((-108) $) 25 (|has| |#1| (-511)))) (-4117 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1456 (((-585 |#4|) (-585 |#4|) $) 18 (|has| |#1| (-511)))) (-3596 (((-585 |#4|) (-585 |#4|) $) 19 (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 |#4|)) 36)) (-1499 (($ (-585 |#4|)) 35)) (-2343 (((-3 $ "failed") $) 82)) (-1570 ((|#4| |#4| $) 89)) (-2366 (($ $) 68 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#4| $) 67 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-511)))) (-2459 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3805 ((|#4| |#4| $) 87)) (-3874 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4221))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4221))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2109 (((-2 (|:| -1664 (-585 |#4|)) (|:| -1556 (-585 |#4|))) $) 105)) (-2674 (((-108) |#4| $) 136)) (-2051 (((-108) |#4| $) 133)) (-2167 (((-108) |#4| $) 137) (((-108) $) 134)) (-3844 (((-585 |#4|) $) 52 (|has| $ (-6 -4221)))) (-3507 (((-108) |#4| $) 104) (((-108) $) 103)) (-4086 ((|#3| $) 34)) (-3878 (((-108) $ (-705)) 43)) (-3725 (((-585 |#4|) $) 53 (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) 47)) (-1360 (((-585 |#3|) $) 32)) (-1219 (((-108) |#3| $) 31)) (-2768 (((-108) $ (-705)) 42)) (-1266 (((-1065) $) 9)) (-1196 (((-3 |#4| (-585 $)) |#4| |#4| $) 128)) (-3296 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| |#4| $) 127)) (-1457 (((-3 |#4| "failed") $) 83)) (-2975 (((-585 $) |#4| $) 129)) (-3422 (((-3 (-108) (-585 $)) |#4| $) 132)) (-2575 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3766 (((-585 $) |#4| $) 125) (((-585 $) (-585 |#4|) $) 124) (((-585 $) (-585 |#4|) (-585 $)) 123) (((-585 $) |#4| (-585 $)) 122)) (-3772 (($ |#4| $) 117) (($ (-585 |#4|) $) 116)) (-4092 (((-585 |#4|) $) 107)) (-2921 (((-108) |#4| $) 99) (((-108) $) 95)) (-3369 ((|#4| |#4| $) 90)) (-3291 (((-108) $ $) 110)) (-2573 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-511)))) (-3300 (((-108) |#4| $) 100) (((-108) $) 96)) (-1867 ((|#4| |#4| $) 91)) (-4139 (((-1029) $) 10)) (-2331 (((-3 |#4| "failed") $) 84)) (-2395 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2781 (((-3 $ "failed") $ |#4|) 78)) (-3881 (($ $ |#4|) 77) (((-585 $) |#4| $) 115) (((-585 $) |#4| (-585 $)) 114) (((-585 $) (-585 |#4|) $) 113) (((-585 $) (-585 |#4|) (-585 $)) 112)) (-2379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#4|) (-585 |#4|)) 59 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) 57 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 (-267 |#4|))) 56 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) 38)) (-3108 (((-108) $) 41)) (-1548 (($) 40)) (-4178 (((-705) $) 106)) (-4155 (((-705) |#4| $) 54 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4221)))) (-2449 (($ $) 39)) (-1446 (((-495) $) 69 (|has| |#4| (-560 (-495))))) (-2228 (($ (-585 |#4|)) 60)) (-4175 (($ $ |#3|) 28)) (-1982 (($ $ |#3|) 30)) (-3282 (($ $) 88)) (-1272 (($ $ |#3|) 29)) (-2217 (((-790) $) 11) (((-585 |#4|) $) 37)) (-3156 (((-705) $) 76 (|has| |#3| (-340)))) (-3541 (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3735 (((-108) $ (-1 (-108) |#4| (-585 |#4|))) 98)) (-3249 (((-585 $) |#4| $) 121) (((-585 $) |#4| (-585 $)) 120) (((-585 $) (-585 |#4|) $) 119) (((-585 $) (-585 |#4|) (-585 $)) 118)) (-1778 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4221)))) (-3059 (((-585 |#3|) $) 81)) (-3736 (((-108) |#4| $) 135)) (-3980 (((-108) |#3| $) 80)) (-1543 (((-108) $ $) 6)) (-3532 (((-705) $) 46 (|has| $ (-6 -4221))))) +(((-1020 |#1| |#2| |#3| |#4|) (-1194) (-423) (-727) (-782) (-982 |t#1| |t#2| |t#3|)) (T -1020)) +NIL +(-13 (-987 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-559 (-585 |#4|)) . T) ((-559 (-790)) . T) ((-139 |#4|) . T) ((-560 (-495)) |has| |#4| (-560 (-495))) ((-282 |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-458 |#4|) . T) ((-480 |#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-900 |#1| |#2| |#3| |#4|) . T) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1011) . T) ((-1111 |#1| |#2| |#3| |#4|) . T) ((-1117) . T)) +((-2711 (((-585 (-519)) (-519) (-519) (-519)) 22)) (-4084 (((-585 (-519)) (-519) (-519) (-519)) 12)) (-3968 (((-585 (-519)) (-519) (-519) (-519)) 18)) (-3723 (((-519) (-519) (-519)) 9)) (-1447 (((-1163 (-519)) (-585 (-519)) (-1163 (-519)) (-519)) 45) (((-1163 (-519)) (-1163 (-519)) (-1163 (-519)) (-519)) 40)) (-2053 (((-585 (-519)) (-585 (-519)) (-585 (-519)) (-108)) 27)) (-3961 (((-625 (-519)) (-585 (-519)) (-585 (-519)) (-625 (-519))) 44)) (-3236 (((-625 (-519)) (-585 (-519)) (-585 (-519))) 32)) (-1943 (((-585 (-625 (-519))) (-585 (-519))) 34)) (-2906 (((-585 (-519)) (-585 (-519)) (-585 (-519)) (-625 (-519))) 47)) (-3041 (((-625 (-519)) (-585 (-519)) (-585 (-519)) (-585 (-519))) 55))) +(((-1021) (-10 -7 (-15 -3041 ((-625 (-519)) (-585 (-519)) (-585 (-519)) (-585 (-519)))) (-15 -2906 ((-585 (-519)) (-585 (-519)) (-585 (-519)) (-625 (-519)))) (-15 -1943 ((-585 (-625 (-519))) (-585 (-519)))) (-15 -3236 ((-625 (-519)) (-585 (-519)) (-585 (-519)))) (-15 -3961 ((-625 (-519)) (-585 (-519)) (-585 (-519)) (-625 (-519)))) (-15 -2053 ((-585 (-519)) (-585 (-519)) (-585 (-519)) (-108))) (-15 -1447 ((-1163 (-519)) (-1163 (-519)) (-1163 (-519)) (-519))) (-15 -1447 ((-1163 (-519)) (-585 (-519)) (-1163 (-519)) (-519))) (-15 -3723 ((-519) (-519) (-519))) (-15 -3968 ((-585 (-519)) (-519) (-519) (-519))) (-15 -4084 ((-585 (-519)) (-519) (-519) (-519))) (-15 -2711 ((-585 (-519)) (-519) (-519) (-519))))) (T -1021)) +((-2711 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-1021)) (-5 *3 (-519)))) (-4084 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-1021)) (-5 *3 (-519)))) (-3968 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-1021)) (-5 *3 (-519)))) (-3723 (*1 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-1021)))) (-1447 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1163 (-519))) (-5 *3 (-585 (-519))) (-5 *4 (-519)) (-5 *1 (-1021)))) (-1447 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1163 (-519))) (-5 *3 (-519)) (-5 *1 (-1021)))) (-2053 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-585 (-519))) (-5 *3 (-108)) (-5 *1 (-1021)))) (-3961 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-625 (-519))) (-5 *3 (-585 (-519))) (-5 *1 (-1021)))) (-3236 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-625 (-519))) (-5 *1 (-1021)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-585 (-625 (-519)))) (-5 *1 (-1021)))) (-2906 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-585 (-519))) (-5 *3 (-625 (-519))) (-5 *1 (-1021)))) (-3041 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-625 (-519))) (-5 *1 (-1021))))) +(-10 -7 (-15 -3041 ((-625 (-519)) (-585 (-519)) (-585 (-519)) (-585 (-519)))) (-15 -2906 ((-585 (-519)) (-585 (-519)) (-585 (-519)) (-625 (-519)))) (-15 -1943 ((-585 (-625 (-519))) (-585 (-519)))) (-15 -3236 ((-625 (-519)) (-585 (-519)) (-585 (-519)))) (-15 -3961 ((-625 (-519)) (-585 (-519)) (-585 (-519)) (-625 (-519)))) (-15 -2053 ((-585 (-519)) (-585 (-519)) (-585 (-519)) (-108))) (-15 -1447 ((-1163 (-519)) (-1163 (-519)) (-1163 (-519)) (-519))) (-15 -1447 ((-1163 (-519)) (-585 (-519)) (-1163 (-519)) (-519))) (-15 -3723 ((-519) (-519) (-519))) (-15 -3968 ((-585 (-519)) (-519) (-519) (-519))) (-15 -4084 ((-585 (-519)) (-519) (-519) (-519))) (-15 -2711 ((-585 (-519)) (-519) (-519) (-519)))) +((-3559 (($ $ (-848)) 12)) (** (($ $ (-848)) 10))) +(((-1022 |#1|) (-10 -8 (-15 -3559 (|#1| |#1| (-848))) (-15 ** (|#1| |#1| (-848)))) (-1023)) (T -1022)) +NIL +(-10 -8 (-15 -3559 (|#1| |#1| (-848))) (-15 ** (|#1| |#1| (-848)))) +((-1430 (((-108) $ $) 7)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-3559 (($ $ (-848)) 13)) (-1543 (((-108) $ $) 6)) (** (($ $ (-848)) 14)) (* (($ $ $) 15))) +(((-1023) (-1194)) (T -1023)) +((* (*1 *1 *1 *1) (-4 *1 (-1023))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-848)))) (-3559 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-848))))) +(-13 (-1011) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-848))) (-15 -3559 ($ $ (-848))))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL (|has| |#3| (-1011)))) (-3569 (((-108) $) NIL (|has| |#3| (-124)))) (-2096 (($ (-848)) NIL (|has| |#3| (-968)))) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2494 (($ $ $) NIL (|has| |#3| (-727)))) (-3167 (((-3 $ "failed") $ $) NIL (|has| |#3| (-124)))) (-1473 (((-108) $ (-705)) NIL)) (-1642 (((-705)) NIL (|has| |#3| (-340)))) (-2287 (((-519) $) NIL (|has| |#3| (-780)))) (-2421 ((|#3| $ (-519) |#3|) NIL (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (-12 (|has| |#3| (-959 (-519))) (|has| |#3| (-1011)))) (((-3 (-379 (-519)) "failed") $) NIL (-12 (|has| |#3| (-959 (-379 (-519)))) (|has| |#3| (-1011)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1011)))) (-1499 (((-519) $) NIL (-12 (|has| |#3| (-959 (-519))) (|has| |#3| (-1011)))) (((-379 (-519)) $) NIL (-12 (|has| |#3| (-959 (-379 (-519)))) (|has| |#3| (-1011)))) ((|#3| $) NIL (|has| |#3| (-1011)))) (-1562 (((-625 (-519)) (-625 $)) NIL (-12 (|has| |#3| (-581 (-519))) (|has| |#3| (-968)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (-12 (|has| |#3| (-581 (-519))) (|has| |#3| (-968)))) (((-2 (|:| -2488 (-625 |#3|)) (|:| |vec| (-1163 |#3|))) (-625 $) (-1163 $)) NIL (|has| |#3| (-968))) (((-625 |#3|) (-625 $)) NIL (|has| |#3| (-968)))) (-4193 (((-3 $ "failed") $) NIL (|has| |#3| (-968)))) (-3314 (($) NIL (|has| |#3| (-340)))) (-3865 ((|#3| $ (-519) |#3|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#3| $ (-519)) 12)) (-3419 (((-108) $) NIL (|has| |#3| (-780)))) (-3844 (((-585 |#3|) $) NIL (|has| $ (-6 -4221)))) (-1568 (((-108) $) NIL (|has| |#3| (-968)))) (-2143 (((-108) $) NIL (|has| |#3| (-780)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-3725 (((-585 |#3|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#3| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-3850 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#3| |#3|) $) NIL)) (-3334 (((-848) $) NIL (|has| |#3| (-340)))) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#3| (-1011)))) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-2770 (($ (-848)) NIL (|has| |#3| (-340)))) (-4139 (((-1029) $) NIL (|has| |#3| (-1011)))) (-2331 ((|#3| $) NIL (|has| (-519) (-782)))) (-3640 (($ $ |#3|) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#3|))) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ (-267 |#3|)) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011)))) (($ $ (-585 |#3|) (-585 |#3|)) NIL (-12 (|has| |#3| (-282 |#3|)) (|has| |#3| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#3| (-1011))))) (-2222 (((-585 |#3|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#3| $ (-519) |#3|) NIL) ((|#3| $ (-519)) NIL)) (-1466 ((|#3| $ $) NIL (|has| |#3| (-968)))) (-1963 (($ (-1163 |#3|)) NIL)) (-2914 (((-126)) NIL (|has| |#3| (-335)))) (-2181 (($ $) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-1 |#3| |#3|) (-705)) NIL (|has| |#3| (-968))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-968)))) (-4155 (((-705) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4221))) (((-705) |#3| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#3| (-1011))))) (-2449 (($ $) NIL)) (-2217 (((-1163 |#3|) $) NIL) (($ (-519)) NIL (-3730 (-12 (|has| |#3| (-959 (-519))) (|has| |#3| (-1011))) (|has| |#3| (-968)))) (($ (-379 (-519))) NIL (-12 (|has| |#3| (-959 (-379 (-519)))) (|has| |#3| (-1011)))) (($ |#3|) NIL (|has| |#3| (-1011))) (((-790) $) NIL (|has| |#3| (-559 (-790))))) (-3594 (((-705)) NIL (|has| |#3| (-968)))) (-1778 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4221)))) (-1478 (($ $) NIL (|has| |#3| (-780)))) (-3559 (($ $ (-705)) NIL (|has| |#3| (-968))) (($ $ (-848)) NIL (|has| |#3| (-968)))) (-3602 (($) NIL (|has| |#3| (-124)) CONST)) (-3611 (($) NIL (|has| |#3| (-968)) CONST)) (-2242 (($ $) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-968)))) (($ $ (-705)) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-968)))) (($ $ (-1082)) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#3| (-827 (-1082))) (|has| |#3| (-968)))) (($ $ (-1 |#3| |#3|) (-705)) NIL (|has| |#3| (-968))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-968)))) (-1586 (((-108) $ $) NIL (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-1569 (((-108) $ $) NIL (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-1543 (((-108) $ $) NIL (|has| |#3| (-1011)))) (-1578 (((-108) $ $) NIL (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-1561 (((-108) $ $) 17 (-3730 (|has| |#3| (-727)) (|has| |#3| (-780))))) (-1632 (($ $ |#3|) NIL (|has| |#3| (-335)))) (-1623 (($ $ $) NIL (|has| |#3| (-968))) (($ $) NIL (|has| |#3| (-968)))) (-1614 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-705)) NIL (|has| |#3| (-968))) (($ $ (-848)) NIL (|has| |#3| (-968)))) (* (($ $ $) NIL (|has| |#3| (-968))) (($ (-519) $) NIL (|has| |#3| (-968))) (($ $ |#3|) NIL (|has| |#3| (-661))) (($ |#3| $) NIL (|has| |#3| (-661))) (($ (-705) $) NIL (|has| |#3| (-124))) (($ (-848) $) NIL (|has| |#3| (-25)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-1024 |#1| |#2| |#3|) (-214 |#1| |#3|) (-705) (-705) (-727)) (T -1024)) +NIL +(-214 |#1| |#3|) +((-3910 (((-585 (-1136 |#2| |#1|)) (-1136 |#2| |#1|) (-1136 |#2| |#1|)) 37)) (-4010 (((-519) (-1136 |#2| |#1|)) 68 (|has| |#1| (-423)))) (-1906 (((-519) (-1136 |#2| |#1|)) 54)) (-2355 (((-585 (-1136 |#2| |#1|)) (-1136 |#2| |#1|) (-1136 |#2| |#1|)) 45)) (-2378 (((-519) (-1136 |#2| |#1|) (-1136 |#2| |#1|)) 56 (|has| |#1| (-423)))) (-1408 (((-585 |#1|) (-1136 |#2| |#1|) (-1136 |#2| |#1|)) 48)) (-3324 (((-519) (-1136 |#2| |#1|) (-1136 |#2| |#1|)) 53))) +(((-1025 |#1| |#2|) (-10 -7 (-15 -3910 ((-585 (-1136 |#2| |#1|)) (-1136 |#2| |#1|) (-1136 |#2| |#1|))) (-15 -2355 ((-585 (-1136 |#2| |#1|)) (-1136 |#2| |#1|) (-1136 |#2| |#1|))) (-15 -1408 ((-585 |#1|) (-1136 |#2| |#1|) (-1136 |#2| |#1|))) (-15 -3324 ((-519) (-1136 |#2| |#1|) (-1136 |#2| |#1|))) (-15 -1906 ((-519) (-1136 |#2| |#1|))) (IF (|has| |#1| (-423)) (PROGN (-15 -2378 ((-519) (-1136 |#2| |#1|) (-1136 |#2| |#1|))) (-15 -4010 ((-519) (-1136 |#2| |#1|)))) |%noBranch|)) (-755) (-1082)) (T -1025)) +((-4010 (*1 *2 *3) (-12 (-5 *3 (-1136 *5 *4)) (-4 *4 (-423)) (-4 *4 (-755)) (-14 *5 (-1082)) (-5 *2 (-519)) (-5 *1 (-1025 *4 *5)))) (-2378 (*1 *2 *3 *3) (-12 (-5 *3 (-1136 *5 *4)) (-4 *4 (-423)) (-4 *4 (-755)) (-14 *5 (-1082)) (-5 *2 (-519)) (-5 *1 (-1025 *4 *5)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-1136 *5 *4)) (-4 *4 (-755)) (-14 *5 (-1082)) (-5 *2 (-519)) (-5 *1 (-1025 *4 *5)))) (-3324 (*1 *2 *3 *3) (-12 (-5 *3 (-1136 *5 *4)) (-4 *4 (-755)) (-14 *5 (-1082)) (-5 *2 (-519)) (-5 *1 (-1025 *4 *5)))) (-1408 (*1 *2 *3 *3) (-12 (-5 *3 (-1136 *5 *4)) (-4 *4 (-755)) (-14 *5 (-1082)) (-5 *2 (-585 *4)) (-5 *1 (-1025 *4 *5)))) (-2355 (*1 *2 *3 *3) (-12 (-4 *4 (-755)) (-14 *5 (-1082)) (-5 *2 (-585 (-1136 *5 *4))) (-5 *1 (-1025 *4 *5)) (-5 *3 (-1136 *5 *4)))) (-3910 (*1 *2 *3 *3) (-12 (-4 *4 (-755)) (-14 *5 (-1082)) (-5 *2 (-585 (-1136 *5 *4))) (-5 *1 (-1025 *4 *5)) (-5 *3 (-1136 *5 *4))))) +(-10 -7 (-15 -3910 ((-585 (-1136 |#2| |#1|)) (-1136 |#2| |#1|) (-1136 |#2| |#1|))) (-15 -2355 ((-585 (-1136 |#2| |#1|)) (-1136 |#2| |#1|) (-1136 |#2| |#1|))) (-15 -1408 ((-585 |#1|) (-1136 |#2| |#1|) (-1136 |#2| |#1|))) (-15 -3324 ((-519) (-1136 |#2| |#1|) (-1136 |#2| |#1|))) (-15 -1906 ((-519) (-1136 |#2| |#1|))) (IF (|has| |#1| (-423)) (PROGN (-15 -2378 ((-519) (-1136 |#2| |#1|) (-1136 |#2| |#1|))) (-15 -4010 ((-519) (-1136 |#2| |#1|)))) |%noBranch|)) +((-2287 (((-3 (-519) "failed") |#2| (-1082) |#2| (-1065)) 16) (((-3 (-519) "failed") |#2| (-1082) (-775 |#2|)) 14) (((-3 (-519) "failed") |#2|) 51))) +(((-1026 |#1| |#2|) (-10 -7 (-15 -2287 ((-3 (-519) "failed") |#2|)) (-15 -2287 ((-3 (-519) "failed") |#2| (-1082) (-775 |#2|))) (-15 -2287 ((-3 (-519) "failed") |#2| (-1082) |#2| (-1065)))) (-13 (-511) (-782) (-959 (-519)) (-581 (-519)) (-423)) (-13 (-27) (-1103) (-402 |#1|))) (T -1026)) +((-2287 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-1065)) (-4 *6 (-13 (-511) (-782) (-959 *2) (-581 *2) (-423))) (-5 *2 (-519)) (-5 *1 (-1026 *6 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *6))))) (-2287 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-775 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *6))) (-4 *6 (-13 (-511) (-782) (-959 *2) (-581 *2) (-423))) (-5 *2 (-519)) (-5 *1 (-1026 *6 *3)))) (-2287 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-511) (-782) (-959 *2) (-581 *2) (-423))) (-5 *2 (-519)) (-5 *1 (-1026 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *4)))))) +(-10 -7 (-15 -2287 ((-3 (-519) "failed") |#2|)) (-15 -2287 ((-3 (-519) "failed") |#2| (-1082) (-775 |#2|))) (-15 -2287 ((-3 (-519) "failed") |#2| (-1082) |#2| (-1065)))) +((-2287 (((-3 (-519) "failed") (-379 (-879 |#1|)) (-1082) (-379 (-879 |#1|)) (-1065)) 34) (((-3 (-519) "failed") (-379 (-879 |#1|)) (-1082) (-775 (-379 (-879 |#1|)))) 29) (((-3 (-519) "failed") (-379 (-879 |#1|))) 12))) +(((-1027 |#1|) (-10 -7 (-15 -2287 ((-3 (-519) "failed") (-379 (-879 |#1|)))) (-15 -2287 ((-3 (-519) "failed") (-379 (-879 |#1|)) (-1082) (-775 (-379 (-879 |#1|))))) (-15 -2287 ((-3 (-519) "failed") (-379 (-879 |#1|)) (-1082) (-379 (-879 |#1|)) (-1065)))) (-423)) (T -1027)) +((-2287 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-379 (-879 *6))) (-5 *4 (-1082)) (-5 *5 (-1065)) (-4 *6 (-423)) (-5 *2 (-519)) (-5 *1 (-1027 *6)))) (-2287 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-775 (-379 (-879 *6)))) (-5 *3 (-379 (-879 *6))) (-4 *6 (-423)) (-5 *2 (-519)) (-5 *1 (-1027 *6)))) (-2287 (*1 *2 *3) (|partial| -12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-423)) (-5 *2 (-519)) (-5 *1 (-1027 *4))))) +(-10 -7 (-15 -2287 ((-3 (-519) "failed") (-379 (-879 |#1|)))) (-15 -2287 ((-3 (-519) "failed") (-379 (-879 |#1|)) (-1082) (-775 (-379 (-879 |#1|))))) (-15 -2287 ((-3 (-519) "failed") (-379 (-879 |#1|)) (-1082) (-379 (-879 |#1|)) (-1065)))) +((-2248 (((-288 (-519)) (-47)) 11))) +(((-1028) (-10 -7 (-15 -2248 ((-288 (-519)) (-47))))) (T -1028)) +((-2248 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-288 (-519))) (-5 *1 (-1028))))) +(-10 -7 (-15 -2248 ((-288 (-519)) (-47)))) +((-1430 (((-108) $ $) NIL)) (-1515 (($ $) 41)) (-3569 (((-108) $) 65)) (-3408 (($ $ $) 48)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 84)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3133 (($ $ $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2131 (($ $ $ $) 74)) (-4043 (($ $) NIL)) (-3093 (((-390 $) $) NIL)) (-3409 (((-108) $ $) NIL)) (-2287 (((-519) $) NIL)) (-1674 (($ $ $) 71)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL)) (-1499 (((-519) $) NIL)) (-2311 (($ $ $) 59)) (-1562 (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 78) (((-625 (-519)) (-625 $)) 28)) (-4193 (((-3 $ "failed") $) NIL)) (-1631 (((-3 (-379 (-519)) "failed") $) NIL)) (-2102 (((-108) $) NIL)) (-2506 (((-379 (-519)) $) NIL)) (-3314 (($) 81) (($ $) 82)) (-2286 (($ $ $) 58)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL)) (-1320 (((-108) $) NIL)) (-3504 (($ $ $ $) NIL)) (-2233 (($ $ $) 79)) (-3419 (((-108) $) NIL)) (-3449 (($ $ $) NIL)) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL)) (-1568 (((-108) $) 66)) (-3164 (((-108) $) 64)) (-2445 (($ $) 42)) (-1675 (((-3 $ "failed") $) NIL)) (-2143 (((-108) $) 75)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1843 (($ $ $ $) 72)) (-2864 (($ $ $) 68) (($) 39)) (-2489 (($ $ $) 67) (($) 38)) (-3900 (($ $) NIL)) (-2568 (($ $) 70)) (-2254 (($ $ $) NIL) (($ (-585 $)) NIL)) (-1266 (((-1065) $) NIL)) (-2691 (($ $ $) NIL)) (-3816 (($) NIL T CONST)) (-3011 (($ $) 50)) (-4139 (((-1029) $) NIL) (($ $) 69)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL)) (-2292 (($ $ $) 62) (($ (-585 $)) NIL)) (-1314 (($ $) NIL)) (-1921 (((-390 $) $) NIL)) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL)) (-1295 (((-108) $) NIL)) (-3129 (((-705) $) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 61)) (-2181 (($ $ (-705)) NIL) (($ $) NIL)) (-3104 (($ $) 51)) (-2449 (($ $) NIL)) (-1446 (((-519) $) 32) (((-495) $) NIL) (((-819 (-519)) $) NIL) (((-351) $) NIL) (((-201) $) NIL)) (-2217 (((-790) $) 31) (($ (-519)) 80) (($ $) NIL) (($ (-519)) 80)) (-3594 (((-705)) NIL)) (-4200 (((-108) $ $) NIL)) (-3563 (($ $ $) NIL)) (-3414 (($) 37)) (-1617 (((-108) $ $) NIL)) (-1748 (($ $ $ $) 73)) (-1478 (($ $) 63)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-2818 (($ $ $) 44)) (-3602 (($) 35 T CONST)) (-3555 (($ $ $) 47)) (-3611 (($) 36 T CONST)) (-2761 (((-1065) $) 21) (((-1065) $ (-108)) 23) (((-1168) (-757) $) 24) (((-1168) (-757) $ (-108)) 25)) (-3564 (($ $) 45)) (-2242 (($ $ (-705)) NIL) (($ $) NIL)) (-3548 (($ $ $) 46)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 40)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 49)) (-2360 (($ $ $) 43)) (-1623 (($ $) 52) (($ $ $) 54)) (-1614 (($ $ $) 53)) (** (($ $ (-848)) NIL) (($ $ (-705)) 57)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 34) (($ $ $) 55))) +(((-1029) (-13 (-504) (-600) (-763) (-10 -8 (-6 -4208) (-6 -4213) (-6 -4209) (-15 -2489 ($)) (-15 -2864 ($)) (-15 -2445 ($ $)) (-15 -1515 ($ $)) (-15 -2360 ($ $ $)) (-15 -2818 ($ $ $)) (-15 -3408 ($ $ $)) (-15 -3564 ($ $)) (-15 -3548 ($ $ $)) (-15 -3555 ($ $ $))))) (T -1029)) +((-2818 (*1 *1 *1 *1) (-5 *1 (-1029))) (-2360 (*1 *1 *1 *1) (-5 *1 (-1029))) (-1515 (*1 *1 *1) (-5 *1 (-1029))) (-2489 (*1 *1) (-5 *1 (-1029))) (-2864 (*1 *1) (-5 *1 (-1029))) (-2445 (*1 *1 *1) (-5 *1 (-1029))) (-3408 (*1 *1 *1 *1) (-5 *1 (-1029))) (-3564 (*1 *1 *1) (-5 *1 (-1029))) (-3548 (*1 *1 *1 *1) (-5 *1 (-1029))) (-3555 (*1 *1 *1 *1) (-5 *1 (-1029)))) +(-13 (-504) (-600) (-763) (-10 -8 (-6 -4208) (-6 -4213) (-6 -4209) (-15 -2489 ($)) (-15 -2864 ($)) (-15 -2445 ($ $)) (-15 -1515 ($ $)) (-15 -2360 ($ $ $)) (-15 -2818 ($ $ $)) (-15 -3408 ($ $ $)) (-15 -3564 ($ $)) (-15 -3548 ($ $ $)) (-15 -3555 ($ $ $)))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-1365 ((|#1| $) 44)) (-1473 (((-108) $ (-705)) 8)) (-2249 (($) 7 T CONST)) (-2390 ((|#1| |#1| $) 46)) (-3128 ((|#1| $) 45)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-4152 ((|#1| $) 39)) (-1846 (($ |#1| $) 40)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-3212 ((|#1| $) 41)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-1253 (((-705) $) 43)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) 42)) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-1030 |#1|) (-1194) (-1117)) (T -1030)) +((-2390 (*1 *2 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-1117)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-1117)))) (-1365 (*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-1117)))) (-1253 (*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1117)) (-5 *2 (-705))))) +(-13 (-102 |t#1|) (-10 -8 (-6 -4221) (-15 -2390 (|t#1| |t#1| $)) (-15 -3128 (|t#1| $)) (-15 -1365 (|t#1| $)) (-15 -1253 ((-705) $)))) +(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-1871 ((|#3| $) 76)) (-1301 (((-3 (-519) "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1499 (((-519) $) NIL) (((-379 (-519)) $) NIL) ((|#3| $) 37)) (-1562 (((-625 (-519)) (-625 $)) NIL) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL) (((-2 (|:| -2488 (-625 |#3|)) (|:| |vec| (-1163 |#3|))) (-625 $) (-1163 $)) 73) (((-625 |#3|) (-625 $)) 65)) (-2181 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082)) NIL) (($ $ (-705)) NIL) (($ $) NIL)) (-3619 ((|#3| $) 78)) (-1472 ((|#4| $) 32)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ (-379 (-519))) NIL) (($ |#3|) 16)) (** (($ $ (-848)) NIL) (($ $ (-705)) 15) (($ $ (-519)) 82))) +(((-1031 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-519))) (-15 -3619 (|#3| |#1|)) (-15 -1871 (|#3| |#1|)) (-15 -1472 (|#4| |#1|)) (-15 -1562 ((-625 |#3|) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#3|)) (|:| |vec| (-1163 |#3|))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -1499 (|#3| |#1|)) (-15 -1301 ((-3 |#3| "failed") |#1|)) (-15 -2217 (|#1| |#3|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-1 |#3| |#3|) (-705))) (-15 -2181 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2217 (|#1| (-519))) (-15 ** (|#1| |#1| (-705))) (-15 ** (|#1| |#1| (-848))) (-15 -2217 ((-790) |#1|))) (-1032 |#2| |#3| |#4| |#5|) (-705) (-968) (-214 |#2| |#3|) (-214 |#2| |#3|)) (T -1031)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-519))) (-15 -3619 (|#3| |#1|)) (-15 -1871 (|#3| |#1|)) (-15 -1472 (|#4| |#1|)) (-15 -1562 ((-625 |#3|) (-625 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 |#3|)) (|:| |vec| (-1163 |#3|))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 |#1|) (-1163 |#1|))) (-15 -1562 ((-625 (-519)) (-625 |#1|))) (-15 -1499 (|#3| |#1|)) (-15 -1301 ((-3 |#3| "failed") |#1|)) (-15 -2217 (|#1| |#3|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-519) |#1|)) (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-1 |#3| |#3|) (-705))) (-15 -2181 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2217 (|#1| (-519))) (-15 ** (|#1| |#1| (-705))) (-15 ** (|#1| |#1| (-848))) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1871 ((|#2| $) 72)) (-3411 (((-108) $) 112)) (-3167 (((-3 $ "failed") $ $) 19)) (-1413 (((-108) $) 110)) (-1473 (((-108) $ (-705)) 102)) (-1889 (($ |#2|) 75)) (-2249 (($) 17 T CONST)) (-3196 (($ $) 129 (|has| |#2| (-280)))) (-4159 ((|#3| $ (-519)) 124)) (-1301 (((-3 (-519) "failed") $) 86 (|has| |#2| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) 84 (|has| |#2| (-959 (-379 (-519))))) (((-3 |#2| "failed") $) 81)) (-1499 (((-519) $) 87 (|has| |#2| (-959 (-519)))) (((-379 (-519)) $) 85 (|has| |#2| (-959 (-379 (-519))))) ((|#2| $) 80)) (-1562 (((-625 (-519)) (-625 $)) 79 (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 78 (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) 77) (((-625 |#2|) (-625 $)) 76)) (-4193 (((-3 $ "failed") $) 34)) (-3229 (((-705) $) 130 (|has| |#2| (-511)))) (-3659 ((|#2| $ (-519) (-519)) 122)) (-3844 (((-585 |#2|) $) 95 (|has| $ (-6 -4221)))) (-1568 (((-108) $) 31)) (-2518 (((-705) $) 131 (|has| |#2| (-511)))) (-3885 (((-585 |#4|) $) 132 (|has| |#2| (-511)))) (-1426 (((-705) $) 118)) (-1437 (((-705) $) 119)) (-3878 (((-108) $ (-705)) 103)) (-2749 ((|#2| $) 67 (|has| |#2| (-6 (-4223 "*"))))) (-4161 (((-519) $) 114)) (-2918 (((-519) $) 116)) (-3725 (((-585 |#2|) $) 94 (|has| $ (-6 -4221)))) (-1933 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1011)) (|has| $ (-6 -4221))))) (-1238 (((-519) $) 115)) (-2012 (((-519) $) 117)) (-1377 (($ (-585 (-585 |#2|))) 109)) (-3850 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-2723 (((-585 (-585 |#2|)) $) 120)) (-2768 (((-108) $ (-705)) 104)) (-1266 (((-1065) $) 9)) (-1452 (((-3 $ "failed") $) 66 (|has| |#2| (-335)))) (-4139 (((-1029) $) 10)) (-2261 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-511)))) (-2379 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#2|))) 91 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) 90 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) 88 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) 108)) (-3108 (((-108) $) 105)) (-1548 (($) 106)) (-2598 ((|#2| $ (-519) (-519) |#2|) 123) ((|#2| $ (-519) (-519)) 121)) (-2181 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-705)) 51) (($ $ (-585 (-1082)) (-585 (-705))) 44 (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) 43 (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) 42 (|has| |#2| (-827 (-1082)))) (($ $ (-1082)) 41 (|has| |#2| (-827 (-1082)))) (($ $ (-705)) 39 (|has| |#2| (-209))) (($ $) 37 (|has| |#2| (-209)))) (-3619 ((|#2| $) 71)) (-1757 (($ (-585 |#2|)) 74)) (-2464 (((-108) $) 111)) (-1472 ((|#3| $) 73)) (-3406 ((|#2| $) 68 (|has| |#2| (-6 (-4223 "*"))))) (-4155 (((-705) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4221))) (((-705) |#2| $) 93 (-12 (|has| |#2| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 107)) (-3067 ((|#4| $ (-519)) 125)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ (-379 (-519))) 83 (|has| |#2| (-959 (-379 (-519))))) (($ |#2|) 82)) (-3594 (((-705)) 29)) (-1778 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4221)))) (-3238 (((-108) $) 113)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-705)) 49) (($ $ (-585 (-1082)) (-585 (-705))) 48 (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) 47 (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) 46 (|has| |#2| (-827 (-1082)))) (($ $ (-1082)) 45 (|has| |#2| (-827 (-1082)))) (($ $ (-705)) 40 (|has| |#2| (-209))) (($ $) 38 (|has| |#2| (-209)))) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#2|) 128 (|has| |#2| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 65 (|has| |#2| (-335)))) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3532 (((-705) $) 101 (|has| $ (-6 -4221))))) +(((-1032 |#1| |#2| |#3| |#4|) (-1194) (-705) (-968) (-214 |t#1| |t#2|) (-214 |t#1| |t#2|)) (T -1032)) +((-1889 (*1 *1 *2) (-12 (-4 *2 (-968)) (-4 *1 (-1032 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) (-4 *5 (-214 *3 *2)))) (-1757 (*1 *1 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-968)) (-4 *1 (-1032 *3 *4 *5 *6)) (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *3 *4)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *2 *5)) (-4 *4 (-968)) (-4 *5 (-214 *3 *4)) (-4 *2 (-214 *3 *4)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) (-4 *5 (-214 *3 *2)) (-4 *2 (-968)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) (-4 *5 (-214 *3 *2)) (-4 *2 (-968)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1032 *3 *4 *5 *2)) (-4 *4 (-968)) (-4 *5 (-214 *3 *4)) (-4 *2 (-214 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1032 *3 *4 *2 *5)) (-4 *4 (-968)) (-4 *2 (-214 *3 *4)) (-4 *5 (-214 *3 *4)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) (-4 *5 (-214 *3 *2)) (|has| *2 (-6 (-4223 "*"))) (-4 *2 (-968)))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-1032 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) (-4 *5 (-214 *3 *2)) (|has| *2 (-6 (-4223 "*"))) (-4 *2 (-968)))) (-1452 (*1 *1 *1) (|partial| -12 (-4 *1 (-1032 *2 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-214 *2 *3)) (-4 *5 (-214 *2 *3)) (-4 *3 (-335)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-1032 *3 *4 *5 *6)) (-4 *4 (-968)) (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *3 *4)) (-4 *4 (-335))))) +(-13 (-207 |t#2|) (-107 |t#2| |t#2|) (-971 |t#1| |t#1| |t#2| |t#3| |t#4|) (-383 |t#2|) (-349 |t#2|) (-10 -8 (IF (|has| |t#2| (-157)) (-6 (-652 |t#2|)) |%noBranch|) (-15 -1889 ($ |t#2|)) (-15 -1757 ($ (-585 |t#2|))) (-15 -1472 (|t#3| $)) (-15 -1871 (|t#2| $)) (-15 -3619 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4223 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3406 (|t#2| $)) (-15 -2749 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-335)) (PROGN (-15 -1452 ((-3 $ "failed") $)) (-15 ** ($ $ (-519)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4223 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-559 (-790)) . T) ((-207 |#2|) . T) ((-209) |has| |#2| (-209)) ((-282 |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((-349 |#2|) . T) ((-383 |#2|) . T) ((-458 |#2|) . T) ((-480 |#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((-587 |#2|) . T) ((-587 $) . T) ((-581 (-519)) |has| |#2| (-581 (-519))) ((-581 |#2|) . T) ((-652 |#2|) -3730 (|has| |#2| (-157)) (|has| |#2| (-6 (-4223 "*")))) ((-661) . T) ((-827 (-1082)) |has| |#2| (-827 (-1082))) ((-971 |#1| |#1| |#2| |#3| |#4|) . T) ((-959 (-379 (-519))) |has| |#2| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#2| (-959 (-519))) ((-959 |#2|) . T) ((-974 |#2|) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1117) . T)) +((-2829 ((|#4| |#4|) 68)) (-4134 ((|#4| |#4|) 63)) (-4055 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2070 (-585 |#3|))) |#4| |#3|) 76)) (-3429 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-2956 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65))) +(((-1033 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4134 (|#4| |#4|)) (-15 -2956 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2829 (|#4| |#4|)) (-15 -3429 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4055 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2070 (-585 |#3|))) |#4| |#3|))) (-280) (-345 |#1|) (-345 |#1|) (-623 |#1| |#2| |#3|)) (T -1033)) +((-4055 (*1 *2 *3 *4) (-12 (-4 *5 (-280)) (-4 *6 (-345 *5)) (-4 *4 (-345 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) (-5 *1 (-1033 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4)))) (-3429 (*1 *2 *3) (-12 (-4 *4 (-280)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1033 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-2829 (*1 *2 *2) (-12 (-4 *3 (-280)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *1 (-1033 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-2956 (*1 *2 *3) (-12 (-4 *4 (-280)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1033 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-4134 (*1 *2 *2) (-12 (-4 *3 (-280)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *1 (-1033 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +(-10 -7 (-15 -4134 (|#4| |#4|)) (-15 -2956 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2829 (|#4| |#4|)) (-15 -3429 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4055 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2070 (-585 |#3|))) |#4| |#3|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 17)) (-4083 (((-585 |#2|) $) 159)) (-1283 (((-1078 $) $ |#2|) 53) (((-1078 |#1|) $) 42)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 109 (|has| |#1| (-511)))) (-1410 (($ $) 111 (|has| |#1| (-511)))) (-3060 (((-108) $) 113 (|has| |#1| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 |#2|)) 193)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-4043 (($ $) NIL (|has| |#1| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) 156) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 |#2| "failed") $) NIL)) (-1499 ((|#1| $) 154) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#1| (-959 (-519)))) ((|#2| $) NIL)) (-1286 (($ $ $ |#2|) NIL (|has| |#1| (-157)))) (-3218 (($ $) 197)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) 81)) (-2177 (($ $) NIL (|has| |#1| (-423))) (($ $ |#2|) NIL (|has| |#1| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#1| (-836)))) (-4015 (($ $ |#1| (-491 |#2|) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| |#1| (-813 (-351))) (|has| |#2| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| |#1| (-813 (-519))) (|has| |#2| (-813 (-519)))))) (-1568 (((-108) $) 19)) (-3798 (((-705) $) 26)) (-4066 (($ (-1078 |#1|) |#2|) 47) (($ (-1078 $) |#2|) 63)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) 31)) (-4042 (($ |#1| (-491 |#2|)) 70) (($ $ |#2| (-705)) 51) (($ $ (-585 |#2|) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ |#2|) NIL)) (-3695 (((-491 |#2|) $) 186) (((-705) $ |#2|) 187) (((-585 (-705)) $ (-585 |#2|)) 188)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3737 (($ (-1 (-491 |#2|) (-491 |#2|)) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) 121)) (-2635 (((-3 |#2| "failed") $) 161)) (-3185 (($ $) 196)) (-3197 ((|#1| $) 36)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1266 (((-1065) $) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| |#2|) (|:| -1690 (-705))) "failed") $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) 32)) (-3173 ((|#1| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 139 (|has| |#1| (-423)))) (-2292 (($ (-585 $)) 144 (|has| |#1| (-423))) (($ $ $) 131 (|has| |#1| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#1| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-836)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-511)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-585 |#2|) (-585 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-585 |#2|) (-585 $)) 176)) (-3677 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2181 (($ $ |#2|) 195) (($ $ (-585 |#2|)) NIL) (($ $ |#2| (-705)) NIL) (($ $ (-585 |#2|) (-585 (-705))) NIL)) (-4178 (((-491 |#2|) $) 182) (((-705) $ |#2|) 178) (((-585 (-705)) $ (-585 |#2|)) 180)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| |#1| (-560 (-819 (-351)))) (|has| |#2| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| |#1| (-560 (-819 (-519)))) (|has| |#2| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| |#1| (-560 (-495))) (|has| |#2| (-560 (-495)))))) (-3939 ((|#1| $) 127 (|has| |#1| (-423))) (($ $ |#2|) 130 (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-836))))) (-2217 (((-790) $) 150) (($ (-519)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-511))) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519))))))) (-2988 (((-585 |#1|) $) 153)) (-1220 ((|#1| $ (-491 |#2|)) 72) (($ $ |#2| (-705)) NIL) (($ $ (-585 |#2|) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) 78)) (-1487 (($ $ $ (-705)) NIL (|has| |#1| (-157)))) (-1617 (((-108) $ $) 116 (|has| |#1| (-511)))) (-3559 (($ $ (-848)) 101) (($ $ (-705)) 103)) (-3602 (($) 12 T CONST)) (-3611 (($) 14 T CONST)) (-2242 (($ $ |#2|) NIL) (($ $ (-585 |#2|)) NIL) (($ $ |#2| (-705)) NIL) (($ $ (-585 |#2|) (-585 (-705))) NIL)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) 96)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1632 (($ $ |#1|) 125 (|has| |#1| (-335)))) (-1623 (($ $) 84) (($ $ $) 94)) (-1614 (($ $ $) 48)) (** (($ $ (-848)) 102) (($ $ (-705)) 99)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 87) (($ $ $) 64) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-1034 |#1| |#2|) (-876 |#1| (-491 |#2|) |#2|) (-968) (-782)) (T -1034)) +NIL +(-876 |#1| (-491 |#2|) |#2|) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 |#2|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-2958 (($ $) 142 (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) 118 (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2934 (($ $) 138 (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) 114 (|has| |#1| (-37 (-379 (-519)))))) (-2981 (($ $) 146 (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) 122 (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2227 (((-879 |#1|) $ (-705)) NIL) (((-879 |#1|) $ (-705) (-705)) NIL)) (-3943 (((-108) $) NIL)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-705) $ |#2|) NIL) (((-705) $ |#2| (-705)) NIL)) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2642 (((-108) $) NIL)) (-4042 (($ $ (-585 |#2|) (-585 (-491 |#2|))) NIL) (($ $ |#2| (-491 |#2|)) NIL) (($ |#1| (-491 |#2|)) NIL) (($ $ |#2| (-705)) 58) (($ $ (-585 |#2|) (-585 (-705))) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) 112 (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4142 (($ $ |#2|) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-379 (-519)))))) (-4139 (((-1029) $) NIL)) (-4102 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-379 (-519)))))) (-3881 (($ $ (-705)) 15)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-3325 (($ $) 110 (|has| |#1| (-37 (-379 (-519)))))) (-2324 (($ $ |#2| $) 96) (($ $ (-585 |#2|) (-585 $)) 89) (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL)) (-2181 (($ $ |#2|) 99) (($ $ (-585 |#2|)) NIL) (($ $ |#2| (-705)) NIL) (($ $ (-585 |#2|) (-585 (-705))) NIL)) (-4178 (((-491 |#2|) $) NIL)) (-2566 (((-1 (-1063 |#3|) |#3|) (-585 |#2|) (-585 (-1063 |#3|))) 79)) (-1754 (($ $) 148 (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) 124 (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) 144 (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) 120 (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) 140 (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) 116 (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) 17)) (-2217 (((-790) $) 180) (($ (-519)) NIL) (($ |#1|) 44 (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-511))) (($ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ |#2|) 65) (($ |#3|) 63)) (-1220 ((|#1| $ (-491 |#2|)) NIL) (($ $ |#2| (-705)) NIL) (($ $ (-585 |#2|) (-585 (-705))) NIL) ((|#3| $ (-705)) 42)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-1774 (($ $) 154 (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) 130 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1761 (($ $) 150 (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) 126 (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) 158 (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) 134 (|has| |#1| (-37 (-379 (-519)))))) (-3929 (($ $) 160 (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) 136 (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) 156 (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) 132 (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) 152 (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) 128 (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 18 T CONST)) (-3611 (($) 10 T CONST)) (-2242 (($ $ |#2|) NIL) (($ $ (-585 |#2|)) NIL) (($ $ |#2| (-705)) NIL) (($ $ (-585 |#2|) (-585 (-705))) NIL)) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ |#1|) 182 (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 61)) (** (($ $ (-848)) NIL) (($ $ (-705)) 70) (($ $ $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 102 (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 60) (($ $ (-379 (-519))) 107 (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) 105 (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46))) +(((-1035 |#1| |#2| |#3|) (-13 (-675 |#1| |#2|) (-10 -8 (-15 -1220 (|#3| $ (-705))) (-15 -2217 ($ |#2|)) (-15 -2217 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2566 ((-1 (-1063 |#3|) |#3|) (-585 |#2|) (-585 (-1063 |#3|)))) (IF (|has| |#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ($ $ |#2| |#1|)) (-15 -4102 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-968) (-782) (-876 |#1| (-491 |#2|) |#2|)) (T -1035)) +((-1220 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-4 *2 (-876 *4 (-491 *5) *5)) (-5 *1 (-1035 *4 *5 *2)) (-4 *4 (-968)) (-4 *5 (-782)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-968)) (-4 *2 (-782)) (-5 *1 (-1035 *3 *2 *4)) (-4 *4 (-876 *3 (-491 *2) *2)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-968)) (-4 *4 (-782)) (-5 *1 (-1035 *3 *4 *2)) (-4 *2 (-876 *3 (-491 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-968)) (-4 *4 (-782)) (-5 *1 (-1035 *3 *4 *2)) (-4 *2 (-876 *3 (-491 *4) *4)))) (-2566 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1063 *7))) (-4 *6 (-782)) (-4 *7 (-876 *5 (-491 *6) *6)) (-4 *5 (-968)) (-5 *2 (-1 (-1063 *7) *7)) (-5 *1 (-1035 *5 *6 *7)))) (-4142 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-4 *2 (-782)) (-5 *1 (-1035 *3 *2 *4)) (-4 *4 (-876 *3 (-491 *2) *2)))) (-4102 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1035 *4 *3 *5))) (-4 *4 (-37 (-379 (-519)))) (-4 *4 (-968)) (-4 *3 (-782)) (-5 *1 (-1035 *4 *3 *5)) (-4 *5 (-876 *4 (-491 *3) *3))))) +(-13 (-675 |#1| |#2|) (-10 -8 (-15 -1220 (|#3| $ (-705))) (-15 -2217 ($ |#2|)) (-15 -2217 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2566 ((-1 (-1063 |#3|) |#3|) (-585 |#2|) (-585 (-1063 |#3|)))) (IF (|has| |#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ($ $ |#2| |#1|)) (-15 -4102 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-1430 (((-108) $ $) 7)) (-3106 (((-585 (-2 (|:| -1664 $) (|:| -1556 (-585 |#4|)))) (-585 |#4|)) 85)) (-2548 (((-585 $) (-585 |#4|)) 86) (((-585 $) (-585 |#4|) (-108)) 111)) (-4083 (((-585 |#3|) $) 33)) (-2968 (((-108) $) 26)) (-3146 (((-108) $) 17 (|has| |#1| (-511)))) (-2943 (((-108) |#4| $) 101) (((-108) $) 97)) (-4145 ((|#4| |#4| $) 92)) (-4043 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| $) 126)) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#3|) 27)) (-1473 (((-108) $ (-705)) 44)) (-1640 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4221))) (((-3 |#4| "failed") $ |#3|) 79)) (-2249 (($) 45 T CONST)) (-3266 (((-108) $) 22 (|has| |#1| (-511)))) (-2542 (((-108) $ $) 24 (|has| |#1| (-511)))) (-3609 (((-108) $ $) 23 (|has| |#1| (-511)))) (-1276 (((-108) $) 25 (|has| |#1| (-511)))) (-4117 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1456 (((-585 |#4|) (-585 |#4|) $) 18 (|has| |#1| (-511)))) (-3596 (((-585 |#4|) (-585 |#4|) $) 19 (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 |#4|)) 36)) (-1499 (($ (-585 |#4|)) 35)) (-2343 (((-3 $ "failed") $) 82)) (-1570 ((|#4| |#4| $) 89)) (-2366 (($ $) 68 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#4| $) 67 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-511)))) (-2459 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3805 ((|#4| |#4| $) 87)) (-3874 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4221))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4221))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2109 (((-2 (|:| -1664 (-585 |#4|)) (|:| -1556 (-585 |#4|))) $) 105)) (-2674 (((-108) |#4| $) 136)) (-2051 (((-108) |#4| $) 133)) (-2167 (((-108) |#4| $) 137) (((-108) $) 134)) (-3844 (((-585 |#4|) $) 52 (|has| $ (-6 -4221)))) (-3507 (((-108) |#4| $) 104) (((-108) $) 103)) (-4086 ((|#3| $) 34)) (-3878 (((-108) $ (-705)) 43)) (-3725 (((-585 |#4|) $) 53 (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) 47)) (-1360 (((-585 |#3|) $) 32)) (-1219 (((-108) |#3| $) 31)) (-2768 (((-108) $ (-705)) 42)) (-1266 (((-1065) $) 9)) (-1196 (((-3 |#4| (-585 $)) |#4| |#4| $) 128)) (-3296 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| |#4| $) 127)) (-1457 (((-3 |#4| "failed") $) 83)) (-2975 (((-585 $) |#4| $) 129)) (-3422 (((-3 (-108) (-585 $)) |#4| $) 132)) (-2575 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3766 (((-585 $) |#4| $) 125) (((-585 $) (-585 |#4|) $) 124) (((-585 $) (-585 |#4|) (-585 $)) 123) (((-585 $) |#4| (-585 $)) 122)) (-3772 (($ |#4| $) 117) (($ (-585 |#4|) $) 116)) (-4092 (((-585 |#4|) $) 107)) (-2921 (((-108) |#4| $) 99) (((-108) $) 95)) (-3369 ((|#4| |#4| $) 90)) (-3291 (((-108) $ $) 110)) (-2573 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-511)))) (-3300 (((-108) |#4| $) 100) (((-108) $) 96)) (-1867 ((|#4| |#4| $) 91)) (-4139 (((-1029) $) 10)) (-2331 (((-3 |#4| "failed") $) 84)) (-2395 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2781 (((-3 $ "failed") $ |#4|) 78)) (-3881 (($ $ |#4|) 77) (((-585 $) |#4| $) 115) (((-585 $) |#4| (-585 $)) 114) (((-585 $) (-585 |#4|) $) 113) (((-585 $) (-585 |#4|) (-585 $)) 112)) (-2379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#4|) (-585 |#4|)) 59 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) 57 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 (-267 |#4|))) 56 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) 38)) (-3108 (((-108) $) 41)) (-1548 (($) 40)) (-4178 (((-705) $) 106)) (-4155 (((-705) |#4| $) 54 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4221)))) (-2449 (($ $) 39)) (-1446 (((-495) $) 69 (|has| |#4| (-560 (-495))))) (-2228 (($ (-585 |#4|)) 60)) (-4175 (($ $ |#3|) 28)) (-1982 (($ $ |#3|) 30)) (-3282 (($ $) 88)) (-1272 (($ $ |#3|) 29)) (-2217 (((-790) $) 11) (((-585 |#4|) $) 37)) (-3156 (((-705) $) 76 (|has| |#3| (-340)))) (-3541 (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3735 (((-108) $ (-1 (-108) |#4| (-585 |#4|))) 98)) (-3249 (((-585 $) |#4| $) 121) (((-585 $) |#4| (-585 $)) 120) (((-585 $) (-585 |#4|) $) 119) (((-585 $) (-585 |#4|) (-585 $)) 118)) (-1778 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4221)))) (-3059 (((-585 |#3|) $) 81)) (-3736 (((-108) |#4| $) 135)) (-3980 (((-108) |#3| $) 80)) (-1543 (((-108) $ $) 6)) (-3532 (((-705) $) 46 (|has| $ (-6 -4221))))) +(((-1036 |#1| |#2| |#3| |#4|) (-1194) (-423) (-727) (-782) (-982 |t#1| |t#2| |t#3|)) (T -1036)) +NIL +(-13 (-1020 |t#1| |t#2| |t#3| |t#4|) (-718 |t#1| |t#2| |t#3| |t#4|)) +(((-33) . T) ((-97) . T) ((-559 (-585 |#4|)) . T) ((-559 (-790)) . T) ((-139 |#4|) . T) ((-560 (-495)) |has| |#4| (-560 (-495))) ((-282 |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-458 |#4|) . T) ((-480 |#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-718 |#1| |#2| |#3| |#4|) . T) ((-900 |#1| |#2| |#3| |#4|) . T) ((-987 |#1| |#2| |#3| |#4|) . T) ((-1011) . T) ((-1020 |#1| |#2| |#3| |#4|) . T) ((-1111 |#1| |#2| |#3| |#4|) . T) ((-1117) . T)) +((-3442 (((-585 |#2|) |#1|) 12)) (-2382 (((-585 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-585 |#2|) |#1|) 47)) (-4197 (((-585 |#2|) |#2| |#2| |#2|) 35) (((-585 |#2|) |#1|) 45)) (-1591 ((|#2| |#1|) 42)) (-1621 (((-2 (|:| |solns| (-585 |#2|)) (|:| |maps| (-585 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2203 (((-585 |#2|) |#2| |#2|) 34) (((-585 |#2|) |#1|) 44)) (-3269 (((-585 |#2|) |#2| |#2| |#2| |#2|) 36) (((-585 |#2|) |#1|) 46)) (-1221 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-1870 ((|#2| |#2| |#2| |#2|) 39)) (-2957 ((|#2| |#2| |#2|) 38)) (-3982 ((|#2| |#2| |#2| |#2| |#2|) 40))) +(((-1037 |#1| |#2|) (-10 -7 (-15 -3442 ((-585 |#2|) |#1|)) (-15 -1591 (|#2| |#1|)) (-15 -1621 ((-2 (|:| |solns| (-585 |#2|)) (|:| |maps| (-585 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2203 ((-585 |#2|) |#1|)) (-15 -4197 ((-585 |#2|) |#1|)) (-15 -3269 ((-585 |#2|) |#1|)) (-15 -2382 ((-585 |#2|) |#1|)) (-15 -2203 ((-585 |#2|) |#2| |#2|)) (-15 -4197 ((-585 |#2|) |#2| |#2| |#2|)) (-15 -3269 ((-585 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2382 ((-585 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2957 (|#2| |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2| |#2|)) (-15 -3982 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1221 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1139 |#2|) (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (T -1037)) +((-1221 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *1 (-1037 *3 *2)) (-4 *3 (-1139 *2)))) (-3982 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *1 (-1037 *3 *2)) (-4 *3 (-1139 *2)))) (-1870 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *1 (-1037 *3 *2)) (-4 *3 (-1139 *2)))) (-2957 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *1 (-1037 *3 *2)) (-4 *3 (-1139 *2)))) (-2382 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *2 (-585 *3)) (-5 *1 (-1037 *4 *3)) (-4 *4 (-1139 *3)))) (-3269 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *2 (-585 *3)) (-5 *1 (-1037 *4 *3)) (-4 *4 (-1139 *3)))) (-4197 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *2 (-585 *3)) (-5 *1 (-1037 *4 *3)) (-4 *4 (-1139 *3)))) (-2203 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *2 (-585 *3)) (-5 *1 (-1037 *4 *3)) (-4 *4 (-1139 *3)))) (-2382 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *2 (-585 *4)) (-5 *1 (-1037 *3 *4)) (-4 *3 (-1139 *4)))) (-3269 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *2 (-585 *4)) (-5 *1 (-1037 *3 *4)) (-4 *3 (-1139 *4)))) (-4197 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *2 (-585 *4)) (-5 *1 (-1037 *3 *4)) (-4 *3 (-1139 *4)))) (-2203 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *2 (-585 *4)) (-5 *1 (-1037 *3 *4)) (-4 *3 (-1139 *4)))) (-1621 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *2 (-2 (|:| |solns| (-585 *5)) (|:| |maps| (-585 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1037 *3 *5)) (-4 *3 (-1139 *5)))) (-1591 (*1 *2 *3) (-12 (-4 *2 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *1 (-1037 *3 *2)) (-4 *3 (-1139 *2)))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) (-5 *2 (-585 *4)) (-5 *1 (-1037 *3 *4)) (-4 *3 (-1139 *4))))) +(-10 -7 (-15 -3442 ((-585 |#2|) |#1|)) (-15 -1591 (|#2| |#1|)) (-15 -1621 ((-2 (|:| |solns| (-585 |#2|)) (|:| |maps| (-585 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2203 ((-585 |#2|) |#1|)) (-15 -4197 ((-585 |#2|) |#1|)) (-15 -3269 ((-585 |#2|) |#1|)) (-15 -2382 ((-585 |#2|) |#1|)) (-15 -2203 ((-585 |#2|) |#2| |#2|)) (-15 -4197 ((-585 |#2|) |#2| |#2| |#2|)) (-15 -3269 ((-585 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2382 ((-585 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2957 (|#2| |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2| |#2|)) (-15 -3982 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1221 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-4035 (((-585 (-585 (-267 (-288 |#1|)))) (-585 (-267 (-379 (-879 |#1|))))) 95) (((-585 (-585 (-267 (-288 |#1|)))) (-585 (-267 (-379 (-879 |#1|)))) (-585 (-1082))) 94) (((-585 (-585 (-267 (-288 |#1|)))) (-585 (-379 (-879 |#1|)))) 92) (((-585 (-585 (-267 (-288 |#1|)))) (-585 (-379 (-879 |#1|))) (-585 (-1082))) 90) (((-585 (-267 (-288 |#1|))) (-267 (-379 (-879 |#1|)))) 76) (((-585 (-267 (-288 |#1|))) (-267 (-379 (-879 |#1|))) (-1082)) 77) (((-585 (-267 (-288 |#1|))) (-379 (-879 |#1|))) 71) (((-585 (-267 (-288 |#1|))) (-379 (-879 |#1|)) (-1082)) 60)) (-4063 (((-585 (-585 (-288 |#1|))) (-585 (-379 (-879 |#1|))) (-585 (-1082))) 88) (((-585 (-288 |#1|)) (-379 (-879 |#1|)) (-1082)) 43)) (-3971 (((-1072 (-585 (-288 |#1|)) (-585 (-267 (-288 |#1|)))) (-379 (-879 |#1|)) (-1082)) 98) (((-1072 (-585 (-288 |#1|)) (-585 (-267 (-288 |#1|)))) (-267 (-379 (-879 |#1|))) (-1082)) 97))) +(((-1038 |#1|) (-10 -7 (-15 -4035 ((-585 (-267 (-288 |#1|))) (-379 (-879 |#1|)) (-1082))) (-15 -4035 ((-585 (-267 (-288 |#1|))) (-379 (-879 |#1|)))) (-15 -4035 ((-585 (-267 (-288 |#1|))) (-267 (-379 (-879 |#1|))) (-1082))) (-15 -4035 ((-585 (-267 (-288 |#1|))) (-267 (-379 (-879 |#1|))))) (-15 -4035 ((-585 (-585 (-267 (-288 |#1|)))) (-585 (-379 (-879 |#1|))) (-585 (-1082)))) (-15 -4035 ((-585 (-585 (-267 (-288 |#1|)))) (-585 (-379 (-879 |#1|))))) (-15 -4035 ((-585 (-585 (-267 (-288 |#1|)))) (-585 (-267 (-379 (-879 |#1|)))) (-585 (-1082)))) (-15 -4035 ((-585 (-585 (-267 (-288 |#1|)))) (-585 (-267 (-379 (-879 |#1|)))))) (-15 -4063 ((-585 (-288 |#1|)) (-379 (-879 |#1|)) (-1082))) (-15 -4063 ((-585 (-585 (-288 |#1|))) (-585 (-379 (-879 |#1|))) (-585 (-1082)))) (-15 -3971 ((-1072 (-585 (-288 |#1|)) (-585 (-267 (-288 |#1|)))) (-267 (-379 (-879 |#1|))) (-1082))) (-15 -3971 ((-1072 (-585 (-288 |#1|)) (-585 (-267 (-288 |#1|)))) (-379 (-879 |#1|)) (-1082)))) (-13 (-280) (-782) (-135))) (T -1038)) +((-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-1072 (-585 (-288 *5)) (-585 (-267 (-288 *5))))) (-5 *1 (-1038 *5)))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-267 (-379 (-879 *5)))) (-5 *4 (-1082)) (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-1072 (-585 (-288 *5)) (-585 (-267 (-288 *5))))) (-5 *1 (-1038 *5)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-379 (-879 *5)))) (-5 *4 (-585 (-1082))) (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-585 (-288 *5)))) (-5 *1 (-1038 *5)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-288 *5))) (-5 *1 (-1038 *5)))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-585 (-267 (-379 (-879 *4))))) (-4 *4 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-585 (-267 (-288 *4))))) (-5 *1 (-1038 *4)))) (-4035 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-267 (-379 (-879 *5))))) (-5 *4 (-585 (-1082))) (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-585 (-267 (-288 *5))))) (-5 *1 (-1038 *5)))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-585 (-379 (-879 *4)))) (-4 *4 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-585 (-267 (-288 *4))))) (-5 *1 (-1038 *4)))) (-4035 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-379 (-879 *5)))) (-5 *4 (-585 (-1082))) (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-585 (-267 (-288 *5))))) (-5 *1 (-1038 *5)))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-267 (-379 (-879 *4)))) (-4 *4 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-267 (-288 *4)))) (-5 *1 (-1038 *4)))) (-4035 (*1 *2 *3 *4) (-12 (-5 *3 (-267 (-379 (-879 *5)))) (-5 *4 (-1082)) (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-267 (-288 *5)))) (-5 *1 (-1038 *5)))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-267 (-288 *4)))) (-5 *1 (-1038 *4)))) (-4035 (*1 *2 *3 *4) (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-267 (-288 *5)))) (-5 *1 (-1038 *5))))) +(-10 -7 (-15 -4035 ((-585 (-267 (-288 |#1|))) (-379 (-879 |#1|)) (-1082))) (-15 -4035 ((-585 (-267 (-288 |#1|))) (-379 (-879 |#1|)))) (-15 -4035 ((-585 (-267 (-288 |#1|))) (-267 (-379 (-879 |#1|))) (-1082))) (-15 -4035 ((-585 (-267 (-288 |#1|))) (-267 (-379 (-879 |#1|))))) (-15 -4035 ((-585 (-585 (-267 (-288 |#1|)))) (-585 (-379 (-879 |#1|))) (-585 (-1082)))) (-15 -4035 ((-585 (-585 (-267 (-288 |#1|)))) (-585 (-379 (-879 |#1|))))) (-15 -4035 ((-585 (-585 (-267 (-288 |#1|)))) (-585 (-267 (-379 (-879 |#1|)))) (-585 (-1082)))) (-15 -4035 ((-585 (-585 (-267 (-288 |#1|)))) (-585 (-267 (-379 (-879 |#1|)))))) (-15 -4063 ((-585 (-288 |#1|)) (-379 (-879 |#1|)) (-1082))) (-15 -4063 ((-585 (-585 (-288 |#1|))) (-585 (-379 (-879 |#1|))) (-585 (-1082)))) (-15 -3971 ((-1072 (-585 (-288 |#1|)) (-585 (-267 (-288 |#1|)))) (-267 (-379 (-879 |#1|))) (-1082))) (-15 -3971 ((-1072 (-585 (-288 |#1|)) (-585 (-267 (-288 |#1|)))) (-379 (-879 |#1|)) (-1082)))) +((-2093 (((-379 (-1078 (-288 |#1|))) (-1163 (-288 |#1|)) (-379 (-1078 (-288 |#1|))) (-519)) 27)) (-2196 (((-379 (-1078 (-288 |#1|))) (-379 (-1078 (-288 |#1|))) (-379 (-1078 (-288 |#1|))) (-379 (-1078 (-288 |#1|)))) 39))) +(((-1039 |#1|) (-10 -7 (-15 -2196 ((-379 (-1078 (-288 |#1|))) (-379 (-1078 (-288 |#1|))) (-379 (-1078 (-288 |#1|))) (-379 (-1078 (-288 |#1|))))) (-15 -2093 ((-379 (-1078 (-288 |#1|))) (-1163 (-288 |#1|)) (-379 (-1078 (-288 |#1|))) (-519)))) (-13 (-511) (-782))) (T -1039)) +((-2093 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-379 (-1078 (-288 *5)))) (-5 *3 (-1163 (-288 *5))) (-5 *4 (-519)) (-4 *5 (-13 (-511) (-782))) (-5 *1 (-1039 *5)))) (-2196 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-379 (-1078 (-288 *3)))) (-4 *3 (-13 (-511) (-782))) (-5 *1 (-1039 *3))))) +(-10 -7 (-15 -2196 ((-379 (-1078 (-288 |#1|))) (-379 (-1078 (-288 |#1|))) (-379 (-1078 (-288 |#1|))) (-379 (-1078 (-288 |#1|))))) (-15 -2093 ((-379 (-1078 (-288 |#1|))) (-1163 (-288 |#1|)) (-379 (-1078 (-288 |#1|))) (-519)))) +((-3442 (((-585 (-585 (-267 (-288 |#1|)))) (-585 (-267 (-288 |#1|))) (-585 (-1082))) 217) (((-585 (-267 (-288 |#1|))) (-288 |#1|) (-1082)) 20) (((-585 (-267 (-288 |#1|))) (-267 (-288 |#1|)) (-1082)) 26) (((-585 (-267 (-288 |#1|))) (-267 (-288 |#1|))) 25) (((-585 (-267 (-288 |#1|))) (-288 |#1|)) 21))) +(((-1040 |#1|) (-10 -7 (-15 -3442 ((-585 (-267 (-288 |#1|))) (-288 |#1|))) (-15 -3442 ((-585 (-267 (-288 |#1|))) (-267 (-288 |#1|)))) (-15 -3442 ((-585 (-267 (-288 |#1|))) (-267 (-288 |#1|)) (-1082))) (-15 -3442 ((-585 (-267 (-288 |#1|))) (-288 |#1|) (-1082))) (-15 -3442 ((-585 (-585 (-267 (-288 |#1|)))) (-585 (-267 (-288 |#1|))) (-585 (-1082))))) (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (T -1040)) +((-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1082))) (-4 *5 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-585 (-585 (-267 (-288 *5))))) (-5 *1 (-1040 *5)) (-5 *3 (-585 (-267 (-288 *5)))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-585 (-267 (-288 *5)))) (-5 *1 (-1040 *5)) (-5 *3 (-288 *5)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-585 (-267 (-288 *5)))) (-5 *1 (-1040 *5)) (-5 *3 (-267 (-288 *5))))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-585 (-267 (-288 *4)))) (-5 *1 (-1040 *4)) (-5 *3 (-267 (-288 *4))))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 (-585 (-267 (-288 *4)))) (-5 *1 (-1040 *4)) (-5 *3 (-288 *4))))) +(-10 -7 (-15 -3442 ((-585 (-267 (-288 |#1|))) (-288 |#1|))) (-15 -3442 ((-585 (-267 (-288 |#1|))) (-267 (-288 |#1|)))) (-15 -3442 ((-585 (-267 (-288 |#1|))) (-267 (-288 |#1|)) (-1082))) (-15 -3442 ((-585 (-267 (-288 |#1|))) (-288 |#1|) (-1082))) (-15 -3442 ((-585 (-585 (-267 (-288 |#1|)))) (-585 (-267 (-288 |#1|))) (-585 (-1082))))) +((-3630 ((|#2| |#2|) 20 (|has| |#1| (-782))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)) (-2176 ((|#2| |#2|) 19 (|has| |#1| (-782))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 15))) +(((-1041 |#1| |#2|) (-10 -7 (-15 -2176 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -3630 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-782)) (PROGN (-15 -2176 (|#2| |#2|)) (-15 -3630 (|#2| |#2|))) |%noBranch|)) (-1117) (-13 (-552 (-519) |#1|) (-10 -7 (-6 -4221) (-6 -4222)))) (T -1041)) +((-3630 (*1 *2 *2) (-12 (-4 *3 (-782)) (-4 *3 (-1117)) (-5 *1 (-1041 *3 *2)) (-4 *2 (-13 (-552 (-519) *3) (-10 -7 (-6 -4221) (-6 -4222)))))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-782)) (-4 *3 (-1117)) (-5 *1 (-1041 *3 *2)) (-4 *2 (-13 (-552 (-519) *3) (-10 -7 (-6 -4221) (-6 -4222)))))) (-3630 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1117)) (-5 *1 (-1041 *4 *2)) (-4 *2 (-13 (-552 (-519) *4) (-10 -7 (-6 -4221) (-6 -4222)))))) (-2176 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1117)) (-5 *1 (-1041 *4 *2)) (-4 *2 (-13 (-552 (-519) *4) (-10 -7 (-6 -4221) (-6 -4222))))))) +(-10 -7 (-15 -2176 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -3630 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-782)) (PROGN (-15 -2176 (|#2| |#2|)) (-15 -3630 (|#2| |#2|))) |%noBranch|)) +((-1430 (((-108) $ $) NIL)) (-2869 (((-1071 3 |#1|) $) 106)) (-1420 (((-108) $) 72)) (-3013 (($ $ (-585 (-870 |#1|))) 20) (($ $ (-585 (-585 |#1|))) 75) (($ (-585 (-870 |#1|))) 74) (((-585 (-870 |#1|)) $) 73)) (-2636 (((-108) $) 41)) (-2789 (($ $ (-870 |#1|)) 46) (($ $ (-585 |#1|)) 51) (($ $ (-705)) 53) (($ (-870 |#1|)) 47) (((-870 |#1|) $) 45)) (-3405 (((-2 (|:| -2239 (-705)) (|:| |curves| (-705)) (|:| |polygons| (-705)) (|:| |constructs| (-705))) $) 104)) (-2738 (((-705) $) 26)) (-1323 (((-705) $) 25)) (-3955 (($ $ (-705) (-870 |#1|)) 39)) (-3388 (((-108) $) 82)) (-3755 (($ $ (-585 (-585 (-870 |#1|))) (-585 (-156)) (-156)) 89) (($ $ (-585 (-585 (-585 |#1|))) (-585 (-156)) (-156)) 91) (($ $ (-585 (-585 (-870 |#1|))) (-108) (-108)) 85) (($ $ (-585 (-585 (-585 |#1|))) (-108) (-108)) 93) (($ (-585 (-585 (-870 |#1|)))) 86) (($ (-585 (-585 (-870 |#1|))) (-108) (-108)) 87) (((-585 (-585 (-870 |#1|))) $) 84)) (-2500 (($ (-585 $)) 28) (($ $ $) 29)) (-2129 (((-585 (-156)) $) 102)) (-4041 (((-585 (-870 |#1|)) $) 97)) (-1329 (((-585 (-585 (-156))) $) 101)) (-2372 (((-585 (-585 (-585 (-870 |#1|)))) $) NIL)) (-4181 (((-585 (-585 (-585 (-705)))) $) 99)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1901 (((-705) $ (-585 (-870 |#1|))) 37)) (-1313 (((-108) $) 54)) (-3833 (($ $ (-585 (-870 |#1|))) 56) (($ $ (-585 (-585 |#1|))) 62) (($ (-585 (-870 |#1|))) 57) (((-585 (-870 |#1|)) $) 55)) (-3138 (($) 23) (($ (-1071 3 |#1|)) 24)) (-2449 (($ $) 35)) (-1205 (((-585 $) $) 34)) (-2030 (($ (-585 $)) 31)) (-1311 (((-585 $) $) 33)) (-2217 (((-790) $) 110)) (-1940 (((-108) $) 64)) (-2582 (($ $ (-585 (-870 |#1|))) 66) (($ $ (-585 (-585 |#1|))) 69) (($ (-585 (-870 |#1|))) 67) (((-585 (-870 |#1|)) $) 65)) (-2191 (($ $) 105)) (-1543 (((-108) $ $) NIL))) +(((-1042 |#1|) (-1043 |#1|) (-968)) (T -1042)) +NIL +(-1043 |#1|) +((-1430 (((-108) $ $) 7)) (-2869 (((-1071 3 |#1|) $) 13)) (-1420 (((-108) $) 29)) (-3013 (($ $ (-585 (-870 |#1|))) 33) (($ $ (-585 (-585 |#1|))) 32) (($ (-585 (-870 |#1|))) 31) (((-585 (-870 |#1|)) $) 30)) (-2636 (((-108) $) 44)) (-2789 (($ $ (-870 |#1|)) 49) (($ $ (-585 |#1|)) 48) (($ $ (-705)) 47) (($ (-870 |#1|)) 46) (((-870 |#1|) $) 45)) (-3405 (((-2 (|:| -2239 (-705)) (|:| |curves| (-705)) (|:| |polygons| (-705)) (|:| |constructs| (-705))) $) 15)) (-2738 (((-705) $) 58)) (-1323 (((-705) $) 59)) (-3955 (($ $ (-705) (-870 |#1|)) 50)) (-3388 (((-108) $) 21)) (-3755 (($ $ (-585 (-585 (-870 |#1|))) (-585 (-156)) (-156)) 28) (($ $ (-585 (-585 (-585 |#1|))) (-585 (-156)) (-156)) 27) (($ $ (-585 (-585 (-870 |#1|))) (-108) (-108)) 26) (($ $ (-585 (-585 (-585 |#1|))) (-108) (-108)) 25) (($ (-585 (-585 (-870 |#1|)))) 24) (($ (-585 (-585 (-870 |#1|))) (-108) (-108)) 23) (((-585 (-585 (-870 |#1|))) $) 22)) (-2500 (($ (-585 $)) 57) (($ $ $) 56)) (-2129 (((-585 (-156)) $) 16)) (-4041 (((-585 (-870 |#1|)) $) 20)) (-1329 (((-585 (-585 (-156))) $) 17)) (-2372 (((-585 (-585 (-585 (-870 |#1|)))) $) 18)) (-4181 (((-585 (-585 (-585 (-705)))) $) 19)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-1901 (((-705) $ (-585 (-870 |#1|))) 51)) (-1313 (((-108) $) 39)) (-3833 (($ $ (-585 (-870 |#1|))) 43) (($ $ (-585 (-585 |#1|))) 42) (($ (-585 (-870 |#1|))) 41) (((-585 (-870 |#1|)) $) 40)) (-3138 (($) 61) (($ (-1071 3 |#1|)) 60)) (-2449 (($ $) 52)) (-1205 (((-585 $) $) 53)) (-2030 (($ (-585 $)) 55)) (-1311 (((-585 $) $) 54)) (-2217 (((-790) $) 11)) (-1940 (((-108) $) 34)) (-2582 (($ $ (-585 (-870 |#1|))) 38) (($ $ (-585 (-585 |#1|))) 37) (($ (-585 (-870 |#1|))) 36) (((-585 (-870 |#1|)) $) 35)) (-2191 (($ $) 14)) (-1543 (((-108) $ $) 6))) +(((-1043 |#1|) (-1194) (-968)) (T -1043)) +((-2217 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-790)))) (-3138 (*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-968)))) (-3138 (*1 *1 *2) (-12 (-5 *2 (-1071 3 *3)) (-4 *3 (-968)) (-4 *1 (-1043 *3)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-705)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-705)))) (-2500 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-968)))) (-2030 (*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) (-1311 (*1 *2 *1) (-12 (-4 *3 (-968)) (-5 *2 (-585 *1)) (-4 *1 (-1043 *3)))) (-1205 (*1 *2 *1) (-12 (-4 *3 (-968)) (-5 *2 (-585 *1)) (-4 *1 (-1043 *3)))) (-2449 (*1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-968)))) (-1901 (*1 *2 *1 *3) (-12 (-5 *3 (-585 (-870 *4))) (-4 *1 (-1043 *4)) (-4 *4 (-968)) (-5 *2 (-705)))) (-3955 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-705)) (-5 *3 (-870 *4)) (-4 *1 (-1043 *4)) (-4 *4 (-968)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-870 *3)) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) (-2789 (*1 *1 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-968)) (-4 *1 (-1043 *3)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-870 *3)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-108)))) (-3833 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-870 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) (-3833 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) (-3833 (*1 *1 *2) (-12 (-5 *2 (-585 (-870 *3))) (-4 *3 (-968)) (-4 *1 (-1043 *3)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-870 *3))))) (-1313 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-108)))) (-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-870 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) (-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-585 (-870 *3))) (-4 *3 (-968)) (-4 *1 (-1043 *3)))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-870 *3))))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-108)))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-870 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) (-3013 (*1 *1 *2) (-12 (-5 *2 (-585 (-870 *3))) (-4 *3 (-968)) (-4 *1 (-1043 *3)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-870 *3))))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-108)))) (-3755 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-585 (-870 *5)))) (-5 *3 (-585 (-156))) (-5 *4 (-156)) (-4 *1 (-1043 *5)) (-4 *5 (-968)))) (-3755 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-585 (-156))) (-5 *4 (-156)) (-4 *1 (-1043 *5)) (-4 *5 (-968)))) (-3755 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-870 *4)))) (-5 *3 (-108)) (-4 *1 (-1043 *4)) (-4 *4 (-968)))) (-3755 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-108)) (-4 *1 (-1043 *4)) (-4 *4 (-968)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-870 *3)))) (-4 *3 (-968)) (-4 *1 (-1043 *3)))) (-3755 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-585 (-585 (-870 *4)))) (-5 *3 (-108)) (-4 *4 (-968)) (-4 *1 (-1043 *4)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-585 (-870 *3)))))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-108)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-870 *3))))) (-4181 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-585 (-585 (-705))))))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-585 (-585 (-870 *3))))))) (-1329 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-585 (-156)))))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-156))))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-2 (|:| -2239 (-705)) (|:| |curves| (-705)) (|:| |polygons| (-705)) (|:| |constructs| (-705)))))) (-2191 (*1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-968)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-1071 3 *3))))) +(-13 (-1011) (-10 -8 (-15 -3138 ($)) (-15 -3138 ($ (-1071 3 |t#1|))) (-15 -1323 ((-705) $)) (-15 -2738 ((-705) $)) (-15 -2500 ($ (-585 $))) (-15 -2500 ($ $ $)) (-15 -2030 ($ (-585 $))) (-15 -1311 ((-585 $) $)) (-15 -1205 ((-585 $) $)) (-15 -2449 ($ $)) (-15 -1901 ((-705) $ (-585 (-870 |t#1|)))) (-15 -3955 ($ $ (-705) (-870 |t#1|))) (-15 -2789 ($ $ (-870 |t#1|))) (-15 -2789 ($ $ (-585 |t#1|))) (-15 -2789 ($ $ (-705))) (-15 -2789 ($ (-870 |t#1|))) (-15 -2789 ((-870 |t#1|) $)) (-15 -2636 ((-108) $)) (-15 -3833 ($ $ (-585 (-870 |t#1|)))) (-15 -3833 ($ $ (-585 (-585 |t#1|)))) (-15 -3833 ($ (-585 (-870 |t#1|)))) (-15 -3833 ((-585 (-870 |t#1|)) $)) (-15 -1313 ((-108) $)) (-15 -2582 ($ $ (-585 (-870 |t#1|)))) (-15 -2582 ($ $ (-585 (-585 |t#1|)))) (-15 -2582 ($ (-585 (-870 |t#1|)))) (-15 -2582 ((-585 (-870 |t#1|)) $)) (-15 -1940 ((-108) $)) (-15 -3013 ($ $ (-585 (-870 |t#1|)))) (-15 -3013 ($ $ (-585 (-585 |t#1|)))) (-15 -3013 ($ (-585 (-870 |t#1|)))) (-15 -3013 ((-585 (-870 |t#1|)) $)) (-15 -1420 ((-108) $)) (-15 -3755 ($ $ (-585 (-585 (-870 |t#1|))) (-585 (-156)) (-156))) (-15 -3755 ($ $ (-585 (-585 (-585 |t#1|))) (-585 (-156)) (-156))) (-15 -3755 ($ $ (-585 (-585 (-870 |t#1|))) (-108) (-108))) (-15 -3755 ($ $ (-585 (-585 (-585 |t#1|))) (-108) (-108))) (-15 -3755 ($ (-585 (-585 (-870 |t#1|))))) (-15 -3755 ($ (-585 (-585 (-870 |t#1|))) (-108) (-108))) (-15 -3755 ((-585 (-585 (-870 |t#1|))) $)) (-15 -3388 ((-108) $)) (-15 -4041 ((-585 (-870 |t#1|)) $)) (-15 -4181 ((-585 (-585 (-585 (-705)))) $)) (-15 -2372 ((-585 (-585 (-585 (-870 |t#1|)))) $)) (-15 -1329 ((-585 (-585 (-156))) $)) (-15 -2129 ((-585 (-156)) $)) (-15 -3405 ((-2 (|:| -2239 (-705)) (|:| |curves| (-705)) (|:| |polygons| (-705)) (|:| |constructs| (-705))) $)) (-15 -2191 ($ $)) (-15 -2869 ((-1071 3 |t#1|) $)) (-15 -2217 ((-790) $)))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-2632 (((-585 (-1087)) (-1065)) 8))) +(((-1044) (-10 -7 (-15 -2632 ((-585 (-1087)) (-1065))))) (T -1044)) +((-2632 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-585 (-1087))) (-5 *1 (-1044))))) +(-10 -7 (-15 -2632 ((-585 (-1087)) (-1065)))) +((-2774 (((-1168) (-585 (-790))) 23) (((-1168) (-790)) 22)) (-1334 (((-1168) (-585 (-790))) 21) (((-1168) (-790)) 20)) (-2021 (((-1168) (-585 (-790))) 19) (((-1168) (-790)) 11) (((-1168) (-1065) (-790)) 17))) +(((-1045) (-10 -7 (-15 -2021 ((-1168) (-1065) (-790))) (-15 -2021 ((-1168) (-790))) (-15 -1334 ((-1168) (-790))) (-15 -2774 ((-1168) (-790))) (-15 -2021 ((-1168) (-585 (-790)))) (-15 -1334 ((-1168) (-585 (-790)))) (-15 -2774 ((-1168) (-585 (-790)))))) (T -1045)) +((-2774 (*1 *2 *3) (-12 (-5 *3 (-585 (-790))) (-5 *2 (-1168)) (-5 *1 (-1045)))) (-1334 (*1 *2 *3) (-12 (-5 *3 (-585 (-790))) (-5 *2 (-1168)) (-5 *1 (-1045)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-585 (-790))) (-5 *2 (-1168)) (-5 *1 (-1045)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1168)) (-5 *1 (-1045)))) (-1334 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1168)) (-5 *1 (-1045)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1168)) (-5 *1 (-1045)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *3 (-1065)) (-5 *4 (-790)) (-5 *2 (-1168)) (-5 *1 (-1045))))) +(-10 -7 (-15 -2021 ((-1168) (-1065) (-790))) (-15 -2021 ((-1168) (-790))) (-15 -1334 ((-1168) (-790))) (-15 -2774 ((-1168) (-790))) (-15 -2021 ((-1168) (-585 (-790)))) (-15 -1334 ((-1168) (-585 (-790)))) (-15 -2774 ((-1168) (-585 (-790))))) +((-1831 (($ $ $) 10)) (-1989 (($ $) 9)) (-3872 (($ $ $) 13)) (-3793 (($ $ $) 15)) (-1600 (($ $ $) 12)) (-2628 (($ $ $) 14)) (-1810 (($ $) 17)) (-2767 (($ $) 16)) (-1478 (($ $) 6)) (-1222 (($ $ $) 11) (($ $) 7)) (-2144 (($ $ $) 8))) +(((-1046) (-1194)) (T -1046)) +((-1810 (*1 *1 *1) (-4 *1 (-1046))) (-2767 (*1 *1 *1) (-4 *1 (-1046))) (-3793 (*1 *1 *1 *1) (-4 *1 (-1046))) (-2628 (*1 *1 *1 *1) (-4 *1 (-1046))) (-3872 (*1 *1 *1 *1) (-4 *1 (-1046))) (-1600 (*1 *1 *1 *1) (-4 *1 (-1046))) (-1222 (*1 *1 *1 *1) (-4 *1 (-1046))) (-1831 (*1 *1 *1 *1) (-4 *1 (-1046))) (-1989 (*1 *1 *1) (-4 *1 (-1046))) (-2144 (*1 *1 *1 *1) (-4 *1 (-1046))) (-1222 (*1 *1 *1) (-4 *1 (-1046))) (-1478 (*1 *1 *1) (-4 *1 (-1046)))) +(-13 (-10 -8 (-15 -1478 ($ $)) (-15 -1222 ($ $)) (-15 -2144 ($ $ $)) (-15 -1989 ($ $)) (-15 -1831 ($ $ $)) (-15 -1222 ($ $ $)) (-15 -1600 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -2628 ($ $ $)) (-15 -3793 ($ $ $)) (-15 -2767 ($ $)) (-15 -1810 ($ $)))) +((-1430 (((-108) $ $) 41)) (-3493 ((|#1| $) 15)) (-1856 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-2881 (((-108) $) 17)) (-2853 (($ $ |#1|) 28)) (-1604 (($ $ (-108)) 30)) (-1892 (($ $) 31)) (-4020 (($ $ |#2|) 29)) (-1266 (((-1065) $) NIL)) (-3301 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-4139 (((-1029) $) NIL)) (-3108 (((-108) $) 14)) (-1548 (($) 10)) (-2449 (($ $) 27)) (-2228 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1890 |#2|))) 21) (((-585 $) (-585 (-2 (|:| |val| |#1|) (|:| -1890 |#2|)))) 24) (((-585 $) |#1| (-585 |#2|)) 26)) (-1680 ((|#2| $) 16)) (-2217 (((-790) $) 50)) (-1543 (((-108) $ $) 39))) +(((-1047 |#1| |#2|) (-13 (-1011) (-10 -8 (-15 -1548 ($)) (-15 -3108 ((-108) $)) (-15 -3493 (|#1| $)) (-15 -1680 (|#2| $)) (-15 -2881 ((-108) $)) (-15 -2228 ($ |#1| |#2| (-108))) (-15 -2228 ($ |#1| |#2|)) (-15 -2228 ($ (-2 (|:| |val| |#1|) (|:| -1890 |#2|)))) (-15 -2228 ((-585 $) (-585 (-2 (|:| |val| |#1|) (|:| -1890 |#2|))))) (-15 -2228 ((-585 $) |#1| (-585 |#2|))) (-15 -2449 ($ $)) (-15 -2853 ($ $ |#1|)) (-15 -4020 ($ $ |#2|)) (-15 -1604 ($ $ (-108))) (-15 -1892 ($ $)) (-15 -3301 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -1856 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1011) (-33)) (-13 (-1011) (-33))) (T -1047)) +((-1548 (*1 *1) (-12 (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) (-4 *3 (-13 (-1011) (-33))))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33))))) (-3493 (*1 *2 *1) (-12 (-4 *2 (-13 (-1011) (-33))) (-5 *1 (-1047 *2 *3)) (-4 *3 (-13 (-1011) (-33))))) (-1680 (*1 *2 *1) (-12 (-4 *2 (-13 (-1011) (-33))) (-5 *1 (-1047 *3 *2)) (-4 *3 (-13 (-1011) (-33))))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33))))) (-2228 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) (-4 *3 (-13 (-1011) (-33))))) (-2228 (*1 *1 *2 *3) (-12 (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) (-4 *3 (-13 (-1011) (-33))))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1890 *4))) (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33))) (-5 *1 (-1047 *3 *4)))) (-2228 (*1 *2 *3) (-12 (-5 *3 (-585 (-2 (|:| |val| *4) (|:| -1890 *5)))) (-4 *4 (-13 (-1011) (-33))) (-4 *5 (-13 (-1011) (-33))) (-5 *2 (-585 (-1047 *4 *5))) (-5 *1 (-1047 *4 *5)))) (-2228 (*1 *2 *3 *4) (-12 (-5 *4 (-585 *5)) (-4 *5 (-13 (-1011) (-33))) (-5 *2 (-585 (-1047 *3 *5))) (-5 *1 (-1047 *3 *5)) (-4 *3 (-13 (-1011) (-33))))) (-2449 (*1 *1 *1) (-12 (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) (-4 *3 (-13 (-1011) (-33))))) (-2853 (*1 *1 *1 *2) (-12 (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) (-4 *3 (-13 (-1011) (-33))))) (-4020 (*1 *1 *1 *2) (-12 (-5 *1 (-1047 *3 *2)) (-4 *3 (-13 (-1011) (-33))) (-4 *2 (-13 (-1011) (-33))))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33))))) (-1892 (*1 *1 *1) (-12 (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) (-4 *3 (-13 (-1011) (-33))))) (-3301 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1011) (-33))) (-4 *6 (-13 (-1011) (-33))) (-5 *2 (-108)) (-5 *1 (-1047 *5 *6)))) (-1856 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1011) (-33))) (-5 *2 (-108)) (-5 *1 (-1047 *4 *5)) (-4 *4 (-13 (-1011) (-33)))))) +(-13 (-1011) (-10 -8 (-15 -1548 ($)) (-15 -3108 ((-108) $)) (-15 -3493 (|#1| $)) (-15 -1680 (|#2| $)) (-15 -2881 ((-108) $)) (-15 -2228 ($ |#1| |#2| (-108))) (-15 -2228 ($ |#1| |#2|)) (-15 -2228 ($ (-2 (|:| |val| |#1|) (|:| -1890 |#2|)))) (-15 -2228 ((-585 $) (-585 (-2 (|:| |val| |#1|) (|:| -1890 |#2|))))) (-15 -2228 ((-585 $) |#1| (-585 |#2|))) (-15 -2449 ($ $)) (-15 -2853 ($ $ |#1|)) (-15 -4020 ($ $ |#2|)) (-15 -1604 ($ $ (-108))) (-15 -1892 ($ $)) (-15 -3301 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -1856 ((-108) $ $ (-1 (-108) |#2| |#2|))))) +((-1430 (((-108) $ $) NIL (|has| (-1047 |#1| |#2|) (-1011)))) (-3493 (((-1047 |#1| |#2|) $) 25)) (-1575 (($ $) 76)) (-3894 (((-108) (-1047 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-2195 (($ $ $ (-585 (-1047 |#1| |#2|))) 90) (($ $ $ (-585 (-1047 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-1473 (((-108) $ (-705)) NIL)) (-2410 (((-1047 |#1| |#2|) $ (-1047 |#1| |#2|)) 43 (|has| $ (-6 -4222)))) (-2421 (((-1047 |#1| |#2|) $ "value" (-1047 |#1| |#2|)) NIL (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) 41 (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-1753 (((-585 (-2 (|:| |val| |#1|) (|:| -1890 |#2|))) $) 80)) (-2502 (($ (-1047 |#1| |#2|) $) 39)) (-1438 (($ (-1047 |#1| |#2|) $) 31)) (-3844 (((-585 (-1047 |#1| |#2|)) $) NIL (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) 51)) (-1260 (((-108) (-1047 |#1| |#2|) $) 82)) (-3458 (((-108) $ $) NIL (|has| (-1047 |#1| |#2|) (-1011)))) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 (-1047 |#1| |#2|)) $) 55 (|has| $ (-6 -4221)))) (-1933 (((-108) (-1047 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-1047 |#1| |#2|) (-1011))))) (-3850 (($ (-1 (-1047 |#1| |#2|) (-1047 |#1| |#2|)) $) 47 (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-1047 |#1| |#2|) (-1047 |#1| |#2|)) $) 46)) (-2768 (((-108) $ (-705)) NIL)) (-1281 (((-585 (-1047 |#1| |#2|)) $) 53)) (-1668 (((-108) $) 42)) (-1266 (((-1065) $) NIL (|has| (-1047 |#1| |#2|) (-1011)))) (-4139 (((-1029) $) NIL (|has| (-1047 |#1| |#2|) (-1011)))) (-1436 (((-3 $ "failed") $) 75)) (-2379 (((-108) (-1 (-108) (-1047 |#1| |#2|)) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-1047 |#1| |#2|)))) NIL (-12 (|has| (-1047 |#1| |#2|) (-282 (-1047 |#1| |#2|))) (|has| (-1047 |#1| |#2|) (-1011)))) (($ $ (-267 (-1047 |#1| |#2|))) NIL (-12 (|has| (-1047 |#1| |#2|) (-282 (-1047 |#1| |#2|))) (|has| (-1047 |#1| |#2|) (-1011)))) (($ $ (-1047 |#1| |#2|) (-1047 |#1| |#2|)) NIL (-12 (|has| (-1047 |#1| |#2|) (-282 (-1047 |#1| |#2|))) (|has| (-1047 |#1| |#2|) (-1011)))) (($ $ (-585 (-1047 |#1| |#2|)) (-585 (-1047 |#1| |#2|))) NIL (-12 (|has| (-1047 |#1| |#2|) (-282 (-1047 |#1| |#2|))) (|has| (-1047 |#1| |#2|) (-1011))))) (-4091 (((-108) $ $) 50)) (-3108 (((-108) $) 22)) (-1548 (($) 24)) (-2598 (((-1047 |#1| |#2|) $ "value") NIL)) (-1763 (((-519) $ $) NIL)) (-3096 (((-108) $) 44)) (-4155 (((-705) (-1 (-108) (-1047 |#1| |#2|)) $) NIL (|has| $ (-6 -4221))) (((-705) (-1047 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-1047 |#1| |#2|) (-1011))))) (-2449 (($ $) 49)) (-2228 (($ (-1047 |#1| |#2|)) 9) (($ |#1| |#2| (-585 $)) 12) (($ |#1| |#2| (-585 (-1047 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-585 |#2|)) 17)) (-4119 (((-585 |#2|) $) 81)) (-2217 (((-790) $) 73 (|has| (-1047 |#1| |#2|) (-559 (-790))))) (-2018 (((-585 $) $) 28)) (-2915 (((-108) $ $) NIL (|has| (-1047 |#1| |#2|) (-1011)))) (-1778 (((-108) (-1 (-108) (-1047 |#1| |#2|)) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 64 (|has| (-1047 |#1| |#2|) (-1011)))) (-3532 (((-705) $) 58 (|has| $ (-6 -4221))))) +(((-1048 |#1| |#2|) (-13 (-933 (-1047 |#1| |#2|)) (-10 -8 (-6 -4222) (-6 -4221) (-15 -1436 ((-3 $ "failed") $)) (-15 -1575 ($ $)) (-15 -2228 ($ (-1047 |#1| |#2|))) (-15 -2228 ($ |#1| |#2| (-585 $))) (-15 -2228 ($ |#1| |#2| (-585 (-1047 |#1| |#2|)))) (-15 -2228 ($ |#1| |#2| |#1| (-585 |#2|))) (-15 -4119 ((-585 |#2|) $)) (-15 -1753 ((-585 (-2 (|:| |val| |#1|) (|:| -1890 |#2|))) $)) (-15 -1260 ((-108) (-1047 |#1| |#2|) $)) (-15 -3894 ((-108) (-1047 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1438 ($ (-1047 |#1| |#2|) $)) (-15 -2502 ($ (-1047 |#1| |#2|) $)) (-15 -2195 ($ $ $ (-585 (-1047 |#1| |#2|)))) (-15 -2195 ($ $ $ (-585 (-1047 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1011) (-33)) (-13 (-1011) (-33))) (T -1048)) +((-1436 (*1 *1 *1) (|partial| -12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1011) (-33))) (-4 *3 (-13 (-1011) (-33))))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1011) (-33))) (-4 *3 (-13 (-1011) (-33))))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33))) (-5 *1 (-1048 *3 *4)))) (-2228 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-585 (-1048 *2 *3))) (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1011) (-33))) (-4 *3 (-13 (-1011) (-33))))) (-2228 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-585 (-1047 *2 *3))) (-4 *2 (-13 (-1011) (-33))) (-4 *3 (-13 (-1011) (-33))) (-5 *1 (-1048 *2 *3)))) (-2228 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-585 *3)) (-4 *3 (-13 (-1011) (-33))) (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1011) (-33))))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-585 *4)) (-5 *1 (-1048 *3 *4)) (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33))))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) (-5 *1 (-1048 *3 *4)) (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33))))) (-1260 (*1 *2 *3 *1) (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-1011) (-33))) (-4 *5 (-13 (-1011) (-33))) (-5 *2 (-108)) (-5 *1 (-1048 *4 *5)))) (-3894 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1047 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1011) (-33))) (-4 *6 (-13 (-1011) (-33))) (-5 *2 (-108)) (-5 *1 (-1048 *5 *6)))) (-1438 (*1 *1 *2 *1) (-12 (-5 *2 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33))) (-5 *1 (-1048 *3 *4)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33))) (-5 *1 (-1048 *3 *4)))) (-2195 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-585 (-1047 *3 *4))) (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33))) (-5 *1 (-1048 *3 *4)))) (-2195 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-1047 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1011) (-33))) (-4 *5 (-13 (-1011) (-33))) (-5 *1 (-1048 *4 *5))))) +(-13 (-933 (-1047 |#1| |#2|)) (-10 -8 (-6 -4222) (-6 -4221) (-15 -1436 ((-3 $ "failed") $)) (-15 -1575 ($ $)) (-15 -2228 ($ (-1047 |#1| |#2|))) (-15 -2228 ($ |#1| |#2| (-585 $))) (-15 -2228 ($ |#1| |#2| (-585 (-1047 |#1| |#2|)))) (-15 -2228 ($ |#1| |#2| |#1| (-585 |#2|))) (-15 -4119 ((-585 |#2|) $)) (-15 -1753 ((-585 (-2 (|:| |val| |#1|) (|:| -1890 |#2|))) $)) (-15 -1260 ((-108) (-1047 |#1| |#2|) $)) (-15 -3894 ((-108) (-1047 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1438 ($ (-1047 |#1| |#2|) $)) (-15 -2502 ($ (-1047 |#1| |#2|) $)) (-15 -2195 ($ $ $ (-585 (-1047 |#1| |#2|)))) (-15 -2195 ($ $ $ (-585 (-1047 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3635 (($ $) NIL)) (-1871 ((|#2| $) NIL)) (-3411 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1425 (($ (-625 |#2|)) 45)) (-1413 (((-108) $) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-1889 (($ |#2|) 9)) (-2249 (($) NIL T CONST)) (-3196 (($ $) 58 (|has| |#2| (-280)))) (-4159 (((-216 |#1| |#2|) $ (-519)) 31)) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#2| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-3 |#2| "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| |#2| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#2| (-959 (-379 (-519))))) ((|#2| $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL) (((-625 |#2|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) 72)) (-3229 (((-705) $) 60 (|has| |#2| (-511)))) (-3659 ((|#2| $ (-519) (-519)) NIL)) (-3844 (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1568 (((-108) $) NIL)) (-2518 (((-705) $) 62 (|has| |#2| (-511)))) (-3885 (((-585 (-216 |#1| |#2|)) $) 66 (|has| |#2| (-511)))) (-1426 (((-705) $) NIL)) (-1437 (((-705) $) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2749 ((|#2| $) 56 (|has| |#2| (-6 (-4223 "*"))))) (-4161 (((-519) $) NIL)) (-2918 (((-519) $) NIL)) (-3725 (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-1238 (((-519) $) NIL)) (-2012 (((-519) $) NIL)) (-1377 (($ (-585 (-585 |#2|))) 26)) (-3850 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2723 (((-585 (-585 |#2|)) $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-1452 (((-3 $ "failed") $) 69 (|has| |#2| (-335)))) (-4139 (((-1029) $) NIL)) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-511)))) (-2379 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#2| $ (-519) (-519) |#2|) NIL) ((|#2| $ (-519) (-519)) NIL)) (-2181 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-705)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-3619 ((|#2| $) NIL)) (-1757 (($ (-585 |#2|)) 40)) (-2464 (((-108) $) NIL)) (-1472 (((-216 |#1| |#2|) $) NIL)) (-3406 ((|#2| $) 54 (|has| |#2| (-6 (-4223 "*"))))) (-4155 (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2449 (($ $) NIL)) (-1446 (((-495) $) 81 (|has| |#2| (-560 (-495))))) (-3067 (((-216 |#1| |#2|) $ (-519)) 33)) (-2217 (((-790) $) 36) (($ (-519)) NIL) (($ (-379 (-519))) NIL (|has| |#2| (-959 (-379 (-519))))) (($ |#2|) NIL) (((-625 |#2|) $) 42)) (-3594 (((-705)) 17)) (-1778 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-3238 (((-108) $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 11 T CONST)) (-3611 (($) 14 T CONST)) (-2242 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-705)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ |#2|) NIL (|has| |#2| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) 52) (($ $ (-519)) 71 (|has| |#2| (-335)))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-216 |#1| |#2|) $ (-216 |#1| |#2|)) 48) (((-216 |#1| |#2|) (-216 |#1| |#2|) $) 50)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-1049 |#1| |#2|) (-13 (-1032 |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) (-559 (-625 |#2|)) (-10 -8 (-15 -3635 ($ $)) (-15 -1425 ($ (-625 |#2|))) (-15 -2217 ((-625 |#2|) $)) (IF (|has| |#2| (-6 (-4223 "*"))) (-6 -4210) |%noBranch|) (IF (|has| |#2| (-6 (-4223 "*"))) (IF (|has| |#2| (-6 -4218)) (-6 -4218) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|))) (-705) (-968)) (T -1049)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-625 *4)) (-5 *1 (-1049 *3 *4)) (-14 *3 (-705)) (-4 *4 (-968)))) (-3635 (*1 *1 *1) (-12 (-5 *1 (-1049 *2 *3)) (-14 *2 (-705)) (-4 *3 (-968)))) (-1425 (*1 *1 *2) (-12 (-5 *2 (-625 *4)) (-4 *4 (-968)) (-5 *1 (-1049 *3 *4)) (-14 *3 (-705))))) +(-13 (-1032 |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) (-559 (-625 |#2|)) (-10 -8 (-15 -3635 ($ $)) (-15 -1425 ($ (-625 |#2|))) (-15 -2217 ((-625 |#2|) $)) (IF (|has| |#2| (-6 (-4223 "*"))) (-6 -4210) |%noBranch|) (IF (|has| |#2| (-6 (-4223 "*"))) (IF (|has| |#2| (-6 -4218)) (-6 -4218) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-560 (-495))) (-6 (-560 (-495))) |%noBranch|))) +((-4079 (($ $) 19)) (-2344 (($ $ (-132)) 10) (($ $ (-129)) 14)) (-3808 (((-108) $ $) 24)) (-1785 (($ $) 17)) (-2598 (((-132) $ (-519) (-132)) NIL) (((-132) $ (-519)) NIL) (($ $ (-1130 (-519))) NIL) (($ $ $) 29)) (-2217 (($ (-132)) 27) (((-790) $) NIL))) +(((-1050 |#1|) (-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -2598 (|#1| |#1| |#1|)) (-15 -2344 (|#1| |#1| (-129))) (-15 -2344 (|#1| |#1| (-132))) (-15 -2217 (|#1| (-132))) (-15 -3808 ((-108) |#1| |#1|)) (-15 -4079 (|#1| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2598 (|#1| |#1| (-1130 (-519)))) (-15 -2598 ((-132) |#1| (-519))) (-15 -2598 ((-132) |#1| (-519) (-132)))) (-1051)) (T -1050)) +NIL +(-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -2598 (|#1| |#1| |#1|)) (-15 -2344 (|#1| |#1| (-129))) (-15 -2344 (|#1| |#1| (-132))) (-15 -2217 (|#1| (-132))) (-15 -3808 ((-108) |#1| |#1|)) (-15 -4079 (|#1| |#1|)) (-15 -1785 (|#1| |#1|)) (-15 -2598 (|#1| |#1| (-1130 (-519)))) (-15 -2598 ((-132) |#1| (-519))) (-15 -2598 ((-132) |#1| (-519) (-132)))) +((-1430 (((-108) $ $) 19 (|has| (-132) (-1011)))) (-1594 (($ $) 120)) (-4079 (($ $) 121)) (-2344 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-1583 (((-1168) $ (-519) (-519)) 40 (|has| $ (-6 -4222)))) (-3786 (((-108) $ $) 118)) (-3763 (((-108) $ $ (-519)) 117)) (-2482 (((-585 $) $ (-132)) 110) (((-585 $) $ (-129)) 109)) (-2629 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-782)))) (-2078 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4222))) (($ $) 88 (-12 (|has| (-132) (-782)) (|has| $ (-6 -4222))))) (-3276 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-782)))) (-1473 (((-108) $ (-705)) 8)) (-2421 (((-132) $ (-519) (-132)) 52 (|has| $ (-6 -4222))) (((-132) $ (-1130 (-519)) (-132)) 58 (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-2900 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-1998 (($ $) 90 (|has| $ (-6 -4222)))) (-1868 (($ $) 100)) (-2567 (($ $ (-1130 (-519)) $) 114)) (-2366 (($ $) 78 (-12 (|has| (-132) (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ (-132) $) 77 (-12 (|has| (-132) (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4221)))) (-3874 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1011)) (|has| $ (-6 -4221)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4221))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4221)))) (-3865 (((-132) $ (-519) (-132)) 53 (|has| $ (-6 -4222)))) (-3659 (((-132) $ (-519)) 51)) (-3808 (((-108) $ $) 119)) (-3297 (((-519) (-1 (-108) (-132)) $) 97) (((-519) (-132) $) 96 (|has| (-132) (-1011))) (((-519) (-132) $ (-519)) 95 (|has| (-132) (-1011))) (((-519) $ $ (-519)) 113) (((-519) (-129) $ (-519)) 112)) (-3844 (((-585 (-132)) $) 30 (|has| $ (-6 -4221)))) (-1822 (($ (-705) (-132)) 69)) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 43 (|has| (-519) (-782)))) (-2864 (($ $ $) 87 (|has| (-132) (-782)))) (-2500 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-782)))) (-3725 (((-585 (-132)) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 44 (|has| (-519) (-782)))) (-2489 (($ $ $) 86 (|has| (-132) (-782)))) (-1469 (((-108) $ $ (-132)) 115)) (-4135 (((-705) $ $ (-132)) 116)) (-3850 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1332 (($ $) 122)) (-1785 (($ $) 123)) (-2768 (((-108) $ (-705)) 10)) (-2912 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-1266 (((-1065) $) 22 (|has| (-132) (-1011)))) (-1672 (($ (-132) $ (-519)) 60) (($ $ $ (-519)) 59)) (-3909 (((-585 (-519)) $) 46)) (-1506 (((-108) (-519) $) 47)) (-4139 (((-1029) $) 21 (|has| (-132) (-1011)))) (-2331 (((-132) $) 42 (|has| (-519) (-782)))) (-2395 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-3640 (($ $ (-132)) 41 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-132)))) 26 (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-267 (-132))) 25 (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-585 (-132)) (-585 (-132))) 23 (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-2222 (((-585 (-132)) $) 48)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 (((-132) $ (-519) (-132)) 50) (((-132) $ (-519)) 49) (($ $ (-1130 (-519))) 63) (($ $ $) 102)) (-3720 (($ $ (-519)) 62) (($ $ (-1130 (-519))) 61)) (-4155 (((-705) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4221))) (((-705) (-132) $) 28 (-12 (|has| (-132) (-1011)) (|has| $ (-6 -4221))))) (-2584 (($ $ $ (-519)) 91 (|has| $ (-6 -4222)))) (-2449 (($ $) 13)) (-1446 (((-495) $) 79 (|has| (-132) (-560 (-495))))) (-2228 (($ (-585 (-132))) 70)) (-4150 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-585 $)) 65)) (-2217 (($ (-132)) 111) (((-790) $) 18 (|has| (-132) (-559 (-790))))) (-1778 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) 84 (|has| (-132) (-782)))) (-1569 (((-108) $ $) 83 (|has| (-132) (-782)))) (-1543 (((-108) $ $) 20 (|has| (-132) (-1011)))) (-1578 (((-108) $ $) 85 (|has| (-132) (-782)))) (-1561 (((-108) $ $) 82 (|has| (-132) (-782)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-1051) (-1194)) (T -1051)) +((-1785 (*1 *1 *1) (-4 *1 (-1051))) (-1332 (*1 *1 *1) (-4 *1 (-1051))) (-4079 (*1 *1 *1) (-4 *1 (-1051))) (-1594 (*1 *1 *1) (-4 *1 (-1051))) (-3808 (*1 *2 *1 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-108)))) (-3786 (*1 *2 *1 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-108)))) (-3763 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (-519)) (-5 *2 (-108)))) (-4135 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (-132)) (-5 *2 (-705)))) (-1469 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (-132)) (-5 *2 (-108)))) (-2567 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1130 (-519))))) (-3297 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-519)))) (-3297 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-519)) (-5 *3 (-129)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1051)))) (-2482 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-585 *1)) (-4 *1 (-1051)))) (-2482 (*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-585 *1)) (-4 *1 (-1051)))) (-2344 (*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-132)))) (-2344 (*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-129)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-132)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-129)))) (-2900 (*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-132)))) (-2900 (*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-129)))) (-2598 (*1 *1 *1 *1) (-4 *1 (-1051)))) +(-13 (-19 (-132)) (-10 -8 (-15 -1785 ($ $)) (-15 -1332 ($ $)) (-15 -4079 ($ $)) (-15 -1594 ($ $)) (-15 -3808 ((-108) $ $)) (-15 -3786 ((-108) $ $)) (-15 -3763 ((-108) $ $ (-519))) (-15 -4135 ((-705) $ $ (-132))) (-15 -1469 ((-108) $ $ (-132))) (-15 -2567 ($ $ (-1130 (-519)) $)) (-15 -3297 ((-519) $ $ (-519))) (-15 -3297 ((-519) (-129) $ (-519))) (-15 -2217 ($ (-132))) (-15 -2482 ((-585 $) $ (-132))) (-15 -2482 ((-585 $) $ (-129))) (-15 -2344 ($ $ (-132))) (-15 -2344 ($ $ (-129))) (-15 -2912 ($ $ (-132))) (-15 -2912 ($ $ (-129))) (-15 -2900 ($ $ (-132))) (-15 -2900 ($ $ (-129))) (-15 -2598 ($ $ $)))) +(((-33) . T) ((-97) -3730 (|has| (-132) (-1011)) (|has| (-132) (-782))) ((-559 (-790)) -3730 (|has| (-132) (-1011)) (|has| (-132) (-782)) (|has| (-132) (-559 (-790)))) ((-139 #0=(-132)) . T) ((-560 (-495)) |has| (-132) (-560 (-495))) ((-260 #1=(-519) #0#) . T) ((-262 #1# #0#) . T) ((-282 #0#) -12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011))) ((-345 #0#) . T) ((-458 #0#) . T) ((-552 #1# #0#) . T) ((-480 #0# #0#) -12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011))) ((-590 #0#) . T) ((-19 #0#) . T) ((-782) |has| (-132) (-782)) ((-1011) -3730 (|has| (-132) (-1011)) (|has| (-132) (-782))) ((-1117) . T)) +((-2783 (((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) (-705)) 94)) (-3390 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705)) 53)) (-1909 (((-1168) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-705)) 85)) (-1995 (((-705) (-585 |#4|) (-585 |#5|)) 27)) (-1294 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705)) 55) (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705) (-108)) 57)) (-2285 (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108)) 77)) (-1446 (((-1065) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) 80)) (-3639 (((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|) 52)) (-2907 (((-705) (-585 |#4|) (-585 |#5|)) 19))) +(((-1052 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2907 ((-705) (-585 |#4|) (-585 |#5|))) (-15 -1995 ((-705) (-585 |#4|) (-585 |#5|))) (-15 -3639 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|)) (-15 -3390 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705))) (-15 -3390 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|)) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705) (-108))) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705))) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|)) (-15 -2285 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108))) (-15 -2285 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -2783 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) (-705))) (-15 -1446 ((-1065) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)))) (-15 -1909 ((-1168) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-705)))) (-423) (-727) (-782) (-982 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -1052)) +((-1909 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1890 *9)))) (-5 *4 (-705)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-1168)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1890 *8))) (-4 *7 (-982 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-1065)) (-5 *1 (-1052 *4 *5 *6 *7 *8)))) (-2783 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-585 *11)) (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1890 *11)))))) (-5 *6 (-705)) (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1890 *11)))) (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-982 *7 *8 *9)) (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-423)) (-4 *8 (-727)) (-4 *9 (-782)) (-5 *1 (-1052 *7 *8 *9 *10 *11)))) (-2285 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-2285 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-1294 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-1294 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-705)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *3 (-982 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-1294 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-705)) (-5 *6 (-108)) (-4 *7 (-423)) (-4 *8 (-727)) (-4 *9 (-782)) (-4 *3 (-982 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-1052 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3)))) (-3390 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-705)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *3 (-982 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3639 (*1 *2 *3 *4) (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-585 *4)) (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-705)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-705)) (-5 *1 (-1052 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2907 ((-705) (-585 |#4|) (-585 |#5|))) (-15 -1995 ((-705) (-585 |#4|) (-585 |#5|))) (-15 -3639 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|)) (-15 -3390 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705))) (-15 -3390 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|)) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705) (-108))) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5| (-705))) (-15 -1294 ((-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) |#4| |#5|)) (-15 -2285 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108))) (-15 -2285 ((-585 |#5|) (-585 |#4|) (-585 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -2783 ((-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-585 |#4|) (-585 |#5|) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-2 (|:| |done| (-585 |#5|)) (|:| |todo| (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))))) (-705))) (-15 -1446 ((-1065) (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|)))) (-15 -1909 ((-1168) (-585 (-2 (|:| |val| (-585 |#4|)) (|:| -1890 |#5|))) (-705)))) +((-1430 (((-108) $ $) NIL)) (-3106 (((-585 (-2 (|:| -1664 $) (|:| -1556 (-585 |#4|)))) (-585 |#4|)) NIL)) (-2548 (((-585 $) (-585 |#4|)) 110) (((-585 $) (-585 |#4|) (-108)) 111) (((-585 $) (-585 |#4|) (-108) (-108)) 109) (((-585 $) (-585 |#4|) (-108) (-108) (-108) (-108)) 112)) (-4083 (((-585 |#3|) $) NIL)) (-2968 (((-108) $) NIL)) (-3146 (((-108) $) NIL (|has| |#1| (-511)))) (-2943 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4145 ((|#4| |#4| $) NIL)) (-4043 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| $) 84)) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#3|) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-1640 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221))) (((-3 |#4| "failed") $ |#3|) 62)) (-2249 (($) NIL T CONST)) (-3266 (((-108) $) 26 (|has| |#1| (-511)))) (-2542 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3609 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1276 (((-108) $) NIL (|has| |#1| (-511)))) (-4117 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1456 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-511)))) (-3596 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 |#4|)) NIL)) (-1499 (($ (-585 |#4|)) NIL)) (-2343 (((-3 $ "failed") $) 39)) (-1570 ((|#4| |#4| $) 65)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-1438 (($ |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-511)))) (-2459 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3805 ((|#4| |#4| $) NIL)) (-3874 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4221))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4221))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2109 (((-2 (|:| -1664 (-585 |#4|)) (|:| -1556 (-585 |#4|))) $) NIL)) (-2674 (((-108) |#4| $) NIL)) (-2051 (((-108) |#4| $) NIL)) (-2167 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2776 (((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-108) (-108)) 124)) (-3844 (((-585 |#4|) $) 16 (|has| $ (-6 -4221)))) (-3507 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4086 ((|#3| $) 33)) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#4|) $) 17 (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-3850 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) 21)) (-1360 (((-585 |#3|) $) NIL)) (-1219 (((-108) |#3| $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-1196 (((-3 |#4| (-585 $)) |#4| |#4| $) NIL)) (-3296 (((-585 (-2 (|:| |val| |#4|) (|:| -1890 $))) |#4| |#4| $) 103)) (-1457 (((-3 |#4| "failed") $) 37)) (-2975 (((-585 $) |#4| $) 88)) (-3422 (((-3 (-108) (-585 $)) |#4| $) NIL)) (-2575 (((-585 (-2 (|:| |val| (-108)) (|:| -1890 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-3766 (((-585 $) |#4| $) 107) (((-585 $) (-585 |#4|) $) NIL) (((-585 $) (-585 |#4|) (-585 $)) 108) (((-585 $) |#4| (-585 $)) NIL)) (-1749 (((-585 $) (-585 |#4|) (-108) (-108) (-108)) 119)) (-3772 (($ |#4| $) 75) (($ (-585 |#4|) $) 76) (((-585 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-4092 (((-585 |#4|) $) NIL)) (-2921 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3369 ((|#4| |#4| $) NIL)) (-3291 (((-108) $ $) NIL)) (-2573 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-511)))) (-3300 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1867 ((|#4| |#4| $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 (((-3 |#4| "failed") $) 35)) (-2395 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2781 (((-3 $ "failed") $ |#4|) 48)) (-3881 (($ $ |#4|) NIL) (((-585 $) |#4| $) 90) (((-585 $) |#4| (-585 $)) NIL) (((-585 $) (-585 |#4|) $) NIL) (((-585 $) (-585 |#4|) (-585 $)) 86)) (-2379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 (-267 |#4|))) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 15)) (-1548 (($) 13)) (-4178 (((-705) $) NIL)) (-4155 (((-705) |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) (((-705) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) 12)) (-1446 (((-495) $) NIL (|has| |#4| (-560 (-495))))) (-2228 (($ (-585 |#4|)) 20)) (-4175 (($ $ |#3|) 42)) (-1982 (($ $ |#3|) 44)) (-3282 (($ $) NIL)) (-1272 (($ $ |#3|) NIL)) (-2217 (((-790) $) 31) (((-585 |#4|) $) 40)) (-3156 (((-705) $) NIL (|has| |#3| (-340)))) (-3541 (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3735 (((-108) $ (-1 (-108) |#4| (-585 |#4|))) NIL)) (-3249 (((-585 $) |#4| $) 54) (((-585 $) |#4| (-585 $)) NIL) (((-585 $) (-585 |#4|) $) NIL) (((-585 $) (-585 |#4|) (-585 $)) NIL)) (-1778 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-3059 (((-585 |#3|) $) NIL)) (-3736 (((-108) |#4| $) NIL)) (-3980 (((-108) |#3| $) 61)) (-1543 (((-108) $ $) NIL)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-1053 |#1| |#2| |#3| |#4|) (-13 (-1020 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3772 ((-585 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2548 ((-585 $) (-585 |#4|) (-108) (-108))) (-15 -2548 ((-585 $) (-585 |#4|) (-108) (-108) (-108) (-108))) (-15 -1749 ((-585 $) (-585 |#4|) (-108) (-108) (-108))) (-15 -2776 ((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-108) (-108))))) (-423) (-727) (-782) (-982 |#1| |#2| |#3|)) (T -1053)) +((-3772 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 (-1053 *5 *6 *7 *3))) (-5 *1 (-1053 *5 *6 *7 *3)) (-4 *3 (-982 *5 *6 *7)))) (-2548 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 (-1053 *5 *6 *7 *8))) (-5 *1 (-1053 *5 *6 *7 *8)))) (-2548 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 (-1053 *5 *6 *7 *8))) (-5 *1 (-1053 *5 *6 *7 *8)))) (-1749 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 (-1053 *5 *6 *7 *8))) (-5 *1 (-1053 *5 *6 *7 *8)))) (-2776 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-982 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-1053 *5 *6 *7 *8))))) (-5 *1 (-1053 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) +(-13 (-1020 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3772 ((-585 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2548 ((-585 $) (-585 |#4|) (-108) (-108))) (-15 -2548 ((-585 $) (-585 |#4|) (-108) (-108) (-108) (-108))) (-15 -1749 ((-585 $) (-585 |#4|) (-108) (-108) (-108))) (-15 -2776 ((-2 (|:| |val| (-585 |#4|)) (|:| |towers| (-585 $))) (-585 |#4|) (-108) (-108))))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1365 ((|#1| $) 34)) (-3979 (($ (-585 |#1|)) 39)) (-1473 (((-108) $ (-705)) NIL)) (-2249 (($) NIL T CONST)) (-2390 ((|#1| |#1| $) 36)) (-3128 ((|#1| $) 32)) (-3844 (((-585 |#1|) $) 18 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3850 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 22)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4152 ((|#1| $) 35)) (-1846 (($ |#1| $) 37)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-3212 ((|#1| $) 33)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 31)) (-1548 (($) 38)) (-1253 (((-705) $) 29)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) 27)) (-2217 (((-790) $) 14 (|has| |#1| (-559 (-790))))) (-3879 (($ (-585 |#1|)) NIL)) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 17 (|has| |#1| (-1011)))) (-3532 (((-705) $) 30 (|has| $ (-6 -4221))))) +(((-1054 |#1|) (-13 (-1030 |#1|) (-10 -8 (-15 -3979 ($ (-585 |#1|))))) (-1117)) (T -1054)) +((-3979 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-1054 *3))))) +(-13 (-1030 |#1|) (-10 -8 (-15 -3979 ($ (-585 |#1|))))) +((-2421 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1130 (-519)) |#2|) 44) ((|#2| $ (-519) |#2|) 41)) (-2303 (((-108) $) 12)) (-3850 (($ (-1 |#2| |#2|) $) 39)) (-2331 ((|#2| $) NIL) (($ $ (-705)) 17)) (-3640 (($ $ |#2|) 40)) (-3664 (((-108) $) 11)) (-2598 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1130 (-519))) 31) ((|#2| $ (-519)) 23) ((|#2| $ (-519) |#2|) NIL)) (-3954 (($ $ $) 47) (($ $ |#2|) NIL)) (-4150 (($ $ $) 33) (($ |#2| $) NIL) (($ (-585 $)) 36) (($ $ |#2|) NIL))) +(((-1055 |#1| |#2|) (-10 -8 (-15 -2303 ((-108) |#1|)) (-15 -3664 ((-108) |#1|)) (-15 -2421 (|#2| |#1| (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519))) (-15 -3640 (|#1| |#1| |#2|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -4150 (|#1| (-585 |#1|))) (-15 -2598 (|#1| |#1| (-1130 (-519)))) (-15 -2421 (|#2| |#1| (-1130 (-519)) |#2|)) (-15 -2421 (|#2| |#1| "last" |#2|)) (-15 -2421 (|#1| |#1| "rest" |#1|)) (-15 -2421 (|#2| |#1| "first" |#2|)) (-15 -3954 (|#1| |#1| |#2|)) (-15 -3954 (|#1| |#1| |#1|)) (-15 -2598 (|#2| |#1| "last")) (-15 -2598 (|#1| |#1| "rest")) (-15 -2331 (|#1| |#1| (-705))) (-15 -2598 (|#2| |#1| "first")) (-15 -2331 (|#2| |#1|)) (-15 -4150 (|#1| |#2| |#1|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -2421 (|#2| |#1| "value" |#2|)) (-15 -2598 (|#2| |#1| "value")) (-15 -3850 (|#1| (-1 |#2| |#2|) |#1|))) (-1056 |#2|) (-1117)) (T -1055)) +NIL +(-10 -8 (-15 -2303 ((-108) |#1|)) (-15 -3664 ((-108) |#1|)) (-15 -2421 (|#2| |#1| (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519) |#2|)) (-15 -2598 (|#2| |#1| (-519))) (-15 -3640 (|#1| |#1| |#2|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -4150 (|#1| (-585 |#1|))) (-15 -2598 (|#1| |#1| (-1130 (-519)))) (-15 -2421 (|#2| |#1| (-1130 (-519)) |#2|)) (-15 -2421 (|#2| |#1| "last" |#2|)) (-15 -2421 (|#1| |#1| "rest" |#1|)) (-15 -2421 (|#2| |#1| "first" |#2|)) (-15 -3954 (|#1| |#1| |#2|)) (-15 -3954 (|#1| |#1| |#1|)) (-15 -2598 (|#2| |#1| "last")) (-15 -2598 (|#1| |#1| "rest")) (-15 -2331 (|#1| |#1| (-705))) (-15 -2598 (|#2| |#1| "first")) (-15 -2331 (|#2| |#1|)) (-15 -4150 (|#1| |#2| |#1|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -2421 (|#2| |#1| "value" |#2|)) (-15 -2598 (|#2| |#1| "value")) (-15 -3850 (|#1| (-1 |#2| |#2|) |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3493 ((|#1| $) 48)) (-2111 ((|#1| $) 65)) (-3847 (($ $) 67)) (-1583 (((-1168) $ (-519) (-519)) 97 (|has| $ (-6 -4222)))) (-2258 (($ $ (-519)) 52 (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) 8)) (-2410 ((|#1| $ |#1|) 39 (|has| $ (-6 -4222)))) (-1440 (($ $ $) 56 (|has| $ (-6 -4222)))) (-1907 ((|#1| $ |#1|) 54 (|has| $ (-6 -4222)))) (-2692 ((|#1| $ |#1|) 58 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4222))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4222))) (($ $ "rest" $) 55 (|has| $ (-6 -4222))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) 117 (|has| $ (-6 -4222))) ((|#1| $ (-519) |#1|) 86 (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) 41 (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4221)))) (-2098 ((|#1| $) 66)) (-2249 (($) 7 T CONST)) (-2343 (($ $) 73) (($ $ (-705)) 71)) (-2366 (($ $) 99 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4221))) (($ |#1| $) 100 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3865 ((|#1| $ (-519) |#1|) 85 (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) 87)) (-2303 (((-108) $) 83)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) 50)) (-3458 (((-108) $ $) 42 (|has| |#1| (-1011)))) (-1822 (($ (-705) |#1|) 108)) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 95 (|has| (-519) (-782)))) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 94 (|has| (-519) (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2768 (((-108) $ (-705)) 10)) (-1281 (((-585 |#1|) $) 45)) (-1668 (((-108) $) 49)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1457 ((|#1| $) 70) (($ $ (-705)) 68)) (-1672 (($ $ $ (-519)) 116) (($ |#1| $ (-519)) 115)) (-3909 (((-585 (-519)) $) 92)) (-1506 (((-108) (-519) $) 91)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2331 ((|#1| $) 76) (($ $ (-705)) 74)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-3640 (($ $ |#1|) 96 (|has| $ (-6 -4222)))) (-3664 (((-108) $) 84)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) 90)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1130 (-519))) 112) ((|#1| $ (-519)) 89) ((|#1| $ (-519) |#1|) 88)) (-1763 (((-519) $ $) 44)) (-3720 (($ $ (-1130 (-519))) 114) (($ $ (-519)) 113)) (-3096 (((-108) $) 46)) (-1407 (($ $) 62)) (-2434 (($ $) 59 (|has| $ (-6 -4222)))) (-2067 (((-705) $) 63)) (-3376 (($ $) 64)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-1446 (((-495) $) 98 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 107)) (-3954 (($ $ $) 61 (|has| $ (-6 -4222))) (($ $ |#1|) 60 (|has| $ (-6 -4222)))) (-4150 (($ $ $) 78) (($ |#1| $) 77) (($ (-585 $)) 110) (($ $ |#1|) 109)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) 51)) (-2915 (((-108) $ $) 43 (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-1056 |#1|) (-1194) (-1117)) (T -1056)) +((-3664 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-1117)) (-5 *2 (-108)))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-1117)) (-5 *2 (-108))))) +(-13 (-1151 |t#1|) (-590 |t#1|) (-10 -8 (-15 -3664 ((-108) $)) (-15 -2303 ((-108) $)))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-260 #0=(-519) |#1|) . T) ((-262 #0# |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-552 #0# |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-590 |#1|) . T) ((-933 |#1|) . T) ((-1011) |has| |#1| (-1011)) ((-1117) . T) ((-1151 |#1|) . T)) +((-1430 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-1812 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1583 (((-1168) $ |#1| |#1|) NIL (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#2| $ |#1| |#2|) NIL)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-2802 (((-3 |#2| "failed") |#1| $) NIL)) (-2249 (($) NIL T CONST)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-2502 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-3 |#2| "failed") |#1| $) NIL)) (-1438 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#2| $ |#1|) NIL)) (-3844 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 ((|#1| $) NIL (|has| |#1| (-782)))) (-3725 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-3890 ((|#1| $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4222))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3019 (((-585 |#1|) $) NIL)) (-4194 (((-108) |#1| $) NIL)) (-4152 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-1846 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-3909 (((-585 |#1|) $) NIL)) (-1506 (((-108) |#1| $) NIL)) (-4139 (((-1029) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-2331 ((|#2| $) NIL (|has| |#1| (-782)))) (-2395 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL)) (-3640 (($ $ |#2|) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2436 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011)))) (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-2217 (((-790) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790))) (|has| |#2| (-559 (-790)))))) (-3879 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-1057 |#1| |#2| |#3|) (-1094 |#1| |#2|) (-1011) (-1011) |#2|) (T -1057)) +NIL +(-1094 |#1| |#2|) +((-1430 (((-108) $ $) 7)) (-1675 (((-3 $ "failed") $) 13)) (-1266 (((-1065) $) 9)) (-3816 (($) 14 T CONST)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11)) (-1543 (((-108) $ $) 6))) +(((-1058) (-1194)) (T -1058)) +((-3816 (*1 *1) (-4 *1 (-1058))) (-1675 (*1 *1 *1) (|partial| -4 *1 (-1058)))) +(-13 (-1011) (-10 -8 (-15 -3816 ($) -2730) (-15 -1675 ((-3 $ "failed") $)))) +(((-97) . T) ((-559 (-790)) . T) ((-1011) . T)) +((-2512 (((-1063 |#1|) (-1063 |#1|)) 17)) (-1947 (((-1063 |#1|) (-1063 |#1|)) 13)) (-1557 (((-1063 |#1|) (-1063 |#1|) (-519) (-519)) 20)) (-2333 (((-1063 |#1|) (-1063 |#1|)) 15))) +(((-1059 |#1|) (-10 -7 (-15 -1947 ((-1063 |#1|) (-1063 |#1|))) (-15 -2333 ((-1063 |#1|) (-1063 |#1|))) (-15 -2512 ((-1063 |#1|) (-1063 |#1|))) (-15 -1557 ((-1063 |#1|) (-1063 |#1|) (-519) (-519)))) (-13 (-511) (-135))) (T -1059)) +((-1557 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1063 *4)) (-5 *3 (-519)) (-4 *4 (-13 (-511) (-135))) (-5 *1 (-1059 *4)))) (-2512 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-13 (-511) (-135))) (-5 *1 (-1059 *3)))) (-2333 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-13 (-511) (-135))) (-5 *1 (-1059 *3)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-13 (-511) (-135))) (-5 *1 (-1059 *3))))) +(-10 -7 (-15 -1947 ((-1063 |#1|) (-1063 |#1|))) (-15 -2333 ((-1063 |#1|) (-1063 |#1|))) (-15 -2512 ((-1063 |#1|) (-1063 |#1|))) (-15 -1557 ((-1063 |#1|) (-1063 |#1|) (-519) (-519)))) +((-4150 (((-1063 |#1|) (-1063 (-1063 |#1|))) 15))) +(((-1060 |#1|) (-10 -7 (-15 -4150 ((-1063 |#1|) (-1063 (-1063 |#1|))))) (-1117)) (T -1060)) +((-4150 (*1 *2 *3) (-12 (-5 *3 (-1063 (-1063 *4))) (-5 *2 (-1063 *4)) (-5 *1 (-1060 *4)) (-4 *4 (-1117))))) +(-10 -7 (-15 -4150 ((-1063 |#1|) (-1063 (-1063 |#1|))))) +((-1367 (((-1063 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1063 |#1|)) 25)) (-3874 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1063 |#1|)) 26)) (-1405 (((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|)) 16))) +(((-1061 |#1| |#2|) (-10 -7 (-15 -1405 ((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|))) (-15 -1367 ((-1063 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1063 |#1|))) (-15 -3874 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1063 |#1|)))) (-1117) (-1117)) (T -1061)) +((-3874 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1063 *5)) (-4 *5 (-1117)) (-4 *2 (-1117)) (-5 *1 (-1061 *5 *2)))) (-1367 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1063 *6)) (-4 *6 (-1117)) (-4 *3 (-1117)) (-5 *2 (-1063 *3)) (-5 *1 (-1061 *6 *3)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1063 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1063 *6)) (-5 *1 (-1061 *5 *6))))) +(-10 -7 (-15 -1405 ((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|))) (-15 -1367 ((-1063 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1063 |#1|))) (-15 -3874 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1063 |#1|)))) +((-1405 (((-1063 |#3|) (-1 |#3| |#1| |#2|) (-1063 |#1|) (-1063 |#2|)) 21))) +(((-1062 |#1| |#2| |#3|) (-10 -7 (-15 -1405 ((-1063 |#3|) (-1 |#3| |#1| |#2|) (-1063 |#1|) (-1063 |#2|)))) (-1117) (-1117) (-1117)) (T -1062)) +((-1405 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1063 *6)) (-5 *5 (-1063 *7)) (-4 *6 (-1117)) (-4 *7 (-1117)) (-4 *8 (-1117)) (-5 *2 (-1063 *8)) (-5 *1 (-1062 *6 *7 *8))))) +(-10 -7 (-15 -1405 ((-1063 |#3|) (-1 |#3| |#1| |#2|) (-1063 |#1|) (-1063 |#2|)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3493 ((|#1| $) NIL)) (-2111 ((|#1| $) NIL)) (-3847 (($ $) 49)) (-1583 (((-1168) $ (-519) (-519)) 74 (|has| $ (-6 -4222)))) (-2258 (($ $ (-519)) 108 (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-3444 (((-790) $) 38 (|has| |#1| (-1011)))) (-3911 (((-108)) 39 (|has| |#1| (-1011)))) (-2410 ((|#1| $ |#1|) NIL (|has| $ (-6 -4222)))) (-1440 (($ $ $) 96 (|has| $ (-6 -4222))) (($ $ (-519) $) 118)) (-1907 ((|#1| $ |#1|) 105 (|has| $ (-6 -4222)))) (-2692 ((|#1| $ |#1|) 100 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4222))) (($ $ "rest" $) 104 (|has| $ (-6 -4222))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) 87 (|has| $ (-6 -4222))) ((|#1| $ (-519) |#1|) 53 (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) NIL (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) 56)) (-2098 ((|#1| $) NIL)) (-2249 (($) NIL T CONST)) (-3332 (($ $) 14)) (-2343 (($ $) 29) (($ $ (-705)) 86)) (-3047 (((-108) (-585 |#1|) $) 113 (|has| |#1| (-1011)))) (-2065 (($ (-585 |#1|)) 110)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) 55)) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3865 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) NIL)) (-2303 (((-108) $) NIL)) (-3844 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1597 (((-1168) (-519) $) 117 (|has| |#1| (-1011)))) (-1496 (((-705) $) 115)) (-3393 (((-585 $) $) NIL)) (-3458 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1822 (($ (-705) |#1|) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2768 (((-108) $ (-705)) NIL)) (-1281 (((-585 |#1|) $) NIL)) (-1668 (((-108) $) NIL)) (-3396 (($ $) 88)) (-3969 (((-108) $) 13)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1457 ((|#1| $) NIL) (($ $ (-705)) NIL)) (-1672 (($ $ $ (-519)) NIL) (($ |#1| $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) 72)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-1590 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-2348 ((|#1| $) 10)) (-2331 ((|#1| $) 28) (($ $ (-705)) 47)) (-3605 (((-2 (|:| |cycle?| (-108)) (|:| -3434 (-705)) (|:| |period| (-705))) (-705) $) 25)) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1626 (($ (-1 (-108) |#1|) $) 122)) (-1634 (($ (-1 (-108) |#1|) $) 123)) (-3640 (($ $ |#1|) 66 (|has| $ (-6 -4222)))) (-3881 (($ $ (-519)) 32)) (-3664 (((-108) $) 70)) (-3918 (((-108) $) 12)) (-3631 (((-108) $) 114)) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 20)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) 15)) (-1548 (($) 41)) (-2598 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1130 (-519))) NIL) ((|#1| $ (-519)) 52) ((|#1| $ (-519) |#1|) NIL)) (-1763 (((-519) $ $) 46)) (-3720 (($ $ (-1130 (-519))) NIL) (($ $ (-519)) NIL)) (-3054 (($ (-1 $)) 45)) (-3096 (((-108) $) 67)) (-1407 (($ $) 68)) (-2434 (($ $) 97 (|has| $ (-6 -4222)))) (-2067 (((-705) $) NIL)) (-3376 (($ $) NIL)) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) 42)) (-1446 (((-495) $) NIL (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 51)) (-3498 (($ |#1| $) 95)) (-3954 (($ $ $) 98 (|has| $ (-6 -4222))) (($ $ |#1|) 99 (|has| $ (-6 -4222)))) (-4150 (($ $ $) 76) (($ |#1| $) 43) (($ (-585 $)) 81) (($ $ |#1|) 75)) (-1508 (($ $) 48)) (-2217 (($ (-585 |#1|)) 109) (((-790) $) 40 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) NIL)) (-2915 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 112 (|has| |#1| (-1011)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-1063 |#1|) (-13 (-612 |#1|) (-10 -8 (-6 -4222) (-15 -2217 ($ (-585 |#1|))) (-15 -2065 ($ (-585 |#1|))) (IF (|has| |#1| (-1011)) (-15 -3047 ((-108) (-585 |#1|) $)) |%noBranch|) (-15 -3605 ((-2 (|:| |cycle?| (-108)) (|:| -3434 (-705)) (|:| |period| (-705))) (-705) $)) (-15 -3054 ($ (-1 $))) (-15 -3498 ($ |#1| $)) (IF (|has| |#1| (-1011)) (PROGN (-15 -1597 ((-1168) (-519) $)) (-15 -3444 ((-790) $)) (-15 -3911 ((-108)))) |%noBranch|) (-15 -1440 ($ $ (-519) $)) (-15 -1590 ($ (-1 |#1|))) (-15 -1590 ($ (-1 |#1| |#1|) |#1|)) (-15 -1626 ($ (-1 (-108) |#1|) $)) (-15 -1634 ($ (-1 (-108) |#1|) $)))) (-1117)) (T -1063)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3)))) (-2065 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3)))) (-3047 (*1 *2 *3 *1) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1011)) (-4 *4 (-1117)) (-5 *2 (-108)) (-5 *1 (-1063 *4)))) (-3605 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -3434 (-705)) (|:| |period| (-705)))) (-5 *1 (-1063 *4)) (-4 *4 (-1117)) (-5 *3 (-705)))) (-3054 (*1 *1 *2) (-12 (-5 *2 (-1 (-1063 *3))) (-5 *1 (-1063 *3)) (-4 *3 (-1117)))) (-3498 (*1 *1 *2 *1) (-12 (-5 *1 (-1063 *2)) (-4 *2 (-1117)))) (-1597 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-1063 *4)) (-4 *4 (-1011)) (-4 *4 (-1117)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1063 *3)) (-4 *3 (-1011)) (-4 *3 (-1117)))) (-3911 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1063 *3)) (-4 *3 (-1011)) (-4 *3 (-1117)))) (-1440 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1063 *3)) (-4 *3 (-1117)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3)))) (-1590 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3)))) (-1634 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3))))) +(-13 (-612 |#1|) (-10 -8 (-6 -4222) (-15 -2217 ($ (-585 |#1|))) (-15 -2065 ($ (-585 |#1|))) (IF (|has| |#1| (-1011)) (-15 -3047 ((-108) (-585 |#1|) $)) |%noBranch|) (-15 -3605 ((-2 (|:| |cycle?| (-108)) (|:| -3434 (-705)) (|:| |period| (-705))) (-705) $)) (-15 -3054 ($ (-1 $))) (-15 -3498 ($ |#1| $)) (IF (|has| |#1| (-1011)) (PROGN (-15 -1597 ((-1168) (-519) $)) (-15 -3444 ((-790) $)) (-15 -3911 ((-108)))) |%noBranch|) (-15 -1440 ($ $ (-519) $)) (-15 -1590 ($ (-1 |#1|))) (-15 -1590 ($ (-1 |#1| |#1|) |#1|)) (-15 -1626 ($ (-1 (-108) |#1|) $)) (-15 -1634 ($ (-1 (-108) |#1|) $)))) +((-1430 (((-108) $ $) 19)) (-1594 (($ $) 120)) (-4079 (($ $) 121)) (-2344 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-1583 (((-1168) $ (-519) (-519)) 40 (|has| $ (-6 -4222)))) (-3786 (((-108) $ $) 118)) (-3763 (((-108) $ $ (-519)) 117)) (-1522 (($ (-519)) 127)) (-2482 (((-585 $) $ (-132)) 110) (((-585 $) $ (-129)) 109)) (-2629 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-782)))) (-2078 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4222))) (($ $) 88 (-12 (|has| (-132) (-782)) (|has| $ (-6 -4222))))) (-3276 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-782)))) (-1473 (((-108) $ (-705)) 8)) (-2421 (((-132) $ (-519) (-132)) 52 (|has| $ (-6 -4222))) (((-132) $ (-1130 (-519)) (-132)) 58 (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-2900 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-1998 (($ $) 90 (|has| $ (-6 -4222)))) (-1868 (($ $) 100)) (-2567 (($ $ (-1130 (-519)) $) 114)) (-2366 (($ $) 78 (-12 (|has| (-132) (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ (-132) $) 77 (-12 (|has| (-132) (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4221)))) (-3874 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1011)) (|has| $ (-6 -4221)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4221))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4221)))) (-3865 (((-132) $ (-519) (-132)) 53 (|has| $ (-6 -4222)))) (-3659 (((-132) $ (-519)) 51)) (-3808 (((-108) $ $) 119)) (-3297 (((-519) (-1 (-108) (-132)) $) 97) (((-519) (-132) $) 96 (|has| (-132) (-1011))) (((-519) (-132) $ (-519)) 95 (|has| (-132) (-1011))) (((-519) $ $ (-519)) 113) (((-519) (-129) $ (-519)) 112)) (-3844 (((-585 (-132)) $) 30 (|has| $ (-6 -4221)))) (-1822 (($ (-705) (-132)) 69)) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 43 (|has| (-519) (-782)))) (-2864 (($ $ $) 87 (|has| (-132) (-782)))) (-2500 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-782)))) (-3725 (((-585 (-132)) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 44 (|has| (-519) (-782)))) (-2489 (($ $ $) 86 (|has| (-132) (-782)))) (-1469 (((-108) $ $ (-132)) 115)) (-4135 (((-705) $ $ (-132)) 116)) (-3850 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1332 (($ $) 122)) (-1785 (($ $) 123)) (-2768 (((-108) $ (-705)) 10)) (-2912 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-1266 (((-1065) $) 22)) (-1672 (($ (-132) $ (-519)) 60) (($ $ $ (-519)) 59)) (-3909 (((-585 (-519)) $) 46)) (-1506 (((-108) (-519) $) 47)) (-4139 (((-1029) $) 21)) (-2331 (((-132) $) 42 (|has| (-519) (-782)))) (-2395 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-3640 (($ $ (-132)) 41 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-132)))) 26 (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-267 (-132))) 25 (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-585 (-132)) (-585 (-132))) 23 (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-2222 (((-585 (-132)) $) 48)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 (((-132) $ (-519) (-132)) 50) (((-132) $ (-519)) 49) (($ $ (-1130 (-519))) 63) (($ $ $) 102)) (-3720 (($ $ (-519)) 62) (($ $ (-1130 (-519))) 61)) (-4155 (((-705) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4221))) (((-705) (-132) $) 28 (-12 (|has| (-132) (-1011)) (|has| $ (-6 -4221))))) (-2584 (($ $ $ (-519)) 91 (|has| $ (-6 -4222)))) (-2449 (($ $) 13)) (-1446 (((-495) $) 79 (|has| (-132) (-560 (-495))))) (-2228 (($ (-585 (-132))) 70)) (-4150 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-585 $)) 65)) (-2217 (($ (-132)) 111) (((-790) $) 18)) (-1778 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4221)))) (-2761 (((-1065) $) 131) (((-1065) $ (-108)) 130) (((-1168) (-757) $) 129) (((-1168) (-757) $ (-108)) 128)) (-1586 (((-108) $ $) 84 (|has| (-132) (-782)))) (-1569 (((-108) $ $) 83 (|has| (-132) (-782)))) (-1543 (((-108) $ $) 20)) (-1578 (((-108) $ $) 85 (|has| (-132) (-782)))) (-1561 (((-108) $ $) 82 (|has| (-132) (-782)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-1064) (-1194)) (T -1064)) +((-1522 (*1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-1064))))) +(-13 (-1051) (-1011) (-763) (-10 -8 (-15 -1522 ($ (-519))))) +(((-33) . T) ((-97) . T) ((-559 (-790)) . T) ((-139 #0=(-132)) . T) ((-560 (-495)) |has| (-132) (-560 (-495))) ((-260 #1=(-519) #0#) . T) ((-262 #1# #0#) . T) ((-282 #0#) -12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011))) ((-345 #0#) . T) ((-458 #0#) . T) ((-552 #1# #0#) . T) ((-480 #0# #0#) -12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011))) ((-590 #0#) . T) ((-19 #0#) . T) ((-763) . T) ((-782) |has| (-132) (-782)) ((-1011) . T) ((-1051) . T) ((-1117) . T)) +((-1430 (((-108) $ $) NIL)) (-1594 (($ $) NIL)) (-4079 (($ $) NIL)) (-2344 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-3786 (((-108) $ $) NIL)) (-3763 (((-108) $ $ (-519)) NIL)) (-1522 (($ (-519)) 7)) (-2482 (((-585 $) $ (-132)) NIL) (((-585 $) $ (-129)) NIL)) (-2629 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-782)))) (-2078 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4222))) (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| (-132) (-782))))) (-3276 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-782)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 (((-132) $ (-519) (-132)) NIL (|has| $ (-6 -4222))) (((-132) $ (-1130 (-519)) (-132)) NIL (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-2900 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2567 (($ $ (-1130 (-519)) $) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-1438 (($ (-132) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4221))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4221)))) (-3865 (((-132) $ (-519) (-132)) NIL (|has| $ (-6 -4222)))) (-3659 (((-132) $ (-519)) NIL)) (-3808 (((-108) $ $) NIL)) (-3297 (((-519) (-1 (-108) (-132)) $) NIL) (((-519) (-132) $) NIL (|has| (-132) (-1011))) (((-519) (-132) $ (-519)) NIL (|has| (-132) (-1011))) (((-519) $ $ (-519)) NIL) (((-519) (-129) $ (-519)) NIL)) (-3844 (((-585 (-132)) $) NIL (|has| $ (-6 -4221)))) (-1822 (($ (-705) (-132)) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| (-132) (-782)))) (-2500 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-782)))) (-3725 (((-585 (-132)) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| (-132) (-782)))) (-1469 (((-108) $ $ (-132)) NIL)) (-4135 (((-705) $ $ (-132)) NIL)) (-3850 (($ (-1 (-132) (-132)) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1332 (($ $) NIL)) (-1785 (($ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-2912 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-1266 (((-1065) $) NIL)) (-1672 (($ (-132) $ (-519)) NIL) (($ $ $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 (((-132) $) NIL (|has| (-519) (-782)))) (-2395 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-3640 (($ $ (-132)) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-132)))) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-267 (-132))) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011)))) (($ $ (-585 (-132)) (-585 (-132))) NIL (-12 (|has| (-132) (-282 (-132))) (|has| (-132) (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-2222 (((-585 (-132)) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 (((-132) $ (-519) (-132)) NIL) (((-132) $ (-519)) NIL) (($ $ (-1130 (-519))) NIL) (($ $ $) NIL)) (-3720 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-4155 (((-705) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221))) (((-705) (-132) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-132) (-1011))))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-132) (-560 (-495))))) (-2228 (($ (-585 (-132))) NIL)) (-4150 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) NIL) (($ (-585 $)) NIL)) (-2217 (($ (-132)) NIL) (((-790) $) NIL)) (-1778 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4221)))) (-2761 (((-1065) $) 18) (((-1065) $ (-108)) 20) (((-1168) (-757) $) 21) (((-1168) (-757) $ (-108)) 22)) (-1586 (((-108) $ $) NIL (|has| (-132) (-782)))) (-1569 (((-108) $ $) NIL (|has| (-132) (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| (-132) (-782)))) (-1561 (((-108) $ $) NIL (|has| (-132) (-782)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-1065) (-1064)) (T -1065)) +NIL +(-1064) +((-1430 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)) (|has| |#1| (-1011))))) (-1812 (($) NIL) (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL)) (-1583 (((-1168) $ (-1065) (-1065)) NIL (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#1| $ (-1065) |#1|) NIL)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221)))) (-2802 (((-3 |#1| "failed") (-1065) $) NIL)) (-2249 (($) NIL T CONST)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011))))) (-2502 (($ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221))) (((-3 |#1| "failed") (-1065) $) NIL)) (-1438 (($ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-1065) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-1065)) NIL)) (-3844 (((-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-1065) $) NIL (|has| (-1065) (-782)))) (-3725 (((-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-1065) $) NIL (|has| (-1065) (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4222))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (-3730 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)) (|has| |#1| (-1011))))) (-3019 (((-585 (-1065)) $) NIL)) (-4194 (((-108) (-1065) $) NIL)) (-4152 (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL)) (-1846 (($ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL)) (-3909 (((-585 (-1065)) $) NIL)) (-1506 (((-108) (-1065) $) NIL)) (-4139 (((-1029) $) NIL (-3730 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)) (|has| |#1| (-1011))))) (-2331 ((|#1| $) NIL (|has| (-1065) (-782)))) (-2395 (((-3 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) "failed") (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL)) (-3640 (($ $ |#1|) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (($ $ (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (($ $ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL (-12 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-282 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ (-1065)) NIL) ((|#1| $ (-1065) |#1|) NIL)) (-2436 (($) NIL) (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL)) (-2217 (((-790) $) NIL (-3730 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-559 (-790))) (|has| |#1| (-559 (-790)))))) (-3879 (($ (-585 (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)))) NIL)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 (-1065)) (|:| -3100 |#1|)) (-1011)) (|has| |#1| (-1011))))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-1066 |#1|) (-13 (-1094 (-1065) |#1|) (-10 -7 (-6 -4221))) (-1011)) (T -1066)) +NIL +(-13 (-1094 (-1065) |#1|) (-10 -7 (-6 -4221))) +((-1924 (((-1063 |#1|) (-1063 |#1|)) 77)) (-4193 (((-3 (-1063 |#1|) "failed") (-1063 |#1|)) 37)) (-4061 (((-1063 |#1|) (-379 (-519)) (-1063 |#1|)) 117 (|has| |#1| (-37 (-379 (-519)))))) (-1860 (((-1063 |#1|) |#1| (-1063 |#1|)) 121 (|has| |#1| (-335)))) (-1826 (((-1063 |#1|) (-1063 |#1|)) 90)) (-1959 (((-1063 (-519)) (-519)) 57)) (-4006 (((-1063 |#1|) (-1063 (-1063 |#1|))) 108 (|has| |#1| (-37 (-379 (-519)))))) (-1645 (((-1063 |#1|) (-519) (-519) (-1063 |#1|)) 95)) (-2569 (((-1063 |#1|) |#1| (-519)) 45)) (-2155 (((-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) 60)) (-2223 (((-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) 119 (|has| |#1| (-335)))) (-2180 (((-1063 |#1|) |#1| (-1 (-1063 |#1|))) 107 (|has| |#1| (-37 (-379 (-519)))))) (-3791 (((-1063 |#1|) (-1 |#1| (-519)) |#1| (-1 (-1063 |#1|))) 120 (|has| |#1| (-335)))) (-3286 (((-1063 |#1|) (-1063 |#1|)) 89)) (-3381 (((-1063 |#1|) (-1063 |#1|)) 76)) (-2197 (((-1063 |#1|) (-519) (-519) (-1063 |#1|)) 96)) (-4142 (((-1063 |#1|) |#1| (-1063 |#1|)) 105 (|has| |#1| (-37 (-379 (-519)))))) (-4151 (((-1063 (-519)) (-519)) 56)) (-1721 (((-1063 |#1|) |#1|) 59)) (-4165 (((-1063 |#1|) (-1063 |#1|) (-519) (-519)) 92)) (-1309 (((-1063 |#1|) (-1 |#1| (-519)) (-1063 |#1|)) 66)) (-2261 (((-3 (-1063 |#1|) "failed") (-1063 |#1|) (-1063 |#1|)) 35)) (-2874 (((-1063 |#1|) (-1063 |#1|)) 91)) (-2324 (((-1063 |#1|) (-1063 |#1|) |#1|) 71)) (-3774 (((-1063 |#1|) (-1063 |#1|)) 62)) (-2613 (((-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) 72)) (-2217 (((-1063 |#1|) |#1|) 67)) (-2725 (((-1063 |#1|) (-1063 (-1063 |#1|))) 82)) (-1632 (((-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) 36)) (-1623 (((-1063 |#1|) (-1063 |#1|)) 21) (((-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) 23)) (-1614 (((-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) 17)) (* (((-1063 |#1|) (-1063 |#1|) |#1|) 29) (((-1063 |#1|) |#1| (-1063 |#1|)) 26) (((-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) 27))) +(((-1067 |#1|) (-10 -7 (-15 -1614 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -1623 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -1623 ((-1063 |#1|) (-1063 |#1|))) (-15 * ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 * ((-1063 |#1|) |#1| (-1063 |#1|))) (-15 * ((-1063 |#1|) (-1063 |#1|) |#1|)) (-15 -2261 ((-3 (-1063 |#1|) "failed") (-1063 |#1|) (-1063 |#1|))) (-15 -1632 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -4193 ((-3 (-1063 |#1|) "failed") (-1063 |#1|))) (-15 -2569 ((-1063 |#1|) |#1| (-519))) (-15 -4151 ((-1063 (-519)) (-519))) (-15 -1959 ((-1063 (-519)) (-519))) (-15 -1721 ((-1063 |#1|) |#1|)) (-15 -2155 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -3774 ((-1063 |#1|) (-1063 |#1|))) (-15 -1309 ((-1063 |#1|) (-1 |#1| (-519)) (-1063 |#1|))) (-15 -2217 ((-1063 |#1|) |#1|)) (-15 -2324 ((-1063 |#1|) (-1063 |#1|) |#1|)) (-15 -2613 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -3381 ((-1063 |#1|) (-1063 |#1|))) (-15 -1924 ((-1063 |#1|) (-1063 |#1|))) (-15 -2725 ((-1063 |#1|) (-1063 (-1063 |#1|)))) (-15 -3286 ((-1063 |#1|) (-1063 |#1|))) (-15 -1826 ((-1063 |#1|) (-1063 |#1|))) (-15 -2874 ((-1063 |#1|) (-1063 |#1|))) (-15 -4165 ((-1063 |#1|) (-1063 |#1|) (-519) (-519))) (-15 -1645 ((-1063 |#1|) (-519) (-519) (-1063 |#1|))) (-15 -2197 ((-1063 |#1|) (-519) (-519) (-1063 |#1|))) (IF (|has| |#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ((-1063 |#1|) |#1| (-1063 |#1|))) (-15 -2180 ((-1063 |#1|) |#1| (-1 (-1063 |#1|)))) (-15 -4006 ((-1063 |#1|) (-1063 (-1063 |#1|)))) (-15 -4061 ((-1063 |#1|) (-379 (-519)) (-1063 |#1|)))) |%noBranch|) (IF (|has| |#1| (-335)) (PROGN (-15 -2223 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -3791 ((-1063 |#1|) (-1 |#1| (-519)) |#1| (-1 (-1063 |#1|)))) (-15 -1860 ((-1063 |#1|) |#1| (-1063 |#1|)))) |%noBranch|)) (-968)) (T -1067)) +((-1860 (*1 *2 *3 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-335)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-519))) (-5 *5 (-1 (-1063 *4))) (-4 *4 (-335)) (-4 *4 (-968)) (-5 *2 (-1063 *4)) (-5 *1 (-1067 *4)))) (-2223 (*1 *2 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-335)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-4061 (*1 *2 *3 *2) (-12 (-5 *2 (-1063 *4)) (-4 *4 (-37 *3)) (-4 *4 (-968)) (-5 *3 (-379 (-519))) (-5 *1 (-1067 *4)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-1063 (-1063 *4))) (-5 *2 (-1063 *4)) (-5 *1 (-1067 *4)) (-4 *4 (-37 (-379 (-519)))) (-4 *4 (-968)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1063 *3))) (-5 *2 (-1063 *3)) (-5 *1 (-1067 *3)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)))) (-4142 (*1 *2 *3 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-2197 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1063 *4)) (-5 *3 (-519)) (-4 *4 (-968)) (-5 *1 (-1067 *4)))) (-1645 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1063 *4)) (-5 *3 (-519)) (-4 *4 (-968)) (-5 *1 (-1067 *4)))) (-4165 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1063 *4)) (-5 *3 (-519)) (-4 *4 (-968)) (-5 *1 (-1067 *4)))) (-2874 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-1063 (-1063 *4))) (-5 *2 (-1063 *4)) (-5 *1 (-1067 *4)) (-4 *4 (-968)))) (-1924 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-3381 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-2613 (*1 *2 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-2324 (*1 *2 *2 *3) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-2217 (*1 *2 *3) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-1067 *3)) (-4 *3 (-968)))) (-1309 (*1 *2 *3 *2) (-12 (-5 *2 (-1063 *4)) (-5 *3 (-1 *4 (-519))) (-4 *4 (-968)) (-5 *1 (-1067 *4)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-2155 (*1 *2 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-1721 (*1 *2 *3) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-1067 *3)) (-4 *3 (-968)))) (-1959 (*1 *2 *3) (-12 (-5 *2 (-1063 (-519))) (-5 *1 (-1067 *4)) (-4 *4 (-968)) (-5 *3 (-519)))) (-4151 (*1 *2 *3) (-12 (-5 *2 (-1063 (-519))) (-5 *1 (-1067 *4)) (-4 *4 (-968)) (-5 *3 (-519)))) (-2569 (*1 *2 *3 *4) (-12 (-5 *4 (-519)) (-5 *2 (-1063 *3)) (-5 *1 (-1067 *3)) (-4 *3 (-968)))) (-4193 (*1 *2 *2) (|partial| -12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-1632 (*1 *2 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-2261 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-1623 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-1623 (*1 *2 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) (-1614 (*1 *2 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3))))) +(-10 -7 (-15 -1614 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -1623 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -1623 ((-1063 |#1|) (-1063 |#1|))) (-15 * ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 * ((-1063 |#1|) |#1| (-1063 |#1|))) (-15 * ((-1063 |#1|) (-1063 |#1|) |#1|)) (-15 -2261 ((-3 (-1063 |#1|) "failed") (-1063 |#1|) (-1063 |#1|))) (-15 -1632 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -4193 ((-3 (-1063 |#1|) "failed") (-1063 |#1|))) (-15 -2569 ((-1063 |#1|) |#1| (-519))) (-15 -4151 ((-1063 (-519)) (-519))) (-15 -1959 ((-1063 (-519)) (-519))) (-15 -1721 ((-1063 |#1|) |#1|)) (-15 -2155 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -3774 ((-1063 |#1|) (-1063 |#1|))) (-15 -1309 ((-1063 |#1|) (-1 |#1| (-519)) (-1063 |#1|))) (-15 -2217 ((-1063 |#1|) |#1|)) (-15 -2324 ((-1063 |#1|) (-1063 |#1|) |#1|)) (-15 -2613 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -3381 ((-1063 |#1|) (-1063 |#1|))) (-15 -1924 ((-1063 |#1|) (-1063 |#1|))) (-15 -2725 ((-1063 |#1|) (-1063 (-1063 |#1|)))) (-15 -3286 ((-1063 |#1|) (-1063 |#1|))) (-15 -1826 ((-1063 |#1|) (-1063 |#1|))) (-15 -2874 ((-1063 |#1|) (-1063 |#1|))) (-15 -4165 ((-1063 |#1|) (-1063 |#1|) (-519) (-519))) (-15 -1645 ((-1063 |#1|) (-519) (-519) (-1063 |#1|))) (-15 -2197 ((-1063 |#1|) (-519) (-519) (-1063 |#1|))) (IF (|has| |#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ((-1063 |#1|) |#1| (-1063 |#1|))) (-15 -2180 ((-1063 |#1|) |#1| (-1 (-1063 |#1|)))) (-15 -4006 ((-1063 |#1|) (-1063 (-1063 |#1|)))) (-15 -4061 ((-1063 |#1|) (-379 (-519)) (-1063 |#1|)))) |%noBranch|) (IF (|has| |#1| (-335)) (PROGN (-15 -2223 ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -3791 ((-1063 |#1|) (-1 |#1| (-519)) |#1| (-1 (-1063 |#1|)))) (-15 -1860 ((-1063 |#1|) |#1| (-1063 |#1|)))) |%noBranch|)) +((-2958 (((-1063 |#1|) (-1063 |#1|)) 57)) (-2823 (((-1063 |#1|) (-1063 |#1|)) 39)) (-2934 (((-1063 |#1|) (-1063 |#1|)) 53)) (-2800 (((-1063 |#1|) (-1063 |#1|)) 35)) (-2981 (((-1063 |#1|) (-1063 |#1|)) 60)) (-2844 (((-1063 |#1|) (-1063 |#1|)) 42)) (-1254 (((-1063 |#1|) (-1063 |#1|)) 31)) (-3325 (((-1063 |#1|) (-1063 |#1|)) 27)) (-1754 (((-1063 |#1|) (-1063 |#1|)) 61)) (-2854 (((-1063 |#1|) (-1063 |#1|)) 43)) (-2969 (((-1063 |#1|) (-1063 |#1|)) 58)) (-2834 (((-1063 |#1|) (-1063 |#1|)) 40)) (-2946 (((-1063 |#1|) (-1063 |#1|)) 55)) (-2812 (((-1063 |#1|) (-1063 |#1|)) 37)) (-1774 (((-1063 |#1|) (-1063 |#1|)) 65)) (-2886 (((-1063 |#1|) (-1063 |#1|)) 47)) (-1761 (((-1063 |#1|) (-1063 |#1|)) 63)) (-2865 (((-1063 |#1|) (-1063 |#1|)) 45)) (-1790 (((-1063 |#1|) (-1063 |#1|)) 68)) (-2910 (((-1063 |#1|) (-1063 |#1|)) 50)) (-3929 (((-1063 |#1|) (-1063 |#1|)) 69)) (-2922 (((-1063 |#1|) (-1063 |#1|)) 51)) (-1783 (((-1063 |#1|) (-1063 |#1|)) 67)) (-2898 (((-1063 |#1|) (-1063 |#1|)) 49)) (-1768 (((-1063 |#1|) (-1063 |#1|)) 66)) (-2875 (((-1063 |#1|) (-1063 |#1|)) 48)) (** (((-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) 33))) +(((-1068 |#1|) (-10 -7 (-15 -3325 ((-1063 |#1|) (-1063 |#1|))) (-15 -1254 ((-1063 |#1|) (-1063 |#1|))) (-15 ** ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -2800 ((-1063 |#1|) (-1063 |#1|))) (-15 -2812 ((-1063 |#1|) (-1063 |#1|))) (-15 -2823 ((-1063 |#1|) (-1063 |#1|))) (-15 -2834 ((-1063 |#1|) (-1063 |#1|))) (-15 -2844 ((-1063 |#1|) (-1063 |#1|))) (-15 -2854 ((-1063 |#1|) (-1063 |#1|))) (-15 -2865 ((-1063 |#1|) (-1063 |#1|))) (-15 -2875 ((-1063 |#1|) (-1063 |#1|))) (-15 -2886 ((-1063 |#1|) (-1063 |#1|))) (-15 -2898 ((-1063 |#1|) (-1063 |#1|))) (-15 -2910 ((-1063 |#1|) (-1063 |#1|))) (-15 -2922 ((-1063 |#1|) (-1063 |#1|))) (-15 -2934 ((-1063 |#1|) (-1063 |#1|))) (-15 -2946 ((-1063 |#1|) (-1063 |#1|))) (-15 -2958 ((-1063 |#1|) (-1063 |#1|))) (-15 -2969 ((-1063 |#1|) (-1063 |#1|))) (-15 -2981 ((-1063 |#1|) (-1063 |#1|))) (-15 -1754 ((-1063 |#1|) (-1063 |#1|))) (-15 -1761 ((-1063 |#1|) (-1063 |#1|))) (-15 -1768 ((-1063 |#1|) (-1063 |#1|))) (-15 -1774 ((-1063 |#1|) (-1063 |#1|))) (-15 -1783 ((-1063 |#1|) (-1063 |#1|))) (-15 -1790 ((-1063 |#1|) (-1063 |#1|))) (-15 -3929 ((-1063 |#1|) (-1063 |#1|)))) (-37 (-379 (-519)))) (T -1068)) +((-3929 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-1790 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-1761 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2969 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2958 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2922 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2875 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2865 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2854 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2844 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2823 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2812 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-2800 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-1254 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1068 *3))))) +(-10 -7 (-15 -3325 ((-1063 |#1|) (-1063 |#1|))) (-15 -1254 ((-1063 |#1|) (-1063 |#1|))) (-15 ** ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -2800 ((-1063 |#1|) (-1063 |#1|))) (-15 -2812 ((-1063 |#1|) (-1063 |#1|))) (-15 -2823 ((-1063 |#1|) (-1063 |#1|))) (-15 -2834 ((-1063 |#1|) (-1063 |#1|))) (-15 -2844 ((-1063 |#1|) (-1063 |#1|))) (-15 -2854 ((-1063 |#1|) (-1063 |#1|))) (-15 -2865 ((-1063 |#1|) (-1063 |#1|))) (-15 -2875 ((-1063 |#1|) (-1063 |#1|))) (-15 -2886 ((-1063 |#1|) (-1063 |#1|))) (-15 -2898 ((-1063 |#1|) (-1063 |#1|))) (-15 -2910 ((-1063 |#1|) (-1063 |#1|))) (-15 -2922 ((-1063 |#1|) (-1063 |#1|))) (-15 -2934 ((-1063 |#1|) (-1063 |#1|))) (-15 -2946 ((-1063 |#1|) (-1063 |#1|))) (-15 -2958 ((-1063 |#1|) (-1063 |#1|))) (-15 -2969 ((-1063 |#1|) (-1063 |#1|))) (-15 -2981 ((-1063 |#1|) (-1063 |#1|))) (-15 -1754 ((-1063 |#1|) (-1063 |#1|))) (-15 -1761 ((-1063 |#1|) (-1063 |#1|))) (-15 -1768 ((-1063 |#1|) (-1063 |#1|))) (-15 -1774 ((-1063 |#1|) (-1063 |#1|))) (-15 -1783 ((-1063 |#1|) (-1063 |#1|))) (-15 -1790 ((-1063 |#1|) (-1063 |#1|))) (-15 -3929 ((-1063 |#1|) (-1063 |#1|)))) +((-2958 (((-1063 |#1|) (-1063 |#1|)) 100)) (-2823 (((-1063 |#1|) (-1063 |#1|)) 64)) (-1223 (((-2 (|:| -2934 (-1063 |#1|)) (|:| -2946 (-1063 |#1|))) (-1063 |#1|)) 96)) (-2934 (((-1063 |#1|) (-1063 |#1|)) 97)) (-2492 (((-2 (|:| -2800 (-1063 |#1|)) (|:| -2812 (-1063 |#1|))) (-1063 |#1|)) 53)) (-2800 (((-1063 |#1|) (-1063 |#1|)) 54)) (-2981 (((-1063 |#1|) (-1063 |#1|)) 102)) (-2844 (((-1063 |#1|) (-1063 |#1|)) 71)) (-1254 (((-1063 |#1|) (-1063 |#1|)) 39)) (-3325 (((-1063 |#1|) (-1063 |#1|)) 36)) (-1754 (((-1063 |#1|) (-1063 |#1|)) 103)) (-2854 (((-1063 |#1|) (-1063 |#1|)) 72)) (-2969 (((-1063 |#1|) (-1063 |#1|)) 101)) (-2834 (((-1063 |#1|) (-1063 |#1|)) 67)) (-2946 (((-1063 |#1|) (-1063 |#1|)) 98)) (-2812 (((-1063 |#1|) (-1063 |#1|)) 55)) (-1774 (((-1063 |#1|) (-1063 |#1|)) 111)) (-2886 (((-1063 |#1|) (-1063 |#1|)) 86)) (-1761 (((-1063 |#1|) (-1063 |#1|)) 105)) (-2865 (((-1063 |#1|) (-1063 |#1|)) 82)) (-1790 (((-1063 |#1|) (-1063 |#1|)) 115)) (-2910 (((-1063 |#1|) (-1063 |#1|)) 90)) (-3929 (((-1063 |#1|) (-1063 |#1|)) 117)) (-2922 (((-1063 |#1|) (-1063 |#1|)) 92)) (-1783 (((-1063 |#1|) (-1063 |#1|)) 113)) (-2898 (((-1063 |#1|) (-1063 |#1|)) 88)) (-1768 (((-1063 |#1|) (-1063 |#1|)) 107)) (-2875 (((-1063 |#1|) (-1063 |#1|)) 84)) (** (((-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) 40))) +(((-1069 |#1|) (-10 -7 (-15 -3325 ((-1063 |#1|) (-1063 |#1|))) (-15 -1254 ((-1063 |#1|) (-1063 |#1|))) (-15 ** ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -2492 ((-2 (|:| -2800 (-1063 |#1|)) (|:| -2812 (-1063 |#1|))) (-1063 |#1|))) (-15 -2800 ((-1063 |#1|) (-1063 |#1|))) (-15 -2812 ((-1063 |#1|) (-1063 |#1|))) (-15 -2823 ((-1063 |#1|) (-1063 |#1|))) (-15 -2834 ((-1063 |#1|) (-1063 |#1|))) (-15 -2844 ((-1063 |#1|) (-1063 |#1|))) (-15 -2854 ((-1063 |#1|) (-1063 |#1|))) (-15 -2865 ((-1063 |#1|) (-1063 |#1|))) (-15 -2875 ((-1063 |#1|) (-1063 |#1|))) (-15 -2886 ((-1063 |#1|) (-1063 |#1|))) (-15 -2898 ((-1063 |#1|) (-1063 |#1|))) (-15 -2910 ((-1063 |#1|) (-1063 |#1|))) (-15 -2922 ((-1063 |#1|) (-1063 |#1|))) (-15 -1223 ((-2 (|:| -2934 (-1063 |#1|)) (|:| -2946 (-1063 |#1|))) (-1063 |#1|))) (-15 -2934 ((-1063 |#1|) (-1063 |#1|))) (-15 -2946 ((-1063 |#1|) (-1063 |#1|))) (-15 -2958 ((-1063 |#1|) (-1063 |#1|))) (-15 -2969 ((-1063 |#1|) (-1063 |#1|))) (-15 -2981 ((-1063 |#1|) (-1063 |#1|))) (-15 -1754 ((-1063 |#1|) (-1063 |#1|))) (-15 -1761 ((-1063 |#1|) (-1063 |#1|))) (-15 -1768 ((-1063 |#1|) (-1063 |#1|))) (-15 -1774 ((-1063 |#1|) (-1063 |#1|))) (-15 -1783 ((-1063 |#1|) (-1063 |#1|))) (-15 -1790 ((-1063 |#1|) (-1063 |#1|))) (-15 -3929 ((-1063 |#1|) (-1063 |#1|)))) (-37 (-379 (-519)))) (T -1069)) +((-3929 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-1790 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-1761 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2969 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2958 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-1223 (*1 *2 *3) (-12 (-4 *4 (-37 (-379 (-519)))) (-5 *2 (-2 (|:| -2934 (-1063 *4)) (|:| -2946 (-1063 *4)))) (-5 *1 (-1069 *4)) (-5 *3 (-1063 *4)))) (-2922 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2875 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2865 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2854 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2844 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2834 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2823 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2812 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2800 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-2492 (*1 *2 *3) (-12 (-4 *4 (-37 (-379 (-519)))) (-5 *2 (-2 (|:| -2800 (-1063 *4)) (|:| -2812 (-1063 *4)))) (-5 *1 (-1069 *4)) (-5 *3 (-1063 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-1254 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1069 *3))))) +(-10 -7 (-15 -3325 ((-1063 |#1|) (-1063 |#1|))) (-15 -1254 ((-1063 |#1|) (-1063 |#1|))) (-15 ** ((-1063 |#1|) (-1063 |#1|) (-1063 |#1|))) (-15 -2492 ((-2 (|:| -2800 (-1063 |#1|)) (|:| -2812 (-1063 |#1|))) (-1063 |#1|))) (-15 -2800 ((-1063 |#1|) (-1063 |#1|))) (-15 -2812 ((-1063 |#1|) (-1063 |#1|))) (-15 -2823 ((-1063 |#1|) (-1063 |#1|))) (-15 -2834 ((-1063 |#1|) (-1063 |#1|))) (-15 -2844 ((-1063 |#1|) (-1063 |#1|))) (-15 -2854 ((-1063 |#1|) (-1063 |#1|))) (-15 -2865 ((-1063 |#1|) (-1063 |#1|))) (-15 -2875 ((-1063 |#1|) (-1063 |#1|))) (-15 -2886 ((-1063 |#1|) (-1063 |#1|))) (-15 -2898 ((-1063 |#1|) (-1063 |#1|))) (-15 -2910 ((-1063 |#1|) (-1063 |#1|))) (-15 -2922 ((-1063 |#1|) (-1063 |#1|))) (-15 -1223 ((-2 (|:| -2934 (-1063 |#1|)) (|:| -2946 (-1063 |#1|))) (-1063 |#1|))) (-15 -2934 ((-1063 |#1|) (-1063 |#1|))) (-15 -2946 ((-1063 |#1|) (-1063 |#1|))) (-15 -2958 ((-1063 |#1|) (-1063 |#1|))) (-15 -2969 ((-1063 |#1|) (-1063 |#1|))) (-15 -2981 ((-1063 |#1|) (-1063 |#1|))) (-15 -1754 ((-1063 |#1|) (-1063 |#1|))) (-15 -1761 ((-1063 |#1|) (-1063 |#1|))) (-15 -1768 ((-1063 |#1|) (-1063 |#1|))) (-15 -1774 ((-1063 |#1|) (-1063 |#1|))) (-15 -1783 ((-1063 |#1|) (-1063 |#1|))) (-15 -1790 ((-1063 |#1|) (-1063 |#1|))) (-15 -3929 ((-1063 |#1|) (-1063 |#1|)))) +((-2087 (((-884 |#2|) |#2| |#2|) 36)) (-2177 ((|#2| |#2| |#1|) 19 (|has| |#1| (-280))))) +(((-1070 |#1| |#2|) (-10 -7 (-15 -2087 ((-884 |#2|) |#2| |#2|)) (IF (|has| |#1| (-280)) (-15 -2177 (|#2| |#2| |#1|)) |%noBranch|)) (-511) (-1139 |#1|)) (T -1070)) +((-2177 (*1 *2 *2 *3) (-12 (-4 *3 (-280)) (-4 *3 (-511)) (-5 *1 (-1070 *3 *2)) (-4 *2 (-1139 *3)))) (-2087 (*1 *2 *3 *3) (-12 (-4 *4 (-511)) (-5 *2 (-884 *3)) (-5 *1 (-1070 *4 *3)) (-4 *3 (-1139 *4))))) +(-10 -7 (-15 -2087 ((-884 |#2|) |#2| |#2|)) (IF (|has| |#1| (-280)) (-15 -2177 (|#2| |#2| |#1|)) |%noBranch|)) +((-1430 (((-108) $ $) NIL)) (-3215 (($ $ (-585 (-705))) 67)) (-2869 (($) 26)) (-3610 (($ $) 42)) (-2659 (((-585 $) $) 51)) (-2885 (((-108) $) 16)) (-1388 (((-585 (-870 |#2|)) $) 74)) (-1658 (($ $) 68)) (-3239 (((-705) $) 37)) (-1822 (($) 25)) (-3194 (($ $ (-585 (-705)) (-870 |#2|)) 60) (($ $ (-585 (-705)) (-705)) 61) (($ $ (-705) (-870 |#2|)) 63)) (-2500 (($ $ $) 48) (($ (-585 $)) 50)) (-1566 (((-705) $) 75)) (-1668 (((-108) $) 15)) (-1266 (((-1065) $) NIL)) (-3497 (((-108) $) 18)) (-4139 (((-1029) $) NIL)) (-3782 (((-156) $) 73)) (-2571 (((-870 |#2|) $) 69)) (-3343 (((-705) $) 70)) (-2173 (((-108) $) 72)) (-2577 (($ $ (-585 (-705)) (-156)) 66)) (-3340 (($ $) 43)) (-2217 (((-790) $) 85)) (-2892 (($ $ (-585 (-705)) (-108)) 65)) (-2018 (((-585 $) $) 11)) (-3248 (($ $ (-705)) 36)) (-3899 (($ $) 32)) (-3963 (($ $ $ (-870 |#2|) (-705)) 56)) (-2316 (($ $ (-870 |#2|)) 55)) (-4085 (($ $ (-585 (-705)) (-870 |#2|)) 54) (($ $ (-585 (-705)) (-705)) 58) (((-705) $ (-870 |#2|)) 59)) (-1543 (((-108) $ $) 79))) +(((-1071 |#1| |#2|) (-13 (-1011) (-10 -8 (-15 -1668 ((-108) $)) (-15 -2885 ((-108) $)) (-15 -3497 ((-108) $)) (-15 -1822 ($)) (-15 -2869 ($)) (-15 -3899 ($ $)) (-15 -3248 ($ $ (-705))) (-15 -2018 ((-585 $) $)) (-15 -3239 ((-705) $)) (-15 -3610 ($ $)) (-15 -3340 ($ $)) (-15 -2500 ($ $ $)) (-15 -2500 ($ (-585 $))) (-15 -2659 ((-585 $) $)) (-15 -4085 ($ $ (-585 (-705)) (-870 |#2|))) (-15 -2316 ($ $ (-870 |#2|))) (-15 -3963 ($ $ $ (-870 |#2|) (-705))) (-15 -3194 ($ $ (-585 (-705)) (-870 |#2|))) (-15 -4085 ($ $ (-585 (-705)) (-705))) (-15 -3194 ($ $ (-585 (-705)) (-705))) (-15 -4085 ((-705) $ (-870 |#2|))) (-15 -3194 ($ $ (-705) (-870 |#2|))) (-15 -2892 ($ $ (-585 (-705)) (-108))) (-15 -2577 ($ $ (-585 (-705)) (-156))) (-15 -3215 ($ $ (-585 (-705)))) (-15 -2571 ((-870 |#2|) $)) (-15 -3343 ((-705) $)) (-15 -2173 ((-108) $)) (-15 -3782 ((-156) $)) (-15 -1566 ((-705) $)) (-15 -1658 ($ $)) (-15 -1388 ((-585 (-870 |#2|)) $)))) (-848) (-968)) (T -1071)) +((-1668 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-1822 (*1 *1) (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968)))) (-2869 (*1 *1) (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968)))) (-3899 (*1 *1 *1) (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968)))) (-3248 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-585 (-1071 *3 *4))) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-3610 (*1 *1 *1) (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968)))) (-3340 (*1 *1 *1) (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968)))) (-2500 (*1 *1 *1 *1) (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968)))) (-2500 (*1 *1 *2) (-12 (-5 *2 (-585 (-1071 *3 *4))) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-585 (-1071 *3 *4))) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-4085 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-705))) (-5 *3 (-870 *5)) (-4 *5 (-968)) (-5 *1 (-1071 *4 *5)) (-14 *4 (-848)))) (-2316 (*1 *1 *1 *2) (-12 (-5 *2 (-870 *4)) (-4 *4 (-968)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)))) (-3963 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-870 *5)) (-5 *3 (-705)) (-4 *5 (-968)) (-5 *1 (-1071 *4 *5)) (-14 *4 (-848)))) (-3194 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-705))) (-5 *3 (-870 *5)) (-4 *5 (-968)) (-5 *1 (-1071 *4 *5)) (-14 *4 (-848)))) (-4085 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-705))) (-5 *3 (-705)) (-5 *1 (-1071 *4 *5)) (-14 *4 (-848)) (-4 *5 (-968)))) (-3194 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-705))) (-5 *3 (-705)) (-5 *1 (-1071 *4 *5)) (-14 *4 (-848)) (-4 *5 (-968)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-870 *5)) (-4 *5 (-968)) (-5 *2 (-705)) (-5 *1 (-1071 *4 *5)) (-14 *4 (-848)))) (-3194 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-705)) (-5 *3 (-870 *5)) (-4 *5 (-968)) (-5 *1 (-1071 *4 *5)) (-14 *4 (-848)))) (-2892 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-705))) (-5 *3 (-108)) (-5 *1 (-1071 *4 *5)) (-14 *4 (-848)) (-4 *5 (-968)))) (-2577 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-585 (-705))) (-5 *3 (-156)) (-5 *1 (-1071 *4 *5)) (-14 *4 (-848)) (-4 *5 (-968)))) (-3215 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-705))) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-870 *4)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968)))) (-1658 (*1 *1 *1) (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-585 (-870 *4))) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) (-4 *4 (-968))))) +(-13 (-1011) (-10 -8 (-15 -1668 ((-108) $)) (-15 -2885 ((-108) $)) (-15 -3497 ((-108) $)) (-15 -1822 ($)) (-15 -2869 ($)) (-15 -3899 ($ $)) (-15 -3248 ($ $ (-705))) (-15 -2018 ((-585 $) $)) (-15 -3239 ((-705) $)) (-15 -3610 ($ $)) (-15 -3340 ($ $)) (-15 -2500 ($ $ $)) (-15 -2500 ($ (-585 $))) (-15 -2659 ((-585 $) $)) (-15 -4085 ($ $ (-585 (-705)) (-870 |#2|))) (-15 -2316 ($ $ (-870 |#2|))) (-15 -3963 ($ $ $ (-870 |#2|) (-705))) (-15 -3194 ($ $ (-585 (-705)) (-870 |#2|))) (-15 -4085 ($ $ (-585 (-705)) (-705))) (-15 -3194 ($ $ (-585 (-705)) (-705))) (-15 -4085 ((-705) $ (-870 |#2|))) (-15 -3194 ($ $ (-705) (-870 |#2|))) (-15 -2892 ($ $ (-585 (-705)) (-108))) (-15 -2577 ($ $ (-585 (-705)) (-156))) (-15 -3215 ($ $ (-585 (-705)))) (-15 -2571 ((-870 |#2|) $)) (-15 -3343 ((-705) $)) (-15 -2173 ((-108) $)) (-15 -3782 ((-156) $)) (-15 -1566 ((-705) $)) (-15 -1658 ($ $)) (-15 -1388 ((-585 (-870 |#2|)) $)))) +((-1430 (((-108) $ $) NIL)) (-3634 ((|#2| $) 11)) (-3625 ((|#1| $) 10)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2228 (($ |#1| |#2|) 9)) (-2217 (((-790) $) 16)) (-1543 (((-108) $ $) NIL))) +(((-1072 |#1| |#2|) (-13 (-1011) (-10 -8 (-15 -2228 ($ |#1| |#2|)) (-15 -3625 (|#1| $)) (-15 -3634 (|#2| $)))) (-1011) (-1011)) (T -1072)) +((-2228 (*1 *1 *2 *3) (-12 (-5 *1 (-1072 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011)))) (-3625 (*1 *2 *1) (-12 (-4 *2 (-1011)) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1011)))) (-3634 (*1 *2 *1) (-12 (-4 *2 (-1011)) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1011))))) +(-13 (-1011) (-10 -8 (-15 -2228 ($ |#1| |#2|)) (-15 -3625 (|#1| $)) (-15 -3634 (|#2| $)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2157 (((-1080 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-280)) (|has| |#1| (-335))))) (-4083 (((-585 (-996)) $) NIL)) (-1622 (((-1082) $) 11)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511))))) (-1410 (($ $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511))))) (-3060 (((-108) $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511))))) (-4057 (($ $ (-519)) NIL) (($ $ (-519) (-519)) 66)) (-3088 (((-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) $) NIL)) (-1915 (((-1080 |#1| |#2| |#3|) $) 36)) (-3789 (((-3 (-1080 |#1| |#2| |#3|) "failed") $) 29)) (-3110 (((-1080 |#1| |#2| |#3|) $) 30)) (-2958 (($ $) 107 (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) 83 (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))))) (-4043 (($ $) NIL (|has| |#1| (-335)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-2934 (($ $) 103 (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) 79 (|has| |#1| (-37 (-379 (-519)))))) (-2287 (((-519) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))))) (-2824 (($ (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|)))) NIL)) (-2981 (($ $) 111 (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) 87 (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-1080 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1082) "failed") $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-959 (-1082))) (|has| |#1| (-335)))) (((-3 (-379 (-519)) "failed") $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-959 (-519))) (|has| |#1| (-335)))) (((-3 (-519) "failed") $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-959 (-519))) (|has| |#1| (-335))))) (-1499 (((-1080 |#1| |#2| |#3|) $) 131) (((-1082) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-959 (-1082))) (|has| |#1| (-335)))) (((-379 (-519)) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-959 (-519))) (|has| |#1| (-335)))) (((-519) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-959 (-519))) (|has| |#1| (-335))))) (-3768 (($ $) 34) (($ (-519) $) 35)) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) NIL)) (-1562 (((-625 (-1080 |#1| |#2| |#3|)) (-625 $)) NIL (|has| |#1| (-335))) (((-2 (|:| -2488 (-625 (-1080 |#1| |#2| |#3|))) (|:| |vec| (-1163 (-1080 |#1| |#2| |#3|)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-335))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-581 (-519))) (|has| |#1| (-335)))) (((-625 (-519)) (-625 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-581 (-519))) (|has| |#1| (-335))))) (-4193 (((-3 $ "failed") $) 48)) (-2893 (((-379 (-879 |#1|)) $ (-519)) 65 (|has| |#1| (-511))) (((-379 (-879 |#1|)) $ (-519) (-519)) 67 (|has| |#1| (-511)))) (-3314 (($) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-504)) (|has| |#1| (-335))))) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-1320 (((-108) $) NIL (|has| |#1| (-335)))) (-3419 (((-108) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))))) (-3943 (((-108) $) 25)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-813 (-519))) (|has| |#1| (-335)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-813 (-351))) (|has| |#1| (-335))))) (-3709 (((-519) $) NIL) (((-519) $ (-519)) 24)) (-1568 (((-108) $) NIL)) (-1534 (($ $) NIL (|has| |#1| (-335)))) (-2855 (((-1080 |#1| |#2| |#3|) $) 38 (|has| |#1| (-335)))) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1675 (((-3 $ "failed") $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-1058)) (|has| |#1| (-335))))) (-2143 (((-108) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))))) (-1855 (($ $ (-848)) NIL)) (-2221 (($ (-1 |#1| (-519)) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-519)) 18) (($ $ (-996) (-519)) NIL) (($ $ (-585 (-996)) (-585 (-519))) NIL)) (-2864 (($ $ $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-2489 (($ $ $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-335)))) (-1254 (($ $) 72 (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-3120 (($ (-519) (-1080 |#1| |#2| |#3|)) 33)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL (|has| |#1| (-335)))) (-4142 (($ $) 70 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) NIL (-3730 (-12 (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-885)) (|has| |#1| (-1103))))) (($ $ (-1159 |#2|)) 71 (|has| |#1| (-37 (-379 (-519)))))) (-3816 (($) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-1058)) (|has| |#1| (-335))) CONST)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-335)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-3326 (($ $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-280)) (|has| |#1| (-335))))) (-1525 (((-1080 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-504)) (|has| |#1| (-335))))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))))) (-1921 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-3881 (($ $ (-519)) 145)) (-2261 (((-3 $ "failed") $ $) 49 (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511))))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-3325 (($ $) 73 (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-519))))) (($ $ (-1082) (-1080 |#1| |#2| |#3|)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-480 (-1082) (-1080 |#1| |#2| |#3|))) (|has| |#1| (-335)))) (($ $ (-585 (-1082)) (-585 (-1080 |#1| |#2| |#3|))) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-480 (-1082) (-1080 |#1| |#2| |#3|))) (|has| |#1| (-335)))) (($ $ (-585 (-267 (-1080 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-282 (-1080 |#1| |#2| |#3|))) (|has| |#1| (-335)))) (($ $ (-267 (-1080 |#1| |#2| |#3|))) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-282 (-1080 |#1| |#2| |#3|))) (|has| |#1| (-335)))) (($ $ (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-282 (-1080 |#1| |#2| |#3|))) (|has| |#1| (-335)))) (($ $ (-585 (-1080 |#1| |#2| |#3|)) (-585 (-1080 |#1| |#2| |#3|))) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-282 (-1080 |#1| |#2| |#3|))) (|has| |#1| (-335))))) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-2598 ((|#1| $ (-519)) NIL) (($ $ $) 54 (|has| (-519) (-1023))) (($ $ (-1080 |#1| |#2| |#3|)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-260 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|))) (|has| |#1| (-335))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-2181 (($ $ (-1 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|))) NIL (|has| |#1| (-335))) (($ $ (-1 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) (-705)) NIL (|has| |#1| (-335))) (($ $ (-1159 |#2|)) 51) (($ $ (-705)) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $) 50 (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082) (-705)) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-585 (-1082))) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082)) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))))) (-2724 (($ $) NIL (|has| |#1| (-335)))) (-2866 (((-1080 |#1| |#2| |#3|) $) 41 (|has| |#1| (-335)))) (-4178 (((-519) $) 37)) (-1754 (($ $) 113 (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) 89 (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) 109 (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) 85 (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) 105 (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) 81 (|has| |#1| (-37 (-379 (-519)))))) (-1446 (((-495) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-560 (-495))) (|has| |#1| (-335)))) (((-351) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-944)) (|has| |#1| (-335)))) (((-201) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-944)) (|has| |#1| (-335)))) (((-819 (-351)) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-560 (-819 (-351)))) (|has| |#1| (-335)))) (((-819 (-519)) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-560 (-819 (-519)))) (|has| |#1| (-335))))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))))) (-1508 (($ $) NIL)) (-2217 (((-790) $) 149) (($ (-519)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1080 |#1| |#2| |#3|)) 27) (($ (-1159 |#2|)) 23) (($ (-1082)) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-959 (-1082))) (|has| |#1| (-335)))) (($ $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511)))) (($ (-379 (-519))) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-959 (-519))) (|has| |#1| (-335))) (|has| |#1| (-37 (-379 (-519))))))) (-1220 ((|#1| $ (-519)) 68)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-133)) (|has| |#1| (-335))) (|has| |#1| (-133))))) (-3594 (((-705)) NIL)) (-1896 ((|#1| $) 12)) (-3617 (((-1080 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-504)) (|has| |#1| (-335))))) (-1774 (($ $) 119 (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) 95 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511))))) (-1761 (($ $) 115 (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) 91 (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) 123 (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) 99 (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-519)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-519)))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) 125 (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) 101 (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) 121 (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) 97 (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) 117 (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) 93 (|has| |#1| (-37 (-379 (-519)))))) (-1478 (($ $) NIL (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (-3602 (($) 20 T CONST)) (-3611 (($) 16 T CONST)) (-2242 (($ $ (-1 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|))) NIL (|has| |#1| (-335))) (($ $ (-1 (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) (-705)) NIL (|has| |#1| (-335))) (($ $ (-705)) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082) (-705)) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-585 (-1082))) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082)) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))))) (-1586 (((-108) $ $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-1569 (((-108) $ $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-1561 (((-108) $ $) NIL (-3730 (-12 (|has| (-1080 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1080 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335))) (($ $ $) 44 (|has| |#1| (-335))) (($ (-1080 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3|)) 45 (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 21)) (** (($ $ (-848)) NIL) (($ $ (-705)) 53) (($ $ (-519)) NIL (|has| |#1| (-335))) (($ $ $) 74 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 128 (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1080 |#1| |#2| |#3|)) 43 (|has| |#1| (-335))) (($ (-1080 |#1| |#2| |#3|) $) 42 (|has| |#1| (-335))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-1073 |#1| |#2| |#3|) (-13 (-1125 |#1| (-1080 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) (-968) (-1082) |#1|) (T -1073)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3)))) +(-13 (-1125 |#1| (-1080 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) +((-3565 ((|#2| |#2| (-1004 |#2|)) 26) ((|#2| |#2| (-1082)) 28))) +(((-1074 |#1| |#2|) (-10 -7 (-15 -3565 (|#2| |#2| (-1082))) (-15 -3565 (|#2| |#2| (-1004 |#2|)))) (-13 (-511) (-782) (-959 (-519)) (-581 (-519))) (-13 (-402 |#1|) (-146) (-27) (-1103))) (T -1074)) +((-3565 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-402 *4) (-146) (-27) (-1103))) (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-1074 *4 *2)))) (-3565 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-1074 *4 *2)) (-4 *2 (-13 (-402 *4) (-146) (-27) (-1103)))))) +(-10 -7 (-15 -3565 (|#2| |#2| (-1082))) (-15 -3565 (|#2| |#2| (-1004 |#2|)))) +((-3565 (((-3 (-379 (-879 |#1|)) (-288 |#1|)) (-379 (-879 |#1|)) (-1004 (-379 (-879 |#1|)))) 30) (((-379 (-879 |#1|)) (-879 |#1|) (-1004 (-879 |#1|))) 44) (((-3 (-379 (-879 |#1|)) (-288 |#1|)) (-379 (-879 |#1|)) (-1082)) 32) (((-379 (-879 |#1|)) (-879 |#1|) (-1082)) 36))) +(((-1075 |#1|) (-10 -7 (-15 -3565 ((-379 (-879 |#1|)) (-879 |#1|) (-1082))) (-15 -3565 ((-3 (-379 (-879 |#1|)) (-288 |#1|)) (-379 (-879 |#1|)) (-1082))) (-15 -3565 ((-379 (-879 |#1|)) (-879 |#1|) (-1004 (-879 |#1|)))) (-15 -3565 ((-3 (-379 (-879 |#1|)) (-288 |#1|)) (-379 (-879 |#1|)) (-1004 (-379 (-879 |#1|)))))) (-13 (-511) (-782) (-959 (-519)))) (T -1075)) +((-3565 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-379 (-879 *5)))) (-5 *3 (-379 (-879 *5))) (-4 *5 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-3 *3 (-288 *5))) (-5 *1 (-1075 *5)))) (-3565 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-879 *5))) (-5 *3 (-879 *5)) (-4 *5 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-379 *3)) (-5 *1 (-1075 *5)))) (-3565 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-3 (-379 (-879 *5)) (-288 *5))) (-5 *1 (-1075 *5)) (-5 *3 (-379 (-879 *5))))) (-3565 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-379 (-879 *5))) (-5 *1 (-1075 *5)) (-5 *3 (-879 *5))))) +(-10 -7 (-15 -3565 ((-379 (-879 |#1|)) (-879 |#1|) (-1082))) (-15 -3565 ((-3 (-379 (-879 |#1|)) (-288 |#1|)) (-379 (-879 |#1|)) (-1082))) (-15 -3565 ((-379 (-879 |#1|)) (-879 |#1|) (-1004 (-879 |#1|)))) (-15 -3565 ((-3 (-379 (-879 |#1|)) (-288 |#1|)) (-379 (-879 |#1|)) (-1004 (-379 (-879 |#1|)))))) +((-1405 (((-1078 |#2|) (-1 |#2| |#1|) (-1078 |#1|)) 13))) +(((-1076 |#1| |#2|) (-10 -7 (-15 -1405 ((-1078 |#2|) (-1 |#2| |#1|) (-1078 |#1|)))) (-968) (-968)) (T -1076)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1078 *5)) (-4 *5 (-968)) (-4 *6 (-968)) (-5 *2 (-1078 *6)) (-5 *1 (-1076 *5 *6))))) +(-10 -7 (-15 -1405 ((-1078 |#2|) (-1 |#2| |#1|) (-1078 |#1|)))) +((-3093 (((-390 (-1078 (-379 |#4|))) (-1078 (-379 |#4|))) 50)) (-1921 (((-390 (-1078 (-379 |#4|))) (-1078 (-379 |#4|))) 51))) +(((-1077 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1921 ((-390 (-1078 (-379 |#4|))) (-1078 (-379 |#4|)))) (-15 -3093 ((-390 (-1078 (-379 |#4|))) (-1078 (-379 |#4|))))) (-727) (-782) (-423) (-876 |#3| |#1| |#2|)) (T -1077)) +((-3093 (*1 *2 *3) (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-423)) (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-390 (-1078 (-379 *7)))) (-5 *1 (-1077 *4 *5 *6 *7)) (-5 *3 (-1078 (-379 *7))))) (-1921 (*1 *2 *3) (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-423)) (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-390 (-1078 (-379 *7)))) (-5 *1 (-1077 *4 *5 *6 *7)) (-5 *3 (-1078 (-379 *7)))))) +(-10 -7 (-15 -1921 ((-390 (-1078 (-379 |#4|))) (-1078 (-379 |#4|)))) (-15 -3093 ((-390 (-1078 (-379 |#4|))) (-1078 (-379 |#4|))))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 30)) (-3500 (((-1163 |#1|) $ (-705)) NIL)) (-4083 (((-585 (-996)) $) NIL)) (-4100 (($ (-1078 |#1|)) NIL)) (-1283 (((-1078 $) $ (-996)) 59) (((-1078 |#1|) $) 48)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) 133 (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 (-996))) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1218 (($ $ $) 127 (|has| |#1| (-511)))) (-1958 (((-390 (-1078 $)) (-1078 $)) 72 (|has| |#1| (-836)))) (-4043 (($ $) NIL (|has| |#1| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 92 (|has| |#1| (-836)))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-1706 (($ $ (-705)) 42)) (-3007 (($ $ (-705)) 43)) (-2659 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-423)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#1| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-996) "failed") $) NIL)) (-1499 ((|#1| $) NIL) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-996) $) NIL)) (-1286 (($ $ $ (-996)) NIL (|has| |#1| (-157))) ((|#1| $ $) 129 (|has| |#1| (-157)))) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) 57)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) NIL) (((-625 |#1|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-2229 (($ $ $) 105)) (-3259 (($ $ $) NIL (|has| |#1| (-511)))) (-2964 (((-2 (|:| -3031 |#1|) (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-511)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-2177 (($ $) 134 (|has| |#1| (-423))) (($ $ (-996)) NIL (|has| |#1| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#1| (-836)))) (-4015 (($ $ |#1| (-705) $) 46)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-996) (-813 (-351))) (|has| |#1| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-996) (-813 (-519))) (|has| |#1| (-813 (-519)))))) (-2184 (((-790) $ (-790)) 118)) (-3709 (((-705) $ $) NIL (|has| |#1| (-511)))) (-1568 (((-108) $) 32)) (-3798 (((-705) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-1058)))) (-4066 (($ (-1078 |#1|) (-996)) 50) (($ (-1078 $) (-996)) 66)) (-1855 (($ $ (-705)) 34)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-705)) 64) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-996)) NIL) (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 122)) (-3695 (((-705) $) NIL) (((-705) $ (-996)) NIL) (((-585 (-705)) $ (-585 (-996))) NIL)) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3737 (($ (-1 (-705) (-705)) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-1270 (((-1078 |#1|) $) NIL)) (-2635 (((-3 (-996) "failed") $) NIL)) (-3185 (($ $) NIL)) (-3197 ((|#1| $) 53)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) NIL (|has| |#1| (-423)))) (-1266 (((-1065) $) NIL)) (-1296 (((-2 (|:| -3573 $) (|:| -1354 $)) $ (-705)) 41)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| (-996)) (|:| -1690 (-705))) "failed") $) NIL)) (-4142 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3816 (($) NIL (|has| |#1| (-1058)) CONST)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) 33)) (-3173 ((|#1| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 80 (|has| |#1| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-423))) (($ $ $) 136 (|has| |#1| (-423)))) (-1339 (($ $ (-705) |#1| $) 100)) (-1863 (((-390 (-1078 $)) (-1078 $)) 78 (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) 77 (|has| |#1| (-836)))) (-1921 (((-390 $) $) 85 (|has| |#1| (-836)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-2261 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-511))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-996) |#1|) NIL) (($ $ (-585 (-996)) (-585 |#1|)) NIL) (($ $ (-996) $) NIL) (($ $ (-585 (-996)) (-585 $)) NIL)) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-2598 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-379 $) (-379 $) (-379 $)) NIL (|has| |#1| (-511))) ((|#1| (-379 $) |#1|) NIL (|has| |#1| (-335))) (((-379 $) $ (-379 $)) NIL (|has| |#1| (-511)))) (-2340 (((-3 $ "failed") $ (-705)) 37)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 139 (|has| |#1| (-335)))) (-3677 (($ $ (-996)) NIL (|has| |#1| (-157))) ((|#1| $) 125 (|has| |#1| (-157)))) (-2181 (($ $ (-996)) NIL) (($ $ (-585 (-996))) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL) (($ $ (-705)) NIL) (($ $) NIL) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4178 (((-705) $) 55) (((-705) $ (-996)) NIL) (((-585 (-705)) $ (-585 (-996))) NIL)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| (-996) (-560 (-819 (-351)))) (|has| |#1| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| (-996) (-560 (-819 (-519)))) (|has| |#1| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| (-996) (-560 (-495))) (|has| |#1| (-560 (-495)))))) (-3939 ((|#1| $) 131 (|has| |#1| (-423))) (($ $ (-996)) NIL (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-836))))) (-2030 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511))) (((-3 (-379 $) "failed") (-379 $) $) NIL (|has| |#1| (-511)))) (-2217 (((-790) $) 119) (($ (-519)) NIL) (($ |#1|) 54) (($ (-996)) NIL) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#1| (-511)))) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-705)) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) 28 (|has| |#1| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3559 (($ $ (-848)) 15) (($ $ (-705)) 16)) (-3602 (($) 17 T CONST)) (-3611 (($) 18 T CONST)) (-2242 (($ $ (-996)) NIL) (($ $ (-585 (-996))) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL) (($ $ (-705)) NIL) (($ $) NIL) (($ $ (-1082)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) 97)) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1632 (($ $ |#1|) 140 (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 67)) (** (($ $ (-848)) 14) (($ $ (-705)) 12)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 27) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) 103) (($ $ |#1|) NIL))) +(((-1078 |#1|) (-13 (-1139 |#1|) (-10 -8 (-15 -2184 ((-790) $ (-790))) (-15 -1339 ($ $ (-705) |#1| $)))) (-968)) (T -1078)) +((-2184 (*1 *2 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1078 *3)) (-4 *3 (-968)))) (-1339 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-705)) (-5 *1 (-1078 *3)) (-4 *3 (-968))))) +(-13 (-1139 |#1|) (-10 -8 (-15 -2184 ((-790) $ (-790))) (-15 -1339 ($ $ (-705) |#1| $)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 (-996)) $) NIL)) (-1622 (((-1082) $) 11)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-4057 (($ $ (-379 (-519))) NIL) (($ $ (-379 (-519)) (-379 (-519))) NIL)) (-3088 (((-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|))) $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL (|has| |#1| (-335)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-2934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2824 (($ (-705) (-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|)))) NIL)) (-2981 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-1073 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1080 |#1| |#2| |#3|) "failed") $) 35)) (-1499 (((-1073 |#1| |#2| |#3|) $) NIL) (((-1080 |#1| |#2| |#3|) $) NIL)) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-4121 (((-379 (-519)) $) 55)) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-3131 (($ (-379 (-519)) (-1073 |#1| |#2| |#3|)) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-1320 (((-108) $) NIL (|has| |#1| (-335)))) (-3943 (((-108) $) NIL)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-379 (-519)) $) NIL) (((-379 (-519)) $ (-379 (-519))) NIL)) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1855 (($ $ (-848)) NIL) (($ $ (-379 (-519))) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-379 (-519))) 19) (($ $ (-996) (-379 (-519))) NIL) (($ $ (-585 (-996)) (-585 (-379 (-519)))) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-2648 (((-1073 |#1| |#2| |#3|) $) 40)) (-1584 (((-3 (-1073 |#1| |#2| |#3|) "failed") $) NIL)) (-3120 (((-1073 |#1| |#2| |#3|) $) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL (|has| |#1| (-335)))) (-4142 (($ $) 38 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) NIL (-3730 (-12 (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-885)) (|has| |#1| (-1103))))) (($ $ (-1159 |#2|)) 39 (|has| |#1| (-37 (-379 (-519)))))) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-335)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-3881 (($ $ (-379 (-519))) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-3325 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))))) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-2598 ((|#1| $ (-379 (-519))) NIL) (($ $ $) NIL (|has| (-379 (-519)) (-1023)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $ (-1159 |#2|)) 37)) (-4178 (((-379 (-519)) $) NIL)) (-1754 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) NIL)) (-2217 (((-790) $) 58) (($ (-519)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1073 |#1| |#2| |#3|)) 29) (($ (-1080 |#1| |#2| |#3|)) 30) (($ (-1159 |#2|)) 25) (($ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $) NIL (|has| |#1| (-511)))) (-1220 ((|#1| $ (-379 (-519))) NIL)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-1896 ((|#1| $) 12)) (-1774 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1761 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-379 (-519))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (-3602 (($) 21 T CONST)) (-3611 (($) 16 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 23)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-1079 |#1| |#2| |#3|) (-13 (-1146 |#1| (-1073 |#1| |#2| |#3|)) (-959 (-1080 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) (-968) (-1082) |#1|) (T -1079)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1079 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1079 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1079 *3 *4 *5)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3)))) +(-13 (-1146 |#1| (-1073 |#1| |#2| |#3|)) (-959 (-1080 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 125)) (-4083 (((-585 (-996)) $) NIL)) (-1622 (((-1082) $) 116)) (-3921 (((-1136 |#2| |#1|) $ (-705)) 63)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-4057 (($ $ (-705)) 79) (($ $ (-705) (-705)) 76)) (-3088 (((-1063 (-2 (|:| |k| (-705)) (|:| |c| |#1|))) $) 102)) (-2958 (($ $) 169 (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) 145 (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2934 (($ $) 165 (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) 141 (|has| |#1| (-37 (-379 (-519)))))) (-2824 (($ (-1063 (-2 (|:| |k| (-705)) (|:| |c| |#1|)))) 115) (($ (-1063 |#1|)) 110)) (-2981 (($ $) 173 (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) 149 (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) 23)) (-3366 (($ $) 26)) (-2227 (((-879 |#1|) $ (-705)) 75) (((-879 |#1|) $ (-705) (-705)) 77)) (-3943 (((-108) $) 120)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-705) $) 122) (((-705) $ (-705)) 124)) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1855 (($ $ (-848)) NIL)) (-2221 (($ (-1 |#1| (-519)) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-705)) 13) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) 131 (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4142 (($ $) 129 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) NIL (-3730 (-12 (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-885)) (|has| |#1| (-1103))))) (($ $ (-1159 |#2|)) 130 (|has| |#1| (-37 (-379 (-519)))))) (-4139 (((-1029) $) NIL)) (-3881 (($ $ (-705)) 15)) (-2261 (((-3 $ "failed") $ $) 24 (|has| |#1| (-511)))) (-3325 (($ $) 133 (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-705)))))) (-2598 ((|#1| $ (-705)) 119) (($ $ $) 128 (|has| (-705) (-1023)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-705) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-705) |#1|)))) (($ $ (-1159 |#2|)) 29)) (-4178 (((-705) $) NIL)) (-1754 (($ $) 175 (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) 151 (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) 171 (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) 147 (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) 167 (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) 143 (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) NIL)) (-2217 (((-790) $) 201) (($ (-519)) NIL) (($ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $) NIL (|has| |#1| (-511))) (($ |#1|) 126 (|has| |#1| (-157))) (($ (-1136 |#2| |#1|)) 51) (($ (-1159 |#2|)) 32)) (-2988 (((-1063 |#1|) $) 98)) (-1220 ((|#1| $ (-705)) 118)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-1896 ((|#1| $) 54)) (-1774 (($ $) 181 (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) 157 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1761 (($ $) 177 (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) 153 (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) 185 (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) 161 (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-705)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-705)))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) 187 (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) 163 (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) 183 (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) 159 (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) 179 (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) 155 (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 17 T CONST)) (-3611 (($) 19 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-705) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) 194)) (-1614 (($ $ $) 31)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ |#1|) 198 (|has| |#1| (-335))) (($ $ $) 134 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 137 (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-1080 |#1| |#2| |#3|) (-13 (-1154 |#1|) (-10 -8 (-15 -2217 ($ (-1136 |#2| |#1|))) (-15 -3921 ((-1136 |#2| |#1|) $ (-705))) (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) (-968) (-1082) |#1|) (T -1080)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1136 *4 *3)) (-4 *3 (-968)) (-14 *4 (-1082)) (-14 *5 *3) (-5 *1 (-1080 *3 *4 *5)))) (-3921 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1136 *5 *4)) (-5 *1 (-1080 *4 *5 *6)) (-4 *4 (-968)) (-14 *5 (-1082)) (-14 *6 *4))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3)))) +(-13 (-1154 |#1|) (-10 -8 (-15 -2217 ($ (-1136 |#2| |#1|))) (-15 -3921 ((-1136 |#2| |#1|) $ (-705))) (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) +((-2217 (((-790) $) 22) (($ (-1082)) 24)) (-3730 (($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $))) 35)) (-3717 (($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $))) 28) (($ $) 29)) (-3242 (($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $))) 30)) (-3232 (($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $))) 32)) (-3221 (($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $))) 31)) (-3211 (($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $))) 33)) (-3137 (($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $))) 34))) +(((-1081) (-13 (-559 (-790)) (-10 -8 (-15 -2217 ($ (-1082))) (-15 -3242 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3221 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3232 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3211 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3730 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3137 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3717 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3717 ($ $))))) (T -1081)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1081)))) (-3242 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) (-5 *1 (-1081)))) (-3221 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) (-5 *1 (-1081)))) (-3232 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) (-5 *1 (-1081)))) (-3211 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) (-5 *1 (-1081)))) (-3730 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) (-5 *1 (-1081)))) (-3137 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) (-5 *1 (-1081)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) (-5 *1 (-1081)))) (-3717 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) (-5 *1 (-1081)))) (-3717 (*1 *1 *1) (-5 *1 (-1081)))) +(-13 (-559 (-790)) (-10 -8 (-15 -2217 ($ (-1082))) (-15 -3242 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3221 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3232 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3211 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3730 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3137 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)) (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3717 ($ (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) (|:| CF (-288 (-154 (-351)))) (|:| |switch| $)))) (-15 -3717 ($ $)))) +((-1430 (((-108) $ $) NIL)) (-2432 (($ $ (-585 (-790))) 58)) (-3049 (($ $ (-585 (-790))) 56)) (-1522 (((-1065) $) 82)) (-2578 (((-2 (|:| -2833 (-585 (-790))) (|:| -2494 (-585 (-790))) (|:| |presup| (-585 (-790))) (|:| -2693 (-585 (-790))) (|:| |args| (-585 (-790)))) $) 85)) (-1910 (((-108) $) 21)) (-1593 (($ $ (-585 (-585 (-790)))) 54) (($ $ (-2 (|:| -2833 (-585 (-790))) (|:| -2494 (-585 (-790))) (|:| |presup| (-585 (-790))) (|:| -2693 (-585 (-790))) (|:| |args| (-585 (-790))))) 80)) (-2249 (($) 123 T CONST)) (-3345 (((-1168)) 104)) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 65) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 71)) (-1822 (($) 93) (($ $) 99)) (-2938 (($ $) 81)) (-2864 (($ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1592 (((-585 $) $) 105)) (-1266 (((-1065) $) 88)) (-4139 (((-1029) $) NIL)) (-2598 (($ $ (-585 (-790))) 57)) (-1446 (((-495) $) 45) (((-1082) $) 46) (((-819 (-519)) $) 75) (((-819 (-351)) $) 73)) (-2217 (((-790) $) 52) (($ (-1065)) 47)) (-3629 (($ $ (-585 (-790))) 59)) (-2761 (((-1065) $) 33) (((-1065) $ (-108)) 34) (((-1168) (-757) $) 35) (((-1168) (-757) $ (-108)) 36)) (-1586 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1543 (((-108) $ $) 48)) (-1578 (((-108) $ $) NIL)) (-1561 (((-108) $ $) 49))) +(((-1082) (-13 (-782) (-560 (-495)) (-763) (-560 (-1082)) (-560 (-819 (-519))) (-560 (-819 (-351))) (-813 (-519)) (-813 (-351)) (-10 -8 (-15 -1822 ($)) (-15 -1822 ($ $)) (-15 -3345 ((-1168))) (-15 -2217 ($ (-1065))) (-15 -2938 ($ $)) (-15 -1910 ((-108) $)) (-15 -2578 ((-2 (|:| -2833 (-585 (-790))) (|:| -2494 (-585 (-790))) (|:| |presup| (-585 (-790))) (|:| -2693 (-585 (-790))) (|:| |args| (-585 (-790)))) $)) (-15 -1593 ($ $ (-585 (-585 (-790))))) (-15 -1593 ($ $ (-2 (|:| -2833 (-585 (-790))) (|:| -2494 (-585 (-790))) (|:| |presup| (-585 (-790))) (|:| -2693 (-585 (-790))) (|:| |args| (-585 (-790)))))) (-15 -3049 ($ $ (-585 (-790)))) (-15 -2432 ($ $ (-585 (-790)))) (-15 -3629 ($ $ (-585 (-790)))) (-15 -2598 ($ $ (-585 (-790)))) (-15 -1522 ((-1065) $)) (-15 -1592 ((-585 $) $)) (-15 -2249 ($) -2730)))) (T -1082)) +((-1822 (*1 *1) (-5 *1 (-1082))) (-1822 (*1 *1 *1) (-5 *1 (-1082))) (-3345 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1082)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1082)))) (-2938 (*1 *1 *1) (-5 *1 (-1082))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1082)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2833 (-585 (-790))) (|:| -2494 (-585 (-790))) (|:| |presup| (-585 (-790))) (|:| -2693 (-585 (-790))) (|:| |args| (-585 (-790))))) (-5 *1 (-1082)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 (-790)))) (-5 *1 (-1082)))) (-1593 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2833 (-585 (-790))) (|:| -2494 (-585 (-790))) (|:| |presup| (-585 (-790))) (|:| -2693 (-585 (-790))) (|:| |args| (-585 (-790))))) (-5 *1 (-1082)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-1082)))) (-2432 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-1082)))) (-3629 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-1082)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-1082)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-1082)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-1082)))) (-2249 (*1 *1) (-5 *1 (-1082)))) +(-13 (-782) (-560 (-495)) (-763) (-560 (-1082)) (-560 (-819 (-519))) (-560 (-819 (-351))) (-813 (-519)) (-813 (-351)) (-10 -8 (-15 -1822 ($)) (-15 -1822 ($ $)) (-15 -3345 ((-1168))) (-15 -2217 ($ (-1065))) (-15 -2938 ($ $)) (-15 -1910 ((-108) $)) (-15 -2578 ((-2 (|:| -2833 (-585 (-790))) (|:| -2494 (-585 (-790))) (|:| |presup| (-585 (-790))) (|:| -2693 (-585 (-790))) (|:| |args| (-585 (-790)))) $)) (-15 -1593 ($ $ (-585 (-585 (-790))))) (-15 -1593 ($ $ (-2 (|:| -2833 (-585 (-790))) (|:| -2494 (-585 (-790))) (|:| |presup| (-585 (-790))) (|:| -2693 (-585 (-790))) (|:| |args| (-585 (-790)))))) (-15 -3049 ($ $ (-585 (-790)))) (-15 -2432 ($ $ (-585 (-790)))) (-15 -3629 ($ $ (-585 (-790)))) (-15 -2598 ($ $ (-585 (-790)))) (-15 -1522 ((-1065) $)) (-15 -1592 ((-585 $) $)) (-15 -2249 ($) -2730))) +((-4199 (((-1163 |#1|) |#1| (-848)) 16) (((-1163 |#1|) (-585 |#1|)) 20))) +(((-1083 |#1|) (-10 -7 (-15 -4199 ((-1163 |#1|) (-585 |#1|))) (-15 -4199 ((-1163 |#1|) |#1| (-848)))) (-968)) (T -1083)) +((-4199 (*1 *2 *3 *4) (-12 (-5 *4 (-848)) (-5 *2 (-1163 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-968)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-968)) (-5 *2 (-1163 *4)) (-5 *1 (-1083 *4))))) +(-10 -7 (-15 -4199 ((-1163 |#1|) (-585 |#1|))) (-15 -4199 ((-1163 |#1|) |#1| (-848)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| |#1| (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#1| (-959 (-379 (-519))))) (((-3 |#1| "failed") $) NIL)) (-1499 (((-519) $) NIL (|has| |#1| (-959 (-519)))) (((-379 (-519)) $) NIL (|has| |#1| (-959 (-379 (-519))))) ((|#1| $) NIL)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-423)))) (-4015 (($ $ |#1| (-895) $) NIL)) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-895)) NIL)) (-3695 (((-895) $) NIL)) (-3737 (($ (-1 (-895) (-895)) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) NIL)) (-3173 ((|#1| $) NIL)) (-1339 (($ $ (-895) |#1| $) NIL (-12 (|has| (-895) (-124)) (|has| |#1| (-511))))) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-511)))) (-4178 (((-895) $) NIL)) (-3939 ((|#1| $) NIL (|has| |#1| (-423)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ $) NIL (|has| |#1| (-511))) (($ |#1|) NIL) (($ (-379 (-519))) NIL (-3730 (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-959 (-379 (-519))))))) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ (-895)) NIL)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#1| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 9 T CONST)) (-3611 (($) 14 T CONST)) (-1543 (((-108) $ $) 16)) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 19)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-1084 |#1|) (-13 (-298 |#1| (-895)) (-10 -8 (IF (|has| |#1| (-511)) (IF (|has| (-895) (-124)) (-15 -1339 ($ $ (-895) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4219)) (-6 -4219) |%noBranch|))) (-968)) (T -1084)) +((-1339 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-895)) (-4 *2 (-124)) (-5 *1 (-1084 *3)) (-4 *3 (-511)) (-4 *3 (-968))))) +(-13 (-298 |#1| (-895)) (-10 -8 (IF (|has| |#1| (-511)) (IF (|has| (-895) (-124)) (-15 -1339 ($ $ (-895) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4219)) (-6 -4219) |%noBranch|))) +((-2117 (((-1086) (-1082) $) 24)) (-2362 (($) 28)) (-2342 (((-3 (|:| |fst| (-406)) (|:| -1378 "void")) (-1082) $) 21)) (-4025 (((-1168) (-1082) (-3 (|:| |fst| (-406)) (|:| -1378 "void")) $) 40) (((-1168) (-1082) (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) 41) (((-1168) (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) 42)) (-1771 (((-1168) (-1082)) 57)) (-2262 (((-1168) (-1082) $) 54) (((-1168) (-1082)) 55) (((-1168)) 56)) (-1501 (((-1168) (-1082)) 36)) (-2712 (((-1082)) 35)) (-1548 (($) 33)) (-3485 (((-409) (-1082) (-409) (-1082) $) 44) (((-409) (-585 (-1082)) (-409) (-1082) $) 48) (((-409) (-1082) (-409)) 45) (((-409) (-1082) (-409) (-1082)) 49)) (-3039 (((-1082)) 34)) (-2217 (((-790) $) 27)) (-3072 (((-1168)) 29) (((-1168) (-1082)) 32)) (-3797 (((-585 (-1082)) (-1082) $) 23)) (-2762 (((-1168) (-1082) (-585 (-1082)) $) 37) (((-1168) (-1082) (-585 (-1082))) 38) (((-1168) (-585 (-1082))) 39))) +(((-1085) (-13 (-559 (-790)) (-10 -8 (-15 -2362 ($)) (-15 -3072 ((-1168))) (-15 -3072 ((-1168) (-1082))) (-15 -3485 ((-409) (-1082) (-409) (-1082) $)) (-15 -3485 ((-409) (-585 (-1082)) (-409) (-1082) $)) (-15 -3485 ((-409) (-1082) (-409))) (-15 -3485 ((-409) (-1082) (-409) (-1082))) (-15 -1501 ((-1168) (-1082))) (-15 -3039 ((-1082))) (-15 -2712 ((-1082))) (-15 -2762 ((-1168) (-1082) (-585 (-1082)) $)) (-15 -2762 ((-1168) (-1082) (-585 (-1082)))) (-15 -2762 ((-1168) (-585 (-1082)))) (-15 -4025 ((-1168) (-1082) (-3 (|:| |fst| (-406)) (|:| -1378 "void")) $)) (-15 -4025 ((-1168) (-1082) (-3 (|:| |fst| (-406)) (|:| -1378 "void")))) (-15 -4025 ((-1168) (-3 (|:| |fst| (-406)) (|:| -1378 "void")))) (-15 -2262 ((-1168) (-1082) $)) (-15 -2262 ((-1168) (-1082))) (-15 -2262 ((-1168))) (-15 -1771 ((-1168) (-1082))) (-15 -1548 ($)) (-15 -2342 ((-3 (|:| |fst| (-406)) (|:| -1378 "void")) (-1082) $)) (-15 -3797 ((-585 (-1082)) (-1082) $)) (-15 -2117 ((-1086) (-1082) $))))) (T -1085)) +((-2362 (*1 *1) (-5 *1 (-1085))) (-3072 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1085)))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085)))) (-3485 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-409)) (-5 *3 (-1082)) (-5 *1 (-1085)))) (-3485 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-409)) (-5 *3 (-585 (-1082))) (-5 *4 (-1082)) (-5 *1 (-1085)))) (-3485 (*1 *2 *3 *2) (-12 (-5 *2 (-409)) (-5 *3 (-1082)) (-5 *1 (-1085)))) (-3485 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-409)) (-5 *3 (-1082)) (-5 *1 (-1085)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085)))) (-3039 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1085)))) (-2712 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1085)))) (-2762 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-585 (-1082))) (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1082))) (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-585 (-1082))) (-5 *2 (-1168)) (-5 *1 (-1085)))) (-4025 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1082)) (-5 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-5 *2 (-1168)) (-5 *1 (-1085)))) (-4025 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-5 *2 (-1168)) (-5 *1 (-1085)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-5 *2 (-1168)) (-5 *1 (-1085)))) (-2262 (*1 *2 *3 *1) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085)))) (-2262 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1085)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085)))) (-1548 (*1 *1) (-5 *1 (-1085))) (-2342 (*1 *2 *3 *1) (-12 (-5 *3 (-1082)) (-5 *2 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-5 *1 (-1085)))) (-3797 (*1 *2 *3 *1) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-1085)) (-5 *3 (-1082)))) (-2117 (*1 *2 *3 *1) (-12 (-5 *3 (-1082)) (-5 *2 (-1086)) (-5 *1 (-1085))))) +(-13 (-559 (-790)) (-10 -8 (-15 -2362 ($)) (-15 -3072 ((-1168))) (-15 -3072 ((-1168) (-1082))) (-15 -3485 ((-409) (-1082) (-409) (-1082) $)) (-15 -3485 ((-409) (-585 (-1082)) (-409) (-1082) $)) (-15 -3485 ((-409) (-1082) (-409))) (-15 -3485 ((-409) (-1082) (-409) (-1082))) (-15 -1501 ((-1168) (-1082))) (-15 -3039 ((-1082))) (-15 -2712 ((-1082))) (-15 -2762 ((-1168) (-1082) (-585 (-1082)) $)) (-15 -2762 ((-1168) (-1082) (-585 (-1082)))) (-15 -2762 ((-1168) (-585 (-1082)))) (-15 -4025 ((-1168) (-1082) (-3 (|:| |fst| (-406)) (|:| -1378 "void")) $)) (-15 -4025 ((-1168) (-1082) (-3 (|:| |fst| (-406)) (|:| -1378 "void")))) (-15 -4025 ((-1168) (-3 (|:| |fst| (-406)) (|:| -1378 "void")))) (-15 -2262 ((-1168) (-1082) $)) (-15 -2262 ((-1168) (-1082))) (-15 -2262 ((-1168))) (-15 -1771 ((-1168) (-1082))) (-15 -1548 ($)) (-15 -2342 ((-3 (|:| |fst| (-406)) (|:| -1378 "void")) (-1082) $)) (-15 -3797 ((-585 (-1082)) (-1082) $)) (-15 -2117 ((-1086) (-1082) $)))) +((-4049 (((-585 (-585 (-3 (|:| -2938 (-1082)) (|:| |bounds| (-585 (-3 (|:| S (-1082)) (|:| P (-879 (-519))))))))) $) 57)) (-2140 (((-585 (-3 (|:| -2938 (-1082)) (|:| |bounds| (-585 (-3 (|:| S (-1082)) (|:| P (-879 (-519)))))))) (-406) $) 40)) (-1962 (($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-409))))) 15)) (-1771 (((-1168) $) 65)) (-1306 (((-585 (-1082)) $) 20)) (-2863 (((-1015) $) 53)) (-4133 (((-409) (-1082) $) 27)) (-2283 (((-585 (-1082)) $) 30)) (-1548 (($) 17)) (-3485 (((-409) (-585 (-1082)) (-409) $) 25) (((-409) (-1082) (-409) $) 24)) (-2217 (((-790) $) 9) (((-1091 (-1082) (-409)) $) 11))) +(((-1086) (-13 (-559 (-790)) (-10 -8 (-15 -2217 ((-1091 (-1082) (-409)) $)) (-15 -1548 ($)) (-15 -3485 ((-409) (-585 (-1082)) (-409) $)) (-15 -3485 ((-409) (-1082) (-409) $)) (-15 -4133 ((-409) (-1082) $)) (-15 -1306 ((-585 (-1082)) $)) (-15 -2140 ((-585 (-3 (|:| -2938 (-1082)) (|:| |bounds| (-585 (-3 (|:| S (-1082)) (|:| P (-879 (-519)))))))) (-406) $)) (-15 -2283 ((-585 (-1082)) $)) (-15 -4049 ((-585 (-585 (-3 (|:| -2938 (-1082)) (|:| |bounds| (-585 (-3 (|:| S (-1082)) (|:| P (-879 (-519))))))))) $)) (-15 -2863 ((-1015) $)) (-15 -1771 ((-1168) $)) (-15 -1962 ($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-409))))))))) (T -1086)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-1091 (-1082) (-409))) (-5 *1 (-1086)))) (-1548 (*1 *1) (-5 *1 (-1086))) (-3485 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-409)) (-5 *3 (-585 (-1082))) (-5 *1 (-1086)))) (-3485 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-409)) (-5 *3 (-1082)) (-5 *1 (-1086)))) (-4133 (*1 *2 *3 *1) (-12 (-5 *3 (-1082)) (-5 *2 (-409)) (-5 *1 (-1086)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-1086)))) (-2140 (*1 *2 *3 *1) (-12 (-5 *3 (-406)) (-5 *2 (-585 (-3 (|:| -2938 (-1082)) (|:| |bounds| (-585 (-3 (|:| S (-1082)) (|:| P (-879 (-519))))))))) (-5 *1 (-1086)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-1086)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-3 (|:| -2938 (-1082)) (|:| |bounds| (-585 (-3 (|:| S (-1082)) (|:| P (-879 (-519)))))))))) (-5 *1 (-1086)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1086)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1086)))) (-1962 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-409))))) (-5 *1 (-1086))))) +(-13 (-559 (-790)) (-10 -8 (-15 -2217 ((-1091 (-1082) (-409)) $)) (-15 -1548 ($)) (-15 -3485 ((-409) (-585 (-1082)) (-409) $)) (-15 -3485 ((-409) (-1082) (-409) $)) (-15 -4133 ((-409) (-1082) $)) (-15 -1306 ((-585 (-1082)) $)) (-15 -2140 ((-585 (-3 (|:| -2938 (-1082)) (|:| |bounds| (-585 (-3 (|:| S (-1082)) (|:| P (-879 (-519)))))))) (-406) $)) (-15 -2283 ((-585 (-1082)) $)) (-15 -4049 ((-585 (-585 (-3 (|:| -2938 (-1082)) (|:| |bounds| (-585 (-3 (|:| S (-1082)) (|:| P (-879 (-519))))))))) $)) (-15 -2863 ((-1015) $)) (-15 -1771 ((-1168) $)) (-15 -1962 ($ (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-409)))))))) +((-2420 (((-108) $) 43)) (-1369 (((-3 (-519) (-201) (-1082) (-1065) $) $) 51)) (-1762 (((-585 $) $) 56)) (-1446 (((-1015) $) 19) (($ (-1015)) 20)) (-1661 (((-108) $) 53)) (-2217 (((-790) $) NIL) (($ (-519)) 22) (((-519) $) 24) (($ (-201)) 26) (((-201) $) 28) (($ (-1082)) 30) (((-1082) $) 32) (($ (-1065)) 34) (((-1065) $) 36)) (-2201 (((-108) $ (|[\|\|]| (-519))) 9) (((-108) $ (|[\|\|]| (-201))) 12) (((-108) $ (|[\|\|]| (-1082))) 18) (((-108) $ (|[\|\|]| (-1065))) 15)) (-3815 (($ (-1082) (-585 $)) 40) (($ $ (-585 $)) 41)) (-2486 (((-519) $) 23) (((-201) $) 27) (((-1082) $) 31) (((-1065) $) 35))) +(((-1087) (-13 (-1158) (-559 (-790)) (-10 -8 (-15 -1446 ((-1015) $)) (-15 -1446 ($ (-1015))) (-15 -2217 ($ (-519))) (-15 -2217 ((-519) $)) (-15 -2486 ((-519) $)) (-15 -2217 ($ (-201))) (-15 -2217 ((-201) $)) (-15 -2486 ((-201) $)) (-15 -2217 ($ (-1082))) (-15 -2217 ((-1082) $)) (-15 -2486 ((-1082) $)) (-15 -2217 ($ (-1065))) (-15 -2217 ((-1065) $)) (-15 -2486 ((-1065) $)) (-15 -3815 ($ (-1082) (-585 $))) (-15 -3815 ($ $ (-585 $))) (-15 -2420 ((-108) $)) (-15 -1369 ((-3 (-519) (-201) (-1082) (-1065) $) $)) (-15 -1762 ((-585 $) $)) (-15 -1661 ((-108) $)) (-15 -2201 ((-108) $ (|[\|\|]| (-519)))) (-15 -2201 ((-108) $ (|[\|\|]| (-201)))) (-15 -2201 ((-108) $ (|[\|\|]| (-1082)))) (-15 -2201 ((-108) $ (|[\|\|]| (-1065))))))) (T -1087)) +((-1446 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1087)))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1087)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-1087)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1087)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1087)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-1087)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-1087)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-1087)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1087)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1087)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1087)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1087)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-1087)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-1087)))) (-3815 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-1087))) (-5 *1 (-1087)))) (-3815 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1087))) (-5 *1 (-1087)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1087)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-3 (-519) (-201) (-1082) (-1065) (-1087))) (-5 *1 (-1087)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-585 (-1087))) (-5 *1 (-1087)))) (-1661 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1087)))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-108)) (-5 *1 (-1087)))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-201))) (-5 *2 (-108)) (-5 *1 (-1087)))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-108)) (-5 *1 (-1087)))) (-2201 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-108)) (-5 *1 (-1087))))) +(-13 (-1158) (-559 (-790)) (-10 -8 (-15 -1446 ((-1015) $)) (-15 -1446 ($ (-1015))) (-15 -2217 ($ (-519))) (-15 -2217 ((-519) $)) (-15 -2486 ((-519) $)) (-15 -2217 ($ (-201))) (-15 -2217 ((-201) $)) (-15 -2486 ((-201) $)) (-15 -2217 ($ (-1082))) (-15 -2217 ((-1082) $)) (-15 -2486 ((-1082) $)) (-15 -2217 ($ (-1065))) (-15 -2217 ((-1065) $)) (-15 -2486 ((-1065) $)) (-15 -3815 ($ (-1082) (-585 $))) (-15 -3815 ($ $ (-585 $))) (-15 -2420 ((-108) $)) (-15 -1369 ((-3 (-519) (-201) (-1082) (-1065) $) $)) (-15 -1762 ((-585 $) $)) (-15 -1661 ((-108) $)) (-15 -2201 ((-108) $ (|[\|\|]| (-519)))) (-15 -2201 ((-108) $ (|[\|\|]| (-201)))) (-15 -2201 ((-108) $ (|[\|\|]| (-1082)))) (-15 -2201 ((-108) $ (|[\|\|]| (-1065)))))) +((-3896 (((-585 (-585 (-879 |#1|))) (-585 (-379 (-879 |#1|))) (-585 (-1082))) 55)) (-3442 (((-585 (-267 (-379 (-879 |#1|)))) (-267 (-379 (-879 |#1|)))) 67) (((-585 (-267 (-379 (-879 |#1|)))) (-379 (-879 |#1|))) 63) (((-585 (-267 (-379 (-879 |#1|)))) (-267 (-379 (-879 |#1|))) (-1082)) 68) (((-585 (-267 (-379 (-879 |#1|)))) (-379 (-879 |#1|)) (-1082)) 62) (((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-267 (-379 (-879 |#1|))))) 92) (((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-379 (-879 |#1|)))) 91) (((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-267 (-379 (-879 |#1|)))) (-585 (-1082))) 93) (((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-379 (-879 |#1|))) (-585 (-1082))) 90))) +(((-1088 |#1|) (-10 -7 (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-379 (-879 |#1|))) (-585 (-1082)))) (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-267 (-379 (-879 |#1|)))) (-585 (-1082)))) (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-379 (-879 |#1|))))) (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-267 (-379 (-879 |#1|)))))) (-15 -3442 ((-585 (-267 (-379 (-879 |#1|)))) (-379 (-879 |#1|)) (-1082))) (-15 -3442 ((-585 (-267 (-379 (-879 |#1|)))) (-267 (-379 (-879 |#1|))) (-1082))) (-15 -3442 ((-585 (-267 (-379 (-879 |#1|)))) (-379 (-879 |#1|)))) (-15 -3442 ((-585 (-267 (-379 (-879 |#1|)))) (-267 (-379 (-879 |#1|))))) (-15 -3896 ((-585 (-585 (-879 |#1|))) (-585 (-379 (-879 |#1|))) (-585 (-1082))))) (-511)) (T -1088)) +((-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-379 (-879 *5)))) (-5 *4 (-585 (-1082))) (-4 *5 (-511)) (-5 *2 (-585 (-585 (-879 *5)))) (-5 *1 (-1088 *5)))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-585 (-267 (-379 (-879 *4))))) (-5 *1 (-1088 *4)) (-5 *3 (-267 (-379 (-879 *4)))))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-585 (-267 (-379 (-879 *4))))) (-5 *1 (-1088 *4)) (-5 *3 (-379 (-879 *4))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-511)) (-5 *2 (-585 (-267 (-379 (-879 *5))))) (-5 *1 (-1088 *5)) (-5 *3 (-267 (-379 (-879 *5)))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-1082)) (-4 *5 (-511)) (-5 *2 (-585 (-267 (-379 (-879 *5))))) (-5 *1 (-1088 *5)) (-5 *3 (-379 (-879 *5))))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-585 (-585 (-267 (-379 (-879 *4)))))) (-5 *1 (-1088 *4)) (-5 *3 (-585 (-267 (-379 (-879 *4))))))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-585 (-379 (-879 *4)))) (-4 *4 (-511)) (-5 *2 (-585 (-585 (-267 (-379 (-879 *4)))))) (-5 *1 (-1088 *4)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *4 (-585 (-1082))) (-4 *5 (-511)) (-5 *2 (-585 (-585 (-267 (-379 (-879 *5)))))) (-5 *1 (-1088 *5)) (-5 *3 (-585 (-267 (-379 (-879 *5))))))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-379 (-879 *5)))) (-5 *4 (-585 (-1082))) (-4 *5 (-511)) (-5 *2 (-585 (-585 (-267 (-379 (-879 *5)))))) (-5 *1 (-1088 *5))))) +(-10 -7 (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-379 (-879 |#1|))) (-585 (-1082)))) (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-267 (-379 (-879 |#1|)))) (-585 (-1082)))) (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-379 (-879 |#1|))))) (-15 -3442 ((-585 (-585 (-267 (-379 (-879 |#1|))))) (-585 (-267 (-379 (-879 |#1|)))))) (-15 -3442 ((-585 (-267 (-379 (-879 |#1|)))) (-379 (-879 |#1|)) (-1082))) (-15 -3442 ((-585 (-267 (-379 (-879 |#1|)))) (-267 (-379 (-879 |#1|))) (-1082))) (-15 -3442 ((-585 (-267 (-379 (-879 |#1|)))) (-379 (-879 |#1|)))) (-15 -3442 ((-585 (-267 (-379 (-879 |#1|)))) (-267 (-379 (-879 |#1|))))) (-15 -3896 ((-585 (-585 (-879 |#1|))) (-585 (-379 (-879 |#1|))) (-585 (-1082))))) +((-3887 (((-585 (-585 |#1|)) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|)))) 38)) (-3348 (((-585 (-585 (-585 |#1|))) (-585 (-585 |#1|))) 24)) (-1500 (((-1090 (-585 |#1|)) (-585 |#1|)) 34)) (-3508 (((-585 (-585 |#1|)) (-585 |#1|)) 30)) (-3928 (((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 (-585 (-585 |#1|)))) 37)) (-3353 (((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 |#1|) (-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|)))) 36)) (-3295 (((-585 (-585 |#1|)) (-585 (-585 |#1|))) 28)) (-1452 (((-585 |#1|) (-585 |#1|)) 31)) (-3654 (((-585 (-585 (-585 |#1|))) (-585 |#1|) (-585 (-585 (-585 |#1|)))) 18)) (-1677 (((-585 (-585 (-585 |#1|))) (-1 (-108) |#1| |#1|) (-585 |#1|) (-585 (-585 (-585 |#1|)))) 15)) (-3958 (((-2 (|:| |fs| (-108)) (|:| |sd| (-585 |#1|)) (|:| |td| (-585 (-585 |#1|)))) (-1 (-108) |#1| |#1|) (-585 |#1|) (-585 (-585 |#1|))) 13)) (-1351 (((-585 (-585 |#1|)) (-585 (-585 (-585 |#1|)))) 39)) (-2003 (((-585 (-585 |#1|)) (-1090 (-585 |#1|))) 41))) +(((-1089 |#1|) (-10 -7 (-15 -3958 ((-2 (|:| |fs| (-108)) (|:| |sd| (-585 |#1|)) (|:| |td| (-585 (-585 |#1|)))) (-1 (-108) |#1| |#1|) (-585 |#1|) (-585 (-585 |#1|)))) (-15 -1677 ((-585 (-585 (-585 |#1|))) (-1 (-108) |#1| |#1|) (-585 |#1|) (-585 (-585 (-585 |#1|))))) (-15 -3654 ((-585 (-585 (-585 |#1|))) (-585 |#1|) (-585 (-585 (-585 |#1|))))) (-15 -3887 ((-585 (-585 |#1|)) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))))) (-15 -1351 ((-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))))) (-15 -2003 ((-585 (-585 |#1|)) (-1090 (-585 |#1|)))) (-15 -3348 ((-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)))) (-15 -1500 ((-1090 (-585 |#1|)) (-585 |#1|))) (-15 -3295 ((-585 (-585 |#1|)) (-585 (-585 |#1|)))) (-15 -3508 ((-585 (-585 |#1|)) (-585 |#1|))) (-15 -1452 ((-585 |#1|) (-585 |#1|))) (-15 -3353 ((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 |#1|) (-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))))) (-15 -3928 ((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 (-585 (-585 |#1|)))))) (-782)) (T -1089)) +((-3928 (*1 *2 *3) (-12 (-4 *4 (-782)) (-5 *2 (-2 (|:| |f1| (-585 *4)) (|:| |f2| (-585 (-585 (-585 *4)))) (|:| |f3| (-585 (-585 *4))) (|:| |f4| (-585 (-585 (-585 *4)))))) (-5 *1 (-1089 *4)) (-5 *3 (-585 (-585 (-585 *4)))))) (-3353 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-782)) (-5 *3 (-585 *6)) (-5 *5 (-585 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-585 *5)) (|:| |f3| *5) (|:| |f4| (-585 *5)))) (-5 *1 (-1089 *6)) (-5 *4 (-585 *5)))) (-1452 (*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-1089 *3)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-782)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1089 *4)) (-5 *3 (-585 *4)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-782)) (-5 *1 (-1089 *3)))) (-1500 (*1 *2 *3) (-12 (-4 *4 (-782)) (-5 *2 (-1090 (-585 *4))) (-5 *1 (-1089 *4)) (-5 *3 (-585 *4)))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-782)) (-5 *2 (-585 (-585 (-585 *4)))) (-5 *1 (-1089 *4)) (-5 *3 (-585 (-585 *4))))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-1090 (-585 *4))) (-4 *4 (-782)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1089 *4)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1089 *4)) (-4 *4 (-782)))) (-3887 (*1 *2 *2 *3) (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) (-4 *4 (-782)) (-5 *1 (-1089 *4)))) (-3654 (*1 *2 *3 *2) (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-585 *4)) (-4 *4 (-782)) (-5 *1 (-1089 *4)))) (-1677 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-585 *5)) (-4 *5 (-782)) (-5 *1 (-1089 *5)))) (-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-782)) (-5 *4 (-585 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-585 *4)))) (-5 *1 (-1089 *6)) (-5 *5 (-585 *4))))) +(-10 -7 (-15 -3958 ((-2 (|:| |fs| (-108)) (|:| |sd| (-585 |#1|)) (|:| |td| (-585 (-585 |#1|)))) (-1 (-108) |#1| |#1|) (-585 |#1|) (-585 (-585 |#1|)))) (-15 -1677 ((-585 (-585 (-585 |#1|))) (-1 (-108) |#1| |#1|) (-585 |#1|) (-585 (-585 (-585 |#1|))))) (-15 -3654 ((-585 (-585 (-585 |#1|))) (-585 |#1|) (-585 (-585 (-585 |#1|))))) (-15 -3887 ((-585 (-585 |#1|)) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))))) (-15 -1351 ((-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))))) (-15 -2003 ((-585 (-585 |#1|)) (-1090 (-585 |#1|)))) (-15 -3348 ((-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)))) (-15 -1500 ((-1090 (-585 |#1|)) (-585 |#1|))) (-15 -3295 ((-585 (-585 |#1|)) (-585 (-585 |#1|)))) (-15 -3508 ((-585 (-585 |#1|)) (-585 |#1|))) (-15 -1452 ((-585 |#1|) (-585 |#1|))) (-15 -3353 ((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 |#1|) (-585 (-585 (-585 |#1|))) (-585 (-585 |#1|)) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))) (-585 (-585 (-585 |#1|))))) (-15 -3928 ((-2 (|:| |f1| (-585 |#1|)) (|:| |f2| (-585 (-585 (-585 |#1|)))) (|:| |f3| (-585 (-585 |#1|))) (|:| |f4| (-585 (-585 (-585 |#1|))))) (-585 (-585 (-585 |#1|)))))) +((-1824 (($ (-585 (-585 |#1|))) 9)) (-2723 (((-585 (-585 |#1|)) $) 10)) (-2217 (((-790) $) 25))) +(((-1090 |#1|) (-10 -8 (-15 -1824 ($ (-585 (-585 |#1|)))) (-15 -2723 ((-585 (-585 |#1|)) $)) (-15 -2217 ((-790) $))) (-1011)) (T -1090)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1090 *3)) (-4 *3 (-1011)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 *3))) (-5 *1 (-1090 *3)) (-4 *3 (-1011)))) (-1824 (*1 *1 *2) (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1011)) (-5 *1 (-1090 *3))))) +(-10 -8 (-15 -1824 ($ (-585 (-585 |#1|)))) (-15 -2723 ((-585 (-585 |#1|)) $)) (-15 -2217 ((-790) $))) +((-1430 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-1812 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1583 (((-1168) $ |#1| |#1|) NIL (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#2| $ |#1| |#2|) NIL)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-2802 (((-3 |#2| "failed") |#1| $) NIL)) (-2249 (($) NIL T CONST)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-2502 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-3 |#2| "failed") |#1| $) NIL)) (-1438 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#2| $ |#1|) NIL)) (-3844 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) NIL)) (-2737 ((|#1| $) NIL (|has| |#1| (-782)))) (-3725 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-585 |#2|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-3890 ((|#1| $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4222))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3019 (((-585 |#1|) $) NIL)) (-4194 (((-108) |#1| $) NIL)) (-4152 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-1846 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-3909 (((-585 |#1|) $) NIL)) (-1506 (((-108) |#1| $) NIL)) (-4139 (((-1029) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-2331 ((|#2| $) NIL (|has| |#1| (-782)))) (-2395 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL)) (-3640 (($ $ |#2|) NIL (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2436 (($) NIL) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) NIL (-12 (|has| $ (-6 -4221)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (((-705) |#2| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011)))) (((-705) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-2217 (((-790) $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790))) (|has| |#2| (-559 (-790)))))) (-3879 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) NIL)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) NIL (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) NIL (-3730 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| |#2| (-1011))))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-1091 |#1| |#2|) (-13 (-1094 |#1| |#2|) (-10 -7 (-6 -4221))) (-1011) (-1011)) (T -1091)) +NIL +(-13 (-1094 |#1| |#2|) (-10 -7 (-6 -4221))) +((-1695 ((|#1| (-585 |#1|)) 32)) (-2747 ((|#1| |#1| (-519)) 18)) (-1532 (((-1078 |#1|) |#1| (-848)) 15))) +(((-1092 |#1|) (-10 -7 (-15 -1695 (|#1| (-585 |#1|))) (-15 -1532 ((-1078 |#1|) |#1| (-848))) (-15 -2747 (|#1| |#1| (-519)))) (-335)) (T -1092)) +((-2747 (*1 *2 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-1092 *2)) (-4 *2 (-335)))) (-1532 (*1 *2 *3 *4) (-12 (-5 *4 (-848)) (-5 *2 (-1078 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-335)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-1092 *2)) (-4 *2 (-335))))) +(-10 -7 (-15 -1695 (|#1| (-585 |#1|))) (-15 -1532 ((-1078 |#1|) |#1| (-848))) (-15 -2747 (|#1| |#1| (-519)))) +((-1812 (($) 10) (($ (-585 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)))) 14)) (-2502 (($ (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) $) 60) (($ (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3844 (((-585 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) $) 39) (((-585 |#3|) $) 41)) (-3850 (($ (-1 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1405 (($ (-1 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4152 (((-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) $) 53)) (-1846 (($ (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) $) 16)) (-3909 (((-585 |#2|) $) 19)) (-1506 (((-108) |#2| $) 58)) (-2395 (((-3 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) "failed") (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) $) 57)) (-3212 (((-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) $) 62)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 66)) (-2222 (((-585 |#3|) $) 43)) (-2598 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) $) NIL) (((-705) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) $) NIL) (((-705) |#3| $) NIL) (((-705) (-1 (-108) |#3|) $) 67)) (-2217 (((-790) $) 27)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 64)) (-1543 (((-108) $ $) 48))) +(((-1093 |#1| |#2| |#3|) (-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -1405 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1812 (|#1| (-585 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))))) (-15 -1812 (|#1|)) (-15 -1405 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3850 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2379 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4155 ((-705) (-1 (-108) |#3|) |#1|)) (-15 -3844 ((-585 |#3|) |#1|)) (-15 -4155 ((-705) |#3| |#1|)) (-15 -2598 (|#3| |#1| |#2| |#3|)) (-15 -2598 (|#3| |#1| |#2|)) (-15 -2222 ((-585 |#3|) |#1|)) (-15 -1506 ((-108) |#2| |#1|)) (-15 -3909 ((-585 |#2|) |#1|)) (-15 -2502 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2502 (|#1| (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -2502 (|#1| (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|)) (-15 -2395 ((-3 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) "failed") (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -4152 ((-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|)) (-15 -1846 (|#1| (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|)) (-15 -3212 ((-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|)) (-15 -4155 ((-705) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|)) (-15 -3844 ((-585 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -4155 ((-705) (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -2379 ((-108) (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -1778 ((-108) (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -3850 (|#1| (-1 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -1405 (|#1| (-1 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|))) (-1094 |#2| |#3|) (-1011) (-1011)) (T -1093)) +NIL +(-10 -8 (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -1405 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1812 (|#1| (-585 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))))) (-15 -1812 (|#1|)) (-15 -1405 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3850 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1778 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2379 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4155 ((-705) (-1 (-108) |#3|) |#1|)) (-15 -3844 ((-585 |#3|) |#1|)) (-15 -4155 ((-705) |#3| |#1|)) (-15 -2598 (|#3| |#1| |#2| |#3|)) (-15 -2598 (|#3| |#1| |#2|)) (-15 -2222 ((-585 |#3|) |#1|)) (-15 -1506 ((-108) |#2| |#1|)) (-15 -3909 ((-585 |#2|) |#1|)) (-15 -2502 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2502 (|#1| (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -2502 (|#1| (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|)) (-15 -2395 ((-3 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) "failed") (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -4152 ((-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|)) (-15 -1846 (|#1| (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|)) (-15 -3212 ((-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|)) (-15 -4155 ((-705) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) |#1|)) (-15 -3844 ((-585 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -4155 ((-705) (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -2379 ((-108) (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -1778 ((-108) (-1 (-108) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -3850 (|#1| (-1 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|)) (-15 -1405 (|#1| (-1 (-2 (|:| -2583 |#2|) (|:| -3100 |#3|)) (-2 (|:| -2583 |#2|) (|:| -3100 |#3|))) |#1|))) +((-1430 (((-108) $ $) 19 (-3730 (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-1812 (($) 72) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 71)) (-1583 (((-1168) $ |#1| |#1|) 99 (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) 8)) (-2421 ((|#2| $ |#1| |#2|) 73)) (-2846 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 45 (|has| $ (-6 -4221)))) (-1640 (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 55 (|has| $ (-6 -4221)))) (-2802 (((-3 |#2| "failed") |#1| $) 61)) (-2249 (($) 7 T CONST)) (-2366 (($ $) 58 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221))))) (-2502 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 47 (|has| $ (-6 -4221))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 46 (|has| $ (-6 -4221))) (((-3 |#2| "failed") |#1| $) 62)) (-1438 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 54 (|has| $ (-6 -4221)))) (-3874 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 56 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 53 (|has| $ (-6 -4221))) (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 52 (|has| $ (-6 -4221)))) (-3865 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4222)))) (-3659 ((|#2| $ |#1|) 88)) (-3844 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 30 (|has| $ (-6 -4221))) (((-585 |#2|) $) 79 (|has| $ (-6 -4221)))) (-3878 (((-108) $ (-705)) 9)) (-2737 ((|#1| $) 96 (|has| |#1| (-782)))) (-3725 (((-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 29 (|has| $ (-6 -4221))) (((-585 |#2|) $) 80 (|has| $ (-6 -4221)))) (-1933 (((-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1011)) (|has| $ (-6 -4221))))) (-3890 ((|#1| $) 95 (|has| |#1| (-782)))) (-3850 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 34 (|has| $ (-6 -4222))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4222)))) (-1405 (($ (-1 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2768 (((-108) $ (-705)) 10)) (-1266 (((-1065) $) 22 (-3730 (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-3019 (((-585 |#1|) $) 63)) (-4194 (((-108) |#1| $) 64)) (-4152 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 39)) (-1846 (($ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 40)) (-3909 (((-585 |#1|) $) 93)) (-1506 (((-108) |#1| $) 92)) (-4139 (((-1029) $) 21 (-3730 (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-2331 ((|#2| $) 97 (|has| |#1| (-782)))) (-2395 (((-3 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) "failed") (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 51)) (-3640 (($ $ |#2|) 98 (|has| $ (-6 -4222)))) (-3212 (((-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 41)) (-2379 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 32 (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))))) 26 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-267 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 25 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) 24 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 23 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)))) (($ $ (-585 |#2|) (-585 |#2|)) 86 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-267 |#2|)) 84 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011)))) (($ $ (-585 (-267 |#2|))) 83 (-12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4221)) (|has| |#2| (-1011))))) (-2222 (((-585 |#2|) $) 91)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2436 (($) 49) (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 48)) (-4155 (((-705) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 31 (|has| $ (-6 -4221))) (((-705) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| $ (-6 -4221)))) (((-705) |#2| $) 81 (-12 (|has| |#2| (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4221)))) (-2449 (($ $) 13)) (-1446 (((-495) $) 59 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))))) (-2228 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 50)) (-2217 (((-790) $) 18 (-3730 (|has| |#2| (-559 (-790))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790)))))) (-3879 (($ (-585 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) 42)) (-1778 (((-108) (-1 (-108) (-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) $) 33 (|has| $ (-6 -4221))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (-3730 (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-1094 |#1| |#2|) (-1194) (-1011) (-1011)) (T -1094)) +((-2421 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1094 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011)))) (-1812 (*1 *1) (-12 (-4 *1 (-1094 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011)))) (-1812 (*1 *1 *2) (-12 (-5 *2 (-585 (-2 (|:| -2583 *3) (|:| -3100 *4)))) (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *1 (-1094 *3 *4)))) (-1405 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1094 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011))))) +(-13 (-556 |t#1| |t#2|) (-552 |t#1| |t#2|) (-10 -8 (-15 -2421 (|t#2| $ |t#1| |t#2|)) (-15 -1812 ($)) (-15 -1812 ($ (-585 (-2 (|:| -2583 |t#1|) (|:| -3100 |t#2|))))) (-15 -1405 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-33) . T) ((-102 #0=(-2 (|:| -2583 |#1|) (|:| -3100 |#2|))) . T) ((-97) -3730 (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))) ((-559 (-790)) -3730 (|has| |#2| (-1011)) (|has| |#2| (-559 (-790))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-559 (-790)))) ((-139 #0#) . T) ((-560 (-495)) |has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-560 (-495))) ((-205 #0#) . T) ((-211 #0#) . T) ((-260 |#1| |#2|) . T) ((-262 |#1| |#2|) . T) ((-282 #0#) -12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))) ((-282 |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((-458 #0#) . T) ((-458 |#2|) . T) ((-552 |#1| |#2|) . T) ((-480 #0# #0#) -12 (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-282 (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)))) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))) ((-480 |#2| |#2|) -12 (|has| |#2| (-282 |#2|)) (|has| |#2| (-1011))) ((-556 |#1| |#2|) . T) ((-1011) -3730 (|has| |#2| (-1011)) (|has| (-2 (|:| -2583 |#1|) (|:| -3100 |#2|)) (-1011))) ((-1117) . T)) +((-3051 (((-108)) 24)) (-2114 (((-1168) (-1065)) 26)) (-2700 (((-108)) 36)) (-3819 (((-1168)) 34)) (-2083 (((-1168) (-1065) (-1065)) 25)) (-2633 (((-108)) 37)) (-1846 (((-1168) |#1| |#2|) 44)) (-2359 (((-1168)) 20)) (-3219 (((-3 |#2| "failed") |#1|) 42)) (-3192 (((-1168)) 35))) +(((-1095 |#1| |#2|) (-10 -7 (-15 -2359 ((-1168))) (-15 -2083 ((-1168) (-1065) (-1065))) (-15 -2114 ((-1168) (-1065))) (-15 -3819 ((-1168))) (-15 -3192 ((-1168))) (-15 -3051 ((-108))) (-15 -2700 ((-108))) (-15 -2633 ((-108))) (-15 -3219 ((-3 |#2| "failed") |#1|)) (-15 -1846 ((-1168) |#1| |#2|))) (-1011) (-1011)) (T -1095)) +((-1846 (*1 *2 *3 *4) (-12 (-5 *2 (-1168)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)))) (-3219 (*1 *2 *3) (|partial| -12 (-4 *2 (-1011)) (-5 *1 (-1095 *3 *2)) (-4 *3 (-1011)))) (-2633 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)))) (-2700 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)))) (-3051 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)))) (-3192 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)))) (-3819 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)))) (-2114 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1095 *4 *5)) (-4 *4 (-1011)) (-4 *5 (-1011)))) (-2083 (*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1095 *4 *5)) (-4 *4 (-1011)) (-4 *5 (-1011)))) (-2359 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011))))) +(-10 -7 (-15 -2359 ((-1168))) (-15 -2083 ((-1168) (-1065) (-1065))) (-15 -2114 ((-1168) (-1065))) (-15 -3819 ((-1168))) (-15 -3192 ((-1168))) (-15 -3051 ((-108))) (-15 -2700 ((-108))) (-15 -2633 ((-108))) (-15 -3219 ((-3 |#2| "failed") |#1|)) (-15 -1846 ((-1168) |#1| |#2|))) +((-2793 (((-1065) (-1065)) 18)) (-3035 (((-51) (-1065)) 21))) +(((-1096) (-10 -7 (-15 -3035 ((-51) (-1065))) (-15 -2793 ((-1065) (-1065))))) (T -1096)) +((-2793 (*1 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1096)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-51)) (-5 *1 (-1096))))) +(-10 -7 (-15 -3035 ((-51) (-1065))) (-15 -2793 ((-1065) (-1065)))) +((-2217 (((-1098) |#1|) 11))) +(((-1097 |#1|) (-10 -7 (-15 -2217 ((-1098) |#1|))) (-1011)) (T -1097)) +((-2217 (*1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *1 (-1097 *3)) (-4 *3 (-1011))))) +(-10 -7 (-15 -2217 ((-1098) |#1|))) +((-1430 (((-108) $ $) NIL)) (-1644 (((-585 (-1065)) $) 33)) (-3235 (((-585 (-1065)) $ (-585 (-1065))) 36)) (-1352 (((-585 (-1065)) $ (-585 (-1065))) 35)) (-1764 (((-585 (-1065)) $ (-585 (-1065))) 37)) (-2606 (((-585 (-1065)) $) 32)) (-1822 (($) 22)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1800 (((-585 (-1065)) $) 34)) (-1691 (((-1168) $ (-519)) 29) (((-1168) $) 30)) (-1446 (($ (-790) (-519)) 26) (($ (-790) (-519) (-790)) NIL)) (-2217 (((-790) $) 39) (($ (-790)) 24)) (-1543 (((-108) $ $) NIL))) +(((-1098) (-13 (-1011) (-10 -8 (-15 -2217 ($ (-790))) (-15 -1446 ($ (-790) (-519))) (-15 -1446 ($ (-790) (-519) (-790))) (-15 -1691 ((-1168) $ (-519))) (-15 -1691 ((-1168) $)) (-15 -1800 ((-585 (-1065)) $)) (-15 -1644 ((-585 (-1065)) $)) (-15 -1822 ($)) (-15 -2606 ((-585 (-1065)) $)) (-15 -1764 ((-585 (-1065)) $ (-585 (-1065)))) (-15 -3235 ((-585 (-1065)) $ (-585 (-1065)))) (-15 -1352 ((-585 (-1065)) $ (-585 (-1065))))))) (T -1098)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1098)))) (-1446 (*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-519)) (-5 *1 (-1098)))) (-1446 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-790)) (-5 *3 (-519)) (-5 *1 (-1098)))) (-1691 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-1098)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1098)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098)))) (-1644 (*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098)))) (-1822 (*1 *1) (-5 *1 (-1098))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098)))) (-1764 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098)))) (-3235 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098)))) (-1352 (*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098))))) +(-13 (-1011) (-10 -8 (-15 -2217 ($ (-790))) (-15 -1446 ($ (-790) (-519))) (-15 -1446 ($ (-790) (-519) (-790))) (-15 -1691 ((-1168) $ (-519))) (-15 -1691 ((-1168) $)) (-15 -1800 ((-585 (-1065)) $)) (-15 -1644 ((-585 (-1065)) $)) (-15 -1822 ($)) (-15 -2606 ((-585 (-1065)) $)) (-15 -1764 ((-585 (-1065)) $ (-585 (-1065)))) (-15 -3235 ((-585 (-1065)) $ (-585 (-1065)))) (-15 -1352 ((-585 (-1065)) $ (-585 (-1065)))))) +((-1430 (((-108) $ $) NIL)) (-2045 (((-1065) $ (-1065)) 15) (((-1065) $) 14)) (-3237 (((-1065) $ (-1065)) 13)) (-3704 (($ $ (-1065)) NIL)) (-2394 (((-3 (-1065) "failed") $) 11)) (-3985 (((-1065) $) 8)) (-1450 (((-3 (-1065) "failed") $) 12)) (-1234 (((-1065) $) 9)) (-1556 (($ (-360)) NIL) (($ (-360) (-1065)) NIL)) (-2938 (((-360) $) NIL)) (-1266 (((-1065) $) NIL)) (-2901 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1777 (((-108) $) 17)) (-2217 (((-790) $) NIL)) (-3657 (($ $) NIL)) (-1543 (((-108) $ $) NIL))) +(((-1099) (-13 (-336 (-360) (-1065)) (-10 -8 (-15 -2045 ((-1065) $ (-1065))) (-15 -2045 ((-1065) $)) (-15 -3985 ((-1065) $)) (-15 -2394 ((-3 (-1065) "failed") $)) (-15 -1450 ((-3 (-1065) "failed") $)) (-15 -1777 ((-108) $))))) (T -1099)) +((-2045 (*1 *2 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1099)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-1099)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-1099)))) (-2394 (*1 *2 *1) (|partial| -12 (-5 *2 (-1065)) (-5 *1 (-1099)))) (-1450 (*1 *2 *1) (|partial| -12 (-5 *2 (-1065)) (-5 *1 (-1099)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1099))))) +(-13 (-336 (-360) (-1065)) (-10 -8 (-15 -2045 ((-1065) $ (-1065))) (-15 -2045 ((-1065) $)) (-15 -3985 ((-1065) $)) (-15 -2394 ((-3 (-1065) "failed") $)) (-15 -1450 ((-3 (-1065) "failed") $)) (-15 -1777 ((-108) $)))) +((-2287 (((-3 (-519) "failed") |#1|) 19)) (-2705 (((-3 (-519) "failed") |#1|) 13)) (-2928 (((-519) (-1065)) 28))) +(((-1100 |#1|) (-10 -7 (-15 -2287 ((-3 (-519) "failed") |#1|)) (-15 -2705 ((-3 (-519) "failed") |#1|)) (-15 -2928 ((-519) (-1065)))) (-968)) (T -1100)) +((-2928 (*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-519)) (-5 *1 (-1100 *4)) (-4 *4 (-968)))) (-2705 (*1 *2 *3) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-1100 *3)) (-4 *3 (-968)))) (-2287 (*1 *2 *3) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-1100 *3)) (-4 *3 (-968))))) +(-10 -7 (-15 -2287 ((-3 (-519) "failed") |#1|)) (-15 -2705 ((-3 (-519) "failed") |#1|)) (-15 -2928 ((-519) (-1065)))) +((-2980 (((-1042 (-201))) 8))) +(((-1101) (-10 -7 (-15 -2980 ((-1042 (-201)))))) (T -1101)) +((-2980 (*1 *2) (-12 (-5 *2 (-1042 (-201))) (-5 *1 (-1101))))) +(-10 -7 (-15 -2980 ((-1042 (-201))))) +((-2888 (($) 11)) (-1774 (($ $) 35)) (-1761 (($ $) 33)) (-2865 (($ $) 25)) (-1790 (($ $) 17)) (-3929 (($ $) 15)) (-1783 (($ $) 19)) (-2898 (($ $) 30)) (-1768 (($ $) 34)) (-2875 (($ $) 29))) +(((-1102 |#1|) (-10 -8 (-15 -2888 (|#1|)) (-15 -1774 (|#1| |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -2898 (|#1| |#1|)) (-15 -2875 (|#1| |#1|))) (-1103)) (T -1102)) +NIL +(-10 -8 (-15 -2888 (|#1|)) (-15 -1774 (|#1| |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -2898 (|#1| |#1|)) (-15 -2875 (|#1| |#1|))) +((-2958 (($ $) 26)) (-2823 (($ $) 11)) (-2934 (($ $) 27)) (-2800 (($ $) 10)) (-2981 (($ $) 28)) (-2844 (($ $) 9)) (-2888 (($) 16)) (-1254 (($ $) 19)) (-3325 (($ $) 18)) (-1754 (($ $) 29)) (-2854 (($ $) 8)) (-2969 (($ $) 30)) (-2834 (($ $) 7)) (-2946 (($ $) 31)) (-2812 (($ $) 6)) (-1774 (($ $) 20)) (-2886 (($ $) 32)) (-1761 (($ $) 21)) (-2865 (($ $) 33)) (-1790 (($ $) 22)) (-2910 (($ $) 34)) (-3929 (($ $) 23)) (-2922 (($ $) 35)) (-1783 (($ $) 24)) (-2898 (($ $) 36)) (-1768 (($ $) 25)) (-2875 (($ $) 37)) (** (($ $ $) 17))) +(((-1103) (-1194)) (T -1103)) +((-2888 (*1 *1) (-4 *1 (-1103)))) +(-13 (-1106) (-91) (-460) (-34) (-258) (-10 -8 (-15 -2888 ($)))) +(((-34) . T) ((-91) . T) ((-258) . T) ((-460) . T) ((-1106) . T)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3493 ((|#1| $) 17)) (-3527 (($ |#1| (-585 $)) 23) (($ (-585 |#1|)) 27) (($ |#1|) 25)) (-1473 (((-108) $ (-705)) 47)) (-2410 ((|#1| $ |#1|) 14 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) 13 (|has| $ (-6 -4222)))) (-2249 (($) NIL T CONST)) (-3844 (((-585 |#1|) $) 51 (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) 42)) (-3458 (((-108) $ $) 33 (|has| |#1| (-1011)))) (-3878 (((-108) $ (-705)) 40)) (-3725 (((-585 |#1|) $) 52 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 50 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3850 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 22)) (-2768 (((-108) $ (-705)) 39)) (-1281 (((-585 |#1|) $) 37)) (-1668 (((-108) $) 36)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2379 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 74)) (-3108 (((-108) $) 9)) (-1548 (($) 10)) (-2598 ((|#1| $ "value") NIL)) (-1763 (((-519) $ $) 32)) (-3998 (((-585 $) $) 58)) (-1880 (((-108) $ $) 76)) (-1838 (((-585 $) $) 71)) (-4106 (($ $) 72)) (-3096 (((-108) $) 55)) (-4155 (((-705) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4221))) (((-705) |#1| $) 16 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2449 (($ $) 57)) (-2217 (((-790) $) 60 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) 12)) (-2915 (((-108) $ $) 29 (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) 48 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 28 (|has| |#1| (-1011)))) (-3532 (((-705) $) 38 (|has| $ (-6 -4221))))) +(((-1104 |#1|) (-13 (-933 |#1|) (-10 -8 (-6 -4221) (-6 -4222) (-15 -3527 ($ |#1| (-585 $))) (-15 -3527 ($ (-585 |#1|))) (-15 -3527 ($ |#1|)) (-15 -3096 ((-108) $)) (-15 -4106 ($ $)) (-15 -1838 ((-585 $) $)) (-15 -1880 ((-108) $ $)) (-15 -3998 ((-585 $) $)))) (-1011)) (T -1104)) +((-3096 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3)) (-4 *3 (-1011)))) (-3527 (*1 *1 *2 *3) (-12 (-5 *3 (-585 (-1104 *2))) (-5 *1 (-1104 *2)) (-4 *2 (-1011)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-1104 *3)))) (-3527 (*1 *1 *2) (-12 (-5 *1 (-1104 *2)) (-4 *2 (-1011)))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-1104 *2)) (-4 *2 (-1011)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-585 (-1104 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1011)))) (-1880 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3)) (-4 *3 (-1011)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-585 (-1104 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1011))))) +(-13 (-933 |#1|) (-10 -8 (-6 -4221) (-6 -4222) (-15 -3527 ($ |#1| (-585 $))) (-15 -3527 ($ (-585 |#1|))) (-15 -3527 ($ |#1|)) (-15 -3096 ((-108) $)) (-15 -4106 ($ $)) (-15 -1838 ((-585 $) $)) (-15 -1880 ((-108) $ $)) (-15 -3998 ((-585 $) $)))) +((-2823 (($ $) 15)) (-2844 (($ $) 12)) (-2854 (($ $) 10)) (-2834 (($ $) 17))) +(((-1105 |#1|) (-10 -8 (-15 -2834 (|#1| |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2823 (|#1| |#1|))) (-1106)) (T -1105)) +NIL +(-10 -8 (-15 -2834 (|#1| |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2823 (|#1| |#1|))) +((-2823 (($ $) 11)) (-2800 (($ $) 10)) (-2844 (($ $) 9)) (-2854 (($ $) 8)) (-2834 (($ $) 7)) (-2812 (($ $) 6))) +(((-1106) (-1194)) (T -1106)) +((-2823 (*1 *1 *1) (-4 *1 (-1106))) (-2800 (*1 *1 *1) (-4 *1 (-1106))) (-2844 (*1 *1 *1) (-4 *1 (-1106))) (-2854 (*1 *1 *1) (-4 *1 (-1106))) (-2834 (*1 *1 *1) (-4 *1 (-1106))) (-2812 (*1 *1 *1) (-4 *1 (-1106)))) +(-13 (-10 -8 (-15 -2812 ($ $)) (-15 -2834 ($ $)) (-15 -2854 ($ $)) (-15 -2844 ($ $)) (-15 -2800 ($ $)) (-15 -2823 ($ $)))) +((-3258 ((|#2| |#2|) 85)) (-2534 (((-108) |#2|) 25)) (-1944 ((|#2| |#2|) 29)) (-1956 ((|#2| |#2|) 31)) (-3646 ((|#2| |#2| (-1082)) 79) ((|#2| |#2|) 80)) (-2798 (((-154 |#2|) |#2|) 27)) (-1829 ((|#2| |#2| (-1082)) 81) ((|#2| |#2|) 82))) +(((-1107 |#1| |#2|) (-10 -7 (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1082))) (-15 -1829 (|#2| |#2|)) (-15 -1829 (|#2| |#2| (-1082))) (-15 -3258 (|#2| |#2|)) (-15 -1944 (|#2| |#2|)) (-15 -1956 (|#2| |#2|)) (-15 -2534 ((-108) |#2|)) (-15 -2798 ((-154 |#2|) |#2|))) (-13 (-423) (-782) (-959 (-519)) (-581 (-519))) (-13 (-27) (-1103) (-402 |#1|))) (T -1107)) +((-2798 (*1 *2 *3) (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-154 *3)) (-5 *1 (-1107 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *4))))) (-2534 (*1 *2 *3) (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 (-108)) (-5 *1 (-1107 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *4))))) (-1956 (*1 *2 *2) (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-1107 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3))))) (-1944 (*1 *2 *2) (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-1107 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3))))) (-3258 (*1 *2 *2) (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-1107 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3))))) (-1829 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-1107 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4))))) (-1829 (*1 *2 *2) (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-1107 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3))))) (-3646 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-1107 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) (-5 *1 (-1107 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3)))))) +(-10 -7 (-15 -3646 (|#2| |#2|)) (-15 -3646 (|#2| |#2| (-1082))) (-15 -1829 (|#2| |#2|)) (-15 -1829 (|#2| |#2| (-1082))) (-15 -3258 (|#2| |#2|)) (-15 -1944 (|#2| |#2|)) (-15 -1956 (|#2| |#2|)) (-15 -2534 ((-108) |#2|)) (-15 -2798 ((-154 |#2|) |#2|))) +((-2848 ((|#4| |#4| |#1|) 27)) (-2091 ((|#4| |#4| |#1|) 28))) +(((-1108 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2848 (|#4| |#4| |#1|)) (-15 -2091 (|#4| |#4| |#1|))) (-511) (-345 |#1|) (-345 |#1|) (-623 |#1| |#2| |#3|)) (T -1108)) +((-2091 (*1 *2 *2 *3) (-12 (-4 *3 (-511)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *1 (-1108 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-2848 (*1 *2 *2 *3) (-12 (-4 *3 (-511)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-5 *1 (-1108 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +(-10 -7 (-15 -2848 (|#4| |#4| |#1|)) (-15 -2091 (|#4| |#4| |#1|))) +((-1703 ((|#2| |#2|) 132)) (-3395 ((|#2| |#2|) 129)) (-2524 ((|#2| |#2|) 120)) (-3687 ((|#2| |#2|) 117)) (-3077 ((|#2| |#2|) 125)) (-2513 ((|#2| |#2|) 113)) (-3521 ((|#2| |#2|) 42)) (-1615 ((|#2| |#2|) 93)) (-2248 ((|#2| |#2|) 73)) (-3150 ((|#2| |#2|) 127)) (-1667 ((|#2| |#2|) 115)) (-1197 ((|#2| |#2|) 137)) (-3814 ((|#2| |#2|) 135)) (-1990 ((|#2| |#2|) 136)) (-2794 ((|#2| |#2|) 134)) (-2617 ((|#2| |#2|) 146)) (-3015 ((|#2| |#2|) 30 (-12 (|has| |#2| (-560 (-819 |#1|))) (|has| |#2| (-813 |#1|)) (|has| |#1| (-560 (-819 |#1|))) (|has| |#1| (-813 |#1|))))) (-3312 ((|#2| |#2|) 74)) (-2595 ((|#2| |#2|) 138)) (-1616 ((|#2| |#2|) 139)) (-2646 ((|#2| |#2|) 126)) (-3105 ((|#2| |#2|) 114)) (-2118 ((|#2| |#2|) 133)) (-3244 ((|#2| |#2|) 131)) (-2073 ((|#2| |#2|) 121)) (-3279 ((|#2| |#2|) 119)) (-4070 ((|#2| |#2|) 123)) (-1740 ((|#2| |#2|) 111))) +(((-1109 |#1| |#2|) (-10 -7 (-15 -1616 (|#2| |#2|)) (-15 -2248 (|#2| |#2|)) (-15 -2617 (|#2| |#2|)) (-15 -1615 (|#2| |#2|)) (-15 -3521 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -2595 (|#2| |#2|)) (-15 -1740 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -2118 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -2646 (|#2| |#2|)) (-15 -1667 (|#2| |#2|)) (-15 -3150 (|#2| |#2|)) (-15 -2513 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -2524 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -3687 (|#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -3279 (|#2| |#2|)) (-15 -3244 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -1197 (|#2| |#2|)) (IF (|has| |#1| (-813 |#1|)) (IF (|has| |#1| (-560 (-819 |#1|))) (IF (|has| |#2| (-560 (-819 |#1|))) (IF (|has| |#2| (-813 |#1|)) (-15 -3015 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-782) (-423)) (-13 (-402 |#1|) (-1103))) (T -1109)) +((-3015 (*1 *2 *2) (-12 (-4 *3 (-560 (-819 *3))) (-4 *3 (-813 *3)) (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-560 (-819 *3))) (-4 *2 (-813 *3)) (-4 *2 (-13 (-402 *3) (-1103))))) (-1197 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-3814 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-3244 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-3279 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-3687 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-2524 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-3077 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-2513 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-3150 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-1667 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-2646 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-2118 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-2073 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-1740 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-2595 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-3312 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-3521 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-1615 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-2617 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-2248 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103))))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-402 *3) (-1103)))))) +(-10 -7 (-15 -1616 (|#2| |#2|)) (-15 -2248 (|#2| |#2|)) (-15 -2617 (|#2| |#2|)) (-15 -1615 (|#2| |#2|)) (-15 -3521 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -2595 (|#2| |#2|)) (-15 -1740 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -2118 (|#2| |#2|)) (-15 -3105 (|#2| |#2|)) (-15 -2646 (|#2| |#2|)) (-15 -1667 (|#2| |#2|)) (-15 -3150 (|#2| |#2|)) (-15 -2513 (|#2| |#2|)) (-15 -3077 (|#2| |#2|)) (-15 -2524 (|#2| |#2|)) (-15 -1703 (|#2| |#2|)) (-15 -3687 (|#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -3279 (|#2| |#2|)) (-15 -3244 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -3814 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -1197 (|#2| |#2|)) (IF (|has| |#1| (-813 |#1|)) (IF (|has| |#1| (-560 (-819 |#1|))) (IF (|has| |#2| (-560 (-819 |#1|))) (IF (|has| |#2| (-813 |#1|)) (-15 -3015 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2943 (((-108) |#5| $) 60) (((-108) $) 102)) (-4145 ((|#5| |#5| $) 75)) (-1640 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4117 (((-585 |#5|) (-585 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-1301 (((-3 $ "failed") (-585 |#5|)) 126)) (-2343 (((-3 $ "failed") $) 112)) (-1570 ((|#5| |#5| $) 94)) (-2459 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-3805 ((|#5| |#5| $) 98)) (-3874 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-2109 (((-2 (|:| -1664 (-585 |#5|)) (|:| -1556 (-585 |#5|))) $) 55)) (-3507 (((-108) |#5| $) 58) (((-108) $) 103)) (-4086 ((|#4| $) 108)) (-1457 (((-3 |#5| "failed") $) 110)) (-4092 (((-585 |#5|) $) 49)) (-2921 (((-108) |#5| $) 67) (((-108) $) 107)) (-3369 ((|#5| |#5| $) 81)) (-3291 (((-108) $ $) 27)) (-3300 (((-108) |#5| $) 63) (((-108) $) 105)) (-1867 ((|#5| |#5| $) 78)) (-2331 (((-3 |#5| "failed") $) 109)) (-3881 (($ $ |#5|) 127)) (-4178 (((-705) $) 52)) (-2228 (($ (-585 |#5|)) 124)) (-4175 (($ $ |#4|) 122)) (-1982 (($ $ |#4|) 121)) (-3282 (($ $) 120)) (-2217 (((-790) $) NIL) (((-585 |#5|) $) 113)) (-3156 (((-705) $) 130)) (-3541 (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#5|))) "failed") (-585 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#5|))) "failed") (-585 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-3735 (((-108) $ (-1 (-108) |#5| (-585 |#5|))) 100)) (-3059 (((-585 |#4|) $) 115)) (-3980 (((-108) |#4| $) 118)) (-1543 (((-108) $ $) 19))) +(((-1110 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3156 ((-705) |#1|)) (-15 -3881 (|#1| |#1| |#5|)) (-15 -1640 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3980 ((-108) |#4| |#1|)) (-15 -3059 ((-585 |#4|) |#1|)) (-15 -2343 ((-3 |#1| "failed") |#1|)) (-15 -1457 ((-3 |#5| "failed") |#1|)) (-15 -2331 ((-3 |#5| "failed") |#1|)) (-15 -3805 (|#5| |#5| |#1|)) (-15 -3282 (|#1| |#1|)) (-15 -1570 (|#5| |#5| |#1|)) (-15 -3369 (|#5| |#5| |#1|)) (-15 -1867 (|#5| |#5| |#1|)) (-15 -4145 (|#5| |#5| |#1|)) (-15 -4117 ((-585 |#5|) (-585 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3874 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2921 ((-108) |#1|)) (-15 -3300 ((-108) |#1|)) (-15 -2943 ((-108) |#1|)) (-15 -3735 ((-108) |#1| (-1 (-108) |#5| (-585 |#5|)))) (-15 -2921 ((-108) |#5| |#1|)) (-15 -3300 ((-108) |#5| |#1|)) (-15 -2943 ((-108) |#5| |#1|)) (-15 -2459 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -3507 ((-108) |#1|)) (-15 -3507 ((-108) |#5| |#1|)) (-15 -2109 ((-2 (|:| -1664 (-585 |#5|)) (|:| -1556 (-585 |#5|))) |#1|)) (-15 -4178 ((-705) |#1|)) (-15 -4092 ((-585 |#5|) |#1|)) (-15 -3541 ((-3 (-2 (|:| |bas| |#1|) (|:| -1365 (-585 |#5|))) "failed") (-585 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3541 ((-3 (-2 (|:| |bas| |#1|) (|:| -1365 (-585 |#5|))) "failed") (-585 |#5|) (-1 (-108) |#5| |#5|))) (-15 -3291 ((-108) |#1| |#1|)) (-15 -4175 (|#1| |#1| |#4|)) (-15 -1982 (|#1| |#1| |#4|)) (-15 -4086 (|#4| |#1|)) (-15 -1301 ((-3 |#1| "failed") (-585 |#5|))) (-15 -2217 ((-585 |#5|) |#1|)) (-15 -2228 (|#1| (-585 |#5|))) (-15 -3874 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3874 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1640 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3874 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) (-1111 |#2| |#3| |#4| |#5|) (-511) (-727) (-782) (-982 |#2| |#3| |#4|)) (T -1110)) +NIL +(-10 -8 (-15 -3156 ((-705) |#1|)) (-15 -3881 (|#1| |#1| |#5|)) (-15 -1640 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3980 ((-108) |#4| |#1|)) (-15 -3059 ((-585 |#4|) |#1|)) (-15 -2343 ((-3 |#1| "failed") |#1|)) (-15 -1457 ((-3 |#5| "failed") |#1|)) (-15 -2331 ((-3 |#5| "failed") |#1|)) (-15 -3805 (|#5| |#5| |#1|)) (-15 -3282 (|#1| |#1|)) (-15 -1570 (|#5| |#5| |#1|)) (-15 -3369 (|#5| |#5| |#1|)) (-15 -1867 (|#5| |#5| |#1|)) (-15 -4145 (|#5| |#5| |#1|)) (-15 -4117 ((-585 |#5|) (-585 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3874 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2921 ((-108) |#1|)) (-15 -3300 ((-108) |#1|)) (-15 -2943 ((-108) |#1|)) (-15 -3735 ((-108) |#1| (-1 (-108) |#5| (-585 |#5|)))) (-15 -2921 ((-108) |#5| |#1|)) (-15 -3300 ((-108) |#5| |#1|)) (-15 -2943 ((-108) |#5| |#1|)) (-15 -2459 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -3507 ((-108) |#1|)) (-15 -3507 ((-108) |#5| |#1|)) (-15 -2109 ((-2 (|:| -1664 (-585 |#5|)) (|:| -1556 (-585 |#5|))) |#1|)) (-15 -4178 ((-705) |#1|)) (-15 -4092 ((-585 |#5|) |#1|)) (-15 -3541 ((-3 (-2 (|:| |bas| |#1|) (|:| -1365 (-585 |#5|))) "failed") (-585 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3541 ((-3 (-2 (|:| |bas| |#1|) (|:| -1365 (-585 |#5|))) "failed") (-585 |#5|) (-1 (-108) |#5| |#5|))) (-15 -3291 ((-108) |#1| |#1|)) (-15 -4175 (|#1| |#1| |#4|)) (-15 -1982 (|#1| |#1| |#4|)) (-15 -4086 (|#4| |#1|)) (-15 -1301 ((-3 |#1| "failed") (-585 |#5|))) (-15 -2217 ((-585 |#5|) |#1|)) (-15 -2228 (|#1| (-585 |#5|))) (-15 -3874 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3874 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1640 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3874 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2217 ((-790) |#1|)) (-15 -1543 ((-108) |#1| |#1|))) +((-1430 (((-108) $ $) 7)) (-3106 (((-585 (-2 (|:| -1664 $) (|:| -1556 (-585 |#4|)))) (-585 |#4|)) 85)) (-2548 (((-585 $) (-585 |#4|)) 86)) (-4083 (((-585 |#3|) $) 33)) (-2968 (((-108) $) 26)) (-3146 (((-108) $) 17 (|has| |#1| (-511)))) (-2943 (((-108) |#4| $) 101) (((-108) $) 97)) (-4145 ((|#4| |#4| $) 92)) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#3|) 27)) (-1473 (((-108) $ (-705)) 44)) (-1640 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4221))) (((-3 |#4| "failed") $ |#3|) 79)) (-2249 (($) 45 T CONST)) (-3266 (((-108) $) 22 (|has| |#1| (-511)))) (-2542 (((-108) $ $) 24 (|has| |#1| (-511)))) (-3609 (((-108) $ $) 23 (|has| |#1| (-511)))) (-1276 (((-108) $) 25 (|has| |#1| (-511)))) (-4117 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1456 (((-585 |#4|) (-585 |#4|) $) 18 (|has| |#1| (-511)))) (-3596 (((-585 |#4|) (-585 |#4|) $) 19 (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 |#4|)) 36)) (-1499 (($ (-585 |#4|)) 35)) (-2343 (((-3 $ "failed") $) 82)) (-1570 ((|#4| |#4| $) 89)) (-2366 (($ $) 68 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#4| $) 67 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-511)))) (-2459 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3805 ((|#4| |#4| $) 87)) (-3874 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4221))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4221))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2109 (((-2 (|:| -1664 (-585 |#4|)) (|:| -1556 (-585 |#4|))) $) 105)) (-3844 (((-585 |#4|) $) 52 (|has| $ (-6 -4221)))) (-3507 (((-108) |#4| $) 104) (((-108) $) 103)) (-4086 ((|#3| $) 34)) (-3878 (((-108) $ (-705)) 43)) (-3725 (((-585 |#4|) $) 53 (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) 47)) (-1360 (((-585 |#3|) $) 32)) (-1219 (((-108) |#3| $) 31)) (-2768 (((-108) $ (-705)) 42)) (-1266 (((-1065) $) 9)) (-1457 (((-3 |#4| "failed") $) 83)) (-4092 (((-585 |#4|) $) 107)) (-2921 (((-108) |#4| $) 99) (((-108) $) 95)) (-3369 ((|#4| |#4| $) 90)) (-3291 (((-108) $ $) 110)) (-2573 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-511)))) (-3300 (((-108) |#4| $) 100) (((-108) $) 96)) (-1867 ((|#4| |#4| $) 91)) (-4139 (((-1029) $) 10)) (-2331 (((-3 |#4| "failed") $) 84)) (-2395 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2781 (((-3 $ "failed") $ |#4|) 78)) (-3881 (($ $ |#4|) 77)) (-2379 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#4|) (-585 |#4|)) 59 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) 57 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 (-267 |#4|))) 56 (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) 38)) (-3108 (((-108) $) 41)) (-1548 (($) 40)) (-4178 (((-705) $) 106)) (-4155 (((-705) |#4| $) 54 (-12 (|has| |#4| (-1011)) (|has| $ (-6 -4221)))) (((-705) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4221)))) (-2449 (($ $) 39)) (-1446 (((-495) $) 69 (|has| |#4| (-560 (-495))))) (-2228 (($ (-585 |#4|)) 60)) (-4175 (($ $ |#3|) 28)) (-1982 (($ $ |#3|) 30)) (-3282 (($ $) 88)) (-1272 (($ $ |#3|) 29)) (-2217 (((-790) $) 11) (((-585 |#4|) $) 37)) (-3156 (((-705) $) 76 (|has| |#3| (-340)))) (-3541 (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3735 (((-108) $ (-1 (-108) |#4| (-585 |#4|))) 98)) (-1778 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4221)))) (-3059 (((-585 |#3|) $) 81)) (-3980 (((-108) |#3| $) 80)) (-1543 (((-108) $ $) 6)) (-3532 (((-705) $) 46 (|has| $ (-6 -4221))))) +(((-1111 |#1| |#2| |#3| |#4|) (-1194) (-511) (-727) (-782) (-982 |t#1| |t#2| |t#3|)) (T -1111)) +((-3291 (*1 *2 *1 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) (-3541 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1365 (-585 *8)))) (-5 *3 (-585 *8)) (-4 *1 (-1111 *5 *6 *7 *8)))) (-3541 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-982 *6 *7 *8)) (-4 *6 (-511)) (-4 *7 (-727)) (-4 *8 (-782)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1365 (-585 *9)))) (-5 *3 (-585 *9)) (-4 *1 (-1111 *6 *7 *8 *9)))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-585 *6)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-705)))) (-2109 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-2 (|:| -1664 (-585 *6)) (|:| -1556 (-585 *6)))))) (-3507 (*1 *2 *3 *1) (-12 (-4 *1 (-1111 *4 *5 *6 *3)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) (-2459 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1111 *5 *6 *7 *3)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-108)))) (-2943 (*1 *2 *3 *1) (-12 (-4 *1 (-1111 *4 *5 *6 *3)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108)))) (-3300 (*1 *2 *3 *1) (-12 (-4 *1 (-1111 *4 *5 *6 *3)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108)))) (-2921 (*1 *2 *3 *1) (-12 (-4 *1 (-1111 *4 *5 *6 *3)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108)))) (-3735 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-585 *7))) (-4 *1 (-1111 *4 *5 *6 *7)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) (-3874 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1111 *5 *6 *7 *2)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *2 (-982 *5 *6 *7)))) (-4117 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1111 *5 *6 *7 *8)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-982 *5 *6 *7)))) (-4145 (*1 *2 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) (-1867 (*1 *2 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) (-3369 (*1 *2 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) (-1570 (*1 *2 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) (-3282 (*1 *1 *1) (-12 (-4 *1 (-1111 *2 *3 *4 *5)) (-4 *2 (-511)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *5 (-982 *2 *3 *4)))) (-3805 (*1 *2 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *1)) (-4 *1 (-1111 *4 *5 *6 *7)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-585 (-2 (|:| -1664 *1) (|:| -1556 (-585 *7))))) (-5 *3 (-585 *7)) (-4 *1 (-1111 *4 *5 *6 *7)))) (-2331 (*1 *2 *1) (|partial| -12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) (-1457 (*1 *2 *1) (|partial| -12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) (-2343 (*1 *1 *1) (|partial| -12 (-4 *1 (-1111 *2 *3 *4 *5)) (-4 *2 (-511)) (-4 *3 (-727)) (-4 *4 (-782)) (-4 *5 (-982 *2 *3 *4)))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-585 *5)))) (-3980 (*1 *2 *3 *1) (-12 (-4 *1 (-1111 *4 *5 *3 *6)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *3 (-782)) (-4 *6 (-982 *4 *5 *3)) (-5 *2 (-108)))) (-1640 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1111 *4 *5 *3 *2)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *3 (-782)) (-4 *2 (-982 *4 *5 *3)))) (-2781 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) (-3881 (*1 *1 *1 *2) (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *5 (-340)) (-5 *2 (-705))))) +(-13 (-900 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4221) (-6 -4222) (-15 -3291 ((-108) $ $)) (-15 -3541 ((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |t#4|))) "failed") (-585 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3541 ((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |t#4|))) "failed") (-585 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -4092 ((-585 |t#4|) $)) (-15 -4178 ((-705) $)) (-15 -2109 ((-2 (|:| -1664 (-585 |t#4|)) (|:| -1556 (-585 |t#4|))) $)) (-15 -3507 ((-108) |t#4| $)) (-15 -3507 ((-108) $)) (-15 -2459 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -2943 ((-108) |t#4| $)) (-15 -3300 ((-108) |t#4| $)) (-15 -2921 ((-108) |t#4| $)) (-15 -3735 ((-108) $ (-1 (-108) |t#4| (-585 |t#4|)))) (-15 -2943 ((-108) $)) (-15 -3300 ((-108) $)) (-15 -2921 ((-108) $)) (-15 -3874 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -4117 ((-585 |t#4|) (-585 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -4145 (|t#4| |t#4| $)) (-15 -1867 (|t#4| |t#4| $)) (-15 -3369 (|t#4| |t#4| $)) (-15 -1570 (|t#4| |t#4| $)) (-15 -3282 ($ $)) (-15 -3805 (|t#4| |t#4| $)) (-15 -2548 ((-585 $) (-585 |t#4|))) (-15 -3106 ((-585 (-2 (|:| -1664 $) (|:| -1556 (-585 |t#4|)))) (-585 |t#4|))) (-15 -2331 ((-3 |t#4| "failed") $)) (-15 -1457 ((-3 |t#4| "failed") $)) (-15 -2343 ((-3 $ "failed") $)) (-15 -3059 ((-585 |t#3|) $)) (-15 -3980 ((-108) |t#3| $)) (-15 -1640 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2781 ((-3 $ "failed") $ |t#4|)) (-15 -3881 ($ $ |t#4|)) (IF (|has| |t#3| (-340)) (-15 -3156 ((-705) $)) |%noBranch|))) +(((-33) . T) ((-97) . T) ((-559 (-585 |#4|)) . T) ((-559 (-790)) . T) ((-139 |#4|) . T) ((-560 (-495)) |has| |#4| (-560 (-495))) ((-282 |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-458 |#4|) . T) ((-480 |#4| |#4|) -12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))) ((-900 |#1| |#2| |#3| |#4|) . T) ((-1011) . T) ((-1117) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 (-1082)) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-2958 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2981 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2227 (((-879 |#1|) $ (-705)) 17) (((-879 |#1|) $ (-705) (-705)) NIL)) (-3943 (((-108) $) NIL)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-705) $ (-1082)) NIL) (((-705) $ (-1082) (-705)) NIL)) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2642 (((-108) $) NIL)) (-4042 (($ $ (-585 (-1082)) (-585 (-491 (-1082)))) NIL) (($ $ (-1082) (-491 (-1082))) NIL) (($ |#1| (-491 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4142 (($ $ (-1082)) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082) |#1|) NIL (|has| |#1| (-37 (-379 (-519)))))) (-4139 (((-1029) $) NIL)) (-4102 (($ (-1 $) (-1082) |#1|) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3881 (($ $ (-705)) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-3325 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2324 (($ $ (-1082) $) NIL) (($ $ (-585 (-1082)) (-585 $)) NIL) (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL)) (-2181 (($ $ (-1082)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL)) (-4178 (((-491 (-1082)) $) NIL)) (-1754 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-511))) (($ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ (-1082)) NIL) (($ (-879 |#1|)) NIL)) (-1220 ((|#1| $ (-491 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (((-879 |#1|) $ (-705)) NIL)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-1774 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1761 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) NIL T CONST)) (-2242 (($ $ (-1082)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL)) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1112 |#1|) (-13 (-675 |#1| (-1082)) (-10 -8 (-15 -1220 ((-879 |#1|) $ (-705))) (-15 -2217 ($ (-1082))) (-15 -2217 ($ (-879 |#1|))) (IF (|has| |#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ($ $ (-1082) |#1|)) (-15 -4102 ($ (-1 $) (-1082) |#1|))) |%noBranch|))) (-968)) (T -1112)) +((-1220 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *2 (-879 *4)) (-5 *1 (-1112 *4)) (-4 *4 (-968)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1112 *3)) (-4 *3 (-968)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-968)) (-5 *1 (-1112 *3)))) (-4142 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *1 (-1112 *3)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)))) (-4102 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1112 *4))) (-5 *3 (-1082)) (-5 *1 (-1112 *4)) (-4 *4 (-37 (-379 (-519)))) (-4 *4 (-968))))) +(-13 (-675 |#1| (-1082)) (-10 -8 (-15 -1220 ((-879 |#1|) $ (-705))) (-15 -2217 ($ (-1082))) (-15 -2217 ($ (-879 |#1|))) (IF (|has| |#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ($ $ (-1082) |#1|)) (-15 -4102 ($ (-1 $) (-1082) |#1|))) |%noBranch|))) +((-3572 (($ |#1| (-585 (-585 (-870 (-201)))) (-108)) 16)) (-3612 (((-108) $ (-108)) 15)) (-1414 (((-108) $) 14)) (-1866 (((-585 (-585 (-870 (-201)))) $) 10)) (-2733 ((|#1| $) 8)) (-2764 (((-108) $) 12))) +(((-1113 |#1|) (-10 -8 (-15 -2733 (|#1| $)) (-15 -1866 ((-585 (-585 (-870 (-201)))) $)) (-15 -2764 ((-108) $)) (-15 -1414 ((-108) $)) (-15 -3612 ((-108) $ (-108))) (-15 -3572 ($ |#1| (-585 (-585 (-870 (-201)))) (-108)))) (-898)) (T -1113)) +((-3572 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *4 (-108)) (-5 *1 (-1113 *2)) (-4 *2 (-898)))) (-3612 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-898)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-898)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-898)))) (-1866 (*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *1 (-1113 *3)) (-4 *3 (-898)))) (-2733 (*1 *2 *1) (-12 (-5 *1 (-1113 *2)) (-4 *2 (-898))))) +(-10 -8 (-15 -2733 (|#1| $)) (-15 -1866 ((-585 (-585 (-870 (-201)))) $)) (-15 -2764 ((-108) $)) (-15 -1414 ((-108) $)) (-15 -3612 ((-108) $ (-108))) (-15 -3572 ($ |#1| (-585 (-585 (-870 (-201)))) (-108)))) +((-2096 (((-870 (-201)) (-870 (-201))) 25)) (-2789 (((-870 (-201)) (-201) (-201) (-201) (-201)) 10)) (-4174 (((-585 (-870 (-201))) (-870 (-201)) (-870 (-201)) (-870 (-201)) (-201) (-585 (-585 (-201)))) 37)) (-1466 (((-201) (-870 (-201)) (-870 (-201))) 21)) (-2376 (((-870 (-201)) (-870 (-201)) (-870 (-201))) 22)) (-2963 (((-585 (-585 (-201))) (-519)) 31)) (-1623 (((-870 (-201)) (-870 (-201)) (-870 (-201))) 20)) (-1614 (((-870 (-201)) (-870 (-201)) (-870 (-201))) 19)) (* (((-870 (-201)) (-201) (-870 (-201))) 18))) +(((-1114) (-10 -7 (-15 -2789 ((-870 (-201)) (-201) (-201) (-201) (-201))) (-15 * ((-870 (-201)) (-201) (-870 (-201)))) (-15 -1614 ((-870 (-201)) (-870 (-201)) (-870 (-201)))) (-15 -1623 ((-870 (-201)) (-870 (-201)) (-870 (-201)))) (-15 -1466 ((-201) (-870 (-201)) (-870 (-201)))) (-15 -2376 ((-870 (-201)) (-870 (-201)) (-870 (-201)))) (-15 -2096 ((-870 (-201)) (-870 (-201)))) (-15 -2963 ((-585 (-585 (-201))) (-519))) (-15 -4174 ((-585 (-870 (-201))) (-870 (-201)) (-870 (-201)) (-870 (-201)) (-201) (-585 (-585 (-201))))))) (T -1114)) +((-4174 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-585 (-585 (-201)))) (-5 *4 (-201)) (-5 *2 (-585 (-870 *4))) (-5 *1 (-1114)) (-5 *3 (-870 *4)))) (-2963 (*1 *2 *3) (-12 (-5 *3 (-519)) (-5 *2 (-585 (-585 (-201)))) (-5 *1 (-1114)))) (-2096 (*1 *2 *2) (-12 (-5 *2 (-870 (-201))) (-5 *1 (-1114)))) (-2376 (*1 *2 *2 *2) (-12 (-5 *2 (-870 (-201))) (-5 *1 (-1114)))) (-1466 (*1 *2 *3 *3) (-12 (-5 *3 (-870 (-201))) (-5 *2 (-201)) (-5 *1 (-1114)))) (-1623 (*1 *2 *2 *2) (-12 (-5 *2 (-870 (-201))) (-5 *1 (-1114)))) (-1614 (*1 *2 *2 *2) (-12 (-5 *2 (-870 (-201))) (-5 *1 (-1114)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-870 (-201))) (-5 *3 (-201)) (-5 *1 (-1114)))) (-2789 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-870 (-201))) (-5 *1 (-1114)) (-5 *3 (-201))))) +(-10 -7 (-15 -2789 ((-870 (-201)) (-201) (-201) (-201) (-201))) (-15 * ((-870 (-201)) (-201) (-870 (-201)))) (-15 -1614 ((-870 (-201)) (-870 (-201)) (-870 (-201)))) (-15 -1623 ((-870 (-201)) (-870 (-201)) (-870 (-201)))) (-15 -1466 ((-201) (-870 (-201)) (-870 (-201)))) (-15 -2376 ((-870 (-201)) (-870 (-201)) (-870 (-201)))) (-15 -2096 ((-870 (-201)) (-870 (-201)))) (-15 -2963 ((-585 (-585 (-201))) (-519))) (-15 -4174 ((-585 (-870 (-201))) (-870 (-201)) (-870 (-201)) (-870 (-201)) (-201) (-585 (-585 (-201)))))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1640 ((|#1| $ (-705)) 13)) (-2568 (((-705) $) 12)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2217 (((-884 |#1|) $) 10) (($ (-884 |#1|)) 9) (((-790) $) 23 (|has| |#1| (-559 (-790))))) (-1543 (((-108) $ $) 16 (|has| |#1| (-1011))))) +(((-1115 |#1|) (-13 (-559 (-884 |#1|)) (-10 -8 (-15 -2217 ($ (-884 |#1|))) (-15 -1640 (|#1| $ (-705))) (-15 -2568 ((-705) $)) (IF (|has| |#1| (-559 (-790))) (-6 (-559 (-790))) |%noBranch|) (IF (|has| |#1| (-1011)) (-6 (-1011)) |%noBranch|))) (-1117)) (T -1115)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-1117)) (-5 *1 (-1115 *3)))) (-1640 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *1 (-1115 *2)) (-4 *2 (-1117)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-1115 *3)) (-4 *3 (-1117))))) +(-13 (-559 (-884 |#1|)) (-10 -8 (-15 -2217 ($ (-884 |#1|))) (-15 -1640 (|#1| $ (-705))) (-15 -2568 ((-705) $)) (IF (|has| |#1| (-559 (-790))) (-6 (-559 (-790))) |%noBranch|) (IF (|has| |#1| (-1011)) (-6 (-1011)) |%noBranch|))) +((-4034 (((-390 (-1078 (-1078 |#1|))) (-1078 (-1078 |#1|)) (-519)) 79)) (-1673 (((-390 (-1078 (-1078 |#1|))) (-1078 (-1078 |#1|))) 73)) (-2683 (((-390 (-1078 (-1078 |#1|))) (-1078 (-1078 |#1|))) 58))) +(((-1116 |#1|) (-10 -7 (-15 -1673 ((-390 (-1078 (-1078 |#1|))) (-1078 (-1078 |#1|)))) (-15 -2683 ((-390 (-1078 (-1078 |#1|))) (-1078 (-1078 |#1|)))) (-15 -4034 ((-390 (-1078 (-1078 |#1|))) (-1078 (-1078 |#1|)) (-519)))) (-321)) (T -1116)) +((-4034 (*1 *2 *3 *4) (-12 (-5 *4 (-519)) (-4 *5 (-321)) (-5 *2 (-390 (-1078 (-1078 *5)))) (-5 *1 (-1116 *5)) (-5 *3 (-1078 (-1078 *5))))) (-2683 (*1 *2 *3) (-12 (-4 *4 (-321)) (-5 *2 (-390 (-1078 (-1078 *4)))) (-5 *1 (-1116 *4)) (-5 *3 (-1078 (-1078 *4))))) (-1673 (*1 *2 *3) (-12 (-4 *4 (-321)) (-5 *2 (-390 (-1078 (-1078 *4)))) (-5 *1 (-1116 *4)) (-5 *3 (-1078 (-1078 *4)))))) +(-10 -7 (-15 -1673 ((-390 (-1078 (-1078 |#1|))) (-1078 (-1078 |#1|)))) (-15 -2683 ((-390 (-1078 (-1078 |#1|))) (-1078 (-1078 |#1|)))) (-15 -4034 ((-390 (-1078 (-1078 |#1|))) (-1078 (-1078 |#1|)) (-519)))) +NIL +(((-1117) (-1194)) (T -1117)) +NIL +(-13 (-10 -7 (-6 -2063))) +((-3308 (((-108)) 15)) (-1533 (((-1168) (-585 |#1|) (-585 |#1|)) 19) (((-1168) (-585 |#1|)) 20)) (-3878 (((-108) |#1| |#1|) 31 (|has| |#1| (-782)))) (-2768 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-4167 ((|#1| (-585 |#1|)) 32 (|has| |#1| (-782))) ((|#1| (-585 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-3008 (((-2 (|:| -2966 (-585 |#1|)) (|:| -2057 (-585 |#1|)))) 17))) +(((-1118 |#1|) (-10 -7 (-15 -1533 ((-1168) (-585 |#1|))) (-15 -1533 ((-1168) (-585 |#1|) (-585 |#1|))) (-15 -3008 ((-2 (|:| -2966 (-585 |#1|)) (|:| -2057 (-585 |#1|))))) (-15 -2768 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2768 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -4167 (|#1| (-585 |#1|) (-1 (-108) |#1| |#1|))) (-15 -3308 ((-108))) (IF (|has| |#1| (-782)) (PROGN (-15 -4167 (|#1| (-585 |#1|))) (-15 -3878 ((-108) |#1| |#1|))) |%noBranch|)) (-1011)) (T -1118)) +((-3878 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-782)) (-4 *3 (-1011)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-1011)) (-4 *2 (-782)) (-5 *1 (-1118 *2)))) (-3308 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-1011)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1118 *2)) (-4 *2 (-1011)))) (-2768 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1011)) (-5 *2 (-108)) (-5 *1 (-1118 *3)))) (-2768 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-1011)))) (-3008 (*1 *2) (-12 (-5 *2 (-2 (|:| -2966 (-585 *3)) (|:| -2057 (-585 *3)))) (-5 *1 (-1118 *3)) (-4 *3 (-1011)))) (-1533 (*1 *2 *3 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1011)) (-5 *2 (-1168)) (-5 *1 (-1118 *4)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-585 *4)) (-4 *4 (-1011)) (-5 *2 (-1168)) (-5 *1 (-1118 *4))))) +(-10 -7 (-15 -1533 ((-1168) (-585 |#1|))) (-15 -1533 ((-1168) (-585 |#1|) (-585 |#1|))) (-15 -3008 ((-2 (|:| -2966 (-585 |#1|)) (|:| -2057 (-585 |#1|))))) (-15 -2768 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2768 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -4167 (|#1| (-585 |#1|) (-1 (-108) |#1| |#1|))) (-15 -3308 ((-108))) (IF (|has| |#1| (-782)) (PROGN (-15 -4167 (|#1| (-585 |#1|))) (-15 -3878 ((-108) |#1| |#1|))) |%noBranch|)) +((-3224 (((-1168) (-585 (-1082)) (-585 (-1082))) 12) (((-1168) (-585 (-1082))) 10)) (-1648 (((-1168)) 13)) (-1322 (((-2 (|:| -2057 (-585 (-1082))) (|:| -2966 (-585 (-1082))))) 17))) +(((-1119) (-10 -7 (-15 -3224 ((-1168) (-585 (-1082)))) (-15 -3224 ((-1168) (-585 (-1082)) (-585 (-1082)))) (-15 -1322 ((-2 (|:| -2057 (-585 (-1082))) (|:| -2966 (-585 (-1082)))))) (-15 -1648 ((-1168))))) (T -1119)) +((-1648 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1119)))) (-1322 (*1 *2) (-12 (-5 *2 (-2 (|:| -2057 (-585 (-1082))) (|:| -2966 (-585 (-1082))))) (-5 *1 (-1119)))) (-3224 (*1 *2 *3 *3) (-12 (-5 *3 (-585 (-1082))) (-5 *2 (-1168)) (-5 *1 (-1119)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-585 (-1082))) (-5 *2 (-1168)) (-5 *1 (-1119))))) +(-10 -7 (-15 -3224 ((-1168) (-585 (-1082)))) (-15 -3224 ((-1168) (-585 (-1082)) (-585 (-1082)))) (-15 -1322 ((-2 (|:| -2057 (-585 (-1082))) (|:| -2966 (-585 (-1082)))))) (-15 -1648 ((-1168)))) +((-4043 (($ $) 16)) (-1320 (((-108) $) 23))) +(((-1120 |#1|) (-10 -8 (-15 -4043 (|#1| |#1|)) (-15 -1320 ((-108) |#1|))) (-1121)) (T -1120)) +NIL +(-10 -8 (-15 -4043 (|#1| |#1|)) (-15 -1320 ((-108) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 51)) (-3093 (((-390 $) $) 52)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1320 (((-108) $) 53)) (-1568 (((-108) $) 31)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-1921 (((-390 $) $) 50)) (-2261 (((-3 $ "failed") $ $) 42)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43)) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24))) +(((-1121) (-1194)) (T -1121)) +((-1320 (*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-108)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1121)))) (-4043 (*1 *1 *1) (-4 *1 (-1121))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1121))))) +(-13 (-423) (-10 -8 (-15 -1320 ((-108) $)) (-15 -3093 ((-390 $) $)) (-15 -4043 ($ $)) (-15 -1921 ((-390 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-559 (-790)) . T) ((-157) . T) ((-264) . T) ((-423) . T) ((-511) . T) ((-587 $) . T) ((-652 $) . T) ((-661) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1405 (((-1127 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1127 |#1| |#3| |#5|)) 23))) +(((-1122 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1405 ((-1127 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1127 |#1| |#3| |#5|)))) (-968) (-968) (-1082) (-1082) |#1| |#2|) (T -1122)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1127 *5 *7 *9)) (-4 *5 (-968)) (-4 *6 (-968)) (-14 *7 (-1082)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1127 *6 *8 *10)) (-5 *1 (-1122 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1082))))) +(-10 -7 (-15 -1405 ((-1127 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1127 |#1| |#3| |#5|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4083 (((-585 (-996)) $) 74)) (-1622 (((-1082) $) 103)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 51 (|has| |#1| (-511)))) (-1410 (($ $) 52 (|has| |#1| (-511)))) (-3060 (((-108) $) 54 (|has| |#1| (-511)))) (-4057 (($ $ (-519)) 98) (($ $ (-519) (-519)) 97)) (-3088 (((-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) $) 105)) (-2958 (($ $) 135 (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) 118 (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 162 (|has| |#1| (-335)))) (-3093 (((-390 $) $) 163 (|has| |#1| (-335)))) (-1934 (($ $) 117 (|has| |#1| (-37 (-379 (-519)))))) (-3409 (((-108) $ $) 153 (|has| |#1| (-335)))) (-2934 (($ $) 134 (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) 119 (|has| |#1| (-37 (-379 (-519)))))) (-2824 (($ (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|)))) 174)) (-2981 (($ $) 133 (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) 120 (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) 17 T CONST)) (-2311 (($ $ $) 157 (|has| |#1| (-335)))) (-3218 (($ $) 60)) (-4193 (((-3 $ "failed") $) 34)) (-2893 (((-379 (-879 |#1|)) $ (-519)) 172 (|has| |#1| (-511))) (((-379 (-879 |#1|)) $ (-519) (-519)) 171 (|has| |#1| (-511)))) (-2286 (($ $ $) 156 (|has| |#1| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 151 (|has| |#1| (-335)))) (-1320 (((-108) $) 164 (|has| |#1| (-335)))) (-3943 (((-108) $) 73)) (-2888 (($) 145 (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-519) $) 100) (((-519) $ (-519)) 99)) (-1568 (((-108) $) 31)) (-1517 (($ $ (-519)) 116 (|has| |#1| (-37 (-379 (-519)))))) (-1855 (($ $ (-848)) 101)) (-2221 (($ (-1 |#1| (-519)) $) 173)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 160 (|has| |#1| (-335)))) (-2642 (((-108) $) 62)) (-4042 (($ |#1| (-519)) 61) (($ $ (-996) (-519)) 76) (($ $ (-585 (-996)) (-585 (-519))) 75)) (-1405 (($ (-1 |#1| |#1|) $) 63)) (-1254 (($ $) 142 (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) 65)) (-3197 ((|#1| $) 66)) (-2254 (($ (-585 $)) 149 (|has| |#1| (-335))) (($ $ $) 148 (|has| |#1| (-335)))) (-1266 (((-1065) $) 9)) (-3151 (($ $) 165 (|has| |#1| (-335)))) (-4142 (($ $) 170 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) 169 (-3730 (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-885)) (|has| |#1| (-1103)) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-37 (-379 (-519)))))))) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 150 (|has| |#1| (-335)))) (-2292 (($ (-585 $)) 147 (|has| |#1| (-335))) (($ $ $) 146 (|has| |#1| (-335)))) (-1921 (((-390 $) $) 161 (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 158 (|has| |#1| (-335)))) (-3881 (($ $ (-519)) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 152 (|has| |#1| (-335)))) (-3325 (($ $) 143 (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-519)))))) (-3129 (((-705) $) 154 (|has| |#1| (-335)))) (-2598 ((|#1| $ (-519)) 104) (($ $ $) 81 (|has| (-519) (-1023)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 155 (|has| |#1| (-335)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) 89 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-1082) (-705)) 88 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-585 (-1082))) 87 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-1082)) 86 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-705)) 84 (|has| |#1| (-15 * (|#1| (-519) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (-4178 (((-519) $) 64)) (-1754 (($ $) 132 (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) 121 (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) 131 (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) 122 (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) 130 (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) 123 (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) 72)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-379 (-519))) 57 (|has| |#1| (-37 (-379 (-519))))) (($ $) 49 (|has| |#1| (-511)))) (-1220 ((|#1| $ (-519)) 59)) (-3773 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1896 ((|#1| $) 102)) (-1774 (($ $) 141 (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) 129 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) 53 (|has| |#1| (-511)))) (-1761 (($ $) 140 (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) 128 (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) 139 (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) 127 (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-519)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-519)))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) 138 (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) 126 (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) 137 (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) 125 (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) 136 (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) 124 (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 166 (|has| |#1| (-335)))) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) 93 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-1082) (-705)) 92 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-585 (-1082))) 91 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-1082)) 90 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-705)) 85 (|has| |#1| (-15 * (|#1| (-519) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#1|) 58 (|has| |#1| (-335))) (($ $ $) 168 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 167 (|has| |#1| (-335))) (($ $ $) 144 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 115 (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-379 (-519)) $) 56 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 55 (|has| |#1| (-37 (-379 (-519))))))) +(((-1123 |#1|) (-1194) (-968)) (T -1123)) +((-2824 (*1 *1 *2) (-12 (-5 *2 (-1063 (-2 (|:| |k| (-519)) (|:| |c| *3)))) (-4 *3 (-968)) (-4 *1 (-1123 *3)))) (-2221 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-519))) (-4 *1 (-1123 *3)) (-4 *3 (-968)))) (-2893 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *1 (-1123 *4)) (-4 *4 (-968)) (-4 *4 (-511)) (-5 *2 (-379 (-879 *4))))) (-2893 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-519)) (-4 *1 (-1123 *4)) (-4 *4 (-968)) (-4 *4 (-511)) (-5 *2 (-379 (-879 *4))))) (-4142 (*1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-968)) (-4 *2 (-37 (-379 (-519)))))) (-4142 (*1 *1 *1 *2) (-3730 (-12 (-5 *2 (-1082)) (-4 *1 (-1123 *3)) (-4 *3 (-968)) (-12 (-4 *3 (-29 (-519))) (-4 *3 (-885)) (-4 *3 (-1103)) (-4 *3 (-37 (-379 (-519)))))) (-12 (-5 *2 (-1082)) (-4 *1 (-1123 *3)) (-4 *3 (-968)) (-12 (|has| *3 (-15 -4083 ((-585 *2) *3))) (|has| *3 (-15 -4142 (*3 *3 *2))) (-4 *3 (-37 (-379 (-519))))))))) +(-13 (-1141 |t#1| (-519)) (-10 -8 (-15 -2824 ($ (-1063 (-2 (|:| |k| (-519)) (|:| |c| |t#1|))))) (-15 -2221 ($ (-1 |t#1| (-519)) $)) (IF (|has| |t#1| (-511)) (PROGN (-15 -2893 ((-379 (-879 |t#1|)) $ (-519))) (-15 -2893 ((-379 (-879 |t#1|)) $ (-519) (-519)))) |%noBranch|) (IF (|has| |t#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ($ $)) (IF (|has| |t#1| (-15 -4142 (|t#1| |t#1| (-1082)))) (IF (|has| |t#1| (-15 -4083 ((-585 (-1082)) |t#1|))) (-15 -4142 ($ $ (-1082))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1103)) (IF (|has| |t#1| (-885)) (IF (|has| |t#1| (-29 (-519))) (-15 -4142 ($ $ (-1082))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-925)) (-6 (-1103))) |%noBranch|) (IF (|has| |t#1| (-335)) (-6 (-335)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-519)) . T) ((-25) . T) ((-37 #1=(-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-34) |has| |#1| (-37 (-379 (-519)))) ((-91) |has| |#1| (-37 (-379 (-519)))) ((-97) . T) ((-107 #1# #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-209) |has| |#1| (-15 * (|#1| (-519) |#1|))) ((-219) |has| |#1| (-335)) ((-258) |has| |#1| (-37 (-379 (-519)))) ((-260 $ $) |has| (-519) (-1023)) ((-264) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-280) |has| |#1| (-335)) ((-335) |has| |#1| (-335)) ((-423) |has| |#1| (-335)) ((-460) |has| |#1| (-37 (-379 (-519)))) ((-511) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-587 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-587 |#1|) . T) ((-587 $) . T) ((-652 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-661) . T) ((-827 (-1082)) -12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))) ((-897 |#1| #0# (-996)) . T) ((-847) |has| |#1| (-335)) ((-925) |has| |#1| (-37 (-379 (-519)))) ((-974 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1103) |has| |#1| (-37 (-379 (-519)))) ((-1106) |has| |#1| (-37 (-379 (-519)))) ((-1121) |has| |#1| (-335)) ((-1141 |#1| #0#) . T)) +((-3569 (((-108) $) 12)) (-1301 (((-3 |#3| "failed") $) 17) (((-3 (-1082) "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 (-519) "failed") $) NIL)) (-1499 ((|#3| $) 14) (((-1082) $) NIL) (((-379 (-519)) $) NIL) (((-519) $) NIL))) +(((-1124 |#1| |#2| |#3|) (-10 -8 (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-1082) |#1|)) (-15 -1301 ((-3 (-1082) "failed") |#1|)) (-15 -1499 (|#3| |#1|)) (-15 -1301 ((-3 |#3| "failed") |#1|)) (-15 -3569 ((-108) |#1|))) (-1125 |#2| |#3|) (-968) (-1154 |#2|)) (T -1124)) +NIL +(-10 -8 (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -1499 ((-1082) |#1|)) (-15 -1301 ((-3 (-1082) "failed") |#1|)) (-15 -1499 (|#3| |#1|)) (-15 -1301 ((-3 |#3| "failed") |#1|)) (-15 -3569 ((-108) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-2157 ((|#2| $) 231 (-4012 (|has| |#2| (-280)) (|has| |#1| (-335))))) (-4083 (((-585 (-996)) $) 74)) (-1622 (((-1082) $) 103)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 51 (|has| |#1| (-511)))) (-1410 (($ $) 52 (|has| |#1| (-511)))) (-3060 (((-108) $) 54 (|has| |#1| (-511)))) (-4057 (($ $ (-519)) 98) (($ $ (-519) (-519)) 97)) (-3088 (((-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) $) 105)) (-1915 ((|#2| $) 267)) (-3789 (((-3 |#2| "failed") $) 263)) (-3110 ((|#2| $) 264)) (-2958 (($ $) 135 (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) 118 (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) 19)) (-1958 (((-390 (-1078 $)) (-1078 $)) 240 (-4012 (|has| |#2| (-836)) (|has| |#1| (-335))))) (-4043 (($ $) 162 (|has| |#1| (-335)))) (-3093 (((-390 $) $) 163 (|has| |#1| (-335)))) (-1934 (($ $) 117 (|has| |#1| (-37 (-379 (-519)))))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 237 (-4012 (|has| |#2| (-836)) (|has| |#1| (-335))))) (-3409 (((-108) $ $) 153 (|has| |#1| (-335)))) (-2934 (($ $) 134 (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) 119 (|has| |#1| (-37 (-379 (-519)))))) (-2287 (((-519) $) 249 (-4012 (|has| |#2| (-755)) (|has| |#1| (-335))))) (-2824 (($ (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|)))) 174)) (-2981 (($ $) 133 (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) 120 (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) 17 T CONST)) (-1301 (((-3 |#2| "failed") $) 270) (((-3 (-519) "failed") $) 259 (-4012 (|has| |#2| (-959 (-519))) (|has| |#1| (-335)))) (((-3 (-379 (-519)) "failed") $) 257 (-4012 (|has| |#2| (-959 (-519))) (|has| |#1| (-335)))) (((-3 (-1082) "failed") $) 242 (-4012 (|has| |#2| (-959 (-1082))) (|has| |#1| (-335))))) (-1499 ((|#2| $) 269) (((-519) $) 260 (-4012 (|has| |#2| (-959 (-519))) (|has| |#1| (-335)))) (((-379 (-519)) $) 258 (-4012 (|has| |#2| (-959 (-519))) (|has| |#1| (-335)))) (((-1082) $) 243 (-4012 (|has| |#2| (-959 (-1082))) (|has| |#1| (-335))))) (-3768 (($ $) 266) (($ (-519) $) 265)) (-2311 (($ $ $) 157 (|has| |#1| (-335)))) (-3218 (($ $) 60)) (-1562 (((-625 |#2|) (-625 $)) 221 (|has| |#1| (-335))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) 220 (|has| |#1| (-335))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 219 (-4012 (|has| |#2| (-581 (-519))) (|has| |#1| (-335)))) (((-625 (-519)) (-625 $)) 218 (-4012 (|has| |#2| (-581 (-519))) (|has| |#1| (-335))))) (-4193 (((-3 $ "failed") $) 34)) (-2893 (((-379 (-879 |#1|)) $ (-519)) 172 (|has| |#1| (-511))) (((-379 (-879 |#1|)) $ (-519) (-519)) 171 (|has| |#1| (-511)))) (-3314 (($) 233 (-4012 (|has| |#2| (-504)) (|has| |#1| (-335))))) (-2286 (($ $ $) 156 (|has| |#1| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 151 (|has| |#1| (-335)))) (-1320 (((-108) $) 164 (|has| |#1| (-335)))) (-3419 (((-108) $) 247 (-4012 (|has| |#2| (-755)) (|has| |#1| (-335))))) (-3943 (((-108) $) 73)) (-2888 (($) 145 (|has| |#1| (-37 (-379 (-519)))))) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 225 (-4012 (|has| |#2| (-813 (-351))) (|has| |#1| (-335)))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 224 (-4012 (|has| |#2| (-813 (-519))) (|has| |#1| (-335))))) (-3709 (((-519) $) 100) (((-519) $ (-519)) 99)) (-1568 (((-108) $) 31)) (-1534 (($ $) 229 (|has| |#1| (-335)))) (-2855 ((|#2| $) 227 (|has| |#1| (-335)))) (-1517 (($ $ (-519)) 116 (|has| |#1| (-37 (-379 (-519)))))) (-1675 (((-3 $ "failed") $) 261 (-4012 (|has| |#2| (-1058)) (|has| |#1| (-335))))) (-2143 (((-108) $) 248 (-4012 (|has| |#2| (-755)) (|has| |#1| (-335))))) (-1855 (($ $ (-848)) 101)) (-2221 (($ (-1 |#1| (-519)) $) 173)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 160 (|has| |#1| (-335)))) (-2642 (((-108) $) 62)) (-4042 (($ |#1| (-519)) 61) (($ $ (-996) (-519)) 76) (($ $ (-585 (-996)) (-585 (-519))) 75)) (-2864 (($ $ $) 251 (-4012 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-2489 (($ $ $) 252 (-4012 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-1405 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-335)))) (-1254 (($ $) 142 (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) 65)) (-3197 ((|#1| $) 66)) (-2254 (($ (-585 $)) 149 (|has| |#1| (-335))) (($ $ $) 148 (|has| |#1| (-335)))) (-3120 (($ (-519) |#2|) 268)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 165 (|has| |#1| (-335)))) (-4142 (($ $) 170 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) 169 (-3730 (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-885)) (|has| |#1| (-1103)) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-37 (-379 (-519)))))))) (-3816 (($) 262 (-4012 (|has| |#2| (-1058)) (|has| |#1| (-335))) CONST)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 150 (|has| |#1| (-335)))) (-2292 (($ (-585 $)) 147 (|has| |#1| (-335))) (($ $ $) 146 (|has| |#1| (-335)))) (-3326 (($ $) 232 (-4012 (|has| |#2| (-280)) (|has| |#1| (-335))))) (-1525 ((|#2| $) 235 (-4012 (|has| |#2| (-504)) (|has| |#1| (-335))))) (-1863 (((-390 (-1078 $)) (-1078 $)) 238 (-4012 (|has| |#2| (-836)) (|has| |#1| (-335))))) (-3966 (((-390 (-1078 $)) (-1078 $)) 239 (-4012 (|has| |#2| (-836)) (|has| |#1| (-335))))) (-1921 (((-390 $) $) 161 (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 158 (|has| |#1| (-335)))) (-3881 (($ $ (-519)) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 152 (|has| |#1| (-335)))) (-3325 (($ $) 143 (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-519))))) (($ $ (-1082) |#2|) 212 (-4012 (|has| |#2| (-480 (-1082) |#2|)) (|has| |#1| (-335)))) (($ $ (-585 (-1082)) (-585 |#2|)) 211 (-4012 (|has| |#2| (-480 (-1082) |#2|)) (|has| |#1| (-335)))) (($ $ (-585 (-267 |#2|))) 210 (-4012 (|has| |#2| (-282 |#2|)) (|has| |#1| (-335)))) (($ $ (-267 |#2|)) 209 (-4012 (|has| |#2| (-282 |#2|)) (|has| |#1| (-335)))) (($ $ |#2| |#2|) 208 (-4012 (|has| |#2| (-282 |#2|)) (|has| |#1| (-335)))) (($ $ (-585 |#2|) (-585 |#2|)) 207 (-4012 (|has| |#2| (-282 |#2|)) (|has| |#1| (-335))))) (-3129 (((-705) $) 154 (|has| |#1| (-335)))) (-2598 ((|#1| $ (-519)) 104) (($ $ $) 81 (|has| (-519) (-1023))) (($ $ |#2|) 206 (-4012 (|has| |#2| (-260 |#2| |#2|)) (|has| |#1| (-335))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 155 (|has| |#1| (-335)))) (-2181 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-335))) (($ $ (-1 |#2| |#2|) (-705)) 216 (|has| |#1| (-335))) (($ $ (-705)) 84 (-3730 (-4012 (|has| |#2| (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $) 82 (-3730 (-4012 (|has| |#2| (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-585 (-1082)) (-585 (-705))) 89 (-3730 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|)))))) (($ $ (-1082) (-705)) 88 (-3730 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|)))))) (($ $ (-585 (-1082))) 87 (-3730 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|)))))) (($ $ (-1082)) 86 (-3730 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))))) (-2724 (($ $) 230 (|has| |#1| (-335)))) (-2866 ((|#2| $) 228 (|has| |#1| (-335)))) (-4178 (((-519) $) 64)) (-1754 (($ $) 132 (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) 121 (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) 131 (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) 122 (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) 130 (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) 123 (|has| |#1| (-37 (-379 (-519)))))) (-1446 (((-201) $) 246 (-4012 (|has| |#2| (-944)) (|has| |#1| (-335)))) (((-351) $) 245 (-4012 (|has| |#2| (-944)) (|has| |#1| (-335)))) (((-495) $) 244 (-4012 (|has| |#2| (-560 (-495))) (|has| |#1| (-335)))) (((-819 (-351)) $) 223 (-4012 (|has| |#2| (-560 (-819 (-351)))) (|has| |#1| (-335)))) (((-819 (-519)) $) 222 (-4012 (|has| |#2| (-560 (-819 (-519)))) (|has| |#1| (-335))))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 236 (-4012 (-4012 (|has| $ (-133)) (|has| |#2| (-836))) (|has| |#1| (-335))))) (-1508 (($ $) 72)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 271) (($ (-1082)) 241 (-4012 (|has| |#2| (-959 (-1082))) (|has| |#1| (-335)))) (($ (-379 (-519))) 57 (|has| |#1| (-37 (-379 (-519))))) (($ $) 49 (|has| |#1| (-511)))) (-1220 ((|#1| $ (-519)) 59)) (-3773 (((-3 $ "failed") $) 48 (-3730 (-4012 (-3730 (|has| |#2| (-133)) (-4012 (|has| $ (-133)) (|has| |#2| (-836)))) (|has| |#1| (-335))) (|has| |#1| (-133))))) (-3594 (((-705)) 29)) (-1896 ((|#1| $) 102)) (-3617 ((|#2| $) 234 (-4012 (|has| |#2| (-504)) (|has| |#1| (-335))))) (-1774 (($ $) 141 (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) 129 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) 53 (|has| |#1| (-511)))) (-1761 (($ $) 140 (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) 128 (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) 139 (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) 127 (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-519)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-519)))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) 138 (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) 126 (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) 137 (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) 125 (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) 136 (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) 124 (|has| |#1| (-37 (-379 (-519)))))) (-1478 (($ $) 250 (-4012 (|has| |#2| (-755)) (|has| |#1| (-335))))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 166 (|has| |#1| (-335)))) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-335))) (($ $ (-1 |#2| |#2|) (-705)) 214 (|has| |#1| (-335))) (($ $ (-705)) 85 (-3730 (-4012 (|has| |#2| (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $) 83 (-3730 (-4012 (|has| |#2| (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-585 (-1082)) (-585 (-705))) 93 (-3730 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|)))))) (($ $ (-1082) (-705)) 92 (-3730 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|)))))) (($ $ (-585 (-1082))) 91 (-3730 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|)))))) (($ $ (-1082)) 90 (-3730 (-4012 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))))) (-1586 (((-108) $ $) 254 (-4012 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-1569 (((-108) $ $) 255 (-4012 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 253 (-4012 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-1561 (((-108) $ $) 256 (-4012 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-1632 (($ $ |#1|) 58 (|has| |#1| (-335))) (($ $ $) 168 (|has| |#1| (-335))) (($ |#2| |#2|) 226 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 167 (|has| |#1| (-335))) (($ $ $) 144 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 115 (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-335))) (($ |#2| $) 204 (|has| |#1| (-335))) (($ (-379 (-519)) $) 56 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 55 (|has| |#1| (-37 (-379 (-519))))))) +(((-1125 |#1| |#2|) (-1194) (-968) (-1154 |t#1|)) (T -1125)) +((-4178 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1154 *3)) (-5 *2 (-519)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-968)) (-4 *1 (-1125 *3 *2)) (-4 *2 (-1154 *3)))) (-3120 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-4 *4 (-968)) (-4 *1 (-1125 *4 *3)) (-4 *3 (-1154 *4)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1154 *3)))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3)) (-4 *2 (-968)) (-4 *3 (-1154 *2)))) (-3768 (*1 *1 *2 *1) (-12 (-5 *2 (-519)) (-4 *1 (-1125 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1154 *3)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1154 *3)))) (-3789 (*1 *2 *1) (|partial| -12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1154 *3))))) +(-13 (-1123 |t#1|) (-959 |t#2|) (-10 -8 (-15 -3120 ($ (-519) |t#2|)) (-15 -4178 ((-519) $)) (-15 -1915 (|t#2| $)) (-15 -3768 ($ $)) (-15 -3768 ($ (-519) $)) (-15 -2217 ($ |t#2|)) (-15 -3110 (|t#2| $)) (-15 -3789 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-335)) (-6 (-916 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-519)) . T) ((-25) . T) ((-37 #1=(-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 |#2|) |has| |#1| (-335)) ((-37 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-34) |has| |#1| (-37 (-379 (-519)))) ((-91) |has| |#1| (-37 (-379 (-519)))) ((-97) . T) ((-107 #1# #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-335)) ((-107 $ $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-124) . T) ((-133) -3730 (-12 (|has| |#1| (-335)) (|has| |#2| (-133))) (|has| |#1| (-133))) ((-135) -3730 (-12 (|has| |#1| (-335)) (|has| |#2| (-135))) (|has| |#1| (-135))) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-560 (-201)) -12 (|has| |#1| (-335)) (|has| |#2| (-944))) ((-560 (-351)) -12 (|has| |#1| (-335)) (|has| |#2| (-944))) ((-560 (-495)) -12 (|has| |#1| (-335)) (|has| |#2| (-560 (-495)))) ((-560 (-819 (-351))) -12 (|has| |#1| (-335)) (|has| |#2| (-560 (-819 (-351))))) ((-560 (-819 (-519))) -12 (|has| |#1| (-335)) (|has| |#2| (-560 (-819 (-519))))) ((-207 |#2|) |has| |#1| (-335)) ((-209) -3730 (-12 (|has| |#1| (-335)) (|has| |#2| (-209))) (|has| |#1| (-15 * (|#1| (-519) |#1|)))) ((-219) |has| |#1| (-335)) ((-258) |has| |#1| (-37 (-379 (-519)))) ((-260 |#2| $) -12 (|has| |#1| (-335)) (|has| |#2| (-260 |#2| |#2|))) ((-260 $ $) |has| (-519) (-1023)) ((-264) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-280) |has| |#1| (-335)) ((-282 |#2|) -12 (|has| |#1| (-335)) (|has| |#2| (-282 |#2|))) ((-335) |has| |#1| (-335)) ((-310 |#2|) |has| |#1| (-335)) ((-349 |#2|) |has| |#1| (-335)) ((-372 |#2|) |has| |#1| (-335)) ((-423) |has| |#1| (-335)) ((-460) |has| |#1| (-37 (-379 (-519)))) ((-480 (-1082) |#2|) -12 (|has| |#1| (-335)) (|has| |#2| (-480 (-1082) |#2|))) ((-480 |#2| |#2|) -12 (|has| |#1| (-335)) (|has| |#2| (-282 |#2|))) ((-511) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-587 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-587 |#1|) . T) ((-587 |#2|) |has| |#1| (-335)) ((-587 $) . T) ((-581 (-519)) -12 (|has| |#1| (-335)) (|has| |#2| (-581 (-519)))) ((-581 |#2|) |has| |#1| (-335)) ((-652 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-652 |#1|) |has| |#1| (-157)) ((-652 |#2|) |has| |#1| (-335)) ((-652 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-661) . T) ((-725) -12 (|has| |#1| (-335)) (|has| |#2| (-755))) ((-726) -12 (|has| |#1| (-335)) (|has| |#2| (-755))) ((-728) -12 (|has| |#1| (-335)) (|has| |#2| (-755))) ((-730) -12 (|has| |#1| (-335)) (|has| |#2| (-755))) ((-755) -12 (|has| |#1| (-335)) (|has| |#2| (-755))) ((-780) -12 (|has| |#1| (-335)) (|has| |#2| (-755))) ((-782) -3730 (-12 (|has| |#1| (-335)) (|has| |#2| (-782))) (-12 (|has| |#1| (-335)) (|has| |#2| (-755)))) ((-827 (-1082)) -3730 (-12 (|has| |#1| (-335)) (|has| |#2| (-827 (-1082)))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))) ((-813 (-351)) -12 (|has| |#1| (-335)) (|has| |#2| (-813 (-351)))) ((-813 (-519)) -12 (|has| |#1| (-335)) (|has| |#2| (-813 (-519)))) ((-811 |#2|) |has| |#1| (-335)) ((-836) -12 (|has| |#1| (-335)) (|has| |#2| (-836))) ((-897 |#1| #0# (-996)) . T) ((-847) |has| |#1| (-335)) ((-916 |#2|) |has| |#1| (-335)) ((-925) |has| |#1| (-37 (-379 (-519)))) ((-944) -12 (|has| |#1| (-335)) (|has| |#2| (-944))) ((-959 (-379 (-519))) -12 (|has| |#1| (-335)) (|has| |#2| (-959 (-519)))) ((-959 (-519)) -12 (|has| |#1| (-335)) (|has| |#2| (-959 (-519)))) ((-959 (-1082)) -12 (|has| |#1| (-335)) (|has| |#2| (-959 (-1082)))) ((-959 |#2|) . T) ((-974 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-974 |#1|) . T) ((-974 |#2|) |has| |#1| (-335)) ((-974 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1058) -12 (|has| |#1| (-335)) (|has| |#2| (-1058))) ((-1103) |has| |#1| (-37 (-379 (-519)))) ((-1106) |has| |#1| (-37 (-379 (-519)))) ((-1117) |has| |#1| (-335)) ((-1121) |has| |#1| (-335)) ((-1123 |#1|) . T) ((-1141 |#1| #0#) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 70)) (-2157 ((|#2| $) NIL (-12 (|has| |#2| (-280)) (|has| |#1| (-335))))) (-4083 (((-585 (-996)) $) NIL)) (-1622 (((-1082) $) 88)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-4057 (($ $ (-519)) 97) (($ $ (-519) (-519)) 99)) (-3088 (((-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) $) 47)) (-1915 ((|#2| $) 11)) (-3789 (((-3 |#2| "failed") $) 30)) (-3110 ((|#2| $) 31)) (-2958 (($ $) 192 (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) 168 (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-335))))) (-4043 (($ $) NIL (|has| |#1| (-335)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-335))))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-2934 (($ $) 188 (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) 164 (|has| |#1| (-37 (-379 (-519)))))) (-2287 (((-519) $) NIL (-12 (|has| |#2| (-755)) (|has| |#1| (-335))))) (-2824 (($ (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|)))) 57)) (-2981 (($ $) 196 (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) 172 (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#2| "failed") $) 144) (((-3 (-519) "failed") $) NIL (-12 (|has| |#2| (-959 (-519))) (|has| |#1| (-335)))) (((-3 (-379 (-519)) "failed") $) NIL (-12 (|has| |#2| (-959 (-519))) (|has| |#1| (-335)))) (((-3 (-1082) "failed") $) NIL (-12 (|has| |#2| (-959 (-1082))) (|has| |#1| (-335))))) (-1499 ((|#2| $) 143) (((-519) $) NIL (-12 (|has| |#2| (-959 (-519))) (|has| |#1| (-335)))) (((-379 (-519)) $) NIL (-12 (|has| |#2| (-959 (-519))) (|has| |#1| (-335)))) (((-1082) $) NIL (-12 (|has| |#2| (-959 (-1082))) (|has| |#1| (-335))))) (-3768 (($ $) 61) (($ (-519) $) 24)) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) NIL)) (-1562 (((-625 |#2|) (-625 $)) NIL (|has| |#1| (-335))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL (|has| |#1| (-335))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (-12 (|has| |#2| (-581 (-519))) (|has| |#1| (-335)))) (((-625 (-519)) (-625 $)) NIL (-12 (|has| |#2| (-581 (-519))) (|has| |#1| (-335))))) (-4193 (((-3 $ "failed") $) 77)) (-2893 (((-379 (-879 |#1|)) $ (-519)) 112 (|has| |#1| (-511))) (((-379 (-879 |#1|)) $ (-519) (-519)) 114 (|has| |#1| (-511)))) (-3314 (($) NIL (-12 (|has| |#2| (-504)) (|has| |#1| (-335))))) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-1320 (((-108) $) NIL (|has| |#1| (-335)))) (-3419 (((-108) $) NIL (-12 (|has| |#2| (-755)) (|has| |#1| (-335))))) (-3943 (((-108) $) 64)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| |#2| (-813 (-351))) (|has| |#1| (-335)))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| |#2| (-813 (-519))) (|has| |#1| (-335))))) (-3709 (((-519) $) 93) (((-519) $ (-519)) 95)) (-1568 (((-108) $) NIL)) (-1534 (($ $) NIL (|has| |#1| (-335)))) (-2855 ((|#2| $) 151 (|has| |#1| (-335)))) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1675 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1058)) (|has| |#1| (-335))))) (-2143 (((-108) $) NIL (-12 (|has| |#2| (-755)) (|has| |#1| (-335))))) (-1855 (($ $ (-848)) 136)) (-2221 (($ (-1 |#1| (-519)) $) 132)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-519)) 19) (($ $ (-996) (-519)) NIL) (($ $ (-585 (-996)) (-585 (-519))) NIL)) (-2864 (($ $ $) NIL (-12 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-2489 (($ $ $) NIL (-12 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-1405 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-335)))) (-1254 (($ $) 162 (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-3120 (($ (-519) |#2|) 10)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 145 (|has| |#1| (-335)))) (-4142 (($ $) 214 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) 219 (-3730 (-12 (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-885)) (|has| |#1| (-1103)))))) (-3816 (($) NIL (-12 (|has| |#2| (-1058)) (|has| |#1| (-335))) CONST)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-335)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-3326 (($ $) NIL (-12 (|has| |#2| (-280)) (|has| |#1| (-335))))) (-1525 ((|#2| $) NIL (-12 (|has| |#2| (-504)) (|has| |#1| (-335))))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-335))))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-335))))) (-1921 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-3881 (($ $ (-519)) 126)) (-2261 (((-3 $ "failed") $ $) 116 (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-3325 (($ $) 160 (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-519))))) (($ $ (-1082) |#2|) NIL (-12 (|has| |#2| (-480 (-1082) |#2|)) (|has| |#1| (-335)))) (($ $ (-585 (-1082)) (-585 |#2|)) NIL (-12 (|has| |#2| (-480 (-1082) |#2|)) (|has| |#1| (-335)))) (($ $ (-585 (-267 |#2|))) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#1| (-335)))) (($ $ (-267 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#1| (-335)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#1| (-335)))) (($ $ (-585 |#2|) (-585 |#2|)) NIL (-12 (|has| |#2| (-282 |#2|)) (|has| |#1| (-335))))) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-2598 ((|#1| $ (-519)) 91) (($ $ $) 79 (|has| (-519) (-1023))) (($ $ |#2|) NIL (-12 (|has| |#2| (-260 |#2| |#2|)) (|has| |#1| (-335))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-2181 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-335))) (($ $ (-1 |#2| |#2|) (-705)) NIL (|has| |#1| (-335))) (($ $ (-705)) NIL (-3730 (-12 (|has| |#2| (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $) 137 (-3730 (-12 (|has| |#2| (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-3730 (-12 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082) (-705)) NIL (-3730 (-12 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-585 (-1082))) NIL (-3730 (-12 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082)) 140 (-3730 (-12 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))))) (-2724 (($ $) NIL (|has| |#1| (-335)))) (-2866 ((|#2| $) 152 (|has| |#1| (-335)))) (-4178 (((-519) $) 12)) (-1754 (($ $) 198 (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) 174 (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) 194 (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) 170 (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) 190 (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) 166 (|has| |#1| (-37 (-379 (-519)))))) (-1446 (((-201) $) NIL (-12 (|has| |#2| (-944)) (|has| |#1| (-335)))) (((-351) $) NIL (-12 (|has| |#2| (-944)) (|has| |#1| (-335)))) (((-495) $) NIL (-12 (|has| |#2| (-560 (-495))) (|has| |#1| (-335)))) (((-819 (-351)) $) NIL (-12 (|has| |#2| (-560 (-819 (-351)))) (|has| |#1| (-335)))) (((-819 (-519)) $) NIL (-12 (|has| |#2| (-560 (-819 (-519)))) (|has| |#1| (-335))))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-836)) (|has| |#1| (-335))))) (-1508 (($ $) 124)) (-2217 (((-790) $) 243) (($ (-519)) 23) (($ |#1|) 21 (|has| |#1| (-157))) (($ |#2|) 20) (($ (-1082)) NIL (-12 (|has| |#2| (-959 (-1082))) (|has| |#1| (-335)))) (($ (-379 (-519))) 155 (|has| |#1| (-37 (-379 (-519))))) (($ $) NIL (|has| |#1| (-511)))) (-1220 ((|#1| $ (-519)) 74)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#2| (-836)) (|has| |#1| (-335))) (-12 (|has| |#2| (-133)) (|has| |#1| (-335))) (|has| |#1| (-133))))) (-3594 (((-705)) 142)) (-1896 ((|#1| $) 90)) (-3617 ((|#2| $) NIL (-12 (|has| |#2| (-504)) (|has| |#1| (-335))))) (-1774 (($ $) 204 (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) 180 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1761 (($ $) 200 (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) 176 (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) 208 (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) 184 (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-519)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-519)))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) 210 (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) 186 (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) 206 (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) 182 (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) 202 (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) 178 (|has| |#1| (-37 (-379 (-519)))))) (-1478 (($ $) NIL (-12 (|has| |#2| (-755)) (|has| |#1| (-335))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (-3602 (($) 13 T CONST)) (-3611 (($) 17 T CONST)) (-2242 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-335))) (($ $ (-1 |#2| |#2|) (-705)) NIL (|has| |#1| (-335))) (($ $ (-705)) NIL (-3730 (-12 (|has| |#2| (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $) NIL (-3730 (-12 (|has| |#2| (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-3730 (-12 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082) (-705)) NIL (-3730 (-12 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-585 (-1082))) NIL (-3730 (-12 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082)) NIL (-3730 (-12 (|has| |#2| (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))))) (-1586 (((-108) $ $) NIL (-12 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-1569 (((-108) $ $) NIL (-12 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-1543 (((-108) $ $) 63)) (-1578 (((-108) $ $) NIL (-12 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-1561 (((-108) $ $) NIL (-12 (|has| |#2| (-782)) (|has| |#1| (-335))))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335))) (($ $ $) 149 (|has| |#1| (-335))) (($ |#2| |#2|) 150 (|has| |#1| (-335)))) (-1623 (($ $) 213) (($ $ $) 68)) (-1614 (($ $ $) 66)) (** (($ $ (-848)) NIL) (($ $ (-705)) 73) (($ $ (-519)) 146 (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 158 (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-335))) (($ |#2| $) 147 (|has| |#1| (-335))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-1126 |#1| |#2|) (-1125 |#1| |#2|) (-968) (-1154 |#1|)) (T -1126)) +NIL +(-1125 |#1| |#2|) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-2157 (((-1155 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-280)) (|has| |#1| (-335))))) (-4083 (((-585 (-996)) $) NIL)) (-1622 (((-1082) $) 10)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511))))) (-1410 (($ $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511))))) (-3060 (((-108) $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511))))) (-4057 (($ $ (-519)) NIL) (($ $ (-519) (-519)) NIL)) (-3088 (((-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|))) $) NIL)) (-1915 (((-1155 |#1| |#2| |#3|) $) NIL)) (-3789 (((-3 (-1155 |#1| |#2| |#3|) "failed") $) NIL)) (-3110 (((-1155 |#1| |#2| |#3|) $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))))) (-4043 (($ $) NIL (|has| |#1| (-335)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-2934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2287 (((-519) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))))) (-2824 (($ (-1063 (-2 (|:| |k| (-519)) (|:| |c| |#1|)))) NIL)) (-2981 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-1155 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1082) "failed") $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-959 (-1082))) (|has| |#1| (-335)))) (((-3 (-379 (-519)) "failed") $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-959 (-519))) (|has| |#1| (-335)))) (((-3 (-519) "failed") $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-959 (-519))) (|has| |#1| (-335))))) (-1499 (((-1155 |#1| |#2| |#3|) $) NIL) (((-1082) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-959 (-1082))) (|has| |#1| (-335)))) (((-379 (-519)) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-959 (-519))) (|has| |#1| (-335)))) (((-519) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-959 (-519))) (|has| |#1| (-335))))) (-3768 (($ $) NIL) (($ (-519) $) NIL)) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) NIL)) (-1562 (((-625 (-1155 |#1| |#2| |#3|)) (-625 $)) NIL (|has| |#1| (-335))) (((-2 (|:| -2488 (-625 (-1155 |#1| |#2| |#3|))) (|:| |vec| (-1163 (-1155 |#1| |#2| |#3|)))) (-625 $) (-1163 $)) NIL (|has| |#1| (-335))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-581 (-519))) (|has| |#1| (-335)))) (((-625 (-519)) (-625 $)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-581 (-519))) (|has| |#1| (-335))))) (-4193 (((-3 $ "failed") $) NIL)) (-2893 (((-379 (-879 |#1|)) $ (-519)) NIL (|has| |#1| (-511))) (((-379 (-879 |#1|)) $ (-519) (-519)) NIL (|has| |#1| (-511)))) (-3314 (($) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-504)) (|has| |#1| (-335))))) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-1320 (((-108) $) NIL (|has| |#1| (-335)))) (-3419 (((-108) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))))) (-3943 (((-108) $) NIL)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-4068 (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-813 (-519))) (|has| |#1| (-335)))) (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-813 (-351))) (|has| |#1| (-335))))) (-3709 (((-519) $) NIL) (((-519) $ (-519)) NIL)) (-1568 (((-108) $) NIL)) (-1534 (($ $) NIL (|has| |#1| (-335)))) (-2855 (((-1155 |#1| |#2| |#3|) $) NIL (|has| |#1| (-335)))) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1675 (((-3 $ "failed") $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-1058)) (|has| |#1| (-335))))) (-2143 (((-108) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))))) (-1855 (($ $ (-848)) NIL)) (-2221 (($ (-1 |#1| (-519)) $) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-519)) 17) (($ $ (-996) (-519)) NIL) (($ $ (-585 (-996)) (-585 (-519))) NIL)) (-2864 (($ $ $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-2489 (($ $ $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-335)))) (-1254 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-3120 (($ (-519) (-1155 |#1| |#2| |#3|)) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL (|has| |#1| (-335)))) (-4142 (($ $) 25 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) NIL (-3730 (-12 (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-885)) (|has| |#1| (-1103))))) (($ $ (-1159 |#2|)) 26 (|has| |#1| (-37 (-379 (-519)))))) (-3816 (($) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-1058)) (|has| |#1| (-335))) CONST)) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-335)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-3326 (($ $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-280)) (|has| |#1| (-335))))) (-1525 (((-1155 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-504)) (|has| |#1| (-335))))) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))))) (-1921 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-3881 (($ $ (-519)) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511))))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-3325 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-519))))) (($ $ (-1082) (-1155 |#1| |#2| |#3|)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-480 (-1082) (-1155 |#1| |#2| |#3|))) (|has| |#1| (-335)))) (($ $ (-585 (-1082)) (-585 (-1155 |#1| |#2| |#3|))) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-480 (-1082) (-1155 |#1| |#2| |#3|))) (|has| |#1| (-335)))) (($ $ (-585 (-267 (-1155 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-282 (-1155 |#1| |#2| |#3|))) (|has| |#1| (-335)))) (($ $ (-267 (-1155 |#1| |#2| |#3|))) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-282 (-1155 |#1| |#2| |#3|))) (|has| |#1| (-335)))) (($ $ (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-282 (-1155 |#1| |#2| |#3|))) (|has| |#1| (-335)))) (($ $ (-585 (-1155 |#1| |#2| |#3|)) (-585 (-1155 |#1| |#2| |#3|))) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-282 (-1155 |#1| |#2| |#3|))) (|has| |#1| (-335))))) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-2598 ((|#1| $ (-519)) NIL) (($ $ $) NIL (|has| (-519) (-1023))) (($ $ (-1155 |#1| |#2| |#3|)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-260 (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|))) (|has| |#1| (-335))))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-2181 (($ $ (-1 (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|))) NIL (|has| |#1| (-335))) (($ $ (-1 (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|)) (-705)) NIL (|has| |#1| (-335))) (($ $ (-1159 |#2|)) 24) (($ $ (-705)) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $) 23 (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082) (-705)) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-585 (-1082))) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082)) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))))) (-2724 (($ $) NIL (|has| |#1| (-335)))) (-2866 (((-1155 |#1| |#2| |#3|) $) NIL (|has| |#1| (-335)))) (-4178 (((-519) $) NIL)) (-1754 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1446 (((-495) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-560 (-495))) (|has| |#1| (-335)))) (((-351) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-944)) (|has| |#1| (-335)))) (((-201) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-944)) (|has| |#1| (-335)))) (((-819 (-351)) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-560 (-819 (-351)))) (|has| |#1| (-335)))) (((-819 (-519)) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-560 (-819 (-519)))) (|has| |#1| (-335))))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))))) (-1508 (($ $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1155 |#1| |#2| |#3|)) NIL) (($ (-1159 |#2|)) 22) (($ (-1082)) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-959 (-1082))) (|has| |#1| (-335)))) (($ $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511)))) (($ (-379 (-519))) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-959 (-519))) (|has| |#1| (-335))) (|has| |#1| (-37 (-379 (-519))))))) (-1220 ((|#1| $ (-519)) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-133)) (|has| |#1| (-335))) (|has| |#1| (-133))))) (-3594 (((-705)) NIL)) (-1896 ((|#1| $) 11)) (-3617 (((-1155 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-504)) (|has| |#1| (-335))))) (-1774 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-836)) (|has| |#1| (-335))) (|has| |#1| (-511))))) (-1761 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-519)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-519)))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1478 (($ $) NIL (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (-3602 (($) 19 T CONST)) (-3611 (($) 15 T CONST)) (-2242 (($ $ (-1 (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|))) NIL (|has| |#1| (-335))) (($ $ (-1 (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|)) (-705)) NIL (|has| |#1| (-335))) (($ $ (-705)) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-209)) (|has| |#1| (-335))) (|has| |#1| (-15 * (|#1| (-519) |#1|))))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082) (-705)) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-585 (-1082))) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082)))))) (($ $ (-1082)) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-827 (-1082))) (|has| |#1| (-335))) (-12 (|has| |#1| (-15 * (|#1| (-519) |#1|))) (|has| |#1| (-827 (-1082))))))) (-1586 (((-108) $ $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-1569 (((-108) $ $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-1561 (((-108) $ $) NIL (-3730 (-12 (|has| (-1155 |#1| |#2| |#3|) (-755)) (|has| |#1| (-335))) (-12 (|has| (-1155 |#1| |#2| |#3|) (-782)) (|has| |#1| (-335)))))) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335))) (($ (-1155 |#1| |#2| |#3|) (-1155 |#1| |#2| |#3|)) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 20)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1155 |#1| |#2| |#3|)) NIL (|has| |#1| (-335))) (($ (-1155 |#1| |#2| |#3|) $) NIL (|has| |#1| (-335))) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-1127 |#1| |#2| |#3|) (-13 (-1125 |#1| (-1155 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) (-968) (-1082) |#1|) (T -1127)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1127 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1127 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1127 *3 *4 *5)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3)))) +(-13 (-1125 |#1| (-1155 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) +((-2020 (((-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519)))))) |#1| (-108)) 10)) (-2496 (((-390 |#1|) |#1|) 21)) (-1921 (((-390 |#1|) |#1|) 20))) +(((-1128 |#1|) (-10 -7 (-15 -1921 ((-390 |#1|) |#1|)) (-15 -2496 ((-390 |#1|) |#1|)) (-15 -2020 ((-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519)))))) |#1| (-108)))) (-1139 (-519))) (T -1128)) +((-2020 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| *3) (|:| -1258 (-519))))))) (-5 *1 (-1128 *3)) (-4 *3 (-1139 (-519))))) (-2496 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-1139 (-519))))) (-1921 (*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-1139 (-519)))))) +(-10 -7 (-15 -1921 ((-390 |#1|) |#1|)) (-15 -2496 ((-390 |#1|) |#1|)) (-15 -2020 ((-2 (|:| |contp| (-519)) (|:| -3433 (-585 (-2 (|:| |irr| |#1|) (|:| -1258 (-519)))))) |#1| (-108)))) +((-1405 (((-1063 |#2|) (-1 |#2| |#1|) (-1130 |#1|)) 23 (|has| |#1| (-780))) (((-1130 |#2|) (-1 |#2| |#1|) (-1130 |#1|)) 17))) +(((-1129 |#1| |#2|) (-10 -7 (-15 -1405 ((-1130 |#2|) (-1 |#2| |#1|) (-1130 |#1|))) (IF (|has| |#1| (-780)) (-15 -1405 ((-1063 |#2|) (-1 |#2| |#1|) (-1130 |#1|))) |%noBranch|)) (-1117) (-1117)) (T -1129)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5)) (-4 *5 (-780)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1063 *6)) (-5 *1 (-1129 *5 *6)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1130 *6)) (-5 *1 (-1129 *5 *6))))) +(-10 -7 (-15 -1405 ((-1130 |#2|) (-1 |#2| |#1|) (-1130 |#1|))) (IF (|has| |#1| (-780)) (-15 -1405 ((-1063 |#2|) (-1 |#2| |#1|) (-1130 |#1|))) |%noBranch|)) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1550 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1405 (((-1063 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-780)))) (-2966 ((|#1| $) 14)) (-1463 ((|#1| $) 10)) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1475 (((-519) $) 18)) (-2057 ((|#1| $) 17)) (-1486 ((|#1| $) 11)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2951 (((-108) $) 16)) (-1616 (((-1063 |#1|) $) 38 (|has| |#1| (-780))) (((-1063 |#1|) (-585 $)) 37 (|has| |#1| (-780)))) (-1446 (($ |#1|) 25)) (-2217 (($ (-1006 |#1|)) 24) (((-790) $) 34 (|has| |#1| (-1011)))) (-1686 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1356 (($ $ (-519)) 13)) (-1543 (((-108) $ $) 27 (|has| |#1| (-1011))))) +(((-1130 |#1|) (-13 (-1005 |#1|) (-10 -8 (-15 -1686 ($ |#1|)) (-15 -1550 ($ |#1|)) (-15 -2217 ($ (-1006 |#1|))) (-15 -2951 ((-108) $)) (IF (|has| |#1| (-1011)) (-6 (-1011)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-1007 |#1| (-1063 |#1|))) |%noBranch|))) (-1117)) (T -1130)) +((-1686 (*1 *1 *2) (-12 (-5 *1 (-1130 *2)) (-4 *2 (-1117)))) (-1550 (*1 *1 *2) (-12 (-5 *1 (-1130 *2)) (-4 *2 (-1117)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1006 *3)) (-4 *3 (-1117)) (-5 *1 (-1130 *3)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1130 *3)) (-4 *3 (-1117))))) +(-13 (-1005 |#1|) (-10 -8 (-15 -1686 ($ |#1|)) (-15 -1550 ($ |#1|)) (-15 -2217 ($ (-1006 |#1|))) (-15 -2951 ((-108) $)) (IF (|has| |#1| (-1011)) (-6 (-1011)) |%noBranch|) (IF (|has| |#1| (-780)) (-6 (-1007 |#1| (-1063 |#1|))) |%noBranch|))) +((-1405 (((-1136 |#3| |#4|) (-1 |#4| |#2|) (-1136 |#1| |#2|)) 15))) +(((-1131 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 ((-1136 |#3| |#4|) (-1 |#4| |#2|) (-1136 |#1| |#2|)))) (-1082) (-968) (-1082) (-968)) (T -1131)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1136 *5 *6)) (-14 *5 (-1082)) (-4 *6 (-968)) (-4 *8 (-968)) (-5 *2 (-1136 *7 *8)) (-5 *1 (-1131 *5 *6 *7 *8)) (-14 *7 (-1082))))) +(-10 -7 (-15 -1405 ((-1136 |#3| |#4|) (-1 |#4| |#2|) (-1136 |#1| |#2|)))) +((-2107 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3770 ((|#1| |#3|) 13)) (-2307 ((|#3| |#3|) 19))) +(((-1132 |#1| |#2| |#3|) (-10 -7 (-15 -3770 (|#1| |#3|)) (-15 -2307 (|#3| |#3|)) (-15 -2107 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-511) (-916 |#1|) (-1139 |#2|)) (T -1132)) +((-2107 (*1 *2 *3) (-12 (-4 *4 (-511)) (-4 *5 (-916 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1132 *4 *5 *3)) (-4 *3 (-1139 *5)))) (-2307 (*1 *2 *2) (-12 (-4 *3 (-511)) (-4 *4 (-916 *3)) (-5 *1 (-1132 *3 *4 *2)) (-4 *2 (-1139 *4)))) (-3770 (*1 *2 *3) (-12 (-4 *4 (-916 *2)) (-4 *2 (-511)) (-5 *1 (-1132 *2 *4 *3)) (-4 *3 (-1139 *4))))) +(-10 -7 (-15 -3770 (|#1| |#3|)) (-15 -2307 (|#3| |#3|)) (-15 -2107 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3924 (((-3 |#2| "failed") |#2| (-705) |#1|) 29)) (-3006 (((-3 |#2| "failed") |#2| (-705)) 30)) (-3436 (((-3 (-2 (|:| -1917 |#2|) (|:| -1931 |#2|)) "failed") |#2|) 43)) (-1729 (((-585 |#2|) |#2|) 45)) (-2251 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1133 |#1| |#2|) (-10 -7 (-15 -3006 ((-3 |#2| "failed") |#2| (-705))) (-15 -3924 ((-3 |#2| "failed") |#2| (-705) |#1|)) (-15 -2251 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3436 ((-3 (-2 (|:| -1917 |#2|) (|:| -1931 |#2|)) "failed") |#2|)) (-15 -1729 ((-585 |#2|) |#2|))) (-13 (-511) (-135)) (-1139 |#1|)) (T -1133)) +((-1729 (*1 *2 *3) (-12 (-4 *4 (-13 (-511) (-135))) (-5 *2 (-585 *3)) (-5 *1 (-1133 *4 *3)) (-4 *3 (-1139 *4)))) (-3436 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-511) (-135))) (-5 *2 (-2 (|:| -1917 *3) (|:| -1931 *3))) (-5 *1 (-1133 *4 *3)) (-4 *3 (-1139 *4)))) (-2251 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-511) (-135))) (-5 *1 (-1133 *3 *2)) (-4 *2 (-1139 *3)))) (-3924 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-705)) (-4 *4 (-13 (-511) (-135))) (-5 *1 (-1133 *4 *2)) (-4 *2 (-1139 *4)))) (-3006 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-705)) (-4 *4 (-13 (-511) (-135))) (-5 *1 (-1133 *4 *2)) (-4 *2 (-1139 *4))))) +(-10 -7 (-15 -3006 ((-3 |#2| "failed") |#2| (-705))) (-15 -3924 ((-3 |#2| "failed") |#2| (-705) |#1|)) (-15 -2251 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3436 ((-3 (-2 (|:| -1917 |#2|) (|:| -1931 |#2|)) "failed") |#2|)) (-15 -1729 ((-585 |#2|) |#2|))) +((-2982 (((-3 (-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) "failed") |#2| |#2|) 32))) +(((-1134 |#1| |#2|) (-10 -7 (-15 -2982 ((-3 (-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) "failed") |#2| |#2|))) (-511) (-1139 |#1|)) (T -1134)) +((-2982 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-511)) (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-1134 *4 *3)) (-4 *3 (-1139 *4))))) +(-10 -7 (-15 -2982 ((-3 (-2 (|:| -3573 |#2|) (|:| -1354 |#2|)) "failed") |#2| |#2|))) +((-3869 ((|#2| |#2| |#2|) 19)) (-1299 ((|#2| |#2| |#2|) 30)) (-3290 ((|#2| |#2| |#2| (-705) (-705)) 36))) +(((-1135 |#1| |#2|) (-10 -7 (-15 -3869 (|#2| |#2| |#2|)) (-15 -1299 (|#2| |#2| |#2|)) (-15 -3290 (|#2| |#2| |#2| (-705) (-705)))) (-968) (-1139 |#1|)) (T -1135)) +((-3290 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-705)) (-4 *4 (-968)) (-5 *1 (-1135 *4 *2)) (-4 *2 (-1139 *4)))) (-1299 (*1 *2 *2 *2) (-12 (-4 *3 (-968)) (-5 *1 (-1135 *3 *2)) (-4 *2 (-1139 *3)))) (-3869 (*1 *2 *2 *2) (-12 (-4 *3 (-968)) (-5 *1 (-1135 *3 *2)) (-4 *2 (-1139 *3))))) +(-10 -7 (-15 -3869 (|#2| |#2| |#2|)) (-15 -1299 (|#2| |#2| |#2|)) (-15 -3290 (|#2| |#2| |#2| (-705) (-705)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3500 (((-1163 |#2|) $ (-705)) NIL)) (-4083 (((-585 (-996)) $) NIL)) (-4100 (($ (-1078 |#2|)) NIL)) (-1283 (((-1078 $) $ (-996)) NIL) (((-1078 |#2|) $) NIL)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#2| (-511)))) (-1410 (($ $) NIL (|has| |#2| (-511)))) (-3060 (((-108) $) NIL (|has| |#2| (-511)))) (-1976 (((-705) $) NIL) (((-705) $ (-585 (-996))) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1218 (($ $ $) NIL (|has| |#2| (-511)))) (-1958 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-4043 (($ $) NIL (|has| |#2| (-423)))) (-3093 (((-390 $) $) NIL (|has| |#2| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-3409 (((-108) $ $) NIL (|has| |#2| (-335)))) (-1706 (($ $ (-705)) NIL)) (-3007 (($ $ (-705)) NIL)) (-2659 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-423)))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#2| "failed") $) NIL) (((-3 (-379 (-519)) "failed") $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) NIL (|has| |#2| (-959 (-519)))) (((-3 (-996) "failed") $) NIL)) (-1499 ((|#2| $) NIL) (((-379 (-519)) $) NIL (|has| |#2| (-959 (-379 (-519))))) (((-519) $) NIL (|has| |#2| (-959 (-519)))) (((-996) $) NIL)) (-1286 (($ $ $ (-996)) NIL (|has| |#2| (-157))) ((|#2| $ $) NIL (|has| |#2| (-157)))) (-2311 (($ $ $) NIL (|has| |#2| (-335)))) (-3218 (($ $) NIL)) (-1562 (((-625 (-519)) (-625 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) NIL (|has| |#2| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#2|)) (|:| |vec| (-1163 |#2|))) (-625 $) (-1163 $)) NIL) (((-625 |#2|) (-625 $)) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-2286 (($ $ $) NIL (|has| |#2| (-335)))) (-2229 (($ $ $) NIL)) (-3259 (($ $ $) NIL (|has| |#2| (-511)))) (-2964 (((-2 (|:| -3031 |#2|) (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#2| (-511)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#2| (-335)))) (-2177 (($ $) NIL (|has| |#2| (-423))) (($ $ (-996)) NIL (|has| |#2| (-423)))) (-3208 (((-585 $) $) NIL)) (-1320 (((-108) $) NIL (|has| |#2| (-836)))) (-4015 (($ $ |#2| (-705) $) NIL)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) NIL (-12 (|has| (-996) (-813 (-351))) (|has| |#2| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) NIL (-12 (|has| (-996) (-813 (-519))) (|has| |#2| (-813 (-519)))))) (-3709 (((-705) $ $) NIL (|has| |#2| (-511)))) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| |#2| (-1058)))) (-4066 (($ (-1078 |#2|) (-996)) NIL) (($ (-1078 $) (-996)) NIL)) (-1855 (($ $ (-705)) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#2| (-335)))) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-4042 (($ |#2| (-705)) 17) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-996)) NIL) (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL)) (-3695 (((-705) $) NIL) (((-705) $ (-996)) NIL) (((-585 (-705)) $ (-585 (-996))) NIL)) (-2864 (($ $ $) NIL (|has| |#2| (-782)))) (-2489 (($ $ $) NIL (|has| |#2| (-782)))) (-3737 (($ (-1 (-705) (-705)) $) NIL)) (-1405 (($ (-1 |#2| |#2|) $) NIL)) (-1270 (((-1078 |#2|) $) NIL)) (-2635 (((-3 (-996) "failed") $) NIL)) (-3185 (($ $) NIL)) (-3197 ((|#2| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#2| (-423))) (($ $ $) NIL (|has| |#2| (-423)))) (-1266 (((-1065) $) NIL)) (-1296 (((-2 (|:| -3573 $) (|:| -1354 $)) $ (-705)) NIL)) (-3499 (((-3 (-585 $) "failed") $) NIL)) (-2100 (((-3 (-585 $) "failed") $) NIL)) (-2669 (((-3 (-2 (|:| |var| (-996)) (|:| -1690 (-705))) "failed") $) NIL)) (-4142 (($ $) NIL (|has| |#2| (-37 (-379 (-519)))))) (-3816 (($) NIL (|has| |#2| (-1058)) CONST)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) NIL)) (-3173 ((|#2| $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#2| (-423)))) (-2292 (($ (-585 $)) NIL (|has| |#2| (-423))) (($ $ $) NIL (|has| |#2| (-423)))) (-1339 (($ $ (-705) |#2| $) NIL)) (-1863 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) NIL (|has| |#2| (-836)))) (-1921 (((-390 $) $) NIL (|has| |#2| (-836)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#2| (-335)))) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-511))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#2| (-335)))) (-2324 (($ $ (-585 (-267 $))) NIL) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-996) |#2|) NIL) (($ $ (-585 (-996)) (-585 |#2|)) NIL) (($ $ (-996) $) NIL) (($ $ (-585 (-996)) (-585 $)) NIL)) (-3129 (((-705) $) NIL (|has| |#2| (-335)))) (-2598 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-379 $) (-379 $) (-379 $)) NIL (|has| |#2| (-511))) ((|#2| (-379 $) |#2|) NIL (|has| |#2| (-335))) (((-379 $) $ (-379 $)) NIL (|has| |#2| (-511)))) (-2340 (((-3 $ "failed") $ (-705)) NIL)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#2| (-335)))) (-3677 (($ $ (-996)) NIL (|has| |#2| (-157))) ((|#2| $) NIL (|has| |#2| (-157)))) (-2181 (($ $ (-996)) NIL) (($ $ (-585 (-996))) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL) (($ $ (-705)) NIL) (($ $) NIL) (($ $ (-1082)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4178 (((-705) $) NIL) (((-705) $ (-996)) NIL) (((-585 (-705)) $ (-585 (-996))) NIL)) (-1446 (((-819 (-351)) $) NIL (-12 (|has| (-996) (-560 (-819 (-351)))) (|has| |#2| (-560 (-819 (-351)))))) (((-819 (-519)) $) NIL (-12 (|has| (-996) (-560 (-819 (-519)))) (|has| |#2| (-560 (-819 (-519)))))) (((-495) $) NIL (-12 (|has| (-996) (-560 (-495))) (|has| |#2| (-560 (-495)))))) (-3939 ((|#2| $) NIL (|has| |#2| (-423))) (($ $ (-996)) NIL (|has| |#2| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-836))))) (-2030 (((-3 $ "failed") $ $) NIL (|has| |#2| (-511))) (((-3 (-379 $) "failed") (-379 $) $) NIL (|has| |#2| (-511)))) (-2217 (((-790) $) 13) (($ (-519)) NIL) (($ |#2|) NIL) (($ (-996)) NIL) (($ (-1159 |#1|)) 19) (($ (-379 (-519))) NIL (-3730 (|has| |#2| (-37 (-379 (-519)))) (|has| |#2| (-959 (-379 (-519)))))) (($ $) NIL (|has| |#2| (-511)))) (-2988 (((-585 |#2|) $) NIL)) (-1220 ((|#2| $ (-705)) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL)) (-3773 (((-3 $ "failed") $) NIL (-3730 (-12 (|has| $ (-133)) (|has| |#2| (-836))) (|has| |#2| (-133))))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| |#2| (-157)))) (-1617 (((-108) $ $) NIL (|has| |#2| (-511)))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-3611 (($) 14 T CONST)) (-2242 (($ $ (-996)) NIL) (($ $ (-585 (-996))) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL) (($ $ (-705)) NIL) (($ $) NIL) (($ $ (-1082)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1082) (-705)) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) NIL (|has| |#2| (-827 (-1082)))) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1586 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1543 (((-108) $ $) NIL)) (-1578 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#2| (-782)))) (-1632 (($ $ |#2|) NIL (|has| |#2| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-379 (-519))) NIL (|has| |#2| (-37 (-379 (-519))))) (($ (-379 (-519)) $) NIL (|has| |#2| (-37 (-379 (-519))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1136 |#1| |#2|) (-13 (-1139 |#2|) (-10 -8 (-15 -2217 ($ (-1159 |#1|))) (-15 -1339 ($ $ (-705) |#2| $)))) (-1082) (-968)) (T -1136)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1159 *3)) (-14 *3 (-1082)) (-5 *1 (-1136 *3 *4)) (-4 *4 (-968)))) (-1339 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-705)) (-5 *1 (-1136 *4 *3)) (-14 *4 (-1082)) (-4 *3 (-968))))) +(-13 (-1139 |#2|) (-10 -8 (-15 -2217 ($ (-1159 |#1|))) (-15 -1339 ($ $ (-705) |#2| $)))) +((-1405 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-1137 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 (|#4| (-1 |#3| |#1|) |#2|))) (-968) (-1139 |#1|) (-968) (-1139 |#3|)) (T -1137)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-968)) (-4 *6 (-968)) (-4 *2 (-1139 *6)) (-5 *1 (-1137 *5 *4 *6 *2)) (-4 *4 (-1139 *5))))) +(-10 -7 (-15 -1405 (|#4| (-1 |#3| |#1|) |#2|))) +((-3500 (((-1163 |#2|) $ (-705)) 113)) (-4083 (((-585 (-996)) $) 15)) (-4100 (($ (-1078 |#2|)) 66)) (-1976 (((-705) $) NIL) (((-705) $ (-585 (-996))) 18)) (-1958 (((-390 (-1078 $)) (-1078 $)) 184)) (-4043 (($ $) 174)) (-3093 (((-390 $) $) 172)) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 81)) (-1706 (($ $ (-705)) 70)) (-3007 (($ $ (-705)) 72)) (-2659 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1301 (((-3 |#2| "failed") $) 116) (((-3 (-379 (-519)) "failed") $) NIL) (((-3 (-519) "failed") $) NIL) (((-3 (-996) "failed") $) NIL)) (-1499 ((|#2| $) 114) (((-379 (-519)) $) NIL) (((-519) $) NIL) (((-996) $) NIL)) (-3259 (($ $ $) 150)) (-2964 (((-2 (|:| -3031 |#2|) (|:| -3573 $) (|:| -1354 $)) $ $) 152)) (-3709 (((-705) $ $) 169)) (-1675 (((-3 $ "failed") $) 122)) (-4042 (($ |#2| (-705)) NIL) (($ $ (-996) (-705)) 46) (($ $ (-585 (-996)) (-585 (-705))) NIL)) (-3695 (((-705) $) NIL) (((-705) $ (-996)) 41) (((-585 (-705)) $ (-585 (-996))) 42)) (-1270 (((-1078 |#2|) $) 58)) (-2635 (((-3 (-996) "failed") $) 39)) (-1296 (((-2 (|:| -3573 $) (|:| -1354 $)) $ (-705)) 69)) (-4142 (($ $) 195)) (-3816 (($) 118)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 181)) (-1863 (((-390 (-1078 $)) (-1078 $)) 87)) (-3966 (((-390 (-1078 $)) (-1078 $)) 85)) (-1921 (((-390 $) $) 105)) (-2324 (($ $ (-585 (-267 $))) 38) (($ $ (-267 $)) NIL) (($ $ $ $) NIL) (($ $ (-585 $) (-585 $)) NIL) (($ $ (-996) |#2|) 31) (($ $ (-585 (-996)) (-585 |#2|)) 28) (($ $ (-996) $) 25) (($ $ (-585 (-996)) (-585 $)) 23)) (-3129 (((-705) $) 187)) (-2598 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-379 $) (-379 $) (-379 $)) 146) ((|#2| (-379 $) |#2|) 186) (((-379 $) $ (-379 $)) 168)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 190)) (-2181 (($ $ (-996)) 139) (($ $ (-585 (-996))) NIL) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL) (($ $ (-705)) NIL) (($ $) 137) (($ $ (-1082)) NIL) (($ $ (-585 (-1082))) NIL) (($ $ (-1082) (-705)) NIL) (($ $ (-585 (-1082)) (-585 (-705))) NIL) (($ $ (-1 |#2| |#2|) (-705)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-4178 (((-705) $) NIL) (((-705) $ (-996)) 16) (((-585 (-705)) $ (-585 (-996))) 20)) (-3939 ((|#2| $) NIL) (($ $ (-996)) 124)) (-2030 (((-3 $ "failed") $ $) 160) (((-3 (-379 $) "failed") (-379 $) $) 156)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#2|) NIL) (($ (-996)) 50) (($ (-379 (-519))) NIL) (($ $) NIL))) +(((-1138 |#1| |#2|) (-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -1715 ((-1078 |#1|) (-1078 |#1|) (-1078 |#1|))) (-15 -3093 ((-390 |#1|) |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -3816 (|#1|)) (-15 -1675 ((-3 |#1| "failed") |#1|)) (-15 -2598 ((-379 |#1|) |#1| (-379 |#1|))) (-15 -3129 ((-705) |#1|)) (-15 -1745 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -4142 (|#1| |#1|)) (-15 -2598 (|#2| (-379 |#1|) |#2|)) (-15 -2659 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2964 ((-2 (|:| -3031 |#2|) (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -3259 (|#1| |#1| |#1|)) (-15 -2030 ((-3 (-379 |#1|) "failed") (-379 |#1|) |#1|)) (-15 -2030 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3709 ((-705) |#1| |#1|)) (-15 -2598 ((-379 |#1|) (-379 |#1|) (-379 |#1|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3007 (|#1| |#1| (-705))) (-15 -1706 (|#1| |#1| (-705))) (-15 -1296 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| (-705))) (-15 -4100 (|#1| (-1078 |#2|))) (-15 -1270 ((-1078 |#2|) |#1|)) (-15 -3500 ((-1163 |#2|) |#1| (-705))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2598 (|#1| |#1| |#1|)) (-15 -2598 (|#2| |#1| |#2|)) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -1958 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -3966 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -1863 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -2960 ((-3 (-585 (-1078 |#1|)) "failed") (-585 (-1078 |#1|)) (-1078 |#1|))) (-15 -3939 (|#1| |#1| (-996))) (-15 -4083 ((-585 (-996)) |#1|)) (-15 -1976 ((-705) |#1| (-585 (-996)))) (-15 -1976 ((-705) |#1|)) (-15 -4042 (|#1| |#1| (-585 (-996)) (-585 (-705)))) (-15 -4042 (|#1| |#1| (-996) (-705))) (-15 -3695 ((-585 (-705)) |#1| (-585 (-996)))) (-15 -3695 ((-705) |#1| (-996))) (-15 -2635 ((-3 (-996) "failed") |#1|)) (-15 -4178 ((-585 (-705)) |#1| (-585 (-996)))) (-15 -4178 ((-705) |#1| (-996))) (-15 -1499 ((-996) |#1|)) (-15 -1301 ((-3 (-996) "failed") |#1|)) (-15 -2217 (|#1| (-996))) (-15 -2324 (|#1| |#1| (-585 (-996)) (-585 |#1|))) (-15 -2324 (|#1| |#1| (-996) |#1|)) (-15 -2324 (|#1| |#1| (-585 (-996)) (-585 |#2|))) (-15 -2324 (|#1| |#1| (-996) |#2|)) (-15 -2324 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| (-267 |#1|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -4178 ((-705) |#1|)) (-15 -4042 (|#1| |#2| (-705))) (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -3695 ((-705) |#1|)) (-15 -3939 (|#2| |#1|)) (-15 -2181 (|#1| |#1| (-585 (-996)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-996) (-705))) (-15 -2181 (|#1| |#1| (-585 (-996)))) (-15 -2181 (|#1| |#1| (-996))) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) (-1139 |#2|) (-968)) (T -1138)) +NIL +(-10 -8 (-15 -2217 (|#1| |#1|)) (-15 -1715 ((-1078 |#1|) (-1078 |#1|) (-1078 |#1|))) (-15 -3093 ((-390 |#1|) |#1|)) (-15 -4043 (|#1| |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -3816 (|#1|)) (-15 -1675 ((-3 |#1| "failed") |#1|)) (-15 -2598 ((-379 |#1|) |#1| (-379 |#1|))) (-15 -3129 ((-705) |#1|)) (-15 -1745 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -4142 (|#1| |#1|)) (-15 -2598 (|#2| (-379 |#1|) |#2|)) (-15 -2659 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2964 ((-2 (|:| -3031 |#2|) (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| |#1|)) (-15 -3259 (|#1| |#1| |#1|)) (-15 -2030 ((-3 (-379 |#1|) "failed") (-379 |#1|) |#1|)) (-15 -2030 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3709 ((-705) |#1| |#1|)) (-15 -2598 ((-379 |#1|) (-379 |#1|) (-379 |#1|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3007 (|#1| |#1| (-705))) (-15 -1706 (|#1| |#1| (-705))) (-15 -1296 ((-2 (|:| -3573 |#1|) (|:| -1354 |#1|)) |#1| (-705))) (-15 -4100 (|#1| (-1078 |#2|))) (-15 -1270 ((-1078 |#2|) |#1|)) (-15 -3500 ((-1163 |#2|) |#1| (-705))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2181 (|#1| |#1| (-1 |#2| |#2|) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-1082) (-705))) (-15 -2181 (|#1| |#1| (-585 (-1082)))) (-15 -2181 (|#1| |#1| (-1082))) (-15 -2181 (|#1| |#1|)) (-15 -2181 (|#1| |#1| (-705))) (-15 -2598 (|#1| |#1| |#1|)) (-15 -2598 (|#2| |#1| |#2|)) (-15 -1921 ((-390 |#1|) |#1|)) (-15 -1958 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -3966 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -1863 ((-390 (-1078 |#1|)) (-1078 |#1|))) (-15 -2960 ((-3 (-585 (-1078 |#1|)) "failed") (-585 (-1078 |#1|)) (-1078 |#1|))) (-15 -3939 (|#1| |#1| (-996))) (-15 -4083 ((-585 (-996)) |#1|)) (-15 -1976 ((-705) |#1| (-585 (-996)))) (-15 -1976 ((-705) |#1|)) (-15 -4042 (|#1| |#1| (-585 (-996)) (-585 (-705)))) (-15 -4042 (|#1| |#1| (-996) (-705))) (-15 -3695 ((-585 (-705)) |#1| (-585 (-996)))) (-15 -3695 ((-705) |#1| (-996))) (-15 -2635 ((-3 (-996) "failed") |#1|)) (-15 -4178 ((-585 (-705)) |#1| (-585 (-996)))) (-15 -4178 ((-705) |#1| (-996))) (-15 -1499 ((-996) |#1|)) (-15 -1301 ((-3 (-996) "failed") |#1|)) (-15 -2217 (|#1| (-996))) (-15 -2324 (|#1| |#1| (-585 (-996)) (-585 |#1|))) (-15 -2324 (|#1| |#1| (-996) |#1|)) (-15 -2324 (|#1| |#1| (-585 (-996)) (-585 |#2|))) (-15 -2324 (|#1| |#1| (-996) |#2|)) (-15 -2324 (|#1| |#1| (-585 |#1|) (-585 |#1|))) (-15 -2324 (|#1| |#1| |#1| |#1|)) (-15 -2324 (|#1| |#1| (-267 |#1|))) (-15 -2324 (|#1| |#1| (-585 (-267 |#1|)))) (-15 -4178 ((-705) |#1|)) (-15 -4042 (|#1| |#2| (-705))) (-15 -1499 ((-519) |#1|)) (-15 -1301 ((-3 (-519) "failed") |#1|)) (-15 -1499 ((-379 (-519)) |#1|)) (-15 -1301 ((-3 (-379 (-519)) "failed") |#1|)) (-15 -2217 (|#1| |#2|)) (-15 -1301 ((-3 |#2| "failed") |#1|)) (-15 -1499 (|#2| |#1|)) (-15 -3695 ((-705) |#1|)) (-15 -3939 (|#2| |#1|)) (-15 -2181 (|#1| |#1| (-585 (-996)) (-585 (-705)))) (-15 -2181 (|#1| |#1| (-996) (-705))) (-15 -2181 (|#1| |#1| (-585 (-996)))) (-15 -2181 (|#1| |#1| (-996))) (-15 -2217 (|#1| (-519))) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3500 (((-1163 |#1|) $ (-705)) 238)) (-4083 (((-585 (-996)) $) 110)) (-4100 (($ (-1078 |#1|)) 236)) (-1283 (((-1078 $) $ (-996)) 125) (((-1078 |#1|) $) 124)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 87 (|has| |#1| (-511)))) (-1410 (($ $) 88 (|has| |#1| (-511)))) (-3060 (((-108) $) 90 (|has| |#1| (-511)))) (-1976 (((-705) $) 112) (((-705) $ (-585 (-996))) 111)) (-3167 (((-3 $ "failed") $ $) 19)) (-1218 (($ $ $) 223 (|has| |#1| (-511)))) (-1958 (((-390 (-1078 $)) (-1078 $)) 100 (|has| |#1| (-836)))) (-4043 (($ $) 98 (|has| |#1| (-423)))) (-3093 (((-390 $) $) 97 (|has| |#1| (-423)))) (-2960 (((-3 (-585 (-1078 $)) "failed") (-585 (-1078 $)) (-1078 $)) 103 (|has| |#1| (-836)))) (-3409 (((-108) $ $) 208 (|has| |#1| (-335)))) (-1706 (($ $ (-705)) 231)) (-3007 (($ $ (-705)) 230)) (-2659 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-423)))) (-2249 (($) 17 T CONST)) (-1301 (((-3 |#1| "failed") $) 164) (((-3 (-379 (-519)) "failed") $) 162 (|has| |#1| (-959 (-379 (-519))))) (((-3 (-519) "failed") $) 160 (|has| |#1| (-959 (-519)))) (((-3 (-996) "failed") $) 136)) (-1499 ((|#1| $) 165) (((-379 (-519)) $) 161 (|has| |#1| (-959 (-379 (-519))))) (((-519) $) 159 (|has| |#1| (-959 (-519)))) (((-996) $) 135)) (-1286 (($ $ $ (-996)) 108 (|has| |#1| (-157))) ((|#1| $ $) 226 (|has| |#1| (-157)))) (-2311 (($ $ $) 212 (|has| |#1| (-335)))) (-3218 (($ $) 154)) (-1562 (((-625 (-519)) (-625 $)) 134 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 (-519))) (|:| |vec| (-1163 (-519)))) (-625 $) (-1163 $)) 133 (|has| |#1| (-581 (-519)))) (((-2 (|:| -2488 (-625 |#1|)) (|:| |vec| (-1163 |#1|))) (-625 $) (-1163 $)) 132) (((-625 |#1|) (-625 $)) 131)) (-4193 (((-3 $ "failed") $) 34)) (-2286 (($ $ $) 211 (|has| |#1| (-335)))) (-2229 (($ $ $) 229)) (-3259 (($ $ $) 220 (|has| |#1| (-511)))) (-2964 (((-2 (|:| -3031 |#1|) (|:| -3573 $) (|:| -1354 $)) $ $) 219 (|has| |#1| (-511)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 206 (|has| |#1| (-335)))) (-2177 (($ $) 176 (|has| |#1| (-423))) (($ $ (-996)) 105 (|has| |#1| (-423)))) (-3208 (((-585 $) $) 109)) (-1320 (((-108) $) 96 (|has| |#1| (-836)))) (-4015 (($ $ |#1| (-705) $) 172)) (-4068 (((-816 (-351) $) $ (-819 (-351)) (-816 (-351) $)) 84 (-12 (|has| (-996) (-813 (-351))) (|has| |#1| (-813 (-351))))) (((-816 (-519) $) $ (-819 (-519)) (-816 (-519) $)) 83 (-12 (|has| (-996) (-813 (-519))) (|has| |#1| (-813 (-519)))))) (-3709 (((-705) $ $) 224 (|has| |#1| (-511)))) (-1568 (((-108) $) 31)) (-3798 (((-705) $) 169)) (-1675 (((-3 $ "failed") $) 204 (|has| |#1| (-1058)))) (-4066 (($ (-1078 |#1|) (-996)) 117) (($ (-1078 $) (-996)) 116)) (-1855 (($ $ (-705)) 235)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 215 (|has| |#1| (-335)))) (-2089 (((-585 $) $) 126)) (-2642 (((-108) $) 152)) (-4042 (($ |#1| (-705)) 153) (($ $ (-996) (-705)) 119) (($ $ (-585 (-996)) (-585 (-705))) 118)) (-4098 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $ (-996)) 120) (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 233)) (-3695 (((-705) $) 170) (((-705) $ (-996)) 122) (((-585 (-705)) $ (-585 (-996))) 121)) (-2864 (($ $ $) 79 (|has| |#1| (-782)))) (-2489 (($ $ $) 78 (|has| |#1| (-782)))) (-3737 (($ (-1 (-705) (-705)) $) 171)) (-1405 (($ (-1 |#1| |#1|) $) 151)) (-1270 (((-1078 |#1|) $) 237)) (-2635 (((-3 (-996) "failed") $) 123)) (-3185 (($ $) 149)) (-3197 ((|#1| $) 148)) (-2254 (($ (-585 $)) 94 (|has| |#1| (-423))) (($ $ $) 93 (|has| |#1| (-423)))) (-1266 (((-1065) $) 9)) (-1296 (((-2 (|:| -3573 $) (|:| -1354 $)) $ (-705)) 232)) (-3499 (((-3 (-585 $) "failed") $) 114)) (-2100 (((-3 (-585 $) "failed") $) 115)) (-2669 (((-3 (-2 (|:| |var| (-996)) (|:| -1690 (-705))) "failed") $) 113)) (-4142 (($ $) 216 (|has| |#1| (-37 (-379 (-519)))))) (-3816 (($) 203 (|has| |#1| (-1058)) CONST)) (-4139 (((-1029) $) 10)) (-3162 (((-108) $) 166)) (-3173 ((|#1| $) 167)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 95 (|has| |#1| (-423)))) (-2292 (($ (-585 $)) 92 (|has| |#1| (-423))) (($ $ $) 91 (|has| |#1| (-423)))) (-1863 (((-390 (-1078 $)) (-1078 $)) 102 (|has| |#1| (-836)))) (-3966 (((-390 (-1078 $)) (-1078 $)) 101 (|has| |#1| (-836)))) (-1921 (((-390 $) $) 99 (|has| |#1| (-836)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 213 (|has| |#1| (-335)))) (-2261 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-511))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 207 (|has| |#1| (-335)))) (-2324 (($ $ (-585 (-267 $))) 145) (($ $ (-267 $)) 144) (($ $ $ $) 143) (($ $ (-585 $) (-585 $)) 142) (($ $ (-996) |#1|) 141) (($ $ (-585 (-996)) (-585 |#1|)) 140) (($ $ (-996) $) 139) (($ $ (-585 (-996)) (-585 $)) 138)) (-3129 (((-705) $) 209 (|has| |#1| (-335)))) (-2598 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-379 $) (-379 $) (-379 $)) 225 (|has| |#1| (-511))) ((|#1| (-379 $) |#1|) 217 (|has| |#1| (-335))) (((-379 $) $ (-379 $)) 205 (|has| |#1| (-511)))) (-2340 (((-3 $ "failed") $ (-705)) 234)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 210 (|has| |#1| (-335)))) (-3677 (($ $ (-996)) 107 (|has| |#1| (-157))) ((|#1| $) 227 (|has| |#1| (-157)))) (-2181 (($ $ (-996)) 42) (($ $ (-585 (-996))) 41) (($ $ (-996) (-705)) 40) (($ $ (-585 (-996)) (-585 (-705))) 39) (($ $ (-705)) 253) (($ $) 251) (($ $ (-1082)) 250 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 249 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 248 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) 247 (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-4178 (((-705) $) 150) (((-705) $ (-996)) 130) (((-585 (-705)) $ (-585 (-996))) 129)) (-1446 (((-819 (-351)) $) 82 (-12 (|has| (-996) (-560 (-819 (-351)))) (|has| |#1| (-560 (-819 (-351)))))) (((-819 (-519)) $) 81 (-12 (|has| (-996) (-560 (-819 (-519)))) (|has| |#1| (-560 (-819 (-519)))))) (((-495) $) 80 (-12 (|has| (-996) (-560 (-495))) (|has| |#1| (-560 (-495)))))) (-3939 ((|#1| $) 175 (|has| |#1| (-423))) (($ $ (-996)) 106 (|has| |#1| (-423)))) (-1376 (((-3 (-1163 $) "failed") (-625 $)) 104 (-4012 (|has| $ (-133)) (|has| |#1| (-836))))) (-2030 (((-3 $ "failed") $ $) 222 (|has| |#1| (-511))) (((-3 (-379 $) "failed") (-379 $) $) 221 (|has| |#1| (-511)))) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 163) (($ (-996)) 137) (($ (-379 (-519))) 72 (-3730 (|has| |#1| (-959 (-379 (-519)))) (|has| |#1| (-37 (-379 (-519)))))) (($ $) 85 (|has| |#1| (-511)))) (-2988 (((-585 |#1|) $) 168)) (-1220 ((|#1| $ (-705)) 155) (($ $ (-996) (-705)) 128) (($ $ (-585 (-996)) (-585 (-705))) 127)) (-3773 (((-3 $ "failed") $) 73 (-3730 (-4012 (|has| $ (-133)) (|has| |#1| (-836))) (|has| |#1| (-133))))) (-3594 (((-705)) 29)) (-1487 (($ $ $ (-705)) 173 (|has| |#1| (-157)))) (-1617 (((-108) $ $) 89 (|has| |#1| (-511)))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-996)) 38) (($ $ (-585 (-996))) 37) (($ $ (-996) (-705)) 36) (($ $ (-585 (-996)) (-585 (-705))) 35) (($ $ (-705)) 254) (($ $) 252) (($ $ (-1082)) 246 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082))) 245 (|has| |#1| (-827 (-1082)))) (($ $ (-1082) (-705)) 244 (|has| |#1| (-827 (-1082)))) (($ $ (-585 (-1082)) (-585 (-705))) 243 (|has| |#1| (-827 (-1082)))) (($ $ (-1 |#1| |#1|) (-705)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1586 (((-108) $ $) 76 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 75 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 6)) (-1578 (((-108) $ $) 77 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 74 (|has| |#1| (-782)))) (-1632 (($ $ |#1|) 156 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 158 (|has| |#1| (-37 (-379 (-519))))) (($ (-379 (-519)) $) 157 (|has| |#1| (-37 (-379 (-519))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1139 |#1|) (-1194) (-968)) (T -1139)) +((-3500 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-4 *1 (-1139 *4)) (-4 *4 (-968)) (-5 *2 (-1163 *4)))) (-1270 (*1 *2 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-968)) (-5 *2 (-1078 *3)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-1078 *3)) (-4 *3 (-968)) (-4 *1 (-1139 *3)))) (-1855 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1139 *3)) (-4 *3 (-968)))) (-2340 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-705)) (-4 *1 (-1139 *3)) (-4 *3 (-968)))) (-4098 (*1 *2 *1 *1) (-12 (-4 *3 (-968)) (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-1139 *3)))) (-1296 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-4 *4 (-968)) (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-1139 *4)))) (-1706 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1139 *3)) (-4 *3 (-968)))) (-3007 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1139 *3)) (-4 *3 (-968)))) (-2229 (*1 *1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968)))) (-2181 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1139 *3)) (-4 *3 (-968)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-157)))) (-1286 (*1 *2 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-157)))) (-2598 (*1 *2 *2 *2) (-12 (-5 *2 (-379 *1)) (-4 *1 (-1139 *3)) (-4 *3 (-968)) (-4 *3 (-511)))) (-3709 (*1 *2 *1 *1) (-12 (-4 *1 (-1139 *3)) (-4 *3 (-968)) (-4 *3 (-511)) (-5 *2 (-705)))) (-1218 (*1 *1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-511)))) (-2030 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-511)))) (-2030 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-379 *1)) (-4 *1 (-1139 *3)) (-4 *3 (-968)) (-4 *3 (-511)))) (-3259 (*1 *1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-511)))) (-2964 (*1 *2 *1 *1) (-12 (-4 *3 (-511)) (-4 *3 (-968)) (-5 *2 (-2 (|:| -3031 *3) (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-1139 *3)))) (-2659 (*1 *2 *1 *1) (-12 (-4 *3 (-423)) (-4 *3 (-968)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1139 *3)))) (-2598 (*1 *2 *3 *2) (-12 (-5 *3 (-379 *1)) (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-4142 (*1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-37 (-379 (-519))))))) +(-13 (-876 |t#1| (-705) (-996)) (-260 |t#1| |t#1|) (-260 $ $) (-209) (-207 |t#1|) (-10 -8 (-15 -3500 ((-1163 |t#1|) $ (-705))) (-15 -1270 ((-1078 |t#1|) $)) (-15 -4100 ($ (-1078 |t#1|))) (-15 -1855 ($ $ (-705))) (-15 -2340 ((-3 $ "failed") $ (-705))) (-15 -4098 ((-2 (|:| -3573 $) (|:| -1354 $)) $ $)) (-15 -1296 ((-2 (|:| -3573 $) (|:| -1354 $)) $ (-705))) (-15 -1706 ($ $ (-705))) (-15 -3007 ($ $ (-705))) (-15 -2229 ($ $ $)) (-15 -2181 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1058)) (-6 (-1058)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -3677 (|t#1| $)) (-15 -1286 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-511)) (PROGN (-6 (-260 (-379 $) (-379 $))) (-15 -2598 ((-379 $) (-379 $) (-379 $))) (-15 -3709 ((-705) $ $)) (-15 -1218 ($ $ $)) (-15 -2030 ((-3 $ "failed") $ $)) (-15 -2030 ((-3 (-379 $) "failed") (-379 $) $)) (-15 -3259 ($ $ $)) (-15 -2964 ((-2 (|:| -3031 |t#1|) (|:| -3573 $) (|:| -1354 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-423)) (-15 -2659 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-335)) (PROGN (-6 (-280)) (-6 -4217) (-15 -2598 (|t#1| (-379 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-379 (-519)))) (-15 -4142 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-705)) . T) ((-25) . T) ((-37 #1=(-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-335))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-379 (-519)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-560 (-495)) -12 (|has| (-996) (-560 (-495))) (|has| |#1| (-560 (-495)))) ((-560 (-819 (-351))) -12 (|has| (-996) (-560 (-819 (-351)))) (|has| |#1| (-560 (-819 (-351))))) ((-560 (-819 (-519))) -12 (|has| (-996) (-560 (-819 (-519)))) (|has| |#1| (-560 (-819 (-519))))) ((-207 |#1|) . T) ((-209) . T) ((-260 (-379 $) (-379 $)) |has| |#1| (-511)) ((-260 |#1| |#1|) . T) ((-260 $ $) . T) ((-264) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-335))) ((-280) |has| |#1| (-335)) ((-282 $) . T) ((-298 |#1| #0#) . T) ((-349 |#1|) . T) ((-383 |#1|) . T) ((-423) -3730 (|has| |#1| (-836)) (|has| |#1| (-423)) (|has| |#1| (-335))) ((-480 #2=(-996) |#1|) . T) ((-480 #2# $) . T) ((-480 $ $) . T) ((-511) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-335))) ((-587 #1#) |has| |#1| (-37 (-379 (-519)))) ((-587 |#1|) . T) ((-587 $) . T) ((-581 (-519)) |has| |#1| (-581 (-519))) ((-581 |#1|) . T) ((-652 #1#) |has| |#1| (-37 (-379 (-519)))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-335))) ((-661) . T) ((-782) |has| |#1| (-782)) ((-827 #2#) . T) ((-827 (-1082)) |has| |#1| (-827 (-1082))) ((-813 (-351)) -12 (|has| (-996) (-813 (-351))) (|has| |#1| (-813 (-351)))) ((-813 (-519)) -12 (|has| (-996) (-813 (-519))) (|has| |#1| (-813 (-519)))) ((-876 |#1| #0# #2#) . T) ((-836) |has| |#1| (-836)) ((-847) |has| |#1| (-335)) ((-959 (-379 (-519))) |has| |#1| (-959 (-379 (-519)))) ((-959 (-519)) |has| |#1| (-959 (-519))) ((-959 #2#) . T) ((-959 |#1|) . T) ((-974 #1#) |has| |#1| (-37 (-379 (-519)))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-836)) (|has| |#1| (-511)) (|has| |#1| (-423)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1058) |has| |#1| (-1058)) ((-1121) |has| |#1| (-836))) +((-4083 (((-585 (-996)) $) 28)) (-3218 (($ $) 25)) (-4042 (($ |#2| |#3|) NIL) (($ $ (-996) |#3|) 22) (($ $ (-585 (-996)) (-585 |#3|)) 20)) (-3185 (($ $) 14)) (-3197 ((|#2| $) 12)) (-4178 ((|#3| $) 10))) +(((-1140 |#1| |#2| |#3|) (-10 -8 (-15 -4083 ((-585 (-996)) |#1|)) (-15 -4042 (|#1| |#1| (-585 (-996)) (-585 |#3|))) (-15 -4042 (|#1| |#1| (-996) |#3|)) (-15 -3218 (|#1| |#1|)) (-15 -4042 (|#1| |#2| |#3|)) (-15 -4178 (|#3| |#1|)) (-15 -3185 (|#1| |#1|)) (-15 -3197 (|#2| |#1|))) (-1141 |#2| |#3|) (-968) (-726)) (T -1140)) +NIL +(-10 -8 (-15 -4083 ((-585 (-996)) |#1|)) (-15 -4042 (|#1| |#1| (-585 (-996)) (-585 |#3|))) (-15 -4042 (|#1| |#1| (-996) |#3|)) (-15 -3218 (|#1| |#1|)) (-15 -4042 (|#1| |#2| |#3|)) (-15 -4178 (|#3| |#1|)) (-15 -3185 (|#1| |#1|)) (-15 -3197 (|#2| |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4083 (((-585 (-996)) $) 74)) (-1622 (((-1082) $) 103)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 51 (|has| |#1| (-511)))) (-1410 (($ $) 52 (|has| |#1| (-511)))) (-3060 (((-108) $) 54 (|has| |#1| (-511)))) (-4057 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-3088 (((-1063 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-3218 (($ $) 60)) (-4193 (((-3 $ "failed") $) 34)) (-3943 (((-108) $) 73)) (-3709 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-1568 (((-108) $) 31)) (-1855 (($ $ (-848)) 101)) (-2642 (((-108) $) 62)) (-4042 (($ |#1| |#2|) 61) (($ $ (-996) |#2|) 76) (($ $ (-585 (-996)) (-585 |#2|)) 75)) (-1405 (($ (-1 |#1| |#1|) $) 63)) (-3185 (($ $) 65)) (-3197 ((|#1| $) 66)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-3881 (($ $ |#2|) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-511)))) (-2324 (((-1063 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2598 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1023)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) 89 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1082) (-705)) 88 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-585 (-1082))) 87 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1082)) 86 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-705)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4178 ((|#2| $) 64)) (-1508 (($ $) 72)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ (-379 (-519))) 57 (|has| |#1| (-37 (-379 (-519))))) (($ $) 49 (|has| |#1| (-511))) (($ |#1|) 47 (|has| |#1| (-157)))) (-1220 ((|#1| $ |#2|) 59)) (-3773 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1896 ((|#1| $) 102)) (-1617 (((-108) $ $) 53 (|has| |#1| (-511)))) (-3905 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) 93 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1082) (-705)) 92 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-585 (-1082))) 91 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1082)) 90 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-705)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#1|) 58 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-379 (-519)) $) 56 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 55 (|has| |#1| (-37 (-379 (-519))))))) +(((-1141 |#1| |#2|) (-1194) (-968) (-726)) (T -1141)) +((-3088 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) (-5 *2 (-1063 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2598 (*1 *2 *1 *3) (-12 (-4 *1 (-1141 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) (-5 *2 (-1082)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-1141 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968)))) (-1855 (*1 *1 *1 *2) (-12 (-5 *2 (-848)) (-4 *1 (-1141 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726)))) (-3709 (*1 *2 *1 *2) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726)))) (-4057 (*1 *1 *1 *2) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726)))) (-4057 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726)))) (-3905 (*1 *2 *1 *3) (-12 (-4 *1 (-1141 *2 *3)) (-4 *3 (-726)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2217 (*2 (-1082)))) (-4 *2 (-968)))) (-3881 (*1 *1 *1 *2) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726)))) (-2324 (*1 *2 *1 *3) (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1063 *3))))) +(-13 (-897 |t#1| |t#2| (-996)) (-10 -8 (-15 -3088 ((-1063 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2598 (|t#1| $ |t#2|)) (-15 -1622 ((-1082) $)) (-15 -1896 (|t#1| $)) (-15 -1855 ($ $ (-848))) (-15 -3709 (|t#2| $)) (-15 -3709 (|t#2| $ |t#2|)) (-15 -4057 ($ $ |t#2|)) (-15 -4057 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2217 (|t#1| (-1082)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3905 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3881 ($ $ |t#2|)) (IF (|has| |t#2| (-1023)) (-6 (-260 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-209)) (IF (|has| |t#1| (-827 (-1082))) (-6 (-827 (-1082))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2324 ((-1063 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-511)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-379 (-519)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-209) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-260 $ $) |has| |#2| (-1023)) ((-264) |has| |#1| (-511)) ((-511) |has| |#1| (-511)) ((-587 #0#) |has| |#1| (-37 (-379 (-519)))) ((-587 |#1|) . T) ((-587 $) . T) ((-652 #0#) |has| |#1| (-37 (-379 (-519)))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) |has| |#1| (-511)) ((-661) . T) ((-827 (-1082)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-827 (-1082)))) ((-897 |#1| |#2| (-996)) . T) ((-974 #0#) |has| |#1| (-37 (-379 (-519)))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-4043 ((|#2| |#2|) 12)) (-3093 (((-390 |#2|) |#2|) 14)) (-2526 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-519))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-519)))) 30))) +(((-1142 |#1| |#2|) (-10 -7 (-15 -3093 ((-390 |#2|) |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -2526 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-519))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-519)))))) (-511) (-13 (-1139 |#1|) (-511) (-10 -8 (-15 -2292 ($ $ $))))) (T -1142)) +((-2526 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-519)))) (-4 *4 (-13 (-1139 *3) (-511) (-10 -8 (-15 -2292 ($ $ $))))) (-4 *3 (-511)) (-5 *1 (-1142 *3 *4)))) (-4043 (*1 *2 *2) (-12 (-4 *3 (-511)) (-5 *1 (-1142 *3 *2)) (-4 *2 (-13 (-1139 *3) (-511) (-10 -8 (-15 -2292 ($ $ $))))))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-511)) (-5 *2 (-390 *3)) (-5 *1 (-1142 *4 *3)) (-4 *3 (-13 (-1139 *4) (-511) (-10 -8 (-15 -2292 ($ $ $)))))))) +(-10 -7 (-15 -3093 ((-390 |#2|) |#2|)) (-15 -4043 (|#2| |#2|)) (-15 -2526 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-519))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-519)))))) +((-1405 (((-1148 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1148 |#1| |#3| |#5|)) 23))) +(((-1143 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1405 ((-1148 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1148 |#1| |#3| |#5|)))) (-968) (-968) (-1082) (-1082) |#1| |#2|) (T -1143)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5 *7 *9)) (-4 *5 (-968)) (-4 *6 (-968)) (-14 *7 (-1082)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1148 *6 *8 *10)) (-5 *1 (-1143 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1082))))) +(-10 -7 (-15 -1405 ((-1148 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1148 |#1| |#3| |#5|)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4083 (((-585 (-996)) $) 74)) (-1622 (((-1082) $) 103)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 51 (|has| |#1| (-511)))) (-1410 (($ $) 52 (|has| |#1| (-511)))) (-3060 (((-108) $) 54 (|has| |#1| (-511)))) (-4057 (($ $ (-379 (-519))) 98) (($ $ (-379 (-519)) (-379 (-519))) 97)) (-3088 (((-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|))) $) 105)) (-2958 (($ $) 135 (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) 118 (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 162 (|has| |#1| (-335)))) (-3093 (((-390 $) $) 163 (|has| |#1| (-335)))) (-1934 (($ $) 117 (|has| |#1| (-37 (-379 (-519)))))) (-3409 (((-108) $ $) 153 (|has| |#1| (-335)))) (-2934 (($ $) 134 (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) 119 (|has| |#1| (-37 (-379 (-519)))))) (-2824 (($ (-705) (-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|)))) 172)) (-2981 (($ $) 133 (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) 120 (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) 17 T CONST)) (-2311 (($ $ $) 157 (|has| |#1| (-335)))) (-3218 (($ $) 60)) (-4193 (((-3 $ "failed") $) 34)) (-2286 (($ $ $) 156 (|has| |#1| (-335)))) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 151 (|has| |#1| (-335)))) (-1320 (((-108) $) 164 (|has| |#1| (-335)))) (-3943 (((-108) $) 73)) (-2888 (($) 145 (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-379 (-519)) $) 100) (((-379 (-519)) $ (-379 (-519))) 99)) (-1568 (((-108) $) 31)) (-1517 (($ $ (-519)) 116 (|has| |#1| (-37 (-379 (-519)))))) (-1855 (($ $ (-848)) 101) (($ $ (-379 (-519))) 171)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 160 (|has| |#1| (-335)))) (-2642 (((-108) $) 62)) (-4042 (($ |#1| (-379 (-519))) 61) (($ $ (-996) (-379 (-519))) 76) (($ $ (-585 (-996)) (-585 (-379 (-519)))) 75)) (-1405 (($ (-1 |#1| |#1|) $) 63)) (-1254 (($ $) 142 (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) 65)) (-3197 ((|#1| $) 66)) (-2254 (($ (-585 $)) 149 (|has| |#1| (-335))) (($ $ $) 148 (|has| |#1| (-335)))) (-1266 (((-1065) $) 9)) (-3151 (($ $) 165 (|has| |#1| (-335)))) (-4142 (($ $) 170 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) 169 (-3730 (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-885)) (|has| |#1| (-1103)) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-37 (-379 (-519)))))))) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 150 (|has| |#1| (-335)))) (-2292 (($ (-585 $)) 147 (|has| |#1| (-335))) (($ $ $) 146 (|has| |#1| (-335)))) (-1921 (((-390 $) $) 161 (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 158 (|has| |#1| (-335)))) (-3881 (($ $ (-379 (-519))) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 152 (|has| |#1| (-335)))) (-3325 (($ $) 143 (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))))) (-3129 (((-705) $) 154 (|has| |#1| (-335)))) (-2598 ((|#1| $ (-379 (-519))) 104) (($ $ $) 81 (|has| (-379 (-519)) (-1023)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 155 (|has| |#1| (-335)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) 89 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-1082) (-705)) 88 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-585 (-1082))) 87 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-1082)) 86 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-705)) 84 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (-4178 (((-379 (-519)) $) 64)) (-1754 (($ $) 132 (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) 121 (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) 131 (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) 122 (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) 130 (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) 123 (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) 72)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-379 (-519))) 57 (|has| |#1| (-37 (-379 (-519))))) (($ $) 49 (|has| |#1| (-511)))) (-1220 ((|#1| $ (-379 (-519))) 59)) (-3773 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1896 ((|#1| $) 102)) (-1774 (($ $) 141 (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) 129 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) 53 (|has| |#1| (-511)))) (-1761 (($ $) 140 (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) 128 (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) 139 (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) 127 (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-379 (-519))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) 138 (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) 126 (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) 137 (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) 125 (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) 136 (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) 124 (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 166 (|has| |#1| (-335)))) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) 93 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-1082) (-705)) 92 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-585 (-1082))) 91 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-1082)) 90 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-705)) 85 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#1|) 58 (|has| |#1| (-335))) (($ $ $) 168 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 167 (|has| |#1| (-335))) (($ $ $) 144 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 115 (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-379 (-519)) $) 56 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 55 (|has| |#1| (-37 (-379 (-519))))))) +(((-1144 |#1|) (-1194) (-968)) (T -1144)) +((-2824 (*1 *1 *2 *3) (-12 (-5 *2 (-705)) (-5 *3 (-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| *4)))) (-4 *4 (-968)) (-4 *1 (-1144 *4)))) (-1855 (*1 *1 *1 *2) (-12 (-5 *2 (-379 (-519))) (-4 *1 (-1144 *3)) (-4 *3 (-968)))) (-4142 (*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-968)) (-4 *2 (-37 (-379 (-519)))))) (-4142 (*1 *1 *1 *2) (-3730 (-12 (-5 *2 (-1082)) (-4 *1 (-1144 *3)) (-4 *3 (-968)) (-12 (-4 *3 (-29 (-519))) (-4 *3 (-885)) (-4 *3 (-1103)) (-4 *3 (-37 (-379 (-519)))))) (-12 (-5 *2 (-1082)) (-4 *1 (-1144 *3)) (-4 *3 (-968)) (-12 (|has| *3 (-15 -4083 ((-585 *2) *3))) (|has| *3 (-15 -4142 (*3 *3 *2))) (-4 *3 (-37 (-379 (-519))))))))) +(-13 (-1141 |t#1| (-379 (-519))) (-10 -8 (-15 -2824 ($ (-705) (-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |t#1|))))) (-15 -1855 ($ $ (-379 (-519)))) (IF (|has| |t#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ($ $)) (IF (|has| |t#1| (-15 -4142 (|t#1| |t#1| (-1082)))) (IF (|has| |t#1| (-15 -4083 ((-585 (-1082)) |t#1|))) (-15 -4142 ($ $ (-1082))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1103)) (IF (|has| |t#1| (-885)) (IF (|has| |t#1| (-29 (-519))) (-15 -4142 ($ $ (-1082))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-925)) (-6 (-1103))) |%noBranch|) (IF (|has| |t#1| (-335)) (-6 (-335)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-379 (-519))) . T) ((-25) . T) ((-37 #1=(-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-34) |has| |#1| (-37 (-379 (-519)))) ((-91) |has| |#1| (-37 (-379 (-519)))) ((-97) . T) ((-107 #1# #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-209) |has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) ((-219) |has| |#1| (-335)) ((-258) |has| |#1| (-37 (-379 (-519)))) ((-260 $ $) |has| (-379 (-519)) (-1023)) ((-264) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-280) |has| |#1| (-335)) ((-335) |has| |#1| (-335)) ((-423) |has| |#1| (-335)) ((-460) |has| |#1| (-37 (-379 (-519)))) ((-511) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-587 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-587 |#1|) . T) ((-587 $) . T) ((-652 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-661) . T) ((-827 (-1082)) -12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082)))) ((-897 |#1| #0# (-996)) . T) ((-847) |has| |#1| (-335)) ((-925) |has| |#1| (-37 (-379 (-519)))) ((-974 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1103) |has| |#1| (-37 (-379 (-519)))) ((-1106) |has| |#1| (-37 (-379 (-519)))) ((-1121) |has| |#1| (-335)) ((-1141 |#1| #0#) . T)) +((-3569 (((-108) $) 12)) (-1301 (((-3 |#3| "failed") $) 17)) (-1499 ((|#3| $) 14))) +(((-1145 |#1| |#2| |#3|) (-10 -8 (-15 -1499 (|#3| |#1|)) (-15 -1301 ((-3 |#3| "failed") |#1|)) (-15 -3569 ((-108) |#1|))) (-1146 |#2| |#3|) (-968) (-1123 |#2|)) (T -1145)) +NIL +(-10 -8 (-15 -1499 (|#3| |#1|)) (-15 -1301 ((-3 |#3| "failed") |#1|)) (-15 -3569 ((-108) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4083 (((-585 (-996)) $) 74)) (-1622 (((-1082) $) 103)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 51 (|has| |#1| (-511)))) (-1410 (($ $) 52 (|has| |#1| (-511)))) (-3060 (((-108) $) 54 (|has| |#1| (-511)))) (-4057 (($ $ (-379 (-519))) 98) (($ $ (-379 (-519)) (-379 (-519))) 97)) (-3088 (((-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|))) $) 105)) (-2958 (($ $) 135 (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) 118 (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 162 (|has| |#1| (-335)))) (-3093 (((-390 $) $) 163 (|has| |#1| (-335)))) (-1934 (($ $) 117 (|has| |#1| (-37 (-379 (-519)))))) (-3409 (((-108) $ $) 153 (|has| |#1| (-335)))) (-2934 (($ $) 134 (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) 119 (|has| |#1| (-37 (-379 (-519)))))) (-2824 (($ (-705) (-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|)))) 172)) (-2981 (($ $) 133 (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) 120 (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) 17 T CONST)) (-1301 (((-3 |#2| "failed") $) 183)) (-1499 ((|#2| $) 182)) (-2311 (($ $ $) 157 (|has| |#1| (-335)))) (-3218 (($ $) 60)) (-4193 (((-3 $ "failed") $) 34)) (-4121 (((-379 (-519)) $) 180)) (-2286 (($ $ $) 156 (|has| |#1| (-335)))) (-3131 (($ (-379 (-519)) |#2|) 181)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 151 (|has| |#1| (-335)))) (-1320 (((-108) $) 164 (|has| |#1| (-335)))) (-3943 (((-108) $) 73)) (-2888 (($) 145 (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-379 (-519)) $) 100) (((-379 (-519)) $ (-379 (-519))) 99)) (-1568 (((-108) $) 31)) (-1517 (($ $ (-519)) 116 (|has| |#1| (-37 (-379 (-519)))))) (-1855 (($ $ (-848)) 101) (($ $ (-379 (-519))) 171)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 160 (|has| |#1| (-335)))) (-2642 (((-108) $) 62)) (-4042 (($ |#1| (-379 (-519))) 61) (($ $ (-996) (-379 (-519))) 76) (($ $ (-585 (-996)) (-585 (-379 (-519)))) 75)) (-1405 (($ (-1 |#1| |#1|) $) 63)) (-1254 (($ $) 142 (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) 65)) (-3197 ((|#1| $) 66)) (-2254 (($ (-585 $)) 149 (|has| |#1| (-335))) (($ $ $) 148 (|has| |#1| (-335)))) (-2648 ((|#2| $) 179)) (-1584 (((-3 |#2| "failed") $) 177)) (-3120 ((|#2| $) 178)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 165 (|has| |#1| (-335)))) (-4142 (($ $) 170 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) 169 (-3730 (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-885)) (|has| |#1| (-1103)) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-37 (-379 (-519)))))))) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 150 (|has| |#1| (-335)))) (-2292 (($ (-585 $)) 147 (|has| |#1| (-335))) (($ $ $) 146 (|has| |#1| (-335)))) (-1921 (((-390 $) $) 161 (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 158 (|has| |#1| (-335)))) (-3881 (($ $ (-379 (-519))) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 152 (|has| |#1| (-335)))) (-3325 (($ $) 143 (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))))) (-3129 (((-705) $) 154 (|has| |#1| (-335)))) (-2598 ((|#1| $ (-379 (-519))) 104) (($ $ $) 81 (|has| (-379 (-519)) (-1023)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 155 (|has| |#1| (-335)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) 89 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-1082) (-705)) 88 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-585 (-1082))) 87 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-1082)) 86 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-705)) 84 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (-4178 (((-379 (-519)) $) 64)) (-1754 (($ $) 132 (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) 121 (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) 131 (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) 122 (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) 130 (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) 123 (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) 72)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 184) (($ (-379 (-519))) 57 (|has| |#1| (-37 (-379 (-519))))) (($ $) 49 (|has| |#1| (-511)))) (-1220 ((|#1| $ (-379 (-519))) 59)) (-3773 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1896 ((|#1| $) 102)) (-1774 (($ $) 141 (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) 129 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) 53 (|has| |#1| (-511)))) (-1761 (($ $) 140 (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) 128 (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) 139 (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) 127 (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-379 (-519))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) 138 (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) 126 (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) 137 (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) 125 (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) 136 (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) 124 (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 166 (|has| |#1| (-335)))) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) 93 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-1082) (-705)) 92 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-585 (-1082))) 91 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-1082)) 90 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (($ $ (-705)) 85 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#1|) 58 (|has| |#1| (-335))) (($ $ $) 168 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 167 (|has| |#1| (-335))) (($ $ $) 144 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 115 (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-379 (-519)) $) 56 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 55 (|has| |#1| (-37 (-379 (-519))))))) +(((-1146 |#1| |#2|) (-1194) (-968) (-1123 |t#1|)) (T -1146)) +((-4178 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1123 *3)) (-5 *2 (-379 (-519))))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-968)) (-4 *1 (-1146 *3 *2)) (-4 *2 (-1123 *3)))) (-3131 (*1 *1 *2 *3) (-12 (-5 *2 (-379 (-519))) (-4 *4 (-968)) (-4 *1 (-1146 *4 *3)) (-4 *3 (-1123 *4)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1123 *3)) (-5 *2 (-379 (-519))))) (-2648 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1123 *3)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1123 *3)))) (-1584 (*1 *2 *1) (|partial| -12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1123 *3))))) +(-13 (-1144 |t#1|) (-959 |t#2|) (-10 -8 (-15 -3131 ($ (-379 (-519)) |t#2|)) (-15 -4121 ((-379 (-519)) $)) (-15 -2648 (|t#2| $)) (-15 -4178 ((-379 (-519)) $)) (-15 -2217 ($ |t#2|)) (-15 -3120 (|t#2| $)) (-15 -1584 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-379 (-519))) . T) ((-25) . T) ((-37 #1=(-379 (-519))) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-34) |has| |#1| (-37 (-379 (-519)))) ((-91) |has| |#1| (-37 (-379 (-519)))) ((-97) . T) ((-107 #1# #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-209) |has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) ((-219) |has| |#1| (-335)) ((-258) |has| |#1| (-37 (-379 (-519)))) ((-260 $ $) |has| (-379 (-519)) (-1023)) ((-264) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-280) |has| |#1| (-335)) ((-335) |has| |#1| (-335)) ((-423) |has| |#1| (-335)) ((-460) |has| |#1| (-37 (-379 (-519)))) ((-511) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-587 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-587 |#1|) . T) ((-587 $) . T) ((-652 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335))) ((-661) . T) ((-827 (-1082)) -12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082)))) ((-897 |#1| #0# (-996)) . T) ((-847) |has| |#1| (-335)) ((-925) |has| |#1| (-37 (-379 (-519)))) ((-959 |#2|) . T) ((-974 #1#) -3730 (|has| |#1| (-335)) (|has| |#1| (-37 (-379 (-519))))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-335)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1103) |has| |#1| (-37 (-379 (-519)))) ((-1106) |has| |#1| (-37 (-379 (-519)))) ((-1121) |has| |#1| (-335)) ((-1141 |#1| #0#) . T) ((-1144 |#1|) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 (-996)) $) NIL)) (-1622 (((-1082) $) 96)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-4057 (($ $ (-379 (-519))) 106) (($ $ (-379 (-519)) (-379 (-519))) 108)) (-3088 (((-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|))) $) 51)) (-2958 (($ $) 179 (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) 155 (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL (|has| |#1| (-335)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-2934 (($ $) 175 (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) 151 (|has| |#1| (-37 (-379 (-519)))))) (-2824 (($ (-705) (-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|)))) 61)) (-2981 (($ $) 183 (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) 159 (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#2| "failed") $) NIL)) (-1499 ((|#2| $) NIL)) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) 79)) (-4121 (((-379 (-519)) $) 12)) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-3131 (($ (-379 (-519)) |#2|) 10)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-1320 (((-108) $) NIL (|has| |#1| (-335)))) (-3943 (((-108) $) 68)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-379 (-519)) $) 103) (((-379 (-519)) $ (-379 (-519))) 104)) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1855 (($ $ (-848)) 120) (($ $ (-379 (-519))) 118)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-379 (-519))) 31) (($ $ (-996) (-379 (-519))) NIL) (($ $ (-585 (-996)) (-585 (-379 (-519)))) NIL)) (-1405 (($ (-1 |#1| |#1|) $) 115)) (-1254 (($ $) 149 (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-2648 ((|#2| $) 11)) (-1584 (((-3 |#2| "failed") $) 41)) (-3120 ((|#2| $) 42)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) 93 (|has| |#1| (-335)))) (-4142 (($ $) 135 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) 140 (-3730 (-12 (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-885)) (|has| |#1| (-1103)))))) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-335)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-3881 (($ $ (-379 (-519))) 112)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-3325 (($ $) 147 (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))))) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-2598 ((|#1| $ (-379 (-519))) 100) (($ $ $) 86 (|has| (-379 (-519)) (-1023)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) 127 (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (-4178 (((-379 (-519)) $) 16)) (-1754 (($ $) 185 (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) 161 (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) 181 (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) 157 (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) 177 (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) 153 (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) 110)) (-2217 (((-790) $) NIL) (($ (-519)) 35) (($ |#1|) 27 (|has| |#1| (-157))) (($ |#2|) 32) (($ (-379 (-519))) 128 (|has| |#1| (-37 (-379 (-519))))) (($ $) NIL (|has| |#1| (-511)))) (-1220 ((|#1| $ (-379 (-519))) 99)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) 117)) (-1896 ((|#1| $) 98)) (-1774 (($ $) 191 (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) 167 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1761 (($ $) 187 (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) 163 (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) 195 (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) 171 (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-379 (-519))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) 197 (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) 173 (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) 193 (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) 169 (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) 189 (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) 165 (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (-3602 (($) 21 T CONST)) (-3611 (($) 17 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (-1543 (((-108) $ $) 66)) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335))) (($ $ $) 92 (|has| |#1| (-335)))) (-1623 (($ $) 131) (($ $ $) 72)) (-1614 (($ $ $) 70)) (** (($ $ (-848)) NIL) (($ $ (-705)) 76) (($ $ (-519)) 144 (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 145 (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-1147 |#1| |#2|) (-1146 |#1| |#2|) (-968) (-1123 |#1|)) (T -1147)) +NIL +(-1146 |#1| |#2|) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 (-996)) $) NIL)) (-1622 (((-1082) $) 11)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) NIL (|has| |#1| (-511)))) (-4057 (($ $ (-379 (-519))) NIL) (($ $ (-379 (-519)) (-379 (-519))) NIL)) (-3088 (((-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|))) $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-4043 (($ $) NIL (|has| |#1| (-335)))) (-3093 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3409 (((-108) $ $) NIL (|has| |#1| (-335)))) (-2934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2824 (($ (-705) (-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#1|)))) NIL)) (-2981 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-1127 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1155 |#1| |#2| |#3|) "failed") $) 22)) (-1499 (((-1127 |#1| |#2| |#3|) $) NIL) (((-1155 |#1| |#2| |#3|) $) NIL)) (-2311 (($ $ $) NIL (|has| |#1| (-335)))) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-4121 (((-379 (-519)) $) 57)) (-2286 (($ $ $) NIL (|has| |#1| (-335)))) (-3131 (($ (-379 (-519)) (-1127 |#1| |#2| |#3|)) NIL)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) NIL (|has| |#1| (-335)))) (-1320 (((-108) $) NIL (|has| |#1| (-335)))) (-3943 (((-108) $) NIL)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-379 (-519)) $) NIL) (((-379 (-519)) $ (-379 (-519))) NIL)) (-1568 (((-108) $) NIL)) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1855 (($ $ (-848)) NIL) (($ $ (-379 (-519))) NIL)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-379 (-519))) 29) (($ $ (-996) (-379 (-519))) NIL) (($ $ (-585 (-996)) (-585 (-379 (-519)))) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-2254 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-2648 (((-1127 |#1| |#2| |#3|) $) 60)) (-1584 (((-3 (-1127 |#1| |#2| |#3|) "failed") $) NIL)) (-3120 (((-1127 |#1| |#2| |#3|) $) NIL)) (-1266 (((-1065) $) NIL)) (-3151 (($ $) NIL (|has| |#1| (-335)))) (-4142 (($ $) 38 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) NIL (-3730 (-12 (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-885)) (|has| |#1| (-1103))))) (($ $ (-1159 |#2|)) 39 (|has| |#1| (-37 (-379 (-519)))))) (-4139 (((-1029) $) NIL)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) NIL (|has| |#1| (-335)))) (-2292 (($ (-585 $)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1921 (((-390 $) $) NIL (|has| |#1| (-335)))) (-1817 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-335))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) NIL (|has| |#1| (-335)))) (-3881 (($ $ (-379 (-519))) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-2661 (((-3 (-585 $) "failed") (-585 $) $) NIL (|has| |#1| (-335)))) (-3325 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))))) (-3129 (((-705) $) NIL (|has| |#1| (-335)))) (-2598 ((|#1| $ (-379 (-519))) NIL) (($ $ $) NIL (|has| (-379 (-519)) (-1023)))) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) NIL (|has| |#1| (-335)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $ (-1159 |#2|)) 37)) (-4178 (((-379 (-519)) $) NIL)) (-1754 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) NIL)) (-2217 (((-790) $) 88) (($ (-519)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1127 |#1| |#2| |#3|)) 16) (($ (-1155 |#1| |#2| |#3|)) 17) (($ (-1159 |#2|)) 35) (($ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $) NIL (|has| |#1| (-511)))) (-1220 ((|#1| $ (-379 (-519))) NIL)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-1896 ((|#1| $) 12)) (-1774 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1761 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-379 (-519))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-379 (-519))))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335)))) (-3602 (($) 31 T CONST)) (-3611 (($) 26 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-379 (-519)) |#1|))))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 33)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ (-519)) NIL (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-1148 |#1| |#2| |#3|) (-13 (-1146 |#1| (-1127 |#1| |#2| |#3|)) (-959 (-1155 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) (-968) (-1082) |#1|) (T -1148)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3)))) +(-13 (-1146 |#1| (-1127 |#1| |#2| |#3|)) (-959 (-1155 |#1| |#2| |#3|)) (-10 -8 (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 32)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL)) (-1410 (($ $) NIL)) (-3060 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 (-519) "failed") $) NIL (|has| (-1148 |#2| |#3| |#4|) (-959 (-519)))) (((-3 (-379 (-519)) "failed") $) NIL (|has| (-1148 |#2| |#3| |#4|) (-959 (-379 (-519))))) (((-3 (-1148 |#2| |#3| |#4|) "failed") $) 20)) (-1499 (((-519) $) NIL (|has| (-1148 |#2| |#3| |#4|) (-959 (-519)))) (((-379 (-519)) $) NIL (|has| (-1148 |#2| |#3| |#4|) (-959 (-379 (-519))))) (((-1148 |#2| |#3| |#4|) $) NIL)) (-3218 (($ $) 33)) (-4193 (((-3 $ "failed") $) 25)) (-2177 (($ $) NIL (|has| (-1148 |#2| |#3| |#4|) (-423)))) (-4015 (($ $ (-1148 |#2| |#3| |#4|) (-291 |#2| |#3| |#4|) $) NIL)) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) 11)) (-2642 (((-108) $) NIL)) (-4042 (($ (-1148 |#2| |#3| |#4|) (-291 |#2| |#3| |#4|)) 23)) (-3695 (((-291 |#2| |#3| |#4|) $) NIL)) (-3737 (($ (-1 (-291 |#2| |#3| |#4|) (-291 |#2| |#3| |#4|)) $) NIL)) (-1405 (($ (-1 (-1148 |#2| |#3| |#4|) (-1148 |#2| |#3| |#4|)) $) NIL)) (-2811 (((-3 (-775 |#2|) "failed") $) 73)) (-3185 (($ $) NIL)) (-3197 (((-1148 |#2| |#3| |#4|) $) 18)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-3162 (((-108) $) NIL)) (-3173 (((-1148 |#2| |#3| |#4|) $) NIL)) (-2261 (((-3 $ "failed") $ (-1148 |#2| |#3| |#4|)) NIL (|has| (-1148 |#2| |#3| |#4|) (-511))) (((-3 $ "failed") $ $) NIL)) (-3756 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1148 |#2| |#3| |#4|)) (|:| |%expon| (-291 |#2| |#3| |#4|)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#2|)))))) (|:| |%type| (-1065))) "failed") $) 56)) (-4178 (((-291 |#2| |#3| |#4|) $) 14)) (-3939 (((-1148 |#2| |#3| |#4|) $) NIL (|has| (-1148 |#2| |#3| |#4|) (-423)))) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ (-1148 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-379 (-519))) NIL (-3730 (|has| (-1148 |#2| |#3| |#4|) (-37 (-379 (-519)))) (|has| (-1148 |#2| |#3| |#4|) (-959 (-379 (-519))))))) (-2988 (((-585 (-1148 |#2| |#3| |#4|)) $) NIL)) (-1220 (((-1148 |#2| |#3| |#4|) $ (-291 |#2| |#3| |#4|)) NIL)) (-3773 (((-3 $ "failed") $) NIL (|has| (-1148 |#2| |#3| |#4|) (-133)))) (-3594 (((-705)) NIL)) (-1487 (($ $ $ (-705)) NIL (|has| (-1148 |#2| |#3| |#4|) (-157)))) (-1617 (((-108) $ $) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 61 T CONST)) (-3611 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ (-1148 |#2| |#3| |#4|)) NIL (|has| (-1148 |#2| |#3| |#4|) (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ (-1148 |#2| |#3| |#4|)) NIL) (($ (-1148 |#2| |#3| |#4|) $) NIL) (($ (-379 (-519)) $) NIL (|has| (-1148 |#2| |#3| |#4|) (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| (-1148 |#2| |#3| |#4|) (-37 (-379 (-519))))))) +(((-1149 |#1| |#2| |#3| |#4|) (-13 (-298 (-1148 |#2| |#3| |#4|) (-291 |#2| |#3| |#4|)) (-511) (-10 -8 (-15 -2811 ((-3 (-775 |#2|) "failed") $)) (-15 -3756 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1148 |#2| |#3| |#4|)) (|:| |%expon| (-291 |#2| |#3| |#4|)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#2|)))))) (|:| |%type| (-1065))) "failed") $)))) (-13 (-782) (-959 (-519)) (-581 (-519)) (-423)) (-13 (-27) (-1103) (-402 |#1|)) (-1082) |#2|) (T -1149)) +((-2811 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-782) (-959 (-519)) (-581 (-519)) (-423))) (-5 *2 (-775 *4)) (-5 *1 (-1149 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1103) (-402 *3))) (-14 *5 (-1082)) (-14 *6 *4))) (-3756 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-782) (-959 (-519)) (-581 (-519)) (-423))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1148 *4 *5 *6)) (|:| |%expon| (-291 *4 *5 *6)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-379 (-519))) (|:| |c| *4)))))) (|:| |%type| (-1065)))) (-5 *1 (-1149 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1103) (-402 *3))) (-14 *5 (-1082)) (-14 *6 *4)))) +(-13 (-298 (-1148 |#2| |#3| |#4|) (-291 |#2| |#3| |#4|)) (-511) (-10 -8 (-15 -2811 ((-3 (-775 |#2|) "failed") $)) (-15 -3756 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1148 |#2| |#3| |#4|)) (|:| |%expon| (-291 |#2| |#3| |#4|)) (|:| |%expTerms| (-585 (-2 (|:| |k| (-379 (-519))) (|:| |c| |#2|)))))) (|:| |%type| (-1065))) "failed") $)))) +((-3493 ((|#2| $) 29)) (-2111 ((|#2| $) 18)) (-3847 (($ $) 36)) (-2258 (($ $ (-519)) 64)) (-1473 (((-108) $ (-705)) 33)) (-2410 ((|#2| $ |#2|) 61)) (-1907 ((|#2| $ |#2|) 59)) (-2421 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-1659 (($ $ (-585 $)) 60)) (-2098 ((|#2| $) 17)) (-2343 (($ $) NIL) (($ $ (-705)) 42)) (-3393 (((-585 $) $) 26)) (-3458 (((-108) $ $) 50)) (-3878 (((-108) $ (-705)) 32)) (-2768 (((-108) $ (-705)) 31)) (-1668 (((-108) $) 28)) (-1457 ((|#2| $) 24) (($ $ (-705)) 46)) (-2598 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3096 (((-108) $) 22)) (-1407 (($ $) 39)) (-2434 (($ $) 65)) (-2067 (((-705) $) 41)) (-3376 (($ $) 40)) (-4150 (($ $ $) 58) (($ |#2| $) NIL)) (-2018 (((-585 $) $) 27)) (-1543 (((-108) $ $) 48)) (-3532 (((-705) $) 35))) +(((-1150 |#1| |#2|) (-10 -8 (-15 -2258 (|#1| |#1| (-519))) (-15 -2421 (|#2| |#1| "last" |#2|)) (-15 -1907 (|#2| |#1| |#2|)) (-15 -2421 (|#1| |#1| "rest" |#1|)) (-15 -2421 (|#2| |#1| "first" |#2|)) (-15 -2434 (|#1| |#1|)) (-15 -1407 (|#1| |#1|)) (-15 -2067 ((-705) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -2111 (|#2| |#1|)) (-15 -2098 (|#2| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1457 (|#1| |#1| (-705))) (-15 -2598 (|#2| |#1| "last")) (-15 -1457 (|#2| |#1|)) (-15 -2343 (|#1| |#1| (-705))) (-15 -2598 (|#1| |#1| "rest")) (-15 -2343 (|#1| |#1|)) (-15 -2598 (|#2| |#1| "first")) (-15 -4150 (|#1| |#2| |#1|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -2410 (|#2| |#1| |#2|)) (-15 -2421 (|#2| |#1| "value" |#2|)) (-15 -1659 (|#1| |#1| (-585 |#1|))) (-15 -3458 ((-108) |#1| |#1|)) (-15 -3096 ((-108) |#1|)) (-15 -2598 (|#2| |#1| "value")) (-15 -3493 (|#2| |#1|)) (-15 -1668 ((-108) |#1|)) (-15 -3393 ((-585 |#1|) |#1|)) (-15 -2018 ((-585 |#1|) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -3532 ((-705) |#1|)) (-15 -1473 ((-108) |#1| (-705))) (-15 -3878 ((-108) |#1| (-705))) (-15 -2768 ((-108) |#1| (-705)))) (-1151 |#2|) (-1117)) (T -1150)) +NIL +(-10 -8 (-15 -2258 (|#1| |#1| (-519))) (-15 -2421 (|#2| |#1| "last" |#2|)) (-15 -1907 (|#2| |#1| |#2|)) (-15 -2421 (|#1| |#1| "rest" |#1|)) (-15 -2421 (|#2| |#1| "first" |#2|)) (-15 -2434 (|#1| |#1|)) (-15 -1407 (|#1| |#1|)) (-15 -2067 ((-705) |#1|)) (-15 -3376 (|#1| |#1|)) (-15 -2111 (|#2| |#1|)) (-15 -2098 (|#2| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -1457 (|#1| |#1| (-705))) (-15 -2598 (|#2| |#1| "last")) (-15 -1457 (|#2| |#1|)) (-15 -2343 (|#1| |#1| (-705))) (-15 -2598 (|#1| |#1| "rest")) (-15 -2343 (|#1| |#1|)) (-15 -2598 (|#2| |#1| "first")) (-15 -4150 (|#1| |#2| |#1|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -2410 (|#2| |#1| |#2|)) (-15 -2421 (|#2| |#1| "value" |#2|)) (-15 -1659 (|#1| |#1| (-585 |#1|))) (-15 -3458 ((-108) |#1| |#1|)) (-15 -3096 ((-108) |#1|)) (-15 -2598 (|#2| |#1| "value")) (-15 -3493 (|#2| |#1|)) (-15 -1668 ((-108) |#1|)) (-15 -3393 ((-585 |#1|) |#1|)) (-15 -2018 ((-585 |#1|) |#1|)) (-15 -1543 ((-108) |#1| |#1|)) (-15 -3532 ((-705) |#1|)) (-15 -1473 ((-108) |#1| (-705))) (-15 -3878 ((-108) |#1| (-705))) (-15 -2768 ((-108) |#1| (-705)))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3493 ((|#1| $) 48)) (-2111 ((|#1| $) 65)) (-3847 (($ $) 67)) (-2258 (($ $ (-519)) 52 (|has| $ (-6 -4222)))) (-1473 (((-108) $ (-705)) 8)) (-2410 ((|#1| $ |#1|) 39 (|has| $ (-6 -4222)))) (-1440 (($ $ $) 56 (|has| $ (-6 -4222)))) (-1907 ((|#1| $ |#1|) 54 (|has| $ (-6 -4222)))) (-2692 ((|#1| $ |#1|) 58 (|has| $ (-6 -4222)))) (-2421 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4222))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4222))) (($ $ "rest" $) 55 (|has| $ (-6 -4222))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4222)))) (-1659 (($ $ (-585 $)) 41 (|has| $ (-6 -4222)))) (-2098 ((|#1| $) 66)) (-2249 (($) 7 T CONST)) (-2343 (($ $) 73) (($ $ (-705)) 71)) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3393 (((-585 $) $) 50)) (-3458 (((-108) $ $) 42 (|has| |#1| (-1011)))) (-3878 (((-108) $ (-705)) 9)) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35)) (-2768 (((-108) $ (-705)) 10)) (-1281 (((-585 |#1|) $) 45)) (-1668 (((-108) $) 49)) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1457 ((|#1| $) 70) (($ $ (-705)) 68)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2331 ((|#1| $) 76) (($ $ (-705)) 74)) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1763 (((-519) $ $) 44)) (-3096 (((-108) $) 46)) (-1407 (($ $) 62)) (-2434 (($ $) 59 (|has| $ (-6 -4222)))) (-2067 (((-705) $) 63)) (-3376 (($ $) 64)) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2449 (($ $) 13)) (-3954 (($ $ $) 61 (|has| $ (-6 -4222))) (($ $ |#1|) 60 (|has| $ (-6 -4222)))) (-4150 (($ $ $) 78) (($ |#1| $) 77)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-2018 (((-585 $) $) 51)) (-2915 (((-108) $ $) 43 (|has| |#1| (-1011)))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-1151 |#1|) (-1194) (-1117)) (T -1151)) +((-4150 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-4150 (*1 *1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2331 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1151 *3)) (-4 *3 (-1117)))) (-2343 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1151 *3)) (-4 *3 (-1117)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1151 *3)) (-4 *3 (-1117)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2598 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-1457 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1151 *3)) (-4 *3 (-1117)))) (-3847 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2111 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-3376 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1117)) (-5 *2 (-705)))) (-1407 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-3954 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-3954 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2434 (*1 *1 *1) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2692 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2421 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-1440 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2421 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4222)) (-4 *1 (-1151 *3)) (-4 *3 (-1117)))) (-1907 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2421 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) (-2258 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (|has| *1 (-6 -4222)) (-4 *1 (-1151 *3)) (-4 *3 (-1117))))) +(-13 (-933 |t#1|) (-10 -8 (-15 -4150 ($ $ $)) (-15 -4150 ($ |t#1| $)) (-15 -2331 (|t#1| $)) (-15 -2598 (|t#1| $ "first")) (-15 -2331 ($ $ (-705))) (-15 -2343 ($ $)) (-15 -2598 ($ $ "rest")) (-15 -2343 ($ $ (-705))) (-15 -1457 (|t#1| $)) (-15 -2598 (|t#1| $ "last")) (-15 -1457 ($ $ (-705))) (-15 -3847 ($ $)) (-15 -2098 (|t#1| $)) (-15 -2111 (|t#1| $)) (-15 -3376 ($ $)) (-15 -2067 ((-705) $)) (-15 -1407 ($ $)) (IF (|has| $ (-6 -4222)) (PROGN (-15 -3954 ($ $ $)) (-15 -3954 ($ $ |t#1|)) (-15 -2434 ($ $)) (-15 -2692 (|t#1| $ |t#1|)) (-15 -2421 (|t#1| $ "first" |t#1|)) (-15 -1440 ($ $ $)) (-15 -2421 ($ $ "rest" $)) (-15 -1907 (|t#1| $ |t#1|)) (-15 -2421 (|t#1| $ "last" |t#1|)) (-15 -2258 ($ $ (-519)))) |%noBranch|))) +(((-33) . T) ((-97) |has| |#1| (-1011)) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-559 (-790)))) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-458 |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-933 |#1|) . T) ((-1011) |has| |#1| (-1011)) ((-1117) . T)) +((-1405 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1152 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1405 (|#4| (-1 |#2| |#1|) |#3|))) (-968) (-968) (-1154 |#1|) (-1154 |#2|)) (T -1152)) +((-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-968)) (-4 *6 (-968)) (-4 *2 (-1154 *6)) (-5 *1 (-1152 *5 *6 *4 *2)) (-4 *4 (-1154 *5))))) +(-10 -7 (-15 -1405 (|#4| (-1 |#2| |#1|) |#3|))) +((-3569 (((-108) $) 15)) (-2958 (($ $) 91)) (-2823 (($ $) 67)) (-2934 (($ $) 87)) (-2800 (($ $) 63)) (-2981 (($ $) 95)) (-2844 (($ $) 71)) (-1254 (($ $) 61)) (-3325 (($ $) 59)) (-1754 (($ $) 97)) (-2854 (($ $) 73)) (-2969 (($ $) 93)) (-2834 (($ $) 69)) (-2946 (($ $) 89)) (-2812 (($ $) 65)) (-2217 (((-790) $) 47) (($ (-519)) NIL) (($ (-379 (-519))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1774 (($ $) 103)) (-2886 (($ $) 79)) (-1761 (($ $) 99)) (-2865 (($ $) 75)) (-1790 (($ $) 107)) (-2910 (($ $) 83)) (-3929 (($ $) 109)) (-2922 (($ $) 85)) (-1783 (($ $) 105)) (-2898 (($ $) 81)) (-1768 (($ $) 101)) (-2875 (($ $) 77)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-379 (-519))) 57))) +(((-1153 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-379 (-519)))) (-15 -2823 (|#1| |#1|)) (-15 -2800 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2812 (|#1| |#1|)) (-15 -2875 (|#1| |#1|)) (-15 -2898 (|#1| |#1|)) (-15 -2922 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2934 (|#1| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -1774 (|#1| |#1|)) (-15 -1254 (|#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| (-519))) (-15 ** (|#1| |#1| (-705))) (-15 ** (|#1| |#1| (-848))) (-15 -3569 ((-108) |#1|)) (-15 -2217 ((-790) |#1|))) (-1154 |#2|) (-968)) (T -1153)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-379 (-519)))) (-15 -2823 (|#1| |#1|)) (-15 -2800 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2812 (|#1| |#1|)) (-15 -2875 (|#1| |#1|)) (-15 -2898 (|#1| |#1|)) (-15 -2922 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2946 (|#1| |#1|)) (-15 -2969 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2934 (|#1| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -1783 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -1774 (|#1| |#1|)) (-15 -1254 (|#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2217 (|#1| |#2|)) (-15 -2217 (|#1| |#1|)) (-15 -2217 (|#1| (-379 (-519)))) (-15 -2217 (|#1| (-519))) (-15 ** (|#1| |#1| (-705))) (-15 ** (|#1| |#1| (-848))) (-15 -3569 ((-108) |#1|)) (-15 -2217 ((-790) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4083 (((-585 (-996)) $) 74)) (-1622 (((-1082) $) 103)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 51 (|has| |#1| (-511)))) (-1410 (($ $) 52 (|has| |#1| (-511)))) (-3060 (((-108) $) 54 (|has| |#1| (-511)))) (-4057 (($ $ (-705)) 98) (($ $ (-705) (-705)) 97)) (-3088 (((-1063 (-2 (|:| |k| (-705)) (|:| |c| |#1|))) $) 105)) (-2958 (($ $) 135 (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) 118 (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) 19)) (-1934 (($ $) 117 (|has| |#1| (-37 (-379 (-519)))))) (-2934 (($ $) 134 (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) 119 (|has| |#1| (-37 (-379 (-519)))))) (-2824 (($ (-1063 (-2 (|:| |k| (-705)) (|:| |c| |#1|)))) 155) (($ (-1063 |#1|)) 153)) (-2981 (($ $) 133 (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) 120 (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) 17 T CONST)) (-3218 (($ $) 60)) (-4193 (((-3 $ "failed") $) 34)) (-3366 (($ $) 152)) (-2227 (((-879 |#1|) $ (-705)) 150) (((-879 |#1|) $ (-705) (-705)) 149)) (-3943 (((-108) $) 73)) (-2888 (($) 145 (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-705) $) 100) (((-705) $ (-705)) 99)) (-1568 (((-108) $) 31)) (-1517 (($ $ (-519)) 116 (|has| |#1| (-37 (-379 (-519)))))) (-1855 (($ $ (-848)) 101)) (-2221 (($ (-1 |#1| (-519)) $) 151)) (-2642 (((-108) $) 62)) (-4042 (($ |#1| (-705)) 61) (($ $ (-996) (-705)) 76) (($ $ (-585 (-996)) (-585 (-705))) 75)) (-1405 (($ (-1 |#1| |#1|) $) 63)) (-1254 (($ $) 142 (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) 65)) (-3197 ((|#1| $) 66)) (-1266 (((-1065) $) 9)) (-4142 (($ $) 147 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) 146 (-3730 (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-885)) (|has| |#1| (-1103)) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-37 (-379 (-519)))))))) (-4139 (((-1029) $) 10)) (-3881 (($ $ (-705)) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-511)))) (-3325 (($ $) 143 (|has| |#1| (-37 (-379 (-519)))))) (-2324 (((-1063 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-705)))))) (-2598 ((|#1| $ (-705)) 104) (($ $ $) 81 (|has| (-705) (-1023)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) 89 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (($ $ (-1082) (-705)) 88 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (($ $ (-585 (-1082))) 87 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (($ $ (-1082)) 86 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (($ $ (-705)) 84 (|has| |#1| (-15 * (|#1| (-705) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (-4178 (((-705) $) 64)) (-1754 (($ $) 132 (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) 121 (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) 131 (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) 122 (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) 130 (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) 123 (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) 72)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ (-379 (-519))) 57 (|has| |#1| (-37 (-379 (-519))))) (($ $) 49 (|has| |#1| (-511))) (($ |#1|) 47 (|has| |#1| (-157)))) (-2988 (((-1063 |#1|) $) 154)) (-1220 ((|#1| $ (-705)) 59)) (-3773 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3594 (((-705)) 29)) (-1896 ((|#1| $) 102)) (-1774 (($ $) 141 (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) 129 (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) 53 (|has| |#1| (-511)))) (-1761 (($ $) 140 (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) 128 (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) 139 (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) 127 (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-705)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-705)))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) 138 (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) 126 (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) 137 (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) 125 (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) 136 (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) 124 (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) 93 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (($ $ (-1082) (-705)) 92 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (($ $ (-585 (-1082))) 91 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (($ $ (-1082)) 90 (-12 (|has| |#1| (-827 (-1082))) (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (($ $ (-705)) 85 (|has| |#1| (-15 * (|#1| (-705) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#1|) 58 (|has| |#1| (-335)))) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ |#1|) 148 (|has| |#1| (-335))) (($ $ $) 144 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 115 (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-379 (-519)) $) 56 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) 55 (|has| |#1| (-37 (-379 (-519))))))) +(((-1154 |#1|) (-1194) (-968)) (T -1154)) +((-2824 (*1 *1 *2) (-12 (-5 *2 (-1063 (-2 (|:| |k| (-705)) (|:| |c| *3)))) (-4 *3 (-968)) (-4 *1 (-1154 *3)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-968)) (-5 *2 (-1063 *3)))) (-2824 (*1 *1 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-4 *1 (-1154 *3)))) (-3366 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-968)))) (-2221 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-519))) (-4 *1 (-1154 *3)) (-4 *3 (-968)))) (-2227 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-4 *1 (-1154 *4)) (-4 *4 (-968)) (-5 *2 (-879 *4)))) (-2227 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-705)) (-4 *1 (-1154 *4)) (-4 *4 (-968)) (-5 *2 (-879 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) (-4142 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-968)) (-4 *2 (-37 (-379 (-519)))))) (-4142 (*1 *1 *1 *2) (-3730 (-12 (-5 *2 (-1082)) (-4 *1 (-1154 *3)) (-4 *3 (-968)) (-12 (-4 *3 (-29 (-519))) (-4 *3 (-885)) (-4 *3 (-1103)) (-4 *3 (-37 (-379 (-519)))))) (-12 (-5 *2 (-1082)) (-4 *1 (-1154 *3)) (-4 *3 (-968)) (-12 (|has| *3 (-15 -4083 ((-585 *2) *3))) (|has| *3 (-15 -4142 (*3 *3 *2))) (-4 *3 (-37 (-379 (-519))))))))) +(-13 (-1141 |t#1| (-705)) (-10 -8 (-15 -2824 ($ (-1063 (-2 (|:| |k| (-705)) (|:| |c| |t#1|))))) (-15 -2988 ((-1063 |t#1|) $)) (-15 -2824 ($ (-1063 |t#1|))) (-15 -3366 ($ $)) (-15 -2221 ($ (-1 |t#1| (-519)) $)) (-15 -2227 ((-879 |t#1|) $ (-705))) (-15 -2227 ((-879 |t#1|) $ (-705) (-705))) (IF (|has| |t#1| (-335)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-379 (-519)))) (PROGN (-15 -4142 ($ $)) (IF (|has| |t#1| (-15 -4142 (|t#1| |t#1| (-1082)))) (IF (|has| |t#1| (-15 -4083 ((-585 (-1082)) |t#1|))) (-15 -4142 ($ $ (-1082))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1103)) (IF (|has| |t#1| (-885)) (IF (|has| |t#1| (-29 (-519))) (-15 -4142 ($ $ (-1082))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-925)) (-6 (-1103))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-705)) . T) ((-25) . T) ((-37 #1=(-379 (-519))) |has| |#1| (-37 (-379 (-519)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-511)) ((-34) |has| |#1| (-37 (-379 (-519)))) ((-91) |has| |#1| (-37 (-379 (-519)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-379 (-519)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-209) |has| |#1| (-15 * (|#1| (-705) |#1|))) ((-258) |has| |#1| (-37 (-379 (-519)))) ((-260 $ $) |has| (-705) (-1023)) ((-264) |has| |#1| (-511)) ((-460) |has| |#1| (-37 (-379 (-519)))) ((-511) |has| |#1| (-511)) ((-587 #1#) |has| |#1| (-37 (-379 (-519)))) ((-587 |#1|) . T) ((-587 $) . T) ((-652 #1#) |has| |#1| (-37 (-379 (-519)))) ((-652 |#1|) |has| |#1| (-157)) ((-652 $) |has| |#1| (-511)) ((-661) . T) ((-827 (-1082)) -12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082)))) ((-897 |#1| #0# (-996)) . T) ((-925) |has| |#1| (-37 (-379 (-519)))) ((-974 #1#) |has| |#1| (-37 (-379 (-519)))) ((-974 |#1|) . T) ((-974 $) -3730 (|has| |#1| (-511)) (|has| |#1| (-157))) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1103) |has| |#1| (-37 (-379 (-519)))) ((-1106) |has| |#1| (-37 (-379 (-519)))) ((-1141 |#1| #0#) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4083 (((-585 (-996)) $) NIL)) (-1622 (((-1082) $) 87)) (-3921 (((-1136 |#2| |#1|) $ (-705)) 73)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) NIL (|has| |#1| (-511)))) (-1410 (($ $) NIL (|has| |#1| (-511)))) (-3060 (((-108) $) 136 (|has| |#1| (-511)))) (-4057 (($ $ (-705)) 121) (($ $ (-705) (-705)) 123)) (-3088 (((-1063 (-2 (|:| |k| (-705)) (|:| |c| |#1|))) $) 42)) (-2958 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2823 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3167 (((-3 $ "failed") $ $) NIL)) (-1934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2934 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2824 (($ (-1063 (-2 (|:| |k| (-705)) (|:| |c| |#1|)))) 53) (($ (-1063 |#1|)) NIL)) (-2981 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2249 (($) NIL T CONST)) (-1924 (($ $) 127)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3366 (($ $) 134)) (-2227 (((-879 |#1|) $ (-705)) 63) (((-879 |#1|) $ (-705) (-705)) 65)) (-3943 (((-108) $) NIL)) (-2888 (($) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3709 (((-705) $) NIL) (((-705) $ (-705)) NIL)) (-1568 (((-108) $) NIL)) (-1826 (($ $) 111)) (-1517 (($ $ (-519)) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1645 (($ (-519) (-519) $) 129)) (-1855 (($ $ (-848)) 133)) (-2221 (($ (-1 |#1| (-519)) $) 105)) (-2642 (((-108) $) NIL)) (-4042 (($ |#1| (-705)) 15) (($ $ (-996) (-705)) NIL) (($ $ (-585 (-996)) (-585 (-705))) NIL)) (-1405 (($ (-1 |#1| |#1|) $) 93)) (-1254 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3185 (($ $) NIL)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-3286 (($ $) 109)) (-3381 (($ $) 107)) (-2197 (($ (-519) (-519) $) 131)) (-4142 (($ $) 144 (|has| |#1| (-37 (-379 (-519))))) (($ $ (-1082)) 150 (-3730 (-12 (|has| |#1| (-15 -4142 (|#1| |#1| (-1082)))) (|has| |#1| (-15 -4083 ((-585 (-1082)) |#1|))) (|has| |#1| (-37 (-379 (-519))))) (-12 (|has| |#1| (-29 (-519))) (|has| |#1| (-37 (-379 (-519)))) (|has| |#1| (-885)) (|has| |#1| (-1103))))) (($ $ (-1159 |#2|)) 145 (|has| |#1| (-37 (-379 (-519)))))) (-4139 (((-1029) $) NIL)) (-4165 (($ $ (-519) (-519)) 115)) (-3881 (($ $ (-705)) 117)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-511)))) (-3325 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2874 (($ $) 113)) (-2324 (((-1063 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-705)))))) (-2598 ((|#1| $ (-705)) 90) (($ $ $) 125 (|has| (-705) (-1023)))) (-2181 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) 102 (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-705) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-705) |#1|)))) (($ $ (-1159 |#2|)) 98)) (-4178 (((-705) $) NIL)) (-1754 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2854 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2969 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2834 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2946 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2812 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1508 (($ $) 119)) (-2217 (((-790) $) NIL) (($ (-519)) 24) (($ (-379 (-519))) 142 (|has| |#1| (-37 (-379 (-519))))) (($ $) NIL (|has| |#1| (-511))) (($ |#1|) 23 (|has| |#1| (-157))) (($ (-1136 |#2| |#1|)) 80) (($ (-1159 |#2|)) 20)) (-2988 (((-1063 |#1|) $) NIL)) (-1220 ((|#1| $ (-705)) 89)) (-3773 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3594 (((-705)) NIL)) (-1896 ((|#1| $) 88)) (-1774 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2886 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1617 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1761 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2865 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1790 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2910 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3905 ((|#1| $ (-705)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-705)))) (|has| |#1| (-15 -2217 (|#1| (-1082))))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2922 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1783 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-2875 (($ $) NIL (|has| |#1| (-37 (-379 (-519)))))) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 17 T CONST)) (-3611 (($) 13 T CONST)) (-2242 (($ $ (-585 (-1082)) (-585 (-705))) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082) (-705)) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-585 (-1082))) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-1082)) NIL (-12 (|has| |#1| (-15 * (|#1| (-705) |#1|))) (|has| |#1| (-827 (-1082))))) (($ $ (-705)) NIL (|has| |#1| (-15 * (|#1| (-705) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-705) |#1|))))) (-1543 (((-108) $ $) NIL)) (-1632 (($ $ |#1|) NIL (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) 101)) (-1614 (($ $ $) 18)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL) (($ $ |#1|) 139 (|has| |#1| (-335))) (($ $ $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519)))))) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-379 (-519)) $) NIL (|has| |#1| (-37 (-379 (-519))))) (($ $ (-379 (-519))) NIL (|has| |#1| (-37 (-379 (-519))))))) +(((-1155 |#1| |#2| |#3|) (-13 (-1154 |#1|) (-10 -8 (-15 -2217 ($ (-1136 |#2| |#1|))) (-15 -3921 ((-1136 |#2| |#1|) $ (-705))) (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (-15 -3381 ($ $)) (-15 -3286 ($ $)) (-15 -1826 ($ $)) (-15 -2874 ($ $)) (-15 -4165 ($ $ (-519) (-519))) (-15 -1924 ($ $)) (-15 -1645 ($ (-519) (-519) $)) (-15 -2197 ($ (-519) (-519) $)) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) (-968) (-1082) |#1|) (T -1155)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-1136 *4 *3)) (-4 *3 (-968)) (-14 *4 (-1082)) (-14 *5 *3) (-5 *1 (-1155 *3 *4 *5)))) (-3921 (*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1136 *5 *4)) (-5 *1 (-1155 *4 *5 *6)) (-4 *4 (-968)) (-14 *5 (-1082)) (-14 *6 *4))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-2181 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-968)) (-14 *5 *3))) (-3381 (*1 *1 *1) (-12 (-5 *1 (-1155 *2 *3 *4)) (-4 *2 (-968)) (-14 *3 (-1082)) (-14 *4 *2))) (-3286 (*1 *1 *1) (-12 (-5 *1 (-1155 *2 *3 *4)) (-4 *2 (-968)) (-14 *3 (-1082)) (-14 *4 *2))) (-1826 (*1 *1 *1) (-12 (-5 *1 (-1155 *2 *3 *4)) (-4 *2 (-968)) (-14 *3 (-1082)) (-14 *4 *2))) (-2874 (*1 *1 *1) (-12 (-5 *1 (-1155 *2 *3 *4)) (-4 *2 (-968)) (-14 *3 (-1082)) (-14 *4 *2))) (-4165 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-968)) (-14 *4 (-1082)) (-14 *5 *3))) (-1924 (*1 *1 *1) (-12 (-5 *1 (-1155 *2 *3 *4)) (-4 *2 (-968)) (-14 *3 (-1082)) (-14 *4 *2))) (-1645 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-968)) (-14 *4 (-1082)) (-14 *5 *3))) (-2197 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-968)) (-14 *4 (-1082)) (-14 *5 *3))) (-4142 (*1 *1 *1 *2) (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3)))) +(-13 (-1154 |#1|) (-10 -8 (-15 -2217 ($ (-1136 |#2| |#1|))) (-15 -3921 ((-1136 |#2| |#1|) $ (-705))) (-15 -2217 ($ (-1159 |#2|))) (-15 -2181 ($ $ (-1159 |#2|))) (-15 -3381 ($ $)) (-15 -3286 ($ $)) (-15 -1826 ($ $)) (-15 -2874 ($ $)) (-15 -4165 ($ $ (-519) (-519))) (-15 -1924 ($ $)) (-15 -1645 ($ (-519) (-519) $)) (-15 -2197 ($ (-519) (-519) $)) (IF (|has| |#1| (-37 (-379 (-519)))) (-15 -4142 ($ $ (-1159 |#2|))) |%noBranch|))) +((-3856 (((-1 (-1063 |#1|) (-585 (-1063 |#1|))) (-1 |#2| (-585 |#2|))) 24)) (-4077 (((-1 (-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2174 (((-1 (-1063 |#1|) (-1063 |#1|)) (-1 |#2| |#2|)) 13)) (-3253 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3044 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1965 ((|#2| (-1 |#2| (-585 |#2|)) (-585 |#1|)) 54)) (-3505 (((-585 |#2|) (-585 |#1|) (-585 (-1 |#2| (-585 |#2|)))) 61)) (-1252 ((|#2| |#2| |#2|) 43))) +(((-1156 |#1| |#2|) (-10 -7 (-15 -2174 ((-1 (-1063 |#1|) (-1063 |#1|)) (-1 |#2| |#2|))) (-15 -4077 ((-1 (-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3856 ((-1 (-1063 |#1|) (-585 (-1063 |#1|))) (-1 |#2| (-585 |#2|)))) (-15 -1252 (|#2| |#2| |#2|)) (-15 -3044 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3253 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1965 (|#2| (-1 |#2| (-585 |#2|)) (-585 |#1|))) (-15 -3505 ((-585 |#2|) (-585 |#1|) (-585 (-1 |#2| (-585 |#2|)))))) (-37 (-379 (-519))) (-1154 |#1|)) (T -1156)) +((-3505 (*1 *2 *3 *4) (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 (-1 *6 (-585 *6)))) (-4 *5 (-37 (-379 (-519)))) (-4 *6 (-1154 *5)) (-5 *2 (-585 *6)) (-5 *1 (-1156 *5 *6)))) (-1965 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-585 *2))) (-5 *4 (-585 *5)) (-4 *5 (-37 (-379 (-519)))) (-4 *2 (-1154 *5)) (-5 *1 (-1156 *5 *2)))) (-3253 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-1156 *4 *2)) (-4 *4 (-37 (-379 (-519)))))) (-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-1156 *4 *2)) (-4 *4 (-37 (-379 (-519)))))) (-1252 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1154 *3)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-585 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-37 (-379 (-519)))) (-5 *2 (-1 (-1063 *4) (-585 (-1063 *4)))) (-5 *1 (-1156 *4 *5)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-37 (-379 (-519)))) (-5 *2 (-1 (-1063 *4) (-1063 *4) (-1063 *4))) (-5 *1 (-1156 *4 *5)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-37 (-379 (-519)))) (-5 *2 (-1 (-1063 *4) (-1063 *4))) (-5 *1 (-1156 *4 *5))))) +(-10 -7 (-15 -2174 ((-1 (-1063 |#1|) (-1063 |#1|)) (-1 |#2| |#2|))) (-15 -4077 ((-1 (-1063 |#1|) (-1063 |#1|) (-1063 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3856 ((-1 (-1063 |#1|) (-585 (-1063 |#1|))) (-1 |#2| (-585 |#2|)))) (-15 -1252 (|#2| |#2| |#2|)) (-15 -3044 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3253 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1965 (|#2| (-1 |#2| (-585 |#2|)) (-585 |#1|))) (-15 -3505 ((-585 |#2|) (-585 |#1|) (-585 (-1 |#2| (-585 |#2|)))))) +((-2675 ((|#2| |#4| (-705)) 30)) (-1886 ((|#4| |#2|) 25)) (-1609 ((|#4| (-379 |#2|)) 51 (|has| |#1| (-511)))) (-2027 (((-1 |#4| (-585 |#4|)) |#3|) 45))) +(((-1157 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1886 (|#4| |#2|)) (-15 -2675 (|#2| |#4| (-705))) (-15 -2027 ((-1 |#4| (-585 |#4|)) |#3|)) (IF (|has| |#1| (-511)) (-15 -1609 (|#4| (-379 |#2|))) |%noBranch|)) (-968) (-1139 |#1|) (-595 |#2|) (-1154 |#1|)) (T -1157)) +((-1609 (*1 *2 *3) (-12 (-5 *3 (-379 *5)) (-4 *5 (-1139 *4)) (-4 *4 (-511)) (-4 *4 (-968)) (-4 *2 (-1154 *4)) (-5 *1 (-1157 *4 *5 *6 *2)) (-4 *6 (-595 *5)))) (-2027 (*1 *2 *3) (-12 (-4 *4 (-968)) (-4 *5 (-1139 *4)) (-5 *2 (-1 *6 (-585 *6))) (-5 *1 (-1157 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-1154 *4)))) (-2675 (*1 *2 *3 *4) (-12 (-5 *4 (-705)) (-4 *5 (-968)) (-4 *2 (-1139 *5)) (-5 *1 (-1157 *5 *2 *6 *3)) (-4 *6 (-595 *2)) (-4 *3 (-1154 *5)))) (-1886 (*1 *2 *3) (-12 (-4 *4 (-968)) (-4 *3 (-1139 *4)) (-4 *2 (-1154 *4)) (-5 *1 (-1157 *4 *3 *5 *2)) (-4 *5 (-595 *3))))) +(-10 -7 (-15 -1886 (|#4| |#2|)) (-15 -2675 (|#2| |#4| (-705))) (-15 -2027 ((-1 |#4| (-585 |#4|)) |#3|)) (IF (|has| |#1| (-511)) (-15 -1609 (|#4| (-379 |#2|))) |%noBranch|)) +NIL +(((-1158) (-1194)) (T -1158)) +NIL +(-13 (-10 -7 (-6 -2063))) +((-1430 (((-108) $ $) NIL)) (-1622 (((-1082)) 12)) (-1266 (((-1065) $) 17)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 11) (((-1082) $) 8)) (-1543 (((-108) $ $) 14))) +(((-1159 |#1|) (-13 (-1011) (-559 (-1082)) (-10 -8 (-15 -2217 ((-1082) $)) (-15 -1622 ((-1082))))) (-1082)) (T -1159)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1159 *3)) (-14 *3 *2))) (-1622 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1159 *3)) (-14 *3 *2)))) +(-13 (-1011) (-559 (-1082)) (-10 -8 (-15 -2217 ((-1082) $)) (-15 -1622 ((-1082))))) +((-3535 (($ (-705)) 16)) (-3959 (((-625 |#2|) $ $) 37)) (-1464 ((|#2| $) 46)) (-2568 ((|#2| $) 45)) (-1466 ((|#2| $ $) 33)) (-2376 (($ $ $) 42)) (-1623 (($ $) 20) (($ $ $) 26)) (-1614 (($ $ $) 13)) (* (($ (-519) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28))) +(((-1160 |#1| |#2|) (-10 -8 (-15 -1464 (|#2| |#1|)) (-15 -2568 (|#2| |#1|)) (-15 -2376 (|#1| |#1| |#1|)) (-15 -3959 ((-625 |#2|) |#1| |#1|)) (-15 -1466 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 -3535 (|#1| (-705))) (-15 -1614 (|#1| |#1| |#1|))) (-1161 |#2|) (-1117)) (T -1160)) +NIL +(-10 -8 (-15 -1464 (|#2| |#1|)) (-15 -2568 (|#2| |#1|)) (-15 -2376 (|#1| |#1| |#1|)) (-15 -3959 ((-625 |#2|) |#1| |#1|)) (-15 -1466 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-519) |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1|)) (-15 -3535 (|#1| (-705))) (-15 -1614 (|#1| |#1| |#1|))) +((-1430 (((-108) $ $) 19 (|has| |#1| (-1011)))) (-3535 (($ (-705)) 112 (|has| |#1| (-23)))) (-1583 (((-1168) $ (-519) (-519)) 40 (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4222))) (($ $) 88 (-12 (|has| |#1| (-782)) (|has| $ (-6 -4222))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) 8)) (-2421 ((|#1| $ (-519) |#1|) 52 (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) 58 (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4221)))) (-2249 (($) 7 T CONST)) (-1998 (($ $) 90 (|has| $ (-6 -4222)))) (-1868 (($ $) 100)) (-2366 (($ $) 78 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-1438 (($ |#1| $) 77 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) 53 (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) 51)) (-3297 (((-519) (-1 (-108) |#1|) $) 97) (((-519) |#1| $) 96 (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) 95 (|has| |#1| (-1011)))) (-3844 (((-585 |#1|) $) 30 (|has| $ (-6 -4221)))) (-3959 (((-625 |#1|) $ $) 105 (|has| |#1| (-968)))) (-1822 (($ (-705) |#1|) 69)) (-3878 (((-108) $ (-705)) 9)) (-2737 (((-519) $) 43 (|has| (-519) (-782)))) (-2864 (($ $ $) 87 (|has| |#1| (-782)))) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-3890 (((-519) $) 44 (|has| (-519) (-782)))) (-2489 (($ $ $) 86 (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1464 ((|#1| $) 102 (-12 (|has| |#1| (-968)) (|has| |#1| (-925))))) (-2768 (((-108) $ (-705)) 10)) (-2568 ((|#1| $) 103 (-12 (|has| |#1| (-968)) (|has| |#1| (-925))))) (-1266 (((-1065) $) 22 (|has| |#1| (-1011)))) (-1672 (($ |#1| $ (-519)) 60) (($ $ $ (-519)) 59)) (-3909 (((-585 (-519)) $) 46)) (-1506 (((-108) (-519) $) 47)) (-4139 (((-1029) $) 21 (|has| |#1| (-1011)))) (-2331 ((|#1| $) 42 (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3640 (($ $ |#1|) 41 (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) 26 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) 25 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) 23 (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) 14)) (-3744 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) 48)) (-3108 (((-108) $) 11)) (-1548 (($) 12)) (-2598 ((|#1| $ (-519) |#1|) 50) ((|#1| $ (-519)) 49) (($ $ (-1130 (-519))) 63)) (-1466 ((|#1| $ $) 106 (|has| |#1| (-968)))) (-3720 (($ $ (-519)) 62) (($ $ (-1130 (-519))) 61)) (-2376 (($ $ $) 104 (|has| |#1| (-968)))) (-4155 (((-705) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4221))) (((-705) |#1| $) 28 (-12 (|has| |#1| (-1011)) (|has| $ (-6 -4221))))) (-2584 (($ $ $ (-519)) 91 (|has| $ (-6 -4222)))) (-2449 (($ $) 13)) (-1446 (((-495) $) 79 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 70)) (-4150 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-585 $)) 65)) (-2217 (((-790) $) 18 (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) 84 (|has| |#1| (-782)))) (-1569 (((-108) $ $) 83 (|has| |#1| (-782)))) (-1543 (((-108) $ $) 20 (|has| |#1| (-1011)))) (-1578 (((-108) $ $) 85 (|has| |#1| (-782)))) (-1561 (((-108) $ $) 82 (|has| |#1| (-782)))) (-1623 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1614 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-519) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-661))) (($ $ |#1|) 107 (|has| |#1| (-661)))) (-3532 (((-705) $) 6 (|has| $ (-6 -4221))))) +(((-1161 |#1|) (-1194) (-1117)) (T -1161)) +((-1614 (*1 *1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-25)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1161 *3)) (-4 *3 (-23)) (-4 *3 (-1117)))) (-1623 (*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-21)))) (-1623 (*1 *1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-519)) (-4 *1 (-1161 *3)) (-4 *3 (-1117)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-661)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-661)))) (-1466 (*1 *2 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-968)))) (-3959 (*1 *2 *1 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1117)) (-4 *3 (-968)) (-5 *2 (-625 *3)))) (-2376 (*1 *1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-968)))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-925)) (-4 *2 (-968)))) (-1464 (*1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-925)) (-4 *2 (-968))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1614 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3535 ($ (-705))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1623 ($ $)) (-15 -1623 ($ $ $)) (-15 * ($ (-519) $))) |%noBranch|) (IF (|has| |t#1| (-661)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-968)) (PROGN (-15 -1466 (|t#1| $ $)) (-15 -3959 ((-625 |t#1|) $ $)) (-15 -2376 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-925)) (IF (|has| |t#1| (-968)) (PROGN (-15 -2568 (|t#1| $)) (-15 -1464 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-33) . T) ((-97) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782))) ((-559 (-790)) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782)) (|has| |#1| (-559 (-790)))) ((-139 |#1|) . T) ((-560 (-495)) |has| |#1| (-560 (-495))) ((-260 #0=(-519) |#1|) . T) ((-262 #0# |#1|) . T) ((-282 |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-345 |#1|) . T) ((-458 |#1|) . T) ((-552 #0# |#1|) . T) ((-480 |#1| |#1|) -12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))) ((-590 |#1|) . T) ((-19 |#1|) . T) ((-782) |has| |#1| (-782)) ((-1011) -3730 (|has| |#1| (-1011)) (|has| |#1| (-782))) ((-1117) . T)) +((-1367 (((-1163 |#2|) (-1 |#2| |#1| |#2|) (-1163 |#1|) |#2|) 13)) (-3874 ((|#2| (-1 |#2| |#1| |#2|) (-1163 |#1|) |#2|) 15)) (-1405 (((-3 (-1163 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1163 |#1|)) 28) (((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|)) 18))) +(((-1162 |#1| |#2|) (-10 -7 (-15 -1367 ((-1163 |#2|) (-1 |#2| |#1| |#2|) (-1163 |#1|) |#2|)) (-15 -3874 (|#2| (-1 |#2| |#1| |#2|) (-1163 |#1|) |#2|)) (-15 -1405 ((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|))) (-15 -1405 ((-3 (-1163 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1163 |#1|)))) (-1117) (-1117)) (T -1162)) +((-1405 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1163 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1163 *6)) (-5 *1 (-1162 *5 *6)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1163 *6)) (-5 *1 (-1162 *5 *6)))) (-3874 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1163 *5)) (-4 *5 (-1117)) (-4 *2 (-1117)) (-5 *1 (-1162 *5 *2)))) (-1367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1163 *6)) (-4 *6 (-1117)) (-4 *5 (-1117)) (-5 *2 (-1163 *5)) (-5 *1 (-1162 *6 *5))))) +(-10 -7 (-15 -1367 ((-1163 |#2|) (-1 |#2| |#1| |#2|) (-1163 |#1|) |#2|)) (-15 -3874 (|#2| (-1 |#2| |#1| |#2|) (-1163 |#1|) |#2|)) (-15 -1405 ((-1163 |#2|) (-1 |#2| |#1|) (-1163 |#1|))) (-15 -1405 ((-3 (-1163 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1163 |#1|)))) +((-1430 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-3535 (($ (-705)) NIL (|has| |#1| (-23)))) (-2169 (($ (-585 |#1|)) 9)) (-1583 (((-1168) $ (-519) (-519)) NIL (|has| $ (-6 -4222)))) (-2629 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-782)))) (-2078 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4222))) (($ $) NIL (-12 (|has| $ (-6 -4222)) (|has| |#1| (-782))))) (-3276 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-782)))) (-1473 (((-108) $ (-705)) NIL)) (-2421 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222))) ((|#1| $ (-1130 (-519)) |#1|) NIL (|has| $ (-6 -4222)))) (-1640 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2249 (($) NIL T CONST)) (-1998 (($ $) NIL (|has| $ (-6 -4222)))) (-1868 (($ $) NIL)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-1438 (($ |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-3874 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4221))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4221)))) (-3865 ((|#1| $ (-519) |#1|) NIL (|has| $ (-6 -4222)))) (-3659 ((|#1| $ (-519)) NIL)) (-3297 (((-519) (-1 (-108) |#1|) $) NIL) (((-519) |#1| $) NIL (|has| |#1| (-1011))) (((-519) |#1| $ (-519)) NIL (|has| |#1| (-1011)))) (-3844 (((-585 |#1|) $) 15 (|has| $ (-6 -4221)))) (-3959 (((-625 |#1|) $ $) NIL (|has| |#1| (-968)))) (-1822 (($ (-705) |#1|) NIL)) (-3878 (((-108) $ (-705)) NIL)) (-2737 (((-519) $) NIL (|has| (-519) (-782)))) (-2864 (($ $ $) NIL (|has| |#1| (-782)))) (-2500 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-782)))) (-3725 (((-585 |#1|) $) NIL (|has| $ (-6 -4221)))) (-1933 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-3890 (((-519) $) NIL (|has| (-519) (-782)))) (-2489 (($ $ $) NIL (|has| |#1| (-782)))) (-3850 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1464 ((|#1| $) NIL (-12 (|has| |#1| (-925)) (|has| |#1| (-968))))) (-2768 (((-108) $ (-705)) NIL)) (-2568 ((|#1| $) NIL (-12 (|has| |#1| (-925)) (|has| |#1| (-968))))) (-1266 (((-1065) $) NIL (|has| |#1| (-1011)))) (-1672 (($ |#1| $ (-519)) NIL) (($ $ $ (-519)) NIL)) (-3909 (((-585 (-519)) $) NIL)) (-1506 (((-108) (-519) $) NIL)) (-4139 (((-1029) $) NIL (|has| |#1| (-1011)))) (-2331 ((|#1| $) NIL (|has| (-519) (-782)))) (-2395 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3640 (($ $ |#1|) NIL (|has| $ (-6 -4222)))) (-2379 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 (-267 |#1|))) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-267 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011)))) (($ $ (-585 |#1|) (-585 |#1|)) NIL (-12 (|has| |#1| (-282 |#1|)) (|has| |#1| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3744 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2222 (((-585 |#1|) $) NIL)) (-3108 (((-108) $) NIL)) (-1548 (($) NIL)) (-2598 ((|#1| $ (-519) |#1|) NIL) ((|#1| $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-1466 ((|#1| $ $) NIL (|has| |#1| (-968)))) (-3720 (($ $ (-519)) NIL) (($ $ (-1130 (-519))) NIL)) (-2376 (($ $ $) NIL (|has| |#1| (-968)))) (-4155 (((-705) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221))) (((-705) |#1| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#1| (-1011))))) (-2584 (($ $ $ (-519)) NIL (|has| $ (-6 -4222)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) 19 (|has| |#1| (-560 (-495))))) (-2228 (($ (-585 |#1|)) 8)) (-4150 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-585 $)) NIL)) (-2217 (((-790) $) NIL (|has| |#1| (-559 (-790))))) (-1778 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4221)))) (-1586 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1543 (((-108) $ $) NIL (|has| |#1| (-1011)))) (-1578 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1561 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1623 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1614 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-519) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-661))) (($ $ |#1|) NIL (|has| |#1| (-661)))) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-1163 |#1|) (-13 (-1161 |#1|) (-10 -8 (-15 -2169 ($ (-585 |#1|))))) (-1117)) (T -1163)) +((-2169 (*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-1163 *3))))) +(-13 (-1161 |#1|) (-10 -8 (-15 -2169 ($ (-585 |#1|))))) +((-1430 (((-108) $ $) NIL)) (-3970 (((-1065) $ (-1065)) 87) (((-1065) $ (-1065) (-1065)) 85) (((-1065) $ (-1065) (-585 (-1065))) 84)) (-3517 (($) 56)) (-3246 (((-1168) $ (-439) (-848)) 42)) (-1977 (((-1168) $ (-848) (-1065)) 70) (((-1168) $ (-848) (-801)) 71)) (-2514 (((-1168) $ (-848) (-351) (-351)) 45)) (-3009 (((-1168) $ (-1065)) 66)) (-1853 (((-1168) $ (-848) (-1065)) 75)) (-1422 (((-1168) $ (-848) (-351) (-351)) 46)) (-3452 (((-1168) $ (-848) (-848)) 43)) (-3946 (((-1168) $) 67)) (-2676 (((-1168) $ (-848) (-1065)) 74)) (-2312 (((-1168) $ (-439) (-848)) 30)) (-2239 (((-1168) $ (-848) (-1065)) 73)) (-2590 (((-585 (-238)) $) 22) (($ $ (-585 (-238))) 23)) (-3593 (((-1168) $ (-705) (-705)) 40)) (-3806 (($ $) 57) (($ (-439) (-585 (-238))) 58)) (-1266 (((-1065) $) NIL)) (-2583 (((-519) $) 37)) (-4139 (((-1029) $) NIL)) (-1961 (((-1163 (-3 (-439) "undefined")) $) 36)) (-2558 (((-1163 (-2 (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)) (|:| -2239 (-519)) (|:| -3821 (-519)) (|:| |spline| (-519)) (|:| -3502 (-519)) (|:| |axesColor| (-801)) (|:| -1977 (-519)) (|:| |unitsColor| (-801)) (|:| |showing| (-519)))) $) 35)) (-1302 (((-1168) $ (-848) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-519) (-801) (-519) (-801) (-519)) 65)) (-1411 (((-585 (-870 (-201))) $) NIL)) (-2396 (((-439) $ (-848)) 32)) (-3691 (((-1168) $ (-705) (-705) (-848) (-848)) 39)) (-2189 (((-1168) $ (-1065)) 76)) (-3821 (((-1168) $ (-848) (-1065)) 72)) (-2217 (((-790) $) 82)) (-1664 (((-1168) $) 77)) (-3502 (((-1168) $ (-848) (-1065)) 68) (((-1168) $ (-848) (-801)) 69)) (-1543 (((-108) $ $) NIL))) +(((-1164) (-13 (-1011) (-10 -8 (-15 -1411 ((-585 (-870 (-201))) $)) (-15 -3517 ($)) (-15 -3806 ($ $)) (-15 -2590 ((-585 (-238)) $)) (-15 -2590 ($ $ (-585 (-238)))) (-15 -3806 ($ (-439) (-585 (-238)))) (-15 -1302 ((-1168) $ (-848) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-519) (-801) (-519) (-801) (-519))) (-15 -2558 ((-1163 (-2 (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)) (|:| -2239 (-519)) (|:| -3821 (-519)) (|:| |spline| (-519)) (|:| -3502 (-519)) (|:| |axesColor| (-801)) (|:| -1977 (-519)) (|:| |unitsColor| (-801)) (|:| |showing| (-519)))) $)) (-15 -1961 ((-1163 (-3 (-439) "undefined")) $)) (-15 -3009 ((-1168) $ (-1065))) (-15 -2312 ((-1168) $ (-439) (-848))) (-15 -2396 ((-439) $ (-848))) (-15 -3502 ((-1168) $ (-848) (-1065))) (-15 -3502 ((-1168) $ (-848) (-801))) (-15 -1977 ((-1168) $ (-848) (-1065))) (-15 -1977 ((-1168) $ (-848) (-801))) (-15 -2239 ((-1168) $ (-848) (-1065))) (-15 -2676 ((-1168) $ (-848) (-1065))) (-15 -3821 ((-1168) $ (-848) (-1065))) (-15 -2189 ((-1168) $ (-1065))) (-15 -1664 ((-1168) $)) (-15 -3691 ((-1168) $ (-705) (-705) (-848) (-848))) (-15 -1422 ((-1168) $ (-848) (-351) (-351))) (-15 -2514 ((-1168) $ (-848) (-351) (-351))) (-15 -1853 ((-1168) $ (-848) (-1065))) (-15 -3593 ((-1168) $ (-705) (-705))) (-15 -3246 ((-1168) $ (-439) (-848))) (-15 -3452 ((-1168) $ (-848) (-848))) (-15 -3970 ((-1065) $ (-1065))) (-15 -3970 ((-1065) $ (-1065) (-1065))) (-15 -3970 ((-1065) $ (-1065) (-585 (-1065)))) (-15 -3946 ((-1168) $)) (-15 -2583 ((-519) $)) (-15 -2217 ((-790) $))))) (T -1164)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1164)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-585 (-870 (-201)))) (-5 *1 (-1164)))) (-3517 (*1 *1) (-5 *1 (-1164))) (-3806 (*1 *1 *1) (-5 *1 (-1164))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-585 (-238))) (-5 *1 (-1164)))) (-2590 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-238))) (-5 *1 (-1164)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-585 (-238))) (-5 *1 (-1164)))) (-1302 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-848)) (-5 *4 (-201)) (-5 *5 (-519)) (-5 *6 (-801)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-1163 (-2 (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)) (|:| -2239 (-519)) (|:| -3821 (-519)) (|:| |spline| (-519)) (|:| -3502 (-519)) (|:| |axesColor| (-801)) (|:| -1977 (-519)) (|:| |unitsColor| (-801)) (|:| |showing| (-519))))) (-5 *1 (-1164)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-1163 (-3 (-439) "undefined"))) (-5 *1 (-1164)))) (-3009 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-2312 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-439)) (-5 *4 (-848)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-2396 (*1 *2 *1 *3) (-12 (-5 *3 (-848)) (-5 *2 (-439)) (-5 *1 (-1164)))) (-3502 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-3502 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-848)) (-5 *4 (-801)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-1977 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-1977 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-848)) (-5 *4 (-801)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-2239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-2676 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-3821 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-2189 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1164)))) (-3691 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-705)) (-5 *4 (-848)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-1422 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-848)) (-5 *4 (-351)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-2514 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-848)) (-5 *4 (-351)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-1853 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-3593 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-3246 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-439)) (-5 *4 (-848)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-3452 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1168)) (-5 *1 (-1164)))) (-3970 (*1 *2 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1164)))) (-3970 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1164)))) (-3970 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-1065)) (-5 *1 (-1164)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1164)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1164))))) +(-13 (-1011) (-10 -8 (-15 -1411 ((-585 (-870 (-201))) $)) (-15 -3517 ($)) (-15 -3806 ($ $)) (-15 -2590 ((-585 (-238)) $)) (-15 -2590 ($ $ (-585 (-238)))) (-15 -3806 ($ (-439) (-585 (-238)))) (-15 -1302 ((-1168) $ (-848) (-201) (-201) (-201) (-201) (-519) (-519) (-519) (-519) (-801) (-519) (-801) (-519))) (-15 -2558 ((-1163 (-2 (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)) (|:| -2239 (-519)) (|:| -3821 (-519)) (|:| |spline| (-519)) (|:| -3502 (-519)) (|:| |axesColor| (-801)) (|:| -1977 (-519)) (|:| |unitsColor| (-801)) (|:| |showing| (-519)))) $)) (-15 -1961 ((-1163 (-3 (-439) "undefined")) $)) (-15 -3009 ((-1168) $ (-1065))) (-15 -2312 ((-1168) $ (-439) (-848))) (-15 -2396 ((-439) $ (-848))) (-15 -3502 ((-1168) $ (-848) (-1065))) (-15 -3502 ((-1168) $ (-848) (-801))) (-15 -1977 ((-1168) $ (-848) (-1065))) (-15 -1977 ((-1168) $ (-848) (-801))) (-15 -2239 ((-1168) $ (-848) (-1065))) (-15 -2676 ((-1168) $ (-848) (-1065))) (-15 -3821 ((-1168) $ (-848) (-1065))) (-15 -2189 ((-1168) $ (-1065))) (-15 -1664 ((-1168) $)) (-15 -3691 ((-1168) $ (-705) (-705) (-848) (-848))) (-15 -1422 ((-1168) $ (-848) (-351) (-351))) (-15 -2514 ((-1168) $ (-848) (-351) (-351))) (-15 -1853 ((-1168) $ (-848) (-1065))) (-15 -3593 ((-1168) $ (-705) (-705))) (-15 -3246 ((-1168) $ (-439) (-848))) (-15 -3452 ((-1168) $ (-848) (-848))) (-15 -3970 ((-1065) $ (-1065))) (-15 -3970 ((-1065) $ (-1065) (-1065))) (-15 -3970 ((-1065) $ (-1065) (-585 (-1065)))) (-15 -3946 ((-1168) $)) (-15 -2583 ((-519) $)) (-15 -2217 ((-790) $)))) +((-1430 (((-108) $ $) NIL)) (-3207 (((-1168) $ (-351)) 138) (((-1168) $ (-351) (-351) (-351)) 139)) (-3970 (((-1065) $ (-1065)) 146) (((-1065) $ (-1065) (-1065)) 144) (((-1065) $ (-1065) (-585 (-1065))) 143)) (-2310 (($) 49)) (-3710 (((-1168) $ (-351) (-351) (-351) (-351) (-351)) 114) (((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) $) 112) (((-1168) $ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) 113) (((-1168) $ (-519) (-519) (-351) (-351) (-351)) 115) (((-1168) $ (-351) (-351)) 116) (((-1168) $ (-351) (-351) (-351)) 123)) (-3144 (((-351)) 96) (((-351) (-351)) 97)) (-3453 (((-351)) 91) (((-351) (-351)) 93)) (-3020 (((-351)) 94) (((-351) (-351)) 95)) (-2837 (((-351)) 100) (((-351) (-351)) 101)) (-3472 (((-351)) 98) (((-351) (-351)) 99)) (-2514 (((-1168) $ (-351) (-351)) 140)) (-3009 (((-1168) $ (-1065)) 124)) (-2869 (((-1042 (-201)) $) 50) (($ $ (-1042 (-201))) 51)) (-2556 (((-1168) $ (-1065)) 152)) (-3157 (((-1168) $ (-1065)) 153)) (-2991 (((-1168) $ (-351) (-351)) 122) (((-1168) $ (-519) (-519)) 137)) (-3452 (((-1168) $ (-848) (-848)) 130)) (-3946 (((-1168) $) 110)) (-3901 (((-1168) $ (-1065)) 151)) (-3903 (((-1168) $ (-1065)) 107)) (-2590 (((-585 (-238)) $) 52) (($ $ (-585 (-238))) 53)) (-3593 (((-1168) $ (-705) (-705)) 129)) (-3955 (((-1168) $ (-705) (-870 (-201))) 158)) (-1793 (($ $) 56) (($ (-1042 (-201)) (-1065)) 57) (($ (-1042 (-201)) (-585 (-238))) 58)) (-2931 (((-1168) $ (-351) (-351) (-351)) 104)) (-1266 (((-1065) $) NIL)) (-2583 (((-519) $) 102)) (-1953 (((-1168) $ (-351)) 141)) (-1470 (((-1168) $ (-351)) 156)) (-4139 (((-1029) $) NIL)) (-1424 (((-1168) $ (-351)) 155)) (-2637 (((-1168) $ (-1065)) 109)) (-3691 (((-1168) $ (-705) (-705) (-848) (-848)) 128)) (-1986 (((-1168) $ (-1065)) 106)) (-2189 (((-1168) $ (-1065)) 108)) (-2178 (((-1168) $ (-143) (-143)) 127)) (-2217 (((-790) $) 135)) (-1664 (((-1168) $) 111)) (-1230 (((-1168) $ (-1065)) 154)) (-3502 (((-1168) $ (-1065)) 105)) (-1543 (((-108) $ $) NIL))) +(((-1165) (-13 (-1011) (-10 -8 (-15 -3453 ((-351))) (-15 -3453 ((-351) (-351))) (-15 -3020 ((-351))) (-15 -3020 ((-351) (-351))) (-15 -3144 ((-351))) (-15 -3144 ((-351) (-351))) (-15 -3472 ((-351))) (-15 -3472 ((-351) (-351))) (-15 -2837 ((-351))) (-15 -2837 ((-351) (-351))) (-15 -2310 ($)) (-15 -1793 ($ $)) (-15 -1793 ($ (-1042 (-201)) (-1065))) (-15 -1793 ($ (-1042 (-201)) (-585 (-238)))) (-15 -2869 ((-1042 (-201)) $)) (-15 -2869 ($ $ (-1042 (-201)))) (-15 -3955 ((-1168) $ (-705) (-870 (-201)))) (-15 -2590 ((-585 (-238)) $)) (-15 -2590 ($ $ (-585 (-238)))) (-15 -3593 ((-1168) $ (-705) (-705))) (-15 -3452 ((-1168) $ (-848) (-848))) (-15 -3009 ((-1168) $ (-1065))) (-15 -3691 ((-1168) $ (-705) (-705) (-848) (-848))) (-15 -3710 ((-1168) $ (-351) (-351) (-351) (-351) (-351))) (-15 -3710 ((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) $)) (-15 -3710 ((-1168) $ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -3710 ((-1168) $ (-519) (-519) (-351) (-351) (-351))) (-15 -3710 ((-1168) $ (-351) (-351))) (-15 -3710 ((-1168) $ (-351) (-351) (-351))) (-15 -2189 ((-1168) $ (-1065))) (-15 -3502 ((-1168) $ (-1065))) (-15 -1986 ((-1168) $ (-1065))) (-15 -3903 ((-1168) $ (-1065))) (-15 -2637 ((-1168) $ (-1065))) (-15 -2991 ((-1168) $ (-351) (-351))) (-15 -2991 ((-1168) $ (-519) (-519))) (-15 -3207 ((-1168) $ (-351))) (-15 -3207 ((-1168) $ (-351) (-351) (-351))) (-15 -2514 ((-1168) $ (-351) (-351))) (-15 -3901 ((-1168) $ (-1065))) (-15 -1424 ((-1168) $ (-351))) (-15 -1470 ((-1168) $ (-351))) (-15 -2556 ((-1168) $ (-1065))) (-15 -3157 ((-1168) $ (-1065))) (-15 -1230 ((-1168) $ (-1065))) (-15 -2931 ((-1168) $ (-351) (-351) (-351))) (-15 -1953 ((-1168) $ (-351))) (-15 -3946 ((-1168) $)) (-15 -2178 ((-1168) $ (-143) (-143))) (-15 -3970 ((-1065) $ (-1065))) (-15 -3970 ((-1065) $ (-1065) (-1065))) (-15 -3970 ((-1065) $ (-1065) (-585 (-1065)))) (-15 -1664 ((-1168) $)) (-15 -2583 ((-519) $))))) (T -1165)) +((-3453 (*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) (-3020 (*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) (-3020 (*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) (-3144 (*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) (-3472 (*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) (-2837 (*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) (-2837 (*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) (-2310 (*1 *1) (-5 *1 (-1165))) (-1793 (*1 *1 *1) (-5 *1 (-1165))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1042 (-201))) (-5 *3 (-1065)) (-5 *1 (-1165)))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1042 (-201))) (-5 *3 (-585 (-238))) (-5 *1 (-1165)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1042 (-201))) (-5 *1 (-1165)))) (-2869 (*1 *1 *1 *2) (-12 (-5 *2 (-1042 (-201))) (-5 *1 (-1165)))) (-3955 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-705)) (-5 *4 (-870 (-201))) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-585 (-238))) (-5 *1 (-1165)))) (-2590 (*1 *1 *1 *2) (-12 (-5 *2 (-585 (-238))) (-5 *1 (-1165)))) (-3593 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3452 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3009 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3691 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-705)) (-5 *4 (-848)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3710 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) (-5 *1 (-1165)))) (-3710 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3710 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-519)) (-5 *4 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3710 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3710 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-2189 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3502 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-1986 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3903 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-2637 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-2991 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-2991 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3207 (*1 *2 *1 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3207 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-2514 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3901 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-1424 (*1 *2 *1 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-1470 (*1 *2 *1 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-2556 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3157 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-1230 (*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-2931 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-1953 (*1 *2 *1 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1165)))) (-2178 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-143)) (-5 *2 (-1168)) (-5 *1 (-1165)))) (-3970 (*1 *2 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1165)))) (-3970 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1165)))) (-3970 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-1065)) (-5 *1 (-1165)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1165)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1165))))) +(-13 (-1011) (-10 -8 (-15 -3453 ((-351))) (-15 -3453 ((-351) (-351))) (-15 -3020 ((-351))) (-15 -3020 ((-351) (-351))) (-15 -3144 ((-351))) (-15 -3144 ((-351) (-351))) (-15 -3472 ((-351))) (-15 -3472 ((-351) (-351))) (-15 -2837 ((-351))) (-15 -2837 ((-351) (-351))) (-15 -2310 ($)) (-15 -1793 ($ $)) (-15 -1793 ($ (-1042 (-201)) (-1065))) (-15 -1793 ($ (-1042 (-201)) (-585 (-238)))) (-15 -2869 ((-1042 (-201)) $)) (-15 -2869 ($ $ (-1042 (-201)))) (-15 -3955 ((-1168) $ (-705) (-870 (-201)))) (-15 -2590 ((-585 (-238)) $)) (-15 -2590 ($ $ (-585 (-238)))) (-15 -3593 ((-1168) $ (-705) (-705))) (-15 -3452 ((-1168) $ (-848) (-848))) (-15 -3009 ((-1168) $ (-1065))) (-15 -3691 ((-1168) $ (-705) (-705) (-848) (-848))) (-15 -3710 ((-1168) $ (-351) (-351) (-351) (-351) (-351))) (-15 -3710 ((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) $)) (-15 -3710 ((-1168) $ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -3710 ((-1168) $ (-519) (-519) (-351) (-351) (-351))) (-15 -3710 ((-1168) $ (-351) (-351))) (-15 -3710 ((-1168) $ (-351) (-351) (-351))) (-15 -2189 ((-1168) $ (-1065))) (-15 -3502 ((-1168) $ (-1065))) (-15 -1986 ((-1168) $ (-1065))) (-15 -3903 ((-1168) $ (-1065))) (-15 -2637 ((-1168) $ (-1065))) (-15 -2991 ((-1168) $ (-351) (-351))) (-15 -2991 ((-1168) $ (-519) (-519))) (-15 -3207 ((-1168) $ (-351))) (-15 -3207 ((-1168) $ (-351) (-351) (-351))) (-15 -2514 ((-1168) $ (-351) (-351))) (-15 -3901 ((-1168) $ (-1065))) (-15 -1424 ((-1168) $ (-351))) (-15 -1470 ((-1168) $ (-351))) (-15 -2556 ((-1168) $ (-1065))) (-15 -3157 ((-1168) $ (-1065))) (-15 -1230 ((-1168) $ (-1065))) (-15 -2931 ((-1168) $ (-351) (-351) (-351))) (-15 -1953 ((-1168) $ (-351))) (-15 -3946 ((-1168) $)) (-15 -2178 ((-1168) $ (-143) (-143))) (-15 -3970 ((-1065) $ (-1065))) (-15 -3970 ((-1065) $ (-1065) (-1065))) (-15 -3970 ((-1065) $ (-1065) (-585 (-1065)))) (-15 -1664 ((-1168) $)) (-15 -2583 ((-519) $)))) +((-1689 (((-585 (-1065)) (-585 (-1065))) 94) (((-585 (-1065))) 89)) (-2961 (((-585 (-1065))) 87)) (-2005 (((-585 (-848)) (-585 (-848))) 62) (((-585 (-848))) 59)) (-2230 (((-585 (-705)) (-585 (-705))) 56) (((-585 (-705))) 52)) (-1662 (((-1168)) 64)) (-2412 (((-848) (-848)) 80) (((-848)) 79)) (-1433 (((-848) (-848)) 78) (((-848)) 77)) (-2466 (((-801) (-801)) 74) (((-801)) 73)) (-2698 (((-201)) 84) (((-201) (-351)) 86)) (-3621 (((-848)) 81) (((-848) (-848)) 82)) (-1882 (((-848) (-848)) 76) (((-848)) 75)) (-3665 (((-801) (-801)) 68) (((-801)) 66)) (-2546 (((-801) (-801)) 70) (((-801)) 69)) (-3849 (((-801) (-801)) 72) (((-801)) 71))) +(((-1166) (-10 -7 (-15 -3665 ((-801))) (-15 -3665 ((-801) (-801))) (-15 -2546 ((-801))) (-15 -2546 ((-801) (-801))) (-15 -3849 ((-801))) (-15 -3849 ((-801) (-801))) (-15 -2466 ((-801))) (-15 -2466 ((-801) (-801))) (-15 -1882 ((-848))) (-15 -1882 ((-848) (-848))) (-15 -2230 ((-585 (-705)))) (-15 -2230 ((-585 (-705)) (-585 (-705)))) (-15 -2005 ((-585 (-848)))) (-15 -2005 ((-585 (-848)) (-585 (-848)))) (-15 -1662 ((-1168))) (-15 -1689 ((-585 (-1065)))) (-15 -1689 ((-585 (-1065)) (-585 (-1065)))) (-15 -2961 ((-585 (-1065)))) (-15 -1433 ((-848))) (-15 -2412 ((-848))) (-15 -1433 ((-848) (-848))) (-15 -2412 ((-848) (-848))) (-15 -3621 ((-848) (-848))) (-15 -3621 ((-848))) (-15 -2698 ((-201) (-351))) (-15 -2698 ((-201))))) (T -1166)) +((-2698 (*1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-1166)))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-351)) (-5 *2 (-201)) (-5 *1 (-1166)))) (-3621 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) (-2412 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) (-1433 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) (-2412 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) (-1433 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) (-2961 (*1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1166)))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1166)))) (-1689 (*1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1166)))) (-1662 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1166)))) (-2005 (*1 *2 *2) (-12 (-5 *2 (-585 (-848))) (-5 *1 (-1166)))) (-2005 (*1 *2) (-12 (-5 *2 (-585 (-848))) (-5 *1 (-1166)))) (-2230 (*1 *2 *2) (-12 (-5 *2 (-585 (-705))) (-5 *1 (-1166)))) (-2230 (*1 *2) (-12 (-5 *2 (-585 (-705))) (-5 *1 (-1166)))) (-1882 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) (-1882 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166)))) (-2466 (*1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166)))) (-3849 (*1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166)))) (-2546 (*1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166)))) (-3665 (*1 *2 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166)))) (-3665 (*1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166))))) +(-10 -7 (-15 -3665 ((-801))) (-15 -3665 ((-801) (-801))) (-15 -2546 ((-801))) (-15 -2546 ((-801) (-801))) (-15 -3849 ((-801))) (-15 -3849 ((-801) (-801))) (-15 -2466 ((-801))) (-15 -2466 ((-801) (-801))) (-15 -1882 ((-848))) (-15 -1882 ((-848) (-848))) (-15 -2230 ((-585 (-705)))) (-15 -2230 ((-585 (-705)) (-585 (-705)))) (-15 -2005 ((-585 (-848)))) (-15 -2005 ((-585 (-848)) (-585 (-848)))) (-15 -1662 ((-1168))) (-15 -1689 ((-585 (-1065)))) (-15 -1689 ((-585 (-1065)) (-585 (-1065)))) (-15 -2961 ((-585 (-1065)))) (-15 -1433 ((-848))) (-15 -2412 ((-848))) (-15 -1433 ((-848) (-848))) (-15 -2412 ((-848) (-848))) (-15 -3621 ((-848) (-848))) (-15 -3621 ((-848))) (-15 -2698 ((-201) (-351))) (-15 -2698 ((-201)))) +((-1935 (((-439) (-585 (-585 (-870 (-201)))) (-585 (-238))) 17) (((-439) (-585 (-585 (-870 (-201))))) 16) (((-439) (-585 (-585 (-870 (-201)))) (-801) (-801) (-848) (-585 (-238))) 15)) (-2849 (((-1164) (-585 (-585 (-870 (-201)))) (-585 (-238))) 23) (((-1164) (-585 (-585 (-870 (-201)))) (-801) (-801) (-848) (-585 (-238))) 22)) (-2217 (((-1164) (-439)) 34))) +(((-1167) (-10 -7 (-15 -1935 ((-439) (-585 (-585 (-870 (-201)))) (-801) (-801) (-848) (-585 (-238)))) (-15 -1935 ((-439) (-585 (-585 (-870 (-201)))))) (-15 -1935 ((-439) (-585 (-585 (-870 (-201)))) (-585 (-238)))) (-15 -2849 ((-1164) (-585 (-585 (-870 (-201)))) (-801) (-801) (-848) (-585 (-238)))) (-15 -2849 ((-1164) (-585 (-585 (-870 (-201)))) (-585 (-238)))) (-15 -2217 ((-1164) (-439))))) (T -1167)) +((-2217 (*1 *2 *3) (-12 (-5 *3 (-439)) (-5 *2 (-1164)) (-5 *1 (-1167)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *4 (-585 (-238))) (-5 *2 (-1164)) (-5 *1 (-1167)))) (-2849 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *4 (-801)) (-5 *5 (-848)) (-5 *6 (-585 (-238))) (-5 *2 (-1164)) (-5 *1 (-1167)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *4 (-585 (-238))) (-5 *2 (-439)) (-5 *1 (-1167)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *2 (-439)) (-5 *1 (-1167)))) (-1935 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *4 (-801)) (-5 *5 (-848)) (-5 *6 (-585 (-238))) (-5 *2 (-439)) (-5 *1 (-1167))))) +(-10 -7 (-15 -1935 ((-439) (-585 (-585 (-870 (-201)))) (-801) (-801) (-848) (-585 (-238)))) (-15 -1935 ((-439) (-585 (-585 (-870 (-201)))))) (-15 -1935 ((-439) (-585 (-585 (-870 (-201)))) (-585 (-238)))) (-15 -2849 ((-1164) (-585 (-585 (-870 (-201)))) (-801) (-801) (-848) (-585 (-238)))) (-15 -2849 ((-1164) (-585 (-585 (-870 (-201)))) (-585 (-238)))) (-15 -2217 ((-1164) (-439)))) +((-1378 (($) 7)) (-2217 (((-790) $) 10))) +(((-1168) (-10 -8 (-15 -1378 ($)) (-15 -2217 ((-790) $)))) (T -1168)) +((-2217 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1168)))) (-1378 (*1 *1) (-5 *1 (-1168)))) +(-10 -8 (-15 -1378 ($)) (-15 -2217 ((-790) $))) +((-1632 (($ $ |#2|) 10))) +(((-1169 |#1| |#2|) (-10 -8 (-15 -1632 (|#1| |#1| |#2|))) (-1170 |#2|) (-335)) (T -1169)) +NIL +(-10 -8 (-15 -1632 (|#1| |#1| |#2|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2914 (((-126)) 28)) (-2217 (((-790) $) 11)) (-3602 (($) 18 T CONST)) (-1543 (((-108) $ $) 6)) (-1632 (($ $ |#1|) 29)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1170 |#1|) (-1194) (-335)) (T -1170)) +((-1632 (*1 *1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-335)))) (-2914 (*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-335)) (-5 *2 (-126))))) +(-13 (-652 |t#1|) (-10 -8 (-15 -1632 ($ $ |t#1|)) (-15 -2914 ((-126))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-652 |#1|) . T) ((-974 |#1|) . T) ((-1011) . T)) +((-2213 (((-585 (-1112 |#1|)) (-1082) (-1112 |#1|)) 78)) (-2456 (((-1063 (-1063 (-879 |#1|))) (-1082) (-1063 (-879 |#1|))) 57)) (-1448 (((-1 (-1063 (-1112 |#1|)) (-1063 (-1112 |#1|))) (-705) (-1112 |#1|) (-1063 (-1112 |#1|))) 68)) (-3066 (((-1 (-1063 (-879 |#1|)) (-1063 (-879 |#1|))) (-705)) 59)) (-1476 (((-1 (-1078 (-879 |#1|)) (-879 |#1|)) (-1082)) 27)) (-3491 (((-1 (-1063 (-879 |#1|)) (-1063 (-879 |#1|))) (-705)) 58))) +(((-1171 |#1|) (-10 -7 (-15 -3066 ((-1 (-1063 (-879 |#1|)) (-1063 (-879 |#1|))) (-705))) (-15 -3491 ((-1 (-1063 (-879 |#1|)) (-1063 (-879 |#1|))) (-705))) (-15 -2456 ((-1063 (-1063 (-879 |#1|))) (-1082) (-1063 (-879 |#1|)))) (-15 -1476 ((-1 (-1078 (-879 |#1|)) (-879 |#1|)) (-1082))) (-15 -2213 ((-585 (-1112 |#1|)) (-1082) (-1112 |#1|))) (-15 -1448 ((-1 (-1063 (-1112 |#1|)) (-1063 (-1112 |#1|))) (-705) (-1112 |#1|) (-1063 (-1112 |#1|))))) (-335)) (T -1171)) +((-1448 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705)) (-4 *6 (-335)) (-5 *4 (-1112 *6)) (-5 *2 (-1 (-1063 *4) (-1063 *4))) (-5 *1 (-1171 *6)) (-5 *5 (-1063 *4)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-4 *5 (-335)) (-5 *2 (-585 (-1112 *5))) (-5 *1 (-1171 *5)) (-5 *4 (-1112 *5)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1 (-1078 (-879 *4)) (-879 *4))) (-5 *1 (-1171 *4)) (-4 *4 (-335)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-4 *5 (-335)) (-5 *2 (-1063 (-1063 (-879 *5)))) (-5 *1 (-1171 *5)) (-5 *4 (-1063 (-879 *5))))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1 (-1063 (-879 *4)) (-1063 (-879 *4)))) (-5 *1 (-1171 *4)) (-4 *4 (-335)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1 (-1063 (-879 *4)) (-1063 (-879 *4)))) (-5 *1 (-1171 *4)) (-4 *4 (-335))))) +(-10 -7 (-15 -3066 ((-1 (-1063 (-879 |#1|)) (-1063 (-879 |#1|))) (-705))) (-15 -3491 ((-1 (-1063 (-879 |#1|)) (-1063 (-879 |#1|))) (-705))) (-15 -2456 ((-1063 (-1063 (-879 |#1|))) (-1082) (-1063 (-879 |#1|)))) (-15 -1476 ((-1 (-1078 (-879 |#1|)) (-879 |#1|)) (-1082))) (-15 -2213 ((-585 (-1112 |#1|)) (-1082) (-1112 |#1|))) (-15 -1448 ((-1 (-1063 (-1112 |#1|)) (-1063 (-1112 |#1|))) (-705) (-1112 |#1|) (-1063 (-1112 |#1|))))) +((-2902 (((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|) 74)) (-3668 (((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) 73))) +(((-1172 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3668 ((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))))) (-15 -2902 ((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|))) (-321) (-1139 |#1|) (-1139 |#2|) (-381 |#2| |#3|)) (T -1172)) +((-2902 (*1 *2 *3) (-12 (-4 *4 (-321)) (-4 *3 (-1139 *4)) (-4 *5 (-1139 *3)) (-5 *2 (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-1172 *4 *3 *5 *6)) (-4 *6 (-381 *3 *5)))) (-3668 (*1 *2) (-12 (-4 *3 (-321)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 *4)) (-5 *2 (-2 (|:| -2070 (-625 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-625 *4)))) (-5 *1 (-1172 *3 *4 *5 *6)) (-4 *6 (-381 *4 *5))))) +(-10 -7 (-15 -3668 ((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))))) (-15 -2902 ((-2 (|:| -2070 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 42)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) NIL)) (-1568 (((-108) $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2217 (((-790) $) 63) (($ (-519)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-157)))) (-3594 (((-705)) NIL)) (-2639 (((-1168) (-705)) 16)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 27 T CONST)) (-3611 (($) 66 T CONST)) (-1543 (((-108) $ $) 68)) (-1632 (((-3 $ "failed") $ $) NIL (|has| |#1| (-335)))) (-1623 (($ $) 70) (($ $ $) NIL)) (-1614 (($ $ $) 46)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))))) +(((-1173 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-968) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2217 (|#4| $)) (IF (|has| |#1| (-335)) (-15 -1632 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2217 ($ |#4|)) (-15 -2639 ((-1168) (-705))))) (-968) (-782) (-727) (-876 |#1| |#3| |#2|) (-585 |#2|) (-585 (-705)) (-705)) (T -1173)) +((-2217 (*1 *2 *1) (-12 (-4 *2 (-876 *3 *5 *4)) (-5 *1 (-1173 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-727)) (-14 *6 (-585 *4)) (-14 *7 (-585 (-705))) (-14 *8 (-705)))) (-1632 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-335)) (-4 *2 (-968)) (-4 *3 (-782)) (-4 *4 (-727)) (-14 *6 (-585 *3)) (-5 *1 (-1173 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-876 *2 *4 *3)) (-14 *7 (-585 (-705))) (-14 *8 (-705)))) (-2217 (*1 *1 *2) (-12 (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-727)) (-14 *6 (-585 *4)) (-5 *1 (-1173 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-876 *3 *5 *4)) (-14 *7 (-585 (-705))) (-14 *8 (-705)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-705)) (-4 *4 (-968)) (-4 *5 (-782)) (-4 *6 (-727)) (-14 *8 (-585 *5)) (-5 *2 (-1168)) (-5 *1 (-1173 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-876 *4 *6 *5)) (-14 *9 (-585 *3)) (-14 *10 *3)))) +(-13 (-968) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2217 (|#4| $)) (IF (|has| |#1| (-335)) (-15 -1632 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2217 ($ |#4|)) (-15 -2639 ((-1168) (-705))))) +((-1430 (((-108) $ $) NIL)) (-3106 (((-585 (-2 (|:| -1664 $) (|:| -1556 (-585 |#4|)))) (-585 |#4|)) NIL)) (-2548 (((-585 $) (-585 |#4|)) 88)) (-4083 (((-585 |#3|) $) NIL)) (-2968 (((-108) $) NIL)) (-3146 (((-108) $) NIL (|has| |#1| (-511)))) (-2943 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4145 ((|#4| |#4| $) NIL)) (-3276 (((-2 (|:| |under| $) (|:| -1525 $) (|:| |upper| $)) $ |#3|) NIL)) (-1473 (((-108) $ (-705)) NIL)) (-1640 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2249 (($) NIL T CONST)) (-3266 (((-108) $) NIL (|has| |#1| (-511)))) (-2542 (((-108) $ $) NIL (|has| |#1| (-511)))) (-3609 (((-108) $ $) NIL (|has| |#1| (-511)))) (-1276 (((-108) $) NIL (|has| |#1| (-511)))) (-4117 (((-585 |#4|) (-585 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-1456 (((-585 |#4|) (-585 |#4|) $) 25 (|has| |#1| (-511)))) (-3596 (((-585 |#4|) (-585 |#4|) $) NIL (|has| |#1| (-511)))) (-1301 (((-3 $ "failed") (-585 |#4|)) NIL)) (-1499 (($ (-585 |#4|)) NIL)) (-2343 (((-3 $ "failed") $) 70)) (-1570 ((|#4| |#4| $) 75)) (-2366 (($ $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-1438 (($ |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-1354 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-511)))) (-2459 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3805 ((|#4| |#4| $) NIL)) (-3874 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4221))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4221))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2109 (((-2 (|:| -1664 (-585 |#4|)) (|:| -1556 (-585 |#4|))) $) NIL)) (-3844 (((-585 |#4|) $) NIL (|has| $ (-6 -4221)))) (-3507 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4086 ((|#3| $) 76)) (-3878 (((-108) $ (-705)) NIL)) (-3725 (((-585 |#4|) $) 29 (|has| $ (-6 -4221)))) (-1933 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011))))) (-4170 (((-3 $ "failed") (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-585 |#4|)) 35)) (-3850 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4222)))) (-1405 (($ (-1 |#4| |#4|) $) NIL)) (-1360 (((-585 |#3|) $) NIL)) (-1219 (((-108) |#3| $) NIL)) (-2768 (((-108) $ (-705)) NIL)) (-1266 (((-1065) $) NIL)) (-1457 (((-3 |#4| "failed") $) NIL)) (-4092 (((-585 |#4|) $) 50)) (-2921 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3369 ((|#4| |#4| $) 74)) (-3291 (((-108) $ $) 85)) (-2573 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-511)))) (-3300 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1867 ((|#4| |#4| $) NIL)) (-4139 (((-1029) $) NIL)) (-2331 (((-3 |#4| "failed") $) 69)) (-2395 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2781 (((-3 $ "failed") $ |#4|) NIL)) (-3881 (($ $ |#4|) NIL)) (-2379 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2324 (($ $ (-585 |#4|) (-585 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-267 |#4|)) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011)))) (($ $ (-585 (-267 |#4|))) NIL (-12 (|has| |#4| (-282 |#4|)) (|has| |#4| (-1011))))) (-4091 (((-108) $ $) NIL)) (-3108 (((-108) $) 67)) (-1548 (($) 42)) (-4178 (((-705) $) NIL)) (-4155 (((-705) |#4| $) NIL (-12 (|has| $ (-6 -4221)) (|has| |#4| (-1011)))) (((-705) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-2449 (($ $) NIL)) (-1446 (((-495) $) NIL (|has| |#4| (-560 (-495))))) (-2228 (($ (-585 |#4|)) NIL)) (-4175 (($ $ |#3|) NIL)) (-1982 (($ $ |#3|) NIL)) (-3282 (($ $) NIL)) (-1272 (($ $ |#3|) NIL)) (-2217 (((-790) $) NIL) (((-585 |#4|) $) 57)) (-3156 (((-705) $) NIL (|has| |#3| (-340)))) (-4113 (((-3 $ "failed") (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-585 |#4|)) 41)) (-2055 (((-585 $) (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-585 $) (-585 |#4|)) 66)) (-3541 (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1365 (-585 |#4|))) "failed") (-585 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3735 (((-108) $ (-1 (-108) |#4| (-585 |#4|))) NIL)) (-1778 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4221)))) (-3059 (((-585 |#3|) $) NIL)) (-3980 (((-108) |#3| $) NIL)) (-1543 (((-108) $ $) NIL)) (-3532 (((-705) $) NIL (|has| $ (-6 -4221))))) +(((-1174 |#1| |#2| |#3| |#4|) (-13 (-1111 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4170 ((-3 $ "failed") (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4170 ((-3 $ "failed") (-585 |#4|))) (-15 -4113 ((-3 $ "failed") (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4113 ((-3 $ "failed") (-585 |#4|))) (-15 -2055 ((-585 $) (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2055 ((-585 $) (-585 |#4|))))) (-511) (-727) (-782) (-982 |#1| |#2| |#3|)) (T -1174)) +((-4170 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-1174 *5 *6 *7 *8)))) (-4170 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-1174 *3 *4 *5 *6)))) (-4113 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-1174 *5 *6 *7 *8)))) (-4113 (*1 *1 *2) (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-1174 *3 *4 *5 *6)))) (-2055 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-585 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-982 *6 *7 *8)) (-4 *6 (-511)) (-4 *7 (-727)) (-4 *8 (-782)) (-5 *2 (-585 (-1174 *6 *7 *8 *9))) (-5 *1 (-1174 *6 *7 *8 *9)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 (-1174 *4 *5 *6 *7))) (-5 *1 (-1174 *4 *5 *6 *7))))) +(-13 (-1111 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4170 ((-3 $ "failed") (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4170 ((-3 $ "failed") (-585 |#4|))) (-15 -4113 ((-3 $ "failed") (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4113 ((-3 $ "failed") (-585 |#4|))) (-15 -2055 ((-585 $) (-585 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2055 ((-585 $) (-585 |#4|))))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-3167 (((-3 $ "failed") $ $) 19)) (-2249 (($) 17 T CONST)) (-4193 (((-3 $ "failed") $) 34)) (-1568 (((-108) $) 31)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#1|) 38)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-1175 |#1|) (-1194) (-968)) (T -1175)) +((-2217 (*1 *1 *2) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-968))))) +(-13 (-968) (-107 |t#1| |t#1|) (-10 -8 (-15 -2217 ($ |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-652 |#1|) |has| |#1| (-157)) ((-661) . T) ((-974 |#1|) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4096 (((-585 |#1|) $) 45)) (-1851 (($ $ (-705)) 39)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2009 (($ $ (-705)) 17 (|has| |#2| (-157))) (($ $ $) 18 (|has| |#2| (-157)))) (-2249 (($) NIL T CONST)) (-1927 (($ $ $) 62) (($ $ (-754 |#1|)) 49) (($ $ |#1|) 53)) (-1301 (((-3 (-754 |#1|) "failed") $) NIL)) (-1499 (((-754 |#1|) $) NIL)) (-3218 (($ $) 32)) (-4193 (((-3 $ "failed") $) NIL)) (-3606 (((-108) $) NIL)) (-1876 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-2569 (($ (-754 |#1|) |#2|) 31)) (-2260 (($ $) 33)) (-1624 (((-2 (|:| |k| (-754 |#1|)) (|:| |c| |#2|)) $) 11)) (-3733 (((-754 |#1|) $) NIL)) (-2168 (((-754 |#1|) $) 34)) (-1405 (($ (-1 |#2| |#2|) $) NIL)) (-3550 (($ $ $) 61) (($ $ (-754 |#1|)) 51) (($ $ |#1|) 55)) (-2352 (((-2 (|:| |k| (-754 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3185 (((-754 |#1|) $) 28)) (-3197 ((|#2| $) 30)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-4178 (((-705) $) 36)) (-2308 (((-108) $) 40)) (-2730 ((|#2| $) NIL)) (-2217 (((-790) $) NIL) (($ (-754 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-519)) NIL)) (-2988 (((-585 |#2|) $) NIL)) (-1220 ((|#2| $ (-754 |#1|)) NIL)) (-3031 ((|#2| $ $) 64) ((|#2| $ (-754 |#1|)) NIL)) (-3594 (((-705)) NIL)) (-3559 (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (-3602 (($) 12 T CONST)) (-3611 (($) 14 T CONST)) (-3613 (((-585 (-2 (|:| |k| (-754 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1543 (((-108) $ $) 38)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 21)) (** (($ $ (-705)) NIL) (($ $ (-848)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-754 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1176 |#1| |#2|) (-13 (-354 |#2| (-754 |#1|)) (-1182 |#1| |#2|)) (-782) (-968)) (T -1176)) +NIL +(-13 (-354 |#2| (-754 |#1|)) (-1182 |#1| |#2|)) +((-1254 ((|#3| |#3| (-705)) 23)) (-3325 ((|#3| |#3| (-705)) 28)) (-3184 ((|#3| |#3| |#3| (-705)) 29))) +(((-1177 |#1| |#2| |#3|) (-10 -7 (-15 -3325 (|#3| |#3| (-705))) (-15 -1254 (|#3| |#3| (-705))) (-15 -3184 (|#3| |#3| |#3| (-705)))) (-13 (-968) (-652 (-379 (-519)))) (-782) (-1182 |#2| |#1|)) (T -1177)) +((-3184 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-705)) (-4 *4 (-13 (-968) (-652 (-379 (-519))))) (-4 *5 (-782)) (-5 *1 (-1177 *4 *5 *2)) (-4 *2 (-1182 *5 *4)))) (-1254 (*1 *2 *2 *3) (-12 (-5 *3 (-705)) (-4 *4 (-13 (-968) (-652 (-379 (-519))))) (-4 *5 (-782)) (-5 *1 (-1177 *4 *5 *2)) (-4 *2 (-1182 *5 *4)))) (-3325 (*1 *2 *2 *3) (-12 (-5 *3 (-705)) (-4 *4 (-13 (-968) (-652 (-379 (-519))))) (-4 *5 (-782)) (-5 *1 (-1177 *4 *5 *2)) (-4 *2 (-1182 *5 *4))))) +(-10 -7 (-15 -3325 (|#3| |#3| (-705))) (-15 -1254 (|#3| |#3| (-705))) (-15 -3184 (|#3| |#3| |#3| (-705)))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4096 (((-585 |#1|) $) 40)) (-3167 (((-3 $ "failed") $ $) 19)) (-2009 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-705)) 42 (|has| |#2| (-157)))) (-2249 (($) 17 T CONST)) (-1927 (($ $ |#1|) 54) (($ $ (-754 |#1|)) 53) (($ $ $) 52)) (-1301 (((-3 (-754 |#1|) "failed") $) 64)) (-1499 (((-754 |#1|) $) 63)) (-4193 (((-3 $ "failed") $) 34)) (-3606 (((-108) $) 45)) (-1876 (($ $) 44)) (-1568 (((-108) $) 31)) (-2642 (((-108) $) 50)) (-2569 (($ (-754 |#1|) |#2|) 51)) (-2260 (($ $) 49)) (-1624 (((-2 (|:| |k| (-754 |#1|)) (|:| |c| |#2|)) $) 60)) (-3733 (((-754 |#1|) $) 61)) (-1405 (($ (-1 |#2| |#2|) $) 41)) (-3550 (($ $ |#1|) 57) (($ $ (-754 |#1|)) 56) (($ $ $) 55)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-2308 (((-108) $) 47)) (-2730 ((|#2| $) 46)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#2|) 68) (($ (-754 |#1|)) 65) (($ |#1|) 48)) (-3031 ((|#2| $ (-754 |#1|)) 59) ((|#2| $ $) 58)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) +(((-1178 |#1| |#2|) (-1194) (-782) (-968)) (T -1178)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-782)) (-4 *2 (-968)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) (-5 *2 (-754 *3)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) (-5 *2 (-2 (|:| |k| (-754 *3)) (|:| |c| *4))))) (-3031 (*1 *2 *1 *3) (-12 (-5 *3 (-754 *4)) (-4 *1 (-1178 *4 *2)) (-4 *4 (-782)) (-4 *2 (-968)))) (-3031 (*1 *2 *1 *1) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-782)) (-4 *2 (-968)))) (-3550 (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) (-3550 (*1 *1 *1 *2) (-12 (-5 *2 (-754 *3)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)))) (-3550 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) (-1927 (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) (-1927 (*1 *1 *1 *2) (-12 (-5 *2 (-754 *3)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)))) (-1927 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) (-2569 (*1 *1 *2 *3) (-12 (-5 *2 (-754 *4)) (-4 *4 (-782)) (-4 *1 (-1178 *4 *3)) (-4 *3 (-968)))) (-2642 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) (-5 *2 (-108)))) (-2260 (*1 *1 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) (-2217 (*1 *1 *2) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) (-2308 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) (-5 *2 (-108)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-782)) (-4 *2 (-968)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) (-5 *2 (-108)))) (-1876 (*1 *1 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) (-2009 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)) (-4 *3 (-157)))) (-2009 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) (-4 *4 (-157)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)))) (-4096 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) (-5 *2 (-585 *3))))) +(-13 (-968) (-1175 |t#2|) (-959 (-754 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3733 ((-754 |t#1|) $)) (-15 -1624 ((-2 (|:| |k| (-754 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3031 (|t#2| $ (-754 |t#1|))) (-15 -3031 (|t#2| $ $)) (-15 -3550 ($ $ |t#1|)) (-15 -3550 ($ $ (-754 |t#1|))) (-15 -3550 ($ $ $)) (-15 -1927 ($ $ |t#1|)) (-15 -1927 ($ $ (-754 |t#1|))) (-15 -1927 ($ $ $)) (-15 -2569 ($ (-754 |t#1|) |t#2|)) (-15 -2642 ((-108) $)) (-15 -2260 ($ $)) (-15 -2217 ($ |t#1|)) (-15 -2308 ((-108) $)) (-15 -2730 (|t#2| $)) (-15 -3606 ((-108) $)) (-15 -1876 ($ $)) (IF (|has| |t#2| (-157)) (PROGN (-15 -2009 ($ $ $)) (-15 -2009 ($ $ (-705)))) |%noBranch|) (-15 -1405 ($ (-1 |t#2| |t#2|) $)) (-15 -4096 ((-585 |t#1|) $)) (IF (|has| |t#2| (-6 -4214)) (-6 -4214) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#2|) . T) ((-587 $) . T) ((-652 |#2|) |has| |#2| (-157)) ((-661) . T) ((-959 (-754 |#1|)) . T) ((-974 |#2|) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1175 |#2|) . T)) +((-3839 (((-108) $) 14)) (-3980 (((-108) $) 13)) (-3706 (($ $) 18) (($ $ (-705)) 19))) +(((-1179 |#1| |#2|) (-10 -8 (-15 -3706 (|#1| |#1| (-705))) (-15 -3706 (|#1| |#1|)) (-15 -3839 ((-108) |#1|)) (-15 -3980 ((-108) |#1|))) (-1180 |#2|) (-335)) (T -1179)) +NIL +(-10 -8 (-15 -3706 (|#1| |#1| (-705))) (-15 -3706 (|#1| |#1|)) (-15 -3839 ((-108) |#1|)) (-15 -3980 ((-108) |#1|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-1201 (((-2 (|:| -3307 $) (|:| -4208 $) (|:| |associate| $)) $) 41)) (-1410 (($ $) 40)) (-3060 (((-108) $) 38)) (-3839 (((-108) $) 94)) (-1922 (((-705)) 90)) (-3167 (((-3 $ "failed") $ $) 19)) (-4043 (($ $) 73)) (-3093 (((-390 $) $) 72)) (-3409 (((-108) $ $) 59)) (-2249 (($) 17 T CONST)) (-1301 (((-3 |#1| "failed") $) 101)) (-1499 ((|#1| $) 100)) (-2311 (($ $ $) 55)) (-4193 (((-3 $ "failed") $) 34)) (-2286 (($ $ $) 56)) (-3036 (((-2 (|:| -3031 (-585 $)) (|:| -1397 $)) (-585 $)) 51)) (-3824 (($ $ (-705)) 87 (-3730 (|has| |#1| (-133)) (|has| |#1| (-340)))) (($ $) 86 (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1320 (((-108) $) 71)) (-3709 (((-768 (-848)) $) 84 (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-1568 (((-108) $) 31)) (-1580 (((-3 (-585 $) "failed") (-585 $) $) 52)) (-2254 (($ $ $) 46) (($ (-585 $)) 45)) (-1266 (((-1065) $) 9)) (-3151 (($ $) 70)) (-2141 (((-108) $) 93)) (-4139 (((-1029) $) 10)) (-1715 (((-1078 $) (-1078 $) (-1078 $)) 44)) (-2292 (($ $ $) 48) (($ (-585 $)) 47)) (-1921 (((-390 $) $) 74)) (-1445 (((-768 (-848))) 91)) (-1817 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1397 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-2661 (((-3 (-585 $) "failed") (-585 $) $) 50)) (-3129 (((-705) $) 58)) (-1745 (((-2 (|:| -3573 $) (|:| -1354 $)) $ $) 57)) (-2867 (((-3 (-705) "failed") $ $) 85 (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-2914 (((-126)) 99)) (-4178 (((-768 (-848)) $) 92)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ $) 43) (($ (-379 (-519))) 65) (($ |#1|) 102)) (-3773 (((-3 $ "failed") $) 83 (-3730 (|has| |#1| (-133)) (|has| |#1| (-340))))) (-3594 (((-705)) 29)) (-1617 (((-108) $ $) 39)) (-3980 (((-108) $) 95)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33) (($ $ (-519)) 69)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-3706 (($ $) 89 (|has| |#1| (-340))) (($ $ (-705)) 88 (|has| |#1| (-340)))) (-1543 (((-108) $ $) 6)) (-1632 (($ $ $) 64) (($ $ |#1|) 98)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32) (($ $ (-519)) 68)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ $ (-379 (-519))) 67) (($ (-379 (-519)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96))) +(((-1180 |#1|) (-1194) (-335)) (T -1180)) +((-3980 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-108)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-108)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-108)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-768 (-848))))) (-1445 (*1 *2) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-768 (-848))))) (-1922 (*1 *2) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-705)))) (-3706 (*1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-335)) (-4 *2 (-340)))) (-3706 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-4 *3 (-340))))) +(-13 (-335) (-959 |t#1|) (-1170 |t#1|) (-10 -8 (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-374)) |%noBranch|) (-15 -3980 ((-108) $)) (-15 -3839 ((-108) $)) (-15 -2141 ((-108) $)) (-15 -4178 ((-768 (-848)) $)) (-15 -1445 ((-768 (-848)))) (-15 -1922 ((-705))) (IF (|has| |t#1| (-340)) (PROGN (-6 (-374)) (-15 -3706 ($ $)) (-15 -3706 ($ $ (-705)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-379 (-519))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3730 (|has| |#1| (-340)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-559 (-790)) . T) ((-157) . T) ((-219) . T) ((-264) . T) ((-280) . T) ((-335) . T) ((-374) -3730 (|has| |#1| (-340)) (|has| |#1| (-133))) ((-423) . T) ((-511) . T) ((-587 #0#) . T) ((-587 |#1|) . T) ((-587 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-661) . T) ((-847) . T) ((-959 |#1|) . T) ((-974 #0#) . T) ((-974 |#1|) . T) ((-974 $) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1121) . T) ((-1170 |#1|) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4096 (((-585 |#1|) $) 85)) (-1851 (($ $ (-705)) 88)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2009 (($ $ $) NIL (|has| |#2| (-157))) (($ $ (-705)) NIL (|has| |#2| (-157)))) (-2249 (($) NIL T CONST)) (-1927 (($ $ |#1|) NIL) (($ $ (-754 |#1|)) NIL) (($ $ $) NIL)) (-1301 (((-3 (-754 |#1|) "failed") $) NIL) (((-3 (-820 |#1|) "failed") $) NIL)) (-1499 (((-754 |#1|) $) NIL) (((-820 |#1|) $) NIL)) (-3218 (($ $) 87)) (-4193 (((-3 $ "failed") $) NIL)) (-3606 (((-108) $) 76)) (-1876 (($ $) 80)) (-2792 (($ $ $ (-705)) 89)) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-2569 (($ (-754 |#1|) |#2|) NIL) (($ (-820 |#1|) |#2|) 26)) (-2260 (($ $) 102)) (-1624 (((-2 (|:| |k| (-754 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3733 (((-754 |#1|) $) NIL)) (-2168 (((-754 |#1|) $) NIL)) (-1405 (($ (-1 |#2| |#2|) $) NIL)) (-3550 (($ $ |#1|) NIL) (($ $ (-754 |#1|)) NIL) (($ $ $) NIL)) (-1254 (($ $ (-705)) 96 (|has| |#2| (-652 (-379 (-519)))))) (-2352 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3185 (((-820 |#1|) $) 70)) (-3197 ((|#2| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-3325 (($ $ (-705)) 93 (|has| |#2| (-652 (-379 (-519)))))) (-4178 (((-705) $) 86)) (-2308 (((-108) $) 71)) (-2730 ((|#2| $) 75)) (-2217 (((-790) $) 57) (($ (-519)) NIL) (($ |#2|) 51) (($ (-754 |#1|)) NIL) (($ |#1|) 59) (($ (-820 |#1|)) NIL) (($ (-603 |#1| |#2|)) 43) (((-1176 |#1| |#2|) $) 64) (((-1185 |#1| |#2|) $) 69)) (-2988 (((-585 |#2|) $) NIL)) (-1220 ((|#2| $ (-820 |#1|)) NIL)) (-3031 ((|#2| $ (-754 |#1|)) NIL) ((|#2| $ $) NIL)) (-3594 (((-705)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 21 T CONST)) (-3611 (($) 25 T CONST)) (-3613 (((-585 (-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2038 (((-3 (-603 |#1| |#2|) "failed") $) 101)) (-1543 (((-108) $ $) 65)) (-1623 (($ $) 95) (($ $ $) 94)) (-1614 (($ $ $) 20)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-820 |#1|)) NIL))) +(((-1181 |#1| |#2|) (-13 (-1182 |#1| |#2|) (-354 |#2| (-820 |#1|)) (-10 -8 (-15 -2217 ($ (-603 |#1| |#2|))) (-15 -2217 ((-1176 |#1| |#2|) $)) (-15 -2217 ((-1185 |#1| |#2|) $)) (-15 -2038 ((-3 (-603 |#1| |#2|) "failed") $)) (-15 -2792 ($ $ $ (-705))) (IF (|has| |#2| (-652 (-379 (-519)))) (PROGN (-15 -3325 ($ $ (-705))) (-15 -1254 ($ $ (-705)))) |%noBranch|))) (-782) (-157)) (T -1181)) +((-2217 (*1 *1 *2) (-12 (-5 *2 (-603 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) (-5 *1 (-1181 *3 *4)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-1181 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1181 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)))) (-2038 (*1 *2 *1) (|partial| -12 (-5 *2 (-603 *3 *4)) (-5 *1 (-1181 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)))) (-2792 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-1181 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)))) (-3325 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-1181 *3 *4)) (-4 *4 (-652 (-379 (-519)))) (-4 *3 (-782)) (-4 *4 (-157)))) (-1254 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-1181 *3 *4)) (-4 *4 (-652 (-379 (-519)))) (-4 *3 (-782)) (-4 *4 (-157))))) +(-13 (-1182 |#1| |#2|) (-354 |#2| (-820 |#1|)) (-10 -8 (-15 -2217 ($ (-603 |#1| |#2|))) (-15 -2217 ((-1176 |#1| |#2|) $)) (-15 -2217 ((-1185 |#1| |#2|) $)) (-15 -2038 ((-3 (-603 |#1| |#2|) "failed") $)) (-15 -2792 ($ $ $ (-705))) (IF (|has| |#2| (-652 (-379 (-519)))) (PROGN (-15 -3325 ($ $ (-705))) (-15 -1254 ($ $ (-705)))) |%noBranch|))) +((-1430 (((-108) $ $) 7)) (-3569 (((-108) $) 16)) (-4096 (((-585 |#1|) $) 40)) (-1851 (($ $ (-705)) 73)) (-3167 (((-3 $ "failed") $ $) 19)) (-2009 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-705)) 42 (|has| |#2| (-157)))) (-2249 (($) 17 T CONST)) (-1927 (($ $ |#1|) 54) (($ $ (-754 |#1|)) 53) (($ $ $) 52)) (-1301 (((-3 (-754 |#1|) "failed") $) 64)) (-1499 (((-754 |#1|) $) 63)) (-4193 (((-3 $ "failed") $) 34)) (-3606 (((-108) $) 45)) (-1876 (($ $) 44)) (-1568 (((-108) $) 31)) (-2642 (((-108) $) 50)) (-2569 (($ (-754 |#1|) |#2|) 51)) (-2260 (($ $) 49)) (-1624 (((-2 (|:| |k| (-754 |#1|)) (|:| |c| |#2|)) $) 60)) (-3733 (((-754 |#1|) $) 61)) (-2168 (((-754 |#1|) $) 75)) (-1405 (($ (-1 |#2| |#2|) $) 41)) (-3550 (($ $ |#1|) 57) (($ $ (-754 |#1|)) 56) (($ $ $) 55)) (-1266 (((-1065) $) 9)) (-4139 (((-1029) $) 10)) (-4178 (((-705) $) 74)) (-2308 (((-108) $) 47)) (-2730 ((|#2| $) 46)) (-2217 (((-790) $) 11) (($ (-519)) 28) (($ |#2|) 68) (($ (-754 |#1|)) 65) (($ |#1|) 48)) (-3031 ((|#2| $ (-754 |#1|)) 59) ((|#2| $ $) 58)) (-3594 (((-705)) 29)) (-3559 (($ $ (-848)) 26) (($ $ (-705)) 33)) (-3602 (($) 18 T CONST)) (-3611 (($) 30 T CONST)) (-1543 (((-108) $ $) 6)) (-1623 (($ $) 22) (($ $ $) 21)) (-1614 (($ $ $) 14)) (** (($ $ (-848)) 25) (($ $ (-705)) 32)) (* (($ (-848) $) 13) (($ (-705) $) 15) (($ (-519) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62))) +(((-1182 |#1| |#2|) (-1194) (-782) (-968)) (T -1182)) +((-2168 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) (-5 *2 (-754 *3)))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) (-5 *2 (-705)))) (-1851 (*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1182 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968))))) +(-13 (-1178 |t#1| |t#2|) (-10 -8 (-15 -2168 ((-754 |t#1|) $)) (-15 -4178 ((-705) $)) (-15 -1851 ($ $ (-705))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-559 (-790)) . T) ((-587 |#2|) . T) ((-587 $) . T) ((-652 |#2|) |has| |#2| (-157)) ((-661) . T) ((-959 (-754 |#1|)) . T) ((-974 |#2|) . T) ((-968) . T) ((-975) . T) ((-1023) . T) ((-1011) . T) ((-1175 |#2|) . T) ((-1178 |#1| |#2|) . T)) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4096 (((-585 (-1082)) $) NIL)) (-3992 (($ (-1176 (-1082) |#1|)) NIL)) (-1851 (($ $ (-705)) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2009 (($ $ $) NIL (|has| |#1| (-157))) (($ $ (-705)) NIL (|has| |#1| (-157)))) (-2249 (($) NIL T CONST)) (-1927 (($ $ (-1082)) NIL) (($ $ (-754 (-1082))) NIL) (($ $ $) NIL)) (-1301 (((-3 (-754 (-1082)) "failed") $) NIL)) (-1499 (((-754 (-1082)) $) NIL)) (-4193 (((-3 $ "failed") $) NIL)) (-3606 (((-108) $) NIL)) (-1876 (($ $) NIL)) (-1568 (((-108) $) NIL)) (-2642 (((-108) $) NIL)) (-2569 (($ (-754 (-1082)) |#1|) NIL)) (-2260 (($ $) NIL)) (-1624 (((-2 (|:| |k| (-754 (-1082))) (|:| |c| |#1|)) $) NIL)) (-3733 (((-754 (-1082)) $) NIL)) (-2168 (((-754 (-1082)) $) NIL)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-3550 (($ $ (-1082)) NIL) (($ $ (-754 (-1082))) NIL) (($ $ $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1616 (((-1176 (-1082) |#1|) $) NIL)) (-4178 (((-705) $) NIL)) (-2308 (((-108) $) NIL)) (-2730 ((|#1| $) NIL)) (-2217 (((-790) $) NIL) (($ (-519)) NIL) (($ |#1|) NIL) (($ (-754 (-1082))) NIL) (($ (-1082)) NIL)) (-3031 ((|#1| $ (-754 (-1082))) NIL) ((|#1| $ $) NIL)) (-3594 (((-705)) NIL)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) NIL T CONST)) (-1402 (((-585 (-2 (|:| |k| (-1082)) (|:| |c| $))) $) NIL)) (-3611 (($) NIL T CONST)) (-1543 (((-108) $ $) NIL)) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) NIL)) (** (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1082) $) NIL))) +(((-1183 |#1|) (-13 (-1182 (-1082) |#1|) (-10 -8 (-15 -1616 ((-1176 (-1082) |#1|) $)) (-15 -3992 ($ (-1176 (-1082) |#1|))) (-15 -1402 ((-585 (-2 (|:| |k| (-1082)) (|:| |c| $))) $)))) (-968)) (T -1183)) +((-1616 (*1 *2 *1) (-12 (-5 *2 (-1176 (-1082) *3)) (-5 *1 (-1183 *3)) (-4 *3 (-968)))) (-3992 (*1 *1 *2) (-12 (-5 *2 (-1176 (-1082) *3)) (-4 *3 (-968)) (-5 *1 (-1183 *3)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| (-1082)) (|:| |c| (-1183 *3))))) (-5 *1 (-1183 *3)) (-4 *3 (-968))))) +(-13 (-1182 (-1082) |#1|) (-10 -8 (-15 -1616 ((-1176 (-1082) |#1|) $)) (-15 -3992 ($ (-1176 (-1082) |#1|))) (-15 -1402 ((-585 (-2 (|:| |k| (-1082)) (|:| |c| $))) $)))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2249 (($) NIL T CONST)) (-1301 (((-3 |#2| "failed") $) NIL)) (-1499 ((|#2| $) NIL)) (-3218 (($ $) NIL)) (-4193 (((-3 $ "failed") $) 35)) (-3606 (((-108) $) 30)) (-1876 (($ $) 31)) (-1568 (((-108) $) NIL)) (-3798 (((-705) $) NIL)) (-2089 (((-585 $) $) NIL)) (-2642 (((-108) $) NIL)) (-2569 (($ |#2| |#1|) NIL)) (-3733 ((|#2| $) 19)) (-2168 ((|#2| $) 16)) (-1405 (($ (-1 |#1| |#1|) $) NIL)) (-2352 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3185 ((|#2| $) NIL)) (-3197 ((|#1| $) NIL)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-2308 (((-108) $) 27)) (-2730 ((|#1| $) 28)) (-2217 (((-790) $) 54) (($ (-519)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-2988 (((-585 |#1|) $) NIL)) (-1220 ((|#1| $ |#2|) NIL)) (-3031 ((|#1| $ |#2|) 24)) (-3594 (((-705)) 14)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 25 T CONST)) (-3611 (($) 11 T CONST)) (-3613 (((-585 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1543 (((-108) $ $) 26)) (-1632 (($ $ |#1|) 56 (|has| |#1| (-335)))) (-1623 (($ $) NIL) (($ $ $) NIL)) (-1614 (($ $ $) 43)) (** (($ $ (-848)) NIL) (($ $ (-705)) 45)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3532 (((-705) $) 15))) +(((-1184 |#1| |#2|) (-13 (-968) (-1175 |#1|) (-354 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3532 ((-705) $)) (-15 -2217 ($ |#2|)) (-15 -2168 (|#2| $)) (-15 -3733 (|#2| $)) (-15 -3218 ($ $)) (-15 -3031 (|#1| $ |#2|)) (-15 -2308 ((-108) $)) (-15 -2730 (|#1| $)) (-15 -3606 ((-108) $)) (-15 -1876 ($ $)) (-15 -1405 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-335)) (-15 -1632 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4214)) (-6 -4214) |%noBranch|) (IF (|has| |#1| (-6 -4218)) (-6 -4218) |%noBranch|) (IF (|has| |#1| (-6 -4219)) (-6 -4219) |%noBranch|))) (-968) (-778)) (T -1184)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-968)) (-4 *3 (-778)))) (-3218 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-968)) (-4 *3 (-778)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-1184 *3 *4)) (-4 *4 (-778)))) (-2217 (*1 *1 *2) (-12 (-5 *1 (-1184 *3 *2)) (-4 *3 (-968)) (-4 *2 (-778)))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-968)) (-4 *4 (-778)))) (-2168 (*1 *2 *1) (-12 (-4 *2 (-778)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-968)))) (-3733 (*1 *2 *1) (-12 (-4 *2 (-778)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-968)))) (-3031 (*1 *2 *1 *3) (-12 (-4 *2 (-968)) (-5 *1 (-1184 *2 *3)) (-4 *3 (-778)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-968)) (-4 *4 (-778)))) (-2730 (*1 *2 *1) (-12 (-4 *2 (-968)) (-5 *1 (-1184 *2 *3)) (-4 *3 (-778)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-968)) (-4 *4 (-778)))) (-1876 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-968)) (-4 *3 (-778)))) (-1632 (*1 *1 *1 *2) (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-335)) (-4 *2 (-968)) (-4 *3 (-778))))) +(-13 (-968) (-1175 |#1|) (-354 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3532 ((-705) $)) (-15 -2217 ($ |#2|)) (-15 -2168 (|#2| $)) (-15 -3733 (|#2| $)) (-15 -3218 ($ $)) (-15 -3031 (|#1| $ |#2|)) (-15 -2308 ((-108) $)) (-15 -2730 (|#1| $)) (-15 -3606 ((-108) $)) (-15 -1876 ($ $)) (-15 -1405 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-335)) (-15 -1632 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4214)) (-6 -4214) |%noBranch|) (IF (|has| |#1| (-6 -4218)) (-6 -4218) |%noBranch|) (IF (|has| |#1| (-6 -4219)) (-6 -4219) |%noBranch|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) NIL)) (-4096 (((-585 |#1|) $) 120)) (-3992 (($ (-1176 |#1| |#2|)) 44)) (-1851 (($ $ (-705)) 32)) (-3167 (((-3 $ "failed") $ $) NIL)) (-2009 (($ $ $) 48 (|has| |#2| (-157))) (($ $ (-705)) 46 (|has| |#2| (-157)))) (-2249 (($) NIL T CONST)) (-1927 (($ $ |#1|) 102) (($ $ (-754 |#1|)) 103) (($ $ $) 25)) (-1301 (((-3 (-754 |#1|) "failed") $) NIL)) (-1499 (((-754 |#1|) $) NIL)) (-4193 (((-3 $ "failed") $) 110)) (-3606 (((-108) $) 105)) (-1876 (($ $) 106)) (-1568 (((-108) $) NIL)) (-2642 (((-108) $) NIL)) (-2569 (($ (-754 |#1|) |#2|) 19)) (-2260 (($ $) NIL)) (-1624 (((-2 (|:| |k| (-754 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3733 (((-754 |#1|) $) 111)) (-2168 (((-754 |#1|) $) 114)) (-1405 (($ (-1 |#2| |#2|) $) 119)) (-3550 (($ $ |#1|) 100) (($ $ (-754 |#1|)) 101) (($ $ $) 56)) (-1266 (((-1065) $) NIL)) (-4139 (((-1029) $) NIL)) (-1616 (((-1176 |#1| |#2|) $) 84)) (-4178 (((-705) $) 117)) (-2308 (((-108) $) 70)) (-2730 ((|#2| $) 28)) (-2217 (((-790) $) 63) (($ (-519)) 77) (($ |#2|) 74) (($ (-754 |#1|)) 17) (($ |#1|) 73)) (-3031 ((|#2| $ (-754 |#1|)) 104) ((|#2| $ $) 27)) (-3594 (((-705)) 108)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 14 T CONST)) (-1402 (((-585 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3611 (($) 29 T CONST)) (-1543 (((-108) $ $) 13)) (-1623 (($ $) 88) (($ $ $) 91)) (-1614 (($ $ $) 55)) (** (($ $ (-848)) NIL) (($ $ (-705)) 49)) (* (($ (-848) $) NIL) (($ (-705) $) 47) (($ (-519) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1185 |#1| |#2|) (-13 (-1182 |#1| |#2|) (-10 -8 (-15 -1616 ((-1176 |#1| |#2|) $)) (-15 -3992 ($ (-1176 |#1| |#2|))) (-15 -1402 ((-585 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-782) (-968)) (T -1185)) +((-1616 (*1 *2 *1) (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)))) (-3992 (*1 *1 *2) (-12 (-5 *2 (-1176 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) (-5 *1 (-1185 *3 *4)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-585 (-2 (|:| |k| *3) (|:| |c| (-1185 *3 *4))))) (-5 *1 (-1185 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968))))) +(-13 (-1182 |#1| |#2|) (-10 -8 (-15 -1616 ((-1176 |#1| |#2|) $)) (-15 -3992 ($ (-1176 |#1| |#2|))) (-15 -1402 ((-585 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-1361 (((-585 (-1063 |#1|)) (-1 (-585 (-1063 |#1|)) (-585 (-1063 |#1|))) (-519)) 15) (((-1063 |#1|) (-1 (-1063 |#1|) (-1063 |#1|))) 11))) +(((-1186 |#1|) (-10 -7 (-15 -1361 ((-1063 |#1|) (-1 (-1063 |#1|) (-1063 |#1|)))) (-15 -1361 ((-585 (-1063 |#1|)) (-1 (-585 (-1063 |#1|)) (-585 (-1063 |#1|))) (-519)))) (-1117)) (T -1186)) +((-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-585 (-1063 *5)) (-585 (-1063 *5)))) (-5 *4 (-519)) (-5 *2 (-585 (-1063 *5))) (-5 *1 (-1186 *5)) (-4 *5 (-1117)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-1 (-1063 *4) (-1063 *4))) (-5 *2 (-1063 *4)) (-5 *1 (-1186 *4)) (-4 *4 (-1117))))) +(-10 -7 (-15 -1361 ((-1063 |#1|) (-1 (-1063 |#1|) (-1063 |#1|)))) (-15 -1361 ((-585 (-1063 |#1|)) (-1 (-585 (-1063 |#1|)) (-585 (-1063 |#1|))) (-519)))) +((-1530 (((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|))) 146) (((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108)) 145) (((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108) (-108)) 144) (((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108) (-108) (-108)) 143) (((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-965 |#1| |#2|)) 128)) (-2010 (((-585 (-965 |#1| |#2|)) (-585 (-879 |#1|))) 71) (((-585 (-965 |#1| |#2|)) (-585 (-879 |#1|)) (-108)) 70) (((-585 (-965 |#1| |#2|)) (-585 (-879 |#1|)) (-108) (-108)) 69)) (-3093 (((-585 (-1053 |#1| (-491 (-792 |#3|)) (-792 |#3|) (-714 |#1| (-792 |#3|)))) (-965 |#1| |#2|)) 60)) (-2463 (((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|))) 113) (((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108)) 112) (((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108) (-108)) 111) (((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108) (-108) (-108)) 110) (((-585 (-585 (-946 (-379 |#1|)))) (-965 |#1| |#2|)) 105)) (-1746 (((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|))) 118) (((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108)) 117) (((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108) (-108)) 116) (((-585 (-585 (-946 (-379 |#1|)))) (-965 |#1| |#2|)) 115)) (-1446 (((-585 (-714 |#1| (-792 |#3|))) (-1053 |#1| (-491 (-792 |#3|)) (-792 |#3|) (-714 |#1| (-792 |#3|)))) 97) (((-1078 (-946 (-379 |#1|))) (-1078 |#1|)) 88) (((-879 (-946 (-379 |#1|))) (-714 |#1| (-792 |#3|))) 95) (((-879 (-946 (-379 |#1|))) (-879 |#1|)) 93) (((-714 |#1| (-792 |#3|)) (-714 |#1| (-792 |#2|))) 33))) +(((-1187 |#1| |#2| |#3|) (-10 -7 (-15 -2010 ((-585 (-965 |#1| |#2|)) (-585 (-879 |#1|)) (-108) (-108))) (-15 -2010 ((-585 (-965 |#1| |#2|)) (-585 (-879 |#1|)) (-108))) (-15 -2010 ((-585 (-965 |#1| |#2|)) (-585 (-879 |#1|)))) (-15 -1530 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-965 |#1| |#2|))) (-15 -1530 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108) (-108) (-108))) (-15 -1530 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108) (-108))) (-15 -1530 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108))) (-15 -1530 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)))) (-15 -2463 ((-585 (-585 (-946 (-379 |#1|)))) (-965 |#1| |#2|))) (-15 -2463 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108) (-108) (-108))) (-15 -2463 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108) (-108))) (-15 -2463 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108))) (-15 -2463 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)))) (-15 -1746 ((-585 (-585 (-946 (-379 |#1|)))) (-965 |#1| |#2|))) (-15 -1746 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108) (-108))) (-15 -1746 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108))) (-15 -1746 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)))) (-15 -3093 ((-585 (-1053 |#1| (-491 (-792 |#3|)) (-792 |#3|) (-714 |#1| (-792 |#3|)))) (-965 |#1| |#2|))) (-15 -1446 ((-714 |#1| (-792 |#3|)) (-714 |#1| (-792 |#2|)))) (-15 -1446 ((-879 (-946 (-379 |#1|))) (-879 |#1|))) (-15 -1446 ((-879 (-946 (-379 |#1|))) (-714 |#1| (-792 |#3|)))) (-15 -1446 ((-1078 (-946 (-379 |#1|))) (-1078 |#1|))) (-15 -1446 ((-585 (-714 |#1| (-792 |#3|))) (-1053 |#1| (-491 (-792 |#3|)) (-792 |#3|) (-714 |#1| (-792 |#3|)))))) (-13 (-780) (-280) (-135) (-944)) (-585 (-1082)) (-585 (-1082))) (T -1187)) +((-1446 (*1 *2 *3) (-12 (-5 *3 (-1053 *4 (-491 (-792 *6)) (-792 *6) (-714 *4 (-792 *6)))) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-14 *6 (-585 (-1082))) (-5 *2 (-585 (-714 *4 (-792 *6)))) (-5 *1 (-1187 *4 *5 *6)) (-14 *5 (-585 (-1082))))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-1078 *4)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-1078 (-946 (-379 *4)))) (-5 *1 (-1187 *4 *5 *6)) (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082))))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-714 *4 (-792 *6))) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-14 *6 (-585 (-1082))) (-5 *2 (-879 (-946 (-379 *4)))) (-5 *1 (-1187 *4 *5 *6)) (-14 *5 (-585 (-1082))))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-879 *4)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-879 (-946 (-379 *4)))) (-5 *1 (-1187 *4 *5 *6)) (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082))))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-714 *4 (-792 *5))) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-14 *5 (-585 (-1082))) (-5 *2 (-714 *4 (-792 *6))) (-5 *1 (-1187 *4 *5 *6)) (-14 *6 (-585 (-1082))))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-965 *4 *5)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-14 *5 (-585 (-1082))) (-5 *2 (-585 (-1053 *4 (-491 (-792 *6)) (-792 *6) (-714 *4 (-792 *6))))) (-5 *1 (-1187 *4 *5 *6)) (-14 *6 (-585 (-1082))))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-585 (-879 *4))) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-585 (-946 (-379 *4))))) (-5 *1 (-1187 *4 *5 *6)) (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-585 (-946 (-379 *5))))) (-5 *1 (-1187 *5 *6 *7)) (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) (-1746 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-585 (-946 (-379 *5))))) (-5 *1 (-1187 *5 *6 *7)) (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-965 *4 *5)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-14 *5 (-585 (-1082))) (-5 *2 (-585 (-585 (-946 (-379 *4))))) (-5 *1 (-1187 *4 *5 *6)) (-14 *6 (-585 (-1082))))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-585 (-879 *4))) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-585 (-946 (-379 *4))))) (-5 *1 (-1187 *4 *5 *6)) (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082))))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-585 (-946 (-379 *5))))) (-5 *1 (-1187 *5 *6 *7)) (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) (-2463 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-585 (-946 (-379 *5))))) (-5 *1 (-1187 *5 *6 *7)) (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) (-2463 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-585 (-946 (-379 *5))))) (-5 *1 (-1187 *5 *6 *7)) (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-965 *4 *5)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-14 *5 (-585 (-1082))) (-5 *2 (-585 (-585 (-946 (-379 *4))))) (-5 *1 (-1187 *4 *5 *6)) (-14 *6 (-585 (-1082))))) (-1530 (*1 *2 *3) (-12 (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-2 (|:| -2948 (-1078 *4)) (|:| -3399 (-585 (-879 *4)))))) (-5 *1 (-1187 *4 *5 *6)) (-5 *3 (-585 (-879 *4))) (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082))))) (-1530 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-2 (|:| -2948 (-1078 *5)) (|:| -3399 (-585 (-879 *5)))))) (-5 *1 (-1187 *5 *6 *7)) (-5 *3 (-585 (-879 *5))) (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) (-1530 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-2 (|:| -2948 (-1078 *5)) (|:| -3399 (-585 (-879 *5)))))) (-5 *1 (-1187 *5 *6 *7)) (-5 *3 (-585 (-879 *5))) (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) (-1530 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-2 (|:| -2948 (-1078 *5)) (|:| -3399 (-585 (-879 *5)))))) (-5 *1 (-1187 *5 *6 *7)) (-5 *3 (-585 (-879 *5))) (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-965 *4 *5)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-14 *5 (-585 (-1082))) (-5 *2 (-585 (-2 (|:| -2948 (-1078 *4)) (|:| -3399 (-585 (-879 *4)))))) (-5 *1 (-1187 *4 *5 *6)) (-14 *6 (-585 (-1082))))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-585 (-879 *4))) (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-965 *4 *5))) (-5 *1 (-1187 *4 *5 *6)) (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082))))) (-2010 (*1 *2 *3 *4) (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-965 *5 *6))) (-5 *1 (-1187 *5 *6 *7)) (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) (-2010 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) (-5 *2 (-585 (-965 *5 *6))) (-5 *1 (-1187 *5 *6 *7)) (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082)))))) +(-10 -7 (-15 -2010 ((-585 (-965 |#1| |#2|)) (-585 (-879 |#1|)) (-108) (-108))) (-15 -2010 ((-585 (-965 |#1| |#2|)) (-585 (-879 |#1|)) (-108))) (-15 -2010 ((-585 (-965 |#1| |#2|)) (-585 (-879 |#1|)))) (-15 -1530 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-965 |#1| |#2|))) (-15 -1530 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108) (-108) (-108))) (-15 -1530 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108) (-108))) (-15 -1530 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)) (-108))) (-15 -1530 ((-585 (-2 (|:| -2948 (-1078 |#1|)) (|:| -3399 (-585 (-879 |#1|))))) (-585 (-879 |#1|)))) (-15 -2463 ((-585 (-585 (-946 (-379 |#1|)))) (-965 |#1| |#2|))) (-15 -2463 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108) (-108) (-108))) (-15 -2463 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108) (-108))) (-15 -2463 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108))) (-15 -2463 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)))) (-15 -1746 ((-585 (-585 (-946 (-379 |#1|)))) (-965 |#1| |#2|))) (-15 -1746 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108) (-108))) (-15 -1746 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)) (-108))) (-15 -1746 ((-585 (-585 (-946 (-379 |#1|)))) (-585 (-879 |#1|)))) (-15 -3093 ((-585 (-1053 |#1| (-491 (-792 |#3|)) (-792 |#3|) (-714 |#1| (-792 |#3|)))) (-965 |#1| |#2|))) (-15 -1446 ((-714 |#1| (-792 |#3|)) (-714 |#1| (-792 |#2|)))) (-15 -1446 ((-879 (-946 (-379 |#1|))) (-879 |#1|))) (-15 -1446 ((-879 (-946 (-379 |#1|))) (-714 |#1| (-792 |#3|)))) (-15 -1446 ((-1078 (-946 (-379 |#1|))) (-1078 |#1|))) (-15 -1446 ((-585 (-714 |#1| (-792 |#3|))) (-1053 |#1| (-491 (-792 |#3|)) (-792 |#3|) (-714 |#1| (-792 |#3|)))))) +((-3418 (((-3 (-1163 (-379 (-519))) "failed") (-1163 |#1|) |#1|) 17)) (-1803 (((-108) (-1163 |#1|)) 11)) (-2870 (((-3 (-1163 (-519)) "failed") (-1163 |#1|)) 14))) +(((-1188 |#1|) (-10 -7 (-15 -1803 ((-108) (-1163 |#1|))) (-15 -2870 ((-3 (-1163 (-519)) "failed") (-1163 |#1|))) (-15 -3418 ((-3 (-1163 (-379 (-519))) "failed") (-1163 |#1|) |#1|))) (-581 (-519))) (T -1188)) +((-3418 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1163 *4)) (-4 *4 (-581 (-519))) (-5 *2 (-1163 (-379 (-519)))) (-5 *1 (-1188 *4)))) (-2870 (*1 *2 *3) (|partial| -12 (-5 *3 (-1163 *4)) (-4 *4 (-581 (-519))) (-5 *2 (-1163 (-519))) (-5 *1 (-1188 *4)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-1163 *4)) (-4 *4 (-581 (-519))) (-5 *2 (-108)) (-5 *1 (-1188 *4))))) +(-10 -7 (-15 -1803 ((-108) (-1163 |#1|))) (-15 -2870 ((-3 (-1163 (-519)) "failed") (-1163 |#1|))) (-15 -3418 ((-3 (-1163 (-379 (-519))) "failed") (-1163 |#1|) |#1|))) +((-1430 (((-108) $ $) NIL)) (-3569 (((-108) $) 11)) (-3167 (((-3 $ "failed") $ $) NIL)) (-1642 (((-705)) 8)) (-2249 (($) NIL T CONST)) (-4193 (((-3 $ "failed") $) 43)) (-3314 (($) 36)) (-1568 (((-108) $) NIL)) (-1675 (((-3 $ "failed") $) 29)) (-3334 (((-848) $) 15)) (-1266 (((-1065) $) NIL)) (-3816 (($) 25 T CONST)) (-2770 (($ (-848)) 37)) (-4139 (((-1029) $) NIL)) (-1446 (((-519) $) 13)) (-2217 (((-790) $) 22) (($ (-519)) 19)) (-3594 (((-705)) 9)) (-3559 (($ $ (-848)) NIL) (($ $ (-705)) NIL)) (-3602 (($) 23 T CONST)) (-3611 (($) 24 T CONST)) (-1543 (((-108) $ $) 27)) (-1623 (($ $) 38) (($ $ $) 35)) (-1614 (($ $ $) 26)) (** (($ $ (-848)) NIL) (($ $ (-705)) 40)) (* (($ (-848) $) NIL) (($ (-705) $) NIL) (($ (-519) $) 32) (($ $ $) 31))) +(((-1189 |#1|) (-13 (-157) (-340) (-560 (-519)) (-1058)) (-848)) (T -1189)) +NIL +(-13 (-157) (-340) (-560 (-519)) (-1058)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-1194 3134421 3134426 3134431 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3134406 3134411 3134416 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3134391 3134396 3134401 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3134376 3134381 3134386 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3134361 3134366 3134371 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1189 3133491 3134236 3134313 "ZMOD" 3134318 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1188 3132601 3132765 3132974 "ZLINDEP" 3133323 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1187 3122005 3123750 3125702 "ZDSOLVE" 3130750 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1186 3121251 3121392 3121581 "YSTREAM" 3121851 NIL YSTREAM (NIL T) -7 NIL NIL) (-1185 3119019 3120556 3120759 "XRPOLY" 3121094 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1184 3115481 3116810 3117392 "XPR" 3118483 NIL XPR (NIL T T) -8 NIL NIL) (-1183 3113195 3114816 3115019 "XPOLY" 3115312 NIL XPOLY (NIL T) -8 NIL NIL) (-1182 3111008 3112386 3112441 "XPOLYC" 3112726 NIL XPOLYC (NIL T T) -9 NIL 3112839) (-1181 3107380 3109525 3109913 "XPBWPOLY" 3110666 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1180 3103307 3105620 3105663 "XF" 3106284 NIL XF (NIL T) -9 NIL 3106683) (-1179 3102928 3103016 3103185 "XF-" 3103190 NIL XF- (NIL T T) -8 NIL NIL) (-1178 3098307 3099606 3099661 "XFALG" 3101809 NIL XFALG (NIL T T) -9 NIL 3102596) (-1177 3097444 3097548 3097752 "XEXPPKG" 3098199 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1176 3095542 3097295 3097390 "XDPOLY" 3097395 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1175 3094420 3095030 3095073 "XALG" 3095135 NIL XALG (NIL T) -9 NIL 3095254) (-1174 3087896 3092404 3092897 "WUTSET" 3094012 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1173 3085708 3086515 3086866 "WP" 3087678 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1172 3084594 3084792 3085087 "WFFINTBS" 3085505 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1171 3082498 3082925 3083387 "WEIER" 3084166 NIL WEIER (NIL T) -7 NIL NIL) (-1170 3081646 3082070 3082113 "VSPACE" 3082249 NIL VSPACE (NIL T) -9 NIL 3082323) (-1169 3081484 3081511 3081602 "VSPACE-" 3081607 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1168 3081230 3081273 3081344 "VOID" 3081435 T VOID (NIL) -8 NIL NIL) (-1167 3079366 3079725 3080131 "VIEW" 3080846 T VIEW (NIL) -7 NIL NIL) (-1166 3075791 3076429 3077166 "VIEWDEF" 3078651 T VIEWDEF (NIL) -7 NIL NIL) (-1165 3065130 3067339 3069512 "VIEW3D" 3073640 T VIEW3D (NIL) -8 NIL NIL) (-1164 3057412 3059041 3060620 "VIEW2D" 3063573 T VIEW2D (NIL) -8 NIL NIL) (-1163 3052821 3057182 3057274 "VECTOR" 3057355 NIL VECTOR (NIL T) -8 NIL NIL) (-1162 3051398 3051657 3051975 "VECTOR2" 3052551 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1161 3044937 3049189 3049233 "VECTCAT" 3050221 NIL VECTCAT (NIL T) -9 NIL 3050805) (-1160 3043951 3044205 3044595 "VECTCAT-" 3044600 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1159 3043432 3043602 3043722 "VARIABLE" 3043866 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1158 3043364 3043369 3043400 "UTYPE" 3043405 T UTYPE (NIL) -9 NIL NIL) (-1157 3042199 3042353 3042614 "UTSODETL" 3043190 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1156 3039639 3040099 3040623 "UTSODE" 3041740 NIL UTSODE (NIL T T) -7 NIL NIL) (-1155 3031486 3037279 3037767 "UTS" 3039208 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1154 3022834 3028196 3028239 "UTSCAT" 3029340 NIL UTSCAT (NIL T) -9 NIL 3030097) (-1153 3020190 3020905 3021893 "UTSCAT-" 3021898 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1152 3019821 3019864 3019995 "UTS2" 3020141 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1151 3014096 3016661 3016705 "URAGG" 3018775 NIL URAGG (NIL T) -9 NIL 3019497) (-1150 3011035 3011898 3013021 "URAGG-" 3013026 NIL URAGG- (NIL T T) -8 NIL NIL) (-1149 3006721 3009652 3010123 "UPXSSING" 3010699 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1148 2998615 3005842 3006122 "UPXS" 3006498 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1147 2991647 2998520 2998591 "UPXSCONS" 2998596 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1146 2981939 2988766 2988828 "UPXSCCA" 2989477 NIL UPXSCCA (NIL T T) -9 NIL 2989718) (-1145 2981578 2981663 2981836 "UPXSCCA-" 2981841 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1144 2971792 2978392 2978435 "UPXSCAT" 2979078 NIL UPXSCAT (NIL T) -9 NIL 2979686) (-1143 2971226 2971305 2971482 "UPXS2" 2971707 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1142 2969880 2970133 2970484 "UPSQFREE" 2970969 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1141 2963775 2966827 2966882 "UPSCAT" 2968031 NIL UPSCAT (NIL T T) -9 NIL 2968804) (-1140 2962989 2963193 2963516 "UPSCAT-" 2963521 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1139 2949121 2957118 2957161 "UPOLYC" 2959239 NIL UPOLYC (NIL T) -9 NIL 2960459) (-1138 2940514 2942918 2946043 "UPOLYC-" 2946048 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1137 2940145 2940188 2940319 "UPOLYC2" 2940465 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1136 2931604 2939714 2939851 "UP" 2940055 NIL UP (NIL NIL T) -8 NIL NIL) (-1135 2930947 2931054 2931217 "UPMP" 2931493 NIL UPMP (NIL T T) -7 NIL NIL) (-1134 2930500 2930581 2930720 "UPDIVP" 2930860 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1133 2929068 2929317 2929633 "UPDECOMP" 2930249 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1132 2928303 2928415 2928600 "UPCDEN" 2928952 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1131 2927826 2927895 2928042 "UP2" 2928228 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1130 2926343 2927030 2927307 "UNISEG" 2927584 NIL UNISEG (NIL T) -8 NIL NIL) (-1129 2925558 2925685 2925890 "UNISEG2" 2926186 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1128 2924618 2924798 2925024 "UNIFACT" 2925374 NIL UNIFACT (NIL T) -7 NIL NIL) (-1127 2908517 2923799 2924049 "ULS" 2924425 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1126 2896485 2908422 2908493 "ULSCONS" 2908498 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1125 2879238 2891248 2891310 "ULSCCAT" 2892022 NIL ULSCCAT (NIL T T) -9 NIL 2892318) (-1124 2878289 2878534 2878921 "ULSCCAT-" 2878926 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1123 2868282 2874796 2874839 "ULSCAT" 2875695 NIL ULSCAT (NIL T) -9 NIL 2876425) (-1122 2867716 2867795 2867972 "ULS2" 2868197 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1121 2866113 2867080 2867111 "UFD" 2867323 T UFD (NIL) -9 NIL 2867437) (-1120 2865907 2865953 2866048 "UFD-" 2866053 NIL UFD- (NIL T) -8 NIL NIL) (-1119 2864989 2865172 2865388 "UDVO" 2865713 T UDVO (NIL) -7 NIL NIL) (-1118 2862805 2863214 2863685 "UDPO" 2864553 NIL UDPO (NIL T) -7 NIL NIL) (-1117 2862737 2862742 2862773 "TYPE" 2862778 T TYPE (NIL) -9 NIL NIL) (-1116 2861708 2861910 2862150 "TWOFACT" 2862531 NIL TWOFACT (NIL T) -7 NIL NIL) (-1115 2860646 2860983 2861246 "TUPLE" 2861480 NIL TUPLE (NIL T) -8 NIL NIL) (-1114 2858337 2858856 2859395 "TUBETOOL" 2860129 T TUBETOOL (NIL) -7 NIL NIL) (-1113 2857186 2857391 2857632 "TUBE" 2858130 NIL TUBE (NIL T) -8 NIL NIL) (-1112 2851910 2856164 2856446 "TS" 2856938 NIL TS (NIL T) -8 NIL NIL) (-1111 2840613 2844705 2844802 "TSETCAT" 2850036 NIL TSETCAT (NIL T T T T) -9 NIL 2851567) (-1110 2835348 2836946 2838836 "TSETCAT-" 2838841 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1109 2829611 2830457 2831399 "TRMANIP" 2834484 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1108 2829052 2829115 2829278 "TRIMAT" 2829543 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1107 2826858 2827095 2827458 "TRIGMNIP" 2828801 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1106 2826377 2826490 2826521 "TRIGCAT" 2826734 T TRIGCAT (NIL) -9 NIL NIL) (-1105 2826046 2826125 2826266 "TRIGCAT-" 2826271 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1104 2822945 2824906 2825186 "TREE" 2825801 NIL TREE (NIL T) -8 NIL NIL) (-1103 2822218 2822746 2822777 "TRANFUN" 2822812 T TRANFUN (NIL) -9 NIL 2822878) (-1102 2821497 2821688 2821968 "TRANFUN-" 2821973 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1101 2821301 2821333 2821394 "TOPSP" 2821458 T TOPSP (NIL) -7 NIL NIL) (-1100 2820653 2820768 2820921 "TOOLSIGN" 2821182 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1099 2819314 2819830 2820069 "TEXTFILE" 2820436 T TEXTFILE (NIL) -8 NIL NIL) (-1098 2817179 2817693 2818131 "TEX" 2818898 T TEX (NIL) -8 NIL NIL) (-1097 2816960 2816991 2817063 "TEX1" 2817142 NIL TEX1 (NIL T) -7 NIL NIL) (-1096 2816608 2816671 2816761 "TEMUTL" 2816892 T TEMUTL (NIL) -7 NIL NIL) (-1095 2814762 2815042 2815367 "TBCMPPK" 2816331 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1094 2806650 2812922 2812979 "TBAGG" 2813379 NIL TBAGG (NIL T T) -9 NIL 2813590) (-1093 2801720 2803208 2804962 "TBAGG-" 2804967 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1092 2801104 2801211 2801356 "TANEXP" 2801609 NIL TANEXP (NIL T) -7 NIL NIL) (-1091 2794605 2800961 2801054 "TABLE" 2801059 NIL TABLE (NIL T T) -8 NIL NIL) (-1090 2794018 2794116 2794254 "TABLEAU" 2794502 NIL TABLEAU (NIL T) -8 NIL NIL) (-1089 2788626 2789846 2791094 "TABLBUMP" 2792804 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1088 2785089 2785784 2786567 "SYSSOLP" 2787877 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1087 2781473 2782076 2782816 "SYNTAX" 2784371 T SYNTAX (NIL) -8 NIL NIL) (-1086 2778607 2779215 2779853 "SYMTAB" 2780857 T SYMTAB (NIL) -8 NIL NIL) (-1085 2773856 2774758 2775741 "SYMS" 2777646 T SYMS (NIL) -8 NIL NIL) (-1084 2771089 2773316 2773545 "SYMPOLY" 2773661 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1083 2770609 2770684 2770806 "SYMFUNC" 2771001 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1082 2766587 2767846 2768668 "SYMBOL" 2769809 T SYMBOL (NIL) -8 NIL NIL) (-1081 2760126 2761815 2763535 "SWITCH" 2764889 T SWITCH (NIL) -8 NIL NIL) (-1080 2753359 2758953 2759255 "SUTS" 2759881 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1079 2745252 2752480 2752760 "SUPXS" 2753136 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1078 2736784 2744873 2744998 "SUP" 2745161 NIL SUP (NIL T) -8 NIL NIL) (-1077 2735943 2736070 2736287 "SUPFRACF" 2736652 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1076 2735568 2735627 2735738 "SUP2" 2735878 NIL SUP2 (NIL T T) -7 NIL NIL) (-1075 2733986 2734260 2734622 "SUMRF" 2735267 NIL SUMRF (NIL T) -7 NIL NIL) (-1074 2733303 2733369 2733567 "SUMFS" 2733907 NIL SUMFS (NIL T T) -7 NIL NIL) (-1073 2717242 2732484 2732734 "SULS" 2733110 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1072 2716564 2716767 2716907 "SUCH" 2717150 NIL SUCH (NIL T T) -8 NIL NIL) (-1071 2710491 2711503 2712461 "SUBSPACE" 2715652 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1070 2709921 2710011 2710175 "SUBRESP" 2710379 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1069 2703290 2704586 2705897 "STTF" 2708657 NIL STTF (NIL T) -7 NIL NIL) (-1068 2697463 2698583 2699730 "STTFNC" 2702190 NIL STTFNC (NIL T) -7 NIL NIL) (-1067 2688814 2690681 2692474 "STTAYLOR" 2695704 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1066 2682058 2688678 2688761 "STRTBL" 2688766 NIL STRTBL (NIL T) -8 NIL NIL) (-1065 2677449 2682013 2682044 "STRING" 2682049 T STRING (NIL) -8 NIL NIL) (-1064 2672337 2676822 2676853 "STRICAT" 2676912 T STRICAT (NIL) -9 NIL 2676974) (-1063 2665053 2669860 2670480 "STREAM" 2671752 NIL STREAM (NIL T) -8 NIL NIL) (-1062 2664563 2664640 2664784 "STREAM3" 2664970 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1061 2663545 2663728 2663963 "STREAM2" 2664376 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1060 2663233 2663285 2663378 "STREAM1" 2663487 NIL STREAM1 (NIL T) -7 NIL NIL) (-1059 2662249 2662430 2662661 "STINPROD" 2663049 NIL STINPROD (NIL T) -7 NIL NIL) (-1058 2661827 2662011 2662042 "STEP" 2662122 T STEP (NIL) -9 NIL 2662200) (-1057 2655370 2661726 2661803 "STBL" 2661808 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1056 2650545 2654592 2654636 "STAGG" 2654789 NIL STAGG (NIL T) -9 NIL 2654878) (-1055 2648247 2648849 2649721 "STAGG-" 2649726 NIL STAGG- (NIL T T) -8 NIL NIL) (-1054 2646442 2648017 2648109 "STACK" 2648190 NIL STACK (NIL T) -8 NIL NIL) (-1053 2639173 2644589 2645044 "SREGSET" 2646072 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1052 2631613 2632981 2634493 "SRDCMPK" 2637779 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1051 2624580 2629053 2629084 "SRAGG" 2630387 T SRAGG (NIL) -9 NIL 2630995) (-1050 2623597 2623852 2624231 "SRAGG-" 2624236 NIL SRAGG- (NIL T) -8 NIL NIL) (-1049 2618046 2622516 2622943 "SQMATRIX" 2623216 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1048 2611798 2614766 2615492 "SPLTREE" 2617392 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1047 2607788 2608454 2609100 "SPLNODE" 2611224 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1046 2606834 2607067 2607098 "SPFCAT" 2607542 T SPFCAT (NIL) -9 NIL NIL) (-1045 2605571 2605781 2606045 "SPECOUT" 2606592 T SPECOUT (NIL) -7 NIL NIL) (-1044 2605332 2605372 2605441 "SPADPRSR" 2605524 T SPADPRSR (NIL) -7 NIL NIL) (-1043 2597354 2599101 2599144 "SPACEC" 2603467 NIL SPACEC (NIL T) -9 NIL 2605283) (-1042 2595526 2597287 2597335 "SPACE3" 2597340 NIL SPACE3 (NIL T) -8 NIL NIL) (-1041 2594278 2594449 2594740 "SORTPAK" 2595331 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1040 2592334 2592637 2593055 "SOLVETRA" 2593942 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1039 2591345 2591567 2591841 "SOLVESER" 2592107 NIL SOLVESER (NIL T) -7 NIL NIL) (-1038 2586565 2587446 2588448 "SOLVERAD" 2590397 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1037 2582380 2582989 2583718 "SOLVEFOR" 2585932 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1036 2576679 2581731 2581828 "SNTSCAT" 2581833 NIL SNTSCAT (NIL T T T T) -9 NIL 2581903) (-1035 2570784 2575010 2575400 "SMTS" 2576369 NIL SMTS (NIL T T T) -8 NIL NIL) (-1034 2565195 2570673 2570749 "SMP" 2570754 NIL SMP (NIL T T) -8 NIL NIL) (-1033 2563354 2563655 2564053 "SMITH" 2564892 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1032 2556318 2560514 2560617 "SMATCAT" 2561957 NIL SMATCAT (NIL NIL T T T) -9 NIL 2562506) (-1031 2553259 2554082 2555259 "SMATCAT-" 2555264 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1030 2550972 2552495 2552539 "SKAGG" 2552800 NIL SKAGG (NIL T) -9 NIL 2552935) (-1029 2547030 2550076 2550354 "SINT" 2550716 T SINT (NIL) -8 NIL NIL) (-1028 2546802 2546840 2546906 "SIMPAN" 2546986 T SIMPAN (NIL) -7 NIL NIL) (-1027 2545640 2545861 2546136 "SIGNRF" 2546561 NIL SIGNRF (NIL T) -7 NIL NIL) (-1026 2544449 2544600 2544890 "SIGNEF" 2545469 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1025 2542139 2542593 2543099 "SHP" 2543990 NIL SHP (NIL T NIL) -7 NIL NIL) (-1024 2535992 2542040 2542116 "SHDP" 2542121 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1023 2535481 2535673 2535704 "SGROUP" 2535856 T SGROUP (NIL) -9 NIL 2535943) (-1022 2535251 2535303 2535407 "SGROUP-" 2535412 NIL SGROUP- (NIL T) -8 NIL NIL) (-1021 2532087 2532784 2533507 "SGCF" 2534550 T SGCF (NIL) -7 NIL NIL) (-1020 2526485 2531537 2531634 "SFRTCAT" 2531639 NIL SFRTCAT (NIL T T T T) -9 NIL 2531677) (-1019 2519945 2520960 2522094 "SFRGCD" 2525468 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1018 2513111 2514182 2515366 "SFQCMPK" 2518878 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1017 2512733 2512822 2512932 "SFORT" 2513052 NIL SFORT (NIL T T) -8 NIL NIL) (-1016 2511878 2512573 2512694 "SEXOF" 2512699 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1015 2511012 2511759 2511827 "SEX" 2511832 T SEX (NIL) -8 NIL NIL) (-1014 2505788 2506477 2506573 "SEXCAT" 2510344 NIL SEXCAT (NIL T T T T T) -9 NIL 2510963) (-1013 2502968 2505722 2505770 "SET" 2505775 NIL SET (NIL T) -8 NIL NIL) (-1012 2501219 2501681 2501986 "SETMN" 2502709 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1011 2500826 2500952 2500983 "SETCAT" 2501100 T SETCAT (NIL) -9 NIL 2501184) (-1010 2500606 2500658 2500757 "SETCAT-" 2500762 NIL SETCAT- (NIL T) -8 NIL NIL) (-1009 2496993 2499067 2499111 "SETAGG" 2499981 NIL SETAGG (NIL T) -9 NIL 2500321) (-1008 2496451 2496567 2496804 "SETAGG-" 2496809 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1007 2495654 2495947 2496009 "SEGXCAT" 2496295 NIL SEGXCAT (NIL T T) -9 NIL 2496415) (-1006 2494710 2495320 2495502 "SEG" 2495507 NIL SEG (NIL T) -8 NIL NIL) (-1005 2493616 2493829 2493873 "SEGCAT" 2494455 NIL SEGCAT (NIL T) -9 NIL 2494693) (-1004 2492665 2492995 2493195 "SEGBIND" 2493451 NIL SEGBIND (NIL T) -8 NIL NIL) (-1003 2492286 2492345 2492458 "SEGBIND2" 2492600 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1002 2491505 2491631 2491835 "SEG2" 2492130 NIL SEG2 (NIL T T) -7 NIL NIL) (-1001 2490942 2491440 2491487 "SDVAR" 2491492 NIL SDVAR (NIL T) -8 NIL NIL) (-1000 2483194 2490715 2490843 "SDPOL" 2490848 NIL SDPOL (NIL T) -8 NIL NIL) (-999 2481793 2482059 2482376 "SCPKG" 2482909 NIL SCPKG (NIL T) -7 NIL NIL) (-998 2480938 2481117 2481315 "SCOPE" 2481615 T SCOPE (NIL) -8 NIL NIL) (-997 2480165 2480298 2480475 "SCACHE" 2480793 NIL SCACHE (NIL T) -7 NIL NIL) (-996 2479608 2479929 2480012 "SAOS" 2480102 T SAOS (NIL) -8 NIL NIL) (-995 2479176 2479211 2479382 "SAERFFC" 2479567 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-994 2473072 2479075 2479153 "SAE" 2479158 NIL SAE (NIL T T NIL) -8 NIL NIL) (-993 2472668 2472703 2472860 "SAEFACT" 2473031 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-992 2470994 2471308 2471707 "RURPK" 2472334 NIL RURPK (NIL T NIL) -7 NIL NIL) (-991 2469647 2469924 2470231 "RULESET" 2470830 NIL RULESET (NIL T T T) -8 NIL NIL) (-990 2466855 2467358 2467819 "RULE" 2469329 NIL RULE (NIL T T T) -8 NIL NIL) (-989 2466497 2466652 2466733 "RULECOLD" 2466807 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-988 2461389 2462183 2463099 "RSETGCD" 2465696 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-987 2450703 2455755 2455850 "RSETCAT" 2459915 NIL RSETCAT (NIL T T T T) -9 NIL 2461012) (-986 2448634 2449173 2449993 "RSETCAT-" 2449998 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-985 2441064 2442439 2443955 "RSDCMPK" 2447233 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-984 2439081 2439522 2439595 "RRCC" 2440671 NIL RRCC (NIL T T) -9 NIL 2441015) (-983 2438435 2438609 2438885 "RRCC-" 2438890 NIL RRCC- (NIL T T T) -8 NIL NIL) (-982 2412801 2422426 2422491 "RPOLCAT" 2432993 NIL RPOLCAT (NIL T T T) -9 NIL 2436151) (-981 2404305 2406643 2409761 "RPOLCAT-" 2409766 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-980 2395371 2402535 2403015 "ROUTINE" 2403845 T ROUTINE (NIL) -8 NIL NIL) (-979 2392076 2394927 2395074 "ROMAN" 2395244 T ROMAN (NIL) -8 NIL NIL) (-978 2390362 2390947 2391204 "ROIRC" 2391882 NIL ROIRC (NIL T T) -8 NIL NIL) (-977 2386766 2389070 2389099 "RNS" 2389395 T RNS (NIL) -9 NIL 2389665) (-976 2385280 2385663 2386194 "RNS-" 2386267 NIL RNS- (NIL T) -8 NIL NIL) (-975 2384705 2385113 2385142 "RNG" 2385147 T RNG (NIL) -9 NIL 2385168) (-974 2384102 2384464 2384505 "RMODULE" 2384565 NIL RMODULE (NIL T) -9 NIL 2384607) (-973 2382954 2383048 2383378 "RMCAT2" 2384003 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-972 2379668 2382137 2382458 "RMATRIX" 2382689 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-971 2372664 2374898 2375011 "RMATCAT" 2378320 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2379302) (-970 2372043 2372190 2372493 "RMATCAT-" 2372498 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-969 2371613 2371688 2371814 "RINTERP" 2371962 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-968 2370663 2371227 2371256 "RING" 2371366 T RING (NIL) -9 NIL 2371460) (-967 2370458 2370502 2370596 "RING-" 2370601 NIL RING- (NIL T) -8 NIL NIL) (-966 2369306 2369543 2369799 "RIDIST" 2370222 T RIDIST (NIL) -7 NIL NIL) (-965 2360628 2368780 2368983 "RGCHAIN" 2369155 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-964 2357633 2358247 2358915 "RF" 2359992 NIL RF (NIL T) -7 NIL NIL) (-963 2357282 2357345 2357446 "RFFACTOR" 2357564 NIL RFFACTOR (NIL T) -7 NIL NIL) (-962 2357010 2357045 2357140 "RFFACT" 2357241 NIL RFFACT (NIL T) -7 NIL NIL) (-961 2355140 2355504 2355884 "RFDIST" 2356650 T RFDIST (NIL) -7 NIL NIL) (-960 2354598 2354690 2354850 "RETSOL" 2355042 NIL RETSOL (NIL T T) -7 NIL NIL) (-959 2354190 2354270 2354312 "RETRACT" 2354502 NIL RETRACT (NIL T) -9 NIL NIL) (-958 2354042 2354067 2354151 "RETRACT-" 2354156 NIL RETRACT- (NIL T T) -8 NIL NIL) (-957 2346900 2353699 2353824 "RESULT" 2353937 T RESULT (NIL) -8 NIL NIL) (-956 2345485 2346174 2346371 "RESRING" 2346803 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-955 2345125 2345174 2345270 "RESLATC" 2345422 NIL RESLATC (NIL T) -7 NIL NIL) (-954 2344834 2344868 2344973 "REPSQ" 2345084 NIL REPSQ (NIL T) -7 NIL NIL) (-953 2342265 2342845 2343445 "REP" 2344254 T REP (NIL) -7 NIL NIL) (-952 2341966 2342000 2342109 "REPDB" 2342224 NIL REPDB (NIL T) -7 NIL NIL) (-951 2335911 2337290 2338510 "REP2" 2340778 NIL REP2 (NIL T) -7 NIL NIL) (-950 2332317 2332998 2333803 "REP1" 2335138 NIL REP1 (NIL T) -7 NIL NIL) (-949 2325063 2330478 2330930 "REGSET" 2331948 NIL REGSET (NIL T T T T) -8 NIL NIL) (-948 2323884 2324219 2324467 "REF" 2324848 NIL REF (NIL T) -8 NIL NIL) (-947 2323265 2323368 2323533 "REDORDER" 2323768 NIL REDORDER (NIL T T) -7 NIL NIL) (-946 2319234 2322499 2322720 "RECLOS" 2323096 NIL RECLOS (NIL T) -8 NIL NIL) (-945 2318291 2318472 2318685 "REALSOLV" 2319041 T REALSOLV (NIL) -7 NIL NIL) (-944 2318138 2318179 2318208 "REAL" 2318213 T REAL (NIL) -9 NIL 2318248) (-943 2314629 2315431 2316313 "REAL0Q" 2317303 NIL REAL0Q (NIL T) -7 NIL NIL) (-942 2310240 2311228 2312287 "REAL0" 2313610 NIL REAL0 (NIL T) -7 NIL NIL) (-941 2309648 2309720 2309925 "RDIV" 2310162 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-940 2308721 2308895 2309106 "RDIST" 2309470 NIL RDIST (NIL T) -7 NIL NIL) (-939 2307325 2307612 2307981 "RDETRS" 2308429 NIL RDETRS (NIL T T) -7 NIL NIL) (-938 2305146 2305600 2306135 "RDETR" 2306867 NIL RDETR (NIL T T) -7 NIL NIL) (-937 2303762 2304040 2304441 "RDEEFS" 2304862 NIL RDEEFS (NIL T T) -7 NIL NIL) (-936 2302262 2302568 2302997 "RDEEF" 2303450 NIL RDEEF (NIL T T) -7 NIL NIL) (-935 2296546 2299478 2299507 "RCFIELD" 2300784 T RCFIELD (NIL) -9 NIL 2301514) (-934 2294615 2295119 2295812 "RCFIELD-" 2295885 NIL RCFIELD- (NIL T) -8 NIL NIL) (-933 2290946 2292731 2292773 "RCAGG" 2293844 NIL RCAGG (NIL T) -9 NIL 2294309) (-932 2290577 2290671 2290831 "RCAGG-" 2290836 NIL RCAGG- (NIL T T) -8 NIL NIL) (-931 2289922 2290033 2290195 "RATRET" 2290461 NIL RATRET (NIL T) -7 NIL NIL) (-930 2289479 2289546 2289665 "RATFACT" 2289850 NIL RATFACT (NIL T) -7 NIL NIL) (-929 2288794 2288914 2289064 "RANDSRC" 2289349 T RANDSRC (NIL) -7 NIL NIL) (-928 2288531 2288575 2288646 "RADUTIL" 2288743 T RADUTIL (NIL) -7 NIL NIL) (-927 2281538 2287274 2287591 "RADIX" 2288246 NIL RADIX (NIL NIL) -8 NIL NIL) (-926 2273108 2281382 2281510 "RADFF" 2281515 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-925 2272759 2272834 2272863 "RADCAT" 2273020 T RADCAT (NIL) -9 NIL NIL) (-924 2272544 2272592 2272689 "RADCAT-" 2272694 NIL RADCAT- (NIL T) -8 NIL NIL) (-923 2270695 2272319 2272408 "QUEUE" 2272488 NIL QUEUE (NIL T) -8 NIL NIL) (-922 2267192 2270632 2270677 "QUAT" 2270682 NIL QUAT (NIL T) -8 NIL NIL) (-921 2266830 2266873 2267000 "QUATCT2" 2267143 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-920 2260623 2264003 2264044 "QUATCAT" 2264823 NIL QUATCAT (NIL T) -9 NIL 2265588) (-919 2256767 2257804 2259191 "QUATCAT-" 2259285 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-918 2254287 2255851 2255893 "QUAGG" 2256268 NIL QUAGG (NIL T) -9 NIL 2256443) (-917 2253212 2253685 2253857 "QFORM" 2254159 NIL QFORM (NIL NIL T) -8 NIL NIL) (-916 2244508 2249766 2249807 "QFCAT" 2250465 NIL QFCAT (NIL T) -9 NIL 2251458) (-915 2240080 2241281 2242872 "QFCAT-" 2242966 NIL QFCAT- (NIL T T) -8 NIL NIL) (-914 2239718 2239761 2239888 "QFCAT2" 2240031 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-913 2239178 2239288 2239418 "QEQUAT" 2239608 T QEQUAT (NIL) -8 NIL NIL) (-912 2232364 2233435 2234617 "QCMPACK" 2238111 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-911 2229940 2230361 2230789 "QALGSET" 2232019 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-910 2229185 2229359 2229591 "QALGSET2" 2229760 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-909 2227876 2228099 2228416 "PWFFINTB" 2228958 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-908 2226064 2226232 2226585 "PUSHVAR" 2227690 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-907 2221981 2223035 2223077 "PTRANFN" 2224961 NIL PTRANFN (NIL T) -9 NIL NIL) (-906 2220393 2220684 2221005 "PTPACK" 2221692 NIL PTPACK (NIL T) -7 NIL NIL) (-905 2220029 2220086 2220193 "PTFUNC2" 2220330 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-904 2214505 2218846 2218887 "PTCAT" 2219255 NIL PTCAT (NIL T) -9 NIL 2219417) (-903 2214163 2214198 2214322 "PSQFR" 2214464 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-902 2212758 2213056 2213390 "PSEUDLIN" 2213861 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-901 2199566 2201930 2204253 "PSETPK" 2210518 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-900 2192652 2195366 2195461 "PSETCAT" 2198442 NIL PSETCAT (NIL T T T T) -9 NIL 2199256) (-899 2190490 2191124 2191943 "PSETCAT-" 2191948 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-898 2189838 2190003 2190032 "PSCURVE" 2190300 T PSCURVE (NIL) -9 NIL 2190467) (-897 2186289 2187815 2187880 "PSCAT" 2188716 NIL PSCAT (NIL T T T) -9 NIL 2188956) (-896 2185353 2185569 2185968 "PSCAT-" 2185973 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-895 2184006 2184638 2184852 "PRTITION" 2185159 T PRTITION (NIL) -8 NIL NIL) (-894 2173104 2175310 2177498 "PRS" 2181868 NIL PRS (NIL T T) -7 NIL NIL) (-893 2170962 2172454 2172495 "PRQAGG" 2172678 NIL PRQAGG (NIL T) -9 NIL 2172780) (-892 2170532 2170634 2170663 "PROPLOG" 2170848 T PROPLOG (NIL) -9 NIL NIL) (-891 2167655 2168220 2168747 "PROPFRML" 2170037 NIL PROPFRML (NIL T) -8 NIL NIL) (-890 2161429 2165821 2166641 "PRODUCT" 2166881 NIL PRODUCT (NIL T T) -8 NIL NIL) (-889 2158705 2160889 2161122 "PR" 2161240 NIL PR (NIL T T) -8 NIL NIL) (-888 2158501 2158533 2158592 "PRINT" 2158666 T PRINT (NIL) -7 NIL NIL) (-887 2157841 2157958 2158110 "PRIMES" 2158381 NIL PRIMES (NIL T) -7 NIL NIL) (-886 2155906 2156307 2156773 "PRIMELT" 2157420 NIL PRIMELT (NIL T) -7 NIL NIL) (-885 2155634 2155683 2155712 "PRIMCAT" 2155836 T PRIMCAT (NIL) -9 NIL NIL) (-884 2151795 2155572 2155617 "PRIMARR" 2155622 NIL PRIMARR (NIL T) -8 NIL NIL) (-883 2150802 2150980 2151208 "PRIMARR2" 2151613 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-882 2150445 2150501 2150612 "PREASSOC" 2150740 NIL PREASSOC (NIL T T) -7 NIL NIL) (-881 2149919 2150052 2150081 "PPCURVE" 2150286 T PPCURVE (NIL) -9 NIL 2150422) (-880 2147278 2147677 2148269 "POLYROOT" 2149500 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-879 2141184 2146884 2147043 "POLY" 2147151 NIL POLY (NIL T) -8 NIL NIL) (-878 2140569 2140627 2140860 "POLYLIFT" 2141120 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-877 2136854 2137303 2137931 "POLYCATQ" 2140114 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-876 2123894 2129291 2129356 "POLYCAT" 2132841 NIL POLYCAT (NIL T T T) -9 NIL 2134768) (-875 2117345 2119206 2121589 "POLYCAT-" 2121594 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-874 2116934 2117002 2117121 "POLY2UP" 2117271 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-873 2116570 2116627 2116734 "POLY2" 2116871 NIL POLY2 (NIL T T) -7 NIL NIL) (-872 2115255 2115494 2115770 "POLUTIL" 2116344 NIL POLUTIL (NIL T T) -7 NIL NIL) (-871 2113617 2113894 2114224 "POLTOPOL" 2114977 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-870 2109140 2113554 2113599 "POINT" 2113604 NIL POINT (NIL T) -8 NIL NIL) (-869 2107327 2107684 2108059 "PNTHEORY" 2108785 T PNTHEORY (NIL) -7 NIL NIL) (-868 2105755 2106052 2106461 "PMTOOLS" 2107025 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-867 2105348 2105426 2105543 "PMSYM" 2105671 NIL PMSYM (NIL T) -7 NIL NIL) (-866 2104858 2104927 2105101 "PMQFCAT" 2105273 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-865 2104213 2104323 2104479 "PMPRED" 2104735 NIL PMPRED (NIL T) -7 NIL NIL) (-864 2103609 2103695 2103856 "PMPREDFS" 2104114 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-863 2102255 2102463 2102847 "PMPLCAT" 2103371 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-862 2101787 2101866 2102018 "PMLSAGG" 2102170 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-861 2101264 2101340 2101520 "PMKERNEL" 2101705 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-860 2100881 2100956 2101069 "PMINS" 2101183 NIL PMINS (NIL T) -7 NIL NIL) (-859 2100311 2100380 2100595 "PMFS" 2100806 NIL PMFS (NIL T T T) -7 NIL NIL) (-858 2099542 2099660 2099864 "PMDOWN" 2100188 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-857 2098705 2098864 2099046 "PMASS" 2099380 T PMASS (NIL) -7 NIL NIL) (-856 2097979 2098090 2098253 "PMASSFS" 2098591 NIL PMASSFS (NIL T T) -7 NIL NIL) (-855 2097634 2097702 2097796 "PLOTTOOL" 2097905 T PLOTTOOL (NIL) -7 NIL NIL) (-854 2092256 2093445 2094593 "PLOT" 2096506 T PLOT (NIL) -8 NIL NIL) (-853 2088070 2089104 2090025 "PLOT3D" 2091355 T PLOT3D (NIL) -8 NIL NIL) (-852 2086982 2087159 2087394 "PLOT1" 2087874 NIL PLOT1 (NIL T) -7 NIL NIL) (-851 2062377 2067048 2071899 "PLEQN" 2082248 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-850 2061695 2061817 2061997 "PINTERP" 2062242 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-849 2061388 2061435 2061538 "PINTERPA" 2061642 NIL PINTERPA (NIL T T) -7 NIL NIL) (-848 2060615 2061182 2061275 "PI" 2061315 T PI (NIL) -8 NIL NIL) (-847 2059006 2059991 2060020 "PID" 2060202 T PID (NIL) -9 NIL 2060336) (-846 2058731 2058768 2058856 "PICOERCE" 2058963 NIL PICOERCE (NIL T) -7 NIL NIL) (-845 2058052 2058190 2058366 "PGROEB" 2058587 NIL PGROEB (NIL T) -7 NIL NIL) (-844 2053639 2054453 2055358 "PGE" 2057167 T PGE (NIL) -7 NIL NIL) (-843 2051763 2052009 2052375 "PGCD" 2053356 NIL PGCD (NIL T T T T) -7 NIL NIL) (-842 2051101 2051204 2051365 "PFRPAC" 2051647 NIL PFRPAC (NIL T) -7 NIL NIL) (-841 2047716 2049649 2050002 "PFR" 2050780 NIL PFR (NIL T) -8 NIL NIL) (-840 2046105 2046349 2046674 "PFOTOOLS" 2047463 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-839 2044638 2044877 2045228 "PFOQ" 2045862 NIL PFOQ (NIL T T T) -7 NIL NIL) (-838 2043115 2043327 2043689 "PFO" 2044422 NIL PFO (NIL T T T T T) -7 NIL NIL) (-837 2039638 2043004 2043073 "PF" 2043078 NIL PF (NIL NIL) -8 NIL NIL) (-836 2037066 2038347 2038376 "PFECAT" 2038961 T PFECAT (NIL) -9 NIL 2039345) (-835 2036511 2036665 2036879 "PFECAT-" 2036884 NIL PFECAT- (NIL T) -8 NIL NIL) (-834 2035115 2035366 2035667 "PFBRU" 2036260 NIL PFBRU (NIL T T) -7 NIL NIL) (-833 2032982 2033333 2033765 "PFBR" 2034766 NIL PFBR (NIL T T T T) -7 NIL NIL) (-832 2028834 2030358 2031034 "PERM" 2032339 NIL PERM (NIL T) -8 NIL NIL) (-831 2024100 2025041 2025911 "PERMGRP" 2027997 NIL PERMGRP (NIL T) -8 NIL NIL) (-830 2022170 2023163 2023205 "PERMCAT" 2023651 NIL PERMCAT (NIL T) -9 NIL 2023956) (-829 2021825 2021866 2021989 "PERMAN" 2022123 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-828 2019265 2021394 2021525 "PENDTREE" 2021727 NIL PENDTREE (NIL T) -8 NIL NIL) (-827 2017337 2018115 2018157 "PDRING" 2018814 NIL PDRING (NIL T) -9 NIL 2019099) (-826 2016440 2016658 2017020 "PDRING-" 2017025 NIL PDRING- (NIL T T) -8 NIL NIL) (-825 2013582 2014332 2015023 "PDEPROB" 2015769 T PDEPROB (NIL) -8 NIL NIL) (-824 2011153 2011649 2012198 "PDEPACK" 2013053 T PDEPACK (NIL) -7 NIL NIL) (-823 2010065 2010255 2010506 "PDECOMP" 2010952 NIL PDECOMP (NIL T T) -7 NIL NIL) (-822 2007676 2008491 2008520 "PDECAT" 2009305 T PDECAT (NIL) -9 NIL 2010016) (-821 2007429 2007462 2007551 "PCOMP" 2007637 NIL PCOMP (NIL T T) -7 NIL NIL) (-820 2005636 2006232 2006528 "PBWLB" 2007159 NIL PBWLB (NIL T) -8 NIL NIL) (-819 1998145 1999713 2001049 "PATTERN" 2004321 NIL PATTERN (NIL T) -8 NIL NIL) (-818 1997777 1997834 1997943 "PATTERN2" 1998082 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-817 1995534 1995922 1996379 "PATTERN1" 1997366 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-816 1992929 1993483 1993964 "PATRES" 1995099 NIL PATRES (NIL T T) -8 NIL NIL) (-815 1992493 1992560 1992692 "PATRES2" 1992856 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-814 1990390 1990790 1991195 "PATMATCH" 1992162 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-813 1989926 1990109 1990151 "PATMAB" 1990258 NIL PATMAB (NIL T) -9 NIL 1990341) (-812 1988471 1988780 1989038 "PATLRES" 1989731 NIL PATLRES (NIL T T T) -8 NIL NIL) (-811 1988016 1988139 1988181 "PATAB" 1988186 NIL PATAB (NIL T) -9 NIL 1988358) (-810 1985497 1986029 1986602 "PARTPERM" 1987463 T PARTPERM (NIL) -7 NIL NIL) (-809 1985118 1985181 1985283 "PARSURF" 1985428 NIL PARSURF (NIL T) -8 NIL NIL) (-808 1984750 1984807 1984916 "PARSU2" 1985055 NIL PARSU2 (NIL T T) -7 NIL NIL) (-807 1984514 1984554 1984621 "PARSER" 1984703 T PARSER (NIL) -7 NIL NIL) (-806 1984135 1984198 1984300 "PARSCURV" 1984445 NIL PARSCURV (NIL T) -8 NIL NIL) (-805 1983767 1983824 1983933 "PARSC2" 1984072 NIL PARSC2 (NIL T T) -7 NIL NIL) (-804 1983406 1983464 1983561 "PARPCURV" 1983703 NIL PARPCURV (NIL T) -8 NIL NIL) (-803 1983038 1983095 1983204 "PARPC2" 1983343 NIL PARPC2 (NIL T T) -7 NIL NIL) (-802 1982558 1982644 1982763 "PAN2EXPR" 1982939 T PAN2EXPR (NIL) -7 NIL NIL) (-801 1981364 1981679 1981907 "PALETTE" 1982350 T PALETTE (NIL) -8 NIL NIL) (-800 1979832 1980369 1980729 "PAIR" 1981050 NIL PAIR (NIL T T) -8 NIL NIL) (-799 1973682 1979091 1979285 "PADICRC" 1979687 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-798 1966890 1973028 1973212 "PADICRAT" 1973530 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-797 1965194 1966827 1966872 "PADIC" 1966877 NIL PADIC (NIL NIL) -8 NIL NIL) (-796 1962398 1963972 1964013 "PADICCT" 1964594 NIL PADICCT (NIL NIL) -9 NIL 1964876) (-795 1961355 1961555 1961823 "PADEPAC" 1962185 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-794 1960567 1960700 1960906 "PADE" 1961217 NIL PADE (NIL T T T) -7 NIL NIL) (-793 1958578 1959410 1959725 "OWP" 1960335 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-792 1957687 1958183 1958355 "OVAR" 1958446 NIL OVAR (NIL NIL) -8 NIL NIL) (-791 1956951 1957072 1957233 "OUT" 1957546 T OUT (NIL) -7 NIL NIL) (-790 1945997 1948176 1950346 "OUTFORM" 1954801 T OUTFORM (NIL) -8 NIL NIL) (-789 1945405 1945726 1945815 "OSI" 1945928 T OSI (NIL) -8 NIL NIL) (-788 1944150 1944377 1944662 "ORTHPOL" 1945152 NIL ORTHPOL (NIL T) -7 NIL NIL) (-787 1941521 1943811 1943949 "OREUP" 1944093 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-786 1938917 1941214 1941340 "ORESUP" 1941463 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-785 1936452 1936952 1937512 "OREPCTO" 1938406 NIL OREPCTO (NIL T T) -7 NIL NIL) (-784 1930361 1932567 1932608 "OREPCAT" 1934929 NIL OREPCAT (NIL T) -9 NIL 1936032) (-783 1927509 1928291 1929348 "OREPCAT-" 1929353 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-782 1926686 1926958 1926987 "ORDSET" 1927296 T ORDSET (NIL) -9 NIL 1927460) (-781 1926205 1926327 1926520 "ORDSET-" 1926525 NIL ORDSET- (NIL T) -8 NIL NIL) (-780 1924818 1925619 1925648 "ORDRING" 1925850 T ORDRING (NIL) -9 NIL 1925974) (-779 1924463 1924557 1924701 "ORDRING-" 1924706 NIL ORDRING- (NIL T) -8 NIL NIL) (-778 1923838 1924319 1924348 "ORDMON" 1924353 T ORDMON (NIL) -9 NIL 1924374) (-777 1923000 1923147 1923342 "ORDFUNS" 1923687 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-776 1922511 1922870 1922899 "ORDFIN" 1922904 T ORDFIN (NIL) -9 NIL 1922925) (-775 1919023 1921097 1921506 "ORDCOMP" 1922135 NIL ORDCOMP (NIL T) -8 NIL NIL) (-774 1918289 1918416 1918602 "ORDCOMP2" 1918883 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-773 1914797 1915679 1916516 "OPTPROB" 1917472 T OPTPROB (NIL) -8 NIL NIL) (-772 1911639 1912268 1912962 "OPTPACK" 1914123 T OPTPACK (NIL) -7 NIL NIL) (-771 1909364 1910100 1910129 "OPTCAT" 1910944 T OPTCAT (NIL) -9 NIL 1911590) (-770 1909132 1909171 1909237 "OPQUERY" 1909318 T OPQUERY (NIL) -7 NIL NIL) (-769 1906268 1907459 1907959 "OP" 1908664 NIL OP (NIL T) -8 NIL NIL) (-768 1903033 1905065 1905434 "ONECOMP" 1905932 NIL ONECOMP (NIL T) -8 NIL NIL) (-767 1902338 1902453 1902627 "ONECOMP2" 1902905 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-766 1901757 1901863 1901993 "OMSERVER" 1902228 T OMSERVER (NIL) -7 NIL NIL) (-765 1898645 1901197 1901238 "OMSAGG" 1901299 NIL OMSAGG (NIL T) -9 NIL 1901363) (-764 1897268 1897531 1897813 "OMPKG" 1898383 T OMPKG (NIL) -7 NIL NIL) (-763 1896697 1896800 1896829 "OM" 1897128 T OM (NIL) -9 NIL NIL) (-762 1895236 1896249 1896417 "OMLO" 1896578 NIL OMLO (NIL T T) -8 NIL NIL) (-761 1894166 1894313 1894539 "OMEXPR" 1895062 NIL OMEXPR (NIL T) -7 NIL NIL) (-760 1893484 1893712 1893848 "OMERR" 1894050 T OMERR (NIL) -8 NIL NIL) (-759 1892662 1892905 1893065 "OMERRK" 1893344 T OMERRK (NIL) -8 NIL NIL) (-758 1892140 1892339 1892447 "OMENC" 1892574 T OMENC (NIL) -8 NIL NIL) (-757 1886035 1887220 1888391 "OMDEV" 1890989 T OMDEV (NIL) -8 NIL NIL) (-756 1885104 1885275 1885469 "OMCONN" 1885861 T OMCONN (NIL) -8 NIL NIL) (-755 1883719 1884705 1884734 "OINTDOM" 1884739 T OINTDOM (NIL) -9 NIL 1884760) (-754 1879481 1880711 1881426 "OFMONOID" 1883036 NIL OFMONOID (NIL T) -8 NIL NIL) (-753 1878919 1879418 1879463 "ODVAR" 1879468 NIL ODVAR (NIL T) -8 NIL NIL) (-752 1876044 1878416 1878601 "ODR" 1878794 NIL ODR (NIL T T NIL) -8 NIL NIL) (-751 1868350 1875823 1875947 "ODPOL" 1875952 NIL ODPOL (NIL T) -8 NIL NIL) (-750 1862173 1868222 1868327 "ODP" 1868332 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-749 1860939 1861154 1861429 "ODETOOLS" 1861947 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-748 1857908 1858564 1859280 "ODESYS" 1860272 NIL ODESYS (NIL T T) -7 NIL NIL) (-747 1852812 1853720 1854743 "ODERTRIC" 1856983 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-746 1852238 1852320 1852514 "ODERED" 1852724 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-745 1849140 1849688 1850363 "ODERAT" 1851661 NIL ODERAT (NIL T T) -7 NIL NIL) (-744 1846108 1846572 1847168 "ODEPRRIC" 1848669 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-743 1843979 1844546 1845055 "ODEPROB" 1845619 T ODEPROB (NIL) -8 NIL NIL) (-742 1840511 1840994 1841640 "ODEPRIM" 1843458 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-741 1839764 1839866 1840124 "ODEPAL" 1840403 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-740 1835966 1836747 1837601 "ODEPACK" 1838930 T ODEPACK (NIL) -7 NIL NIL) (-739 1835003 1835110 1835338 "ODEINT" 1835855 NIL ODEINT (NIL T T) -7 NIL NIL) (-738 1829104 1830529 1831976 "ODEIFTBL" 1833576 T ODEIFTBL (NIL) -8 NIL NIL) (-737 1824448 1825234 1826192 "ODEEF" 1828263 NIL ODEEF (NIL T T) -7 NIL NIL) (-736 1823785 1823874 1824103 "ODECONST" 1824353 NIL ODECONST (NIL T T T) -7 NIL NIL) (-735 1821942 1822575 1822604 "ODECAT" 1823207 T ODECAT (NIL) -9 NIL 1823736) (-734 1818814 1821654 1821773 "OCT" 1821855 NIL OCT (NIL T) -8 NIL NIL) (-733 1818452 1818495 1818622 "OCTCT2" 1818765 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-732 1813285 1815723 1815764 "OC" 1816860 NIL OC (NIL T) -9 NIL 1817717) (-731 1810512 1811260 1812250 "OC-" 1812344 NIL OC- (NIL T T) -8 NIL NIL) (-730 1809890 1810332 1810361 "OCAMON" 1810366 T OCAMON (NIL) -9 NIL 1810387) (-729 1809350 1809460 1809590 "OBJPROP" 1809780 T OBJPROP (NIL) -8 NIL NIL) (-728 1808803 1809210 1809239 "OASGP" 1809244 T OASGP (NIL) -9 NIL 1809264) (-727 1808090 1808553 1808582 "OAMONS" 1808622 T OAMONS (NIL) -9 NIL 1808665) (-726 1807530 1807937 1807966 "OAMON" 1807971 T OAMON (NIL) -9 NIL 1807991) (-725 1806834 1807326 1807355 "OAGROUP" 1807360 T OAGROUP (NIL) -9 NIL 1807380) (-724 1806524 1806574 1806662 "NUMTUBE" 1806778 NIL NUMTUBE (NIL T) -7 NIL NIL) (-723 1800097 1801615 1803151 "NUMQUAD" 1805008 T NUMQUAD (NIL) -7 NIL NIL) (-722 1795853 1796841 1797866 "NUMODE" 1799092 T NUMODE (NIL) -7 NIL NIL) (-721 1793256 1794102 1794131 "NUMINT" 1795048 T NUMINT (NIL) -9 NIL 1795804) (-720 1792204 1792401 1792619 "NUMFMT" 1793058 T NUMFMT (NIL) -7 NIL NIL) (-719 1778586 1781520 1784050 "NUMERIC" 1789713 NIL NUMERIC (NIL T) -7 NIL NIL) (-718 1772986 1778038 1778133 "NTSCAT" 1778138 NIL NTSCAT (NIL T T T T) -9 NIL 1778176) (-717 1772180 1772345 1772538 "NTPOLFN" 1772825 NIL NTPOLFN (NIL T) -7 NIL NIL) (-716 1760036 1769022 1769832 "NSUP" 1771402 NIL NSUP (NIL T) -8 NIL NIL) (-715 1759672 1759729 1759836 "NSUP2" 1759973 NIL NSUP2 (NIL T T) -7 NIL NIL) (-714 1749634 1759451 1759581 "NSMP" 1759586 NIL NSMP (NIL T T) -8 NIL NIL) (-713 1748066 1748367 1748724 "NREP" 1749322 NIL NREP (NIL T) -7 NIL NIL) (-712 1746657 1746909 1747267 "NPCOEF" 1747809 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-711 1745723 1745838 1746054 "NORMRETR" 1746538 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-710 1743776 1744066 1744473 "NORMPK" 1745431 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-709 1743461 1743489 1743613 "NORMMA" 1743742 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-708 1743288 1743418 1743447 "NONE" 1743452 T NONE (NIL) -8 NIL NIL) (-707 1743077 1743106 1743175 "NONE1" 1743252 NIL NONE1 (NIL T) -7 NIL NIL) (-706 1742562 1742624 1742809 "NODE1" 1743009 NIL NODE1 (NIL T T) -7 NIL NIL) (-705 1740855 1741725 1741980 "NNI" 1742327 T NNI (NIL) -8 NIL NIL) (-704 1739275 1739588 1739952 "NLINSOL" 1740523 NIL NLINSOL (NIL T) -7 NIL NIL) (-703 1735443 1736410 1737332 "NIPROB" 1738373 T NIPROB (NIL) -8 NIL NIL) (-702 1734200 1734434 1734736 "NFINTBAS" 1735205 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-701 1732908 1733139 1733420 "NCODIV" 1733968 NIL NCODIV (NIL T T) -7 NIL NIL) (-700 1732670 1732707 1732782 "NCNTFRAC" 1732865 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-699 1730850 1731214 1731634 "NCEP" 1732295 NIL NCEP (NIL T) -7 NIL NIL) (-698 1729761 1730500 1730529 "NASRING" 1730639 T NASRING (NIL) -9 NIL 1730713) (-697 1729556 1729600 1729694 "NASRING-" 1729699 NIL NASRING- (NIL T) -8 NIL NIL) (-696 1728709 1729208 1729237 "NARNG" 1729354 T NARNG (NIL) -9 NIL 1729445) (-695 1728401 1728468 1728602 "NARNG-" 1728607 NIL NARNG- (NIL T) -8 NIL NIL) (-694 1727280 1727487 1727722 "NAGSP" 1728186 T NAGSP (NIL) -7 NIL NIL) (-693 1718704 1720350 1721985 "NAGS" 1725665 T NAGS (NIL) -7 NIL NIL) (-692 1717268 1717572 1717899 "NAGF07" 1718397 T NAGF07 (NIL) -7 NIL NIL) (-691 1711850 1713130 1714426 "NAGF04" 1715992 T NAGF04 (NIL) -7 NIL NIL) (-690 1704882 1706480 1708097 "NAGF02" 1710253 T NAGF02 (NIL) -7 NIL NIL) (-689 1700146 1701236 1702343 "NAGF01" 1703795 T NAGF01 (NIL) -7 NIL NIL) (-688 1693806 1695364 1696941 "NAGE04" 1698589 T NAGE04 (NIL) -7 NIL NIL) (-687 1685047 1687150 1689262 "NAGE02" 1691714 T NAGE02 (NIL) -7 NIL NIL) (-686 1681040 1681977 1682931 "NAGE01" 1684113 T NAGE01 (NIL) -7 NIL NIL) (-685 1678847 1679378 1679933 "NAGD03" 1680505 T NAGD03 (NIL) -7 NIL NIL) (-684 1670633 1672552 1674497 "NAGD02" 1676922 T NAGD02 (NIL) -7 NIL NIL) (-683 1664492 1665905 1667333 "NAGD01" 1669225 T NAGD01 (NIL) -7 NIL NIL) (-682 1660749 1661559 1662384 "NAGC06" 1663687 T NAGC06 (NIL) -7 NIL NIL) (-681 1659226 1659555 1659908 "NAGC05" 1660416 T NAGC05 (NIL) -7 NIL NIL) (-680 1658610 1658727 1658869 "NAGC02" 1659104 T NAGC02 (NIL) -7 NIL NIL) (-679 1657671 1658228 1658269 "NAALG" 1658348 NIL NAALG (NIL T) -9 NIL 1658409) (-678 1657506 1657535 1657625 "NAALG-" 1657630 NIL NAALG- (NIL T T) -8 NIL NIL) (-677 1651456 1652564 1653751 "MULTSQFR" 1656402 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-676 1650775 1650850 1651034 "MULTFACT" 1651368 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-675 1643968 1647879 1647932 "MTSCAT" 1648992 NIL MTSCAT (NIL T T) -9 NIL 1649506) (-674 1643680 1643734 1643826 "MTHING" 1643908 NIL MTHING (NIL T) -7 NIL NIL) (-673 1643472 1643505 1643565 "MSYSCMD" 1643640 T MSYSCMD (NIL) -7 NIL NIL) (-672 1639584 1642227 1642547 "MSET" 1643185 NIL MSET (NIL T) -8 NIL NIL) (-671 1636679 1639145 1639187 "MSETAGG" 1639192 NIL MSETAGG (NIL T) -9 NIL 1639226) (-670 1632535 1634077 1634818 "MRING" 1635982 NIL MRING (NIL T T) -8 NIL NIL) (-669 1632105 1632172 1632301 "MRF2" 1632462 NIL MRF2 (NIL T T T) -7 NIL NIL) (-668 1631723 1631758 1631902 "MRATFAC" 1632064 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-667 1629335 1629630 1630061 "MPRFF" 1631428 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-666 1623355 1629190 1629286 "MPOLY" 1629291 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-665 1622845 1622880 1623088 "MPCPF" 1623314 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-664 1622361 1622404 1622587 "MPC3" 1622796 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-663 1621562 1621643 1621862 "MPC2" 1622276 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-662 1619863 1620200 1620590 "MONOTOOL" 1621222 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-661 1618987 1619322 1619351 "MONOID" 1619628 T MONOID (NIL) -9 NIL 1619800) (-660 1618365 1618528 1618771 "MONOID-" 1618776 NIL MONOID- (NIL T) -8 NIL NIL) (-659 1609345 1615331 1615391 "MONOGEN" 1616065 NIL MONOGEN (NIL T T) -9 NIL 1616521) (-658 1606563 1607298 1608298 "MONOGEN-" 1608417 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-657 1605422 1605842 1605871 "MONADWU" 1606263 T MONADWU (NIL) -9 NIL 1606501) (-656 1604794 1604953 1605201 "MONADWU-" 1605206 NIL MONADWU- (NIL T) -8 NIL NIL) (-655 1604179 1604397 1604426 "MONAD" 1604633 T MONAD (NIL) -9 NIL 1604745) (-654 1603864 1603942 1604074 "MONAD-" 1604079 NIL MONAD- (NIL T) -8 NIL NIL) (-653 1602115 1602777 1603056 "MOEBIUS" 1603617 NIL MOEBIUS (NIL T) -8 NIL NIL) (-652 1601508 1601886 1601927 "MODULE" 1601932 NIL MODULE (NIL T) -9 NIL 1601958) (-651 1601076 1601172 1601362 "MODULE-" 1601367 NIL MODULE- (NIL T T) -8 NIL NIL) (-650 1598747 1599442 1599768 "MODRING" 1600901 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-649 1595703 1596868 1597385 "MODOP" 1598279 NIL MODOP (NIL T T) -8 NIL NIL) (-648 1593890 1594342 1594683 "MODMONOM" 1595502 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-647 1583608 1592094 1592516 "MODMON" 1593518 NIL MODMON (NIL T T) -8 NIL NIL) (-646 1580734 1582452 1582728 "MODFIELD" 1583483 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-645 1580260 1580303 1580482 "MMAP" 1580685 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-644 1578496 1579273 1579314 "MLO" 1579731 NIL MLO (NIL T) -9 NIL 1579972) (-643 1575863 1576378 1576980 "MLIFT" 1577977 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-642 1575254 1575338 1575492 "MKUCFUNC" 1575774 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-641 1574853 1574923 1575046 "MKRECORD" 1575177 NIL MKRECORD (NIL T T) -7 NIL NIL) (-640 1573901 1574062 1574290 "MKFUNC" 1574664 NIL MKFUNC (NIL T) -7 NIL NIL) (-639 1573289 1573393 1573549 "MKFLCFN" 1573784 NIL MKFLCFN (NIL T) -7 NIL NIL) (-638 1572715 1573082 1573171 "MKCHSET" 1573233 NIL MKCHSET (NIL T) -8 NIL NIL) (-637 1571992 1572094 1572279 "MKBCFUNC" 1572608 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-636 1568676 1571546 1571682 "MINT" 1571876 T MINT (NIL) -8 NIL NIL) (-635 1567488 1567731 1568008 "MHROWRED" 1568431 NIL MHROWRED (NIL T) -7 NIL NIL) (-634 1562759 1565933 1566357 "MFLOAT" 1567084 T MFLOAT (NIL) -8 NIL NIL) (-633 1562116 1562192 1562363 "MFINFACT" 1562671 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-632 1558431 1559279 1560163 "MESH" 1561252 T MESH (NIL) -7 NIL NIL) (-631 1556821 1557133 1557486 "MDDFACT" 1558118 NIL MDDFACT (NIL T) -7 NIL NIL) (-630 1553663 1555980 1556022 "MDAGG" 1556277 NIL MDAGG (NIL T) -9 NIL 1556420) (-629 1543361 1552956 1553163 "MCMPLX" 1553476 T MCMPLX (NIL) -8 NIL NIL) (-628 1542502 1542648 1542848 "MCDEN" 1543210 NIL MCDEN (NIL T T) -7 NIL NIL) (-627 1540392 1540662 1541042 "MCALCFN" 1542232 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-626 1538014 1538537 1539098 "MATSTOR" 1539863 NIL MATSTOR (NIL T) -7 NIL NIL) (-625 1534022 1537389 1537636 "MATRIX" 1537799 NIL MATRIX (NIL T) -8 NIL NIL) (-624 1529792 1530495 1531231 "MATLIN" 1533379 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-623 1519989 1523127 1523204 "MATCAT" 1528042 NIL MATCAT (NIL T T T) -9 NIL 1529459) (-622 1516354 1517367 1518722 "MATCAT-" 1518727 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-621 1514956 1515109 1515440 "MATCAT2" 1516189 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-620 1513068 1513392 1513776 "MAPPKG3" 1514631 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-619 1512049 1512222 1512444 "MAPPKG2" 1512892 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-618 1510548 1510832 1511159 "MAPPKG1" 1511755 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-617 1510159 1510217 1510340 "MAPHACK3" 1510484 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-616 1509751 1509812 1509926 "MAPHACK2" 1510091 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-615 1509189 1509292 1509434 "MAPHACK1" 1509642 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-614 1507297 1507891 1508194 "MAGMA" 1508918 NIL MAGMA (NIL T) -8 NIL NIL) (-613 1503771 1505541 1506001 "M3D" 1506870 NIL M3D (NIL T) -8 NIL NIL) (-612 1497926 1502141 1502183 "LZSTAGG" 1502965 NIL LZSTAGG (NIL T) -9 NIL 1503260) (-611 1493899 1495057 1496514 "LZSTAGG-" 1496519 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-610 1491015 1491792 1492278 "LWORD" 1493445 NIL LWORD (NIL T) -8 NIL NIL) (-609 1484175 1490786 1490920 "LSQM" 1490925 NIL LSQM (NIL NIL T) -8 NIL NIL) (-608 1483399 1483538 1483766 "LSPP" 1484030 NIL LSPP (NIL T T T T) -7 NIL NIL) (-607 1481211 1481512 1481968 "LSMP" 1483088 NIL LSMP (NIL T T T T) -7 NIL NIL) (-606 1477990 1478664 1479394 "LSMP1" 1480513 NIL LSMP1 (NIL T) -7 NIL NIL) (-605 1471916 1477158 1477200 "LSAGG" 1477262 NIL LSAGG (NIL T) -9 NIL 1477340) (-604 1468611 1469535 1470748 "LSAGG-" 1470753 NIL LSAGG- (NIL T T) -8 NIL NIL) (-603 1466237 1467755 1468004 "LPOLY" 1468406 NIL LPOLY (NIL T T) -8 NIL NIL) (-602 1465819 1465904 1466027 "LPEFRAC" 1466146 NIL LPEFRAC (NIL T) -7 NIL NIL) (-601 1464166 1464913 1465166 "LO" 1465651 NIL LO (NIL T T T) -8 NIL NIL) (-600 1463819 1463931 1463960 "LOGIC" 1464071 T LOGIC (NIL) -9 NIL 1464151) (-599 1463681 1463704 1463775 "LOGIC-" 1463780 NIL LOGIC- (NIL T) -8 NIL NIL) (-598 1462874 1463014 1463207 "LODOOPS" 1463537 NIL LODOOPS (NIL T T) -7 NIL NIL) (-597 1460292 1462791 1462856 "LODO" 1462861 NIL LODO (NIL T NIL) -8 NIL NIL) (-596 1458838 1459073 1459424 "LODOF" 1460039 NIL LODOF (NIL T T) -7 NIL NIL) (-595 1455257 1457693 1457734 "LODOCAT" 1458166 NIL LODOCAT (NIL T) -9 NIL 1458377) (-594 1454991 1455049 1455175 "LODOCAT-" 1455180 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-593 1452305 1454832 1454950 "LODO2" 1454955 NIL LODO2 (NIL T T) -8 NIL NIL) (-592 1449734 1452242 1452287 "LODO1" 1452292 NIL LODO1 (NIL T) -8 NIL NIL) (-591 1448597 1448762 1449073 "LODEEF" 1449557 NIL LODEEF (NIL T T T) -7 NIL NIL) (-590 1443883 1446727 1446769 "LNAGG" 1447716 NIL LNAGG (NIL T) -9 NIL 1448160) (-589 1443030 1443244 1443586 "LNAGG-" 1443591 NIL LNAGG- (NIL T T) -8 NIL NIL) (-588 1439195 1439957 1440595 "LMOPS" 1442446 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-587 1438592 1438954 1438995 "LMODULE" 1439055 NIL LMODULE (NIL T) -9 NIL 1439097) (-586 1435838 1438237 1438360 "LMDICT" 1438502 NIL LMDICT (NIL T) -8 NIL NIL) (-585 1429065 1434784 1435082 "LIST" 1435573 NIL LIST (NIL T) -8 NIL NIL) (-584 1428590 1428664 1428803 "LIST3" 1428985 NIL LIST3 (NIL T T T) -7 NIL NIL) (-583 1427597 1427775 1428003 "LIST2" 1428408 NIL LIST2 (NIL T T) -7 NIL NIL) (-582 1425731 1426043 1426442 "LIST2MAP" 1427244 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-581 1424443 1425123 1425164 "LINEXP" 1425417 NIL LINEXP (NIL T) -9 NIL 1425565) (-580 1423090 1423350 1423647 "LINDEP" 1424195 NIL LINDEP (NIL T T) -7 NIL NIL) (-579 1419857 1420576 1421353 "LIMITRF" 1422345 NIL LIMITRF (NIL T) -7 NIL NIL) (-578 1418137 1418432 1418847 "LIMITPS" 1419552 NIL LIMITPS (NIL T T) -7 NIL NIL) (-577 1412592 1417648 1417876 "LIE" 1417958 NIL LIE (NIL T T) -8 NIL NIL) (-576 1411642 1412085 1412126 "LIECAT" 1412266 NIL LIECAT (NIL T) -9 NIL 1412417) (-575 1411483 1411510 1411598 "LIECAT-" 1411603 NIL LIECAT- (NIL T T) -8 NIL NIL) (-574 1404095 1410932 1411097 "LIB" 1411338 T LIB (NIL) -8 NIL NIL) (-573 1399732 1400613 1401548 "LGROBP" 1403212 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-572 1397598 1397872 1398234 "LF" 1399453 NIL LF (NIL T T) -7 NIL NIL) (-571 1396437 1397129 1397158 "LFCAT" 1397365 T LFCAT (NIL) -9 NIL 1397504) (-570 1393349 1393975 1394661 "LEXTRIPK" 1395803 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-569 1390055 1390919 1391422 "LEXP" 1392929 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-568 1388453 1388766 1389167 "LEADCDET" 1389737 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-567 1387649 1387723 1387950 "LAZM3PK" 1388374 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-566 1382565 1385728 1386265 "LAUPOL" 1387162 NIL LAUPOL (NIL T T) -8 NIL NIL) (-565 1382132 1382176 1382343 "LAPLACE" 1382515 NIL LAPLACE (NIL T T) -7 NIL NIL) (-564 1380060 1381233 1381484 "LA" 1381965 NIL LA (NIL T T T) -8 NIL NIL) (-563 1379122 1379716 1379757 "LALG" 1379818 NIL LALG (NIL T) -9 NIL 1379876) (-562 1378837 1378896 1379031 "LALG-" 1379036 NIL LALG- (NIL T T) -8 NIL NIL) (-561 1377747 1377934 1378231 "KOVACIC" 1378637 NIL KOVACIC (NIL T T) -7 NIL NIL) (-560 1377581 1377605 1377647 "KONVERT" 1377709 NIL KONVERT (NIL T) -9 NIL NIL) (-559 1377415 1377439 1377481 "KOERCE" 1377543 NIL KOERCE (NIL T) -9 NIL NIL) (-558 1375149 1375909 1376302 "KERNEL" 1377054 NIL KERNEL (NIL T) -8 NIL NIL) (-557 1374651 1374732 1374862 "KERNEL2" 1375063 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-556 1368502 1373190 1373245 "KDAGG" 1373622 NIL KDAGG (NIL T T) -9 NIL 1373828) (-555 1368031 1368155 1368360 "KDAGG-" 1368365 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-554 1361206 1367692 1367847 "KAFILE" 1367909 NIL KAFILE (NIL T) -8 NIL NIL) (-553 1355661 1360717 1360945 "JORDAN" 1361027 NIL JORDAN (NIL T T) -8 NIL NIL) (-552 1351960 1353866 1353921 "IXAGG" 1354850 NIL IXAGG (NIL T T) -9 NIL 1355309) (-551 1350879 1351185 1351604 "IXAGG-" 1351609 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-550 1346464 1350801 1350860 "IVECTOR" 1350865 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-549 1345230 1345467 1345733 "ITUPLE" 1346231 NIL ITUPLE (NIL T) -8 NIL NIL) (-548 1343666 1343843 1344149 "ITRIGMNP" 1345052 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-547 1342411 1342615 1342898 "ITFUN3" 1343442 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-546 1342043 1342100 1342209 "ITFUN2" 1342348 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-545 1339845 1340916 1341213 "ITAYLOR" 1341778 NIL ITAYLOR (NIL T) -8 NIL NIL) (-544 1328836 1334031 1335190 "ISUPS" 1338718 NIL ISUPS (NIL T) -8 NIL NIL) (-543 1327940 1328080 1328316 "ISUMP" 1328683 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-542 1323204 1327741 1327820 "ISTRING" 1327893 NIL ISTRING (NIL NIL) -8 NIL NIL) (-541 1322417 1322498 1322713 "IRURPK" 1323118 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-540 1321353 1321554 1321794 "IRSN" 1322197 T IRSN (NIL) -7 NIL NIL) (-539 1319388 1319743 1320178 "IRRF2F" 1320991 NIL IRRF2F (NIL T) -7 NIL NIL) (-538 1319135 1319173 1319249 "IRREDFFX" 1319344 NIL IRREDFFX (NIL T) -7 NIL NIL) (-537 1317750 1318009 1318308 "IROOT" 1318868 NIL IROOT (NIL T) -7 NIL NIL) (-536 1314388 1315439 1316129 "IR" 1317092 NIL IR (NIL T) -8 NIL NIL) (-535 1312001 1312496 1313062 "IR2" 1313866 NIL IR2 (NIL T T) -7 NIL NIL) (-534 1311077 1311190 1311410 "IR2F" 1311884 NIL IR2F (NIL T T) -7 NIL NIL) (-533 1310868 1310902 1310962 "IPRNTPK" 1311037 T IPRNTPK (NIL) -7 NIL NIL) (-532 1307422 1310757 1310826 "IPF" 1310831 NIL IPF (NIL NIL) -8 NIL NIL) (-531 1305739 1307347 1307404 "IPADIC" 1307409 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-530 1305238 1305296 1305485 "INVLAPLA" 1305675 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-529 1294887 1297240 1299626 "INTTR" 1302902 NIL INTTR (NIL T T) -7 NIL NIL) (-528 1291235 1291976 1292839 "INTTOOLS" 1294073 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-527 1290821 1290912 1291029 "INTSLPE" 1291138 T INTSLPE (NIL) -7 NIL NIL) (-526 1288771 1290744 1290803 "INTRVL" 1290808 NIL INTRVL (NIL T) -8 NIL NIL) (-525 1286378 1286890 1287464 "INTRF" 1288256 NIL INTRF (NIL T) -7 NIL NIL) (-524 1285793 1285890 1286031 "INTRET" 1286276 NIL INTRET (NIL T) -7 NIL NIL) (-523 1283795 1284184 1284653 "INTRAT" 1285401 NIL INTRAT (NIL T T) -7 NIL NIL) (-522 1281028 1281611 1282236 "INTPM" 1283280 NIL INTPM (NIL T T) -7 NIL NIL) (-521 1277737 1278336 1279080 "INTPAF" 1280414 NIL INTPAF (NIL T T T) -7 NIL NIL) (-520 1272980 1273926 1274961 "INTPACK" 1276722 T INTPACK (NIL) -7 NIL NIL) (-519 1269834 1272709 1272836 "INT" 1272873 T INT (NIL) -8 NIL NIL) (-518 1269086 1269238 1269446 "INTHERTR" 1269676 NIL INTHERTR (NIL T T) -7 NIL NIL) (-517 1268525 1268605 1268793 "INTHERAL" 1269000 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-516 1266371 1266814 1267271 "INTHEORY" 1268088 T INTHEORY (NIL) -7 NIL NIL) (-515 1257694 1259314 1261092 "INTG0" 1264723 NIL INTG0 (NIL T T T) -7 NIL NIL) (-514 1238267 1243057 1247867 "INTFTBL" 1252904 T INTFTBL (NIL) -8 NIL NIL) (-513 1237516 1237654 1237827 "INTFACT" 1238126 NIL INTFACT (NIL T) -7 NIL NIL) (-512 1234907 1235353 1235916 "INTEF" 1237070 NIL INTEF (NIL T T) -7 NIL NIL) (-511 1233368 1234117 1234146 "INTDOM" 1234447 T INTDOM (NIL) -9 NIL 1234654) (-510 1232737 1232911 1233153 "INTDOM-" 1233158 NIL INTDOM- (NIL T) -8 NIL NIL) (-509 1229229 1231161 1231216 "INTCAT" 1232015 NIL INTCAT (NIL T) -9 NIL 1232334) (-508 1228702 1228804 1228932 "INTBIT" 1229121 T INTBIT (NIL) -7 NIL NIL) (-507 1227377 1227531 1227844 "INTALG" 1228547 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-506 1226834 1226924 1227094 "INTAF" 1227281 NIL INTAF (NIL T T) -7 NIL NIL) (-505 1220288 1226644 1226784 "INTABL" 1226789 NIL INTABL (NIL T T T) -8 NIL NIL) (-504 1215238 1217967 1217996 "INS" 1218964 T INS (NIL) -9 NIL 1219645) (-503 1212478 1213249 1214223 "INS-" 1214296 NIL INS- (NIL T) -8 NIL NIL) (-502 1211257 1211484 1211781 "INPSIGN" 1212231 NIL INPSIGN (NIL T T) -7 NIL NIL) (-501 1210375 1210492 1210689 "INPRODPF" 1211137 NIL INPRODPF (NIL T T) -7 NIL NIL) (-500 1209269 1209386 1209623 "INPRODFF" 1210255 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-499 1208269 1208421 1208681 "INNMFACT" 1209105 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-498 1207466 1207563 1207751 "INMODGCD" 1208168 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-497 1205975 1206219 1206543 "INFSP" 1207211 NIL INFSP (NIL T T T) -7 NIL NIL) (-496 1205159 1205276 1205459 "INFPROD0" 1205855 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-495 1202169 1203328 1203819 "INFORM" 1204676 T INFORM (NIL) -8 NIL NIL) (-494 1201779 1201839 1201937 "INFORM1" 1202104 NIL INFORM1 (NIL T) -7 NIL NIL) (-493 1201302 1201391 1201505 "INFINITY" 1201685 T INFINITY (NIL) -7 NIL NIL) (-492 1199920 1200168 1200489 "INEP" 1201050 NIL INEP (NIL T T T) -7 NIL NIL) (-491 1199196 1199817 1199882 "INDE" 1199887 NIL INDE (NIL T) -8 NIL NIL) (-490 1198760 1198828 1198945 "INCRMAPS" 1199123 NIL INCRMAPS (NIL T) -7 NIL NIL) (-489 1194071 1194996 1195940 "INBFF" 1197848 NIL INBFF (NIL T) -7 NIL NIL) (-488 1190566 1193916 1194019 "IMATRIX" 1194024 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-487 1189278 1189401 1189716 "IMATQF" 1190422 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-486 1187498 1187725 1188062 "IMATLIN" 1189034 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-485 1182124 1187422 1187480 "ILIST" 1187485 NIL ILIST (NIL T NIL) -8 NIL NIL) (-484 1180077 1181984 1182097 "IIARRAY2" 1182102 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-483 1175445 1179988 1180052 "IFF" 1180057 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-482 1170488 1174737 1174925 "IFARRAY" 1175302 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-481 1169695 1170392 1170465 "IFAMON" 1170470 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-480 1169278 1169343 1169398 "IEVALAB" 1169605 NIL IEVALAB (NIL T T) -9 NIL NIL) (-479 1168953 1169021 1169181 "IEVALAB-" 1169186 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-478 1168611 1168867 1168930 "IDPO" 1168935 NIL IDPO (NIL T T) -8 NIL NIL) (-477 1167888 1168500 1168575 "IDPOAMS" 1168580 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-476 1167222 1167777 1167852 "IDPOAM" 1167857 NIL IDPOAM (NIL T T) -8 NIL NIL) (-475 1166307 1166557 1166611 "IDPC" 1167024 NIL IDPC (NIL T T) -9 NIL 1167173) (-474 1165803 1166199 1166272 "IDPAM" 1166277 NIL IDPAM (NIL T T) -8 NIL NIL) (-473 1165206 1165695 1165768 "IDPAG" 1165773 NIL IDPAG (NIL T T) -8 NIL NIL) (-472 1161461 1162309 1163204 "IDECOMP" 1164363 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-471 1154335 1155384 1156431 "IDEAL" 1160497 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-470 1153499 1153611 1153810 "ICDEN" 1154219 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-469 1152598 1152979 1153126 "ICARD" 1153372 T ICARD (NIL) -8 NIL NIL) (-468 1150670 1150983 1151386 "IBPTOOLS" 1152275 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-467 1146284 1150290 1150403 "IBITS" 1150589 NIL IBITS (NIL NIL) -8 NIL NIL) (-466 1143007 1143583 1144278 "IBATOOL" 1145701 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-465 1140787 1141248 1141781 "IBACHIN" 1142542 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-464 1138664 1140633 1140736 "IARRAY2" 1140741 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-463 1134817 1138590 1138647 "IARRAY1" 1138652 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-462 1128756 1133235 1133713 "IAN" 1134359 T IAN (NIL) -8 NIL NIL) (-461 1128267 1128324 1128497 "IALGFACT" 1128693 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-460 1127794 1127907 1127936 "HYPCAT" 1128143 T HYPCAT (NIL) -9 NIL NIL) (-459 1127332 1127449 1127635 "HYPCAT-" 1127640 NIL HYPCAT- (NIL T) -8 NIL NIL) (-458 1124011 1125342 1125384 "HOAGG" 1126365 NIL HOAGG (NIL T) -9 NIL 1127044) (-457 1122605 1123004 1123530 "HOAGG-" 1123535 NIL HOAGG- (NIL T T) -8 NIL NIL) (-456 1116436 1122046 1122212 "HEXADEC" 1122459 T HEXADEC (NIL) -8 NIL NIL) (-455 1115184 1115406 1115669 "HEUGCD" 1116213 NIL HEUGCD (NIL T) -7 NIL NIL) (-454 1114287 1115021 1115151 "HELLFDIV" 1115156 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-453 1112515 1114064 1114152 "HEAP" 1114231 NIL HEAP (NIL T) -8 NIL NIL) (-452 1106382 1112430 1112492 "HDP" 1112497 NIL HDP (NIL NIL T) -8 NIL NIL) (-451 1100094 1106019 1106170 "HDMP" 1106283 NIL HDMP (NIL NIL T) -8 NIL NIL) (-450 1099419 1099558 1099722 "HB" 1099950 T HB (NIL) -7 NIL NIL) (-449 1092916 1099265 1099369 "HASHTBL" 1099374 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-448 1090669 1092544 1092723 "HACKPI" 1092757 T HACKPI (NIL) -8 NIL NIL) (-447 1086365 1090523 1090635 "GTSET" 1090640 NIL GTSET (NIL T T T T) -8 NIL NIL) (-446 1079891 1086243 1086341 "GSTBL" 1086346 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-445 1072127 1078927 1079191 "GSERIES" 1079682 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-444 1071149 1071602 1071631 "GROUP" 1071892 T GROUP (NIL) -9 NIL 1072051) (-443 1070265 1070488 1070832 "GROUP-" 1070837 NIL GROUP- (NIL T) -8 NIL NIL) (-442 1068634 1068953 1069340 "GROEBSOL" 1069942 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-441 1067574 1067836 1067888 "GRMOD" 1068417 NIL GRMOD (NIL T T) -9 NIL 1068585) (-440 1067342 1067378 1067506 "GRMOD-" 1067511 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-439 1062670 1063696 1064696 "GRIMAGE" 1066362 T GRIMAGE (NIL) -8 NIL NIL) (-438 1061137 1061397 1061721 "GRDEF" 1062366 T GRDEF (NIL) -7 NIL NIL) (-437 1060581 1060697 1060838 "GRAY" 1061016 T GRAY (NIL) -7 NIL NIL) (-436 1059814 1060194 1060246 "GRALG" 1060399 NIL GRALG (NIL T T) -9 NIL 1060491) (-435 1059475 1059548 1059711 "GRALG-" 1059716 NIL GRALG- (NIL T T T) -8 NIL NIL) (-434 1056283 1059064 1059240 "GPOLSET" 1059382 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-433 1055639 1055696 1055953 "GOSPER" 1056220 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-432 1051398 1052077 1052603 "GMODPOL" 1055338 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-431 1050403 1050587 1050825 "GHENSEL" 1051210 NIL GHENSEL (NIL T T) -7 NIL NIL) (-430 1044469 1045312 1046338 "GENUPS" 1049487 NIL GENUPS (NIL T T) -7 NIL NIL) (-429 1044166 1044217 1044306 "GENUFACT" 1044412 NIL GENUFACT (NIL T) -7 NIL NIL) (-428 1043578 1043655 1043820 "GENPGCD" 1044084 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-427 1043052 1043087 1043300 "GENMFACT" 1043537 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-426 1041620 1041875 1042182 "GENEEZ" 1042795 NIL GENEEZ (NIL T T) -7 NIL NIL) (-425 1035494 1041233 1041394 "GDMP" 1041543 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-424 1024876 1029265 1030371 "GCNAALG" 1034477 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-423 1023297 1024169 1024198 "GCDDOM" 1024453 T GCDDOM (NIL) -9 NIL 1024610) (-422 1022767 1022894 1023109 "GCDDOM-" 1023114 NIL GCDDOM- (NIL T) -8 NIL NIL) (-421 1021439 1021624 1021928 "GB" 1022546 NIL GB (NIL T T T T) -7 NIL NIL) (-420 1010059 1012385 1014777 "GBINTERN" 1019130 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-419 1007896 1008188 1008609 "GBF" 1009734 NIL GBF (NIL T T T T) -7 NIL NIL) (-418 1006677 1006842 1007109 "GBEUCLID" 1007712 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-417 1006026 1006151 1006300 "GAUSSFAC" 1006548 T GAUSSFAC (NIL) -7 NIL NIL) (-416 1004403 1004705 1005018 "GALUTIL" 1005745 NIL GALUTIL (NIL T) -7 NIL NIL) (-415 1002720 1002994 1003317 "GALPOLYU" 1004130 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-414 1000109 1000399 1000804 "GALFACTU" 1002417 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-413 991915 993414 995022 "GALFACT" 998541 NIL GALFACT (NIL T) -7 NIL NIL) (-412 989302 989960 989989 "FVFUN" 991145 T FVFUN (NIL) -9 NIL 991865) (-411 988567 988749 988778 "FVC" 989069 T FVC (NIL) -9 NIL 989252) (-410 988209 988364 988445 "FUNCTION" 988519 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-409 985879 986430 986919 "FT" 987740 T FT (NIL) -8 NIL NIL) (-408 984697 985180 985383 "FTEM" 985696 T FTEM (NIL) -8 NIL NIL) (-407 982962 983250 983652 "FSUPFACT" 984389 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-406 981359 981648 981980 "FST" 982650 T FST (NIL) -8 NIL NIL) (-405 980534 980640 980834 "FSRED" 981241 NIL FSRED (NIL T T) -7 NIL NIL) (-404 979213 979468 979822 "FSPRMELT" 980249 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-403 976298 976736 977235 "FSPECF" 978776 NIL FSPECF (NIL T T) -7 NIL NIL) (-402 958671 967228 967269 "FS" 971107 NIL FS (NIL T) -9 NIL 973389) (-401 947321 950311 954367 "FS-" 954664 NIL FS- (NIL T T) -8 NIL NIL) (-400 946837 946891 947067 "FSINT" 947262 NIL FSINT (NIL T T) -7 NIL NIL) (-399 945118 945830 946133 "FSERIES" 946616 NIL FSERIES (NIL T T) -8 NIL NIL) (-398 944136 944252 944482 "FSCINT" 944998 NIL FSCINT (NIL T T) -7 NIL NIL) (-397 940370 943080 943122 "FSAGG" 943492 NIL FSAGG (NIL T) -9 NIL 943751) (-396 938132 938733 939529 "FSAGG-" 939624 NIL FSAGG- (NIL T T) -8 NIL NIL) (-395 937174 937317 937544 "FSAGG2" 937985 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-394 934833 935112 935665 "FS2UPS" 936892 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-393 934419 934462 934615 "FS2" 934784 NIL FS2 (NIL T T T T) -7 NIL NIL) (-392 933279 933450 933758 "FS2EXPXP" 934244 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-391 932705 932820 932972 "FRUTIL" 933159 NIL FRUTIL (NIL T) -7 NIL NIL) (-390 924126 928204 929560 "FR" 931381 NIL FR (NIL T) -8 NIL NIL) (-389 919202 921845 921886 "FRNAALG" 923282 NIL FRNAALG (NIL T) -9 NIL 923889) (-388 914881 915951 917226 "FRNAALG-" 917976 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-387 914519 914562 914689 "FRNAAF2" 914832 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-386 912884 913376 913670 "FRMOD" 914332 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-385 910607 911275 911591 "FRIDEAL" 912675 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-384 909806 909893 910180 "FRIDEAL2" 910514 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-383 909063 909471 909513 "FRETRCT" 909518 NIL FRETRCT (NIL T) -9 NIL 909689) (-382 908175 908406 908757 "FRETRCT-" 908762 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-381 905384 906604 906664 "FRAMALG" 907546 NIL FRAMALG (NIL T T) -9 NIL 907838) (-380 903517 903973 904603 "FRAMALG-" 904826 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-379 897419 902992 903268 "FRAC" 903273 NIL FRAC (NIL T) -8 NIL NIL) (-378 897055 897112 897219 "FRAC2" 897356 NIL FRAC2 (NIL T T) -7 NIL NIL) (-377 896691 896748 896855 "FR2" 896992 NIL FR2 (NIL T T) -7 NIL NIL) (-376 891364 894277 894306 "FPS" 895425 T FPS (NIL) -9 NIL 895981) (-375 890813 890922 891086 "FPS-" 891232 NIL FPS- (NIL T) -8 NIL NIL) (-374 888261 889958 889987 "FPC" 890212 T FPC (NIL) -9 NIL 890354) (-373 888054 888094 888191 "FPC-" 888196 NIL FPC- (NIL T) -8 NIL NIL) (-372 886932 887542 887584 "FPATMAB" 887589 NIL FPATMAB (NIL T) -9 NIL 887741) (-371 884632 885108 885534 "FPARFRAC" 886569 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-370 880027 880524 881206 "FORTRAN" 884064 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-369 877743 878243 878782 "FORT" 879508 T FORT (NIL) -7 NIL NIL) (-368 875418 875980 876009 "FORTFN" 877069 T FORTFN (NIL) -9 NIL 877693) (-367 875181 875231 875260 "FORTCAT" 875319 T FORTCAT (NIL) -9 NIL 875381) (-366 873241 873724 874123 "FORMULA" 874802 T FORMULA (NIL) -8 NIL NIL) (-365 873029 873059 873128 "FORMULA1" 873205 NIL FORMULA1 (NIL T) -7 NIL NIL) (-364 872552 872604 872777 "FORDER" 872971 NIL FORDER (NIL T T T T) -7 NIL NIL) (-363 871648 871812 872005 "FOP" 872379 T FOP (NIL) -7 NIL NIL) (-362 870256 870928 871102 "FNLA" 871530 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-361 868924 869313 869342 "FNCAT" 869914 T FNCAT (NIL) -9 NIL 870207) (-360 868490 868883 868911 "FNAME" 868916 T FNAME (NIL) -8 NIL NIL) (-359 867149 868122 868151 "FMTC" 868156 T FMTC (NIL) -9 NIL 868191) (-358 863467 864674 865302 "FMONOID" 866554 NIL FMONOID (NIL T) -8 NIL NIL) (-357 862687 863210 863358 "FM" 863363 NIL FM (NIL T T) -8 NIL NIL) (-356 860110 860756 860785 "FMFUN" 861929 T FMFUN (NIL) -9 NIL 862637) (-355 859378 859559 859588 "FMC" 859878 T FMC (NIL) -9 NIL 860060) (-354 856607 857441 857495 "FMCAT" 858677 NIL FMCAT (NIL T T) -9 NIL 859171) (-353 855502 856375 856474 "FM1" 856552 NIL FM1 (NIL T T) -8 NIL NIL) (-352 853276 853692 854186 "FLOATRP" 855053 NIL FLOATRP (NIL T) -7 NIL NIL) (-351 846762 850932 851562 "FLOAT" 852666 T FLOAT (NIL) -8 NIL NIL) (-350 844200 844700 845278 "FLOATCP" 846229 NIL FLOATCP (NIL T) -7 NIL NIL) (-349 842988 843836 843877 "FLINEXP" 843882 NIL FLINEXP (NIL T) -9 NIL 843975) (-348 842143 842378 842705 "FLINEXP-" 842710 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-347 841219 841363 841587 "FLASORT" 841995 NIL FLASORT (NIL T T) -7 NIL NIL) (-346 838437 839279 839332 "FLALG" 840559 NIL FLALG (NIL T T) -9 NIL 841026) (-345 832221 835923 835965 "FLAGG" 837227 NIL FLAGG (NIL T) -9 NIL 837879) (-344 830947 831286 831776 "FLAGG-" 831781 NIL FLAGG- (NIL T T) -8 NIL NIL) (-343 829989 830132 830359 "FLAGG2" 830800 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-342 826961 827979 828039 "FINRALG" 829167 NIL FINRALG (NIL T T) -9 NIL 829675) (-341 826121 826350 826689 "FINRALG-" 826694 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-340 825527 825740 825769 "FINITE" 825965 T FINITE (NIL) -9 NIL 826072) (-339 817986 820147 820188 "FINAALG" 823855 NIL FINAALG (NIL T) -9 NIL 825308) (-338 813327 814368 815512 "FINAALG-" 816891 NIL FINAALG- (NIL T T) -8 NIL NIL) (-337 812722 813082 813185 "FILE" 813257 NIL FILE (NIL T) -8 NIL NIL) (-336 811406 811718 811773 "FILECAT" 812457 NIL FILECAT (NIL T T) -9 NIL 812673) (-335 809268 810824 810853 "FIELD" 810893 T FIELD (NIL) -9 NIL 810973) (-334 807888 808273 808784 "FIELD-" 808789 NIL FIELD- (NIL T) -8 NIL NIL) (-333 805703 806525 806871 "FGROUP" 807575 NIL FGROUP (NIL T) -8 NIL NIL) (-332 804793 804957 805177 "FGLMICPK" 805535 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-331 800595 804718 804775 "FFX" 804780 NIL FFX (NIL T NIL) -8 NIL NIL) (-330 800196 800257 800392 "FFSLPE" 800528 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-329 796191 796968 797764 "FFPOLY" 799432 NIL FFPOLY (NIL T) -7 NIL NIL) (-328 795695 795731 795940 "FFPOLY2" 796149 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-327 791517 795614 795677 "FFP" 795682 NIL FFP (NIL T NIL) -8 NIL NIL) (-326 786885 791428 791492 "FF" 791497 NIL FF (NIL NIL NIL) -8 NIL NIL) (-325 781981 786228 786418 "FFNBX" 786739 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-324 776891 781116 781374 "FFNBP" 781835 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-323 771494 776175 776386 "FFNB" 776724 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-322 770326 770524 770839 "FFINTBAS" 771291 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-321 766549 768789 768818 "FFIELDC" 769438 T FFIELDC (NIL) -9 NIL 769814) (-320 765212 765582 766079 "FFIELDC-" 766084 NIL FFIELDC- (NIL T) -8 NIL NIL) (-319 764782 764827 764951 "FFHOM" 765154 NIL FFHOM (NIL T T T) -7 NIL NIL) (-318 762480 762964 763481 "FFF" 764297 NIL FFF (NIL T) -7 NIL NIL) (-317 758068 762222 762323 "FFCGX" 762423 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-316 753670 757800 757907 "FFCGP" 758011 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-315 748823 753397 753505 "FFCG" 753606 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-314 730768 739891 739978 "FFCAT" 745143 NIL FFCAT (NIL T T T) -9 NIL 746630) (-313 725966 727013 728327 "FFCAT-" 729557 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-312 725377 725420 725655 "FFCAT2" 725917 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-311 714577 718367 719584 "FEXPR" 724232 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-310 713576 714011 714053 "FEVALAB" 714137 NIL FEVALAB (NIL T) -9 NIL 714398) (-309 712735 712945 713283 "FEVALAB-" 713288 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-308 711328 712118 712321 "FDIV" 712634 NIL FDIV (NIL T T T T) -8 NIL NIL) (-307 708394 709109 709225 "FDIVCAT" 710793 NIL FDIVCAT (NIL T T T T) -9 NIL 711230) (-306 708156 708183 708353 "FDIVCAT-" 708358 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-305 707376 707463 707740 "FDIV2" 708063 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-304 706062 706321 706610 "FCPAK1" 707107 T FCPAK1 (NIL) -7 NIL NIL) (-303 705190 705562 705703 "FCOMP" 705953 NIL FCOMP (NIL T) -8 NIL NIL) (-302 688818 692233 695796 "FC" 701647 T FC (NIL) -8 NIL NIL) (-301 681413 685459 685500 "FAXF" 687302 NIL FAXF (NIL T) -9 NIL 687993) (-300 678692 679347 680172 "FAXF-" 680637 NIL FAXF- (NIL T T) -8 NIL NIL) (-299 673792 678068 678244 "FARRAY" 678549 NIL FARRAY (NIL T) -8 NIL NIL) (-298 669182 671253 671306 "FAMR" 672318 NIL FAMR (NIL T T) -9 NIL 672778) (-297 668073 668375 668809 "FAMR-" 668814 NIL FAMR- (NIL T T T) -8 NIL NIL) (-296 667269 667995 668048 "FAMONOID" 668053 NIL FAMONOID (NIL T) -8 NIL NIL) (-295 665101 665785 665839 "FAMONC" 666780 NIL FAMONC (NIL T T) -9 NIL 667165) (-294 663793 664855 664992 "FAGROUP" 664997 NIL FAGROUP (NIL T) -8 NIL NIL) (-293 661596 661915 662317 "FACUTIL" 663474 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-292 660695 660880 661102 "FACTFUNC" 661406 NIL FACTFUNC (NIL T) -7 NIL NIL) (-291 653018 659946 660158 "EXPUPXS" 660551 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-290 650501 651041 651627 "EXPRTUBE" 652452 T EXPRTUBE (NIL) -7 NIL NIL) (-289 646695 647287 648024 "EXPRODE" 649840 NIL EXPRODE (NIL T T) -7 NIL NIL) (-288 631854 645354 645780 "EXPR" 646301 NIL EXPR (NIL T) -8 NIL NIL) (-287 626282 626869 627681 "EXPR2UPS" 631152 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-286 625918 625975 626082 "EXPR2" 626219 NIL EXPR2 (NIL T T) -7 NIL NIL) (-285 617272 625055 625350 "EXPEXPAN" 625756 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-284 617099 617229 617258 "EXIT" 617263 T EXIT (NIL) -8 NIL NIL) (-283 616726 616788 616901 "EVALCYC" 617031 NIL EVALCYC (NIL T) -7 NIL NIL) (-282 616266 616384 616426 "EVALAB" 616596 NIL EVALAB (NIL T) -9 NIL 616700) (-281 615747 615869 616090 "EVALAB-" 616095 NIL EVALAB- (NIL T T) -8 NIL NIL) (-280 613209 614521 614550 "EUCDOM" 615105 T EUCDOM (NIL) -9 NIL 615455) (-279 611614 612056 612646 "EUCDOM-" 612651 NIL EUCDOM- (NIL T) -8 NIL NIL) (-278 599192 601940 604680 "ESTOOLS" 608894 T ESTOOLS (NIL) -7 NIL NIL) (-277 598828 598885 598992 "ESTOOLS2" 599129 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-276 598579 598621 598701 "ESTOOLS1" 598780 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-275 592516 594240 594269 "ES" 597033 T ES (NIL) -9 NIL 598439) (-274 587464 588750 590567 "ES-" 590731 NIL ES- (NIL T) -8 NIL NIL) (-273 583839 584599 585379 "ESCONT" 586704 T ESCONT (NIL) -7 NIL NIL) (-272 583584 583616 583698 "ESCONT1" 583801 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-271 583259 583309 583409 "ES2" 583528 NIL ES2 (NIL T T) -7 NIL NIL) (-270 582889 582947 583056 "ES1" 583195 NIL ES1 (NIL T T) -7 NIL NIL) (-269 582105 582234 582410 "ERROR" 582733 T ERROR (NIL) -7 NIL NIL) (-268 575608 581964 582055 "EQTBL" 582060 NIL EQTBL (NIL T T) -8 NIL NIL) (-267 568045 570926 572373 "EQ" 574194 NIL -3137 (NIL T) -8 NIL NIL) (-266 567677 567734 567843 "EQ2" 567982 NIL EQ2 (NIL T T) -7 NIL NIL) (-265 562969 564015 565108 "EP" 566616 NIL EP (NIL T) -7 NIL NIL) (-264 562128 562692 562721 "ENTIRER" 562726 T ENTIRER (NIL) -9 NIL 562771) (-263 558584 560083 560453 "EMR" 561927 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-262 557727 557912 557967 "ELTAGG" 558347 NIL ELTAGG (NIL T T) -9 NIL 558558) (-261 557446 557508 557649 "ELTAGG-" 557654 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-260 557234 557263 557318 "ELTAB" 557402 NIL ELTAB (NIL T T) -9 NIL NIL) (-259 556360 556506 556705 "ELFUTS" 557085 NIL ELFUTS (NIL T T) -7 NIL NIL) (-258 556101 556157 556186 "ELEMFUN" 556291 T ELEMFUN (NIL) -9 NIL NIL) (-257 555971 555992 556060 "ELEMFUN-" 556065 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-256 550862 554071 554113 "ELAGG" 555053 NIL ELAGG (NIL T) -9 NIL 555516) (-255 549147 549581 550244 "ELAGG-" 550249 NIL ELAGG- (NIL T T) -8 NIL NIL) (-254 542015 543814 544641 "EFUPXS" 548423 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-253 535465 537266 538076 "EFULS" 541291 NIL EFULS (NIL T T T) -8 NIL NIL) (-252 532896 533254 533732 "EFSTRUC" 535097 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-251 521968 523533 525093 "EF" 531411 NIL EF (NIL T T) -7 NIL NIL) (-250 521069 521453 521602 "EAB" 521839 T EAB (NIL) -8 NIL NIL) (-249 520282 521028 521056 "E04UCFA" 521061 T E04UCFA (NIL) -8 NIL NIL) (-248 519495 520241 520269 "E04NAFA" 520274 T E04NAFA (NIL) -8 NIL NIL) (-247 518708 519454 519482 "E04MBFA" 519487 T E04MBFA (NIL) -8 NIL NIL) (-246 517921 518667 518695 "E04JAFA" 518700 T E04JAFA (NIL) -8 NIL NIL) (-245 517136 517880 517908 "E04GCFA" 517913 T E04GCFA (NIL) -8 NIL NIL) (-244 516351 517095 517123 "E04FDFA" 517128 T E04FDFA (NIL) -8 NIL NIL) (-243 515564 516310 516338 "E04DGFA" 516343 T E04DGFA (NIL) -8 NIL NIL) (-242 509749 511094 512456 "E04AGNT" 514222 T E04AGNT (NIL) -7 NIL NIL) (-241 508475 508955 508996 "DVARCAT" 509471 NIL DVARCAT (NIL T) -9 NIL 509669) (-240 507679 507891 508205 "DVARCAT-" 508210 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-239 500541 507481 507608 "DSMP" 507613 NIL DSMP (NIL T T T) -8 NIL NIL) (-238 495351 496486 497554 "DROPT" 499493 T DROPT (NIL) -8 NIL NIL) (-237 495016 495075 495173 "DROPT1" 495286 NIL DROPT1 (NIL T) -7 NIL NIL) (-236 490131 491257 492394 "DROPT0" 493899 T DROPT0 (NIL) -7 NIL NIL) (-235 488476 488801 489187 "DRAWPT" 489765 T DRAWPT (NIL) -7 NIL NIL) (-234 483063 483986 485065 "DRAW" 487450 NIL DRAW (NIL T) -7 NIL NIL) (-233 482696 482749 482867 "DRAWHACK" 483004 NIL DRAWHACK (NIL T) -7 NIL NIL) (-232 481427 481696 481987 "DRAWCX" 482425 T DRAWCX (NIL) -7 NIL NIL) (-231 480945 481013 481163 "DRAWCURV" 481353 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-230 471417 473375 475490 "DRAWCFUN" 478850 T DRAWCFUN (NIL) -7 NIL NIL) (-229 468230 470112 470154 "DQAGG" 470783 NIL DQAGG (NIL T) -9 NIL 471056) (-228 456736 463474 463557 "DPOLCAT" 465395 NIL DPOLCAT (NIL T T T T) -9 NIL 465939) (-227 451576 452922 454879 "DPOLCAT-" 454884 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-226 445660 451438 451535 "DPMO" 451540 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-225 439647 445441 445607 "DPMM" 445612 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-224 439280 439356 439454 "DOMAIN" 439569 T DOMAIN (NIL) -8 NIL NIL) (-223 432992 438917 439068 "DMP" 439181 NIL DMP (NIL NIL T) -8 NIL NIL) (-222 432592 432648 432792 "DLP" 432930 NIL DLP (NIL T) -7 NIL NIL) (-221 426236 431693 431920 "DLIST" 432397 NIL DLIST (NIL T) -8 NIL NIL) (-220 423082 425091 425133 "DLAGG" 425683 NIL DLAGG (NIL T) -9 NIL 425912) (-219 421791 422483 422512 "DIVRING" 422662 T DIVRING (NIL) -9 NIL 422770) (-218 420779 421032 421425 "DIVRING-" 421430 NIL DIVRING- (NIL T) -8 NIL NIL) (-217 418881 419238 419644 "DISPLAY" 420393 T DISPLAY (NIL) -7 NIL NIL) (-216 412770 418795 418858 "DIRPROD" 418863 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-215 411618 411821 412086 "DIRPROD2" 412563 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-214 401248 407253 407307 "DIRPCAT" 407715 NIL DIRPCAT (NIL NIL T) -9 NIL 408542) (-213 398574 399216 400097 "DIRPCAT-" 400434 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-212 397861 398021 398207 "DIOSP" 398408 T DIOSP (NIL) -7 NIL NIL) (-211 394563 396773 396815 "DIOPS" 397249 NIL DIOPS (NIL T) -9 NIL 397478) (-210 394112 394226 394417 "DIOPS-" 394422 NIL DIOPS- (NIL T T) -8 NIL NIL) (-209 392983 393621 393650 "DIFRING" 393837 T DIFRING (NIL) -9 NIL 393946) (-208 392629 392706 392858 "DIFRING-" 392863 NIL DIFRING- (NIL T) -8 NIL NIL) (-207 390418 391700 391741 "DIFEXT" 392100 NIL DIFEXT (NIL T) -9 NIL 392393) (-206 388704 389132 389797 "DIFEXT-" 389802 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-205 386026 388236 388278 "DIAGG" 388283 NIL DIAGG (NIL T) -9 NIL 388303) (-204 385410 385567 385819 "DIAGG-" 385824 NIL DIAGG- (NIL T T) -8 NIL NIL) (-203 380875 384369 384646 "DHMATRIX" 385179 NIL DHMATRIX (NIL T) -8 NIL NIL) (-202 376487 377396 378406 "DFSFUN" 379885 T DFSFUN (NIL) -7 NIL NIL) (-201 371273 375201 375566 "DFLOAT" 376142 T DFLOAT (NIL) -8 NIL NIL) (-200 369506 369787 370182 "DFINTTLS" 370981 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-199 366539 367541 367939 "DERHAM" 369173 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-198 364388 366314 366403 "DEQUEUE" 366483 NIL DEQUEUE (NIL T) -8 NIL NIL) (-197 363606 363739 363934 "DEGRED" 364250 NIL DEGRED (NIL T T) -7 NIL NIL) (-196 360006 360751 361603 "DEFINTRF" 362834 NIL DEFINTRF (NIL T) -7 NIL NIL) (-195 357537 358006 358604 "DEFINTEF" 359525 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-194 351368 356978 357144 "DECIMAL" 357391 T DECIMAL (NIL) -8 NIL NIL) (-193 348880 349338 349844 "DDFACT" 350912 NIL DDFACT (NIL T T) -7 NIL NIL) (-192 348476 348519 348670 "DBLRESP" 348831 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-191 346186 346520 346889 "DBASE" 348234 NIL DBASE (NIL T) -8 NIL NIL) (-190 345321 346145 346173 "D03FAFA" 346178 T D03FAFA (NIL) -8 NIL NIL) (-189 344457 345280 345308 "D03EEFA" 345313 T D03EEFA (NIL) -8 NIL NIL) (-188 342407 342873 343362 "D03AGNT" 343988 T D03AGNT (NIL) -7 NIL NIL) (-187 341725 342366 342394 "D02EJFA" 342399 T D02EJFA (NIL) -8 NIL NIL) (-186 341043 341684 341712 "D02CJFA" 341717 T D02CJFA (NIL) -8 NIL NIL) (-185 340361 341002 341030 "D02BHFA" 341035 T D02BHFA (NIL) -8 NIL NIL) (-184 339679 340320 340348 "D02BBFA" 340353 T D02BBFA (NIL) -8 NIL NIL) (-183 332877 334465 336071 "D02AGNT" 338093 T D02AGNT (NIL) -7 NIL NIL) (-182 330646 331168 331714 "D01WGTS" 332351 T D01WGTS (NIL) -7 NIL NIL) (-181 329749 330605 330633 "D01TRNS" 330638 T D01TRNS (NIL) -8 NIL NIL) (-180 328852 329708 329736 "D01GBFA" 329741 T D01GBFA (NIL) -8 NIL NIL) (-179 327955 328811 328839 "D01FCFA" 328844 T D01FCFA (NIL) -8 NIL NIL) (-178 327058 327914 327942 "D01ASFA" 327947 T D01ASFA (NIL) -8 NIL NIL) (-177 326161 327017 327045 "D01AQFA" 327050 T D01AQFA (NIL) -8 NIL NIL) (-176 325264 326120 326148 "D01APFA" 326153 T D01APFA (NIL) -8 NIL NIL) (-175 324367 325223 325251 "D01ANFA" 325256 T D01ANFA (NIL) -8 NIL NIL) (-174 323470 324326 324354 "D01AMFA" 324359 T D01AMFA (NIL) -8 NIL NIL) (-173 322573 323429 323457 "D01ALFA" 323462 T D01ALFA (NIL) -8 NIL NIL) (-172 321676 322532 322560 "D01AKFA" 322565 T D01AKFA (NIL) -8 NIL NIL) (-171 320779 321635 321663 "D01AJFA" 321668 T D01AJFA (NIL) -8 NIL NIL) (-170 314083 315632 317191 "D01AGNT" 319240 T D01AGNT (NIL) -7 NIL NIL) (-169 313420 313548 313700 "CYCLOTOM" 313951 T CYCLOTOM (NIL) -7 NIL NIL) (-168 310155 310868 311595 "CYCLES" 312713 T CYCLES (NIL) -7 NIL NIL) (-167 309467 309601 309772 "CVMP" 310016 NIL CVMP (NIL T) -7 NIL NIL) (-166 307249 307506 307881 "CTRIGMNP" 309195 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-165 306623 306722 306875 "CSTTOOLS" 307146 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-164 302422 303079 303837 "CRFP" 305935 NIL CRFP (NIL T T) -7 NIL NIL) (-163 301469 301654 301882 "CRAPACK" 302226 NIL CRAPACK (NIL T) -7 NIL NIL) (-162 300853 300954 301158 "CPMATCH" 301345 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-161 300578 300606 300712 "CPIMA" 300819 NIL CPIMA (NIL T T T) -7 NIL NIL) (-160 296942 297614 298332 "COORDSYS" 299913 NIL COORDSYS (NIL T) -7 NIL NIL) (-159 296326 296455 296605 "CONTOUR" 296812 T CONTOUR (NIL) -8 NIL NIL) (-158 292187 294329 294821 "CONTFRAC" 295866 NIL CONTFRAC (NIL T) -8 NIL NIL) (-157 291340 291904 291933 "COMRING" 291938 T COMRING (NIL) -9 NIL 291989) (-156 290421 290698 290882 "COMPPROP" 291176 T COMPPROP (NIL) -8 NIL NIL) (-155 290082 290117 290245 "COMPLPAT" 290380 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-154 280063 289891 290000 "COMPLEX" 290005 NIL COMPLEX (NIL T) -8 NIL NIL) (-153 279699 279756 279863 "COMPLEX2" 280000 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-152 279417 279452 279550 "COMPFACT" 279658 NIL COMPFACT (NIL T T) -7 NIL NIL) (-151 263751 274045 274086 "COMPCAT" 275088 NIL COMPCAT (NIL T) -9 NIL 276481) (-150 253266 256190 259817 "COMPCAT-" 260173 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-149 252997 253025 253127 "COMMUPC" 253232 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-148 252792 252825 252884 "COMMONOP" 252958 T COMMONOP (NIL) -7 NIL NIL) (-147 252375 252543 252630 "COMM" 252725 T COMM (NIL) -8 NIL NIL) (-146 251623 251817 251846 "COMBOPC" 252184 T COMBOPC (NIL) -9 NIL 252359) (-145 250519 250729 250971 "COMBINAT" 251413 NIL COMBINAT (NIL T) -7 NIL NIL) (-144 246717 247290 247930 "COMBF" 249941 NIL COMBF (NIL T T) -7 NIL NIL) (-143 245503 245833 246068 "COLOR" 246502 T COLOR (NIL) -8 NIL NIL) (-142 245143 245190 245315 "CMPLXRT" 245450 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-141 240645 241673 242753 "CLIP" 244083 T CLIP (NIL) -7 NIL NIL) (-140 238983 239753 239991 "CLIF" 240473 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-139 235205 237129 237171 "CLAGG" 238100 NIL CLAGG (NIL T) -9 NIL 238636) (-138 233627 234084 234667 "CLAGG-" 234672 NIL CLAGG- (NIL T T) -8 NIL NIL) (-137 233171 233256 233396 "CINTSLPE" 233536 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-136 230672 231143 231691 "CHVAR" 232699 NIL CHVAR (NIL T T T) -7 NIL NIL) (-135 229894 230458 230487 "CHARZ" 230492 T CHARZ (NIL) -9 NIL 230506) (-134 229648 229688 229766 "CHARPOL" 229848 NIL CHARPOL (NIL T) -7 NIL NIL) (-133 228754 229351 229380 "CHARNZ" 229427 T CHARNZ (NIL) -9 NIL 229482) (-132 226777 227444 227779 "CHAR" 228439 T CHAR (NIL) -8 NIL NIL) (-131 226502 226563 226592 "CFCAT" 226703 T CFCAT (NIL) -9 NIL NIL) (-130 225747 225858 226040 "CDEN" 226386 NIL CDEN (NIL T T T) -7 NIL NIL) (-129 221739 224900 225180 "CCLASS" 225487 T CCLASS (NIL) -8 NIL NIL) (-128 216792 217768 218521 "CARTEN" 221042 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-127 215900 216048 216269 "CARTEN2" 216639 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-126 214197 215052 215308 "CARD" 215664 T CARD (NIL) -8 NIL NIL) (-125 213569 213897 213926 "CACHSET" 214058 T CACHSET (NIL) -9 NIL 214135) (-124 213065 213361 213390 "CABMON" 213440 T CABMON (NIL) -9 NIL 213496) (-123 210622 212757 212864 "BTREE" 212991 NIL BTREE (NIL T) -8 NIL NIL) (-122 208120 210270 210392 "BTOURN" 210532 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205538 207591 207633 "BTCAT" 207701 NIL BTCAT (NIL T) -9 NIL 207778) (-120 205205 205285 205434 "BTCAT-" 205439 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200425 204296 204325 "BTAGG" 204581 T BTAGG (NIL) -9 NIL 204760) (-118 199848 199992 200222 "BTAGG-" 200227 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 196892 199126 199341 "BSTREE" 199665 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196030 196156 196340 "BRILL" 196748 NIL BRILL (NIL T) -7 NIL NIL) (-115 192731 194758 194800 "BRAGG" 195449 NIL BRAGG (NIL T) -9 NIL 195706) (-114 191260 191666 192221 "BRAGG-" 192226 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184468 190606 190790 "BPADICRT" 191108 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 182772 184405 184450 "BPADIC" 184455 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182472 182502 182615 "BOUNDZRO" 182736 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 177987 179078 179945 "BOP" 181625 T BOP (NIL) -8 NIL NIL) (-109 175608 176052 176572 "BOP1" 177500 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174227 174938 175161 "BOOLEAN" 175405 T BOOLEAN (NIL) -8 NIL NIL) (-107 173593 173971 174024 "BMODULE" 174029 NIL BMODULE (NIL T T) -9 NIL 174093) (-106 169403 173391 173464 "BITS" 173540 T BITS (NIL) -8 NIL NIL) (-105 168500 168935 169087 "BINFILE" 169271 T BINFILE (NIL) -8 NIL NIL) (-104 167912 168034 168176 "BINDING" 168378 T BINDING (NIL) -8 NIL NIL) (-103 161747 167356 167521 "BINARY" 167767 T BINARY (NIL) -8 NIL NIL) (-102 159574 161002 161044 "BGAGG" 161304 NIL BGAGG (NIL T) -9 NIL 161441) (-101 159405 159437 159528 "BGAGG-" 159533 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158503 158789 158994 "BFUNCT" 159220 T BFUNCT (NIL) -8 NIL NIL) (-99 157204 157382 157667 "BEZOUT" 158327 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 153729 156064 156392 "BBTREE" 156907 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153466 153519 153546 "BASTYPE" 153663 T BASTYPE (NIL) -9 NIL NIL) (-96 153321 153350 153420 "BASTYPE-" 153425 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 152759 152835 152985 "BALFACT" 153232 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151581 152178 152363 "AUTOMOR" 152604 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151306 151311 151338 "ATTREG" 151343 T ATTREG (NIL) -9 NIL NIL) (-92 149585 150003 150355 "ATTRBUT" 150972 T ATTRBUT (NIL) -8 NIL NIL) (-91 149120 149233 149260 "ATRIG" 149461 T ATRIG (NIL) -9 NIL NIL) (-90 148929 148970 149057 "ATRIG-" 149062 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147126 148705 148793 "ASTACK" 148872 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145631 145928 146293 "ASSOCEQ" 146808 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144663 145290 145414 "ASP9" 145538 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144427 144611 144650 "ASP8" 144655 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143297 144032 144174 "ASP80" 144316 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142196 142932 143064 "ASP7" 143196 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141152 141873 141991 "ASP78" 142109 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140123 140832 140949 "ASP77" 141066 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139038 139761 139892 "ASP74" 140023 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137939 138673 138805 "ASP73" 138937 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136894 137616 137734 "ASP6" 137852 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135843 136571 136689 "ASP55" 136807 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134793 135517 135636 "ASP50" 135755 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133881 134494 134604 "ASP4" 134714 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132969 133582 133692 "ASP49" 133802 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131754 132508 132676 "ASP42" 132858 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130532 131287 131457 "ASP41" 131641 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129484 130209 130327 "ASP35" 130445 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129249 129432 129471 "ASP34" 129476 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128986 129053 129129 "ASP33" 129204 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127882 128621 128753 "ASP31" 128885 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127647 127830 127869 "ASP30" 127874 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127382 127451 127527 "ASP29" 127602 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127147 127330 127369 "ASP28" 127374 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126912 127095 127134 "ASP27" 127139 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125996 126610 126721 "ASP24" 126832 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124913 125637 125767 "ASP20" 125897 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124001 124614 124724 "ASP1" 124834 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122945 123675 123794 "ASP19" 123913 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122682 122749 122825 "ASP12" 122900 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121535 122281 122425 "ASP10" 122569 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119434 121379 121470 "ARRAY2" 121475 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115250 119082 119196 "ARRAY1" 119351 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114282 114455 114676 "ARRAY12" 115073 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108641 110512 110588 "ARR2CAT" 113218 NIL ARR2CAT (NIL T T T) -9 NIL 113976) (-54 106075 106819 107773 "ARR2CAT-" 107778 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104835 104985 105288 "APPRULE" 105913 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104488 104536 104654 "APPLYORE" 104781 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103462 103753 103948 "ANY" 104311 T ANY (NIL) -8 NIL NIL) (-50 102740 102863 103020 "ANY1" 103336 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100272 101190 101515 "ANTISYM" 102465 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100099 100231 100258 "ANON" 100263 T ANON (NIL) -8 NIL NIL) (-47 94176 98644 99095 "AN" 99666 T AN (NIL) -8 NIL NIL) (-46 90529 91927 91978 "AMR" 92717 NIL AMR (NIL T T) -9 NIL 93316) (-45 89642 89863 90225 "AMR-" 90230 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74192 89559 89620 "ALIST" 89625 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71029 73786 73955 "ALGSC" 74110 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67585 68139 68746 "ALGPKG" 70469 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66862 66963 67147 "ALGMFACT" 67471 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62612 63292 63946 "ALGMANIP" 66386 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53931 62238 62388 "ALGFF" 62545 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53127 53258 53437 "ALGFACT" 53789 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52117 52727 52766 "ALGEBRA" 52826 NIL ALGEBRA (NIL T) -9 NIL 52884) (-36 51835 51894 52026 "ALGEBRA-" 52031 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34095 49838 49891 "ALAGG" 50027 NIL ALAGG (NIL T T) -9 NIL 50188) (-34 33630 33743 33770 "AHYP" 33971 T AHYP (NIL) -9 NIL NIL) (-33 32560 32808 32835 "AGG" 33334 T AGG (NIL) -9 NIL 33613) (-32 31994 32156 32370 "AGG-" 32375 NIL AGG- (NIL T) -8 NIL NIL) (-31 29681 30099 30516 "AF" 31637 NIL AF (NIL T T) -7 NIL NIL) (-30 28950 29208 29364 "ACPLOT" 29543 T ACPLOT (NIL) -8 NIL NIL) (-29 18416 26362 26414 "ACFS" 27125 NIL ACFS (NIL T) -9 NIL 27364) (-28 16430 16920 17695 "ACFS-" 17700 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14653 14680 "ACF" 15559 T ACF (NIL) -9 NIL 15971) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11195 "ABELSG" 11287 T ABELSG (NIL) -9 NIL 11352) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10523 "ABELMON" 10693 T ABELMON (NIL) -9 NIL 10805) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9606 "ABELGRP" 9731 T ABELGRP (NIL) -9 NIL 9813) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8075 "A1AGG" 8080 NIL A1AGG (NIL T) -9 NIL 8120) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 7c106a3d..376874c6 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,3842 +1,4734 @@ -(722241 . 3409486834) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2791 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1134 *7)) - (-5 *3 (-377 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-527 *7 *8))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-114 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) +(724372 . 3409732472) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-585 (-558 *5))) (-5 *3 (-1082)) (-4 *5 (-402 *4)) + (-4 *4 (-782)) (-5 *1 (-528 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-504)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-968)) (-5 *2 (-1163 *4)) + (-5 *1 (-1083 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-848)) (-5 *2 (-1163 *3)) (-5 *1 (-1083 *3)) + (-4 *3 (-968))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-585 (-288 (-201)))) + (|:| |constraints| + (-585 + (-2 (|:| |start| (-201)) (|:| |finish| (-201)) + (|:| |grid| (-705)) (|:| |boundaryType| (-519)) + (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) + (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) + (|:| |tol| (-201)))) + (-5 *2 (-108)) (-5 *1 (-188))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1037 *3 *4)) (-4 *3 (-1139 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1037 *4 *3)) (-4 *4 (-1139 *3))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-335)) (-5 *1 (-701 *2 *3)) (-4 *2 (-644 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) +(((*1 *2 *1) + (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *6)) + (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-832 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-5 *2 (-108))))) (((*1 *1 *1) - (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)) - (-4 *2 (-421)))) + (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-848)) (-4 *3 (-335)) + (-14 *4 (-917 *2 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-1134 *2)) - (-4 *4 (-1134 (-377 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-421)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)) (-4 *3 (-421)))) + (|partial| -12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1139 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-12 (-4 *1 (-873 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-421)))) + (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-157)) (-4 *2 (-511)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-157)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) + ((*1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) + ((*1 *1 *1) (|partial| -4 *1 (-657))) + ((*1 *1 *1) (|partial| -4 *1 (-661))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-710 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-984 *3 *2)) (-4 *3 (-13 (-780) (-335))) + (-4 *2 (-1139 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-625 *4)) (-5 *3 (-848)) (-4 *4 (-968)) + (-5 *1 (-950 *4)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1065 *3 *2)) - (-4 *2 (-1134 *3))))) -(((*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-215))))) + (-12 (-5 *2 (-585 (-625 *4))) (-5 *3 (-848)) (-4 *4 (-968)) + (-5 *1 (-950 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-705)) (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-519) "failed") *5)) (-4 *5 (-968)) + (-5 *2 (-519)) (-5 *1 (-502 *5 *3)) (-4 *3 (-1139 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-519) "failed") *4)) (-4 *4 (-968)) + (-5 *2 (-519)) (-5 *1 (-502 *4 *3)) (-4 *3 (-1139 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-519) "failed") *4)) (-4 *4 (-968)) + (-5 *2 (-519)) (-5 *1 (-502 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-267 (-768 *3))) + (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-768 *3)) (-5 *1 (-578 *5 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-267 (-768 (-879 *5)))) (-4 *5 (-423)) + (-5 *2 (-768 (-379 (-879 *5)))) (-5 *1 (-579 *5)) + (-5 *3 (-379 (-879 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-267 (-379 (-879 *5)))) (-5 *3 (-379 (-879 *5))) + (-4 *5 (-423)) (-5 *2 (-768 *3)) (-5 *1 (-579 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) + (-223 *4 (-379 (-519))))) + (-14 *4 (-585 (-1082))) (-14 *5 (-705)) (-5 *2 (-108)) + (-5 *1 (-472 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) + (-5 *1 (-160 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-302))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1082)) + (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-4 *4 (-13 (-29 *6) (-1103) (-885))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2070 (-585 *4)))) + (-5 *1 (-736 *6 *4 *3)) (-4 *3 (-595 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) + (-5 *2 (-585 (-585 (-585 (-705)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) + (-5 *2 (-379 (-519))) (-5 *1 (-942 *4)) (-4 *4 (-1139 (-519)))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) + (-5 *2 (-957)) (-5 *1 (-690))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726)))) + ((*1 *2 *1) + (-12 (-5 *2 (-705)) (-5 *1 (-49 *3 *4)) (-4 *3 (-968)) + (-14 *4 (-585 (-1082))))) + ((*1 *2 *1) + (-12 (-5 *2 (-519)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-968) (-782))) + (-14 *4 (-585 (-1082))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-968)) (-4 *3 (-782)) + (-4 *5 (-241 *3)) (-4 *6 (-727)) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-250)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1078 *8)) (-5 *4 (-585 *6)) (-4 *6 (-782)) + (-4 *8 (-876 *7 *5 *6)) (-4 *5 (-727)) (-4 *7 (-968)) + (-5 *2 (-585 (-705))) (-5 *1 (-293 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-5 *2 (-848)))) + ((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) + (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-441 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-511)) (-5 *2 (-519)) (-5 *1 (-566 *3 *4)) + (-4 *4 (-1139 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-968)) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-968)) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-585 *6)) (-4 *1 (-876 *4 *5 *6)) (-4 *4 (-968)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 (-705))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-876 *4 *5 *3)) (-4 *4 (-968)) (-4 *5 (-727)) + (-4 *3 (-782)) (-5 *2 (-705)))) + ((*1 *2 *1) + (-12 (-4 *1 (-897 *3 *2 *4)) (-4 *3 (-968)) (-4 *4 (-782)) + (-4 *2 (-726)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-705)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1125 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1154 *3)) + (-5 *2 (-519)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1123 *3)) + (-5 *2 (-379 (-519))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-768 (-848))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1182 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) + (-5 *2 (-705))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-782)) (-5 *2 (-585 (-603 *4 *5))) + (-5 *1 (-569 *4 *5 *6)) (-4 *5 (-13 (-157) (-652 (-379 (-519))))) + (-14 *6 (-848))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-519))) (-5 *4 (-519)) (-5 *2 (-51)) + (-5 *1 (-928))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-900 *3 *4 *2 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)) (-4 *5 (-982 *3 *4 *2))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-585 (-585 (-201)))) (-5 *4 (-201)) + (-5 *2 (-585 (-870 *4))) (-5 *1 (-1114)) (-5 *3 (-870 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-157) (-37 (-379 (-519))))) + (-4 *2 (-13 (-782) (-21)))))) +(((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-157))))) +(((*1 *2) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108))))) (((*1 *1 *2) - (-12 (-5 *2 (-1073 *3)) (-4 *3 (-964)) (-4 *1 (-1134 *3))))) -(((*1 *1) (-4 *1 (-319))) + (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) + (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-1174 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) + (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-1174 *5 *6 *7 *8))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-625 *4)) (-5 *3 (-705)) (-4 *4 (-968)) + (-5 *1 (-626 *4))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1011)))) + ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1011))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1118 *2)) + (-4 *2 (-1011)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) - (-4 *4 (-13 (-509) (-779) (-134))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-1011)) (-4 *2 (-782)) + (-5 *1 (-1118 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1011)) (-4 *6 (-1011)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-620 *4 *5 *6)) (-4 *5 (-1011))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1063 *4)) (-5 *3 (-519)) (-4 *4 (-968)) + (-5 *1 (-1067 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-519)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-968)) + (-14 *4 (-1082)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1073 *5))) - (|:| |prim| (-1073 *5)))) - (-5 *1 (-402 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-509) (-779) (-134))) + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-302))))) +(((*1 *1) (-5 *1 (-132))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-1042 (-201))) (-5 *1 (-238))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-519)))) + ((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-519))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1011)) (-5 *1 (-890 *3 *2)) (-4 *3 (-1011))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1117)) + (-4 *5 (-345 *4)) (-4 *2 (-345 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-4 *1 (-971 *4 *5 *6 *2 *7)) (-4 *6 (-968)) + (-4 *7 (-214 *4 *6)) (-4 *2 (-214 *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1065)) (-5 *3 (-758)) (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-4 *1 (-321)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1078 *4)) (-4 *4 (-321)) (-5 *2 (-108)) + (-5 *1 (-329 *4))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4221)) (-4 *1 (-458 *3)) (-4 *3 (-1117)) + (-4 *3 (-1011)) (-5 *2 (-705)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4221)) (-4 *1 (-458 *4)) + (-4 *4 (-1117)) (-5 *2 (-705))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-232))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1063 (-519))) (-5 *1 (-1067 *4)) (-4 *4 (-968)) + (-5 *3 (-519))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-957)) (-5 *1 (-278)))) + ((*1 *2 *3) (-12 (-5 *3 (-585 (-957))) (-5 *2 (-957)) (-5 *1 (-278)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-590 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *1) (-5 *1 (-980))) + ((*1 *2 *3) + (-12 (-5 *3 (-1063 (-1063 *4))) (-5 *2 (-1063 *4)) (-5 *1 (-1060 *4)) + (-4 *4 (-1117)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1163 (-705))) (-5 *1 (-613 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3) + (-12 (-4 *4 (-968)) (-5 *2 (-519)) (-5 *1 (-414 *4 *3 *5)) + (-4 *3 (-1139 *4)) + (-4 *5 (-13 (-376) (-959 *4) (-335) (-1103) (-258)))))) +(((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-157))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) + (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-536 *3)) (-5 *1 (-398 *5 *3)) + (-4 *3 (-13 (-1103) (-29 *5)))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-832 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-790))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1004 (-775 *3))) (-4 *3 (-13 (-1103) (-885) (-29 *5))) + (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1073 *3)) - (|:| |pol2| (-1073 *3)) (|:| |prim| (-1073 *3)))) - (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-876 *5)) (-5 *4 (-1077)) (-4 *5 (-13 (-333) (-134))) + (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-585 (-775 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-195 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1004 (-775 *3))) (-5 *5 (-1065)) + (-4 *3 (-13 (-1103) (-885) (-29 *6))) + (-4 *6 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 - (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) - (|:| |prim| (-1073 *5)))) - (-5 *1 (-883 *5)))) + (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-585 (-775 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-195 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077))) - (-4 *5 (-13 (-333) (-134))) + (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1004 (-775 (-288 *5)))) + (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 - (-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 *5))) - (|:| |prim| (-1073 *5)))) - (-5 *1 (-883 *5)))) + (-3 (|:| |f1| (-775 (-288 *5))) (|:| |f2| (-585 (-775 (-288 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-196 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077))) (-5 *5 (-1077)) - (-4 *6 (-13 (-333) (-134))) + (-12 (-5 *3 (-379 (-879 *6))) (-5 *4 (-1004 (-775 (-288 *6)))) + (-5 *5 (-1065)) + (-4 *6 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) (-5 *2 - (-2 (|:| -1570 (-583 (-517))) (|:| |poly| (-583 (-1073 *6))) - (|:| |prim| (-1073 *6)))) - (-5 *1 (-883 *6))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) - (-5 *2 (-583 (-583 (-583 (-703)))))))) -(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517))))) + (-3 (|:| |f1| (-775 (-288 *6))) (|:| |f2| (-585 (-775 (-288 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-196 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1004 (-775 (-379 (-879 *5))))) (-5 *3 (-379 (-879 *5))) + (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *2 + (-3 (|:| |f1| (-775 (-288 *5))) (|:| |f2| (-585 (-775 (-288 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-196 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1004 (-775 (-379 (-879 *6))))) (-5 *5 (-1065)) + (-5 *3 (-379 (-879 *6))) + (-4 *6 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *2 + (-3 (|:| |f1| (-775 (-288 *6))) (|:| |f2| (-585 (-775 (-288 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-196 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) + (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-3 *3 (-585 *3))) (-5 *1 (-400 *5 *3)) + (-4 *3 (-13 (-1103) (-885) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-445 *3 *4 *5)) + (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-288 (-351))) (-5 *4 (-1006 (-775 (-351)))) + (-5 *5 (-351)) (-5 *6 (-980)) (-5 *2 (-957)) (-5 *1 (-520)))) + ((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-957)) (-5 *1 (-520)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-288 (-351))) (-5 *4 (-1006 (-775 (-351)))) + (-5 *5 (-351)) (-5 *2 (-957)) (-5 *1 (-520)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-288 (-351))) (-5 *4 (-1006 (-775 (-351)))) + (-5 *5 (-351)) (-5 *2 (-957)) (-5 *1 (-520)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-288 (-351))) (-5 *4 (-1006 (-775 (-351)))) + (-5 *2 (-957)) (-5 *1 (-520)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-1006 (-775 (-351))))) + (-5 *2 (-957)) (-5 *1 (-520)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-1006 (-775 (-351))))) + (-5 *5 (-351)) (-5 *2 (-957)) (-5 *1 (-520)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-1006 (-775 (-351))))) + (-5 *5 (-351)) (-5 *2 (-957)) (-5 *1 (-520)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-1006 (-775 (-351))))) + (-5 *5 (-351)) (-5 *6 (-980)) (-5 *2 (-957)) (-5 *1 (-520)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-288 (-351))) (-5 *4 (-1004 (-775 (-351)))) + (-5 *5 (-1065)) (-5 *2 (-957)) (-5 *1 (-520)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-288 (-351))) (-5 *4 (-1004 (-775 (-351)))) + (-5 *5 (-1082)) (-5 *2 (-957)) (-5 *1 (-520)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-335) (-135) (-959 (-519)))) (-4 *5 (-1139 *4)) + (-5 *2 (-536 (-379 *5))) (-5 *1 (-523 *4 *5)) (-5 *3 (-379 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) (-4 *5 (-135)) + (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) + (-5 *2 (-3 (-288 *5) (-585 (-288 *5)))) (-5 *1 (-539 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-675 *3 *2)) (-4 *3 (-968)) (-4 *2 (-782)) + (-4 *3 (-37 (-379 (-519)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1082)) (-5 *1 (-879 *3)) (-4 *3 (-37 (-379 (-519)))) + (-4 *3 (-968)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-4 *2 (-782)) + (-5 *1 (-1035 *3 *2 *4)) (-4 *4 (-876 *3 (-491 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) + (-5 *1 (-1067 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1073 *3 *4 *5)) + (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1079 *3 *4 *5)) + (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1080 *3 *4 *5)) + (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *1 (-1112 *3)) (-4 *3 (-37 (-379 (-519)))) + (-4 *3 (-968)))) + ((*1 *1 *1 *2) + (-3730 + (-12 (-5 *2 (-1082)) (-4 *1 (-1123 *3)) (-4 *3 (-968)) + (-12 (-4 *3 (-29 (-519))) (-4 *3 (-885)) (-4 *3 (-1103)) + (-4 *3 (-37 (-379 (-519)))))) + (-12 (-5 *2 (-1082)) (-4 *1 (-1123 *3)) (-4 *3 (-968)) + (-12 (|has| *3 (-15 -4083 ((-585 *2) *3))) + (|has| *3 (-15 -4142 (*3 *3 *2))) (-4 *3 (-37 (-379 (-519)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1123 *2)) (-4 *2 (-968)) (-4 *2 (-37 (-379 (-519)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1127 *3 *4 *5)) + (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-37 (-379 (-519)))))) + ((*1 *1 *1 *2) + (-3730 + (-12 (-5 *2 (-1082)) (-4 *1 (-1144 *3)) (-4 *3 (-968)) + (-12 (-4 *3 (-29 (-519))) (-4 *3 (-885)) (-4 *3 (-1103)) + (-4 *3 (-37 (-379 (-519)))))) + (-12 (-5 *2 (-1082)) (-4 *1 (-1144 *3)) (-4 *3 (-968)) + (-12 (|has| *3 (-15 -4083 ((-585 *2) *3))) + (|has| *3 (-15 -4142 (*3 *3 *2))) (-4 *3 (-37 (-379 (-519)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1144 *2)) (-4 *2 (-968)) (-4 *2 (-37 (-379 (-519)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1148 *3 *4 *5)) + (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3730 + (-12 (-5 *2 (-1082)) (-4 *1 (-1154 *3)) (-4 *3 (-968)) + (-12 (-4 *3 (-29 (-519))) (-4 *3 (-885)) (-4 *3 (-1103)) + (-4 *3 (-37 (-379 (-519)))))) + (-12 (-5 *2 (-1082)) (-4 *1 (-1154 *3)) (-4 *3 (-968)) + (-12 (|has| *3 (-15 -4083 ((-585 *2) *3))) + (|has| *3 (-15 -4142 (*3 *3 *2))) (-4 *3 (-37 (-379 (-519)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1154 *2)) (-4 *2 (-968)) (-4 *2 (-37 (-379 (-519)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1155 *3 *4 *5)) + (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-229 *3)) (-4 *3 (-1117)) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-275)) (-5 *2 (-705)))) + ((*1 *2 *3) + (-12 (-4 *4 (-968)) + (-4 *2 (-13 (-376) (-959 *4) (-335) (-1103) (-258))) + (-5 *1 (-414 *4 *3 *2)) (-4 *3 (-1139 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-558 *3)) (-4 *3 (-782)))) + ((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-790))))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-201)))) + ((*1 *1 *1) (-4 *1 (-504))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-542 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1011)) (-5 *2 (-1029))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1011)) (-4 *6 (-1011)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-620 *4 *5 *6)) (-4 *4 (-1011))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) (-4 *5 (-1011)) + (-4 *6 (-1117)) (-5 *2 (-1 *6 *5)) (-5 *1 (-582 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1011)) + (-4 *2 (-1117)) (-5 *1 (-582 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 *5)) (-4 *6 (-1011)) + (-4 *5 (-1117)) (-5 *2 (-1 *5 *6)) (-5 *1 (-582 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-4 *5 (-1011)) + (-4 *2 (-1117)) (-5 *1 (-582 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-585 *5)) (-5 *4 (-585 *6)) + (-4 *5 (-1011)) (-4 *6 (-1117)) (-5 *1 (-582 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1011)) (-4 *2 (-1117)) (-5 *1 (-582 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (-132)) (-5 *2 (-705))))) (((*1 *2 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) - (-4 *4 (-319))))) + (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-869)) (-5 *3 (-519)))) + ((*1 *2 *2) + (-12 (-4 *3 (-280)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) + (-5 *1 (-1033 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1082)) (-5 *2 (-409)) (-5 *1 (-1086))))) +(((*1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1011)) (-4 *2 (-340))))) (((*1 *2 *1) - (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) - (-5 *2 (-383 *4 (-377 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1158 *6)) (-4 *6 (-13 (-379 *4 *5) (-955 *4))) - (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-4 *3 (-278)) - (-5 *1 (-383 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-845)))) + (-12 (-5 *2 (-108)) (-5 *1 (-288 *3)) (-4 *3 (-511)) (-4 *3 (-782))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-335)) (-4 *5 (-511)) + (-5 *2 + (-2 (|:| |minor| (-585 (-848))) (|:| -3257 *3) + (|:| |minors| (-585 (-585 (-848)))) (|:| |ops| (-585 *3)))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-848)) (-4 *3 (-595 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-848)) (-5 *1 (-954 *2)) + (-4 *2 (-13 (-1011) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) ((*1 *2 *3) - (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-845)) - (-5 *1 (-487 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) - ((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236))))) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-335)) (-4 *3 (-968)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1397 *1))) + (-4 *1 (-784 *3))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *3 (-519)) + (-5 *2 (-957)) (-5 *1 (-691))))) +(((*1 *2 *2) (-12 (-5 *1 (-537 *2)) (-4 *2 (-504))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-92)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-92))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-536 *3)) (-4 *3 (-335))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1123 *3)) + (-5 *2 (-379 (-519)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) + (-4 *4 (-13 (-782) (-511)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 *4)) (-5 *1 (-1048 *3 *4)) + (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-157))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1111 *5 *6 *7 *8)) (-4 *5 (-511)) + (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-982 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-423)) + (-5 *2 + (-585 + (-2 (|:| |eigval| (-3 (-379 (-879 *4)) (-1072 (-1082) (-879 *4)))) + (|:| |geneigvec| (-585 (-625 (-379 (-879 *4)))))))) + (-5 *1 (-265 *4)) (-5 *3 (-625 (-379 (-879 *4))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) + (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-1174 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) + (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-1174 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) + (-4 *5 (-1139 *4)) (-5 *2 (-585 (-2 (|:| -1896 *5) (|:| -1620 *5)))) + (-5 *1 (-742 *4 *5 *3 *6)) (-4 *3 (-595 *5)) + (-4 *6 (-595 (-379 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) + (-4 *4 (-1139 *5)) (-5 *2 (-585 (-2 (|:| -1896 *4) (|:| -1620 *4)))) + (-5 *1 (-742 *5 *4 *3 *6)) (-4 *3 (-595 *4)) + (-4 *6 (-595 (-379 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) + (-4 *5 (-1139 *4)) (-5 *2 (-585 (-2 (|:| -1896 *5) (|:| -1620 *5)))) + (-5 *1 (-742 *4 *5 *6 *3)) (-4 *6 (-595 *5)) + (-4 *3 (-595 (-379 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) + (-4 *4 (-1139 *5)) (-5 *2 (-585 (-2 (|:| -1896 *4) (|:| -1620 *4)))) + (-5 *1 (-742 *5 *4 *6 *3)) (-4 *6 (-595 *4)) + (-4 *3 (-595 (-379 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1078 *2)) (-4 *2 (-876 (-379 (-879 *6)) *5 *4)) + (-5 *1 (-667 *5 *4 *6 *2)) (-4 *5 (-727)) + (-4 *4 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))) + (-4 *6 (-511))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-705)) (-4 *6 (-1011)) (-4 *7 (-827 *6)) + (-5 *2 (-625 *7)) (-5 *1 (-627 *6 *7 *3 *4)) (-4 *3 (-345 *7)) + (-4 *4 (-13 (-345 *6) (-10 -7 (-6 -4221))))))) +(((*1 *1 *1) (-5 *1 (-201))) ((*1 *1 *1) (-5 *1 (-351))) + ((*1 *1) (-5 *1 (-351)))) +(((*1 *2 *1) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) + (-5 *2 (-2 (|:| |num| (-1163 *4)) (|:| |den| *4)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1082)) + (-4 *4 (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-512 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-1104 *2)) (-4 *2 (-1011))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-585 (-288 (-201)))) (-5 *3 (-201)) (-5 *2 (-108)) + (-5 *1 (-188))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1035 *4 *3 *5))) (-4 *4 (-37 (-379 (-519)))) + (-4 *4 (-968)) (-4 *3 (-782)) (-5 *1 (-1035 *4 *3 *5)) + (-4 *5 (-876 *4 (-491 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1112 *4))) (-5 *3 (-1082)) (-5 *1 (-1112 *4)) + (-4 *4 (-37 (-379 (-519)))) (-4 *4 (-968))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1065)) (|:| -2938 (-1065)))) + (-5 *1 (-757))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1078 *3)) (-4 *3 (-968)) (-4 *1 (-1139 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-423)) + (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-901 *3 *4 *5 *6))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) + (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-876 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-968)) (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) + (-4 *1 (-1139 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *5 (-1065)) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-80 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-957)) + (-5 *1 (-685))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-705)) (-5 *2 (-585 (-1082))) (-5 *1 (-188)) + (-5 *3 (-1082)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-288 (-201))) (-5 *4 (-705)) (-5 *2 (-585 (-1082))) + (-5 *1 (-242)))) + ((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) + (-5 *2 (-585 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 *3)) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) + (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-614 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-754 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-820 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) + (-5 *2 (-585 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-538 *4)) + (-4 *4 (-321))))) +(((*1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-363))))) (((*1 *2 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964)))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-585 *6))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-848)) (-5 *1 (-634)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-625 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-335)) (-5 *1 (-902 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-616 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-201))) + (-5 *2 (-957)) (-5 *1 (-692))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-1078 (-879 *4))) (-5 *1 (-388 *3 *4)) + (-4 *3 (-389 *4)))) ((*1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1106 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *5 (-978 *2 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1112)))) + (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-4 *3 (-335)) + (-5 *2 (-1078 (-879 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1078 (-379 (-879 *3)))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-900 *3 *4 *2 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-982 *3 *4 *2)) (-4 *2 (-782)))) ((*1 *2 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112)) - (-14 *4 (-517))))) + (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-870 *5)) (-4 *5 (-968)) (-5 *2 (-705)) + (-5 *1 (-1071 *4 *5)) (-14 *4 (-848)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-705))) (-5 *3 (-705)) (-5 *1 (-1071 *4 *5)) + (-14 *4 (-848)) (-4 *5 (-968)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-705))) (-5 *3 (-870 *5)) (-4 *5 (-968)) + (-5 *1 (-1071 *4 *5)) (-14 *4 (-848))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-1021)) (-5 *3 (-519))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))) - (-5 *2 (-349)) (-5 *1 (-181))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-798)))) - ((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -2242 *3)))) - (-5 *4 (-703)) (-4 *3 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) - (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-964)) - (-4 *3 (-509)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) - (-4 *4 (-13 (-1006) (-33)))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077))) (-4 *6 (-421)) - (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) - (-4 *5 (-13 (-333) (-777)))))) + (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) + (-5 *2 (-585 (-1082))) (-5 *1 (-242)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1078 *7)) (-4 *7 (-876 *6 *4 *5)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-968)) (-5 *2 (-585 *5)) + (-5 *1 (-293 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-311 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-359)))) + ((*1 *2 *1) + (-12 (-4 *1 (-402 *3)) (-4 *3 (-782)) (-5 *2 (-585 (-1082))))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1) + (-12 (-4 *1 (-876 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-585 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) + (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-585 *5)) + (-5 *1 (-877 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-335) + (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1013 (-1082))) (-5 *1 (-891 *3)) (-4 *3 (-892)))) + ((*1 *2 *1) + (-12 (-4 *1 (-897 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-726)) + (-4 *5 (-782)) (-5 *2 (-585 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-585 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) (-5 *2 (-585 (-1082))) + (-5 *1 (-964 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-519) (-519))) (-5 *1 (-333 *3)) (-4 *3 (-1011)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-705) (-705))) (-5 *1 (-358 *3)) (-4 *3 (-1011)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-267 (-775 *3))) (-4 *3 (-13 (-27) (-1103) (-402 *5))) + (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 + (-3 (-775 *3) + (-2 (|:| |leftHandLimit| (-3 (-775 *3) "failed")) + (|:| |rightHandLimit| (-3 (-775 *3) "failed"))) + "failed")) + (-5 *1 (-578 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-267 *3)) (-5 *5 (-1065)) + (-4 *3 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-775 *3)) (-5 *1 (-578 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-267 (-775 (-879 *5)))) (-4 *5 (-423)) + (-5 *2 + (-3 (-775 (-379 (-879 *5))) + (-2 (|:| |leftHandLimit| (-3 (-775 (-379 (-879 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-775 (-379 (-879 *5))) "failed"))) + "failed")) + (-5 *1 (-579 *5)) (-5 *3 (-379 (-879 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-267 (-379 (-879 *5)))) (-5 *3 (-379 (-879 *5))) + (-4 *5 (-423)) + (-5 *2 + (-3 (-775 *3) + (-2 (|:| |leftHandLimit| (-3 (-775 *3) "failed")) + (|:| |rightHandLimit| (-3 (-775 *3) "failed"))) + "failed")) + (-5 *1 (-579 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-267 (-379 (-879 *6)))) (-5 *5 (-1065)) + (-5 *3 (-379 (-879 *6))) (-4 *6 (-423)) (-5 *2 (-775 *3)) + (-5 *1 (-579 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029)))))) + (-4 *4 (-321)) (-5 *2 (-1168)) (-5 *1 (-489 *4))))) +(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132))) + ((*1 *1 *1) (-4 *1 (-1051)))) (((*1 *2 *3) - (-12 (-4 *1 (-819)) + (-12 (-5 *3 - (-2 (|:| |pde| (-583 (-286 (-199)))) - (|:| |constraints| - (-583 - (-2 (|:| |start| (-199)) (|:| |finish| (-199)) - (|:| |grid| (-703)) (|:| |boundaryType| (-517)) - (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) - (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) - (|:| |tol| (-199)))) - (-5 *2 (-953))))) -(((*1 *1 *1 *1) (-4 *1 (-502)))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *8 (-978 *5 *6 *7)) + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 - (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-945 *5 *6 *7 *8))))) - (-5 *1 (-945 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *8 (-978 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-583 *8)) - (|:| |towers| (-583 (-1048 *5 *6 *7 *8))))) - (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) + (-2 (|:| |stiffnessFactor| (-351)) (|:| |stabilityFactor| (-351)))) + (-5 *1 (-183))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1006)) (-5 *1 (-1090 *3 *2)) (-4 *3 (-1006))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) - (-4 *5 (-725)) (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1073 *3) (-1073 *3))) - (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) - (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) - (-4 *3 (-1006)) (-5 *2 (-703)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4)) - (-4 *4 (-1112)) (-5 *2 (-703))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1154 *4)) + (-4 *4 (-37 (-379 (-519)))) + (-5 *2 (-1 (-1063 *4) (-1063 *4) (-1063 *4))) (-5 *1 (-1156 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-779)) (-5 *2 (-1085 (-583 *4))) (-5 *1 (-1084 *4)) - (-5 *3 (-583 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) -(((*1 *2 *1) - (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517))) - (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) - (-4 *2 - (-13 (-333) (-273) - (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) - (-15 -2082 ((-1029 *3 (-556 $)) $)) - (-15 -2262 ($ (-1029 *3 (-556 $)))))))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1066 *4 *5)) - (-14 *4 (-845)) (-4 *5 (-964))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -2544 (-583 *7)))) - (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))) -(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) - ((*1 *1 *1) (-4 *1 (-502))) - ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1024))))) -(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) - (-4 *8 (-873 *7 *5 *6)) - (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| *3))) - (-5 *1 (-877 *5 *6 *7 *8 *3)) (-5 *4 (-703)) - (-4 *3 - (-13 (-333) - (-10 -8 (-15 -3858 (*8 $)) (-15 -2082 (*8 $)) (-15 -2262 ($ *8)))))))) -(((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-891))))) + (-12 (-5 *3 (-705)) (-5 *2 (-1078 *4)) (-5 *1 (-489 *4)) + (-4 *4 (-321))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-583 (-1131 *5 *4))) - (-5 *1 (-1020 *4 *5)) (-5 *3 (-1131 *5 *4))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1095 *3)) (-4 *3 (-964))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1006)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1006))))) -(((*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161))))) -(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-517)) + (-12 (-5 *3 (-1163 *5)) (-4 *5 (-726)) (-5 *2 (-108)) + (-5 *1 (-777 *4 *5)) (-14 *4 (-705))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-616 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-725)) (-4 *4 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) - (-5 *1 (-418 *5 *6 *7 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-953)) (-5 *1 (-276)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-953))) (-5 *2 (-953)) (-5 *1 (-276)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *1) (-5 *1 (-976))) + (-585 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-519))))) + (-4 *2 (-511)) (-5 *1 (-390 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1055 *4)) - (-4 *4 (-1112)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) + (-12 + (-5 *3 + (-2 (|:| |contp| (-519)) + (|:| -3433 (-585 (-2 (|:| |irr| *4) (|:| -1258 (-519))))))) + (-4 *4 (-1139 (-519))) (-5 *2 (-390 *4)) (-5 *1 (-413 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) - (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) - (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) - (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-921))))) - ((*1 *2 *3) - (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))) - ((*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) - ((*1 *2 *3) - (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) - (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) - (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))) + (-12 + (-5 *3 + (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) + (|:| |explanations| (-585 (-1065))))) + (-5 *2 (-957)) (-5 *1 (-278)))) ((*1 *2 *3) - (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) - (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-921) (-1098)))))) + (-12 + (-5 *3 + (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) + (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957)))) + (-5 *2 (-957)) (-5 *1 (-278))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-948 (-775 (-519)))) + (-5 *3 (-1063 (-2 (|:| |k| (-519)) (|:| |c| *4)))) (-4 *4 (-968)) + (-5 *1 (-544 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1134 *4)) - (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1134 *5)) (-14 *6 (-845)))) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-280) (-135))) (-4 *4 (-13 (-782) (-560 (-1082)))) + (-4 *5 (-727)) (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-876 *3 *5 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-816 *5 *3)) (-5 *4 (-819 *5)) (-4 *5 (-1011)) + (-4 *3 (-151 *6)) (-4 (-879 *6) (-813 *5)) + (-4 *6 (-13 (-813 *5) (-157))) (-5 *1 (-162 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-816 *4 *1)) (-5 *3 (-819 *4)) (-4 *1 (-813 *4)) + (-4 *4 (-1011)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-816 *5 *6)) (-5 *4 (-819 *5)) (-4 *5 (-1011)) + (-4 *6 (-13 (-1011) (-959 *3))) (-4 *3 (-813 *5)) + (-5 *1 (-858 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-816 *5 *3)) (-4 *5 (-1011)) + (-4 *3 (-13 (-402 *6) (-560 *4) (-813 *5) (-959 (-558 $)))) + (-5 *4 (-819 *5)) (-4 *6 (-13 (-511) (-782) (-813 *5))) + (-5 *1 (-859 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-816 (-519) *3)) (-5 *4 (-819 (-519))) (-4 *3 (-504)) + (-5 *1 (-860 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-816 *5 *6)) (-5 *3 (-558 *6)) (-4 *5 (-1011)) + (-4 *6 (-13 (-782) (-959 (-558 $)) (-560 *4) (-813 *5))) + (-5 *4 (-819 *5)) (-5 *1 (-861 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-812 *5 *6 *3)) (-5 *4 (-819 *5)) (-4 *5 (-1011)) + (-4 *6 (-813 *5)) (-4 *3 (-605 *6)) (-5 *1 (-862 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-816 *6 *3) *8 (-819 *6) (-816 *6 *3))) + (-4 *8 (-782)) (-5 *2 (-816 *6 *3)) (-5 *4 (-819 *6)) + (-4 *6 (-1011)) (-4 *3 (-13 (-876 *9 *7 *8) (-560 *4))) + (-4 *7 (-727)) (-4 *9 (-13 (-968) (-782) (-813 *6))) + (-5 *1 (-863 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-816 *5 *3)) (-4 *5 (-1011)) + (-4 *3 (-13 (-876 *8 *6 *7) (-560 *4))) (-5 *4 (-819 *5)) + (-4 *7 (-813 *5)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *8 (-13 (-968) (-782) (-813 *5))) (-5 *1 (-863 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-816 *5 *3)) (-4 *5 (-1011)) (-4 *3 (-916 *6)) + (-4 *6 (-13 (-511) (-813 *5) (-560 *4))) (-5 *4 (-819 *5)) + (-5 *1 (-866 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-816 *5 (-1082))) (-5 *3 (-1082)) (-5 *4 (-819 *5)) + (-4 *5 (-1011)) (-5 *1 (-867 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-585 (-819 *7))) (-5 *5 (-1 *9 (-585 *9))) + (-5 *6 (-1 (-816 *7 *9) *9 (-819 *7) (-816 *7 *9))) (-4 *7 (-1011)) + (-4 *9 (-13 (-968) (-560 (-819 *7)) (-959 *8))) (-5 *2 (-816 *7 *9)) + (-5 *3 (-585 *9)) (-4 *8 (-13 (-968) (-782))) + (-5 *1 (-868 *7 *8 *9))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-288 (-201))) (-5 *1 (-278)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-819 *3)) (|:| |den| (-819 *3)))) + (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1078 (-379 (-1078 *2)))) (-5 *4 (-558 *2)) + (-4 *2 (-13 (-402 *5) (-27) (-1103))) + (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *1 (-515 *5 *2 *6)) (-4 *6 (-1011)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1078 *1)) (-4 *1 (-876 *4 *5 *3)) (-4 *4 (-968)) + (-4 *5 (-727)) (-4 *3 (-782)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1078 *4)) (-4 *4 (-968)) (-4 *1 (-876 *4 *5 *3)) + (-4 *5 (-727)) (-4 *3 (-782)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-1078 *2))) (-4 *5 (-727)) (-4 *4 (-782)) + (-4 *6 (-968)) + (-4 *2 + (-13 (-335) + (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $))))) + (-5 *1 (-877 *5 *4 *6 *7 *2)) (-4 *7 (-876 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-1078 (-379 (-879 *5))))) (-5 *4 (-1082)) + (-5 *2 (-379 (-879 *5))) (-5 *1 (-964 *5)) (-4 *5 (-511))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-727)) + (-4 *3 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))) (-4 *5 (-511)) + (-5 *1 (-667 *4 *3 *5 *2)) (-4 *2 (-876 (-379 (-879 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-968)) (-4 *5 (-727)) + (-4 *3 + (-13 (-782) + (-10 -8 (-15 -1446 ((-1082) $)) + (-15 -1622 ((-3 $ "failed") (-1082)))))) + (-5 *1 (-908 *4 *5 *3 *2)) (-4 *2 (-876 (-879 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-585 *6)) + (-4 *6 + (-13 (-782) + (-10 -8 (-15 -1446 ((-1082) $)) + (-15 -1622 ((-3 $ "failed") (-1082)))))) + (-4 *4 (-968)) (-4 *5 (-727)) (-5 *1 (-908 *4 *5 *6 *2)) + (-4 *2 (-876 (-879 *4) *5 *6))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-585 (-558 *6))) (-5 *4 (-1082)) (-5 *2 (-558 *6)) + (-4 *6 (-402 *5)) (-4 *5 (-782)) (-5 *1 (-528 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) + (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-288 *5))) + (-5 *1 (-1038 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-379 (-879 *5)))) (-5 *4 (-585 (-1082))) + (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-585 (-288 *5)))) + (-5 *1 (-1038 *5))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-625 *2)) (-5 *4 (-519)) + (-4 *2 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) + (-4 *5 (-1139 *2)) (-5 *1 (-466 *2 *5 *6)) (-4 *6 (-381 *2 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1063 *4)) (-4 *4 (-37 *3)) (-4 *4 (-968)) + (-5 *3 (-379 (-519))) (-5 *1 (-1067 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-801)))) + ((*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-4 *1 (-295 *2 *4)) (-4 *4 (-124)) + (-4 *2 (-1011)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *1 (-333 *2)) (-4 *2 (-1011)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *1 (-358 *2)) (-4 *2 (-1011)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *1 (-390 *2)) (-4 *2 (-511)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-4 *2 (-1011)) (-5 *1 (-588 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *1 (-754 *2)) (-4 *2 (-782))))) +(((*1 *2 *3) + (-12 (-5 *3 (-536 *2)) (-4 *2 (-13 (-29 *4) (-1103))) + (-5 *1 (-534 *4 *2)) + (-4 *4 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-536 (-379 (-879 *4)))) + (-4 *4 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) + (-5 *2 (-288 *4)) (-5 *1 (-539 *4))))) +(((*1 *1 *1) (-4 *1 (-977))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) - ((*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-333)) (-4 *2 (-338))))) + (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-280)) (-4 *6 (-345 *5)) (-4 *4 (-345 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) + (-5 *1 (-1033 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-519)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1117)) + (-4 *3 (-345 *4)) (-4 *5 (-345 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-759))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 *4)))) + (-4 *3 (-1011)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-588 *3 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-705)) (-4 *5 (-511)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-894 *5 *3)) (-4 *3 (-1139 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) - (-5 *2 (-751 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-964))))) -(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) - ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *1 *1) (-4 *1 (-1041)))) + (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) + (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 (-829 *3))) (-4 *3 (-1006)) (-5 *1 (-828 *3))))) + (-12 + (-5 *2 + (-585 + (-585 + (-3 (|:| -2938 (-1082)) + (|:| |bounds| (-585 (-3 (|:| S (-1082)) (|:| P (-879 (-519)))))))))) + (-5 *1 (-1086))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-1 (-351))) (-5 *1 (-961))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-335) (-135) (-959 (-519)))) (-4 *5 (-1139 *4)) + (-5 *2 (-2 (|:| |ans| (-379 *5)) (|:| |nosol| (-108)))) + (-5 *1 (-938 *4 *5)) (-5 *3 (-379 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-201))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-879 *6))) (-5 *4 (-585 (-1082))) + (-4 *6 (-13 (-511) (-959 *5))) (-4 *5 (-511)) + (-5 *2 (-585 (-585 (-267 (-379 (-879 *6)))))) (-5 *1 (-960 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1063 (-379 *3))) (-5 *1 (-158 *3)) (-4 *3 (-280))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-343 *2)) (-4 *2 (-1112)) - (-4 *2 (-779)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4196)) - (-4 *1 (-343 *3)) (-4 *3 (-1112))))) -(((*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) - ((*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) + (-12 (-4 *1 (-876 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-423)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *3 (-982 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *1)))) + (-4 *1 (-987 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1121))) + ((*1 *2 *2) + (-12 (-4 *3 (-511)) (-5 *1 (-1142 *3 *2)) + (-4 *2 (-13 (-1139 *3) (-511) (-10 -8 (-15 -2292 ($ $ $)))))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-585 (-848))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-848)) + (-4 *2 (-335)) (-14 *5 (-917 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-648 *5 *6 *7)) (-4 *5 (-782)) + (-4 *6 (-214 (-3532 *4) (-705))) + (-14 *7 + (-1 (-108) (-2 (|:| -2770 *5) (|:| -1690 *6)) + (-2 (|:| -2770 *5) (|:| -1690 *6)))) + (-14 *4 (-585 (-1082))) (-4 *2 (-157)) + (-5 *1 (-432 *4 *2 *5 *6 *7 *8)) (-4 *8 (-876 *2 *6 (-792 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-782)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-519)) (-4 *2 (-511)) (-5 *1 (-566 *2 *4)) + (-4 *4 (-1139 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-644 *2)) (-4 *2 (-968)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-670 *2 *3)) (-4 *2 (-968)) (-4 *3 (-661)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-705))) (-4 *1 (-675 *4 *5)) + (-4 *4 (-968)) (-4 *5 (-782)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-705)) (-4 *1 (-675 *4 *2)) (-4 *4 (-968)) + (-4 *2 (-782)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-784 *2)) (-4 *2 (-968)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-705))) (-4 *1 (-876 *4 *5 *6)) + (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-705)) (-4 *1 (-876 *4 *5 *2)) (-4 *4 (-968)) + (-4 *5 (-727)) (-4 *2 (-782)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 *5)) (-4 *1 (-897 *4 *5 *6)) + (-4 *4 (-968)) (-4 *5 (-726)) (-4 *6 (-782)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-897 *4 *3 *2)) (-4 *4 (-968)) (-4 *3 (-726)) + (-4 *2 (-782))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-870 *3)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-275)) (-5 *3 (-1082)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-275)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1063 (-2 (|:| |k| (-519)) (|:| |c| *6)))) + (-5 *4 (-948 (-775 (-519)))) (-5 *5 (-1082)) (-5 *7 (-379 (-519))) + (-4 *6 (-968)) (-5 *2 (-790)) (-5 *1 (-544 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1001 (-772 (-349)))) (-5 *2 (-1001 (-772 (-199)))) - (-5 *1 (-276))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779))))) + (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-4 *5 (-402 *4)) + (-5 *2 + (-3 (|:| |overq| (-1078 (-379 (-519)))) + (|:| |overan| (-1078 (-47))) (|:| -3134 (-108)))) + (-5 *1 (-407 *4 *5 *3)) (-4 *3 (-1139 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) - (-5 *1 (-1084 *4)) (-4 *4 (-779))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1060)) - (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1098) (-29 *4)))))) + (-12 (-5 *3 (-519)) (|has| *1 (-6 -4212)) (-4 *1 (-376)) + (-5 *2 (-848))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-232))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) - (-4 *5 (-964)) (-5 *2 (-107)) (-5 *1 (-947 *5)))) + (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) + (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-267 (-288 *5)))) + (-5 *1 (-1038 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-964)) - (-5 *2 (-107)) (-5 *1 (-947 *4))))) -(((*1 *2) - (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-387 *3))))) -(((*1 *1 *1) (-5 *1 (-199))) - ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) - ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *1 *1) (-4 *1 (-1041))) ((*1 *1 *1 *1) (-4 *1 (-1041)))) -(((*1 *2 *3) - (-12 (-4 *2 (-1134 *4)) (-5 *1 (-741 *4 *2 *3 *5)) - (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2)) - (-4 *5 (-593 (-377 *2)))))) -(((*1 *1) - (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4186))) - (-2479 (|has| *1 (-6 -4178))))) - ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-779)))) - ((*1 *1 *1 *1) (-4 *1 (-779))) - ((*1 *2 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779)))) - ((*1 *1) (-5 *1 (-1024)))) -(((*1 *2 *1) - (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)) - (-4 *2 (-421)))) + (-12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-13 (-280) (-782) (-135))) + (-5 *2 (-585 (-267 (-288 *4)))) (-5 *1 (-1038 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-267 (-379 (-879 *5)))) (-5 *4 (-1082)) + (-4 *5 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-267 (-288 *5)))) + (-5 *1 (-1038 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-1134 (-517))) (-5 *2 (-583 (-517))) - (-5 *1 (-453 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-421)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)) (-4 *3 (-421))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-107))))) -(((*1 *2) (-12 (-5 *2 (-1049 (-1060))) (-5 *1 (-361))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-377 (-876 (-517))))) - (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-583 - (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 *2)) - (|:| |logand| (-1073 *2))))) - (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-333)) (-5 *1 (-534 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-845))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-761))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-798)) - (-5 *5 (-845)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1162)))) + (-12 (-5 *3 (-267 (-379 (-879 *4)))) + (-4 *4 (-13 (-280) (-782) (-135))) (-5 *2 (-585 (-267 (-288 *4)))) + (-5 *1 (-1038 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-379 (-879 *5)))) (-5 *4 (-585 (-1082))) + (-4 *5 (-13 (-280) (-782) (-135))) + (-5 *2 (-585 (-585 (-267 (-288 *5))))) (-5 *1 (-1038 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *2 (-437)) - (-5 *1 (-1162)))) + (-12 (-5 *3 (-585 (-379 (-879 *4)))) + (-4 *4 (-13 (-280) (-782) (-135))) + (-5 *2 (-585 (-585 (-267 (-288 *4))))) (-5 *1 (-1038 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-583 (-236))) - (-5 *2 (-437)) (-5 *1 (-1162))))) -(((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) - ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *1 *1) (-4 *1 (-1041)))) + (-12 (-5 *3 (-585 (-267 (-379 (-879 *5))))) (-5 *4 (-585 (-1082))) + (-4 *5 (-13 (-280) (-782) (-135))) + (-5 *2 (-585 (-585 (-267 (-288 *5))))) (-5 *1 (-1038 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-267 (-379 (-879 *4))))) + (-4 *4 (-13 (-280) (-782) (-135))) + (-5 *2 (-585 (-585 (-267 (-288 *4))))) (-5 *1 (-1038 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-519)) (-4 *5 (-321)) (-5 *2 (-390 (-1078 (-1078 *5)))) + (-5 *1 (-1116 *5)) (-5 *3 (-1078 (-1078 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-923 *3))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) + (-4 *3 (-1011))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-519)) + (-5 *6 + (-2 (|:| |try| (-351)) (|:| |did| (-351)) (|:| -3650 (-351)))) + (-5 *7 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) + (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) + (-5 *1 (-722)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-519)) + (-5 *6 + (-2 (|:| |try| (-351)) (|:| |did| (-351)) (|:| -3650 (-351)))) + (-5 *7 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) + (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) + (-5 *1 (-722))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-690))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1078 *1)) (-5 *3 (-1082)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1078 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-879 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1082)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-782) (-511))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-782) (-511))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1078 *2)) (-5 *4 (-1082)) (-4 *2 (-402 *5)) + (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-782) (-511))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1078 *1)) (-5 *3 (-848)) (-4 *1 (-935)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1078 *1)) (-5 *3 (-848)) (-5 *4 (-790)) + (-4 *1 (-935)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-848)) (-4 *4 (-13 (-780) (-335))) + (-4 *1 (-984 *4 *2)) (-4 *2 (-1139 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-390 *3)) (-5 *1 (-841 *3)) (-4 *3 (-280))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-5 *2 (-1163)) (-5 *1 (-1080)))) + (-12 (-5 *3 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-5 *2 (-1168)) (-5 *1 (-1085)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1077)) - (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *2 (-1163)) - (-5 *1 (-1080)))) + (-12 (-5 *3 (-1082)) + (-5 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-5 *2 (-1168)) + (-5 *1 (-1085)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1077)) - (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *2 (-1163)) - (-5 *1 (-1080))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-777))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2283 (-388 *3)))) - (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-754))))) + (-12 (-5 *3 (-1082)) + (-5 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-5 *2 (-1168)) + (-5 *1 (-1085))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) - (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) - (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-964)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1134 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077)) - (-5 *2 (-517)) (-5 *1 (-1020 *4 *5))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) - (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) - (-4 *5 (-1134 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) - (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199))) - (-5 *1 (-630))))) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-4 *3 (-511)) + (-5 *2 (-1078 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) + ((*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(((*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-280)) (-5 *1 (-635 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-511)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1139 *2))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1047 *3 *2)) (-4 *3 (-13 (-1011) (-33))) + (-4 *2 (-13 (-1011) (-33)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-703)) (-4 *5 (-964)) (-5 *2 (-517)) - (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1134 *5)) - (-4 *6 (-13 (-374) (-955 *5) (-333) (-1098) (-256))))) - ((*1 *2 *3) - (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) - (-4 *3 (-1134 *4)) - (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256)))))) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-278)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) - (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *1 (-416 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) - (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *1 (-416 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5))))) -(((*1 *1 *1) (-5 *1 (-107)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) + (-12 (-5 *2 (-705)) (-5 *1 (-416 *3)) (-4 *3 (-376)) (-4 *3 (-968)))) + ((*1 *2) + (-12 (-5 *2 (-705)) (-5 *1 (-416 *3)) (-4 *3 (-376)) (-4 *3 (-968))))) +(((*1 *2) + (-12 + (-5 *2 + (-1163 (-585 (-2 (|:| -3493 (-837 *3)) (|:| -2770 (-1029)))))) + (-5 *1 (-323 *3 *4)) (-14 *3 (-848)) (-14 *4 (-848)))) + ((*1 *2) + (-12 (-5 *2 (-1163 (-585 (-2 (|:| -3493 *3) (|:| -2770 (-1029)))))) + (-5 *1 (-324 *3 *4)) (-4 *3 (-321)) (-14 *4 (-3 (-1078 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1163 (-585 (-2 (|:| -3493 *3) (|:| -2770 (-1029)))))) + (-5 *1 (-325 *3 *4)) (-4 *3 (-321)) (-14 *4 (-848))))) +(((*1 *1 *2) + (-12 (-5 *2 (-610 *3)) (-4 *3 (-782)) (-4 *1 (-346 *3 *4)) + (-4 *4 (-157))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-223 *5 *6))) (-4 *6 (-423)) + (-5 *2 (-223 *5 *6)) (-14 *5 (-585 (-1082))) (-5 *1 (-573 *5 *6))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-585 *3)) (-5 *5 (-848)) (-4 *3 (-1139 *4)) + (-4 *4 (-280)) (-5 *1 (-431 *4 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1 *1) (-4 *1 (-892)))) +(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1065)) (-5 *1 (-51))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1136 *5 *4)) (-4 *4 (-423)) (-4 *4 (-755)) + (-14 *5 (-1082)) (-5 *2 (-519)) (-5 *1 (-1025 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-423)) (-4 *4 (-782)) + (-4 *5 (-727)) (-5 *1 (-911 *3 *4 *5 *6)) (-4 *6 (-876 *3 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-756))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1063 (-1063 *4))) (-5 *2 (-1063 *4)) (-5 *1 (-1067 *4)) + (-4 *4 (-37 (-379 (-519)))) (-4 *4 (-968))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-509)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-976)) (-5 *3 (-1060))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) - (-5 *2 (-953)) (-5 *1 (-689))))) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) - (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) - (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-690))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-388 *4)) (-4 *4 (-509))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1011)) (-4 *5 (-1011)) + (-4 *6 (-1011)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) - (-5 *2 (-953)) (-5 *1 (-685))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1077)) (-5 *2 (-107)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) - (-4 *6 (-725)) (-4 *7 (-873 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) - (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-300)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-300))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-583 (-1077))) (-4 *2 (-156)) - (-4 *4 (-212 (-3573 *5) (-703))) - (-14 *6 - (-1 (-107) (-2 (|:| -2803 *3) (|:| -1725 *4)) - (-2 (|:| -2803 *3) (|:| -1725 *4)))) - (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) - (-4 *7 (-873 *2 *4 (-789 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) - ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) + (-12 (-5 *3 (-819 *4)) (-4 *4 (-1011)) (-5 *2 (-1 (-108) *5)) + (-5 *1 (-817 *4 *5)) (-4 *5 (-1117))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-527 *5 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) - ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236))))) + (-12 (-5 *3 (-585 (-625 *5))) (-5 *4 (-519)) (-4 *5 (-335)) + (-4 *5 (-968)) (-5 *2 (-108)) (-5 *1 (-951 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-625 *4))) (-4 *4 (-335)) (-4 *4 (-968)) + (-5 *2 (-108)) (-5 *1 (-951 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) + (-4 *4 (-13 (-782) (-511)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-333)) - (-5 *2 - (-2 (|:| A (-623 *5)) - (|:| |eqs| - (-583 - (-2 (|:| C (-623 *5)) (|:| |g| (-1158 *5)) (|:| -3817 *6) - (|:| |rh| *5)))))) - (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)) - (-4 *6 (-593 *5)))) + (-12 (-5 *3 (-832 (-519))) (-5 *4 (-519)) (-5 *2 (-625 *4)) + (-5 *1 (-950 *5)) (-4 *5 (-968)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-625 (-519))) (-5 *1 (-950 *4)) + (-4 *4 (-968)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) - (-5 *2 (-2 (|:| -3725 (-623 *6)) (|:| |vec| (-1158 *5)))) - (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1158 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| -3896 *4) (|:| -1191 (-517))))) - (-4 *4 (-1134 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) + (-12 (-5 *3 (-585 (-832 (-519)))) (-5 *4 (-519)) + (-5 *2 (-585 (-625 *4))) (-5 *1 (-950 *5)) (-4 *5 (-968)))) ((*1 *2 *3) - (-12 (-5 *3 (-388 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-964)) - (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-787))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-107)) (-5 *3 (-876 *6)) (-5 *4 (-1077)) - (-5 *5 (-772 *7)) - (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-4 *7 (-13 (-1098) (-29 *6))) (-5 *1 (-198 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1073 *6)) (-5 *4 (-772 *6)) - (-4 *6 (-13 (-1098) (-29 *5))) - (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-198 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) - (-5 *2 (-623 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) - (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) -(((*1 *2 *2) - (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-873 *3 *5 *4)) - (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1077)))) - (-4 *5 (-725)) (-5 *1 (-848 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) - (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) - (-5 *2 (-953)) (-5 *1 (-686))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) (-4 *4 (-509)) (-4 *4 (-779)) - (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-128))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1158 *5)) (-5 *3 (-703)) (-5 *4 (-1024)) (-4 *5 (-319)) - (-5 *1 (-487 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) - (-5 *5 (-1001 (-199))) (-5 *6 (-517)) (-5 *2 (-1108 (-850))) - (-5 *1 (-288)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) - (-5 *5 (-1001 (-199))) (-5 *6 (-517)) (-5 *7 (-1060)) - (-5 *2 (-1108 (-850))) (-5 *1 (-288)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) - (-5 *5 (-1001 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) - (-5 *2 (-1108 (-850))) (-5 *1 (-288)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) - (-5 *5 (-1001 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1060)) - (-5 *2 (-1108 (-850))) (-5 *1 (-288))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) + (-12 (-5 *3 (-585 (-585 (-519)))) (-5 *2 (-585 (-625 (-519)))) + (-5 *1 (-950 *4)) (-4 *4 (-968))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) + (-5 *2 (-625 *4)))) + ((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-625 *4)) (-5 *1 (-388 *3 *4)) + (-4 *3 (-389 *4)))) + ((*1 *2) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-625 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1158 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1006))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-107)) (-5 *5 (-1008 (-703))) (-5 *6 (-703)) + (-12 (-5 *2 (-585 (-1104 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1011))))) +(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1 *1) (-4 *1 (-892)))) +(((*1 *2 *2) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) + (-5 *1 (-912 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) + (-5 *1 (-1018 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 - (-2 (|:| |contp| (-517)) - (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) - (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) - (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) - (-5 *2 (-623 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1158 *1)) (-4 *1 (-337 *3))))) + (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) + (|:| |success| (-108)))) + (-5 *1 (-723)) (-5 *5 (-519))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-682))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 *1)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-964)) (-5 *1 (-623 *3)))) + (-12 (-5 *2 (-1176 (-1082) *3)) (-4 *3 (-968)) (-5 *1 (-1183 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *4)) (-4 *4 (-964)) (-4 *1 (-1027 *3 *4 *5 *6)) - (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1 *1) (-4 *1 (-888)))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-953)) (-5 *3 (-1077)) (-5 *1 (-168))))) -(((*1 *1 *1) (-4 *1 (-502)))) -(((*1 *1 *1) (-4 *1 (-793 *2)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-4 *8 (-873 *5 *7 *6)) - (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) - (-4 *7 (-725)) - (-5 *2 - (-583 - (-2 (|:| -3778 (-703)) - (|:| |eqns| - (-583 - (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) - (|:| |cols| (-583 (-517)))))) - (|:| |fgb| (-583 *8))))) - (-5 *1 (-848 *5 *6 *7 *8)) (-5 *4 (-703))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) - (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) - (-5 *2 (-953)) (-5 *1 (-680))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) - ((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) - (-4 *4 (-13 (-333) (-777)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1 *1) (-4 *1 (-888)))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-845)) (-5 *1 (-948 *2)) - (-4 *2 (-13 (-1006) (-10 -8 (-15 -1666 ($ $ $)))))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) - (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) - (-5 *1 (-681))))) -(((*1 *2 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1084 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-688))))) -(((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) ((*1 *1) (-4 *1 (-502))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))) - ((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-583 (-876 *3))) (-4 *3 (-421)) - (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1077))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) - (-14 *4 (-583 (-1077))) (-5 *1 (-568 *3 *4))))) + (-12 (-5 *2 (-1176 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) + (-5 *1 (-1185 *3 *4))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-379 (-519))) (-5 *1 (-278))))) (((*1 *2 *1) - (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) - (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) - (-4 *3 (-13 (-333) (-1098) (-921)))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) - (-5 *1 (-356 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) - (-5 *1 (-751 *3)) (-4 *3 (-779))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) - (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5))))) + (-12 (-5 *2 (-800 (-891 *3) (-891 *3))) (-5 *1 (-891 *3)) + (-4 *3 (-892))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-1158 *5))) (-5 *4 (-517)) (-5 *2 (-1158 *5)) - (-5 *1 (-947 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077)) - (-5 *2 (-583 *4)) (-5 *1 (-1020 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-845)) (-5 *1 (-718))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) + (-12 (-5 *3 (-592 (-379 *6))) (-5 *4 (-379 *6)) (-4 *6 (-1139 *5)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 - (-2 (|:| -1782 (-703)) (|:| |curves| (-703)) - (|:| |polygons| (-703)) (|:| |constructs| (-703))))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) - (-5 *2 (-953)) (-5 *1 (-689))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) + (-5 *1 (-745 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-379 *6))) (-4 *6 (-1139 *5)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-5 *2 (-2 (|:| -2070 (-585 (-379 *6))) (|:| -2488 (-625 *5)))) + (-5 *1 (-745 *5 *6)) (-5 *4 (-585 (-379 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-593 *6 (-379 *6))) (-5 *4 (-379 *6)) (-4 *6 (-1139 *5)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) + (-5 *1 (-745 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-593 *6 (-379 *6))) (-4 *6 (-1139 *5)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-5 *2 (-2 (|:| -2070 (-585 (-379 *6))) (|:| -2488 (-625 *5)))) + (-5 *1 (-745 *5 *6)) (-5 *4 (-585 (-379 *6)))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-585 (-451 *4 *5))) (-5 *3 (-792 *4)) + (-14 *4 (-585 (-1082))) (-4 *5 (-423)) (-5 *1 (-573 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1006)) (-4 *2 (-824 *4)) (-5 *1 (-625 *4 *2 *5 *3)) - (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4195))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) - (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-873 *4 *3 *5))))) + (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-144 *4 *2)) + (-4 *2 (-402 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1004 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-782) (-511))) + (-5 *1 (-144 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-146)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1082))))) +(((*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-1099))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-416 *3)) (-4 *3 (-968))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *1 (-1037 *3 *2)) (-4 *3 (-1139 *2))))) +(((*1 *1 *1) (-4 *1 (-571))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925) (-1103)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1111 *4 *5 *3 *6)) (-4 *4 (-511)) (-4 *5 (-727)) + (-4 *3 (-782)) (-4 *6 (-982 *4 *5 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-108))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-1054 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-1078 *3))))) +(((*1 *1) (-5 *1 (-302)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-108)) (-4 *4 (-13 (-335) (-780))) (-5 *2 (-390 *3)) + (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-390 *3)) + (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4)))))) +(((*1 *2) (-12 (-5 *2 (-1054 (-1065))) (-5 *1 (-363))))) (((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-387 *4))))) + (-12 (-5 *3 (-1006 (-775 (-351)))) (-5 *2 (-1006 (-775 (-201)))) + (-5 *1 (-278))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-511)) (-4 *3 (-968)) + (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-784 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-511)) (-4 *5 (-968)) + (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-785 *5 *3)) + (-4 *3 (-784 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) + (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) (-5 *2 (-957)) + (-5 *1 (-683))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) - (-4 *3 (-955 *4)) (-4 *3 (-13 (-779) (-509)))))) + (-12 (-5 *3 (-267 (-379 (-879 *5)))) (-5 *4 (-1082)) + (-4 *5 (-13 (-280) (-782) (-135))) + (-5 *2 (-1072 (-585 (-288 *5)) (-585 (-267 (-288 *5))))) + (-5 *1 (-1038 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) + (-4 *5 (-13 (-280) (-782) (-135))) + (-5 *2 (-1072 (-585 (-288 *5)) (-585 (-267 (-288 *5))))) + (-5 *1 (-1038 *5))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-1065)) (-5 *1 (-1164)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1164)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1164)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-1065)) (-5 *1 (-1165)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1165)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1165))))) +(((*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1117)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-1021)) (-5 *3 (-519))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854))))) +(((*1 *2 *3) + (-12 (-5 *2 (-390 (-1078 *1))) (-5 *1 (-288 *4)) (-5 *3 (-1078 *1)) + (-4 *4 (-423)) (-4 *4 (-511)) (-4 *4 (-782)))) + ((*1 *2 *3) + (-12 (-4 *1 (-836)) (-5 *2 (-390 (-1078 *1))) (-5 *3 (-1078 *1))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-333) (-273) - (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) - (-15 -2082 ((-1029 *3 (-556 $)) $)) - (-15 -2262 ($ (-1029 *3 (-556 $)))))))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-107)) (-5 *1 (-816 *4)) - (-4 *4 (-1006))))) + (-12 (-5 *2 (-1163 *3)) (-4 *3 (-968)) (-5 *1 (-647 *3 *4)) + (-4 *4 (-1139 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) - (-4 *3 (-558 (-493))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1077)) (-5 *2 (-1 (-199) (-199) (-199))) - (-5 *1 (-637 *3)) (-4 *3 (-558 (-493)))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-377 (-876 *4))) (-5 *3 (-1077)) - (-4 *4 (-13 (-509) (-955 (-517)) (-134))) (-5 *1 (-523 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) - (-5 *2 (-953)) (-5 *1 (-687))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-829 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) - (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) - ((*1 *2 *1) - (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) - (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1006)) (-4 *5 (-1006)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5))))) + (-12 (-5 *3 (-848)) (-5 *4 (-390 *6)) (-4 *6 (-1139 *5)) + (-4 *5 (-968)) (-5 *2 (-585 *6)) (-5 *1 (-415 *5 *6))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-870 *5)) (-5 *3 (-705)) (-4 *5 (-968)) + (-5 *1 (-1071 *4 *5)) (-14 *4 (-848))))) +(((*1 *1) (-5 *1 (-738)))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-625 (-519))) (-5 *3 (-585 (-519))) (-5 *1 (-1021))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1077))) (-4 *6 (-421)) - (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) - (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421))))) -(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1082))) (-4 *6 (-335)) + (-5 *2 (-585 (-267 (-879 *6)))) (-5 *1 (-497 *5 *6 *7)) + (-4 *5 (-423)) (-4 *7 (-13 (-335) (-780)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1117)) (-4 *3 (-968)) + (-5 *2 (-625 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-782)) (-5 *4 (-585 *6)) + (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-585 *4)))) + (-5 *1 (-1089 *6)) (-5 *5 (-585 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-201) (-201) (-201))) + (-5 *4 (-3 (-1 (-201) (-201) (-201) (-201)) "undefined")) + (-5 *5 (-1006 (-201))) (-5 *6 (-585 (-238))) (-5 *2 (-1042 (-201))) + (-5 *1 (-632)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-870 (-201)) (-201) (-201))) (-5 *4 (-1006 (-201))) + (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-632)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1042 (-201))) (-5 *3 (-1 (-870 (-201)) (-201) (-201))) + (-5 *4 (-1006 (-201))) (-5 *5 (-585 (-238))) (-5 *1 (-632))))) +(((*1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-340)) (-4 *2 (-1011))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-705)) (-5 *3 (-870 *4)) (-4 *1 (-1043 *4)) + (-4 *4 (-968)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-705)) (-5 *4 (-870 (-201))) (-5 *2 (-1168)) + (-5 *1 (-1165))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-220 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-201) (-201) (-201))) + (-5 *4 (-3 (-1 (-201) (-201) (-201) (-201)) "undefined")) + (-5 *5 (-1006 (-201))) (-5 *6 (-585 (-238))) (-5 *2 (-1042 (-201))) + (-5 *1 (-632))))) (((*1 *2 *3) - (-12 (-5 *3 (-1158 (-623 *4))) (-4 *4 (-156)) - (-5 *2 (-1158 (-623 (-876 *4)))) (-5 *1 (-165 *4))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-689))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) - (-4 *5 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *5)))))) + (-12 (-5 *3 (-201)) (-5 *2 (-108)) (-5 *1 (-272 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1006 (-775 (-201)))) (-5 *3 (-201)) (-5 *2 (-108)) + (-5 *1 (-278)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) + (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) - (-4 *2 (-621 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 *4)))) - (-5 *1 (-813 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) - (-4 *7 (-1006)) (-5 *2 (-583 *1)) (-4 *1 (-1009 *3 *4 *5 *6 *7))))) -(((*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1006))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-735))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-135)) + (-4 *3 (-280)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-901 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) + (-5 *1 (-160 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1098) (-882)))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4197 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) - (-4 *2 (-964)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1134 *2)) - (-4 *4 (-621 *2 *5 *6))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-845)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098)))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1006) (-33))) - (-5 *2 (-107)) (-5 *1 (-1042 *4 *5)) (-4 *4 (-13 (-1006) (-33)))))) + (-12 (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) + (-4 *3 (-1139 *4)) (-5 *1 (-744 *4 *3 *2 *5)) (-4 *2 (-595 *3)) + (-4 *5 (-595 (-379 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-379 *5)) + (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *5 (-1139 *4)) + (-5 *1 (-744 *4 *5 *2 *6)) (-4 *2 (-595 *5)) (-4 *6 (-595 *3))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2133 *3) (|:| |coef1| (-714 *3)))) - (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964))))) + (-12 (-5 *2 (-585 (-267 *4))) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) + (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1049 *3 *4)) (-14 *3 (-848)) (-4 *4 (-335)) + (-5 *1 (-917 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1164)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-957))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-545 *3)) (-4 *3 (-968)))) + ((*1 *2 *1) + (-12 (-4 *1 (-897 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-726)) + (-4 *5 (-782)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) + (-4 *6 (-727)) (-5 *2 (-585 *3)) (-5 *1 (-851 *4 *5 *6 *3)) + (-4 *3 (-876 *4 *6 *5))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-585 (-2 (|:| |totdeg| (-705)) (|:| -2714 *3)))) + (-5 *4 (-705)) (-4 *3 (-876 *5 *6 *7)) (-4 *5 (-423)) (-4 *6 (-727)) + (-4 *7 (-782)) (-5 *1 (-420 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-302))))) +(((*1 *2 *1) + (-12 (-4 *1 (-298 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968)) + (-4 *2 (-423)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1139 (-519))) (-5 *2 (-585 (-519))) + (-5 *1 (-455 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-423)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-876 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)) (-4 *3 (-423))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2)) - (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3)))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-144 *4 *2)) + (-4 *2 (-402 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1082)))) + ((*1 *1 *1) (-4 *1 (-146)))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-519)) (-5 *1 (-217))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) - (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-962))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-968)) (-4 *7 (-968)) + (-4 *6 (-1139 *5)) (-5 *2 (-1078 (-1078 *7))) + (-5 *1 (-468 *5 *6 *4 *7)) (-4 *4 (-1139 *6))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-585 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-705)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-727)) (-4 *6 (-876 *4 *3 *5)) (-4 *4 (-423)) (-4 *5 (-782)) + (-5 *1 (-420 *4 *3 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-1 (-108) *9)) + (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-982 *6 *7 *8)) (-4 *6 (-511)) (-4 *7 (-727)) (-4 *8 (-782)) + (-5 *1 (-901 *6 *7 *8 *9))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-390 *2)) (-4 *2 (-280)) (-5 *1 (-841 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) + (-4 *5 (-13 (-280) (-135))) (-5 *2 (-51)) (-5 *1 (-842 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-390 (-879 *6))) (-5 *5 (-1082)) (-5 *3 (-879 *6)) + (-4 *6 (-13 (-280) (-135))) (-5 *2 (-51)) (-5 *1 (-842 *6))))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-891)) - (-5 *3 (-583 (-517)))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25)))))) -(((*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) - ((*1 *1 *1) (-5 *1 (-1024)))) + (-12 (-4 *4 (-782)) + (-5 *2 + (-2 (|:| |f1| (-585 *4)) (|:| |f2| (-585 (-585 (-585 *4)))) + (|:| |f3| (-585 (-585 *4))) (|:| |f4| (-585 (-585 (-585 *4)))))) + (-5 *1 (-1089 *4)) (-5 *3 (-585 (-585 (-585 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-278)) - (-5 *2 (-377 (-388 (-876 *4)))) (-5 *1 (-959 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) - (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-953)) (-5 *1 (-687))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) - (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4)))))) + (-12 (-4 *2 (-335)) (-4 *2 (-780)) (-5 *1 (-872 *2 *3)) + (-4 *3 (-1139 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) - ((*1 *2 *3) (-12 (-5 *3 (-891)) (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) - (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) - (-5 *1 (-1014 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1077)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) - (-4 *4 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112))))) -(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) - ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964)) (-4 *5 (-725)) - (-4 *3 (-779)) (-5 *2 (-703))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) - ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) - ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) - ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) - ((*1 *1 *1 *1) (-5 *1 (-1024)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1112)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-953)) (-5 *1 (-681))))) + (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-764)) (-5 *3 (-1065))))) +(((*1 *1 *1) (-4 *1 (-977)))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-705)) (-4 *4 (-13 (-511) (-135))) + (-5 *1 (-1133 *4 *2)) (-4 *2 (-1139 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1112)) (-4 *1 (-212 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1006)) - (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) - (-5 *2 (-583 (-986 *3 *4 *5))) (-5 *1 (-987 *3 *4 *5)) - (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-1058 *3)) (-4 *3 (-1006)) - (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-286 *4)) - (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) - (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-897 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-1073 (-876 *4))) (-5 *1 (-386 *3 *4)) - (-4 *3 (-387 *4)))) - ((*1 *2) - (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) - (-5 *2 (-1073 (-876 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) - ((*1 *1 *1 *1) (-5 *1 (-1024)))) + (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1139 *4)) (-4 *4 (-1121)) + (-4 *1 (-314 *4 *3 *5)) (-4 *5 (-1139 (-379 *3)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-798)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) - ((*1 *1 *1) (-5 *1 (-787)))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))) - (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-250 *4 *2))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964)) - (-5 *1 (-1062 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) - (-14 *4 (-1077)) (-14 *5 *3)))) + (-12 (-5 *2 (-848)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-238))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-1136 *5 *4)) (-5 *1 (-1080 *4 *5 *6)) + (-4 *4 (-968)) (-14 *5 (-1082)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-1136 *5 *4)) (-5 *1 (-1155 *4 *5 *6)) + (-4 *4 (-968)) (-14 *5 (-1082)) (-14 *6 *4)))) +(((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-280))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) + (-5 *2 + (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) + (|:| |success| (-108)))) + (-5 *1 (-723)) (-5 *5 (-519))))) +(((*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1117)) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-288 (-201))) (-5 *2 (-201)) (-5 *1 (-278))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) + (-5 *2 (-957)) (-5 *1 (-688))))) (((*1 *2 *3) - (-12 (-4 *4 (-964)) (-4 *3 (-1134 *4)) (-4 *2 (-1149 *4)) - (-5 *1 (-1152 *4 *3 *5 *2)) (-4 *5 (-593 *3))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-509)) - (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-1129 *4 *3)) - (-4 *3 (-1134 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-286 *4)) - (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-718))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1098))) - (-5 *1 (-532 *4 *2)) - (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-534 (-377 (-876 *4)))) - (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) - (-5 *2 (-286 *4)) (-5 *1 (-537 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-564 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3302 *4) (|:| |sol?| (-107))) - (-517) *4)) - (-4 *4 (-333)) (-4 *5 (-1134 *4)) (-5 *1 (-527 *4 *5))))) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) + (|:| |expense| (-351)) (|:| |accuracy| (-351)) + (|:| |intermediateResults| (-351)))) + (-5 *2 (-957)) (-5 *1 (-278))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-377 (-517))) - (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) - (-4 *5 (-13 (-779) (-509) (-955 (-517)))) - (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-403 *5 *3))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-964)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) - ((*1 *1 *1) (-5 *1 (-787))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-867 (-199))) (-5 *2 (-199)) (-5 *1 (-1109)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-964))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1112)) - (-4 *3 (-343 *4)) (-4 *5 (-343 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) - (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) - (-5 *2 (-953)) (-5 *1 (-687))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) - (-4 *3 (-13 (-1006) (-33)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) - ((*1 *1 *1) (-4 *1 (-921))) - ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-931)))) - ((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-931)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-703)))) - ((*1 *1 *1) (-4 *1 (-931)))) -(((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517))))) -(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) - ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160))))) + (-12 (-5 *3 (-879 (-201))) (-5 *2 (-288 (-351))) (-5 *1 (-278))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-968)) (-4 *2 (-623 *4 *5 *6)) + (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1139 *4)) (-4 *5 (-345 *4)) + (-4 *6 (-345 *4))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1063 *3)) (-4 *3 (-1011)) + (-4 *3 (-1117))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-755)) (-14 *5 (-1082)) (-5 *2 (-585 (-1136 *5 *4))) + (-5 *1 (-1025 *4 *5)) (-5 *3 (-1136 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) - (-5 *2 (-1073 *3))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-703)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-1156 *3)) (-4 *3 (-23)) (-4 *3 (-1112))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1077))) (-5 *4 (-1077)) - (-5 *1 (-1080)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1080)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-407)) (-5 *3 (-1077)) (-5 *1 (-1081)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1077))) (-5 *1 (-1081))))) + (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1117)) + (-5 *2 (-585 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) - (-4 *2 - (-13 (-372) - (-10 -7 (-15 -2262 (*2 *4)) (-15 -4161 ((-845) *2)) - (-15 -3700 ((-1158 *2) (-845))) (-15 -4115 (*2 *2))))) - (-5 *1 (-326 *2 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) - (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107))))) + (-12 (-4 *4 (-13 (-511) (-782))) + (-4 *2 (-13 (-402 *4) (-925) (-1103))) (-5 *1 (-548 *4 *2 *3)) + (-4 *3 (-13 (-402 (-154 *4)) (-925) (-1103)))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-154 (-201))) (-5 *5 (-519)) (-5 *6 (-1065)) + (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-693))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-319)) + (-12 (-5 *4 (-705)) (-4 *5 (-968)) (-5 *2 (-519)) + (-5 *1 (-414 *5 *3 *6)) (-4 *3 (-1139 *5)) + (-4 *6 (-13 (-376) (-959 *5) (-335) (-1103) (-258))))) + ((*1 *2 *3) + (-12 (-4 *4 (-968)) (-5 *2 (-519)) (-5 *1 (-414 *4 *3 *5)) + (-4 *3 (-1139 *4)) + (-4 *5 (-13 (-376) (-959 *4) (-335) (-1103) (-258)))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-379 (-519))) (-5 *1 (-113 *4)) (-14 *4 *3) + (-5 *3 (-519)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-796 *3)) (-5 *2 (-519)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-379 (-519))) (-5 *1 (-798 *4)) (-14 *4 *3) + (-5 *3 (-519)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-379 (-519))) (-5 *1 (-799 *4 *5)) + (-5 *3 (-519)) (-4 *5 (-796 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-935)) (-5 *2 (-379 (-519))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-984 *2 *3)) (-4 *2 (-13 (-780) (-335))) + (-4 *3 (-1139 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1141 *2 *3)) (-4 *3 (-726)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2217 (*2 (-1082)))) + (-4 *2 (-968))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1078 *3)) (-4 *3 (-340)) (-4 *1 (-301 *3)) + (-4 *3 (-335))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-295 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-124)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1011)) (-5 *1 (-333 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1011)) (-5 *1 (-358 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1011)) (-5 *1 (-588 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *1 *1) (-4 *1 (-504)))) +(((*1 *1 *1) + (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-585 *2) *2 *2 *2)) (-4 *2 (-1011)) + (-5 *1 (-98 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1011)) (-5 *1 (-98 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 (-288 (-201)))) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) - (-5 *1 (-191 *5 *3)) (-4 *3 (-1134 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1006))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) - (-14 *4 (-583 (-1077))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) (-4 *1 (-256))) - ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *1 *2) - (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) - (-14 *5 (-845)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517))))) - (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4)) - (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) - (-5 *2 (-953)) (-5 *1 (-678))))) + (-2 (|:| |stiffnessFactor| (-351)) (|:| |stabilityFactor| (-351)))) + (-5 *1 (-183))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) - (-4 *3 (-1134 (-47))))) - ((*1 *2 *3) - (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) - (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-873 (-47) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) - (-4 *7 (-873 (-47) *6 *5)) (-5 *2 (-388 (-1073 *7))) - (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1073 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) - (-4 *3 (-1134 (-153 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) - (-4 *3 (-1134 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) - (-4 *3 (-1134 (-517))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) - (-4 *3 (-1134 (-517))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) - (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) - (-4 *3 (-1134 (-517))))) + (-12 (-5 *3 (-585 (-379 (-879 *5)))) (-5 *4 (-585 (-1082))) + (-4 *5 (-511)) (-5 *2 (-585 (-585 (-879 *5)))) (-5 *1 (-1088 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) + (-5 *3 (-585 (-519))))) ((*1 *2 *3) - (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) - (-5 *3 (-153 (-517))))) + (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) + (-5 *3 (-585 (-519)))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1047 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) + (-4 *5 (-13 (-1011) (-33))) (-4 *6 (-13 (-1011) (-33))) + (-5 *2 (-108)) (-5 *1 (-1048 *5 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1078 *7)) + (-4 *5 (-968)) (-4 *7 (-968)) (-4 *2 (-1139 *5)) + (-5 *1 (-468 *5 *2 *6 *7)) (-4 *6 (-1139 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-968)) + (-14 *4 (-585 (-1082))))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-968) (-782))) + (-14 *4 (-585 (-1082)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-790))))) +(((*1 *2 *1) + (-12 (-4 *1 (-552 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1011)) + (-4 *2 (-782))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-135) (-27) (-959 (-519)) (-959 (-379 (-519))))) + (-4 *5 (-1139 *4)) (-5 *2 (-1078 (-379 *5))) (-5 *1 (-561 *4 *5)) + (-5 *3 (-379 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1139 *5)) + (-4 *5 (-13 (-135) (-27) (-959 (-519)) (-959 (-379 (-519))))) + (-5 *2 (-1078 (-379 *6))) (-5 *1 (-561 *5 *6)) (-5 *3 (-379 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-516)) (-5 *3 (-519))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) + (-4 *4 (-782)) (-5 *1 (-1089 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-379 (-519))) (-5 *2 (-201)) (-5 *1 (-278))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4222)) (-4 *4 (-335)) (-4 *5 (-345 *4)) + (-4 *6 (-345 *4)) (-5 *2 (-585 *6)) (-5 *1 (-486 *4 *5 *6 *3)) + (-4 *3 (-623 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4222)) (-4 *4 (-511)) (-4 *5 (-345 *4)) + (-4 *6 (-345 *4)) (-4 *7 (-916 *4)) (-4 *8 (-345 *7)) + (-4 *9 (-345 *7)) (-5 *2 (-585 *6)) + (-5 *1 (-487 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-623 *4 *5 *6)) + (-4 *10 (-623 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-4 *3 (-511)) (-5 *2 (-585 *5)))) ((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *4 (-157)) (-4 *5 (-345 *4)) + (-4 *6 (-345 *4)) (-5 *2 (-585 *6)) (-5 *1 (-624 *4 *5 *6 *3)) + (-4 *3 (-623 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-511)) + (-5 *2 (-585 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) +(((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782))))) +(((*1 *2 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-892))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-158 *3)) (-4 *3 (-280)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-612 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-675 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-782)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-796 *3)) (-5 *2 (-519)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *1 (-904 *3)) (-4 *3 (-968)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-987 *4 *5 *6 *7)) + (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-585 *1)) + (-4 *1 (-987 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-619 *4 *3)) (-4 *4 (-1011)) + (-4 *3 (-1011))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-4 *1 (-102 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-705)) (-5 *2 (-108)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-782)) + (-4 *3 (-1011))))) +(((*1 *2 *2 *2) (-12 - (-4 *4 - (-13 (-779) - (-10 -8 (-15 -3367 ((-1077) $)) - (-15 -3791 ((-3 $ "failed") (-1077)))))) - (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) - (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) - (-4 *3 (-873 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1073 *4))) (-5 *1 (-427 *4)) - (-5 *3 (-1073 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) - (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) - (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1134 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-388 (-1073 *7)) (-1073 *7))) - (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) - (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) - (-4 *3 (-873 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-388 (-1073 *7)) (-1073 *7))) - (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) - (-4 *8 (-873 *7 *6 *5)) (-5 *2 (-388 (-1073 *8))) - (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1073 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-4 *6 (-1134 *5)) (-5 *2 (-583 (-590 (-377 *6)))) - (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-4 *5 (-1134 *4)) (-5 *2 (-583 (-590 (-377 *5)))) - (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) - (-5 *1 (-608 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) - (-4 *3 (-1134 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) - (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-873 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) - (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-388 (-1073 *7))) - (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-725)) - (-4 *5 - (-13 (-779) - (-10 -8 (-15 -3367 ((-1077) $)) - (-15 -3791 ((-3 $ "failed") (-1077)))))) - (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) - (-4 *3 (-873 (-876 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-725)) - (-4 *5 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *6 (-509)) - (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) - (-4 *3 (-873 (-377 (-876 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) - (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) - (-4 *3 (-873 (-377 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) - (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) - (-4 *3 (-873 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) - (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-388 (-1073 *7))) - (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-388 *3)) (-5 *1 (-926 *3)) - (-4 *3 (-1134 (-377 (-517)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-388 *3)) (-5 *1 (-958 *3)) - (-4 *3 (-1134 (-377 (-876 (-517))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1134 (-377 (-517)))) - (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) - (-5 *2 (-388 *3)) (-5 *1 (-989 *4 *5 *3)) (-4 *3 (-1134 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1134 (-377 (-876 (-517))))) - (-4 *5 (-13 (-333) (-134) (-657 (-377 (-876 (-517))) *4))) - (-5 *2 (-388 *3)) (-5 *1 (-991 *4 *5 *3)) (-4 *3 (-1134 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) - (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 (-377 *7)))) - (-5 *1 (-1072 *4 *5 *6 *7)) (-5 *3 (-1073 (-377 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1116)))) + (-5 *2 + (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-625 *3)))) + (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) + (-4 *4 (-1139 *3)) (-5 *1 (-466 *3 *4 *5)) (-4 *5 (-381 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1286 *4))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-768 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1011))))) +(((*1 *1 *1) (-5 *1 (-47))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1117)) + (-4 *2 (-1117)) (-5 *1 (-56 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1011)) (|has| *1 (-6 -4221)) + (-4 *1 (-139 *2)) (-4 *2 (-1117)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4221)) (-4 *1 (-139 *2)) + (-4 *2 (-1117)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4221)) (-4 *1 (-139 *2)) + (-4 *2 (-1117)))) ((*1 *2 *3) - (-12 (-5 *2 (-388 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) - (-5 *2 (-703)) (-5 *1 (-869 *5 *6)) (-4 *6 (-1134 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-4 *4 (-968)) + (-5 *2 (-2 (|:| -2714 (-1078 *4)) (|:| |deg| (-848)))) + (-5 *1 (-197 *4 *5)) (-5 *3 (-1078 *4)) (-4 *5 (-13 (-511) (-782))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-216 *5 *6)) (-14 *5 (-705)) + (-4 *6 (-1117)) (-4 *2 (-1117)) (-5 *1 (-215 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-157)) (-5 *1 (-263 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1139 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-511)) (-4 *2 (-782)))) + ((*1 *1 *1) + (-12 (-4 *1 (-307 *2 *3 *4 *5)) (-4 *2 (-335)) (-4 *3 (-1139 *2)) + (-4 *4 (-1139 (-379 *3))) (-4 *5 (-314 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1117)) (-4 *2 (-1117)) + (-5 *1 (-343 *5 *4 *2 *6)) (-4 *4 (-345 *5)) (-4 *6 (-345 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1011)) (-4 *2 (-1011)) + (-5 *1 (-395 *5 *4 *2 *6)) (-4 *4 (-397 *5)) (-4 *6 (-397 *2)))) + ((*1 *1 *1) (-5 *1 (-462))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-585 *5)) (-4 *5 (-1117)) + (-4 *2 (-1117)) (-5 *1 (-583 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-968)) (-4 *2 (-968)) + (-4 *6 (-345 *5)) (-4 *7 (-345 *5)) (-4 *8 (-345 *2)) + (-4 *9 (-345 *2)) (-5 *1 (-621 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-623 *5 *6 *7)) (-4 *10 (-623 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-968)) (-5 *1 (-647 *3 *2)) (-4 *2 (-1139 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-379 *4)) (-4 *4 (-1139 *3)) (-4 *3 (-335)) + (-4 *3 (-157)) (-4 *1 (-659 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-157)) (-4 *1 (-659 *3 *2)) (-4 *2 (-1139 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-884 *5)) (-4 *5 (-1117)) + (-4 *2 (-1117)) (-5 *1 (-883 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-956 *3 *4 *5 *2 *6)) (-4 *2 (-876 *3 *4 *5)) + (-14 *6 (-585 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-968)) (-4 *2 (-968)) + (-14 *5 (-705)) (-14 *6 (-705)) (-4 *8 (-214 *6 *7)) + (-4 *9 (-214 *5 *7)) (-4 *10 (-214 *6 *2)) (-4 *11 (-214 *5 *2)) + (-5 *1 (-973 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-971 *5 *6 *7 *8 *9)) (-4 *12 (-971 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1063 *5)) (-4 *5 (-1117)) + (-4 *2 (-1117)) (-5 *1 (-1061 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) + (-4 *1 (-1111 *5 *6 *7 *2)) (-4 *5 (-511)) (-4 *6 (-727)) + (-4 *7 (-782)) (-4 *2 (-982 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1163 *5)) (-4 *5 (-1117)) + (-4 *2 (-1117)) (-5 *1 (-1162 *5 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1163 *5)) (-4 *5 (-726)) (-5 *2 (-108)) + (-5 *1 (-777 *4 *5)) (-14 *4 (-705))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1046)))) +(((*1 *1 *1) (-5 *1 (-495)))) +(((*1 *2) + (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-389 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-968)) (-5 *1 (-1135 *3 *2)) (-4 *2 (-1139 *3))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-625 *11)) (-5 *4 (-585 (-379 (-879 *8)))) + (-5 *5 (-705)) (-5 *6 (-1065)) (-4 *8 (-13 (-280) (-135))) + (-4 *11 (-876 *8 *10 *9)) (-4 *9 (-13 (-782) (-560 (-1082)))) + (-4 *10 (-727)) (-5 *2 - (-2 (|:| -2133 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) - (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125))))) -(((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) -(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192))))) -(((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850))))) -(((*1 *1) (-5 *1 (-755)))) -(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-168)))) - ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-271)))) - ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1060)) (-5 *1 (-276))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-845)))) + (-2 + (|:| |rgl| + (-585 + (-2 (|:| |eqzro| (-585 *11)) (|:| |neqzro| (-585 *11)) + (|:| |wcond| (-585 (-879 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1163 (-379 (-879 *8)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *8)))))))))) + (|:| |rgsz| (-519)))) + (-5 *1 (-851 *8 *9 *10 *11)) (-5 *7 (-519))))) +(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1103)))) + ((*1 *2 *1) (-12 (-5 *1 (-303 *2)) (-4 *2 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-558 *3)) (-4 *3 (-782))))) +(((*1 *2 *1) (-12 (-4 *1 (-275)) (-5 *2 (-585 (-110)))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-519)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1117)) + (-4 *4 (-345 *2)) (-4 *5 (-345 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-262 *3 *2)) (-4 *3 (-1011)) + (-4 *2 (-1117))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) + (-5 *2 (-585 (-201))) (-5 *1 (-278))))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 (-379 (-879 *4)))) (-4 *4 (-423)) + (-5 *2 (-585 (-3 (-379 (-879 *4)) (-1072 (-1082) (-879 *4))))) + (-5 *1 (-265 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-115 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-558 *6)) (-4 *6 (-13 (-402 *5) (-27) (-1103))) + (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *2 (-1078 (-379 (-1078 *6)))) (-5 *1 (-515 *5 *6 *7)) + (-5 *3 (-1078 *6)) (-4 *7 (-1011)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1139 *3)) (-5 *1 (-647 *3 *2)) (-4 *3 (-968)))) + ((*1 *2 *1) + (-12 (-4 *1 (-659 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1139 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1078 *11)) (-5 *6 (-585 *10)) + (-5 *7 (-585 (-705))) (-5 *8 (-585 *11)) (-4 *10 (-782)) + (-4 *11 (-280)) (-4 *9 (-727)) (-4 *5 (-876 *11 *9 *10)) + (-5 *2 (-585 (-1078 *5))) (-5 *1 (-677 *9 *10 *11 *5)) + (-5 *3 (-1078 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-876 *3 *4 *5)) (-5 *1 (-956 *3 *4 *5 *2 *6)) + (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-14 *6 (-585 *2))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-519)) (-5 *5 (-154 (-201))) (-5 *6 (-1065)) + (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1163 *6)) (-5 *4 (-1163 (-519))) (-5 *5 (-519)) + (-4 *6 (-1011)) (-5 *2 (-1 *6)) (-5 *1 (-940 *6))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-154 (-201)))) + (-5 *2 (-957)) (-5 *1 (-689))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-585 *5))) (-4 *5 (-1154 *4)) + (-4 *4 (-37 (-379 (-519)))) + (-5 *2 (-1 (-1063 *4) (-585 (-1063 *4)))) (-5 *1 (-1156 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-585 (-108))) (-5 *7 (-625 (-201))) + (-5 *8 (-625 (-519))) (-5 *3 (-519)) (-5 *4 (-201)) (-5 *5 (-108)) + (-5 *2 (-957)) (-5 *1 (-689))))) +(((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-280))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-848)) (-4 *5 (-782)) + (-5 *2 (-57 (-585 (-610 *5)))) (-5 *1 (-610 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-519)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-705)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-848)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) - (-4 *4 (-156)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-142)))) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) + (-4 *4 (-157)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-143)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-143)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098))) - (-5 *1 (-201 *3)))) + (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103))) + (-5 *1 (-203 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-659)))) + (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1117)) (-4 *2 (-661)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1112)) (-4 *2 (-659)))) + (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1117)) (-4 *2 (-661)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-265 *2)) (-4 *2 (-1018)) (-4 *2 (-1112)))) + (-12 (-5 *1 (-267 *2)) (-4 *2 (-1023)) (-4 *2 (-1117)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-265 *2)) (-4 *2 (-1018)) (-4 *2 (-1112)))) + (-12 (-5 *1 (-267 *2)) (-4 *2 (-1023)) (-4 *2 (-1117)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-123)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1006)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1006)))) + (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-124)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-333 *2)) (-4 *2 (-1011)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-333 *2)) (-4 *2 (-1011)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-964)) (-4 *2 (-779)))) + (-12 (-5 *1 (-353 *3 *2)) (-4 *3 (-968)) (-4 *2 (-782)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1006)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) + (-12 (-4 *1 (-354 *2 *3)) (-4 *2 (-968)) (-4 *3 (-1011)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) - (-4 *6 (-212 (-3573 *3) (-703))) + (-12 (-14 *3 (-585 (-1082))) (-4 *4 (-157)) + (-4 *6 (-214 (-3532 *3) (-705))) (-14 *7 - (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6)) - (-2 (|:| -2803 *5) (|:| -1725 *6)))) - (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) - (-4 *2 (-873 *4 *6 (-789 *3))))) + (-1 (-108) (-2 (|:| -2770 *5) (|:| -1690 *6)) + (-2 (|:| -2770 *5) (|:| -1690 *6)))) + (-5 *1 (-432 *3 *4 *5 *6 *7 *2)) (-4 *5 (-782)) + (-4 *2 (-876 *4 *6 (-792 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) + (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) + (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) - (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) + (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) + (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-493))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-964)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-964)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-971)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006)) - (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-618 *5 *6 *7)))) + (-12 (-5 *2 (-1163 *3)) (-4 *3 (-321)) (-5 *1 (-489 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-495))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-545 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-545 *2)) (-4 *2 (-968)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-968)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-587 *2)) (-4 *2 (-975)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1011)) + (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-620 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-964)) (-4 *2 (-343 *3)) - (-4 *4 (-343 *3)))) + (-12 (-4 *1 (-623 *3 *2 *4)) (-4 *3 (-968)) (-4 *2 (-345 *3)) + (-4 *4 (-345 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-343 *3)) - (-4 *2 (-343 *3)))) + (-12 (-4 *1 (-623 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-345 *3)) + (-4 *2 (-345 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) + (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-653))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) - ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-655))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) + ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-509)) - (-5 *1 (-890 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-970 *2)) (-4 *2 (-971)))) - ((*1 *1 *1 *1) (-4 *1 (-1018))) + (-12 (-5 *2 (-1163 *4)) (-4 *4 (-1139 *3)) (-4 *3 (-511)) + (-5 *1 (-894 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-974 *2)) (-4 *2 (-975)))) + ((*1 *1 *1 *1) (-4 *1 (-1023))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-964)) (-4 *2 (-212 *3 *4)) - (-4 *5 (-212 *3 *4)))) + (-12 (-4 *1 (-1032 *3 *4 *2 *5)) (-4 *4 (-968)) (-4 *2 (-214 *3 *4)) + (-4 *5 (-214 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1027 *3 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4)) - (-4 *2 (-212 *3 *4)))) + (-12 (-4 *1 (-1032 *3 *4 *5 *2)) (-4 *4 (-968)) (-4 *5 (-214 *3 *4)) + (-4 *2 (-214 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-5 *1 (-1030 *3 *4 *2)) - (-4 *2 (-873 *3 (-489 *4) *4)))) + (-12 (-4 *3 (-968)) (-4 *4 (-782)) (-5 *1 (-1035 *3 *4 *2)) + (-4 *2 (-876 *3 (-491 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-867 (-199))) (-5 *3 (-199)) (-5 *1 (-1109)))) + (-12 (-5 *2 (-870 (-201))) (-5 *3 (-201)) (-5 *1 (-1114)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-659)))) + (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-661)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-659)))) + (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-661)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-517)) (-4 *1 (-1156 *3)) (-4 *3 (-1112)) (-4 *3 (-21)))) + (-12 (-5 *2 (-519)) (-4 *1 (-1161 *3)) (-4 *3 (-1117)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) + (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964)))) + (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-782)) (-4 *2 (-968)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-1077)) (-4 *6 (-400 *5)) - (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1116)) (-4 *5 (-1134 *3)) (-4 *6 (-1134 (-377 *5))) - (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2361 *3))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-583 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-517))))) - (-4 *2 (-509)) (-5 *1 (-388 *2)))) - ((*1 *2 *3) + (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-968)) (-4 *3 (-778))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4222)) (-4 *1 (-458 *3)) + (-4 *3 (-1117))))) +(((*1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166)))) + ((*1 *2 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)))) + ((*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |contp| (-517)) - (|:| -2283 (-583 (-2 (|:| |irr| *4) (|:| -1332 (-517))))))) - (-4 *4 (-1134 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-703)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-703)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) - (-5 *2 (-583 (-2 (|:| -2283 (-583 *3)) (|:| -3113 *5)))) - (-5 *1 (-162 *5 *3)) (-4 *3 (-1134 (-153 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-333) (-777))) - (-5 *2 (-583 (-2 (|:| -2283 (-583 *3)) (|:| -3113 *4)))) - (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-437)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159))))) -(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753))))) -(((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-509))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-517))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-107)) - (-5 *1 (-813 *4 *5)) (-4 *5 (-1006)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-816 *5)) (-4 *5 (-1006)) (-5 *2 (-107)) - (-5 *1 (-814 *5 *3)) (-4 *3 (-1112)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) - (-4 *6 (-1112)) (-5 *2 (-107)) (-5 *1 (-814 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) - (-4 *3 (-964))))) -(((*1 *2 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) - (-4 *4 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1073 *5))) (-5 *3 (-1073 *5)) - (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1134 *5)) - (-4 *5 (-1134 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1073 (-517)))) (-5 *3 (-1073 (-517))) - (-5 *1 (-525)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1073 *1))) (-5 *3 (-1073 *1)) - (-4 *1 (-833))))) + (-2 (|:| |det| *12) (|:| |rows| (-585 (-519))) + (|:| |cols| (-585 (-519))))) + (-5 *4 (-625 *12)) (-5 *5 (-585 (-379 (-879 *9)))) + (-5 *6 (-585 (-585 *12))) (-5 *7 (-705)) (-5 *8 (-519)) + (-4 *9 (-13 (-280) (-135))) (-4 *12 (-876 *9 *11 *10)) + (-4 *10 (-13 (-782) (-560 (-1082)))) (-4 *11 (-727)) + (-5 *2 + (-2 (|:| |eqzro| (-585 *12)) (|:| |neqzro| (-585 *12)) + (|:| |wcond| (-585 (-879 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1163 (-379 (-879 *9)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *9))))))))) + (-5 *1 (-851 *9 *10 *11 *12))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-691))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-585 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4221)) (-4 *1 (-458 *3)) (-4 *3 (-1117)) + (-5 *2 (-585 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1011)) (-5 *2 (-816 *3 *5)) (-5 *1 (-812 *3 *4 *5)) + (-4 *3 (-1011)) (-4 *5 (-605 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) - (-5 *2 (-583 (-876 *4))))) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) + (-5 *2 (-585 (-879 *4))))) ((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-583 (-876 *4))) (-5 *1 (-386 *3 *4)) - (-4 *3 (-387 *4)))) + (-12 (-4 *4 (-157)) (-5 *2 (-585 (-879 *4))) (-5 *1 (-388 *3 *4)) + (-4 *3 (-389 *4)))) ((*1 *2) - (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-876 *3))))) + (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-585 (-879 *3))))) ((*1 *2) - (-12 (-5 *2 (-583 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3))))) + (-12 (-5 *2 (-585 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-1158 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-876 *4))) - (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) - (-14 *5 (-845)) (-14 *6 (-583 (-1077))) (-14 *7 (-1158 (-623 *4)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-509)) (-4 *3 (-964)) - (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-964)) - (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) - (-4 *3 (-781 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-51)) (-5 *1 (-816 *4)) - (-4 *4 (-1006))))) -(((*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *1) - (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) - (-5 *2 (-1158 *6)) (-5 *1 (-383 *3 *4 *5 *6)) - (-4 *6 (-13 (-379 *4 *5) (-955 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-964)) (-4 *3 (-779)) (-5 *2 (-1029 *3 (-556 *1))) - (-4 *1 (-400 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460)))) - ((*1 *2 *1) - (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-659) *3)))) - ((*1 *2 *1) - (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-659) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509))))) + (-12 (-5 *3 (-1163 (-424 *4 *5 *6 *7))) (-5 *2 (-585 (-879 *4))) + (-5 *1 (-424 *4 *5 *6 *7)) (-4 *4 (-511)) (-4 *4 (-157)) + (-14 *5 (-848)) (-14 *6 (-585 (-1082))) (-14 *7 (-1163 (-625 *4)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1136 *4 *5)) (-5 *3 (-585 *5)) (-14 *4 (-1082)) + (-4 *5 (-335)) (-5 *1 (-850 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-585 *5)) (-4 *5 (-335)) (-5 *2 (-1078 *5)) + (-5 *1 (-850 *4 *5)) (-14 *4 (-1082)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-705)) (-4 *6 (-335)) + (-5 *2 (-379 (-879 *6))) (-5 *1 (-969 *5 *6)) (-14 *5 (-1082))))) (((*1 *2 *3) - (-12 (-4 *1 (-768)) - (-5 *3 - (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) - (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) - (|:| |ub| (-583 (-772 (-199)))))) - (-5 *2 (-953)))) + (-12 (-4 *4 (-321)) (-5 *2 (-884 (-1078 *4))) (-5 *1 (-329 *4)) + (-5 *3 (-1078 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-108))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-876 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) + (-5 *1 (-419 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-727)) + (-4 *7 (-782)) (-4 *8 (-876 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) + (-5 *1 (-419 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) ((*1 *2 *3) - (-12 (-4 *1 (-768)) - (-5 *3 - (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) - (-5 *2 (-953))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)) - (-4 *6 (-1006)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-319)) (-5 *2 (-881 (-1073 *4))) (-5 *1 (-327 *4)) - (-5 *3 (-1073 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-685))))) -(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-993 *3)) (-4 *3 (-124))))) + (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-876 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) + (-5 *1 (-419 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-727)) + (-4 *7 (-782)) (-4 *8 (-876 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) + (-5 *1 (-419 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-379 (-519))) + (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-183)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-585 (-351))) (-5 *2 (-351)) (-5 *1 (-183))))) (((*1 *2 *3) - (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) - (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) + (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-389 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1006 (-201)))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1117)))) ((*1 *2 *1) - (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-870 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 (-870 *3))) (-4 *3 (-968)) (-4 *1 (-1043 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-870 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968))))) +(((*1 *2 *3) + (-12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-280)) + (-5 *2 (-379 (-390 (-879 *4)))) (-5 *1 (-963 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-780) (-335))) (-5 *2 (-108)) (-5 *1 (-978 *4 *3)) + (-4 *3 (-1139 *4))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-782) (-511) (-959 (-519)))) (-5 *2 (-1168)) + (-5 *1 (-405 *3 *4)) (-4 *4 (-402 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-968)) (-5 *1 (-415 *3 *2)) (-4 *2 (-1139 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-288 (-201))) (-5 *1 (-242))))) +(((*1 *2) + (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) + (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) + (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) + (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) + (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-686))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1163 (-1082))) (-5 *3 (-1163 (-424 *4 *5 *6 *7))) + (-5 *1 (-424 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-848)) + (-14 *6 (-585 (-1082))) (-14 *7 (-1163 (-625 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-424 *4 *5 *6 *7))) + (-5 *1 (-424 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-848)) + (-14 *6 (-585 *2)) (-14 *7 (-1163 (-625 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1163 (-424 *3 *4 *5 *6))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) + (-14 *6 (-1163 (-625 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1163 (-1082))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-157)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))) + (-14 *6 (-1163 (-625 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1082)) (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-157)) + (-14 *4 (-848)) (-14 *5 (-585 *2)) (-14 *6 (-1163 (-625 *3))))) + ((*1 *1) + (-12 (-5 *1 (-424 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-848)) + (-14 *4 (-585 (-1082))) (-14 *5 (-1163 (-625 *2)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-705)))) + ((*1 *1 *1) (-4 *1 (-374)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-379 (-879 (-154 (-519)))))) + (-5 *2 (-585 (-585 (-267 (-879 (-154 *4)))))) (-5 *1 (-350 *4)) + (-4 *4 (-13 (-335) (-780))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-267 (-379 (-879 (-154 (-519))))))) + (-5 *2 (-585 (-585 (-267 (-879 (-154 *4)))))) (-5 *1 (-350 *4)) + (-4 *4 (-13 (-335) (-780))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-879 (-154 (-519))))) + (-5 *2 (-585 (-267 (-879 (-154 *4))))) (-5 *1 (-350 *4)) + (-4 *4 (-13 (-335) (-780))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-267 (-379 (-879 (-154 (-519)))))) + (-5 *2 (-585 (-267 (-879 (-154 *4))))) (-5 *1 (-350 *4)) + (-4 *4 (-13 (-335) (-780)))))) +(((*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-1006 (-201))))) + ((*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1006 (-201)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-585 (-879 *4))) (-5 *3 (-585 (-1082))) (-4 *4 (-423)) + (-5 *1 (-845 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1168)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-1011))))) +(((*1 *1 *1 *1) (-5 *1 (-147))) + ((*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-147))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-1 (-108) *8))) (-4 *8 (-982 *5 *6 *7)) + (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) + (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) +(((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)))) + ((*1 *1) (-4 *1 (-1058)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1087))) (-5 *1 (-1087)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-1087))) (-5 *1 (-1087))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-961))))) +(((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-423))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-519)) (-4 *4 (-157)) (-4 *5 (-345 *4)) + (-4 *6 (-345 *4)) (-5 *1 (-624 *4 *5 *6 *2)) + (-4 *2 (-623 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-1006 (-201))))) + ((*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1006 (-201)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-108))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1148 *3 *4 *5)) (-4 *3 (-13 (-335) (-782))) + (-14 *4 (-1082)) (-14 *5 *3) (-5 *1 (-291 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-351))) (-5 *1 (-961)) (-5 *3 (-351))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-439)) (-5 *3 (-585 (-238))) (-5 *1 (-1164)))) + ((*1 *1 *1) (-5 *1 (-1164)))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-727)) (-4 *4 (-782)) (-4 *5 (-280)) + (-5 *1 (-843 *3 *4 *5 *2)) (-4 *2 (-876 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1078 *6)) (-4 *6 (-876 *5 *3 *4)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *5 (-280)) (-5 *1 (-843 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) - (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) - (-4 *3 (-621 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) - (-5 *2 (-703))))) -(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1024)))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *6 *4 *5)) + (-5 *1 (-843 *4 *5 *6 *2)) (-4 *4 (-727)) (-4 *5 (-782)) + (-4 *6 (-280))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-156)) (-4 *2 (-1134 *4)) (-5 *1 (-159 *4 *2 *3)) - (-4 *3 (-657 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-377 (-876 *5)))) (-5 *4 (-1077)) - (-5 *2 (-876 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-377 (-876 *4)))) (-5 *2 (-876 *4)) - (-5 *1 (-263 *4)) (-4 *4 (-421)))) - ((*1 *2 *1) - (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-153 (-377 (-517))))) - (-5 *2 (-876 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) - (-4 *4 (-13 (-333) (-777))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1077)) - (-5 *2 (-876 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) - (-4 *5 (-13 (-333) (-777))))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-876 (-377 (-517)))) - (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1077)) - (-5 *2 (-876 (-377 (-517)))) (-5 *1 (-711 *5)) - (-4 *5 (-13 (-333) (-777)))))) -(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107))))) + (-12 (-5 *2 (-108)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238)))) + ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-912 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1139 *6)) + (-4 *6 (-13 (-335) (-135) (-959 *4))) (-5 *4 (-519)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) + (|:| -3257 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-938 *6 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-623 (-876 *4))) (-5 *1 (-946 *4)) - (-4 *4 (-964))))) + (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) (((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107))))) + (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) + (-5 *2 (-705)))) + ((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1011)) + (-5 *2 (-705)))) + ((*1 *2 *1) + (-12 (-5 *2 (-705)) (-5 *1 (-670 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-661))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4)) - (-4 *4 (-1112)) (-5 *2 (-107))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-421)) (-4 *4 (-509)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2589 *4))) (-5 *1 (-890 *4 *3)) - (-4 *3 (-1134 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333))))) -(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156))))) -(((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51))))) -(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1024)))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) - (-4 *2 (-400 *3))))) + (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-1085)) (-5 *3 (-1082))))) +(((*1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-126))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-513 *2)) (-4 *2 (-504))))) +(((*1 *2) + (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) + (-5 *2 (-705)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-314 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-705))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1046)))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-79 FCN)))) (-5 *2 (-957)) + (-5 *1 (-681))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-519))) (-5 *5 (-1 (-1063 *4))) (-4 *4 (-335)) + (-4 *4 (-968)) (-5 *2 (-1063 *4)) (-5 *1 (-1067 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-790))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-968)) + (-4 *2 (-1154 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-674 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1))))) -(((*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) + (-12 (-5 *3 (-519)) (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-968)) + (-5 *1 (-293 *4 *5 *2 *6)) (-4 *6 (-876 *2 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-108))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-968)) (-4 *3 (-782)) + (-5 *2 (-2 (|:| |val| *1) (|:| -1690 (-519)))) (-4 *1 (-402 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) -(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) - (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-685))))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-819 *3)) (|:| -1690 (-819 *3)))) + (-5 *1 (-819 *3)) (-4 *3 (-1011)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) + (-4 *7 (-876 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -1690 (-519)))) + (-5 *1 (-877 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-335) + (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) + (-15 -2866 (*7 $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *1) + (-12 (-5 *2 (-156)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438))))) (((*1 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-1058 *3)) (-4 *3 (-1006)) - (-4 *3 (-1112))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502))))) + (|partial| -12 (-4 *3 (-511)) (-4 *3 (-157)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2070 (-585 *1)))) + (-4 *1 (-339 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-424 *3 *4 *5 *6)) + (|:| -2070 (-585 (-424 *3 *4 *5 *6))))) + (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-727)) (-4 *4 (-782)) (-4 *6 (-280)) (-5 *2 (-390 *3)) + (-5 *1 (-677 *5 *4 *6 *3)) (-4 *3 (-876 *6 *5 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1013 *3)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1013 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-957)) (-5 *3 (-1082)) (-5 *1 (-242))))) +(((*1 *2 *3) (-12 (-5 *3 (-288 (-201))) (-5 *2 (-108)) (-5 *1 (-242))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3))))) +(((*1 *1 *1) (|partial| -4 *1 (-133))) ((*1 *1 *1) (-4 *1 (-321))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-836))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-585 (-949 *5 *6 *7 *3))) (-5 *1 (-949 *5 *6 *7 *3)) + (-4 *3 (-982 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-585 *6)) (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-987 *3 *4 *5 *2)) (-4 *3 (-423)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-585 (-1053 *5 *6 *7 *3))) (-5 *1 (-1053 *5 *6 *7 *3)) + (-4 *3 (-982 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-157)) + (-4 *5 (-1139 *4)) (-5 *2 (-625 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1139 *3)) + (-5 *2 (-625 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-876 (-153 *4))) (-4 *4 (-156)) - (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-876 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-156)) - (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) + (-12 (-4 *4 (-916 *2)) (-4 *2 (-511)) (-5 *1 (-130 *2 *4 *3)) + (-4 *3 (-345 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 (-349))) - (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) - (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) + (-12 (-4 *4 (-916 *2)) (-4 *2 (-511)) (-5 *1 (-470 *2 *4 *5 *3)) + (-4 *5 (-345 *2)) (-4 *3 (-345 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) - (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) - (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-377 (-876 (-153 *4)))) (-4 *4 (-509)) - (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-377 (-876 (-153 *5)))) (-5 *4 (-845)) - (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) - (-5 *1 (-717 *5)))) + (-12 (-5 *3 (-625 *4)) (-4 *4 (-916 *2)) (-4 *2 (-511)) + (-5 *1 (-628 *2 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) - (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) - (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) - (-5 *1 (-717 *5)))) + (-12 (-4 *4 (-916 *2)) (-4 *2 (-511)) (-5 *1 (-1132 *2 *4 *3)) + (-4 *3 (-1139 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-988 *5 *6 *7 *3 *4)) + (-4 *4 (-987 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *4)))) + (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-113 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-519)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-798 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-798 *2)) (-14 *2 (-519)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-519)) (-14 *3 *2) (-5 *1 (-799 *3 *4)) + (-4 *4 (-796 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-519)) (-5 *1 (-799 *2 *3)) (-4 *3 (-796 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-519)) (-4 *1 (-1125 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-1154 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1125 *2 *3)) (-4 *2 (-968)) (-4 *3 (-1154 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 (-471 *3 *4 *5 *6))) (-4 *3 (-335)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) + (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-987 *4 *5 *6 *7)) + (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-585 *1)) + (-4 *1 (-987 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-51))) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-143))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (-519)) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-782)) (-4 *5 (-836)) (-4 *6 (-727)) + (-4 *8 (-876 *5 *6 *7)) (-5 *2 (-390 (-1078 *8))) + (-5 *1 (-833 *5 *6 *7 *8)) (-5 *4 (-1078 *8)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) - (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-509)) - (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) - (-5 *1 (-717 *5))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509))))) + (-12 (-4 *4 (-836)) (-4 *5 (-1139 *4)) (-5 *2 (-390 (-1078 *5))) + (-5 *1 (-834 *4 *5)) (-5 *3 (-1078 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *1) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1006)) - (-5 *1 (-613 *2))))) -(((*1 *2) - (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) + (-12 (-5 *3 (-1 *2 (-705) *2)) (-5 *4 (-705)) (-4 *2 (-1011)) + (-5 *1 (-615 *2)))) ((*1 *2 *2) - (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))) + (-12 (-5 *2 (-1 *3 (-705) *3)) (-4 *3 (-1011)) (-5 *1 (-618 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1065)) (-5 *1 (-278))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-782) (-959 (-519)) (-581 (-519)) (-423))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1148 *4 *5 *6)) + (|:| |%expon| (-291 *4 *5 *6)) + (|:| |%expTerms| + (-585 (-2 (|:| |k| (-379 (-519))) (|:| |c| *4)))))) + (|:| |%type| (-1065)))) + (-5 *1 (-1149 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1103) (-402 *3))) + (-14 *5 (-1082)) (-14 *6 *4)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) + (-5 *2 (-585 (-585 (-870 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-585 (-585 (-870 *4)))) (-5 *3 (-108)) (-4 *4 (-968)) + (-4 *1 (-1043 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 (-585 (-870 *3)))) (-4 *3 (-968)) + (-4 *1 (-1043 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-108)) + (-4 *1 (-1043 *4)) (-4 *4 (-968)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-585 (-585 (-870 *4)))) (-5 *3 (-108)) + (-4 *1 (-1043 *4)) (-4 *4 (-968)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-585 (-156))) + (-5 *4 (-156)) (-4 *1 (-1043 *5)) (-4 *5 (-968)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-585 (-585 (-870 *5)))) (-5 *3 (-585 (-156))) + (-5 *4 (-156)) (-4 *1 (-1043 *5)) (-4 *5 (-968))))) +(((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-423))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-980))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3864 *7)))) - (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-908 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-782) (-511))) (-5 *1 (-31 *3 *4)) + (-4 *4 (-402 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-705)) (-5 *1 (-110)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-110)))) ((*1 *2 *2) - (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3864 *7)))) - (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1013 *3 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112)) (-4 *2 (-779)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4)) - (-14 *3 (-845)) (-4 *4 (-964)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1058 *4))) (-4 *4 (-333)) - (-4 *4 (-964)) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *3)) - (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) - (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-623 *3)) - (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) - (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-583 *6)) (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) - (-4 *3 (-509))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *4)) + (-4 *4 (-402 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-148)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *4)) + (-4 *4 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-274 *3)) (-4 *3 (-275)))) + ((*1 *2 *2) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *4 (-782)) (-5 *1 (-401 *3 *4)) + (-4 *3 (-402 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *4)) + (-4 *4 (-402 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-558 *3)) (-4 *3 (-782)))) + ((*1 *2 *2) + (-12 (-5 *2 (-110)) (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *4)) + (-4 *4 (-13 (-402 *3) (-925) (-1103)))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-201)))) (-5 *1 (-853))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *2 (-957)) + (-5 *1 (-691))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) - ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-974 (-942 *3) (-1073 (-942 *3)))) - (-5 *1 (-942 *3)) (-4 *3 (-13 (-777) (-333) (-940)))))) -(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-5 *1 (-349))) - ((*1 *1) (-5 *1 (-349)))) -(((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-964)) (-14 *3 (-583 (-1077))))) - ((*1 *1 *1) - (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779))) - (-14 *3 (-583 (-1077)))))) -(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1011) (-959 *5))) + (-4 *5 (-813 *4)) (-4 *4 (-1011)) (-5 *2 (-1 (-108) *5)) + (-5 *1 (-858 *4 *5 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 - (-583 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-725)) (-4 *3 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) - (-5 *1 (-418 *4 *5 *6 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) - (-5 *1 (-908 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) - (-5 *1 (-1013 *3 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1163 (-379 (-879 *4)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *4))))))) + (-5 *3 (-585 *7)) (-4 *4 (-13 (-280) (-135))) + (-4 *7 (-876 *4 *6 *5)) (-4 *5 (-13 (-782) (-560 (-1082)))) + (-4 *6 (-727)) (-5 *1 (-851 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-869 *4 *3)) - (-4 *3 (-1134 *4))))) -(((*1 *2) - (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) - (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) - (-4 *3 (-312 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-209 *3)))) - ((*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1006))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) - (-4 *3 (-13 (-400 *4) (-921)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1060)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-236))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1060)) (-5 *1 (-1094))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) - (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-1169 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) - (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1169 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-421))))) + (-12 (-5 *3 (-519)) (|has| *1 (-6 -4212)) (-4 *1 (-376)) + (-5 *2 (-848))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1169 *4 *5 *6 *7))) - (-5 *1 (-1169 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509)) - (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1169 *6 *7 *8 *9))) - (-5 *1 (-1169 *6 *7 *8 *9))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) - (-5 *2 (-953)) (-5 *1 (-685))))) -(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-343 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 + (-5 *3 + (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) + (-5 *2 (-585 (-379 (-519)))) (-5 *1 (-942 *4)) + (-4 *4 (-1139 (-519)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) + ((*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4221)) (-4 *1 (-552 *4 *3)) (-4 *4 (-1011)) + (-4 *3 (-1117)) (-4 *3 (-1011)) (-5 *2 (-108))))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-311 *3 *4 *5)) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) + ((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-311 *3 *4 *5)) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-690))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) - (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) - (-5 *1 (-1076))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3)) - (-4 *3 (-1006))))) -(((*1 *1) (-5 *1 (-407)))) -(((*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) - ((*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) - (-5 *2 - (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) - (|:| |success| (-107)))) - (-5 *1 (-721)) (-5 *5 (-517))))) -(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-909)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-999 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) - (-5 *2 (-1077)))) - ((*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1154 *3)) (-14 *3 *2)))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-919 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3))))) -(((*1 *2 *3) - (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) - (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) - ((*1 *2 *3) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851))))) + (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) + (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) + (-5 *1 (-1081))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1011))))) +(((*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-158 *3)) (-4 *3 (-280))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-298 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-726))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) + (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-108) *7 (-585 *7))) (-4 *1 (-1111 *4 *5 *6 *7)) + (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-982 *4 *5 *6)) + (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-841 *3)) (-4 *3 (-280))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) + (-5 *2 (-754 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-778)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-968))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-303 *3)) (-4 *3 (-782))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-585 *3)) (-5 *1 (-894 *4 *3)) + (-4 *3 (-1139 *4))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) - (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) - (-5 *1 (-1076))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) - (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1149 *5)) (-4 *6 (-1134 *5))))) + (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) + (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) + (-5 *1 (-1081))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-848)) (-5 *1 (-1012 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -1435 (-110)) (|:| |arg| (-585 (-819 *3))))) + (-5 *1 (-819 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-585 (-819 *4))) + (-5 *1 (-819 *4)) (-4 *4 (-1011))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-157)) (-5 *1 (-734 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4221)) (-4 *1 (-458 *3)) (-4 *3 (-1117)) + (-5 *2 (-585 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-672 *3)) (-4 *3 (-1011))))) +(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-280))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-1021))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)) - (-4 *6 (-1006)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-300))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3302 *6) (|:| |sol?| (-107))) (-517) - *6)) - (-4 *6 (-333)) (-4 *7 (-1134 *6)) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))) + (-5 *2 + (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) + (|:| |expense| (-351)) (|:| |accuracy| (-351)) + (|:| |intermediateResults| (-351)))) + (-5 *1 (-738))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1011)) (-4 *1 (-830 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1130 (-519))) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-590 *3)) (-4 *3 (-1117))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-511)) (-5 *1 (-894 *3 *2)) (-4 *2 (-1139 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *1 *1) (-5 *1 (-1081))) + ((*1 *1 *2) + (-12 (-5 *2 - (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) - (-2 (|:| -2791 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) - (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) + (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) + (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) + (-5 *1 (-1081))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-51)) (-5 *1 (-819 *4)) + (-4 *4 (-1011))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-408))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *2 (-957)) + (-5 *1 (-690))))) (((*1 *2 *3) - (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) - (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1112))))) + (-12 (-5 *3 (-1078 *4)) (-4 *4 (-321)) (-5 *2 (-884 (-1029))) + (-5 *1 (-318 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) - (-14 *4 *2) (-4 *5 (-156)))) - ((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-845)) (-5 *1 (-149 *3 *4)) - (-4 *3 (-150 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-845)))) - ((*1 *2) - (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) - (-5 *2 (-845)))) - ((*1 *2 *3) - (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) - (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-333)) - (-5 *2 (-703)) (-5 *1 (-604 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) - (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-703)) - (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) - ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) - (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) - (-4 *3 (-621 *4 *5 *6)))) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-110)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-968)) (-4 *3 (-782)) + (-4 *5 (-241 *3)) (-4 *6 (-727)) (-5 *2 (-705)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) - (-5 *2 (-703))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3))))) -(((*1 *1 *1) (-5 *1 (-1076))) + (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-782)) + (-4 *5 (-241 *4)) (-4 *6 (-727)) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-241 *3)) (-4 *3 (-782)) (-5 *2 (-705))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) + (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) + (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) + (-5 *3 (-585 (-238))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) - (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) - (-5 *1 (-1076))))) -(((*1 *2) (-12 (-5 *2 (-1049 (-1060))) (-5 *1 (-361))))) -(((*1 *1 *2) - (-12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-13 (-333) (-134))) - (-5 *1 (-369 *3 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) - (-5 *1 (-158 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1058 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) - (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) - (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) - (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *2 (-583 *1)) (-4 *1 (-978 *3 *4 *5))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1060)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) - (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964))))) -(((*1 *2 *3 *3) + (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) + (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) + (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) + (-5 *1 (-238)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-519)) (-5 *4 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) + ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-725)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) - (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *1) - (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) - (-5 *2 (-107))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-687))))) -(((*1 *2 *1) + (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) + (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) + (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) + (-5 *2 (-1168)) (-5 *1 (-1165)))) + ((*1 *2 *1) (-12 (-5 *2 - (-583 - (-583 - (-3 (|:| -2981 (-1077)) - (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517)))))))))) - (-5 *1 (-1081))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779))))) -(((*1 *2 *1) - (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-583 *1)) (-4 *1 (-1038 *3))))) + (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1422 (-201)) + (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) + (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) + (-5 *1 (-1165)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165))))) (((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *2)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006))))) + (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-782)) + (-4 *5 (-241 *4)) (-4 *6 (-727)) (-5 *2 (-705)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-968)) (-4 *3 (-782)) + (-4 *5 (-241 *3)) (-4 *6 (-727)) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-241 *3)) (-4 *3 (-782)) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-321)) (-5 *2 (-848)))) + ((*1 *2 *3) + (-12 (-5 *3 (-308 *4 *5 *6 *7)) (-4 *4 (-13 (-340) (-335))) + (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) (-4 *7 (-314 *4 *5 *6)) + (-5 *2 (-705)) (-5 *1 (-364 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-768 (-848))))) + ((*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-519)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-545 *3)) (-4 *3 (-968)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-545 *3)) (-4 *3 (-968)))) + ((*1 *2 *1) + (-12 (-4 *3 (-511)) (-5 *2 (-519)) (-5 *1 (-566 *3 *4)) + (-4 *4 (-1139 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-675 *4 *3)) (-4 *4 (-968)) + (-4 *3 (-782)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-675 *4 *3)) (-4 *4 (-968)) (-4 *3 (-782)) + (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-796 *3)) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-308 *5 *6 *7 *8)) (-4 *5 (-402 *4)) + (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) + (-4 *8 (-314 *5 *6 *7)) (-4 *4 (-13 (-782) (-511) (-959 (-519)))) + (-5 *2 (-705)) (-5 *1 (-838 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-308 (-379 (-519)) *4 *5 *6)) + (-4 *4 (-1139 (-379 (-519)))) (-4 *5 (-1139 (-379 *4))) + (-4 *6 (-314 (-379 (-519)) *4 *5)) (-5 *2 (-705)) + (-5 *1 (-839 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-308 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-335)) + (-4 *7 (-1139 *6)) (-4 *4 (-1139 (-379 *7))) (-4 *8 (-314 *6 *7 *4)) + (-4 *9 (-13 (-340) (-335))) (-5 *2 (-705)) + (-5 *1 (-941 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1139 *3)) (-4 *3 (-968)) (-4 *3 (-511)) (-5 *2 (-705)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-848)) (-5 *1 (-1012 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) + (-12 (-4 *3 (-321)) (-4 *4 (-301 *3)) (-4 *5 (-1139 *4)) + (-5 *1 (-711 *3 *4 *5 *2 *6)) (-4 *2 (-1139 *5)) (-14 *6 (-848)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-4 *3 (-340)))) + ((*1 *1 *1) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-335)) (-4 *2 (-340))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-536 *3) *3 (-1082))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1082))) + (-4 *3 (-258)) (-4 *3 (-571)) (-4 *3 (-959 *4)) (-4 *3 (-402 *7)) + (-5 *4 (-1082)) (-4 *7 (-560 (-819 (-519)))) (-4 *7 (-423)) + (-4 *7 (-813 (-519))) (-4 *7 (-782)) (-5 *2 (-536 *3)) + (-5 *1 (-528 *7 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1065)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-1011))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-108)) (-5 *1 (-764))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-201) (-201) (-201))) + (-5 *4 (-1 (-201) (-201) (-201) (-201))) + (-5 *2 (-1 (-870 (-201)) (-201) (-201))) (-5 *1 (-632))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1082)) + (-4 *5 (-13 (-511) (-959 (-519)) (-135))) + (-5 *2 + (-2 (|:| -1265 (-379 (-879 *5))) (|:| |coeff| (-379 (-879 *5))))) + (-5 *1 (-525 *5)) (-5 *3 (-379 (-879 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1065)) (-5 *1 (-720))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-625 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-335)) + (-5 *2 (-108)) (-5 *1 (-606 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-335)) (-4 *6 (-13 (-345 *5) (-10 -7 (-6 -4222)))) + (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4222)))) (-5 *2 (-108)) + (-5 *1 (-607 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-848)) (-4 *5 (-280)) (-4 *3 (-1139 *5)) + (-5 *2 (-2 (|:| |plist| (-585 *3)) (|:| |modulo| *5))) + (-5 *1 (-431 *5 *3)) (-5 *4 (-585 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *1) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-968)) (-4 *2 (-726)))) + ((*1 *2 *1) (-12 (-4 *1 (-644 *3)) (-4 *3 (-968)) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-968)) (-5 *2 (-705)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-585 *6)) (-4 *1 (-876 *4 *5 *6)) (-4 *4 (-968)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 (-705))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-876 *4 *5 *3)) (-4 *4 (-968)) (-4 *5 (-727)) + (-4 *3 (-782)) (-5 *2 (-705))))) (((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) - (-4 *2 (-13 (-400 *4) (-921))) (-4 *4 (-13 (-779) (-509))) - (-5 *1 (-249 *4 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517))))) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-280)) (-5 *1 (-635 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) + (-12 (-5 *3 (-625 (-379 (-519)))) (-5 *2 (-585 *4)) (-5 *1 (-713 *4)) + (-4 *4 (-13 (-335) (-780)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-158 *3)) (-4 *3 (-280))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-705)) (-5 *4 (-848)) (-5 *2 (-1168)) (-5 *1 (-1164)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-705)) (-5 *4 (-848)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-511)) (-4 *3 (-157)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2070 (-585 *1)))) + (-4 *1 (-339 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-424 *3 *4 *5 *6)) + (|:| -2070 (-585 (-424 *3 *4 *5 *6))))) + (-5 *1 (-424 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) - (-4 *3 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) - (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1077))) (-5 *1 (-757))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) - (-5 *2 - (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) - (|:| |genIdeal| (-469 *4 *5 *6 *7)))) - (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460))))) -(((*1 *2 *1) - (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) - ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))) - ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1006)))) + (-12 (-5 *2 (-1 (-351))) (-5 *1 (-961)) (-5 *3 (-351))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) + (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-108)) (-5 *1 (-901 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-299 *3)) (-4 *3 (-1117)))) ((*1 *2 *1) - (-12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) + (-12 (-5 *2 (-705)) (-5 *1 (-482 *3 *4)) (-4 *3 (-1117)) + (-14 *4 (-519))))) +(((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-423))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1163 (-585 *3))) (-4 *4 (-280)) + (-5 *2 (-585 *3)) (-5 *1 (-426 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-558 (-47)))) (-5 *1 (-47)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558 (-47))) (-5 *1 (-47)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1078 (-47))) (-5 *3 (-585 (-558 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1078 (-47))) (-5 *3 (-558 (-47))) (-5 *1 (-47)))) + ((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) ((*1 *2 *3) - (-12 (-5 *2 (-107)) (-5 *1 (-927 *3)) (-4 *3 (-955 (-377 (-517))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123)) - (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4)))))) + (-12 (-4 *2 (-13 (-335) (-780))) (-5 *1 (-164 *2 *3)) + (-4 *3 (-1139 (-154 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-848)) (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)))) + ((*1 *2 *1) (-12 (-4 *1 (-301 *2)) (-4 *2 (-335)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| -1570 *3) (|:| -2416 *4)))) - (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) (-4 *4 (-659)))) + (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1139 *2)) (-4 *2 (-157)))) ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) - (-5 *2 (-1058 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1041)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-964)) (-4 *3 (-333)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) - (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) - ((*1 *2 *3) - (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-955 (-517))))) + (-12 (-4 *4 (-1139 *2)) (-4 *2 (-916 *3)) (-5 *1 (-385 *3 *2 *4 *5)) + (-4 *3 (-280)) (-4 *5 (-13 (-381 *2 *4) (-959 *2))))) ((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) - ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3700 (-583 *1)))) - (-4 *1 (-337 *3)))) + (-12 (-4 *4 (-1139 *2)) (-4 *2 (-916 *3)) + (-5 *1 (-386 *3 *2 *4 *5 *6)) (-4 *3 (-280)) (-4 *5 (-381 *2 *4)) + (-14 *6 (-1163 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-848)) (-4 *5 (-968)) + (-4 *2 (-13 (-376) (-959 *5) (-335) (-1103) (-258))) + (-5 *1 (-414 *5 *3 *2)) (-4 *3 (-1139 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-558 (-462)))) (-5 *1 (-462)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558 (-462))) (-5 *1 (-462)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1078 (-462))) (-5 *3 (-585 (-558 (-462)))) + (-5 *1 (-462)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1078 (-462))) (-5 *3 (-558 (-462))) (-5 *1 (-462)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1163 *4)) (-5 *3 (-848)) (-4 *4 (-321)) + (-5 *1 (-489 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-659 *4 *2)) (-4 *2 (-1139 *4)) + (-5 *1 (-709 *4 *2 *5 *3)) (-4 *3 (-1139 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157)))) + ((*1 *1 *1) (-4 *1 (-977)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-585 *2)) (-5 *1 (-163 *2)) (-4 *2 (-280)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-585 (-585 *4))) (-5 *2 (-585 *4)) (-4 *4 (-280)) + (-5 *1 (-163 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-585 *8)) + (-5 *4 + (-585 + (-2 (|:| -2070 (-625 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-625 *7))))) + (-5 *5 (-705)) (-4 *8 (-1139 *7)) (-4 *7 (-1139 *6)) (-4 *6 (-321)) + (-5 *2 + (-2 (|:| -2070 (-625 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-625 *7)))) + (-5 *1 (-465 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) + (|:| |lb| (-585 (-775 (-201)))) + (|:| |cf| (-585 (-288 (-201)))) + (|:| |ub| (-585 (-775 (-201)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-585 (-288 (-201)))) + (|:| -3816 (-585 (-201))))))) + (-5 *2 (-585 (-1065))) (-5 *1 (-242))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-342 *2 *4)) (-4 *4 (-1139 *2)) + (-4 *2 (-157)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-422 *3 *4 *5 *6)) - (|:| -3700 (-583 (-422 *3 *4 *5 *6))))) - (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) + (-12 (-4 *4 (-1139 *2)) (-4 *2 (-157)) (-5 *1 (-380 *3 *2 *4)) + (-4 *3 (-381 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1139 *2)) (-4 *2 (-157)))) + ((*1 *2) + (-12 (-4 *3 (-1139 *2)) (-5 *2 (-519)) (-5 *1 (-702 *3 *4)) + (-4 *4 (-381 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-876 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)) (-4 *3 (-157)))) + ((*1 *2 *3) + (-12 (-4 *2 (-511)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1139 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-157))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-143)))) + ((*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-801)))) + ((*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968))))) +(((*1 *1 *1) + (-12 (-4 *2 (-321)) (-4 *2 (-968)) (-5 *1 (-647 *2 *3)) + (-4 *3 (-1139 *2))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-519)) (-5 *1 (-524 *3)) (-4 *3 (-959 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-402 *4) (-925) (-1103))) + (-4 *4 (-13 (-511) (-782))) + (-4 *2 (-13 (-402 (-154 *4)) (-925) (-1103))) + (-5 *1 (-548 *4 *5 *2))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-782)) + (-5 *2 (-2 (|:| -3031 (-519)) (|:| |var| (-558 *1)))) + (-4 *1 (-402 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-705)) (-5 *1 (-110))))) +(((*1 *1) (-12 (-4 *1 (-301 *2)) (-4 *2 (-340)) (-4 *2 (-335))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1065)) (-5 *3 (-708)) (-5 *1 (-110))))) (((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1158 *4))) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) + (-12 (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) + (-5 *2 (-1163 *1)) (-4 *1 (-314 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) - (-5 *2 (-583 (-1158 *3)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) - (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) - ((*1 *2 *1) - (-12 + (-12 (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) + (-4 *4 (-1139 *3)) (-5 *2 - (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) - (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) - (|:| |args| (-583 (-787))))) - (-5 *1 (-1077))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) - (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1149 *5)) - (-5 *1 (-1151 *5 *2))))) -(((*1 *2 *2) - (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3)) - (-4 *3 (-585 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964))))) -(((*1 *2) - (-12 (-4 *1 (-319)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-772 *3)) (-4 *3 (-1006))))) -(((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) - (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-107)) (-5 *1 (-109)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1077)) (-5 *2 (-107)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1077)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1006)) (-5 *2 (-107)) (-5 *1 (-811 *5 *3 *4)) - (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5))))) + (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-625 *3)))) + (-5 *1 (-322 *3 *4 *5)) (-4 *5 (-381 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1139 (-519))) + (-5 *2 + (-2 (|:| -2070 (-625 (-519))) (|:| |basisDen| (-519)) + (|:| |basisInv| (-625 (-519))))) + (-5 *1 (-702 *3 *4)) (-4 *4 (-381 (-519) *3)))) + ((*1 *2) + (-12 (-4 *3 (-321)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 *4)) + (-5 *2 + (-2 (|:| -2070 (-625 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-625 *4)))) + (-5 *1 (-909 *3 *4 *5 *6)) (-4 *6 (-659 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-321)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 *4)) + (-5 *2 + (-2 (|:| -2070 (-625 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-625 *4)))) + (-5 *1 (-1172 *3 *4 *5 *6)) (-4 *6 (-381 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-673))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-450))))) +(((*1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166)))) + ((*1 *2 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166))))) +(((*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-1117)) (-5 *2 (-108))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3))))) +(((*1 *2 *1) + (-12 (-4 *2 (-644 *3)) (-5 *1 (-762 *2 *3)) (-4 *3 (-968))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-585 + (-2 (|:| |scalar| (-379 (-519))) (|:| |coeff| (-1078 *2)) + (|:| |logand| (-1078 *2))))) + (-5 *4 (-585 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-335)) (-5 *1 (-536 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-423) (-135))) (-5 *2 (-390 *3)) + (-5 *1 (-95 *4 *3)) (-4 *3 (-1139 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *6)) (-4 *6 (-810 *5)) (-4 *5 (-1006)) - (-5 *2 (-107)) (-5 *1 (-811 *5 *6 *4)) (-4 *4 (-558 (-816 *5)))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) - (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-1139 *5)) (-4 *5 (-13 (-423) (-135))) + (-5 *2 (-390 *3)) (-5 *1 (-95 *5 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-519)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-345 *2)) + (-4 *5 (-345 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1117)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-519)) (-4 *1 (-971 *4 *5 *2 *6 *7)) + (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2)) (-4 *2 (-968))))) +(((*1 *2 *3) + (-12 (-5 *3 (-879 *5)) (-4 *5 (-968)) (-5 *2 (-223 *4 *5)) + (-5 *1 (-871 *4 *5)) (-14 *4 (-585 (-1082)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1163 *4)) (-5 *3 (-705)) (-4 *4 (-321)) + (-5 *1 (-489 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) - (-4 *3 (-1134 (-153 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) - (-4 *3 (-1134 (-153 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-964)) - (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) - (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) - ((*1 *1 *1) (-4 *1 (-502))) - ((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) (-12 (-4 *1 (-914 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1110 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-921)) - (-4 *2 (-964))))) -(((*1 *2 *1) - (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) - (-5 *2 (-377 (-517))))) - ((*1 *2 *1) - (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) - (-4 *3 (-509)))) - ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) - ((*1 *2 *1) - (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) - (-5 *2 (-377 (-517))))) - ((*1 *2 *1) - (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) - (-4 *3 (-1006)))) - ((*1 *2 *1) - (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) - (-4 *3 (-1006)))) - ((*1 *2 *1) - (-12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502)) - (-5 *2 (-377 (-517))))) - ((*1 *2 *3) - (-12 (-5 *2 (-377 (-517))) (-5 *1 (-927 *3)) (-4 *3 (-955 *2))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) - (-4 *3 (-13 (-1006) (-33)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) - (-5 *1 (-276))))) + (-12 (-5 *2 (-585 (-585 (-585 *4)))) (-5 *3 (-585 *4)) (-4 *4 (-782)) + (-5 *1 (-1089 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) - (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-983 *3 *4 *5 *6)) (-4 *2 (-1015 *3 *4 *5 *6))))) + (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-420 *3 *4 *5 *2)) (-4 *2 (-876 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-389 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-516)) (-5 *3 (-519))))) +(((*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-423)) (-4 *3 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) + (-5 *1 (-420 *4 *3 *5 *6)) (-4 *6 (-876 *4 *3 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-329 *3)) (-4 *3 (-321))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1060)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1006)) - (-4 *4 (-1006)))) - ((*1 *1 *2) - (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) - (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) - (-5 *1 (-287 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) - (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) - (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) - (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) - (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) - (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) - (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) - (-5 *1 (-287 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) - (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) - (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) - (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) - (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) - (-5 *1 (-287 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) - (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) - (-5 *1 (-287 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) - (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) - (-5 *1 (-287 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) - (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) - (-5 *1 (-287 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) - (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) - (-5 *2 (-51)) (-5 *1 (-287 *7 *3))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-502)))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(((*1 *2 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) - (-4 *4 (-319))))) -(((*1 *1) (-4 *1 (-319)))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-761))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) - (-4 *3 (-983 *4 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-107)) - (-5 *1 (-327 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-107)) - (-5 *1 (-487 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-845)) (-5 *2 (-437)) (-5 *1 (-1159))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073 *1)) (-4 *1 (-931))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517))))) -(((*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) - ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) - ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156))))) + (-12 (-5 *3 (-1082)) (-5 *1 (-536 *2)) (-4 *2 (-959 *3)) + (-4 *2 (-335)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-536 *2)) (-4 *2 (-335)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-572 *4 *2)) + (-4 *2 (-13 (-402 *4) (-925) (-1103))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-402 *4) (-925) (-1103))) + (-4 *4 (-13 (-782) (-511))) (-5 *1 (-572 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-885)) (-5 *2 (-1082)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-885))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-511) (-782) (-959 (-519)))) (-5 *1 (-166 *3 *2)) + (-4 *2 (-13 (-27) (-1103) (-402 (-154 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-511) (-782) (-959 (-519)))) + (-5 *1 (-166 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 (-154 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-1107 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-1107 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-696)))) +(((*1 *2 *2) (-12 (-5 *1 (-887 *2)) (-4 *2 (-504))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1082)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-585 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -1265 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1103) (-27) (-402 *8))) + (-4 *8 (-13 (-423) (-782) (-135) (-959 *3) (-581 *3))) + (-5 *3 (-519)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -1931 *4) (|:| |sol?| (-108)))) + (-5 *1 (-936 *8 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) + (-12 (-5 *4 (-519)) (-4 *2 (-402 *3)) (-5 *1 (-31 *3 *2)) + (-4 *3 (-959 *4)) (-4 *3 (-13 (-782) (-511)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-705)) + (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) + (-4 *4 (-1139 *3)) (-5 *1 (-466 *3 *4 *5)) (-4 *5 (-381 *3 *4))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1117)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-552 *3 *2)) (-4 *3 (-1011)) + (-4 *2 (-1117))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) + (-4 *3 (-982 *6 *7 *8)) (-5 *2 - (-2 (|:| |solns| (-583 *5)) - (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1032 *3 *5)) (-4 *3 (-1134 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4)) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) (-5 *2 - (-3 (|:| |overq| (-1073 (-377 (-517)))) - (|:| |overan| (-1073 (-47))) (|:| -3212 (-107)))) - (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1114))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) - (-5 *2 (-2 (|:| -2791 (-377 *6)) (|:| |coeff| (-377 *6)))) - (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6))))) -(((*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1080))))) + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-1158 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) - (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) + (-12 (-4 *2 (-13 (-335) (-780))) (-5 *1 (-164 *2 *3)) + (-4 *3 (-1139 (-154 *2)))))) +(((*1 *1) (-12 (-4 *1 (-301 *2)) (-4 *2 (-340)) (-4 *2 (-335)))) ((*1 *2 *3) - (-12 (-5 *3 (-845)) (-4 *4 (-333)) (-5 *2 (-1158 *1)) - (-4 *1 (-299 *4)))) - ((*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1158 *1)) (-4 *1 (-299 *3)))) - ((*1 *2) - (-12 (-4 *3 (-156)) (-4 *4 (-1134 *3)) (-5 *2 (-1158 *1)) - (-4 *1 (-379 *3 *4)))) + (-12 (-5 *3 (-848)) (-5 *2 (-1163 *4)) (-5 *1 (-489 *4)) + (-4 *4 (-321))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-408))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-519)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-705)) (-4 *5 (-157)))) + ((*1 *1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) + (-4 *4 (-157)))) + ((*1 *1 *1) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-968)) (-4 *1 (-623 *3 *2 *4)) (-4 *2 (-345 *3)) + (-4 *4 (-345 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1049 *2 *3)) (-14 *2 (-705)) (-4 *3 (-968))))) +(((*1 *2 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1117)))) ((*1 *2 *1) - (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) - (-5 *2 (-1158 *6)) (-5 *1 (-383 *3 *4 *5 *6)) - (-4 *6 (-13 (-379 *4 *5) (-955 *4))))) + (-12 (-4 *3 (-1011)) + (-4 *2 (-13 (-402 *4) (-813 *3) (-560 (-819 *3)))) + (-5 *1 (-990 *3 *4 *2)) + (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))))) ((*1 *2 *1) - (-12 (-4 *3 (-278)) (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) - (-5 *2 (-1158 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) - (-4 *6 (-379 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1158 *1)) (-4 *1 (-387 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1158 (-1158 *4))) (-5 *1 (-487 *4)) - (-4 *4 (-319))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1112))))) + (-12 (-4 *2 (-1011)) (-5 *1 (-1072 *3 *2)) (-4 *3 (-1011))))) (((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) - (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-583 (-1077))) - (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-941)) (-5 *5 (-349)))) - ((*1 *2 *3) - (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) - (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-583 (-942 (-377 *4))))) - (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) - (-4 *5 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) - (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) - (-4 *5 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) - (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) - (-4 *5 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) - (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-876 *4))) - (-4 *4 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6)) - (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) - (-5 *1 (-276))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) - (-4 *2 (-1149 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3)) - (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) - (-4 *2 (-1149 *3)))) + (-12 (-4 *4 (-968)) + (-4 *2 (-13 (-376) (-959 *4) (-335) (-1103) (-258))) + (-5 *1 (-414 *4 *3 *2)) (-4 *3 (-1139 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-848)) (-4 *5 (-968)) + (-4 *2 (-13 (-376) (-959 *5) (-335) (-1103) (-258))) + (-5 *1 (-414 *5 *3 *2)) (-4 *3 (-1139 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-504)) (-5 *1 (-145 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1117)) (-5 *2 (-108))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1117)) (-5 *1 (-1041 *4 *2)) + (-4 *2 (-13 (-552 (-519) *4) (-10 -7 (-6 -4221) (-6 -4222)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134))) - (-5 *1 (-1054 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) - (-5 *1 (-738 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-388 (-1073 (-517)))) (-5 *1 (-167)) (-5 *3 (-517))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) + (-12 (-4 *3 (-782)) (-4 *3 (-1117)) (-5 *1 (-1041 *3 *2)) + (-4 *2 (-13 (-552 (-519) *3) (-10 -7 (-6 -4221) (-6 -4222))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-1082))))) +(((*1 *2 *2) + (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) + (-5 *1 (-160 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) +(((*1 *2 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1117)))) ((*1 *2 *1) - (-12 (-4 *1 (-893 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-724)) - (-4 *5 (-779)) (-5 *2 (-107))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1066 3 *3)) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) - ((*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964))))) -(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) - (-5 *2 (-583 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-534 *3)) (-4 *3 (-333))))) -(((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) - ((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374)))) - ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) - ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1058 (-517)))))) -(((*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1) (-5 *1 (-572)))) -(((*1 *2 *3) - (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-964)) - (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-873 *2 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502))))) -(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1060)) (-5 *1 (-276))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *4 (-1077)) - (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271))))) + (-12 (-4 *3 (-1011)) + (-4 *2 (-13 (-402 *4) (-813 *3) (-560 (-819 *3)))) + (-5 *1 (-990 *3 *4 *2)) + (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1011)) (-5 *1 (-1072 *2 *3)) (-4 *3 (-1011))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) - (-4 *4 (-1134 *2))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) - (-4 *3 (-13 (-333) (-1098) (-921)))))) -(((*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-493))) ((*1 *1) (-4 *1 (-655))) - ((*1 *1) (-4 *1 (-659))) - ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) - ((*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779))))) -(((*1 *1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) - (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3817 (-583 *9)) (|:| -3864 *4) (|:| |ineq| (-583 *9)))) - (-5 *1 (-908 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) - (-4 *4 (-983 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) - (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3817 (-583 *9)) (|:| -3864 *4) (|:| |ineq| (-583 *9)))) - (-5 *1 (-1013 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) - (-4 *4 (-983 *6 *7 *8 *9))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1058 *3))) (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) - (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964))))) -(((*1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1) (-5 *1 (-1024)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) - (-5 *1 (-840 *3 *4 *5 *2)) (-4 *2 (-873 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *6)))) + (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-170)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *6 *4 *5)) - (-5 *1 (-840 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) - (-4 *6 (-278))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703))))) + (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-273)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-278))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1011)) + (-4 *6 (-1011)) (-4 *2 (-1011)) (-5 *1 (-617 *5 *6 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-389 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) + ((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964)) - (-4 *2 (-1149 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-867 (-199))) (-5 *2 (-1163)) (-5 *1 (-437))))) -(((*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-493))) - ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006))))) -(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-964)))) - ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509))))) + (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) + (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-782)) (-4 *4 (-335)) (-4 *5 (-727)) + (-5 *2 (-108)) (-5 *1 (-471 *4 *5 *6 *7)) (-4 *7 (-876 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-701)) - (-5 *2 - (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) - (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953)))) - (-5 *1 (-518)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701)) (-5 *4 (-976)) - (-5 *2 - (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) - (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953)))) - (-5 *1 (-518)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-719)) (-5 *3 (-976)) - (-5 *4 - (-2 (|:| |fn| (-286 (-199))) - (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) + (-12 (-5 *3 (-625 *2)) (-4 *4 (-1139 *2)) + (-4 *2 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) + (-5 *1 (-466 *2 *4 *5)) (-4 *5 (-381 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1032 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) + (-4 *5 (-214 *3 *2)) (-4 *2 (-968))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-625 *8)) (-4 *8 (-876 *5 *7 *6)) + (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) + (-4 *7 (-727)) (-5 *2 - (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) - (|:| |extra| (-953)))))) + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-879 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1163 (-379 (-879 *5)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *5)))))))))) + (-5 *1 (-851 *5 *6 *7 *8)) (-5 *4 (-585 *8)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-719)) (-5 *3 (-976)) - (-5 *4 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) + (-12 (-5 *3 (-625 *8)) (-5 *4 (-585 (-1082))) (-4 *8 (-876 *5 *7 *6)) + (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) + (-4 *7 (-727)) (-5 *2 - (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)) - (|:| |extra| (-953)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-732)) (-5 *3 (-976)) - (-5 *4 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))) - (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-879 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1163 (-379 (-879 *5)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *5)))))))))) + (-5 *1 (-851 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-740)) + (-12 (-5 *3 (-625 *7)) (-4 *7 (-876 *4 *6 *5)) + (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) + (-4 *6 (-727)) (-5 *2 - (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) - (|:| |explanations| (-583 (-1060))))) - (-5 *1 (-737)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-740)) (-5 *4 (-976)) + (-585 + (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) + (|:| |wcond| (-585 (-879 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1163 (-379 (-879 *4)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *4)))))))))) + (-5 *1 (-851 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-625 *9)) (-5 *5 (-848)) (-4 *9 (-876 *6 *8 *7)) + (-4 *6 (-13 (-280) (-135))) (-4 *7 (-13 (-782) (-560 (-1082)))) + (-4 *8 (-727)) (-5 *2 - (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) - (|:| |explanations| (-583 (-1060))))) - (-5 *1 (-737)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-768)) (-5 *3 (-976)) - (-5 *4 - (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) - (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-768)) (-5 *3 (-976)) - (-5 *4 - (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) - (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) - (|:| |ub| (-583 (-772 (-199)))))) - (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-770)) + (-585 + (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) + (|:| |wcond| (-585 (-879 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1163 (-379 (-879 *6)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *6)))))))))) + (-5 *1 (-851 *6 *7 *8 *9)) (-5 *4 (-585 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-625 *9)) (-5 *4 (-585 (-1082))) (-5 *5 (-848)) + (-4 *9 (-876 *6 *8 *7)) (-4 *6 (-13 (-280) (-135))) + (-4 *7 (-13 (-782) (-560 (-1082)))) (-4 *8 (-727)) (-5 *2 - (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) - (|:| |explanations| (-583 (-1060))))) - (-5 *1 (-769)))) + (-585 + (-2 (|:| |eqzro| (-585 *9)) (|:| |neqzro| (-585 *9)) + (|:| |wcond| (-585 (-879 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1163 (-379 (-879 *6)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *6)))))))))) + (-5 *1 (-851 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-770)) (-5 *4 (-976)) + (-12 (-5 *3 (-625 *8)) (-5 *4 (-848)) (-4 *8 (-876 *5 *7 *6)) + (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) + (-4 *7 (-727)) (-5 *2 - (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) - (|:| |explanations| (-583 (-1060))))) - (-5 *1 (-769)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-819)) (-5 *3 (-976)) - (-5 *4 - (-2 (|:| |pde| (-583 (-286 (-199)))) - (|:| |constraints| - (-583 - (-2 (|:| |start| (-199)) (|:| |finish| (-199)) - (|:| |grid| (-703)) (|:| |boundaryType| (-517)) - (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) - (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) - (|:| |tol| (-199)))) - (-5 *2 (-2 (|:| -3661 (-349)) (|:| |explanations| (-1060)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-822)) + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-879 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1163 (-379 (-879 *5)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *5)))))))))) + (-5 *1 (-851 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-625 *9)) (-5 *4 (-585 *9)) (-5 *5 (-1065)) + (-4 *9 (-876 *6 *8 *7)) (-4 *6 (-13 (-280) (-135))) + (-4 *7 (-13 (-782) (-560 (-1082)))) (-4 *8 (-727)) (-5 *2 (-519)) + (-5 *1 (-851 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-625 *9)) (-5 *4 (-585 (-1082))) (-5 *5 (-1065)) + (-4 *9 (-876 *6 *8 *7)) (-4 *6 (-13 (-280) (-135))) + (-4 *7 (-13 (-782) (-560 (-1082)))) (-4 *8 (-727)) (-5 *2 (-519)) + (-5 *1 (-851 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-625 *8)) (-5 *4 (-1065)) (-4 *8 (-876 *5 *7 *6)) + (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) + (-4 *7 (-727)) (-5 *2 (-519)) (-5 *1 (-851 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-625 *10)) (-5 *4 (-585 *10)) (-5 *5 (-848)) + (-5 *6 (-1065)) (-4 *10 (-876 *7 *9 *8)) (-4 *7 (-13 (-280) (-135))) + (-4 *8 (-13 (-782) (-560 (-1082)))) (-4 *9 (-727)) (-5 *2 (-519)) + (-5 *1 (-851 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-625 *10)) (-5 *4 (-585 (-1082))) (-5 *5 (-848)) + (-5 *6 (-1065)) (-4 *10 (-876 *7 *9 *8)) (-4 *7 (-13 (-280) (-135))) + (-4 *8 (-13 (-782) (-560 (-1082)))) (-4 *9 (-727)) (-5 *2 (-519)) + (-5 *1 (-851 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-625 *9)) (-5 *4 (-848)) (-5 *5 (-1065)) + (-4 *9 (-876 *6 *8 *7)) (-4 *6 (-13 (-280) (-135))) + (-4 *7 (-13 (-782) (-560 (-1082)))) (-4 *8 (-727)) (-5 *2 (-519)) + (-5 *1 (-851 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)) (-4 *2 (-504)))) + ((*1 *1 *1) (-4 *1 (-977)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-420 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *3) + (-12 (-5 *3 (-879 *4)) (-4 *4 (-13 (-280) (-135))) + (-4 *2 (-876 *4 *6 *5)) (-5 *1 (-851 *4 *5 *6 *2)) + (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727))))) +(((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1011)) + (-5 *2 (-585 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |k| (-820 *3)) (|:| |c| *4)))) + (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) + (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848)))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-610 *3))) (-5 *1 (-820 *3)) (-4 *3 (-782))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-898))))) +(((*1 *1) (-12 (-4 *1 (-436 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-495))) ((*1 *1) (-4 *1 (-657))) + ((*1 *1) (-4 *1 (-661))) + ((*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) + ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-782))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) + (-5 *2 (-108))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-841 *3)) (-4 *3 (-280))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) + (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-778))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 - (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) - (|:| |explanations| (-583 (-1060))))) - (-5 *1 (-821)))) + (-2 (|:| |cycle?| (-108)) (|:| -3434 (-705)) (|:| |period| (-705)))) + (-5 *1 (-1063 *4)) (-4 *4 (-1117)) (-5 *3 (-705))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2) + (-12 (-4 *3 (-968)) (-5 *2 (-884 (-647 *3 *4))) (-5 *1 (-647 *3 *4)) + (-4 *4 (-1139 *3))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-495))) + ((*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103)))))) +(((*1 *2) + (-12 (-5 *2 (-705)) (-5 *1 (-116 *3)) (-4 *3 (-1139 (-519))))) + ((*1 *2 *2) + (-12 (-5 *2 (-705)) (-5 *1 (-116 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-585 *3)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-389 *4))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-585 *6)) (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) + (-4 *3 (-511))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-705)) (-5 *1 (-150 *3 *4)) + (-4 *3 (-151 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1117)) (-5 *2 (-705)) + (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-782)) (-5 *2 (-705)) (-5 *1 (-401 *3 *4)) + (-4 *3 (-402 *4)))) + ((*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-503 *3)) (-4 *3 (-504)))) + ((*1 *2) (-12 (-4 *1 (-698)) (-5 *2 (-705)))) + ((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-705)) (-5 *1 (-731 *3 *4)) + (-4 *3 (-732 *4)))) + ((*1 *2) + (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-915 *3 *4)) + (-4 *3 (-916 *4)))) + ((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-705)) (-5 *1 (-919 *3 *4)) + (-4 *3 (-920 *4)))) + ((*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-934 *3)) (-4 *3 (-935)))) + ((*1 *2) (-12 (-4 *1 (-968)) (-5 *2 (-705)))) + ((*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-976 *3)) (-4 *3 (-977))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-1164)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-705)) (-4 *4 (-511)) (-5 *1 (-894 *4 *2)) + (-4 *2 (-1139 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1139 *4)) (-5 *1 (-742 *4 *2 *3 *5)) + (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *3 (-595 *2)) + (-4 *5 (-595 (-379 *2))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-822)) (-5 *4 (-976)) - (-5 *2 - (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) - (|:| |explanations| (-583 (-1060))))) - (-5 *1 (-821))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) - (-5 *2 (-953)) (-5 *1 (-682))))) -(((*1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1080))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))) + (-12 (-4 *2 (-1139 *4)) (-5 *1 (-742 *4 *2 *5 *3)) + (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *5 (-595 *2)) + (-4 *3 (-595 (-379 *2)))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *6 (-201)) + (-5 *3 (-519)) (-5 *2 (-957)) (-5 *1 (-687))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1065)) (-5 *4 (-154 (-201))) (-5 *5 (-519)) + (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2) + (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) + (-5 *2 (-108)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-314 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-879 *5)) (-4 *5 (-968)) (-5 *2 (-451 *4 *5)) + (-5 *1 (-871 *4 *5)) (-14 *4 (-585 (-1082)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-968))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-959 (-47))) + (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-4 *5 (-402 *4)) + (-5 *2 (-390 (-1078 (-47)))) (-5 *1 (-407 *4 *5 *3)) + (-4 *3 (-1139 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) + (-4 *3 (-13 (-335) (-1103) (-925)))))) (((*1 *2 *1) - (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) - (-4 *5 (-212 (-3573 *3) (-703))) - (-14 *6 - (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *5)) - (-2 (|:| -2803 *2) (|:| -1725 *5)))) - (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-873 *4 *5 (-789 *3)))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) - (-5 *2 (-953)) (-5 *1 (-685))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-873 *5 *6 *7)) (-4 *5 (-421)) - (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-418 *5 *6 *7 *3))))) + (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968))))) +(((*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-832 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-92))))) +(((*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-280))))) +(((*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-389 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *3 (-585 (-519))) + (-5 *1 (-810))))) +(((*1 *1 *2) (-12 (-5 *1 (-948 *2)) (-4 *2 (-1117))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-471 *3 *4 *5 *2)) (-4 *2 (-876 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) + (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) - (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) - (-5 *1 (-1084 *6)) (-5 *5 (-583 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1016))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) - (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) - (-5 *1 (-681))))) + (-12 (-5 *4 (-201)) (-5 *5 (-519)) (-5 *2 (-1113 *3)) + (-5 *1 (-724 *3)) (-4 *3 (-898)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *4 (-108)) + (-5 *1 (-1113 *2)) (-4 *2 (-898))))) +(((*1 *2 *2) + (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) + (-5 *1 (-160 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) + (-5 *1 (-160 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) + (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-780) (-335))) + (-4 *3 (-1139 *4)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) (((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-98 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1006))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) - (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) - (-5 *1 (-1033 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-13 (-278) (-779) (-134))) - (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1033 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 (-377 (-876 *5)))) (-5 *4 (-1077)) - (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) - (-5 *1 (-1033 *5)))) + (-12 (-5 *3 (-1082)) (-4 *5 (-1121)) (-4 *6 (-1139 *5)) + (-4 *7 (-1139 (-379 *6))) (-5 *2 (-585 (-879 *5))) + (-5 *1 (-313 *4 *5 *6 *7)) (-4 *4 (-314 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 (-377 (-876 *4)))) - (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) - (-5 *1 (-1033 *4)))) + (-12 (-5 *3 (-1082)) (-4 *1 (-314 *4 *5 *6)) (-4 *4 (-1121)) + (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) (-4 *4 (-335)) + (-5 *2 (-585 (-879 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1078 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-782) (-511))) + (-5 *1 (-31 *4 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1006 *3)) (-4 *3 (-876 *7 *6 *4)) (-4 *6 (-727)) + (-4 *4 (-782)) (-4 *7 (-511)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-519)))) + (-5 *1 (-543 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-727)) (-4 *4 (-782)) (-4 *6 (-511)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-519)))) + (-5 *1 (-543 *5 *4 *6 *3)) (-4 *3 (-876 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-790))) ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1) (-5 *1 (-790))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-1074 *4 *2)) (-4 *2 (-13 (-402 *4) (-146) (-27) (-1103))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-402 *4) (-146) (-27) (-1103))) + (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-1074 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-511) (-782) (-959 (-519)))) + (-5 *2 (-379 (-879 *5))) (-5 *1 (-1075 *5)) (-5 *3 (-879 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-511) (-782) (-959 (-519)))) + (-5 *2 (-3 (-379 (-879 *5)) (-288 *5))) (-5 *1 (-1075 *5)) + (-5 *3 (-379 (-879 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1004 (-879 *5))) (-5 *3 (-879 *5)) + (-4 *5 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-379 *3)) + (-5 *1 (-1075 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1004 (-379 (-879 *5)))) (-5 *3 (-379 (-879 *5))) + (-4 *5 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-3 *3 (-288 *5))) + (-5 *1 (-1075 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-467 *2)) (-14 *2 (-519)))) + ((*1 *1 *1) (-5 *1 (-1029)))) +(((*1 *1 *1 *1) (-4 *1 (-131))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504)))) + ((*1 *1 *1 *1) (-5 *1 (-790))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) - (-4 *5 (-13 (-278) (-779) (-134))) - (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5)))) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-519))) (-5 *1 (-966)) + (-5 *3 (-519))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-705)) (-5 *1 (-537 *2)) (-4 *2 (-504)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-377 (-876 *4)))) - (-4 *4 (-13 (-278) (-779) (-134))) - (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1033 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-265 (-377 (-876 *5))))) (-5 *4 (-583 (-1077))) - (-4 *5 (-13 (-278) (-779) (-134))) - (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1033 *5)))) + (-12 (-5 *2 (-2 (|:| -3414 *3) (|:| -1690 (-705)))) (-5 *1 (-537 *3)) + (-4 *3 (-504))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3))))) +(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-519)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-444)) (-5 *2 (-519)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-705)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-848))))) +(((*1 *2 *3) (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-929))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *3 (-585 (-801))) + (-5 *1 (-439))))) +(((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-132)))) + ((*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-132))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-467 *2)) (-14 *2 (-519)))) + ((*1 *1 *1 *1) (-5 *1 (-1029)))) +(((*1 *2 *3) + (-12 (-5 *2 (-585 (-585 (-519)))) (-5 *1 (-895)) + (-5 *3 (-585 (-519)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-683))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1139 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-157)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-157)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1185 *3 *4)) (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-157)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754 *3)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-968)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *3)) + (-4 *3 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-467 *2)) (-14 *2 (-519)))) + ((*1 *1 *1 *1) (-5 *1 (-1029)))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-690))))) +(((*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-760))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1082)) (-5 *2 (-495)) (-5 *1 (-494 *4)) + (-4 *4 (-1117))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1082)) + (-4 *4 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-530 *4 *2)) + (-4 *2 (-13 (-1103) (-885) (-1046) (-29 *4)))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-511))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) + (-4 *9 (-982 *6 *7 *8)) (-4 *6 (-511)) (-4 *7 (-727)) + (-4 *8 (-782)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1365 (-585 *9)))) + (-5 *3 (-585 *9)) (-4 *1 (-1111 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-982 *5 *6 *7)) + (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -1365 (-585 *8)))) + (-5 *3 (-585 *8)) (-4 *1 (-1111 *5 *6 *7 *8))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-1078 (-879 *4))) (-5 *1 (-388 *3 *4)) + (-4 *3 (-389 *4)))) + ((*1 *2) + (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-4 *3 (-335)) + (-5 *2 (-1078 (-879 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1078 (-379 (-879 *3)))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-832 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-705)) (-5 *4 (-519)) (-5 *1 (-416 *2)) (-4 *2 (-968))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-265 (-377 (-876 *4))))) - (-4 *4 (-13 (-278) (-779) (-134))) - (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1033 *4))))) + (-12 (-5 *2 (-1078 (-379 (-519)))) (-5 *1 (-869)) (-5 *3 (-519))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-288 (-201)))) (-5 *2 (-108)) (-5 *1 (-242))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-705)) (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *5)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-1161 *3)) (-4 *3 (-23)) (-4 *3 (-1117))))) +(((*1 *2) + (-12 (-4 *3 (-1121)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) + (-5 *2 (-1163 *1)) (-4 *1 (-314 *3 *4 *5))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) + (-5 *2 (-2 (|:| -3031 *1) (|:| |gap| (-705)) (|:| -1354 *1))) + (-4 *1 (-982 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *2 (-2 (|:| -3031 *1) (|:| |gap| (-705)) (|:| -1354 *1))) + (-4 *1 (-982 *3 *4 *5))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4221)) (-4 *1 (-33)) (-5 *2 (-705)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-519)))) + ((*1 *2 *1) + (-12 (-5 *2 (-705)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-778))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-519)) (-5 *5 (-625 (-201))) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) (-5 *3 (-201)) + (-5 *2 (-957)) (-5 *1 (-683))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1078 *6)) (-5 *3 (-519)) (-4 *6 (-280)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *1 (-677 *4 *5 *6 *7)) (-4 *7 (-876 *6 *4 *5))))) +(((*1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) + (-4 *4 (-157))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-519)) (-5 *5 (-625 (-201))) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-82 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-201)) + (-5 *2 (-957)) (-5 *1 (-684))))) +(((*1 *1 *2) (-12 (-5 *1 (-1104 *2)) (-4 *2 (-1011)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-1104 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-585 (-1104 *2))) (-5 *1 (-1104 *2)) (-4 *2 (-1011))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504))))) +(((*1 *1) (-5 *1 (-143)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1107 *6)) - (-5 *2 (-1 (-1058 *4) (-1058 *4))) (-5 *1 (-1166 *6)) - (-5 *5 (-1058 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) + (-12 (-5 *3 (-1078 *9)) (-5 *4 (-585 *7)) (-4 *7 (-782)) + (-4 *9 (-876 *8 *6 *7)) (-4 *6 (-727)) (-4 *8 (-280)) + (-5 *2 (-585 (-705))) (-5 *1 (-677 *6 *7 *8 *9)) (-5 *5 (-705))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2)) - (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)))) - (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-1102 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-953)) (-5 *3 (-1077)) (-5 *1 (-240))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-517)) - (-5 *6 - (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349)))) - (-5 *7 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) - (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) - (-5 *1 (-720)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-517)) - (-5 *6 - (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3487 (-349)))) - (-5 *7 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) - (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) - (-5 *1 (-720))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) - (-5 *2 (-623 *6)) (-5 *1 (-947 *6)) (-4 *6 (-333)) (-4 *6 (-964)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-947 *4)) - (-4 *4 (-333)) (-4 *4 (-964)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) - (-5 *1 (-947 *5)) (-4 *5 (-333)) (-4 *5 (-964))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-869 *4 *3)) - (-4 *3 (-1134 *4))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) - (-5 *2 (-953)) (-5 *1 (-685))))) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1077)) + (|partial| -12 (-5 *5 (-1082)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (-585 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-583 *4))) + *4 (-585 *4))) (-5 *7 - (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1098) (-27) (-400 *8))) - (-4 *8 (-13 (-421) (-779) (-134) (-955 *3) (-579 *3))) - (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-933 *8 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-107)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1106 *5 *6 *7 *3)) - (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-107))))) + (-1 (-3 (-2 (|:| -1265 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1103) (-27) (-402 *8))) + (-4 *8 (-13 (-423) (-782) (-135) (-959 *3) (-581 *3))) + (-5 *3 (-519)) (-5 *2 (-585 *4)) (-5 *1 (-937 *8 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1117))))) +(((*1 *1) (-5 *1 (-1164)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-816 *4 *5)) (-5 *3 (-816 *4 *6)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-605 *5)) (-5 *1 (-812 *4 *5 *6))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-143)))) + ((*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-288 (-519))) (-5 *4 (-1 (-201) (-201))) + (-5 *5 (-1006 (-201))) (-5 *6 (-519)) (-5 *2 (-1113 (-853))) + (-5 *1 (-290)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-288 (-519))) (-5 *4 (-1 (-201) (-201))) + (-5 *5 (-1006 (-201))) (-5 *6 (-519)) (-5 *7 (-1065)) + (-5 *2 (-1113 (-853))) (-5 *1 (-290)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-288 (-519))) (-5 *4 (-1 (-201) (-201))) + (-5 *5 (-1006 (-201))) (-5 *6 (-201)) (-5 *7 (-519)) + (-5 *2 (-1113 (-853))) (-5 *1 (-290)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-288 (-519))) (-5 *4 (-1 (-201) (-201))) + (-5 *5 (-1006 (-201))) (-5 *6 (-201)) (-5 *7 (-519)) (-5 *8 (-1065)) + (-5 *2 (-1113 (-853))) (-5 *1 (-290))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-1134 (-153 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-509)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-706)) (-5 *1 (-109))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-845)) (-4 *5 (-779)) - (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-5 *2 (-1073 *3))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1) (-5 *1 (-787)))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-583 *5)) - (-5 *1 (-814 *4 *5)) (-4 *5 (-1112))))) -(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-964))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1006) (-955 *5))) - (-4 *5 (-810 *4)) (-4 *4 (-1006)) (-5 *2 (-1 (-107) *5)) - (-5 *1 (-855 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-534 *3) *3 (-1077))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1077))) - (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-955 *4)) (-4 *3 (-400 *7)) - (-5 *4 (-1077)) (-4 *7 (-558 (-816 (-517)))) (-4 *7 (-421)) - (-4 *7 (-810 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) - (-5 *1 (-526 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850))))) -(((*1 *1 *1 *1) (-4 *1 (-130))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))) -(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))) + (-12 (-4 *3 (-423)) (-4 *3 (-782)) (-4 *3 (-959 (-519))) + (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3)) + (-4 *2 + (-13 (-335) (-275) + (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) + (-15 -2866 ((-1034 *3 (-558 $)) $)) + (-15 -2217 ($ (-1034 *3 (-558 $)))))))))) (((*1 *1 *2) - (-12 (-5 *2 (-845)) (-4 *1 (-212 *3 *4)) (-4 *4 (-964)) - (-4 *4 (-1112)))) - ((*1 *1 *2) - (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) - (-4 *5 (-212 (-3573 *3) (-703))) - (-14 *6 - (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *5)) - (-2 (|:| -2803 *2) (|:| -1725 *5)))) - (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) - (-4 *7 (-873 *4 *5 (-789 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-978 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) - (-5 *2 (-953)) (-5 *1 (-686))))) -(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278))))) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-329 *3)) (-4 *3 (-321))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-955 *2))))) + (-12 (-4 *4 (-782)) (-5 *2 (-585 (-585 *4))) (-5 *1 (-1089 *4)) + (-5 *3 (-585 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-982 *4 *5 *6)) (-4 *4 (-968)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1111 *4 *5 *6 *3)) (-4 *4 (-511)) (-4 *5 (-727)) + (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-585 (-1 *6 (-585 *6)))) + (-4 *5 (-37 (-379 (-519)))) (-4 *6 (-1154 *5)) (-5 *2 (-585 *6)) + (-5 *1 (-1156 *5 *6))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-504)))) +(((*1 *1 *1) (-4 *1 (-796 *2)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-848)) (-5 *4 (-801)) (-5 *2 (-1168)) (-5 *1 (-1164)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-705)) (-4 *1 (-1139 *4)) (-4 *4 (-968)) + (-5 *2 (-1163 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107))))) + (|partial| -12 (-4 *3 (-1023)) (-4 *3 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-402 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) + (-4 *3 (-1011)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *2 (-585 *1)) (-4 *1 (-876 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) + (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-585 *3)) + (-5 *1 (-877 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-335) + (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) + (-15 -2866 (*7 $)))))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1063 *2)) (-4 *2 (-1117))))) (((*1 *2 *1) - (-12 (-4 *1 (-1177 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) - (-5 *2 (-751 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1179 *3 *2)) (-4 *3 (-964))))) -(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-92))))) -(((*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-753))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| -3896 (-1073 *6)) (|:| -1725 (-517))))) - (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) - (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-131)))) - ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-215)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-583 (-1060))) (-5 *3 (-517)) (-5 *4 (-1060)) - (-5 *1 (-215)))) - ((*1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964))))) -(((*1 *1 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-333)) (-4 *3 (-964)) - (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-964)) - (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) - (-4 *3 (-781 *5))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1158 *4)) - (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1265 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-335)) (-4 *7 (-1139 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-379 *7)) (|:| |a0| *6)) + (-2 (|:| -1265 (-379 *7)) (|:| |coeff| (-379 *7))) "failed")) + (-5 *1 (-529 *6 *7)) (-5 *3 (-379 *7))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-1065)) (-5 *5 (-625 (-201))) + (-5 *2 (-957)) (-5 *1 (-682))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) + (-4 *5 (-1139 *4)) + (-5 *2 (-585 (-2 (|:| |deg| (-705)) (|:| -3257 *5)))) + (-5 *1 (-744 *4 *5 *3 *6)) (-4 *3 (-595 *5)) + (-4 *6 (-595 (-379 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-729)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-789)))) + ((*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-913)))) + ((*1 *2 *1) (-12 (-4 *1 (-933 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1011) (-33))) (-5 *1 (-1047 *2 *3)) + (-4 *3 (-13 (-1011) (-33)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) - (-4 *5 (-509)) (-5 *2 (-1158 *5)) (-5 *1 (-578 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 *5)) - (-2479 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1158 (-377 *5))) - (-5 *1 (-578 *5 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) -(((*1 *1 *1 *1) (-4 *1 (-502)))) + (|partial| -12 (-5 *4 (-379 *2)) (-4 *2 (-1139 *5)) + (-5 *1 (-742 *5 *2 *3 *6)) + (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) + (-4 *3 (-595 *2)) (-4 *6 (-595 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-379 *2))) (-4 *2 (-1139 *5)) + (-5 *1 (-742 *5 *2 *3 *6)) + (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *3 (-595 *2)) + (-4 *6 (-595 (-379 *2)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-1 (-1063 (-879 *4)) (-1063 (-879 *4)))) + (-5 *1 (-1171 *4)) (-4 *4 (-335))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-377 (-876 *5)) (-1067 (-1077) (-876 *5)))) - (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *5))))) - (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-876 *5))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 (-286 (-199)))) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 *4)) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-625 (-379 (-519)))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) - (-5 *1 (-181))))) + (-585 + (-2 (|:| |outval| *4) (|:| |outmult| (-519)) + (|:| |outvect| (-585 (-625 *4)))))) + (-5 *1 (-713 *4)) (-4 *4 (-13 (-335) (-780)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1117)) (-5 *1 (-347 *4 *2)) + (-4 *2 (-13 (-345 *4) (-10 -7 (-6 -4222))))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-519)) (-5 *2 (-108)) (-5 *1 (-450))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-409)) (-5 *3 (-1082)) (-5 *1 (-1085)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-409)) (-5 *3 (-1082)) (-5 *1 (-1085)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-409)) (-5 *3 (-585 (-1082))) (-5 *4 (-1082)) + (-5 *1 (-1085)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-409)) (-5 *3 (-1082)) (-5 *1 (-1085)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-409)) (-5 *3 (-1082)) (-5 *1 (-1086)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-409)) (-5 *3 (-585 (-1082))) (-5 *1 (-1086))))) +(((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-513 *3)) (-4 *3 (-504))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *3 (-585 (-238))) + (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *1 (-238)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *1 (-439)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *1 (-439))))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1082)) (-4 *5 (-560 (-819 (-519)))) + (-4 *5 (-813 (-519))) + (-4 *5 (-13 (-782) (-959 (-519)) (-423) (-581 (-519)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-522 *5 *3)) (-4 *3 (-571)) + (-4 *3 (-13 (-27) (-1103) (-402 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1082)) (-5 *4 (-775 *2)) (-4 *2 (-1046)) + (-4 *2 (-13 (-27) (-1103) (-402 *5))) + (-4 *5 (-560 (-819 (-519)))) (-4 *5 (-813 (-519))) + (-4 *5 (-13 (-782) (-959 (-519)) (-423) (-581 (-519)))) + (-5 *1 (-522 *5 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1078 (-379 (-519)))) (-5 *1 (-869)) (-5 *3 (-519))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) + ((*1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-716 *3)) (|:| |polden| *3) (|:| -1860 (-705)))) + (-5 *1 (-716 *3)) (-4 *3 (-968)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1860 (-705)))) + (-4 *1 (-982 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) + (-4 *4 (-321))))) +(((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-288 (-351))) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-495))))) +(((*1 *2 *3) + (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-782)) (-4 *3 (-1011))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) +(((*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) + ((*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-585 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-705)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-727)) (-4 *3 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *6 (-782)) + (-5 *1 (-420 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-154 (-201)))) (-5 *2 (-957)) + (-5 *1 (-689))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-201))) + (-5 *6 (-201)) (-5 *2 (-957)) (-5 *1 (-687))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-686))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-1065)) (-5 *5 (-625 (-201))) + (-5 *2 (-957)) (-5 *1 (-682))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1009 *3)) (-4 *3 (-1011)) (-5 *2 (-108))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-782)) (-4 *4 (-335)) (-4 *5 (-727)) + (-5 *1 (-471 *4 *5 *6 *2)) (-4 *2 (-876 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-471 *3 *4 *5 *2)) (-4 *2 (-876 *3 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-705)) (-5 *1 (-57 *3)) (-4 *3 (-1117)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-57 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-816 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1006)) - (-4 *5 (-1112)) (-5 *1 (-814 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-816 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1006)) - (-4 *5 (-1112)) (-5 *1 (-814 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-816 *5)) (-5 *3 (-583 (-1077))) - (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1006)) (-4 *6 (-1112)) - (-5 *1 (-814 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1112)) (-4 *4 (-779)) - (-5 *1 (-861 *4 *2 *5)) (-4 *2 (-400 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1112)) (-4 *4 (-779)) - (-5 *1 (-861 *4 *2 *5)) (-4 *2 (-400 *4)))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *4 *5 *6)) (-4 *4 (-280)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-418 *4 *5 *6 *2))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-848)) (-5 *1 (-413 *2)) + (-4 *2 (-1139 (-519))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-848)) (-5 *4 (-705)) (-5 *1 (-413 *2)) + (-4 *2 (-1139 (-519))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-848)) (-5 *4 (-585 (-705))) (-5 *1 (-413 *2)) + (-4 *2 (-1139 (-519))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-848)) (-5 *4 (-585 (-705))) (-5 *5 (-705)) + (-5 *1 (-413 *2)) (-4 *2 (-1139 (-519))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-848)) (-5 *4 (-585 (-705))) (-5 *5 (-705)) + (-5 *6 (-108)) (-5 *1 (-413 *2)) (-4 *2 (-1139 (-519))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1077)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1112)) - (-5 *2 (-286 (-517))) (-5 *1 (-862 *5)))) + (-12 (-5 *3 (-848)) (-5 *4 (-390 *2)) (-4 *2 (-1139 *5)) + (-5 *1 (-415 *5 *2)) (-4 *5 (-968))))) +(((*1 *2 *3) + (-12 (-5 *3 (-754 *4)) (-4 *4 (-782)) (-5 *2 (-108)) + (-5 *1 (-610 *4))))) +(((*1 *1 *1) (-5 *1 (-108)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-727)) + (-4 *7 (-782)) (-4 *8 (-982 *5 *6 *7)) (-5 *2 (-585 *3)) + (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-1020 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1077)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1112)) - (-5 *2 (-286 (-517))) (-5 *1 (-862 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-1 (-107) (-583 *6))) - (-4 *6 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))) (-4 *4 (-1006)) - (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) - (-5 *1 (-986 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *2 (-319)) (-4 *2 (-964)) (-5 *1 (-645 *2 *3)) - (-4 *3 (-1134 *2))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) - (-5 *6 (-199)) (-5 *2 (-953)) (-5 *1 (-685))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1073 *6)) (-1073 *6))) - (-4 *6 (-333)) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) (-5 *2 - (-583 - (-2 (|:| |outval| *7) (|:| |outmult| (-517)) - (|:| |outvect| (-583 (-623 *7)))))) - (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777)))))) -(((*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-236)))) - ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236))))) -(((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-421))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) - (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) - (-5 *2 (-772 *4)) (-5 *1 (-1144 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1098) (-400 *3))) (-14 *5 (-1077)) - (-14 *6 *4)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2133 *4))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925)))) - ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))) + (-585 (-2 (|:| -2948 (-1078 *5)) (|:| -3399 (-585 (-879 *5)))))) + (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-879 *5))) + (-14 *6 (-585 (-1082))))) ((*1 *2 *3) - (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) - (-4 *3 (-13 (-333) (-1098) (-921)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1163)) (-5 *1 (-754))))) + (-12 (-4 *4 (-13 (-280) (-135))) + (-5 *2 + (-585 (-2 (|:| -2948 (-1078 *4)) (|:| -3399 (-585 (-879 *4)))))) + (-5 *1 (-992 *4 *5)) (-5 *3 (-585 (-879 *4))) + (-14 *5 (-585 (-1082))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) + (-5 *2 + (-585 (-2 (|:| -2948 (-1078 *5)) (|:| -3399 (-585 (-879 *5)))))) + (-5 *1 (-992 *5 *6)) (-5 *3 (-585 (-879 *5))) + (-14 *6 (-585 (-1082)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-4 *3 (-1011)) + (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1078 *7)) (-5 *3 (-519)) (-4 *7 (-876 *6 *4 *5)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) + (-5 *1 (-293 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1087)) (-5 *1 (-224))))) +(((*1 *2 *1) + (-12 (-4 *1 (-307 *3 *4 *5 *6)) (-4 *3 (-335)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-4 *6 (-314 *3 *4 *5)) (-5 *2 (-108))))) +(((*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) + ((*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-848)) (-5 *2 (-1168)) (-5 *1 (-1164)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-848)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) + ((*1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-4 *1 (-1009 *3)))) + ((*1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-558 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4))) + (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-252 *4 *2))))) +(((*1 *1 *1 *1) (-4 *1 (-131))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504))))) (((*1 *2 *3) - (-12 (-4 *1 (-732)) - (-5 *3 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))) - (-5 *2 (-953))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) - (-4 *5 (-1134 *4)) (-5 *2 (-583 (-2 (|:| -3605 *5) (|:| -2960 *5)))) - (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) - (-4 *6 (-593 (-377 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) - (-4 *4 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -3605 *4) (|:| -2960 *4)))) - (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) - (-4 *6 (-593 (-377 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) - (-4 *5 (-1134 *4)) (-5 *2 (-583 (-2 (|:| -3605 *5) (|:| -2960 *5)))) - (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) - (-4 *3 (-593 (-377 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) - (-4 *4 (-1134 *5)) (-5 *2 (-583 (-2 (|:| -3605 *4) (|:| -2960 *4)))) - (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) - (-4 *3 (-593 (-377 *4)))))) + (-12 (-4 *3 (-1139 *2)) (-4 *2 (-1139 *4)) (-5 *1 (-909 *4 *2 *3 *5)) + (-4 *4 (-321)) (-4 *5 (-659 *2 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) + (-5 *2 (-625 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-625 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *2) (-12 (-5 *2 (-288 (-201))) (-5 *1 (-188))))) +(((*1 *2 *1) + (-12 (-5 *2 (-790)) (-5 *1 (-1063 *3)) (-4 *3 (-1011)) + (-4 *3 (-1117))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-845)) - (-14 *4 (-845))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1006))))) -(((*1 *2) - (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) - (-4 *3 (-299 *4)))) - ((*1 *2) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-703))))) -(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) - ((*1 *1 *1) (-4 *1 (-1046)))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4195)) (-4 *1 (-33)) (-5 *2 (-703)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-517)))) - ((*1 *2 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-775))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) - (-4 *3 (-13 (-333) (-1098) (-921)))))) + (-12 (-5 *2 (-1 (-201) (-201) (-201) (-201))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201) (-201))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-238))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1073 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) - (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) + (-12 (-5 *3 (-585 (-379 (-879 (-519))))) + (-5 *2 (-585 (-585 (-267 (-879 *4))))) (-5 *1 (-352 *4)) + (-4 *4 (-13 (-780) (-335))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-876 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) - (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777)))))) -(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1073 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1160)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-1060)) (-5 *1 (-1160)))) - ((*1 *1 *1) (-5 *1 (-1160)))) -(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 (-986 *3 *4 *5))) (-4 *3 (-1006)) - (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) - (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))) - (-5 *1 (-987 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-829 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) - (-5 *1 (-946 *5)) (-4 *5 (-964)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-946 *4)) - (-4 *4 (-964)))) + (-12 (-5 *3 (-585 (-267 (-379 (-879 (-519)))))) + (-5 *2 (-585 (-585 (-267 (-879 *4))))) (-5 *1 (-352 *4)) + (-4 *4 (-13 (-780) (-335))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-829 (-517)))) (-5 *4 (-517)) - (-5 *2 (-583 (-623 *4))) (-5 *1 (-946 *5)) (-4 *5 (-964)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) - (-5 *1 (-946 *4)) (-4 *4 (-964))))) -(((*1 *2) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4)))))) -(((*1 *1 *1) (-5 *1 (-976)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1134 (-377 *2))) - (-4 *2 (-1134 *5)) (-5 *1 (-190 *5 *2 *6 *3)) - (-4 *3 (-312 *5 *2 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-333)) (-4 *7 (-1134 *5)) (-4 *4 (-657 *5 *7)) - (-5 *2 (-2 (|:| -3725 (-623 *6)) (|:| |vec| (-1158 *5)))) - (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3) - (-12 (-14 *4 (-583 (-1077))) (-14 *5 (-703)) + (-12 (-5 *3 (-379 (-879 (-519)))) (-5 *2 (-585 (-267 (-879 *4)))) + (-5 *1 (-352 *4)) (-4 *4 (-13 (-780) (-335))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-267 (-379 (-879 (-519))))) + (-5 *2 (-585 (-267 (-879 *4)))) (-5 *1 (-352 *4)) + (-4 *4 (-13 (-780) (-335))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1082)) + (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-4 *4 (-13 (-29 *6) (-1103) (-885))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2070 (-585 *4)))) + (-5 *1 (-591 *6 *4 *3)) (-4 *3 (-595 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-585 *2)) + (-4 *2 (-13 (-29 *6) (-1103) (-885))) + (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *1 (-591 *6 *2 *3)) (-4 *3 (-595 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-625 *5)) (-4 *5 (-335)) (-5 *2 - (-583 - (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) - (-221 *4 (-377 (-517)))))) - (-5 *1 (-470 *4 *5)) - (-5 *3 - (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) - (-221 *4 (-377 (-517)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) + (-2 (|:| |particular| (-3 (-1163 *5) "failed")) + (|:| -2070 (-585 (-1163 *5))))) + (-5 *1 (-606 *5)) (-5 *4 (-1163 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1001 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) - (-5 *1 (-276)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) - (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1010)) (-5 *3 (-706)) (-5 *1 (-51))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) - (-5 *2 (-1073 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-377 *5)) (-4 *4 (-1116)) (-4 *5 (-1134 *4)) - (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1134 *3)))) + (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-335)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1163 *5) "failed")) + (|:| -2070 (-585 (-1163 *5))))) + (-5 *1 (-606 *5)) (-5 *4 (-1163 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-625 *5)) (-4 *5 (-335)) + (-5 *2 + (-585 + (-2 (|:| |particular| (-3 (-1163 *5) "failed")) + (|:| -2070 (-585 (-1163 *5)))))) + (-5 *1 (-606 *5)) (-5 *4 (-585 (-1163 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-585 *5))) (-4 *5 (-335)) + (-5 *2 + (-585 + (-2 (|:| |particular| (-3 (-1163 *5) "failed")) + (|:| -2070 (-585 (-1163 *5)))))) + (-5 *1 (-606 *5)) (-5 *4 (-585 (-1163 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-335)) (-4 *6 (-13 (-345 *5) (-10 -7 (-6 -4222)))) + (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4222)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) + (-5 *1 (-607 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-335)) (-4 *6 (-13 (-345 *5) (-10 -7 (-6 -4222)))) + (-4 *7 (-13 (-345 *5) (-10 -7 (-6 -4222)))) + (-5 *2 + (-585 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2070 (-585 *7))))) + (-5 *1 (-607 *5 *6 *7 *3)) (-5 *4 (-585 *7)) + (-4 *3 (-623 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-585 (-1082))) (-4 *5 (-511)) + (-5 *2 (-585 (-585 (-267 (-379 (-879 *5)))))) (-5 *1 (-704 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1079 (-377 (-517)))) (-5 *2 (-377 (-517))) - (-5 *1 (-166)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1077))) - (-5 *4 (-1158 (-286 (-199)))) (-5 *1 (-181)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1006)) - (-4 *3 (-1112)) (-5 *1 (-265 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-280 *2)) (-4 *2 (-1006)) (-4 *2 (-1112)) - (-5 *1 (-265 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) - (-4 *1 (-273)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-1 *1 (-583 *1)))) - (-4 *1 (-273)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1006)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1006)))) + (-12 (-5 *3 (-585 (-879 *4))) (-4 *4 (-511)) + (-5 *2 (-585 (-585 (-267 (-379 (-879 *4)))))) (-5 *1 (-704 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1082)) + (-4 *5 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *1 (-706 *5 *2)) (-4 *2 (-13 (-29 *5) (-1103) (-885))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-625 *7)) (-5 *5 (-1082)) + (-4 *7 (-13 (-29 *6) (-1103) (-885))) + (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *2 + (-2 (|:| |particular| (-1163 *7)) (|:| -2070 (-585 (-1163 *7))))) + (-5 *1 (-737 *6 *7)) (-5 *4 (-1163 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1079 (-377 (-517)))) - (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) - (-4 *4 (-779)) (-4 *5 (-156)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) - (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-964)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-703))) - (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) - (-4 *5 (-964)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-583 (-703))) - (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) - (-4 *5 (-964)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1077)) - (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-109)) (-5 *3 (-1077)) (-4 *1 (-400 *4)) (-4 *4 (-779)) - (-4 *4 (-558 (-493))))) - ((*1 *1 *1) - (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-1077))) (-4 *1 (-400 *3)) (-4 *3 (-779)) - (-4 *3 (-558 (-493))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)) - (-4 *3 (-558 (-493))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1112)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) - (-4 *4 (-1006)) (-4 *5 (-1112)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1006)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-377 (-876 *4))) (-5 *3 (-1077)) (-4 *4 (-509)) - (-5 *1 (-960 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-583 (-1077))) (-5 *4 (-583 (-377 (-876 *5)))) - (-5 *2 (-377 (-876 *5))) (-4 *5 (-509)) (-5 *1 (-960 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-265 (-377 (-876 *4)))) (-5 *2 (-377 (-876 *4))) - (-4 *4 (-509)) (-5 *1 (-960 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-265 (-377 (-876 *4))))) (-5 *2 (-377 (-876 *4))) - (-4 *4 (-509)) (-5 *1 (-960 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1058 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-845)) (-4 *3 (-333)) - (-14 *4 (-913 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) - ((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) - ((*1 *1 *1) (|partial| -4 *1 (-655))) - ((*1 *1 *1) (|partial| -4 *1 (-659))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-777) (-333))) - (-4 *2 (-1134 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) - (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) - ((*1 *2 *1) - (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) - (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1125 *3)) (-4 *3 (-1112))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1006)) (-4 *5 (-1006)) - (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-798)) (-5 *2 (-1163)) (-5 *1 (-1159)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) - (-4 *4 (-779)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1077)) (-4 *1 (-400 *3)) (-4 *3 (-779))))) -(((*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1134 *4)) (-4 *4 (-1116)) - (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1134 (-377 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1158 *1)) (-4 *4 (-156)) - (-4 *1 (-337 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1158 *1)) (-4 *4 (-156)) - (-4 *1 (-340 *4 *5)) (-4 *5 (-1134 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) - (-4 *4 (-1134 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) - (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) - (-5 *2 (-2 (|:| -3319 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) + (|partial| -12 (-5 *3 (-625 *6)) (-5 *4 (-1082)) + (-4 *6 (-13 (-29 *5) (-1103) (-885))) + (-4 *5 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *2 (-585 (-1163 *6))) (-5 *1 (-737 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-585 (-267 *7))) (-5 *4 (-585 (-110))) + (-5 *5 (-1082)) (-4 *7 (-13 (-29 *6) (-1103) (-885))) + (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *2 + (-2 (|:| |particular| (-1163 *7)) (|:| -2070 (-585 (-1163 *7))))) + (-5 *1 (-737 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-110))) + (-5 *5 (-1082)) (-4 *7 (-13 (-29 *6) (-1103) (-885))) + (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *2 + (-2 (|:| |particular| (-1163 *7)) (|:| -2070 (-585 (-1163 *7))))) + (-5 *1 (-737 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-267 *7)) (-5 *4 (-110)) (-5 *5 (-1082)) + (-4 *7 (-13 (-29 *6) (-1103) (-885))) + (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *2) - (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3)))) + (-3 (-2 (|:| |particular| *7) (|:| -2070 (-585 *7))) *7 "failed")) + (-5 *1 (-737 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-110)) (-5 *5 (-1082)) + (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -2070 (-585 *3))) *3 "failed")) + (-5 *1 (-737 *6 *3)) (-4 *3 (-13 (-29 *6) (-1103) (-885))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-267 *2)) (-5 *4 (-110)) (-5 *5 (-585 *2)) + (-4 *2 (-13 (-29 *6) (-1103) (-885))) (-5 *1 (-737 *6 *2)) + (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-267 *2)) (-5 *5 (-585 *2)) + (-4 *2 (-13 (-29 *6) (-1103) (-885))) + (-4 *6 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *1 (-737 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-743)) (-5 *2 (-957)) (-5 *1 (-740)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-743)) (-5 *4 (-980)) (-5 *2 (-957)) (-5 *1 (-740)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1163 (-288 (-351)))) (-5 *4 (-351)) (-5 *5 (-585 *4)) + (-5 *2 (-957)) (-5 *1 (-740)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1163 (-288 (-351)))) (-5 *4 (-351)) (-5 *5 (-585 *4)) + (-5 *2 (-957)) (-5 *1 (-740)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1163 (-288 *4))) (-5 *5 (-585 (-351))) + (-5 *6 (-288 (-351))) (-5 *4 (-351)) (-5 *2 (-957)) (-5 *1 (-740)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1163 (-288 (-351)))) (-5 *4 (-351)) (-5 *5 (-585 *4)) + (-5 *2 (-957)) (-5 *1 (-740)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1163 (-288 *4))) (-5 *5 (-585 (-351))) + (-5 *6 (-288 (-351))) (-5 *4 (-351)) (-5 *2 (-957)) (-5 *1 (-740)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1163 (-288 *4))) (-5 *5 (-585 (-351))) + (-5 *6 (-288 (-351))) (-5 *4 (-351)) (-5 *2 (-957)) (-5 *1 (-740)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -2070 (-585 *6))) "failed") + *7 *6)) + (-4 *6 (-335)) (-4 *7 (-595 *6)) + (-5 *2 (-2 (|:| |particular| (-1163 *6)) (|:| -2070 (-625 *6)))) + (-5 *1 (-748 *6 *7)) (-5 *3 (-625 *6)) (-5 *4 (-1163 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-957)) (-5 *1 (-824)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-825)) (-5 *4 (-980)) (-5 *2 (-957)) (-5 *1 (-824)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-705)) (-5 *6 (-585 (-585 (-288 *3)))) (-5 *7 (-1065)) + (-5 *8 (-201)) (-5 *5 (-585 (-288 (-351)))) (-5 *3 (-351)) + (-5 *2 (-957)) (-5 *1 (-824)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-705)) (-5 *6 (-585 (-585 (-288 *3)))) (-5 *7 (-1065)) + (-5 *5 (-585 (-288 (-351)))) (-5 *3 (-351)) (-5 *2 (-957)) + (-5 *1 (-824)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-879 (-379 (-519)))) (-5 *2 (-585 (-351))) + (-5 *1 (-945)) (-5 *4 (-351)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-879 (-519))) (-5 *2 (-585 (-351))) (-5 *1 (-945)) + (-5 *4 (-351)))) ((*1 *2 *3) - (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) - (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) - (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) + (-12 (-4 *4 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1037 *3 *4)) (-4 *3 (-1139 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *2 (-585 (-267 (-288 *4)))) (-5 *1 (-1040 *4)) + (-5 *3 (-288 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *2 (-585 (-267 (-288 *4)))) (-5 *1 (-1040 *4)) + (-5 *3 (-267 (-288 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) - (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) - (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1047 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1006)) - (-4 *2 (-779))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) - (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) - (-5 *1 (-681))))) -(((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112)) (-14 *4 *2)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006)) - (-4 *6 (-1006)) (-4 *2 (-1006)) (-5 *1 (-615 *5 *6 *2))))) + (-12 (-5 *4 (-1082)) + (-4 *5 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *2 (-585 (-267 (-288 *5)))) (-5 *1 (-1040 *5)) + (-5 *3 (-267 (-288 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) + (-4 *5 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *2 (-585 (-267 (-288 *5)))) (-5 *1 (-1040 *5)) + (-5 *3 (-288 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-1082))) + (-4 *5 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *2 (-585 (-585 (-267 (-288 *5))))) (-5 *1 (-1040 *5)) + (-5 *3 (-585 (-267 (-288 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-379 (-879 *5)))) (-5 *4 (-585 (-1082))) + (-4 *5 (-511)) (-5 *2 (-585 (-585 (-267 (-379 (-879 *5)))))) + (-5 *1 (-1088 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-1082))) (-4 *5 (-511)) + (-5 *2 (-585 (-585 (-267 (-379 (-879 *5)))))) (-5 *1 (-1088 *5)) + (-5 *3 (-585 (-267 (-379 (-879 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-379 (-879 *4)))) (-4 *4 (-511)) + (-5 *2 (-585 (-585 (-267 (-379 (-879 *4)))))) (-5 *1 (-1088 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-585 (-585 (-267 (-379 (-879 *4)))))) + (-5 *1 (-1088 *4)) (-5 *3 (-585 (-267 (-379 (-879 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) (-4 *5 (-511)) + (-5 *2 (-585 (-267 (-379 (-879 *5))))) (-5 *1 (-1088 *5)) + (-5 *3 (-379 (-879 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) (-4 *5 (-511)) + (-5 *2 (-585 (-267 (-379 (-879 *5))))) (-5 *1 (-1088 *5)) + (-5 *3 (-267 (-379 (-879 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-585 (-267 (-379 (-879 *4))))) + (-5 *1 (-1088 *4)) (-5 *3 (-379 (-879 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-585 (-267 (-379 (-879 *4))))) + (-5 *1 (-1088 *4)) (-5 *3 (-267 (-379 (-879 *4))))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1004 (-879 (-519)))) (-5 *3 (-879 (-519))) + (-5 *1 (-302)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1004 (-879 (-519)))) (-5 *1 (-302))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *2) + (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) + (-5 *1 (-160 *3))))) (((*1 *2) - (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-833)) - (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-873 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-833)) - (-5 *1 (-830 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-833)) (-5 *1 (-831 *2 *3)) (-4 *3 (-1134 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) - (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) - (-4 *8 (-873 *3 *7 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4)) - (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) - (-5 *1 (-934 *4 *5)) (-5 *3 (-377 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1073 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1073 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) - ((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) + (-12 (-4 *3 (-511)) (-5 *2 (-585 (-625 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-389 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-848)) (-4 *4 (-340)) (-4 *4 (-335)) (-5 *2 (-1078 *1)) + (-4 *1 (-301 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-5 *2 (-1078 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-157)) (-4 *3 (-335)) + (-4 *2 (-1139 *3)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) - (-4 *3 (-1134 (-153 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-845)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) - ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) + (-12 (-5 *3 (-1163 *4)) (-4 *4 (-321)) (-5 *2 (-1078 *4)) + (-5 *1 (-489 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-511) (-135))) + (-5 *2 (-2 (|:| -1917 *3) (|:| -1931 *3))) (-5 *1 (-1133 *4 *3)) + (-4 *3 (-1139 *4))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-705)) (-4 *3 (-511)) (-5 *1 (-894 *3 *2)) + (-4 *2 (-1139 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 (-519))))) + (-5 *1 (-333 *3)) (-4 *3 (-1011)))) ((*1 *2 *1) - (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156)))) + (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 (-705))))) + (-5 *1 (-358 *3)) (-4 *3 (-1011)))) ((*1 *2 *1) - (-12 (-4 *4 (-1134 *2)) (-4 *2 (-912 *3)) (-5 *1 (-383 *3 *2 *4 *5)) - (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-955 *2))))) + (-12 (-5 *2 (-585 (-2 (|:| -1921 *3) (|:| -1690 (-519))))) + (-5 *1 (-390 *3)) (-4 *3 (-511)))) ((*1 *2 *1) - (-12 (-4 *4 (-1134 *2)) (-4 *2 (-912 *3)) - (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) - (-14 *6 (-1158 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-845)) (-4 *5 (-964)) - (-4 *2 (-13 (-374) (-955 *5) (-333) (-1098) (-256))) - (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1134 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1073 (-460))) (-5 *3 (-583 (-556 (-460)))) - (-5 *1 (-460)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1073 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1158 *4)) (-5 *3 (-845)) (-4 *4 (-319)) - (-5 *1 (-487 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1134 *4)) - (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1134 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)))) - ((*1 *1 *1) (-4 *1 (-973)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) - (-5 *2 - (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) - (|:| |success| (-107)))) - (-5 *1 (-721)) (-5 *5 (-517))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1073 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) - (-5 *1 (-31 *4 *2))))) -(((*1 *2 *3) - (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-215)) (-5 *3 (-1060)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-215)))) - ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1041)))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692))))) -(((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1006)) (-5 *2 (-703))))) + (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 (-705))))) + (-5 *1 (-754 *3)) (-4 *3 (-782))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-583 (-286 (-199)))) - (|:| |constraints| - (-583 - (-2 (|:| |start| (-199)) (|:| |finish| (-199)) - (|:| |grid| (-703)) (|:| |boundaryType| (-517)) - (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) - (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) - (|:| |tol| (-199)))) - (-5 *2 (-107)) (-5 *1 (-186))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-755)) (-5 *1 (-754))))) -(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) - ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-107)) - (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-107)) (-5 *1 (-1102 *4 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *4)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) - (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) - (-5 *1 (-681))))) + (|partial| -12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) + (-5 *2 (-2 (|:| |radicand| (-379 *5)) (|:| |deg| (-705)))) + (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1139 (-379 *5)))))) (((*1 *2 *2) - (-12 (-4 *3 (-1134 (-377 (-517)))) (-5 *1 (-837 *3 *2)) - (-4 *2 (-1134 (-377 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) - (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) - (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-387 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) - ((*1 *1 *1 *1) (-4 *1 (-725)))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093))))) -(((*1 *2 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300))))) -(((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) - ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) - (-4 *3 (-1134 *4)) (-5 *2 (-517)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421))) - (-5 *2 (-517)) (-5 *1 (-1021 *4 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-772 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421))) - (-5 *2 (-517)) (-5 *1 (-1021 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-1060)) - (-4 *6 (-13 (-509) (-779) (-955 *2) (-579 *2) (-421))) - (-5 *2 (-517)) (-5 *1 (-1021 *6 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-421)) (-5 *2 (-517)) - (-5 *1 (-1022 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-772 (-377 (-876 *6)))) - (-5 *3 (-377 (-876 *6))) (-4 *6 (-421)) (-5 *2 (-517)) - (-5 *1 (-1022 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-377 (-876 *6))) (-5 *4 (-1077)) - (-5 *5 (-1060)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1022 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1095 *3)) (-4 *3 (-964))))) + (-12 (-5 *2 (-1163 *1)) (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) + (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-851)) + (-12 (-4 *4 (-280)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) - (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) - (-5 *1 (-140)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-851)) (-5 *4 (-377 (-517))) - (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) - (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) - (-5 *1 (-140)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) - (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) - (-5 *1 (-140)) (-5 *3 (-583 (-867 (-199)))))) - ((*1 *2 *3) + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1033 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-848)) (-5 *1 (-952 *2)) + (-4 *2 (-13 (-1011) (-10 -8 (-15 -1614 ($ $ $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-585 (-870 (-201))))) + (-5 *2 (-585 (-1006 (-201)))) (-5 *1 (-855))))) +(((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) - (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) - (-5 *1 (-140)) (-5 *3 (-583 (-583 (-867 (-199))))))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236)))) - ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236))))) -(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107))))) -(((*1 *2) - (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-387 *3))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1134 *4))))) + (-585 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-519))))) + (-5 *1 (-390 *3)) (-4 *3 (-511)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-705)) (-4 *3 (-321)) (-4 *5 (-1139 *3)) + (-5 *2 (-585 (-1078 *3))) (-5 *1 (-465 *3 *5 *6)) + (-4 *6 (-1139 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1011)) (-5 *1 (-832 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-1084 (-379 (-519)))) + (-5 *1 (-168))))) +(((*1 *1) (-5 *1 (-409)))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-3 (-108) (-585 *1))) + (-4 *1 (-987 *4 *5 *6 *3))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-585 (-1082))) (-4 *2 (-157)) + (-4 *4 (-214 (-3532 *5) (-705))) + (-14 *6 + (-1 (-108) (-2 (|:| -2770 *3) (|:| -1690 *4)) + (-2 (|:| -2770 *3) (|:| -1690 *4)))) + (-5 *1 (-432 *5 *2 *3 *4 *6 *7)) (-4 *3 (-782)) + (-4 *7 (-876 *2 *4 (-792 *5)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790))))) (((*1 *2 *1) - (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-978 *3 *4 *5))))) + (-12 (-4 *1 (-509 *3)) (-4 *3 (-13 (-376) (-1103))) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-780)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-780) (-335))) + (-4 *3 (-1139 *4)) (-5 *2 (-108))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3896 *3) (|:| -1191 *4)))) - (-5 *1 (-629 *3)) (-4 *3 (-1134 *4))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112))))) + (|partial| -12 (-5 *3 (-1163 *4)) (-4 *4 (-581 (-519))) + (-5 *2 (-1163 (-379 (-519)))) (-5 *1 (-1188 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-519)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-634))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-509 *3)) (-4 *3 (-13 (-376) (-1103))) (-5 *2 (-108))))) +(((*1 *1 *1) (-5 *1 (-980)))) +(((*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-848)))) ((*1 *1) (-4 *1 (-504))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-634)))) + ((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-634)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-831 *3)) (-4 *3 (-1011))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1121)) (-4 *5 (-1139 (-379 *2))) + (-4 *2 (-1139 *4)) (-5 *1 (-313 *3 *4 *2 *5)) + (-4 *3 (-314 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-314 *3 *2 *4)) (-4 *3 (-1121)) + (-4 *4 (-1139 (-379 *2))) (-4 *2 (-1139 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1060)) (-4 *4 (-13 (-278) (-134))) - (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) - (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) - (|:| |wcond| (-583 (-876 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *4)))))))))) - (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1077)) - (-4 *5 (-13 (-509) (-955 (-517)) (-134))) - (-5 *2 - (-2 (|:| -2791 (-377 (-876 *5))) (|:| |coeff| (-377 (-876 *5))))) - (-5 *1 (-523 *5)) (-5 *3 (-377 (-876 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-873 *4 *6 *5)) (-4 *4 (-421)) - (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-907 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) - (-4 *2 (-1006)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1006)) - (-5 *1 (-108 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006)) - (-5 *1 (-108 *4)))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-876 *4 *6 *5)) + (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) + (-4 *6 (-727)) (-5 *2 (-108)) (-5 *1 (-851 *4 *5 *6 *7)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) - (-5 *1 (-108 *4)) (-4 *4 (-1006)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-964)) - (-5 *1 (-647 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-766 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) - ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-5 *1 (-787)))) -(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1082))) (-5 *1 (-1082))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) - (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6))) - (-5 *1 (-568 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-688))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-680))))) -(((*1 *1) - (-12 (-4 *1 (-374)) (-2479 (|has| *1 (-6 -4186))) - (-2479 (|has| *1 (-6 -4178))))) - ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-779)))) - ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))) - ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *1) (-5 *1 (-1024)))) + (-12 (-5 *3 (-585 (-879 *4))) (-4 *4 (-13 (-280) (-135))) + (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-108)) + (-5 *1 (-851 *4 *5 *6 *7)) (-4 *7 (-876 *4 *6 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1966 *1) (|:| -4182 *1) (|:| |associate| *1))) - (-4 *1 (-509))))) -(((*1 *2 *3) - (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-881 (-1024))) - (-5 *1 (-316 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1001 *3)) (-4 *3 (-873 *7 *6 *4)) (-4 *6 (-725)) - (-4 *4 (-779)) (-4 *7 (-509)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) - (-5 *1 (-541 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) - (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-873 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1) (-5 *1 (-787))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-1069 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1098))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-999 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1098))) - (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-1069 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-779) (-955 (-517)))) - (-5 *2 (-377 (-876 *5))) (-5 *1 (-1070 *5)) (-5 *3 (-876 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-779) (-955 (-517)))) - (-5 *2 (-3 (-377 (-876 *5)) (-286 *5))) (-5 *1 (-1070 *5)) - (-5 *3 (-377 (-876 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-999 (-876 *5))) (-5 *3 (-876 *5)) - (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-377 *3)) - (-5 *1 (-1070 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-999 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5))) - (-4 *5 (-13 (-509) (-779) (-955 (-517)))) (-5 *2 (-3 *3 (-286 *5))) - (-5 *1 (-1070 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) - (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) - (-5 *1 (-720))))) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *4 *5 *6)) + (-4 *4 (-560 (-495))) (-4 *5 (-1117)) (-4 *6 (-1117))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-280)) (-5 *2 (-108))))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))) + ((*1 *1 *1 *1) (-5 *1 (-1029)))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-634)))) + ((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-634))))) +(((*1 *2 *3) + (-12 (-4 *4 (-345 *2)) (-4 *5 (-345 *2)) (-4 *2 (-335)) + (-5 *1 (-486 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)) + (|has| *2 (-6 (-4223 "*"))) (-4 *2 (-968)))) + ((*1 *2 *3) + (-12 (-4 *4 (-345 *2)) (-4 *5 (-345 *2)) (-4 *2 (-157)) + (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1032 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) + (-4 *5 (-214 *3 *2)) (|has| *2 (-6 (-4223 "*"))) (-4 *2 (-968))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) + (-5 *2 + (-2 (|:| -2239 (-705)) (|:| |curves| (-705)) + (|:| |polygons| (-705)) (|:| |constructs| (-705))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-876 *6))) (-5 *4 (-583 (-1077))) - (-4 *6 (-13 (-509) (-955 *5))) (-4 *5 (-509)) - (-5 *2 (-583 (-583 (-265 (-377 (-876 *6)))))) (-5 *1 (-956 *5 *6))))) -(((*1 *2) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107))))) -(((*1 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1139 *6)) + (-4 *6 (-13 (-27) (-402 *5))) + (-4 *5 (-13 (-782) (-511) (-959 (-519)))) (-4 *8 (-1139 (-379 *7))) + (-5 *2 (-536 *3)) (-5 *1 (-507 *5 *6 *7 *8 *3)) + (-4 *3 (-314 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3)))) + (-12 (-4 *3 (-13 (-335) (-780))) (-5 *1 (-164 *3 *2)) + (-4 *2 (-1139 (-154 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1013 *4)) (-4 *4 (-1011)) (-5 *2 (-1 *4)) + (-5 *1 (-940 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-351))) (-5 *1 (-961)) (-5 *3 (-351)))) ((*1 *2 *3) - (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854))))) -(((*1 *2 *1) - (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1085 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *1 *1 *1) (-5 *1 (-199))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) + (-12 (-5 *3 (-1006 (-519))) (-5 *2 (-1 (-519))) (-5 *1 (-966))))) +(((*1 *1 *1) (-12 (-5 *1 (-554 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1) (-5 *1 (-574)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) + (-5 *1 (-912 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-870 (-201)) (-870 (-201)))) (-5 *1 (-238)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-301 *4)) (-4 *4 (-335)) + (-5 *2 (-625 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-5 *2 (-1163 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957)))) - ((*1 *1 *1 *1) (-4 *1 (-1041)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-718))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-153 (-377 (-517))))) - (-5 *2 - (-583 - (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) - (|:| |outvect| (-583 (-623 (-153 *4))))))) - (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777)))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) - ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1098) (-882))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1) (-5 *1 (-787))) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) + (-5 *2 (-625 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) + (-5 *2 (-1163 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-157)) + (-4 *5 (-1139 *4)) (-5 *2 (-625 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-157)) + (-4 *5 (-1139 *4)) (-5 *2 (-1163 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-964))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) - ((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-157)) + (-4 *5 (-1139 *4)) (-5 *2 (-625 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1139 *3)) + (-5 *2 (-1163 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3))))) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-389 *4)) (-4 *4 (-157)) + (-5 *2 (-625 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-1163 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-625 *5))) (-5 *3 (-625 *5)) (-4 *5 (-335)) + (-5 *2 (-1163 *5)) (-5 *1 (-999 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-892)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-964)) (-4 *7 (-964)) - (-4 *6 (-1134 *5)) (-5 *2 (-1073 (-1073 *7))) - (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1134 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374)))) - ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845)))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632)))) - ((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-632))))) -(((*1 *2) - (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) - (-5 *1 (-908 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) - (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1158 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) - (-5 *1 (-604 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-333)) - (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4196)))) - (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196)))) - (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) - (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2))))) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1117))))) (((*1 *2 *2) - (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517))) - (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) - (-4 *2 - (-13 (-333) (-273) - (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) - (-15 -2082 ((-1029 *3 (-556 $)) $)) - (-15 -2262 ($ (-1029 *3 (-556 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) - (-4 *5 (-13 (-27) (-1098) (-400 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-377 (-517))) - (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) - (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) - (-4 *3 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) - (-4 *6 (-13 (-27) (-1098) (-400 *5))) - (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-517))) - (-4 *7 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-517))) - (-4 *3 (-13 (-27) (-1098) (-400 *7))) - (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) - (-5 *5 (-1125 (-377 (-517)))) (-5 *6 (-377 (-517))) - (-4 *8 (-13 (-27) (-1098) (-400 *7))) - (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-377 (-517)))) - (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *8))) - (-4 *8 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3)))) - (-4 *3 (-964)) (-5 *1 (-542 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-543 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3)))) - (-4 *3 (-964)) (-4 *1 (-1118 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-703)) - (-5 *3 (-1058 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) - (-4 *4 (-964)) (-4 *1 (-1139 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-4 *1 (-1149 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1058 (-2 (|:| |k| (-703)) (|:| |c| *3)))) - (-4 *3 (-964)) (-4 *1 (-1149 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) - (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) - (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-686))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) - (-5 *2 (-1158 (-623 *4))))) - ((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-1158 (-623 *4))) (-5 *1 (-386 *3 *4)) - (-4 *3 (-387 *4)))) - ((*1 *2) - (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 (-623 *3))))) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-104)) (-5 *1 (-159)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-104)) (-5 *1 (-998))))) +(((*1 *2 *1) (-12 (-4 *3 (-1117)) (-5 *2 (-585 *1)) (-4 *1 (-933 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1078 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) + (-4 *7 (-782)) (-4 *8 (-280)) (-4 *9 (-876 *8 *6 *7)) (-4 *6 (-727)) + (-5 *2 + (-2 (|:| |upol| (-1078 *8)) (|:| |Lval| (-585 *8)) + (|:| |Lfact| + (-585 (-2 (|:| -1921 (-1078 *8)) (|:| -1690 (-519))))) + (|:| |ctpol| *8))) + (-5 *1 (-677 *6 *7 *8 *9))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-968)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-705)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) + (-4 *3 (-982 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-1077))) (-4 *5 (-333)) - (-5 *2 (-1158 (-623 (-377 (-876 *5))))) (-5 *1 (-994 *5)) - (-5 *4 (-623 (-377 (-876 *5)))))) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-705)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) + (-4 *3 (-982 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-1077))) (-4 *5 (-333)) - (-5 *2 (-1158 (-623 (-876 *5)))) (-5 *1 (-994 *5)) - (-5 *4 (-623 (-876 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) - (-5 *2 (-1158 (-623 *4))) (-5 *1 (-994 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-955 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) - ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-829 *3)) (-4 *3 (-1006))))) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-968)) + (-4 *2 (-13 (-376) (-959 *4) (-335) (-1103) (-258))) + (-5 *1 (-414 *4 *3 *2)) (-4 *3 (-1139 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-108))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-335)) (-5 *1 (-701 *2 *3)) (-4 *2 (-644 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-870 (-201)) (-201) (-201))) + (-5 *3 (-1 (-201) (-201) (-201) (-201))) (-5 *1 (-230))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-221 *3))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-154 (-201)) (-154 (-201)))) (-5 *4 (-1006 (-201))) + (-5 *5 (-108)) (-5 *2 (-1165)) (-5 *1 (-232))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-688))))) -(((*1 *2 *3) - (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1134 *4)) (-5 *1 (-742 *4 *2)) - (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1134 *4)) - (-5 *1 (-742 *4 *2)) - (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517)))))))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1155 *2 *3 *4)) (-4 *2 (-968)) (-14 *3 (-1082)) + (-14 *4 *2)))) (((*1 *2) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107))))) + (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) + (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) + (-5 *1 (-912 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) + (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) + (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 (-379 (-879 (-519))))) (-5 *2 (-585 (-288 (-519)))) + (-5 *1 (-953))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-511) (-782))) + (-4 *2 (-13 (-402 (-154 *4)) (-925) (-1103))) + (-5 *1 (-548 *4 *3 *2)) (-4 *3 (-13 (-402 *4) (-925) (-1103)))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790))))) +(((*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-623 (-377 (-876 (-517))))) - (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949)) - (-5 *3 (-286 (-517)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-510 *6 *3))))) + (-12 (-4 *5 (-335)) + (-5 *2 + (-2 (|:| A (-625 *5)) + (|:| |eqs| + (-585 + (-2 (|:| C (-625 *5)) (|:| |g| (-1163 *5)) (|:| -3257 *6) + (|:| |rh| *5)))))) + (-5 *1 (-748 *5 *6)) (-5 *3 (-625 *5)) (-5 *4 (-1163 *5)) + (-4 *6 (-595 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-335)) (-4 *6 (-595 *5)) + (-5 *2 (-2 (|:| -2488 (-625 *6)) (|:| |vec| (-1163 *5)))) + (-5 *1 (-748 *5 *6)) (-5 *3 (-625 *6)) (-5 *4 (-1163 *5))))) +(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-636)))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-636))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-705)) (-4 *4 (-321)) (-5 *1 (-193 *4 *2)) + (-4 *2 (-1139 *4))))) (((*1 *2 *3) (-12 (-5 *3 @@ -3852,9535 +4744,9081 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1058 (-199))) + (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3177 + (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-953)) (-5 *1 (-276))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -2576 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (|:| -1846 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1058 (-199))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3177 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-512)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1006)))) - ((*1 *1 *2) - (-12 + (-5 *2 (-957)) (-5 *1 (-278))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-379 *6)) (|:| |c| (-379 *6)) + (|:| -1652 *6))) + (-5 *1 (-938 *5 *6)) (-5 *3 (-379 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) + ((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-682))))) +(((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-968))))) +(((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1117))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-275)) (-4 *2 (-1117)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-558 *1))) (-5 *3 (-585 *1)) (-4 *1 (-275)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-267 *1))) (-4 *1 (-275)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-267 *1)) (-4 *1 (-275))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-714 *5 (-792 *6)))) (-5 *4 (-108)) (-4 *5 (-423)) + (-14 *6 (-585 (-1082))) (-5 *2 - (-2 - (|:| -2576 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))) - (|:| -1846 - (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) - (|:| |expense| (-349)) (|:| |accuracy| (-349)) - (|:| |intermediateResults| (-349)))))) - (-5 *1 (-735)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-1006))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) - (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1077)) (-5 *2 (-556 *6)) - (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) - ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) - ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-761))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-199) (-199) (-199))) - (-5 *4 (-1 (-199) (-199) (-199) (-199))) - (-5 *2 (-1 (-867 (-199)) (-199) (-199))) (-5 *1 (-630))))) + (-585 (-1053 *5 (-491 (-792 *6)) (-792 *6) (-714 *5 (-792 *6))))) + (-5 *1 (-570 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *2 (-423)) (-4 *3 (-782)) (-4 *4 (-727)) + (-5 *1 (-911 *2 *3 *4 *5)) (-4 *5 (-876 *2 *4 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-194))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-519))) (-5 *1 (-966))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-832 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-944 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-964))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-867 (-199))) (-5 *4 (-798)) (-5 *2 (-1163)) - (-5 *1 (-437)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-900 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-867 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-867 *3)) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-867 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)) (-5 *3 (-199))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) + (-12 (-4 *3 (-1011)) + (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))) + (-5 *2 (-585 (-990 *3 *4 *5))) (-5 *1 (-991 *3 *4 *5)) + (-4 *5 (-13 (-402 *4) (-813 *3) (-560 (-819 *3))))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-686))))) (((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -2283 (-583 (-2 (|:| |irr| *10) (|:| -1332 (-517))))))) - (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) - (-4 *10 (-873 *3 *9 *8)) (-4 *9 (-725)) - (-5 *2 - (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) - (|:| |corrfact| (-583 (-1073 *3))))) - (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1073 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) - (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) - (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) - (-5 *3 (-583 (-236))) (-5 *1 (-234)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) - (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) - (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) - (-5 *1 (-236)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) - (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) - (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) - (-5 *2 (-1163)) (-5 *1 (-1160)))) - ((*1 *2 *1) - (-12 + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-423))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-390 *3)) (-4 *3 (-511))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1082)) (-5 *4 (-879 (-519))) (-5 *2 (-302)) + (-5 *1 (-304))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-782)) (-5 *3 (-585 *6)) (-5 *5 (-585 *3)) (-5 *2 - (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -2029 (-199)) - (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) - (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) - (-5 *1 (-1160)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))) + (-2 (|:| |f1| *3) (|:| |f2| (-585 *5)) (|:| |f3| *5) + (|:| |f4| (-585 *5)))) + (-5 *1 (-1089 *6)) (-5 *4 (-585 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-876 *4 *5 *6)) (-4 *6 (-560 (-1082))) + (-4 *4 (-335)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *2 (-1072 (-585 (-879 *4)) (-585 (-267 (-879 *4))))) + (-5 *1 (-471 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-299 *3)) (-4 *3 (-1117)))) + ((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-482 *3 *4)) (-4 *3 (-1117)) + (-14 *4 (-519))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *3)) + (-5 *1 (-901 *4 *5 *6 *3)) (-4 *3 (-982 *4 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) -(((*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3))))) + (-12 (-4 *4 (-782)) (-5 *2 (-585 (-585 (-585 *4)))) + (-5 *1 (-1089 *4)) (-5 *3 (-585 (-585 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1158 (-286 (-199)))) + (-12 (-5 *3 (-1065)) (-4 *4 (-13 (-280) (-135))) + (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 - (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) - (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) - (-5 *1 (-276))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1060)) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-953)) - (-5 *1 (-683))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-787)))) - ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-885))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *3) - (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-955 (-517))) - (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1073 *5)) (-5 *1 (-31 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-556 *1)) (-4 *1 (-964)) (-4 *1 (-273)) - (-5 *2 (-1073 *1))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-1159)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-583 (-703))) - (-5 *1 (-828 *4))))) + (-585 + (-2 (|:| |eqzro| (-585 *7)) (|:| |neqzro| (-585 *7)) + (|:| |wcond| (-585 (-879 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1163 (-379 (-879 *4)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *4)))))))))) + (-5 *1 (-851 *4 *5 *6 *7)) (-4 *7 (-876 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1078 *7)) (-4 *7 (-876 *6 *4 *5)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-968)) (-5 *2 (-1078 *6)) + (-5 *1 (-293 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1082))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) + ((*1 *1 *1 *1) (-5 *1 (-790)))) (((*1 *2 *1) - (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1149 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1158 *4)) (-5 *3 (-703)) (-4 *4 (-319)) - (-5 *1 (-487 *4))))) + (-12 (-5 *2 (-705)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-845)) (-5 *2 (-1073 *3)) (-5 *1 (-1087 *3)) - (-4 *3 (-333))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112)) - (-5 *2 (-107))))) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *2 (-957)) + (-5 *1 (-690))))) (((*1 *1 *1) - (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *1 *1) (-4 *1 (-1046)))) -(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1060)) (|:| -2981 (-1060)))) - (-5 *1 (-754))))) -(((*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1058 *3))) (-5 *1 (-1058 *3)) (-4 *3 (-1112))))) + (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968))))) +(((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-157))))) +(((*1 *1) (-5 *1 (-129)))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *1 *1) (-4 *1 (-571))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925) (-1103)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1134 *5)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) - (-5 *1 (-742 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1134 *5)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-5 *2 (-2 (|:| -3700 (-583 (-377 *6))) (|:| -3725 (-623 *5)))) - (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1134 *5)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) - (-5 *1 (-742 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1134 *5)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-5 *2 (-2 (|:| -3700 (-583 (-377 *6))) (|:| -3725 (-623 *5)))) - (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) - (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) - (-5 *1 (-1014 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) - (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) - (-12 (-5 *2 (-876 (-349))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (-12 (-5 *2 (-377 (-876 (-349)))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (-12 (-5 *2 (-876 (-517))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (-12 (-5 *2 (-377 (-876 (-517)))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1077)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) - (-14 *4 (-583 *2)) (-4 *5 (-357)))) - ((*1 *1 *2) - (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) - (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-876 (-517))))) (-4 *1 (-354)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-876 (-349))))) (-4 *1 (-354)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-876 (-517)))) (-4 *1 (-354)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-876 (-349)))) (-4 *1 (-354)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) - ((*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-517)))) (-4 *1 (-366)))) - ((*1 *1 *2) (-12 (-5 *2 (-377 (-876 (-349)))) (-4 *1 (-366)))) - ((*1 *1 *2) (-12 (-5 *2 (-876 (-517))) (-4 *1 (-366)))) - ((*1 *1 *2) (-12 (-5 *2 (-876 (-349))) (-4 *1 (-366)))) - ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) - ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) - ((*1 *1 *2) (-12 (-5 *2 (-1158 (-377 (-876 (-517))))) (-4 *1 (-410)))) - ((*1 *1 *2) (-12 (-5 *2 (-1158 (-377 (-876 (-349))))) (-4 *1 (-410)))) - ((*1 *1 *2) (-12 (-5 *2 (-1158 (-876 (-517)))) (-4 *1 (-410)))) - ((*1 *1 *2) (-12 (-5 *2 (-1158 (-876 (-349)))) (-4 *1 (-410)))) - ((*1 *1 *2) (-12 (-5 *2 (-1158 (-286 (-517)))) (-4 *1 (-410)))) - ((*1 *1 *2) (-12 (-5 *2 (-1158 (-286 (-349)))) (-4 *1 (-410)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (|:| |mdnia| - (-2 (|:| |fn| (-286 (-199))) - (|:| -3177 (-583 (-1001 (-772 (-199))))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) - (-5 *1 (-701)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))) - (-5 *1 (-740)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) - (|:| |lb| (-583 (-772 (-199)))) - (|:| |cf| (-583 (-286 (-199)))) - (|:| |ub| (-583 (-772 (-199)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-583 (-286 (-199)))) - (|:| -2578 (-583 (-199))))))) - (-5 *1 (-770)))) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-848)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1163 *4)) (-4 *4 (-321)) (-5 *2 (-848)) + (-5 *1 (-489 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) + ((*1 *1 *1 *1) (-4 *1 (-444))) + ((*1 *1 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-810)))) + ((*1 *1 *1) (-5 *1 (-895))) + ((*1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157))))) +(((*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1078 *4)) (-4 *4 (-321)) + (-4 *2 + (-13 (-374) + (-10 -7 (-15 -2217 (*2 *4)) (-15 -3334 ((-848) *2)) + (-15 -2070 ((-1163 *2) (-848))) (-15 -3706 (*2 *2))))) + (-5 *1 (-328 *2 *4))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-76 FUNCTN)))) + (-5 *2 (-957)) (-5 *1 (-683))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-853))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) + (-4 *5 (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-536 *3)) (-5 *1 (-512 *5 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-103)))) + ((*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-194)))) + ((*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-456)))) + ((*1 *1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)) (-4 *2 (-280)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |pde| (-583 (-286 (-199)))) - (|:| |constraints| - (-583 - (-2 (|:| |start| (-199)) (|:| |finish| (-199)) - (|:| |grid| (-703)) (|:| |boundaryType| (-517)) - (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) - (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) - (|:| |tol| (-199)))) - (-5 *1 (-822)))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-896 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-955 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) - (-3786 - (-12 (-5 *2 (-876 *3)) - (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) - (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) - (-4 *5 (-779))) - (-12 (-5 *2 (-876 *3)) - (-12 (-2479 (-4 *3 (-502))) (-2479 (-4 *3 (-37 (-377 (-517))))) - (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) - (-4 *5 (-779))) - (-12 (-5 *2 (-876 *3)) - (-12 (-2479 (-4 *3 (-912 (-517)))) (-4 *3 (-37 (-377 (-517)))) - (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) - (-4 *5 (-779))))) - ((*1 *1 *2) - (-3786 - (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) - (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))) - (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))))) + (-12 (-5 *2 (-379 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519)))) + ((*1 *1 *1) (-4 *1 (-977)))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-49 *3 *4)) (-4 *3 (-968)) + (-14 *4 (-585 (-1082))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) (-4 *1 (-258))) + ((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) ((*1 *1 *2) - (-12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5)) - (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964)) - (-4 *4 (-725)) (-4 *5 (-779))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-964))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) - (-5 *2 - (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) - (|:| |success| (-107)))) - (-5 *1 (-721)) (-5 *5 (-517))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) - (-4 *1 (-983 *4 *5 *6 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756))))) -(((*1 *1) (-5 *1 (-142)))) + (-12 (-5 *2 (-603 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-5 *1 (-569 *3 *4 *5)) + (-14 *5 (-848)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-705)) (-4 *4 (-13 (-968) (-652 (-379 (-519))))) + (-4 *5 (-782)) (-5 *1 (-1177 *4 *5 *2)) (-4 *2 (-1182 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-5 *1 (-1181 *3 *4)) + (-4 *4 (-652 (-379 (-519)))) (-4 *3 (-782)) (-4 *4 (-157))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) - (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) - (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) - (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) - (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) - (-4 *7 (-779)) (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) - (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-949))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 *5)) (-4 *5 (-964)) (-5 *1 (-968 *3 *4 *5)) - (-14 *3 (-703)) (-14 *4 (-703))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-509)) (-4 *3 (-964)) - (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-964)) - (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) - (-4 *3 (-781 *5))))) + (-12 (-5 *3 (-1136 *5 *4)) (-4 *4 (-755)) (-14 *5 (-1082)) + (-5 *2 (-519)) (-5 *1 (-1025 *4 *5))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) - (-5 *2 (-377 (-517))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) - (-4 *3 (-509)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) - (-5 *2 (-377 (-517))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) - (-4 *3 (-1006)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) - (-4 *3 (-1006)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-916 *3)) (-4 *3 (-156)) (-4 *3 (-502)) - (-5 *2 (-377 (-517))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-927 *3)) - (-4 *3 (-955 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703))))) + (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-982 *3 *4 *5))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-300))))) -(((*1 *2 *2) - (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-333) (-273) - (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) - (-15 -2082 ((-1029 *3 (-556 $)) $)) - (-15 -2262 ($ (-1029 *3 (-556 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) - (-4 *2 - (-13 (-333) (-273) - (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) - (-15 -2082 ((-1029 *3 (-556 $)) $)) - (-15 -2262 ($ (-1029 *3 (-556 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) - (-4 *2 - (-13 (-333) (-273) - (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $)) - (-15 -2082 ((-1029 *4 (-556 $)) $)) - (-15 -2262 ($ (-1029 *4 (-556 $))))))) - (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-556 *2))) - (-4 *2 - (-13 (-333) (-273) - (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $)) - (-15 -2082 ((-1029 *4 (-556 $)) $)) - (-15 -2262 ($ (-1029 *4 (-556 $))))))) - (-4 *4 (-509)) (-5 *1 (-40 *4 *2))))) -(((*1 *1 *1) (|partial| -4 *1 (-132))) ((*1 *1 *1) (-4 *1 (-319))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-833))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-787))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) - (-5 *2 (-876 *5)) (-5 *1 (-868 *4 *5))))) -(((*1 *1) (-5 *1 (-131))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-234)))) - ((*1 *1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-236))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *3)) - (-4 *3 (-1134 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1060)) (-5 *1 (-51))))) + (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-977)) (-4 *3 (-1103)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1077))) (-5 *1 (-186)) - (-5 *3 (-1077)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1077))) - (-5 *1 (-240)))) - ((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) - (-5 *2 (-583 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) - (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) - (-5 *2 (-583 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) - ((*1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1094))))) -(((*1 *2 *3) - (-12 (-5 *2 (-583 (-1073 (-517)))) (-5 *1 (-167)) (-5 *3 (-517))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1139 *5)) (-4 *5 (-335)) + (-5 *2 (-2 (|:| -3688 (-390 *3)) (|:| |special| (-390 *3)))) + (-5 *1 (-662 *5 *3))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-682))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1128 *3 *2)) - (-4 *2 (-1134 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-816 *4)) - (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1006)) (-4 *3 (-150 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-1001 (-772 (-349))))) - (-5 *2 (-583 (-1001 (-772 (-199))))) (-5 *1 (-276)))) - ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) - (-4 *4 (-1134 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) - (-5 *2 (-1158 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) - (-4 *3 (-779)))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-493)))) - ((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) - (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1134 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-964)) (-4 *1 (-900 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-975)))) - ((*1 *1 *2) - (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) - (-4 *5 (-558 (-1077))) (-4 *4 (-725)) (-4 *5 (-779)))) - ((*1 *1 *2) - (-3786 - (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) - (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))) - (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))))) - ((*1 *1 *2) - (-12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5)) - (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964)) - (-4 *4 (-725)) (-4 *5 (-779)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) - (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1060)) - (-5 *1 (-981 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-992)))) - ((*1 *1 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *2)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1009 *3 *4 *5 *2 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *2 (-1006)) (-4 *6 (-1006)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1009 *3 *4 *2 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *2 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1009 *3 *2 *4 *5 *6)) (-4 *3 (-1006)) (-4 *2 (-1006)) - (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) - (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 *1)) (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) - (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) - (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1015 *4 *5 *6 *7)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1060)) - (-5 *1 (-1047 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-1082)))) - ((*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-1082)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1093)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1093)))) - ((*1 *2 *3) - (-12 (-5 *3 (-712 *4 (-789 *5))) - (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *5 (-583 (-1077))) - (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1182 *4 *5 *6)) - (-14 *6 (-583 (-1077))))) - ((*1 *2 *3) - (-12 (-5 *3 (-876 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-876 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6)) - (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) - ((*1 *2 *3) - (-12 (-5 *3 (-712 *4 (-789 *6))) - (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *6 (-583 (-1077))) - (-5 *2 (-876 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6)) - (-14 *5 (-583 (-1077))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1073 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-1073 (-942 (-377 *4)))) (-5 *1 (-1182 *4 *5 *6)) - (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077))))) - ((*1 *2 *3) - (-12 - (-5 *3 (-1048 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) - (-4 *4 (-13 (-777) (-278) (-134) (-940))) (-14 *6 (-583 (-1077))) - (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1182 *4 *5 *6)) - (-14 *5 (-583 (-1077)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) - (-4 *6 (-509)) (-4 *7 (-873 *6 *5 *3)) - (-5 *1 (-431 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-955 (-377 (-517))) (-333) - (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) - (-15 -2082 (*7 $)))))))) + (-12 (-4 *3 (-1117)) (-5 *1 (-165 *3 *2)) (-4 *2 (-612 *3))))) +(((*1 *2 *1) + (-12 (-14 *3 (-585 (-1082))) (-4 *4 (-157)) + (-14 *6 + (-1 (-108) (-2 (|:| -2770 *5) (|:| -1690 *2)) + (-2 (|:| -2770 *5) (|:| -1690 *2)))) + (-4 *2 (-214 (-3532 *3) (-705))) (-5 *1 (-432 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-782)) (-4 *7 (-876 *4 *2 (-792 *3)))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-694))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))) (((*1 *2 *3) - (-12 (-5 *3 (-1158 *4)) (-4 *4 (-964)) (-4 *2 (-1134 *4)) - (-5 *1 (-413 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-377 (-1073 (-286 *5)))) (-5 *3 (-1158 (-286 *5))) - (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1034 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-964)) - (-5 *1 (-647 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-766 *3))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098)))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-757))))) + (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) + (-4 *4 (-321)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) + (-4 *4 (-321)))) + ((*1 *1) (-4 *1 (-340))) + ((*1 *2 *3) + (-12 (-5 *3 (-848)) (-5 *2 (-1163 *4)) (-5 *1 (-489 *4)) + (-4 *4 (-321)))) + ((*1 *1 *1) (-4 *1 (-504))) ((*1 *1) (-4 *1 (-504))) + ((*1 *1 *1) (-5 *1 (-519))) ((*1 *1 *1) (-5 *1 (-705))) + ((*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-5 *2 (-832 *4)) (-5 *1 (-831 *4)) + (-4 *4 (-1011)))) + ((*1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-504)) (-4 *2 (-511))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) -(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240))))) -(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) + (-12 (-5 *3 (-288 (-201))) (-5 *2 (-288 (-379 (-519)))) + (-5 *1 (-278))))) +(((*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-351)) (-5 *1 (-961))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-377 (-876 *4)))) (-4 *4 (-421)) - (-5 *2 (-583 (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4))))) - (-5 *1 (-263 *4))))) + (-12 (-5 *3 (-625 *4)) (-4 *4 (-335)) (-5 *2 (-1078 *4)) + (-5 *1 (-492 *4 *5 *6)) (-4 *5 (-335)) (-4 *6 (-13 (-335) (-780)))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-1011))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-351))) (-5 *1 (-238)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-511)) (-4 *2 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-511))))) +(((*1 *1 *1) (-4 *1 (-571))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925) (-1103)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) + (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) (-5 *2 (-957)) + (-5 *1 (-683))))) (((*1 *2 *3) - (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1158 (-3 (-437) "undefined"))) (-5 *1 (-1159))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1077)) (-5 *1 (-300))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2133 *4))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) - (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-1169 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) - (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1169 *5 *6 *7 *8))))) + (-12 (-4 *4 (-511)) (-5 *2 (-1163 (-625 *4))) (-5 *1 (-88 *4 *5)) + (-5 *3 (-625 *4)) (-4 *5 (-595 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-1112)) (-5 *2 (-1163))))) -(((*1 *2 *3) - (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) - (-5 *1 (-1084 *4)) (-5 *3 (-583 (-583 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1080)))) - ((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) - (-4 *4 (-964)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) - ((*1 *1 *1) (-4 *1 (-207))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) - (-4 *4 (-1134 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) - (-4 *3 (-1134 *2)))) - ((*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-824 *4)) - (-4 *4 (-1006)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-824 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *1 (-824 *3)) (-4 *3 (-1006)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1006))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107))))) + (|partial| -12 (-5 *3 (-848)) + (-5 *2 (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029)))))) + (-5 *1 (-318 *4)) (-4 *4 (-321))))) (((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) - (-4 *5 (-13 (-1006) (-33))) (-4 *6 (-13 (-1006) (-33))) - (-5 *2 (-107)) (-5 *1 (-1042 *5 *6))))) -(((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-509))))) -(((*1 *1 *2) - (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-955 *4)) (-4 *3 (-278)) - (-4 *4 (-912 *3)) (-4 *5 (-1134 *4)) (-4 *6 (-379 *4 *5)) - (-14 *7 (-1158 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1158 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-912 *3)) - (-4 *5 (-1134 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-876 *8)))) - (-5 *5 (-703)) (-5 *6 (-1060)) (-4 *8 (-13 (-278) (-134))) - (-4 *11 (-873 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1077)))) - (-4 *10 (-725)) - (-5 *2 - (-2 - (|:| |rgl| - (-583 - (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) - (|:| |wcond| (-583 (-876 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1158 (-377 (-876 *8)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *8)))))))))) - (|:| |rgsz| (-517)))) - (-5 *1 (-848 *8 *9 *10 *11)) (-5 *7 (-517))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006))))) -(((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-387 *4))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1077)) - (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-528 *4 *2)) - (-4 *2 (-13 (-1098) (-882) (-1041) (-29 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-974 *4 *3)) - (-4 *3 (-1134 *4))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) - (-5 *1 (-681))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-761))))) -(((*1 *2 *1) - (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) - (-5 *2 (-1158 *6)) (-5 *1 (-306 *3 *4 *5 *6)) - (-4 *6 (-312 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) - (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-685))))) + (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) + (-4 *5 (-13 (-1011) (-33))) (-4 *6 (-13 (-1011) (-33))) + (-5 *2 (-108)) (-5 *1 (-1047 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-982 *4 *5 *6)) (-4 *4 (-968)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1111 *4 *5 *6 *3)) (-4 *4 (-511)) (-4 *5 (-727)) + (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) - (-4 *3 (-983 *4 *5 *6 *7)))) + (-12 (-4 *4 (-335)) (-5 *2 (-585 *3)) (-5 *1 (-872 *4 *3)) + (-4 *3 (-1139 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-105)))) + ((*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-705)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-519)) (-4 *1 (-345 *3)) (-4 *3 (-1117)) + (-4 *3 (-1011)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-345 *3)) (-4 *3 (-1117)) (-4 *3 (-1011)) + (-5 *2 (-519)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-345 *4)) (-4 *4 (-1117)) + (-5 *2 (-519)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-519)) (-5 *3 (-129)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-519))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-511)) (-4 *2 (-968)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-511)) (-5 *1 (-894 *3 *2)) (-4 *2 (-1139 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-511)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *3 (-982 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *1)))) + (-4 *1 (-987 *4 *5 *6 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-782)) (-5 *1 (-1089 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1163 (-288 (-201)))) (-5 *4 (-585 (-1082))) + (-5 *2 (-625 (-288 (-201)))) (-5 *1 (-183)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) - (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107)) - (-5 *1 (-908 *5 *6 *7 *8 *3)))) + (-12 (-4 *5 (-1011)) (-4 *6 (-827 *5)) (-5 *2 (-625 *6)) + (-5 *1 (-627 *5 *6 *3 *4)) (-4 *3 (-345 *6)) + (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4221))))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) + (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-61 LSFUN2)))) + (-5 *2 (-957)) (-5 *1 (-688))))) +(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-757))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-912 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-108)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) - (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) - (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107)) - (-5 *1 (-1013 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-684))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-705)) (-4 *4 (-968)) (-5 *1 (-1135 *4 *2)) + (-4 *2 (-1139 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-110)) (-5 *4 (-585 *2)) (-5 *1 (-109 *2)) + (-4 *2 (-1011)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-585 *4))) (-4 *4 (-1011)) + (-5 *1 (-109 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1011)) + (-5 *1 (-109 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-585 *4))) + (-5 *1 (-109 *4)) (-4 *4 (-1011)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-587 *3)) (-4 *3 (-968)) + (-5 *1 (-649 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-769 *3))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134)) - (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-897 *3 *4 *5 *6))))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1155 *2 *3 *4)) (-4 *2 (-968)) (-14 *3 (-1082)) + (-14 *4 *2)))) +(((*1 *2) + (-12 (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-836)) + (-5 *1 (-428 *3 *4 *2 *5)) (-4 *5 (-876 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-727)) (-4 *4 (-782)) (-4 *2 (-836)) + (-5 *1 (-833 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-836)) (-5 *1 (-834 *2 *3)) (-4 *3 (-1139 *2))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) - (-4 *3 (-1134 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) - (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-583 *3)) - (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1015 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) + (-12 (-5 *3 (-854)) + (-5 *2 + (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) + (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) + (-5 *1 (-141)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-854)) (-5 *4 (-379 (-519))) (-5 *2 - (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) - (-5 *1 (-988 *5 *6)) (-5 *3 (-583 (-876 *5))) - (-14 *6 (-583 (-1077))))) + (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) + (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) + (-5 *1 (-141)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-278) (-134))) + (-12 (-5 *2 - (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4)))))) - (-5 *1 (-988 *4 *5)) (-5 *3 (-583 (-876 *4))) - (-14 *5 (-583 (-1077))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) + (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) + (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) + (-5 *1 (-141)) (-5 *3 (-585 (-870 (-201)))))) + ((*1 *2 *3) + (-12 (-5 *2 - (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) - (-5 *1 (-988 *5 *6)) (-5 *3 (-583 (-876 *5))) - (-14 *6 (-583 (-1077)))))) + (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) + (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) + (-5 *1 (-141)) (-5 *3 (-585 (-585 (-870 (-201))))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1111 *2 *3 *4 *5)) (-4 *2 (-511)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *5 (-982 *2 *3 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-519)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1117)) + (-4 *5 (-345 *4)) (-4 *3 (-345 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-687))))) (((*1 *2 *2) - (-12 (-4 *3 (-964)) (-4 *4 (-1134 *3)) (-5 *1 (-148 *3 *4 *2)) - (-4 *2 (-1134 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-5 *1 (-407))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-349)) (-5 *1 (-976))))) -(((*1 *2 *3) - (-12 + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-705)) (-4 *5 (-321)) (-4 *6 (-1139 *5)) + (-5 *2 + (-585 + (-2 (|:| -2070 (-625 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-625 *6))))) + (-5 *1 (-465 *5 *6 *7)) (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-725)) (-4 *2 (-873 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) - (-4 *4 (-421)) (-4 *6 (-779))))) -(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763))))) + (-2 (|:| -2070 (-625 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-625 *6)))) + (-4 *7 (-1139 *6))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1006)) - (-4 *3 (-1006))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-4 *1 (-827 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-107)) (-5 *1 (-109))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) - ((*1 *1 *1) (-4 *1 (-273))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) - ((*1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-724)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-49 *3 *4)) - (-14 *4 (-583 (-1077))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) - (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) - (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) - (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-964) (-779))) - (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1077))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) - (-4 *6 (-1112)) (-4 *7 (-1112)) (-5 *2 (-214 *5 *7)) - (-5 *1 (-213 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-265 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1060)) (-5 *5 (-556 *6)) - (-4 *6 (-273)) (-4 *2 (-1112)) (-5 *1 (-268 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) - (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-964)) - (-4 *6 (-964)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) - (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) - (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) - (-4 *9 (-333)) (-4 *10 (-1134 *9)) (-4 *11 (-1134 (-377 *10))) - (-5 *2 (-306 *9 *10 *11 *12)) - (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-312 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1006)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1116)) (-4 *8 (-1116)) - (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) (-4 *9 (-1134 *8)) - (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1134 (-377 *9))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1112)) (-4 *6 (-1112)) - (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-1006)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) - (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) - (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) - (-4 *6 (-912 *5)) (-4 *7 (-1134 *6)) - (-4 *8 (-13 (-379 *6 *7) (-955 *6))) (-4 *9 (-278)) - (-4 *10 (-912 *9)) (-4 *11 (-1134 *10)) - (-5 *2 (-383 *9 *10 *11 *12)) - (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-379 *10 *11) (-955 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) - (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-964) (-779))) - (-4 *6 (-13 (-964) (-779))) (-4 *2 (-400 *6)) - (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) - (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1112)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-779)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) - (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2791 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-333)) (-4 *6 (-333)) - (-5 *2 (-2 (|:| -2791 *6) (|:| |coeff| *6))) - (-5 *1 (-533 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-333)) (-4 *6 (-333)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-533 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) - (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-547 *8)) - (-5 *1 (-545 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-547 *7)) - (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8)) - (-5 *1 (-545 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1058 *7)) - (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8)) - (-5 *1 (-545 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) - (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-583 *8)) - (-5 *1 (-582 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-964)) (-4 *8 (-964)) - (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) - (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) - (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-964)) - (-4 *8 (-964)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) - (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) - (-4 *6 (-1134 *5)) (-4 *2 (-1134 (-377 *8))) - (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1134 (-377 *6))) - (-4 *8 (-1134 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-964)) (-4 *9 (-964)) (-4 *5 (-779)) - (-4 *6 (-725)) (-4 *2 (-873 *9 *7 *5)) - (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) - (-4 *4 (-873 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) - (-4 *9 (-964)) (-4 *2 (-873 *9 *8 *6)) - (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) - (-4 *4 (-873 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-964)) - (-4 *6 (-964)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) - (-5 *1 (-667 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-668 *3 *4)) - (-4 *4 (-659)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-964)) - (-4 *6 (-964)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) - (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1006)) - (-4 *6 (-1006)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *1 (-764 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1006)) - (-4 *6 (-1006)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *1 (-771 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-801 *6)) (-5 *1 (-800 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-803 *6)) (-5 *1 (-802 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-813 *5 *6)) (-4 *5 (-1006)) - (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-813 *5 *7)) - (-5 *1 (-812 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) - (-4 *6 (-1006)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-964)) - (-4 *6 (-964)) (-5 *2 (-876 *6)) (-5 *1 (-870 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) - (-4 *8 (-964)) (-4 *6 (-725)) - (-4 *2 - (-13 (-1006) - (-10 -8 (-15 -1666 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) - (-5 *1 (-875 *6 *7 *8 *5 *2)) (-4 *5 (-873 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-867 *5)) (-4 *5 (-964)) - (-4 *6 (-964)) (-5 *2 (-867 *6)) (-5 *1 (-901 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-876 *4))) (-4 *4 (-964)) - (-4 *2 (-873 (-876 *4) *5 *6)) (-4 *5 (-725)) - (-4 *6 - (-13 (-779) - (-10 -8 (-15 -3367 ((-1077) $)) - (-15 -3791 ((-3 $ "failed") (-1077)))))) - (-5 *1 (-904 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) - (-4 *2 (-912 *6)) (-5 *1 (-910 *5 *6 *4 *2)) (-4 *4 (-912 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) - (-4 *2 (-916 *6)) (-5 *1 (-917 *4 *5 *2 *6)) (-4 *4 (-916 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) - (-4 *5 (-964)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-964)) (-4 *10 (-964)) - (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) - (-4 *9 (-212 *5 *7)) (-4 *2 (-967 *5 *6 *10 *11 *12)) - (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) - (-4 *12 (-212 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-1001 *6)) (-5 *1 (-997 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-777)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-583 *6)) - (-5 *1 (-997 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-999 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-999 *6)) (-5 *1 (-998 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1002 *4 *2)) (-4 *4 (-777)) - (-4 *2 (-1051 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1058 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-1058 *6)) (-5 *1 (-1056 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1058 *6)) (-5 *5 (-1058 *7)) - (-4 *6 (-1112)) (-4 *7 (-1112)) (-4 *8 (-1112)) (-5 *2 (-1058 *8)) - (-5 *1 (-1057 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1073 *5)) (-4 *5 (-964)) - (-4 *6 (-964)) (-5 *2 (-1073 *6)) (-5 *1 (-1071 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1089 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-1006)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1122 *5 *7 *9)) (-4 *5 (-964)) - (-4 *6 (-964)) (-14 *7 (-1077)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1122 *6 *8 *10)) (-5 *1 (-1117 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1077)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-1125 *6)) (-5 *1 (-1124 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1125 *5)) (-4 *5 (-777)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1058 *6)) - (-5 *1 (-1124 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1131 *5 *6)) (-14 *5 (-1077)) - (-4 *6 (-964)) (-4 *8 (-964)) (-5 *2 (-1131 *7 *8)) - (-5 *1 (-1126 *5 *6 *7 *8)) (-14 *7 (-1077)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-964)) (-4 *6 (-964)) - (-4 *2 (-1134 *6)) (-5 *1 (-1132 *5 *4 *6 *2)) (-4 *4 (-1134 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5 *7 *9)) (-4 *5 (-964)) - (-4 *6 (-964)) (-14 *7 (-1077)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1143 *6 *8 *10)) (-5 *1 (-1138 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1077)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-964)) (-4 *6 (-964)) - (-4 *2 (-1149 *6)) (-5 *1 (-1147 *5 *6 *4 *2)) (-4 *4 (-1149 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-1112)) - (-4 *6 (-1112)) (-5 *2 (-1158 *6)) (-5 *1 (-1157 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1158 *5)) - (-4 *5 (-1112)) (-4 *6 (-1112)) (-5 *2 (-1158 *6)) - (-5 *1 (-1157 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-964)))) + (-12 (-4 *4 (-836)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-876 *4 *5 *6)) (-5 *2 (-390 (-1078 *7))) + (-5 *1 (-833 *4 *5 *6 *7)) (-5 *3 (-1078 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-836)) (-4 *5 (-1139 *4)) (-5 *2 (-390 (-1078 *5))) + (-5 *1 (-834 *4 *5)) (-5 *3 (-1078 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-1117)) (-4 *2 (-782)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-1179 *3 *4)) - (-4 *4 (-775))))) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-345 *3)) (-4 *3 (-1117)))) + ((*1 *2 *2) + (-12 (-5 *2 (-585 (-832 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) + (-4 *6 (-982 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -1525 *1) (|:| |upper| *1))) + (-4 *1 (-900 *4 *5 *3 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-968)))) + ((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *4 (-157)) (-4 *5 (-345 *4)) + (-4 *6 (-345 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-157)) (-4 *2 (-968)) (-5 *1 (-649 *2 *3)) + (-4 *3 (-587 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-157)) (-4 *2 (-968)) (-5 *1 (-649 *2 *3)) + (-4 *3 (-587 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-157)) (-4 *2 (-968)))) + ((*1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-157)) (-4 *2 (-968))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-519)) (-4 *3 (-157)) (-4 *5 (-345 *3)) + (-4 *6 (-345 *3)) (-5 *1 (-624 *3 *5 *6 *2)) + (-4 *2 (-623 *3 *5 *6))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) - (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) - (-5 *2 (-953)) (-5 *1 (-678))))) -(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1161)))) - ((*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1161))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1060)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) - (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) - ((*1 *2 *3) - (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) - (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-873 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) - (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 *7))) - (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) + (-12 (-4 *1 (-1014 *2 *3 *4 *5 *6)) (-4 *2 (-1011)) (-4 *3 (-1011)) + (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011))))) +(((*1 *1) (-5 *1 (-409)))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)) + (-5 *2 (-1078 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-421)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *2 (-388 *1)) (-4 *1 (-873 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) - (-5 *1 (-899 *4 *5 *6 *3)) (-4 *3 (-873 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) - (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-388 (-1073 (-377 *7)))) - (-5 *1 (-1072 *4 *5 *6 *7)) (-5 *3 (-1073 (-377 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1116)))) - ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1137 *4 *3)) - (-4 *3 (-13 (-1134 *4) (-509) (-10 -8 (-15 -2361 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) - (-14 *5 (-583 (-1077))) + (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)) + (-5 *2 (-1078 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1037 *3 *4)) (-4 *3 (-1139 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1037 *4 *3)) (-4 *4 (-1139 *3))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-705)) (-4 *2 (-1011)) + (-5 *1 (-615 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1084 (-379 (-519)))) (-5 *2 (-379 (-519))) + (-5 *1 (-168))))) +(((*1 *2 *1) + (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) + (-5 *2 (-108))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-558 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1082))) (-5 *5 (-1078 *2)) + (-4 *2 (-13 (-402 *6) (-27) (-1103))) + (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *1 (-515 *6 *2 *7)) (-4 *7 (-1011)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-558 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1082))) + (-5 *5 (-379 (-1078 *2))) (-4 *2 (-13 (-402 *6) (-27) (-1103))) + (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *1 (-515 *6 *2 *7)) (-4 *7 (-1011))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-390 *2)) (-4 *2 (-511))))) +(((*1 *2 *3) + (-12 (-4 *1 (-321)) (-5 *3 (-519)) (-5 *2 (-1091 (-848) (-705)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1014 *2 *3 *4 *5 *6)) (-4 *2 (-1011)) (-4 *3 (-1011)) + (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-682))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1139 *4)) (-4 *4 (-1121)) + (-4 *6 (-1139 (-379 *5))) (-5 *2 - (-583 (-1048 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) - (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077)))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -2370 (-583 (-1077))) (|:| -3315 (-583 (-1077))))) - (-5 *1 (-1114))))) + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-314 *4 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-511))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) - (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) - (-5 *1 (-679))))) -(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) - ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) - ((*1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) - (-4 *3 (-1134 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) - (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -3315 (-583 *3)) (|:| -2370 (-583 *3)))) - (-5 *1 (-1113 *3)) (-4 *3 (-1006))))) + (-12 (-4 *3 (-13 (-511) (-782) (-959 (-519)))) (-5 *1 (-166 *3 *2)) + (-4 *2 (-13 (-27) (-1103) (-402 (-154 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-1107 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-585 (-705)))) (-5 *1 (-831 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3) + (-12 (-5 *3 (-519)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *2 (-1168)) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *7 (-876 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 *4)) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-1156 *4 *2)) + (-4 *4 (-37 (-379 (-519))))))) +(((*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-302))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-108)) (-5 *5 (-625 (-154 (-201)))) + (-5 *2 (-957)) (-5 *1 (-690))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-585 *1)) (-5 *3 (-585 *7)) (-4 *1 (-987 *4 *5 *6 *7)) + (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-585 *1)) (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-585 *1)) + (-4 *1 (-987 *4 *5 *6 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-288 (-201))) (-5 *1 (-242))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-439)) (-5 *4 (-848)) (-5 *2 (-1168)) (-5 *1 (-1164))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-390 *2)) (-4 *2 (-511))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) - (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) - (-5 *1 (-1076))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) - (-4 *2 (-1134 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3))))) -(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-999 (-772 *3))) (-4 *3 (-13 (-1098) (-882) (-29 *5))) - (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *2 - (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-193 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-999 (-772 *3))) (-5 *5 (-1060)) - (-4 *3 (-13 (-1098) (-882) (-29 *6))) - (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) + (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) + (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) + (-5 *1 (-1081))))) +(((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-157))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790))))) +(((*1 *2 *1) + (-12 (-5 *2 (-705)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) +(((*1 *2 *1) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-625 (-519))) (-5 *1 (-1021))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-193 *6 *3)))) + (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) + (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) + (-5 *1 (-1081))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-759))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2377 (-519)) (|:| -3433 (-585 *3)))) + (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-705)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)) + (-14 *4 *2) (-4 *5 (-157)))) + ((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-848)) (-5 *1 (-150 *3 *4)) + (-4 *3 (-151 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-848)))) + ((*1 *2) + (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1139 *3)) + (-5 *2 (-848)))) + ((*1 *2 *3) + (-12 (-4 *4 (-335)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) + (-5 *2 (-705)) (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-999 (-772 (-286 *5)))) - (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *2 - (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-194 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-377 (-876 *6))) (-5 *4 (-999 (-772 (-286 *6)))) - (-5 *5 (-1060)) - (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *2 - (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-194 *6)))) + (-12 (-5 *3 (-625 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-335)) + (-5 *2 (-705)) (-5 *1 (-606 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-999 (-772 (-377 (-876 *5))))) (-5 *3 (-377 (-876 *5))) - (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) + (-12 (-4 *5 (-335)) (-4 *6 (-13 (-345 *5) (-10 -7 (-6 -4222)))) + (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4222)))) (-5 *2 (-705)) + (-5 *1 (-607 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-4 *3 (-511)) (-5 *2 (-705)))) + ((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *4 (-157)) (-4 *5 (-345 *4)) + (-4 *6 (-345 *4)) (-5 *2 (-705)) (-5 *1 (-624 *4 *5 *6 *3)) + (-4 *3 (-623 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-511)) + (-5 *2 (-705))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) + (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-64 FUNCT1)))) + (-5 *2 (-957)) (-5 *1 (-688))))) +(((*1 *2 *3) + (-12 (-5 *2 (-390 (-1078 (-519)))) (-5 *1 (-169)) (-5 *3 (-519))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-194 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-999 (-772 (-377 (-876 *6))))) (-5 *5 (-1060)) - (-5 *3 (-377 (-876 *6))) - (-4 *6 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) + (-2 (|:| |lm| (-358 *3)) (|:| |mm| (-358 *3)) (|:| |rm| (-358 *3)))) + (-5 *1 (-358 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 - (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-194 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) - (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) - (-4 *3 (-13 (-1098) (-882) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5)) - (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) - (-5 *5 (-349)) (-5 *6 (-976)) (-5 *2 (-953)) (-5 *1 (-518)))) - ((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-953)) (-5 *1 (-518)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) - (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) - (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-349))) (-5 *4 (-1001 (-772 (-349)))) - (-5 *2 (-953)) (-5 *1 (-518)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) - (-5 *2 (-953)) (-5 *1 (-518)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) - (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) - (-5 *5 (-349)) (-5 *2 (-953)) (-5 *1 (-518)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-1001 (-772 (-349))))) - (-5 *5 (-349)) (-5 *6 (-976)) (-5 *2 (-953)) (-5 *1 (-518)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349)))) - (-5 *5 (-1060)) (-5 *2 (-953)) (-5 *1 (-518)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-999 (-772 (-349)))) - (-5 *5 (-1077)) (-5 *2 (-953)) (-5 *1 (-518)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) (-4 *5 (-1134 *4)) - (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-134)) - (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) - (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) + (-2 (|:| |lm| (-754 *3)) (|:| |mm| (-754 *3)) (|:| |rm| (-754 *3)))) + (-5 *1 (-754 *3)) (-4 *3 (-782))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-1082))) (-5 *2 (-1168)) (-5 *1 (-1119)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-585 (-1082))) (-5 *2 (-1168)) (-5 *1 (-1119))))) +(((*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1 (-351))) (-5 *1 (-961))))) +(((*1 *2) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) + (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) + (-5 *1 (-1081))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1065)) (-5 *5 (-625 (-201))) (-5 *6 (-201)) + (-5 *7 (-625 (-519))) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-687))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1011)) (-5 *1 (-1095 *3 *2)) (-4 *3 (-1011))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)))) ((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-964)) (-4 *2 (-779)) - (-4 *3 (-37 (-377 (-517)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1077)) (-5 *1 (-876 *3)) (-4 *3 (-37 (-377 (-517)))) - (-4 *3 (-964)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-4 *2 (-779)) - (-5 *1 (-1030 *3 *2 *4)) (-4 *4 (-873 *3 (-489 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) - (-5 *1 (-1062 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5)) - (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5)) - (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5)) - (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *1 (-1107 *3)) (-4 *3 (-37 (-377 (-517)))) - (-4 *3 (-964)))) - ((*1 *1 *1 *2) - (-3786 - (-12 (-5 *2 (-1077)) (-4 *1 (-1118 *3)) (-4 *3 (-964)) - (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098)) - (-4 *3 (-37 (-377 (-517)))))) - (-12 (-5 *2 (-1077)) (-4 *1 (-1118 *3)) (-4 *3 (-964)) - (-12 (|has| *3 (-15 -2080 ((-583 *2) *3))) - (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) + (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-968)) (-14 *3 (-585 (-1082))))) ((*1 *1 *1) - (-12 (-4 *1 (-1118 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5)) - (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))) + (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-968) (-782))) + (-14 *3 (-585 (-1082))))) + ((*1 *1 *1) (-12 (-4 *1 (-354 *2 *3)) (-4 *2 (-968)) (-4 *3 (-1011)))) ((*1 *1 *1) - (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517)))))) - ((*1 *1 *1 *2) - (-3786 - (-12 (-5 *2 (-1077)) (-4 *1 (-1139 *3)) (-4 *3 (-964)) - (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098)) - (-4 *3 (-37 (-377 (-517)))))) - (-12 (-5 *2 (-1077)) (-4 *1 (-1139 *3)) (-4 *3 (-964)) - (-12 (|has| *3 (-15 -2080 ((-583 *2) *3))) - (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) + (-12 (-14 *2 (-585 (-1082))) (-4 *3 (-157)) + (-4 *5 (-214 (-3532 *2) (-705))) + (-14 *6 + (-1 (-108) (-2 (|:| -2770 *4) (|:| -1690 *5)) + (-2 (|:| -2770 *4) (|:| -1690 *5)))) + (-5 *1 (-432 *2 *3 *4 *5 *6 *7)) (-4 *4 (-782)) + (-4 *7 (-876 *3 *5 (-792 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-782)))) ((*1 *1 *1) - (-12 (-4 *1 (-1139 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5)) - (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3786 - (-12 (-5 *2 (-1077)) (-4 *1 (-1149 *3)) (-4 *3 (-964)) - (-12 (-4 *3 (-29 (-517))) (-4 *3 (-882)) (-4 *3 (-1098)) - (-4 *3 (-37 (-377 (-517)))))) - (-12 (-5 *2 (-1077)) (-4 *1 (-1149 *3)) (-4 *3 (-964)) - (-12 (|has| *3 (-15 -2080 ((-583 *2) *3))) - (|has| *3 (-15 -3296 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) + (-12 (-4 *2 (-511)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1139 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-968)))) ((*1 *1 *1) - (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964)) (-4 *2 (-37 (-377 (-517)))))) + (-12 (-5 *1 (-670 *2 *3)) (-4 *3 (-782)) (-4 *2 (-968)) + (-4 *3 (-661)))) + ((*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5)) - (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-964)) (-14 *5 *3)))) + (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)))) + ((*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-968)) (-4 *3 (-778))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-935)) (-5 *2 (-790))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-705))) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) - (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 (-153 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-153 *3)) (-5 *1 (-1102 *4 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *4)))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1077))))) -(((*1 *2 *1) - (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-779)) - (-4 *5 (-725)) (-4 *2 (-239 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-896 *4 *5 *6 *3)) (-4 *4 (-964)) (-4 *5 (-725)) - (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *3)))) - (-5 *1 (-542 *3)) (-4 *3 (-964))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1158 (-517))) (-5 *3 (-517)) (-5 *1 (-1016)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1158 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) - (-5 *1 (-1016))))) -(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) - ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) - ((*1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) - (-4 *3 (-1134 *2))))) + (-12 (-5 *3 (-585 (-848))) (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1117))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) - (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) - (-5 *1 (-1076))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2791 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-333)) (-4 *7 (-1134 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) - (-2 (|:| -2791 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) - (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *5)) (-4 *5 (-1134 *3)) (-4 *3 (-278)) - (-5 *2 (-107)) (-5 *1 (-424 *3 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *1 *1) (-5 *1 (-199))) - ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349)))) -(((*1 *2 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) + (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) + (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) + (-5 *1 (-1081))))) (((*1 *2 *3) - (-12 (-4 *3 (-1134 (-377 (-517)))) - (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) - (-5 *1 (-837 *3 *4)) (-4 *4 (-1134 (-377 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *3)) - (-4 *3 (-1134 (-377 *4)))))) + (-12 (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) (-5 *1 (-251 *4 *3)) + (-4 *3 (-13 (-402 *4) (-925)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) +(((*1 *2 *1) + (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-876 *3 *4 *5))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-853)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-854)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-854)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165))))) (((*1 *2) - (-12 (-4 *3 (-964)) (-5 *2 (-881 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) - (-4 *4 (-1134 *3))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1106 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) - (-4 *3 (-779)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-107)))) - ((*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) - (-5 *1 (-1128 *4 *2)) (-4 *2 (-1134 *4))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-625 (-379 *4)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) + (-5 *2 (-957)) (-5 *1 (-686))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-950 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-585 (-625 *3))) (-4 *3 (-968)) (-5 *1 (-950 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-950 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-585 (-625 *3))) (-4 *3 (-968)) (-5 *1 (-950 *3))))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-929)))) + ((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-929))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 - (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) - (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) - (-5 *1 (-1076))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) + (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) + (|:| |success| (-108)))) + (-5 *1 (-723)) (-5 *5 (-519))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) - (-4 *3 (-1134 (-153 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) - (-4 *5 (-509)) (-5 *2 (-583 (-583 (-876 *5)))) (-5 *1 (-1083 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-377 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-509)) - (-4 *4 (-964)) (-4 *2 (-1149 *4)) (-5 *1 (-1152 *4 *5 *6 *2)) - (-4 *6 (-593 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) - ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236))))) + (-12 (-4 *3 (-968)) (-5 *1 (-647 *3 *2)) (-4 *2 (-1139 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-982 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-961))))) +(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968)))) + ((*1 *2 *1) + (-12 (-4 *2 (-968)) (-5 *1 (-49 *2 *3)) (-14 *3 (-585 (-1082))))) + ((*1 *2 *1) + (-12 (-5 *2 (-288 *3)) (-5 *1 (-199 *3 *4)) + (-4 *3 (-13 (-968) (-782))) (-14 *4 (-585 (-1082))))) + ((*1 *2 *1) (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1011)) (-4 *2 (-968)))) + ((*1 *2 *1) + (-12 (-14 *3 (-585 (-1082))) (-4 *5 (-214 (-3532 *3) (-705))) + (-14 *6 + (-1 (-108) (-2 (|:| -2770 *4) (|:| -1690 *5)) + (-2 (|:| -2770 *4) (|:| -1690 *5)))) + (-4 *2 (-157)) (-5 *1 (-432 *3 *2 *4 *5 *6 *7)) (-4 *4 (-782)) + (-4 *7 (-876 *2 *5 (-792 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *3 (-782)) (-4 *2 (-1011)))) + ((*1 *2 *1) + (-12 (-4 *2 (-511)) (-5 *1 (-566 *2 *3)) (-4 *3 (-1139 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-968)))) + ((*1 *2 *1) + (-12 (-4 *2 (-968)) (-5 *1 (-670 *2 *3)) (-4 *3 (-782)) + (-4 *3 (-661)))) + ((*1 *2 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)))) + ((*1 *2 *1) + (-12 (-4 *1 (-897 *2 *3 *4)) (-4 *3 (-726)) (-4 *4 (-782)) + (-4 *2 (-968)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782))))) (((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) + (-12 (-4 *3 (-335)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) + (-5 *1 (-486 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) + (-4 *7 (-916 *4)) (-4 *2 (-623 *7 *8 *9)) + (-5 *1 (-487 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-623 *4 *5 *6)) + (-4 *8 (-345 *7)) (-4 *9 (-345 *7)))) ((*1 *1 *1) - (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) - (-14 *4 *2)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) - (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) - (-5 *1 (-1076))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1042 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) - (-4 *5 (-13 (-1006) (-33))) (-4 *6 (-13 (-1006) (-33))) - (-5 *2 (-107)) (-5 *1 (-1043 *5 *6))))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2)) (-4 *2 (-280)))) + ((*1 *2 *2) + (-12 (-4 *3 (-280)) (-4 *3 (-157)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *1 (-624 *3 *4 *5 *2)) + (-4 *2 (-623 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-280)) (-5 *1 (-635 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-971 *2 *3 *4 *5 *6)) (-4 *4 (-968)) + (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *2 *4)) (-4 *4 (-280))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-703)) (-5 *3 (-867 *5)) (-4 *5 (-964)) - (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) + (-12 (-5 *2 (-705)) (-5 *3 (-870 *5)) (-4 *5 (-968)) + (-5 *1 (-1071 *4 *5)) (-14 *4 (-848)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1066 *4 *5)) - (-14 *4 (-845)) (-4 *5 (-964)))) + (-12 (-5 *2 (-585 (-705))) (-5 *3 (-705)) (-5 *1 (-1071 *4 *5)) + (-14 *4 (-848)) (-4 *5 (-968)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-703))) (-5 *3 (-867 *5)) (-4 *5 (-964)) - (-5 *1 (-1066 *4 *5)) (-14 *4 (-845))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) - (-221 *4 (-377 (-517))))) - (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107)) - (-5 *1 (-470 *4 *5))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-999 (-876 (-517)))) (-5 *3 (-876 (-517))) - (-5 *1 (-300)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-999 (-876 (-517)))) (-5 *1 (-300))))) + (-12 (-5 *2 (-585 (-705))) (-5 *3 (-870 *5)) (-4 *5 (-968)) + (-5 *1 (-1071 *4 *5)) (-14 *4 (-848))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 *5)) (-4 *5 (-1139 *3)) (-4 *3 (-280)) + (-5 *2 (-108)) (-5 *1 (-426 *3 *5))))) +(((*1 *2) + (-12 (-5 *2 (-1168)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-1011))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107)) - (-5 *1 (-774 *4 *5)) (-14 *4 (-703))))) -(((*1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-502))))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) + (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) + (-4 *6 (-727)) (-5 *2 (-585 (-585 (-519)))) + (-5 *1 (-851 *4 *5 *6 *7)) (-5 *3 (-519)) (-4 *7 (-876 *4 *6 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-444))) ((*1 *1 *1 *1) (-4 *1 (-696)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-519)) + (-14 *6 (-705)) (-4 *7 (-157)) (-4 *8 (-157)) + (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *9)) (-4 *9 (-968)) (-4 *5 (-782)) (-4 *6 (-727)) + (-4 *8 (-968)) (-4 *2 (-876 *9 *7 *5)) + (-5 *1 (-663 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-727)) + (-4 *4 (-876 *8 *6 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) (((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) - (-14 *4 (-703)) (-4 *5 (-156))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *2) - (-12 (-4 *3 (-509)) (-4 *4 (-912 *3)) (-5 *1 (-129 *3 *4 *2)) - (-4 *2 (-343 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) (-4 *2 (-343 *4)) - (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) + (-12 (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 *4)))) + (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1011)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-625 (-201))) (-5 *6 (-625 (-519))) (-5 *3 (-519)) + (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-687))))) +(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)))) + ((*1 *2 *1) (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1011)))) + ((*1 *2 *1) + (-12 (-14 *3 (-585 (-1082))) (-4 *4 (-157)) + (-4 *6 (-214 (-3532 *3) (-705))) + (-14 *7 + (-1 (-108) (-2 (|:| -2770 *5) (|:| -1690 *6)) + (-2 (|:| -2770 *5) (|:| -1690 *6)))) + (-5 *2 (-648 *5 *6 *7)) (-5 *1 (-432 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-782)) (-4 *8 (-876 *4 *6 (-792 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-661)) (-4 *2 (-782)) (-5 *1 (-670 *3 *2)) + (-4 *3 (-968)))) + ((*1 *1 *1) + (-12 (-4 *1 (-897 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-726)) + (-4 *4 (-782))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-705)) (-4 *4 (-13 (-968) (-652 (-379 (-519))))) + (-4 *5 (-782)) (-5 *1 (-1177 *4 *5 *2)) (-4 *2 (-1182 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-390 *3)) (-4 *3 (-511)))) ((*1 *2 *3) - (-12 (-5 *3 (-623 *5)) (-4 *5 (-912 *4)) (-4 *4 (-509)) - (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-509)) (-4 *4 (-912 *3)) (-5 *1 (-1127 *3 *4 *2)) - (-4 *2 (-1134 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) + (-12 (-5 *3 (-585 (-2 (|:| -1921 *4) (|:| -4178 (-519))))) + (-4 *4 (-1139 (-519))) (-5 *2 (-705)) (-5 *1 (-413 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1149 *4)) - (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1058 *4) (-1058 *4))) - (-5 *1 (-1151 *4 *5))))) + (-12 (-5 *2 (-519)) (-5 *1 (-416 *3)) (-4 *3 (-376)) (-4 *3 (-968))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-935)) (-5 *2 (-790))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-490 *3)) (-4 *3 (-13 (-661) (-25)))))) +(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-1065))))) +(((*1 *2 *3) + (-12 (-4 *4 (-423)) + (-5 *2 + (-585 + (-2 (|:| |eigval| (-3 (-379 (-879 *4)) (-1072 (-1082) (-879 *4)))) + (|:| |eigmult| (-705)) + (|:| |eigvec| (-585 (-625 (-379 (-879 *4)))))))) + (-5 *1 (-265 *4)) (-5 *3 (-625 (-379 (-879 *4))))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504))))) (((*1 *2 *1) - (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) - (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) - (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-845)))) - ((*1 *2 *3) - (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) - (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) - (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-845))))) - ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) - ((*1 *2 *1) - (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) - (-4 *4 (-1134 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-964)) - (-4 *3 (-779)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-964)) (-4 *3 (-779)) - (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) - (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) - (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-955 (-517)))) - (-5 *2 (-703)) (-5 *1 (-835 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) - (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4))) - (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) - (-5 *1 (-836 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) - (-4 *7 (-1134 *6)) (-4 *4 (-1134 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) - (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) - (-5 *1 (-937 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1134 *3)) (-4 *3 (-964)) (-4 *3 (-509)) (-5 *2 (-703)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2361 (-714 *3)) (|:| |coef2| (-714 *3)))) - (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *2 (-2 (|:| -2361 *1) (|:| |coef2| *1))) - (-4 *1 (-978 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1158 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) - (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1134 *5)) - (-5 *2 (-623 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1082))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) - (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) - (-4 *10 (-1015 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) - (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6))) - (-5 *1 (-568 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) - (-14 *6 (-583 (-1077))) + (-12 (-5 *2 (-585 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)) + (-14 *4 (-705)) (-4 *5 (-157))))) +(((*1 *1) (-5 *1 (-758)))) +(((*1 *2 *1) (-12 (-4 *1 (-298 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968)))) + ((*1 *2 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-782))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-390 *4) *4)) (-4 *4 (-511)) (-5 *2 (-390 *4)) + (-5 *1 (-391 *4)))) + ((*1 *1 *1) (-5 *1 (-853))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-853)))) + ((*1 *1 *1) (-5 *1 (-854))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-854)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) + (-5 *4 (-379 (-519))) (-5 *1 (-942 *3)) (-4 *3 (-1139 (-519))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) + (-5 *1 (-942 *3)) (-4 *3 (-1139 (-519))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) + (-5 *4 (-379 (-519))) (-5 *1 (-943 *3)) (-4 *3 (-1139 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))) + (-5 *1 (-943 *3)) (-4 *3 (-1139 (-379 (-519)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) + (-4 *3 (-1139 *2))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-585 *7) *7 (-1078 *7))) (-5 *5 (-1 (-390 *7) *7)) + (-4 *7 (-1139 *6)) (-4 *6 (-13 (-335) (-135) (-959 (-379 (-519))))) + (-5 *2 (-585 (-2 (|:| |frac| (-379 *7)) (|:| -3257 *3)))) + (-5 *1 (-744 *6 *7 *3 *8)) (-4 *3 (-595 *7)) + (-4 *8 (-595 (-379 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1139 *5)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) (-5 *2 - (-583 (-1048 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) - (-5 *1 (-568 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-583 (-945 *5 *6 *7 *8))) (-5 *1 (-945 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) - (-14 *6 (-583 (-1077))) (-5 *2 (-583 (-961 *5 *6))) - (-5 *1 (-961 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-983 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-583 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-1106 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-1036 *4 *2)) - (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4195) (-6 -4196)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-779)) (-4 *3 (-1112)) (-5 *1 (-1036 *3 *2)) - (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4195) (-6 -4196))))))) -(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) + (-585 (-2 (|:| |frac| (-379 *6)) (|:| -3257 (-593 *6 (-379 *6)))))) + (-5 *1 (-747 *5 *6)) (-5 *3 (-593 *6 (-379 *6)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) + (-4 *2 (-402 *3))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-124)))) +(((*1 *1 *1) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-585 (-625 *6))) (-5 *4 (-108)) (-5 *5 (-519)) + (-5 *2 (-625 *6)) (-5 *1 (-951 *6)) (-4 *6 (-335)) (-4 *6 (-968)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-585 (-625 *4))) (-5 *2 (-625 *4)) (-5 *1 (-951 *4)) + (-4 *4 (-335)) (-4 *4 (-968)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-585 (-625 *5))) (-5 *4 (-519)) (-5 *2 (-625 *5)) + (-5 *1 (-951 *5)) (-4 *5 (-335)) (-4 *5 (-968))))) +(((*1 *2 *1) (-12 (-4 *1 (-959 (-519))) (-4 *1 (-275)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-504)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1011))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) (((*1 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) - (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) - (-4 *2 (-13 (-779) (-21)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1084 *4)) - (-5 *3 (-583 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-1151 *4 *2)) - (-4 *4 (-37 (-377 (-517))))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1077)) (-5 *1 (-611 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-104))))) -(((*1 *2 *1) (-12 (-4 *3 (-1112)) (-5 *2 (-583 *1)) (-4 *1 (-929 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4)) - (-14 *3 (-845)) (-4 *4 (-964))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-845)) (-5 *1 (-632)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-333)) (-5 *1 (-898 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1060))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349)))) - ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4)))) - (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) - (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691))))) + (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) + (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-402 *3)) (-4 *3 (-782)) (-5 *2 (-108))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-1125 (-517)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) - (-5 *2 (-107))))) -(((*1 *1) - (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) - (-4 *4 (-156))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) + (-12 (-4 *3 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4))))) + ((*1 *1 *1) (-5 *1 (-351))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) + (-5 *1 (-710 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-511)) (-4 *2 (-423)) (-5 *1 (-894 *2 *3)) + (-4 *3 (-1139 *2))))) (((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-1073 (-876 *4))) (-5 *1 (-386 *3 *4)) - (-4 *3 (-387 *4)))) - ((*1 *2) - (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) - (-5 *2 (-1073 (-876 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-625 (-379 *4)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *5 (-340)) + (-5 *2 (-705))))) +(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-302))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-876 *4 *6 *5)) (-4 *4 (-423)) + (-4 *5 (-782)) (-4 *6 (-727)) (-5 *1 (-911 *4 *5 *6 *3))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-108)) (-5 *1 (-819 *4)) + (-4 *4 (-1011))))) +(((*1 *2 *3) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-417)) (-5 *3 (-519))))) +(((*1 *1 *1) (-4 *1 (-219))) + ((*1 *1 *1) + (-12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1139 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-3730 (-12 (-5 *1 (-267 *2)) (-4 *2 (-335)) (-4 *2 (-1117))) + (-12 (-5 *1 (-267 *2)) (-4 *2 (-444)) (-4 *2 (-1117))))) + ((*1 *1 *1) (-4 *1 (-444))) + ((*1 *2 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-321)) (-5 *1 (-489 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)) (-4 *2 (-335))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-876 (-349))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-377 (-876 (-349)))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-349))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-876 (-517))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-377 (-876 (-517)))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) - (-4 *5 (-955 (-517))) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-309 *3 *4 *5)) - (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) - (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-623 (-377 (-876 (-517))))) (-4 *1 (-354)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-623 (-377 (-876 (-349))))) (-4 *1 (-354)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-623 (-876 (-517)))) (-4 *1 (-354)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-623 (-876 (-349)))) (-4 *1 (-354)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-377 (-876 (-517)))) (-4 *1 (-366)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-377 (-876 (-349)))) (-4 *1 (-366)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-517))) (-4 *1 (-366)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-876 (-349))) (-4 *1 (-366)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1158 (-377 (-876 (-517))))) (-4 *1 (-410)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1158 (-377 (-876 (-349))))) (-4 *1 (-410)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1158 (-876 (-517)))) (-4 *1 (-410)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1158 (-876 (-349)))) (-4 *1 (-410)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1158 (-286 (-517)))) (-4 *1 (-410)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1158 (-286 (-349)))) (-4 *1 (-410)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1134 *5)) - (-5 *2 (-1073 (-1073 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) - (-4 *3 (-1134 *6)) (-14 *7 (-845)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) - (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-4 *1 (-896 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-955 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) - (|partial| -3786 - (-12 (-5 *2 (-876 *3)) - (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) - (-2479 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) - (-4 *5 (-779))) - (-12 (-5 *2 (-876 *3)) - (-12 (-2479 (-4 *3 (-502))) (-2479 (-4 *3 (-37 (-377 (-517))))) - (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) - (-4 *5 (-779))) - (-12 (-5 *2 (-876 *3)) - (-12 (-2479 (-4 *3 (-912 (-517)))) (-4 *3 (-37 (-377 (-517)))) - (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-725)) - (-4 *5 (-779))))) - ((*1 *1 *2) - (|partial| -3786 - (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-2479 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) - (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))) - (-12 (-5 *2 (-876 (-517))) (-4 *1 (-978 *3 *4 *5)) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077)))) - (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-876 (-377 (-517)))) (-4 *1 (-978 *3 *4 *5)) - (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1077))) (-4 *3 (-964)) - (-4 *4 (-725)) (-4 *5 (-779))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-556 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077))) (-5 *5 (-1073 *2)) - (-4 *2 (-13 (-400 *6) (-27) (-1098))) - (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1006)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-556 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077))) - (-5 *5 (-377 (-1073 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1098))) - (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1006))))) -(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) + (|partial| -12 (-5 *3 (-558 *4)) (-4 *4 (-782)) (-4 *2 (-782)) + (-5 *1 (-557 *2 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-284)) (-5 *1 (-764))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) - (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) - (-5 *1 (-1033 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) - (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) - (-5 *1 (-1033 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1163)) (-5 *1 (-788))))) + (-12 (-5 *4 (-1082)) + (-4 *5 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-536 *3)) (-5 *1 (-398 *5 *3)) + (-4 *3 (-13 (-1103) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) (-4 *5 (-13 (-511) (-959 (-519)) (-135))) + (-5 *2 (-536 (-379 (-879 *5)))) (-5 *1 (-525 *5)) + (-5 *3 (-379 (-879 *5)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) + (-5 *2 (-108))))) +(((*1 *1 *1) (-5 *1 (-201))) + ((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *1 *1) (-5 *1 (-351))) ((*1 *1) (-5 *1 (-351)))) +(((*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) + ((*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *1 (-804 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *1 (-806 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-5 *1 (-809 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-1065)) (-5 *5 (-625 (-201))) + (-5 *2 (-957)) (-5 *1 (-682))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-558 *4)) (-5 *6 (-1082)) + (-4 *4 (-13 (-402 *7) (-27) (-1103))) + (-4 *7 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) + (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-848)) (-4 *5 (-782)) + (-5 *2 (-585 (-610 *5))) (-5 *1 (-610 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) + (-223 *4 (-379 (-519))))) + (-14 *4 (-585 (-1082))) (-14 *5 (-705)) (-5 *2 (-108)) + (-5 *1 (-472 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1071 3 *3)) (-4 *3 (-968)) (-4 *1 (-1043 *3)))) + ((*1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-968))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-286 (-517))) (|:| -4057 (-286 (-349))) - (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1076)))) - (-5 *1 (-1076))))) + (-3 (|:| I (-288 (-519))) (|:| -4048 (-288 (-351))) + (|:| CF (-288 (-154 (-351)))) (|:| |switch| (-1081)))) + (-5 *1 (-1081))))) +(((*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-351)))) + ((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-351))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) (((*1 *1) - (-12 (-4 *3 (-1006)) (-5 *1 (-809 *2 *3 *4)) (-4 *2 (-1006)) - (-4 *4 (-603 *3)))) - ((*1 *1) (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) - (-5 *2 (-1073 *3)))) + (-12 (-4 *3 (-1011)) (-5 *1 (-812 *2 *3 *4)) (-4 *2 (-1011)) + (-4 *4 (-605 *3)))) + ((*1 *1) (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011))))) +(((*1 *1 *1 *1) (-4 *1 (-504)))) +(((*1 *1) (-4 *1 (-321)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *4 *5)) + (-4 *5 (-13 (-27) (-1103) (-402 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *4 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-379 (-519))) + (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *5 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))) + (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-267 *3)) (-5 *5 (-379 (-519))) + (-4 *3 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-379 (-519)))) (-5 *4 (-267 *8)) + (-5 *5 (-1130 (-379 (-519)))) (-5 *6 (-379 (-519))) + (-4 *8 (-13 (-27) (-1103) (-402 *7))) + (-4 *7 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-5 *6 (-1130 (-379 (-519)))) + (-5 *7 (-379 (-519))) (-4 *3 (-13 (-27) (-1103) (-402 *8))) + (-4 *8 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-379 (-519))) (-4 *4 (-968)) (-4 *1 (-1146 *4 *3)) + (-4 *3 (-1123 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) + (-5 *2 (-625 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-625 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-280)) (-5 *2 (-705))))) +(((*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-1117))))) +(((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-848))) (-5 *1 (-1012 *3 *4)) (-14 *3 (-848)) + (-14 *4 (-848))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *2 (-585 (-201))) + (-5 *1 (-439))))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) + ((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) + ((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-848)) (-4 *1 (-376)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-519)) (-4 *1 (-376)))) ((*1 *2 *1) - (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) - (-5 *2 (-1073 *3))))) + (-12 (-4 *1 (-1014 *3 *4 *5 *2 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-421)) (-5 *2 (-107)) - (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1077))))) + (-12 (-4 *1 (-314 *4 *3 *5)) (-4 *4 (-1121)) (-4 *3 (-1139 *4)) + (-4 *5 (-1139 (-379 *3))) (-5 *2 (-108)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) - (-14 *5 (-583 (-1077))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-688))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-493))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-703)) (-4 *3 (-1112)) (-4 *1 (-55 *3 *4 *5)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) - ((*1 *1) (-5 *1 (-155))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359)))) - ((*1 *1) (-5 *1 (-364))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) - ((*1 *1) - (-12 (-4 *3 (-1006)) (-5 *1 (-809 *2 *3 *4)) (-4 *2 (-1006)) - (-4 *4 (-603 *3)))) - ((*1 *1) (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) - ((*1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) - ((*1 *1 *1) (-5 *1 (-1077))) ((*1 *1) (-5 *1 (-1077))) - ((*1 *1) (-5 *1 (-1093)))) -(((*1 *2 *3) - (-12 (-5 *3 (-876 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-845)) (-4 *1 (-374)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *2 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006))))) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108))))) +(((*1 *1 *1) + (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-968) (-782))) + (-14 *3 (-585 (-1082)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) - (-5 *1 (-1183 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) - (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-897 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-978 *4 *5 *6)) - (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *1 (-897 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) - (-5 *1 (-924))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1073 *7)) - (-4 *5 (-964)) (-4 *7 (-964)) (-4 *2 (-1134 *5)) - (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1134 *2))))) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *4 *5)) + (-4 *5 (-13 (-27) (-1103) (-402 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *4 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-519)) (-4 *5 (-13 (-423) (-782) (-959 *4) (-581 *4))) + (-5 *2 (-51)) (-5 *1 (-287 *5 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))) + (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-423) (-782) (-959 *5) (-581 *5))) (-5 *5 (-519)) + (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-519))) (-5 *4 (-267 *7)) (-5 *5 (-1130 (-519))) + (-4 *7 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-5 *6 (-1130 (-519))) + (-4 *3 (-13 (-27) (-1103) (-402 *7))) + (-4 *7 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-519)) (-4 *4 (-968)) (-4 *1 (-1125 *4 *3)) + (-4 *3 (-1154 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1123 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) - (-5 *1 (-158 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 (-2 (|:| -2576 *3) (|:| -1846 *4)))) - (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *1 (-1089 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) - (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *3 (-511))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1117)) (-5 *1 (-347 *4 *2)) + (-4 *2 (-13 (-345 *4) (-10 -7 (-6 -4222))))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-782)) (-4 *5 (-727)) + (-4 *6 (-511)) (-4 *7 (-876 *6 *5 *3)) + (-5 *1 (-433 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-959 (-379 (-519))) (-335) + (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) + (-15 -2866 (*7 $)))))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-157) (-37 (-379 (-519))))) + (-4 *2 (-13 (-782) (-21)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-377 (-517))) (-4 *4 (-955 (-517))) - (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-125))) + (-12 (-5 *3 (-379 (-519))) (-4 *4 (-959 (-519))) + (-4 *4 (-13 (-782) (-511))) (-5 *1 (-31 *4 *2)) (-4 *2 (-402 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-126))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-199))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-201))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-519)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) - (-4 *5 (-1149 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1120 *4 *5)))) + (-12 (-5 *3 (-379 (-519))) (-4 *4 (-335)) (-4 *4 (-37 *3)) + (-4 *5 (-1154 *4)) (-5 *1 (-253 *4 *5 *2)) (-4 *2 (-1125 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) - (-4 *5 (-1118 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1141 *4 *5)) - (-4 *6 (-903 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-256))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *1) (-5 *1 (-349))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1006)))) + (-12 (-5 *3 (-379 (-519))) (-4 *4 (-335)) (-4 *4 (-37 *3)) + (-4 *5 (-1123 *4)) (-5 *1 (-254 *4 *5 *2 *6)) (-4 *2 (-1146 *4 *5)) + (-4 *6 (-907 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-258))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-333 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *1) (-5 *1 (-351))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-705)) (-5 *1 (-358 *2)) (-4 *2 (-1011)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1018)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) + (-12 (-5 *2 (-705)) (-4 *1 (-402 *3)) (-4 *3 (-782)) (-4 *3 (-1023)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-444)) (-5 *2 (-519)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) + (-12 (-5 *2 (-705)) (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1158 *4)) (-5 *3 (-517)) (-4 *4 (-319)) - (-5 *1 (-487 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) + (-12 (-5 *2 (-1163 *4)) (-5 *3 (-519)) (-4 *4 (-321)) + (-5 *1 (-489 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-495)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-495)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1006)) - (-5 *1 (-616 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-705)) (-4 *4 (-1011)) + (-5 *1 (-618 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))) + (-12 (-5 *2 (-519)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) (-4 *3 (-335)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) + (-12 (-5 *2 (-705)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-964)) - (-5 *1 (-624 *4)))) + (-12 (-5 *2 (-625 *4)) (-5 *3 (-705)) (-4 *4 (-968)) + (-5 *1 (-626 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-517)) (-4 *3 (-964)) (-5 *1 (-647 *3 *4)) - (-4 *4 (-585 *3)))) + (-12 (-5 *2 (-519)) (-4 *3 (-968)) (-5 *1 (-649 *3 *4)) + (-4 *4 (-587 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-964)) - (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-964)))) + (-12 (-5 *2 (-110)) (-5 *3 (-519)) (-4 *4 (-968)) + (-5 *1 (-649 *4 *5)) (-4 *5 (-587 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-848)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-705)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-661)) (-5 *2 (-705)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-705)) (-5 *1 (-754 *2)) (-4 *2 (-782)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-769 *3)) (-4 *3 (-968)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-964)))) - ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-921)) (-5 *2 (-377 (-517))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-845)))) + (-12 (-5 *2 (-110)) (-5 *3 (-519)) (-5 *1 (-769 *4)) (-4 *4 (-968)))) + ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-379 (-519))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-848)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-517)) (-4 *1 (-1027 *3 *4 *5 *6)) (-4 *4 (-964)) - (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))) + (-12 (-5 *2 (-519)) (-4 *1 (-1032 *3 *4 *5 *6)) (-4 *4 (-968)) + (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *3 *4)) (-4 *4 (-335)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-338)) - (-5 *2 (-703))))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) (((*1 *2 *1) - (-12 (-4 *2 (-1134 *3)) (-5 *1 (-369 *3 *2)) - (-4 *3 (-13 (-333) (-134)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-876 (-517))) (-5 *3 (-1077)) - (-5 *4 (-1001 (-377 (-517)))) (-5 *1 (-30))))) -(((*1 *2 *1) - (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) - (-5 *2 (-583 *3)))) + (-12 (-4 *3 (-968)) (-5 *2 (-1163 *3)) (-5 *1 (-647 *3 *4)) + (-4 *4 (-1139 *3))))) +(((*1 *1) (-5 *1 (-129)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *4 *5)) + (-4 *5 (-13 (-27) (-1103) (-402 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *4 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-705)) + (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *5 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))) + (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-267 *3)) (-5 *5 (-705)) + (-4 *3 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-519))) (-5 *4 (-267 *6)) + (-4 *6 (-13 (-27) (-1103) (-402 *5))) + (-4 *5 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-519))) (-5 *4 (-267 *7)) (-5 *5 (-1130 (-705))) + (-4 *7 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-5 *6 (-1130 (-705))) + (-4 *3 (-13 (-27) (-1103) (-402 *7))) + (-4 *7 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) - (-5 *2 (-583 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-543 *3)) (-4 *3 (-964)))) + (-12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1154 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-98 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-659)))) - ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-583 *3)))) + (-12 (-4 *3 (-423)) (-4 *4 (-782)) (-4 *5 (-727)) (-5 *2 (-108)) + (-5 *1 (-911 *3 *4 *5 *6)) (-4 *6 (-876 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1149 *3)) (-4 *3 (-964)) (-5 *2 (-1058 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-107)) - (-5 *2 - (-2 (|:| |contp| (-517)) - (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) - (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-107)) + (-12 (-5 *2 (-108)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) + (-4 *4 (-13 (-1011) (-33)))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| -1664 *1) (|:| -1556 (-585 *7))))) + (-5 *3 (-585 *7)) (-4 *1 (-1111 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *1 *1) (-4 *1 (-504)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) + (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-217))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) (-5 *2 - (-2 (|:| |contp| (-517)) - (|:| -2283 (-583 (-2 (|:| |irr| *3) (|:| -1332 (-517))))))) - (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1159)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1063 (-201))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1710 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-514))))) +(((*1 *2 *2) + (-12 (-5 *2 (-585 (-585 *6))) (-4 *6 (-876 *3 *5 *4)) + (-4 *3 (-13 (-280) (-135))) (-4 *4 (-13 (-782) (-560 (-1082)))) + (-4 *5 (-727)) (-5 *1 (-851 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-511)) (-4 *3 (-157)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *1 (-624 *3 *4 *5 *2)) + (-4 *2 (-623 *3 *4 *5))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33))) - (-4 *3 (-13 (-1006) (-33)))))) -(((*1 *1) (-5 *1 (-976)))) -(((*1 *2 *3) - (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276))))) -(((*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1006))))) -(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-377 (-517))))) (-5 *1 (-236)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236))))) -(((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) - (-14 *4 (-583 (-1077))))) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) + (-5 *2 (-957)) (-5 *1 (-687))))) +(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-1065))))) +(((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-513 *3)) (-4 *3 (-504)))) + ((*1 *2 *3) + (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-280)) (-5 *2 (-390 *3)) + (-5 *1 (-677 *4 *5 *6 *3)) (-4 *3 (-876 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-280)) + (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-390 (-1078 *7))) + (-5 *1 (-677 *4 *5 *6 *7)) (-5 *3 (-1078 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) - (-14 *4 (-583 (-1077)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-779)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *1 (-900 *3)) (-4 *3 (-964)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) - (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) - (-4 *1 (-983 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724))))) -(((*1 *2 *3) - (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2))))) -(((*1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1096))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-931)) (-5 *2 (-787))))) -(((*1 *2 *3) - (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) - (-4 *3 (-1134 *4)) - (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256)))))) -(((*1 *1 *1) (-4 *1 (-1046)))) + (-12 (-4 *3 (-423)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *2 (-390 *1)) (-4 *1 (-876 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-782)) (-4 *5 (-727)) (-4 *6 (-423)) (-5 *2 (-390 *3)) + (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-876 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-423)) + (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-390 (-1078 (-379 *7)))) + (-5 *1 (-1077 *4 *5 *6 *7)) (-5 *3 (-1078 (-379 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1121)))) + ((*1 *2 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-390 *3)) (-5 *1 (-1142 *4 *3)) + (-4 *3 (-13 (-1139 *4) (-511) (-10 -8 (-15 -2292 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-965 *4 *5)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) + (-14 *5 (-585 (-1082))) + (-5 *2 + (-585 (-1053 *4 (-491 (-792 *6)) (-792 *6) (-714 *4 (-792 *6))))) + (-5 *1 (-1187 *4 *5 *6)) (-14 *6 (-585 (-1082)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-756)) (-5 *4 (-51)) (-5 *2 (-1168)) (-5 *1 (-766))))) +(((*1 *2 *2) + (-12 (-4 *3 (-968)) (-4 *4 (-1139 *3)) (-5 *1 (-149 *3 *4 *2)) + (-4 *2 (-1139 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1117))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1011))))) (((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) - (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-683))))) -(((*1 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))) + (-12 (-4 *1 (-295 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-124)) + (-5 *2 (-585 (-2 (|:| |gen| *3) (|:| -3325 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| -3031 *3) (|:| -2569 *4)))) + (-5 *1 (-670 *3 *4)) (-4 *3 (-968)) (-4 *4 (-661)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) + (-5 *2 (-1063 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-586 *3)) (-4 *3 (-1011))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-705)) (-4 *4 (-511)) (-5 *1 (-894 *4 *2)) + (-4 *2 (-1139 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-375 *3)) (-4 *3 (-376)))) + ((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-375 *3)) (-4 *3 (-376)))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (|has| *1 (-6 -4212)) (-4 *1 (-376)))) + ((*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-848)))) + ((*1 *2 *1) (-12 (-4 *1 (-796 *3)) (-5 *2 (-1063 (-519)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-585 (-451 *4 *5))) (-5 *3 (-585 (-792 *4))) + (-14 *4 (-585 (-1082))) (-4 *5 (-423)) (-5 *1 (-442 *4 *5 *6)) + (-4 *6 (-423))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *3 (-511))))) (((*1 *2 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) -(((*1 *1 *1) (-4 *1 (-973)))) + (-12 (-4 *3 (-335)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) + (-5 *2 (-1163 *6)) (-5 *1 (-308 *3 *4 *5 *6)) + (-4 *6 (-314 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-21)) (-4 *2 (-1117))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-280)) (-5 *1 (-163 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))) + (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-51))) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-511)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-901 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085)))) + ((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1085))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-51))) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-705)) (-4 *5 (-511)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-894 *5 *3)) (-4 *3 (-1139 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *2)) (-4 *2 (-157)))) + ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-388 *3 *2)) (-4 *3 (-389 *2)))) + ((*1 *2) (-12 (-4 *1 (-389 *2)) (-4 *2 (-157))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1134 *5)) - (-5 *1 (-660 *5 *2)) (-4 *5 (-333))))) + (|partial| -12 (-5 *3 (-585 (-238))) (-5 *4 (-1082)) + (-5 *1 (-237 *2)) (-4 *2 (-1117)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-585 (-238))) (-5 *4 (-1082)) (-5 *2 (-51)) + (-5 *1 (-238))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1117)) + (-4 *5 (-345 *4)) (-4 *2 (-345 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-4 *1 (-971 *4 *5 *6 *7 *2)) (-4 *6 (-968)) + (-4 *7 (-214 *5 *6)) (-4 *2 (-214 *4 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-1 (-1063 (-879 *4)) (-1063 (-879 *4)))) + (-5 *1 (-1171 *4)) (-4 *4 (-335))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854))))) +(((*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1117))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1286 *3) (|:| |coef2| (-716 *3)))) + (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-516))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1065)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) + (-4 *4 (-982 *6 *7 *8)) (-5 *2 (-1168)) + (-5 *1 (-710 *6 *7 *8 *4 *5)) (-4 *5 (-987 *6 *7 *8 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-511)) (-5 *2 (-108))))) (((*1 *2 *1) - (-12 (-4 *4 (-1006)) (-5 *2 (-813 *3 *5)) (-5 *1 (-809 *3 *4 *5)) - (-4 *3 (-1006)) (-4 *5 (-603 *4))))) + (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-585 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-845)) - (-5 *2 - (-3 (-1073 *4) - (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024))))))) - (-5 *1 (-316 *4)) (-4 *4 (-319))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) - (-5 *1 (-186))))) + (-12 (-5 *3 (-1063 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-170)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1063 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-273)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1063 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-1078 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1063 *3))) (-5 *1 (-1063 *3)) (-4 *3 (-1117))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-705)) (-4 *2 (-511)) (-5 *1 (-894 *2 *4)) + (-4 *4 (-1139 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-879 (-519)))) (-5 *1 (-409)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1082)) (-5 *4 (-625 (-201))) (-5 *2 (-1015)) + (-5 *1 (-694)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1082)) (-5 *4 (-625 (-519))) (-5 *2 (-1015)) + (-5 *1 (-694))))) (((*1 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-1006))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) - (-14 *4 *2)))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-1011))))) (((*1 *2) - (-12 + (-12 (-4 *3 (-511)) (-5 *2 (-585 (-625 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-389 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-1082))))) +(((*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1011)) (-4 *4 (-1117)) (-5 *2 (-108)) + (-5 *1 (-1063 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-585 (-154 *4))) (-5 *1 (-142 *3 *4)) + (-4 *3 (-1139 (-154 (-519)))) (-4 *4 (-13 (-335) (-780))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-585 (-154 *4))) + (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-585 (-154 *4))) + (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4)))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-201)) (-5 *2 - (-1158 (-583 (-2 (|:| -3112 (-834 *3)) (|:| -2803 (-1024)))))) - (-5 *1 (-321 *3 *4)) (-14 *3 (-845)) (-14 *4 (-845)))) - ((*1 *2) - (-12 (-5 *2 (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024)))))) - (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1073 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024)))))) - (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-845))))) -(((*1 *1) (-5 *1 (-992)))) -(((*1 *2 *3) - (-12 (-4 *4 (-964)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) - (-4 *3 (-1134 *4)) - (-4 *5 (-13 (-374) (-955 *4) (-333) (-1098) (-256)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) - (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) - (-5 *2 (-953)) (-5 *1 (-686))))) + (-2 (|:| |brans| (-585 (-585 (-870 *4)))) + (|:| |xValues| (-1006 *4)) (|:| |yValues| (-1006 *4)))) + (-5 *1 (-141)) (-5 *3 (-585 (-585 (-870 *4))))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1077)) - (-5 *1 (-235 *2)) (-4 *2 (-1112)))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-1156 *4 *2)) + (-4 *4 (-37 (-379 (-519))))))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) + ((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) + ((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-625 (-519))) (-5 *1 (-1021))))) +(((*1 *2 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1065)) (-5 *1 (-278))))) +(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1085))))) +(((*1 *2 *2) + (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1890 *7)))) + (-4 *6 (-982 *3 *4 *5)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-912 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-585 (-2 (|:| |val| (-585 *6)) (|:| -1890 *7)))) + (-4 *6 (-982 *3 *4 *5)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-1018 *3 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-110)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1065)) (-4 *4 (-782)) (-5 *1 (-856 *4 *2)) + (-4 *2 (-402 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1077)) (-5 *2 (-51)) - (-5 *1 (-236))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) - (-5 *2 (-953)) (-5 *1 (-687))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-114 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-44 (-1060) (-706))) (-5 *1 (-109))))) -(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) - ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1006))))) + (-12 (-5 *3 (-1082)) (-5 *4 (-1065)) (-5 *2 (-288 (-519))) + (-5 *1 (-857))))) (((*1 *2 *3) - (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-761)) (-5 *3 (-1060))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *1 *1) (-5 *1 (-976)))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) + (-12 (-4 *1 (-847)) (-5 *2 (-2 (|:| -3031 (-585 *1)) (|:| -1397 *1))) + (-5 *3 (-585 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-51)) (-5 *1 (-1096))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-687))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-558 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1082))) + (-4 *2 (-13 (-402 *5) (-27) (-1103))) + (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1011))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-514))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1185 *4 *2)) (-4 *1 (-346 *4 *2)) (-4 *4 (-782)) + (-4 *2 (-157)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) - (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) + (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-782)) (-4 *2 (-968)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-754 *4)) (-4 *1 (-1178 *4 *2)) (-4 *4 (-782)) + (-4 *2 (-968)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-968)) (-5 *1 (-1184 *2 *3)) (-4 *3 (-778))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-968))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-558 *1)) (-4 *1 (-275))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-585 *7)) (-5 *5 (-585 (-585 *8))) (-4 *7 (-782)) + (-4 *8 (-280)) (-4 *6 (-727)) (-4 *9 (-876 *8 *6 *7)) (-5 *2 - (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) - (|:| |polypart| *6))) - (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-585 (-2 (|:| -1921 (-1078 *9)) (|:| -1690 (-519))))))) + (-5 *1 (-677 *6 *7 *8 *9)) (-5 *3 (-1078 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-284)) (-5 *1 (-269)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-284)) (-5 *1 (-269)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-284)) (-5 *1 (-269)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-1065))) (-5 *3 (-1065)) (-5 *2 (-284)) + (-5 *1 (-269))))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *1 *2) + (-12 (-5 *2 (-288 *3)) (-4 *3 (-13 (-968) (-782))) + (-5 *1 (-199 *3 *4)) (-14 *4 (-585 (-1082)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) (-4 *4 (-423)) (-4 *4 (-782)) + (-5 *1 (-528 *4 *2)) (-4 *2 (-258)) (-4 *2 (-402 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-968)) (-14 *3 (-585 (-1082))))) ((*1 *1 *1) - (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) - (-14 *4 *2)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) - (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107)))) + (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-968) (-782))) + (-14 *3 (-585 (-1082)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-848)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-335)) (-14 *5 (-917 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) + ((*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-585 + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201))))) + (-5 *1 (-514)))) ((*1 *2 *1) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1112)) (-5 *2 (-703))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851))))) -(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) - ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1006))))) -(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-517)) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1077))) - (-4 *2 (-13 (-400 (-153 *5)) (-921) (-1098))) - (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) - (-4 *6 (-13 (-400 *5) (-921) (-1098)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1073 *4)) - (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777)))))) -(((*1 *2) - (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) - (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-703))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) - ((*1 *1 *1) (-4 *1 (-973)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-109)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1060)) (-4 *4 (-779)) (-5 *1 (-853 *4 *2)) - (-4 *2 (-400 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1077)) (-5 *4 (-1060)) (-5 *2 (-286 (-517))) - (-5 *1 (-854))))) -(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798))))) -(((*1 *1) (-5 *1 (-407)))) + (-12 (-4 *1 (-556 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-5 *2 (-585 *3)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-585 + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201))))) + (-5 *1 (-738))))) +(((*1 *2 *3) + (-12 (-4 *4 (-727)) + (-4 *5 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))) (-4 *6 (-511)) + (-5 *2 (-2 (|:| -2494 (-879 *6)) (|:| -3600 (-879 *6)))) + (-5 *1 (-667 *4 *5 *6 *3)) (-4 *3 (-876 (-379 (-879 *6)) *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-705)) + (-5 *1 (-420 *4 *5 *6 *3)) (-4 *3 (-876 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-367))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-333)) (-5 *1 (-820 *2 *3)) - (-4 *2 (-1134 *3))))) + (-12 (-4 *3 (-560 (-819 *3))) (-4 *3 (-813 *3)) + (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-560 (-819 *3))) (-4 *2 (-813 *3)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-756))))) (((*1 *2 *1) - (-12 (-4 *3 (-13 (-333) (-134))) - (-5 *2 (-583 (-2 (|:| -1725 (-703)) (|:| -3605 *4) (|:| |num| *4)))) - (-5 *1 (-369 *3 *4)) (-4 *4 (-1134 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) - (-5 *1 (-240))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) - (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1073 (-517))) (-5 *2 (-517)) (-5 *1 (-866))))) -(((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1134 *2)) - (-4 *2 (-156)))) - ((*1 *2) - (-12 (-4 *4 (-1134 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) - (-4 *3 (-379 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156)))) - ((*1 *2) - (-12 (-4 *3 (-1134 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) - (-4 *4 (-379 *2 *3)))) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-870 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 (-870 *3))) (-4 *3 (-968)) (-4 *1 (-1043 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)) (-4 *3 (-156)))) - ((*1 *2 *3) - (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-156))))) -(((*1 *2 *2) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-870 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3))))) +(((*1 *1 *1) (-4 *1 (-504)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-806 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-806 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-870 (-201)) (-201))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-870 (-201)) (-201))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-870 (-201)) (-201) (-201))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-870 (-201)) (-201) (-201))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-809 (-1 (-201) (-201) (-201)))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-809 (-1 (-201) (-201) (-201)))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1042 (-201))) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-806 *6)) (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) + (-4 *6 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1042 (-201))) + (-5 *1 (-234 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-806 *5)) (-5 *4 (-1004 (-351))) + (-4 *5 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1042 (-201))) + (-5 *1 (-234 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) + (-5 *2 (-1042 (-201))) (-5 *1 (-234 *3)) + (-4 *3 (-13 (-560 (-495)) (-1011))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1004 (-351))) (-5 *2 (-1042 (-201))) (-5 *1 (-234 *3)) + (-4 *3 (-13 (-560 (-495)) (-1011))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-809 *6)) (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) + (-4 *6 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1042 (-201))) + (-5 *1 (-234 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-809 *5)) (-5 *4 (-1004 (-351))) + (-4 *5 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1042 (-201))) + (-5 *1 (-234 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1065)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-238)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -2966 (-585 *3)) (|:| -2057 (-585 *3)))) + (-5 *1 (-1118 *3)) (-4 *3 (-1011))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1139 *3)) (-4 *3 (-968))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-705)) (-4 *4 (-13 (-511) (-135))) + (-5 *1 (-1133 *4 *2)) (-4 *2 (-1139 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-122 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2292 *3))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-705)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-727)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *6 (-782)) + (-5 *2 (-108)) (-5 *1 (-420 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-390 *2)) (-4 *2 (-511))))) +(((*1 *1) (-5 *1 (-409)))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 (-379 (-879 (-519))))) (-5 *2 - (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) - (-221 *3 (-377 (-517))))) - (-14 *3 (-583 (-1077))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-267)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-282)) (-5 *1 (-267)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-282)) (-5 *1 (-267)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1060))) (-5 *3 (-1060)) (-5 *2 (-282)) - (-5 *1 (-267))))) -(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-909)))) - ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1006) (-33))) (-5 *1 (-1042 *2 *3)) - (-4 *3 (-13 (-1006) (-33)))))) -(((*1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) - (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) - (-4 *2 (-621 *3 *5 *6))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) - (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) - (-4 *5 (-1134 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) - (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-931)) (-5 *2 (-787))))) + (-585 + (-2 (|:| |radval| (-288 (-519))) (|:| |radmult| (-519)) + (|:| |radvect| (-585 (-625 (-288 (-519)))))))) + (-5 *1 (-953))))) +(((*1 *2) + (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-389 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-2 (|:| -1921 (-1078 *6)) (|:| -1690 (-519))))) + (-4 *6 (-280)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-519)) + (-5 *1 (-677 *4 *5 *6 *7)) (-4 *7 (-876 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *1 (-844)) (-5 *2 (-2 (|:| -1570 (-583 *1)) (|:| -1306 *1))) - (-5 *3 (-583 *1))))) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-1084 (-379 (-519)))) + (-5 *1 (-168))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-585 (-716 *3))) (-5 *1 (-716 *3)) (-4 *3 (-511)) + (-4 *3 (-968))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1078 (-879 *6))) (-4 *6 (-511)) + (-4 *2 (-876 (-379 (-879 *6)) *5 *4)) (-5 *1 (-667 *5 *4 *6 *2)) + (-4 *5 (-727)) + (-4 *4 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)))))))) +(((*1 *1 *1) (-5 *1 (-980)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077))) (-4 *5 (-509)) - (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-702 *5)))) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-1165)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-682))))) +(((*1 *1 *2) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-456))))) +(((*1 *2 *1) + (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) + (-5 *2 (-585 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1011)) + (-5 *2 (-585 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-545 *3)) (-4 *3 (-968)))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 *3)) (-5 *1 (-670 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-661)))) + ((*1 *2 *1) (-12 (-4 *1 (-784 *3)) (-4 *3 (-968)) (-5 *2 (-585 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1154 *3)) (-4 *3 (-968)) (-5 *2 (-1063 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-314 *4 *3 *5)) (-4 *4 (-1121)) (-4 *3 (-1139 *4)) + (-4 *5 (-1139 (-379 *3))) (-5 *2 (-108)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-509)) - (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-702 *4)))) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-705)) (-5 *2 (-108)) (-5 *1 (-537 *3)) (-4 *3 (-504))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1139 (-379 (-519)))) (-5 *1 (-840 *3 *2)) + (-4 *2 (-1139 (-379 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-392 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1103) (-402 *3))) + (-14 *4 (-1082)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-4 *2 (-13 (-27) (-1103) (-402 *3) (-10 -8 (-15 -2217 ($ *4))))) + (-4 *4 (-780)) + (-4 *5 + (-13 (-1141 *2 *4) (-335) (-1103) + (-10 -8 (-15 -2181 ($ $)) (-15 -4142 ($ $))))) + (-5 *1 (-394 *3 *2 *4 *5 *6 *7)) (-4 *6 (-907 *5)) (-14 *7 (-1082))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-511)) + (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-1134 *4 *3)) + (-4 *3 (-1139 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) (-4 *1 (-460))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) +(((*1 *2) (-12 (-5 *2 (-1042 (-201))) (-5 *1 (-1101))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-154 (-201)) (-154 (-201)))) (-5 *4 (-1006 (-201))) + (-5 *2 (-1165)) (-5 *1 (-232))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1078 *1)) (-5 *3 (-1082)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1078 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-879 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1082)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-782) (-511))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-782) (-511)))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-280)) (-4 *3 (-157)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) + (-5 *1 (-624 *3 *4 *5 *6)) (-4 *6 (-623 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-635 *3)) + (-4 *3 (-280))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-585 *1)) + (-4 *1 (-987 *4 *5 *6 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-625 (-1078 *8))) (-4 *5 (-968)) (-4 *8 (-968)) + (-4 *6 (-1139 *5)) (-5 *2 (-625 *6)) (-5 *1 (-468 *5 *6 *7 *8)) + (-4 *7 (-1139 *6))))) +(((*1 *2) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-625 (-379 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-158 *3)) (-4 *3 (-280))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-335)) (-4 *2 (-1139 *4)) + (-5 *1 (-849 *4 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-201) (-201))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1164)) (-5 *1 (-230)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-201) (-201))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1164)) (-5 *1 (-230)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3700 (-583 *6))) - *7 *6)) - (-4 *6 (-333)) (-4 *7 (-593 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1158 *6) "failed")) - (|:| -3700 (-583 (-1158 *6))))) - (-5 *1 (-745 *6 *7)) (-5 *4 (-1158 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) + (-12 (-5 *3 (-804 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1164)) (-5 *1 (-230)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-845)) (-5 *2 (-349)) (-5 *1 (-717 *3)) - (-4 *3 (-558 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 *2)) - (-5 *2 (-349)) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-804 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1164)) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-806 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) - (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) - (-5 *2 (-349)) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-806 (-1 (-201) (-201)))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1165)) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-870 (-201)) (-201))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) - (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) + (-12 (-5 *3 (-1 (-870 (-201)) (-201))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1165)) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1165)) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-870 (-201)) (-201) (-201))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-870 (-201)) (-201) (-201))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1165)) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-809 (-1 (-201) (-201) (-201)))) (-5 *4 (-1006 (-351))) + (-5 *5 (-585 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-809 (-1 (-201) (-201) (-201)))) (-5 *4 (-1006 (-351))) + (-5 *2 (-1165)) (-5 *1 (-230)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-267 *7)) (-5 *4 (-1082)) (-5 *5 (-585 (-238))) + (-4 *7 (-402 *6)) (-4 *6 (-13 (-511) (-782) (-959 (-519)))) + (-5 *2 (-1164)) (-5 *1 (-231 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1164)) + (-5 *1 (-234 *3)) (-4 *3 (-13 (-560 (-495)) (-1011))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1004 (-351))) (-5 *2 (-1164)) (-5 *1 (-234 *3)) + (-4 *3 (-13 (-560 (-495)) (-1011))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-804 *6)) (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) + (-4 *6 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1164)) + (-5 *1 (-234 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-804 *5)) (-5 *4 (-1004 (-351))) + (-4 *5 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1164)) + (-5 *1 (-234 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-806 *6)) (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) + (-4 *6 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1165)) + (-5 *1 (-234 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-806 *5)) (-5 *4 (-1004 (-351))) + (-4 *5 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1165)) + (-5 *1 (-234 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) (-5 *2 (-1165)) + (-5 *1 (-234 *3)) (-4 *3 (-13 (-560 (-495)) (-1011))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1004 (-351))) (-5 *2 (-1165)) (-5 *1 (-234 *3)) + (-4 *3 (-13 (-560 (-495)) (-1011))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-809 *6)) (-5 *4 (-1004 (-351))) (-5 *5 (-585 (-238))) + (-4 *6 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1165)) + (-5 *1 (-234 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-809 *5)) (-5 *4 (-1004 (-351))) + (-4 *5 (-13 (-560 (-495)) (-1011))) (-5 *2 (-1165)) + (-5 *1 (-234 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-585 (-201))) (-5 *2 (-1164)) (-5 *1 (-235)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-585 (-201))) (-5 *4 (-585 (-238))) (-5 *2 (-1164)) + (-5 *1 (-235)))) ((*1 *2 *3) - (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) - (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-585 (-870 (-201)))) (-5 *2 (-1164)) (-5 *1 (-235)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) - (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-5 *3 (-585 (-870 (-201)))) (-5 *4 (-585 (-238))) + (-5 *2 (-1164)) (-5 *1 (-235)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-585 (-201))) (-5 *2 (-1165)) (-5 *1 (-235)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-585 (-201))) (-5 *4 (-585 (-238))) (-5 *2 (-1165)) + (-5 *1 (-235))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) (-4 *1 (-460))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) - (-5 *2 (-2 (|:| -1570 (-517)) (|:| |var| (-556 *1)))) - (-4 *1 (-400 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1112)) - (-4 *5 (-343 *4)) (-4 *3 (-343 *4))))) + (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-170)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-273)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1006 (-775 (-201)))) (-5 *2 (-201)) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) + (-5 *2 (-2 (|:| -3031 *4) (|:| -3573 *3) (|:| -1354 *3))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-982 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-511)) (-4 *3 (-968)) + (-5 *2 (-2 (|:| -3031 *3) (|:| -3573 *1) (|:| -1354 *1))) + (-4 *1 (-1139 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-519)) (-5 *2 (-585 (-585 (-201)))) (-5 *1 (-1114))))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 (-379 (-879 (-519))))) + (-5 *2 (-585 (-625 (-288 (-519))))) (-5 *1 (-953))))) +(((*1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1166))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-585 (-1078 *5))) (-5 *3 (-1078 *5)) + (-4 *5 (-151 *4)) (-4 *4 (-504)) (-5 *1 (-137 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-585 *3)) (-4 *3 (-1139 *5)) + (-4 *5 (-1139 *4)) (-4 *4 (-321)) (-5 *1 (-330 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-585 (-1078 (-519)))) (-5 *3 (-1078 (-519))) + (-5 *1 (-527)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-585 (-1078 *1))) (-5 *3 (-1078 *1)) + (-4 *1 (-836))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-585 *1)) (-4 *1 (-275)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-558 *3)) (-4 *3 (-782)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-110)) (-5 *3 (-585 *5)) (-5 *4 (-705)) (-4 *5 (-782)) + (-5 *1 (-558 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *1 *1) (-4 *1 (-460))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *1 (-1037 *3 *2)) (-4 *3 (-1139 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-280)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1033 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-536 *3)) (-4 *3 (-335))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-519)) (-5 *1 (-217)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-519)) (-5 *1 (-217))))) +(((*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-51)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1130 *3)) (-4 *3 (-1117))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-351)) (-5 *1 (-980))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) + (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) (-5 *2 (-957)) + (-5 *1 (-683))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-873 *5 *7 *6)) - (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) - (-4 *7 (-725)) - (-5 *2 - (-583 - (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) - (|:| |cols| (-583 (-517)))))) - (-5 *1 (-848 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-107)) - (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-4 *3 (-13 (-27) (-1098) (-400 *6) (-10 -8 (-15 -2262 ($ *7))))) - (-4 *7 (-777)) - (-4 *8 - (-13 (-1136 *3 *7) (-333) (-1098) - (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060)))))) - (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1060)) (-4 *9 (-903 *8)) - (-14 *10 (-1077))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-556 *3)) (-5 *5 (-1073 *3)) - (-4 *3 (-13 (-400 *6) (-27) (-1098))) - (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1073 *3))) - (-4 *3 (-13 (-400 *6) (-27) (-1098))) - (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006))))) + (-12 (-5 *3 (-379 (-879 (-154 (-519))))) (-5 *2 (-585 (-154 *4))) + (-5 *1 (-350 *4)) (-4 *4 (-13 (-335) (-780))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-585 (-379 (-879 (-154 (-519)))))) + (-5 *4 (-585 (-1082))) (-5 *2 (-585 (-585 (-154 *5)))) + (-5 *1 (-350 *5)) (-4 *5 (-13 (-335) (-780)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *1 *1) (-4 *1 (-460))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892))))) (((*1 *2 *3) - (-12 (-5 *3 (-1060)) (-5 *2 (-189 (-467))) (-5 *1 (-767))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-531))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (-5 *2 (-585 (-201))) (-5 *1 (-182))))) (((*1 *2 *1) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) - (-4 *2 (-1134 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-1151 *4 *2)) - (-4 *4 (-37 (-377 (-517))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1006)) (-4 *4 (-1006)) - (-4 *6 (-1006)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) + (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1111 *4 *5 *6 *3)) (-4 *4 (-511)) (-4 *5 (-727)) + (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-154 (-201))) (-5 *5 (-519)) (-5 *6 (-1065)) + (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-693))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1060)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-236)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1087 *2)) (-4 *2 (-333))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-509)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-509))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1134 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) - (-4 *10 (-873 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-583 (-1073 *10))) - (|:| |dterm| - (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) - (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1073 *10)) (-5 *4 (-583 *6)) - (-5 *5 (-583 *10))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-1006)))) - ((*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1006))))) -(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112))))) -(((*1 *2) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-100))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-813 *4 *5)) (-5 *3 (-813 *4 *6)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-603 *5)) (-5 *1 (-809 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134)) - (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-897 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1024)) (-5 *2 (-1163)) (-5 *1 (-763))))) -(((*1 *1 *1) (-5 *1 (-976)))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92))))) + (-12 (-5 *2 (-1 (-870 (-201)) (-870 (-201)))) (-5 *3 (-585 (-238))) + (-5 *1 (-236)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-870 (-201)) (-870 (-201)))) (-5 *1 (-238)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-451 *5 *6))) (-5 *3 (-451 *5 *6)) + (-14 *5 (-585 (-1082))) (-4 *6 (-423)) (-5 *2 (-1163 *6)) + (-5 *1 (-573 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) - ((*1 *1 *1) (|partial| -4 *1 (-655)))) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-89 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-104)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-110)))) + ((*1 *2 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-1011)) (-4 *2 (-1011)))) + ((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-1065)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-410 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-558 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-729)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-989 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-705)) (-4 *5 (-335)) (-5 *2 (-158 *6)) + (-5 *1 (-794 *5 *4 *6)) (-4 *4 (-1154 *5)) (-4 *6 (-1139 *5))))) +(((*1 *2) (-12 (-5 *2 (-775 (-519))) (-5 *1 (-493)))) + ((*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1011))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| -3112 *4) (|:| -3546 (-517))))) - (-4 *4 (-1006)) (-5 *2 (-1 *4)) (-5 *1 (-936 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) - (-14 *3 (-583 (-1077))) (-4 *4 (-964)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1077))) - (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-964)) - (-4 *5 (-212 (-3573 *3) (-703))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) - (-14 *3 (-583 (-1077))) (-4 *4 (-964))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-583 *11)) - (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3864 *11)))))) - (-5 *6 (-703)) - (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3864 *11)))) - (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-978 *7 *8 *9)) - (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) - (-4 *9 (-779)) (-5 *1 (-981 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-583 *11)) - (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3864 *11)))))) - (-5 *6 (-703)) - (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3864 *11)))) - (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-978 *7 *8 *9)) - (-4 *11 (-1015 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) - (-4 *9 (-779)) (-5 *1 (-1047 *7 *8 *9 *10 *11))))) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-157)) + (-4 *5 (-1139 *4)) (-5 *2 (-625 *4)))) + ((*1 *2) + (-12 (-4 *4 (-157)) (-4 *5 (-1139 *4)) (-5 *2 (-625 *4)) + (-5 *1 (-380 *3 *4 *5)) (-4 *3 (-381 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1139 *3)) + (-5 *2 (-625 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) - ((*1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3)))) - ((*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) - (-5 *2 (-953)) (-5 *1 (-686))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1073 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) - (-4 *3 (-333))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1108 *3)) - (-5 *1 (-722 *3)) (-4 *3 (-894)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-107)) - (-5 *1 (-1108 *2)) (-4 *2 (-894))))) -(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156))))) -(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) - ((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1060)) - (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-964)) - (-5 *1 (-947 *4))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) - ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-688))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-388 *2)) (-4 *2 (-509))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *1 *1) (-4 *1 (-460))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *4 *5 *6)) (-4 *4 (-335)) + (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *1 (-421 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-335)) + (-5 *2 + (-2 (|:| R (-625 *6)) (|:| A (-625 *6)) (|:| |Ainv| (-625 *6)))) + (-5 *1 (-902 *6)) (-5 *3 (-625 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4223 "*"))) (-4 *5 (-345 *2)) (-4 *6 (-345 *2)) + (-4 *2 (-968)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1139 *2)) + (-4 *4 (-623 *2 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-1143 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) - (-14 *4 (-1077)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1058 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *3 (-583 (-517))) - (-5 *1 (-807))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-5 *2 (-1060))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) - (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) - (-4 *2 (-621 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-335)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *2 (-1158 (-286 (-349)))) - (-5 *1 (-276))))) + (-12 (-5 *3 (-1065)) (-5 *2 (-519)) (-5 *1 (-1100 *4)) + (-4 *4 (-968))))) +(((*1 *2) + (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-389 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-585 (-223 *4 *5))) (-5 *2 (-223 *4 *5)) + (-14 *4 (-585 (-1082))) (-4 *5 (-423)) (-5 *1 (-573 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-792 *5))) (-14 *5 (-585 (-1082))) (-4 *6 (-423)) + (-5 *2 (-585 (-585 (-223 *5 *6)))) (-5 *1 (-442 *5 *6 *7)) + (-5 *3 (-585 (-223 *5 *6))) (-4 *7 (-423))))) +(((*1 *2) (-12 (-5 *2 (-585 *3)) (-5 *1 (-997 *3)) (-4 *3 (-125))))) +(((*1 *2) (-12 (-5 *2 (-775 (-519))) (-5 *1 (-493)))) + ((*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1011))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1077)) (-4 *4 (-964)) (-4 *4 (-779)) - (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517)))) - (-4 *1 (-400 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-109)) (-4 *4 (-964)) (-4 *4 (-779)) - (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517)))) - (-4 *1 (-400 *4)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-982 *4 *5 *6)) (-4 *4 (-968)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-108)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-779)) - (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -1725 (-517)))) - (-4 *1 (-400 *3)))) + (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1111 *4 *5 *6 *3)) (-4 *4 (-511)) (-4 *5 (-727)) + (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-351)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-238))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-108)) (-4 *6 (-423)) (-4 *7 (-727)) + (-4 *8 (-782)) (-4 *9 (-982 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3257 (-585 *9)) (|:| -1890 *4) (|:| |ineq| (-585 *9)))) + (-5 *1 (-912 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) + (-4 *4 (-987 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-108)) (-4 *6 (-423)) (-4 *7 (-727)) + (-4 *8 (-782)) (-4 *9 (-982 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3257 (-585 *9)) (|:| -1890 *4) (|:| |ineq| (-585 *9)))) + (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-585 *9)) + (-4 *4 (-987 *6 *7 *8 *9))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-519)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-816 *3)) (|:| -1725 (-703)))) - (-5 *1 (-816 *3)) (-4 *3 (-1006)))) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-519))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-108)) (-5 *1 (-110)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-275)) (-5 *3 (-1082)) (-5 *2 (-108)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-275)) (-5 *3 (-110)) (-5 *2 (-108)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1082)) (-5 *2 (-108)) (-5 *1 (-558 *4)) (-4 *4 (-782)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-558 *4)) (-4 *4 (-782)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1011)) (-5 *2 (-108)) (-5 *1 (-814 *5 *3 *4)) + (-4 *3 (-813 *5)) (-4 *4 (-560 (-819 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-813 *5)) (-4 *5 (-1011)) + (-5 *2 (-108)) (-5 *1 (-814 *5 *6 *4)) (-4 *4 (-560 (-819 *5)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1890 *8))) + (-4 *7 (-982 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-912 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1890 *8))) + (-4 *7 (-982 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-1018 *4 *5 *6 *7 *8))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-4 *3 (-1011)) + (-5 *2 (-108))))) +(((*1 *2) + (-12 (-14 *4 (-705)) (-4 *5 (-1117)) (-5 *2 (-126)) + (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-335)) (-5 *2 (-126)) (-5 *1 (-300 *3 *4)) + (-4 *3 (-301 *4)))) + ((*1 *2) + (-12 (-5 *2 (-705)) (-5 *1 (-362 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-157)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -1725 (-703)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) - (-4 *7 (-873 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -1725 (-517)))) - (-5 *1 (-874 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-333) - (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) - (-15 -2082 (*7 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-509) (-134))) - (-5 *2 (-2 (|:| -3287 *3) (|:| -3302 *3))) (-5 *1 (-1128 *4 *3)) - (-4 *3 (-1134 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-123)) - (-4 *3 (-724))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-953)) - (-5 *1 (-679))))) + (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-519)) + (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-782)) (-4 *4 (-335)) (-4 *5 (-727)) + (-5 *2 (-519)) (-5 *1 (-471 *4 *5 *6 *7)) (-4 *7 (-876 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-904 *3)) (-4 *3 (-968)) (-5 *2 (-848)))) + ((*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-335)) (-5 *2 (-126))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) + (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) (-5 *2 (-957)) + (-5 *1 (-683))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-129)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-132))))) +(((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-51))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-1073 *3)) (-5 *1 (-40 *4 *3)) - (-4 *3 - (-13 (-333) (-273) - (-10 -8 (-15 -3858 ((-1029 *4 (-556 $)) $)) - (-15 -2082 ((-1029 *4 (-556 $)) $)) - (-15 -2262 ($ (-1029 *4 (-556 $)))))))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) - ((*1 *1) - (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) - (-4 *4 (-156)))) - ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-5 *1 (-1077)))) + (-12 (-4 *4 (-13 (-511) (-782))) (-5 *2 (-154 *5)) + (-5 *1 (-548 *4 *5 *3)) (-4 *5 (-13 (-402 *4) (-925) (-1103))) + (-4 *3 (-13 (-402 (-154 *4)) (-925) (-1103)))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-982 *5 *6 *7)) + (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) + (-4 *7 (-782)) (-5 *2 (-705)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-982 *5 *6 *7)) + (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) + (-4 *7 (-782)) (-5 *2 (-705)) (-5 *1 (-1052 *5 *6 *7 *8 *9))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-890 *4 *2)) - (-4 *2 (-1134 *4))))) -(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-142))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1134 *5)) - (-5 *2 - (-583 - (-2 (|:| -3700 (-623 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-623 *6))))) - (-5 *1 (-463 *5 *6 *7)) - (-5 *3 - (-2 (|:| -3700 (-623 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-623 *6)))) - (-4 *7 (-1134 *6))))) + (-12 (-5 *2 (-585 (-519))) (-5 *3 (-625 (-519))) (-5 *1 (-1021))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) - (-5 *1 (-688))))) -(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-634)))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-634))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-5 *3 (-848)) (-5 *2 (-1163 (-1163 (-519)))) (-5 *1 (-437))))) +(((*1 *2 *2) + (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) + (-4 *6 (-982 *3 *4 *5)) (-5 *1 (-567 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-987 *3 *4 *5 *6)) (-4 *2 (-1020 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-307 *3 *4 *5 *6)) (-4 *3 (-335)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-4 *6 (-314 *3 *4 *5)) + (-5 *2 (-385 *4 (-379 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1163 *6)) (-4 *6 (-13 (-381 *4 *5) (-959 *4))) + (-4 *4 (-916 *3)) (-4 *5 (-1139 *4)) (-4 *3 (-280)) + (-5 *1 (-385 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-335)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) + (-4 *4 (-1139 *3)) (-5 *2 - (-2 (|:| -1570 *3) (|:| |gap| (-703)) (|:| -2773 (-714 *3)) - (|:| -3292 (-714 *3)))) - (-5 *1 (-714 *3)) (-4 *3 (-964)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) + (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-625 *3)))) + (-5 *1 (-322 *3 *4 *5)) (-4 *5 (-381 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-519)) (-4 *4 (-1139 *3)) (-5 *2 - (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -2773 *1) - (|:| -3292 *1))) - (-4 *1 (-978 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) + (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-625 *3)))) + (-5 *1 (-702 *4 *5)) (-4 *5 (-381 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-321)) (-4 *3 (-1139 *4)) (-4 *5 (-1139 *3)) (-5 *2 - (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -2773 *1) - (|:| -3292 *1))) - (-4 *1 (-978 *3 *4 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-123)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-331 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-356 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-586 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) - (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) - (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2544 (-583 *9)))) - (-5 *3 (-583 *9)) (-4 *1 (-1106 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -2544 (-583 *8)))) - (-5 *3 (-583 *8)) (-4 *1 (-1106 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-556 *4)) (-5 *6 (-1077)) - (-4 *4 (-13 (-400 *7) (-27) (-1098))) - (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) + (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-625 *3)))) + (-5 *1 (-909 *4 *3 *5 *6)) (-4 *6 (-659 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-321)) (-4 *3 (-1139 *4)) (-4 *5 (-1139 *3)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) - (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006))))) -(((*1 *1 *2) - (-12 (-5 *2 (-845)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-333)) (-14 *5 (-913 *3 *4))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1060)) (-5 *1 (-92)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1060)) (-5 *1 (-92))))) + (-2 (|:| -2070 (-625 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-625 *3)))) + (-5 *1 (-1172 *4 *3 *5 *6)) (-4 *6 (-381 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) - (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) - (-5 *2 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-964)))) - ((*1 *2 *1) - (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) - (-4 *4 (-1134 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-659)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) - (-5 *2 (-107))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) - (-14 *4 (-703)) (-4 *5 (-156))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5)) - (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) - (-4 *6 (-725)) (-5 *1 (-848 *4 *5 *6 *7))))) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-5 *2 (-1065))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-129)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-132))))) +(((*1 *2) (-12 (-5 *2 (-768 (-519))) (-5 *1 (-493)))) + ((*1 *1) (-12 (-5 *1 (-768 *2)) (-4 *2 (-1011))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-585 *11)) (-5 *5 (-585 (-1078 *9))) + (-5 *6 (-585 *9)) (-5 *7 (-585 *12)) (-5 *8 (-585 (-705))) + (-4 *11 (-782)) (-4 *9 (-280)) (-4 *12 (-876 *9 *10 *11)) + (-4 *10 (-727)) (-5 *2 (-585 (-1078 *12))) + (-5 *1 (-643 *10 *11 *9 *12)) (-5 *3 (-1078 *12))))) (((*1 *2 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-790 *4 *5 *6 *7)) - (-4 *4 (-964)) (-14 *5 (-583 (-1077))) (-14 *6 (-583 *3)) - (-14 *7 *3))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-170))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-879 (-154 *4))) (-4 *4 (-157)) + (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-879 (-154 *5))) (-5 *4 (-848)) (-4 *5 (-157)) + (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-703)) (-4 *4 (-964)) (-4 *5 (-779)) (-4 *6 (-725)) - (-14 *8 (-583 *5)) (-5 *2 (-1163)) - (-5 *1 (-1168 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-873 *4 *6 *5)) - (-14 *9 (-583 *3)) (-14 *10 *3)))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) - (-5 *2 (-953)) (-5 *1 (-685))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) + (|partial| -12 (-5 *3 (-879 *4)) (-4 *4 (-968)) (-4 *4 (-560 (-351))) + (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-879 *5)) (-5 *4 (-848)) (-4 *5 (-968)) + (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) + (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-848)) (-4 *5 (-511)) + (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-379 (-879 (-154 *4)))) (-4 *4 (-511)) + (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-379 (-879 (-154 *5)))) (-5 *4 (-848)) + (-4 *5 (-511)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) + (-5 *1 (-719 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-288 *4)) (-4 *4 (-511)) (-4 *4 (-782)) + (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-288 *5)) (-5 *4 (-848)) (-4 *5 (-511)) + (-4 *5 (-782)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) + (-5 *1 (-719 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-288 (-154 *4))) (-4 *4 (-511)) (-4 *4 (-782)) + (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-288 (-154 *5))) (-5 *4 (-848)) (-4 *5 (-511)) + (-4 *5 (-782)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) + (-5 *1 (-719 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-879 *4)) (-4 *4 (-968)) (-4 *4 (-560 *2)) + (-5 *2 (-351)) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-879 *5)) (-5 *4 (-848)) (-4 *5 (-968)) + (-4 *5 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) + (-4 *4 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-848)) (-4 *5 (-511)) + (-4 *5 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-288 *4)) (-4 *4 (-511)) (-4 *4 (-782)) + (-4 *4 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-288 *5)) (-5 *4 (-848)) (-4 *5 (-511)) + (-4 *5 (-782)) (-4 *5 (-560 *2)) (-5 *2 (-351)) + (-5 *1 (-719 *5))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1163)) (-5 *1 (-189 *4)) - (-4 *4 - (-13 (-779) - (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $)) - (-15 -3012 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1163)) (-5 *1 (-189 *3)) - (-4 *3 - (-13 (-779) - (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $)) - (-15 -3012 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-467))))) + (-12 (-5 *3 (-519)) (-4 *1 (-1123 *4)) (-4 *4 (-968)) (-4 *4 (-511)) + (-5 *2 (-379 (-879 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-4 *1 (-1123 *4)) (-4 *4 (-968)) (-4 *4 (-511)) + (-5 *2 (-379 (-879 *4)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-705))) (-5 *3 (-108)) (-5 *1 (-1071 *4 *5)) + (-14 *4 (-848)) (-4 *5 (-968))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1011)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1011))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) - (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1149 *5)) (-4 *6 (-1134 *5)))) + (|partial| -12 (-5 *3 (-705)) (-4 *5 (-335)) (-5 *2 (-379 *6)) + (-5 *1 (-794 *5 *4 *6)) (-4 *4 (-1154 *5)) (-4 *6 (-1139 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1150 *5 *6 *7)) (-4 *5 (-333)) - (-14 *6 (-1077)) (-14 *7 *5) (-5 *2 (-377 (-1131 *6 *5))) - (-5 *1 (-792 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-705)) (-5 *4 (-1155 *5 *6 *7)) (-4 *5 (-335)) + (-14 *6 (-1082)) (-14 *7 *5) (-5 *2 (-379 (-1136 *6 *5))) + (-5 *1 (-795 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1150 *5 *6 *7)) (-4 *5 (-333)) - (-14 *6 (-1077)) (-14 *7 *5) (-5 *2 (-377 (-1131 *6 *5))) - (-5 *1 (-792 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1060)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-1006))))) + (|partial| -12 (-5 *3 (-705)) (-5 *4 (-1155 *5 *6 *7)) (-4 *5 (-335)) + (-14 *6 (-1082)) (-14 *7 *5) (-5 *2 (-379 (-1136 *6 *5))) + (-5 *1 (-795 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-790))))) (((*1 *2) - (-12 (-5 *2 (-623 (-834 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-845)) - (-14 *4 (-845)))) - ((*1 *2) - (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) - (-14 *4 - (-3 (-1073 *3) - (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024))))))))) - ((*1 *2) - (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) - (-14 *4 (-845))))) -(((*1 *1) - (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) - (-4 *4 (-156))))) -(((*1 *2 *1) - (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107))))) + (-12 (-4 *2 (-13 (-402 *3) (-925))) (-5 *1 (-251 *3 *2)) + (-4 *3 (-13 (-782) (-511))))) + ((*1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *1) (-5 *1 (-448))) ((*1 *1) (-4 *1 (-1103)))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) - (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) - (-14 *6 (-845))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-684))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-689))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2))))) + (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-201))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *1 *1 *1) (-5 *1 (-351))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1118 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-820 *2 *4)) - (-4 *2 (-1134 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) - (-5 *2 (-107))))) -(((*1 *1) (-5 *1 (-199))) ((*1 *1) (-5 *1 (-349)))) + (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) (((*1 *2 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) - (-5 *2 (-623 *4)))) - ((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) - (-4 *3 (-387 *4)))) - ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1079 (-377 (-517)))) - (-5 *1 (-166))))) -(((*1 *2 *3) - (-12 (-4 *4 (-833)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-388 (-1073 *7))) - (-5 *1 (-830 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5))) - (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) - (-4 *2 (-400 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077)))) - ((*1 *1 *1) (-4 *1 (-145)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517))) - (-5 *2 (-1158 (-517))) (-5 *1 (-1183 *4))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-199)) + (-12 (-5 *3 (-267 (-879 (-519)))) (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-867 *4)))) - (|:| |xValues| (-1001 *4)) (|:| |yValues| (-1001 *4)))) - (-5 *1 (-140)) (-5 *3 (-583 (-583 (-867 *4))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) - (-5 *2 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) - (-5 *1 (-316 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) - (-5 *1 (-1084 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) - (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-873 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1077)) - (-5 *2 (-517)) (-5 *1 (-1020 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) - (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1058 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) - (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) - (-5 *2 (-953)) (-5 *1 (-686))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1077)) (-4 *5 (-333)) (-5 *2 (-1058 (-1058 (-876 *5)))) - (-5 *1 (-1166 *5)) (-5 *4 (-1058 (-876 *5)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1098) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) (-4 *5 (-134)) - (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) - (-5 *2 (-286 *5)) (-5 *1 (-537 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (-5 *2 (-349)) (-5 *1 (-168))))) + (-2 (|:| |varOrder| (-585 (-1082))) + (|:| |inhom| (-3 (-585 (-1163 (-705))) "failed")) + (|:| |hom| (-585 (-1163 (-705)))))) + (-5 *1 (-212))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-5 *1 (-409))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)) + (-14 *4 (-705)) (-4 *5 (-157))))) (((*1 *2 *1) - (-12 (-5 *2 (-155)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) -(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-109)))) + (|partial| -12 (-4 *3 (-423)) (-4 *4 (-782)) (-4 *5 (-727)) + (-5 *2 (-108)) (-5 *1 (-911 *3 *4 *5 *6)) + (-4 *6 (-876 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-1006)))) - ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-408 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-985 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-5 *1 (-1077)))) + (-12 (-5 *2 (-108)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) + (-4 *4 (-13 (-1011) (-33)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1117)) (-5 *1 (-347 *4 *2)) + (-4 *2 (-13 (-345 *4) (-10 -7 (-6 -4222))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 (-832 *3))) (-4 *3 (-1011)) (-5 *1 (-831 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1078 *4)) (-4 *4 (-321)) (-5 *2 (-108)) + (-5 *1 (-329 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1163 *4)) (-4 *4 (-321)) (-5 *2 (-108)) + (-5 *1 (-489 *4))))) (((*1 *2 *3 *4) - (-12 - (-5 *3 - (-583 - (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) - (|:| |wcond| (-583 (-876 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) - (-5 *4 (-1060)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-873 *5 *7 *6)) - (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-517)) - (-5 *1 (-848 *5 *6 *7 *8))))) + (-12 (-5 *3 (-585 (-775 (-201)))) (-5 *4 (-201)) (-5 *2 (-585 *4)) + (-5 *1 (-242))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-685))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1073 *3)) - (-4 *3 (-13 (-400 *7) (-27) (-1098))) - (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1006)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) - (-5 *6 (-377 (-1073 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1098))) - (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1155 *2 *3 *4)) (-4 *2 (-968)) (-14 *3 (-1082)) + (-14 *4 *2)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-705)) (-5 *2 (-1168))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) + ((*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-558 *3)) (-5 *5 (-585 *3)) + (-4 *3 (-13 (-402 *6) (-27) (-1103))) + (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1006))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-377 (-517)))) - (-5 *2 - (-583 - (-2 (|:| |outval| *4) (|:| |outmult| (-517)) - (|:| |outvect| (-583 (-623 *4)))))) - (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-752)) (-14 *5 (-1077)) (-5 *2 (-583 (-1131 *5 *4))) - (-5 *1 (-1020 *4 *5)) (-5 *3 (-1131 *5 *4))))) -(((*1 *1) (-5 *1 (-735)))) -(((*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1161)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1161))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) - (-4 *4 (-13 (-779) (-509)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2)) - (-4 *3 (-13 (-779) (-509)))))) + (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1011))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1163 *4)) (-4 *4 (-581 (-519))) + (-5 *2 (-1163 (-519))) (-5 *1 (-1188 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-517)))) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-1071 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1042 (-201))) (-5 *1 (-1165)))) + ((*1 *2 *1) (-12 (-5 *2 (-1042 (-201))) (-5 *1 (-1165))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) (-5 *3 (-519)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) (-5 *3 (-519)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) (-5 *3 (-519))))) +(((*1 *2 *1) (-12 (-4 *1 (-321)) (-5 *2 (-705)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-374)) (-5 *2 (-705))))) +(((*1 *2 *1) (-12 (-5 *2 (-1034 (-519) (-558 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) - (-4 *2 (-1134 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) - (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-873 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5))))) + (-12 (-4 *3 (-916 *2)) (-4 *4 (-1139 *3)) (-4 *2 (-280)) + (-5 *1 (-385 *2 *3 *4 *5)) (-4 *5 (-13 (-381 *3 *4) (-959 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-511)) (-4 *3 (-782)) (-5 *2 (-1034 *3 (-558 *1))) + (-4 *1 (-402 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1034 (-519) (-558 (-462)))) (-5 *1 (-462)))) + ((*1 *2 *1) + (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-661) *4)) + (-5 *1 (-564 *3 *4 *2)) (-4 *3 (-37 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-661) *4)) + (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-652 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511))))) +(((*1 *1 *1) (-4 *1 (-91))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) +(((*1 *1) + (-12 (-4 *1 (-376)) (-2445 (|has| *1 (-6 -4212))) + (-2445 (|has| *1 (-6 -4204))))) + ((*1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1011)) (-4 *2 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-765 *2)) (-4 *2 (-782)))) + ((*1 *1 *1 *1) (-4 *1 (-782))) ((*1 *1) (-5 *1 (-1029)))) +(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1086))))) +(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801))))) +(((*1 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-694))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1011)) (-4 *5 (-1011)) + (-5 *2 (-1 *5)) (-5 *1 (-619 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) - ((*1 *2 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) - ((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-517))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-703)) (-4 *6 (-1006)) (-4 *7 (-824 *6)) - (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) - (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4195))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851)) - (-5 *1 (-849 *3)) (-4 *3 (-558 (-493))))) + (-12 (-5 *2 (-158 (-379 (-519)))) (-5 *1 (-113 *3)) (-14 *3 (-519)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1063 *2)) (-4 *2 (-280)) (-5 *1 (-158 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-379 *3)) (-4 *3 (-280)) (-5 *1 (-158 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-158 (-519))) (-5 *1 (-700 *3)) (-4 *3 (-376)))) + ((*1 *2 *1) + (-12 (-5 *2 (-158 (-379 (-519)))) (-5 *1 (-798 *3)) (-14 *3 (-519)))) + ((*1 *2 *1) + (-12 (-14 *3 (-519)) (-5 *2 (-158 (-379 (-519)))) + (-5 *1 (-799 *3 *4)) (-4 *4 (-796 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1011)) (-5 *1 (-832 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1034 (-519) (-558 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *1) + (-12 (-4 *3 (-280)) (-4 *4 (-916 *3)) (-4 *5 (-1139 *4)) + (-5 *2 (-1163 *6)) (-5 *1 (-385 *3 *4 *5 *6)) + (-4 *6 (-13 (-381 *4 *5) (-959 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-968)) (-4 *3 (-782)) (-5 *2 (-1034 *3 (-558 *1))) + (-4 *1 (-402 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1034 (-519) (-558 (-462)))) (-5 *1 (-462)))) + ((*1 *2 *1) + (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-564 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-661) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-157)) (-4 *2 (-652 *3)) (-5 *1 (-601 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-661) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3)))) + ((*1 *1 *1) (-4 *1 (-1106)))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) + (-4 *3 (-13 (-1011) (-33)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *1) (-5 *1 (-758)))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-691))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *4 (-801)) + (-5 *5 (-848)) (-5 *6 (-585 (-238))) (-5 *2 (-1164)) + (-5 *1 (-1167)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) (-5 *2 (-851)) (-5 *1 (-849 *3)) - (-4 *3 (-558 (-493))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-851)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) - (-5 *1 (-851))))) + (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *4 (-585 (-238))) + (-5 *2 (-1164)) (-5 *1 (-1167))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-511)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) + (-5 *1 (-1108 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-980)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4221)) (-4 *1 (-211 *3)) + (-4 *3 (-1011)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-256 *3)) (-4 *3 (-1117))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3)) - (-4 *3 (-13 (-333) (-134) (-955 (-517)))) (-5 *1 (-521 *3 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1060)) (-5 *1 (-909)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1001 *4)) (-4 *4 (-1112)) - (-5 *1 (-999 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-890 *4 *3)) - (-4 *3 (-1134 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040))))) -(((*1 *2 *3) - (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) - (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1134 *2))))) -(((*1 *1) (-5 *1 (-755)))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) - (-4 *4 (-13 (-779) (-509)))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) - (-5 *1 (-850)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) - (-5 *1 (-850)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) - (-5 *1 (-851)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-867 (-199)) (-199))) (-5 *3 (-1001 (-199))) - (-5 *1 (-851))))) -(((*1 *2 *2) (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1112)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) + (-12 (-4 *3 (-13 (-335) (-780))) (-5 *1 (-164 *3 *2)) + (-4 *2 (-1139 (-154 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3)))) + ((*1 *1 *1) (-4 *1 (-1106)))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) + (-5 *2 (-957)) (-5 *1 (-691))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |k| (-610 *3)) (|:| |c| *4)))) + (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) + (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-585 *8)) (-5 *3 (-1 (-108) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) + (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-901 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-74 G JACOBG JACGEP)))) + (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-684))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *1)) (-5 *4 (-1158 *1)) (-4 *1 (-579 *5)) - (-4 *5 (-964)) - (-5 *2 (-2 (|:| -3725 (-623 *5)) (|:| |vec| (-1158 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-964)) - (-5 *2 (-623 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517))))) - (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278))))) + (-12 (-4 *5 (-1011)) (-4 *3 (-827 *5)) (-5 *2 (-625 *3)) + (-5 *1 (-627 *5 *3 *6 *4)) (-4 *6 (-345 *3)) + (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4221))))))) +(((*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165)))) + ((*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-1165))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-379 (-879 *4))) (-5 *3 (-1082)) + (-4 *4 (-13 (-511) (-959 (-519)) (-135))) (-5 *1 (-525 *4))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-110)) (-5 *4 (-705)) (-4 *5 (-423)) (-4 *5 (-782)) + (-4 *5 (-959 (-519))) (-4 *5 (-511)) (-5 *1 (-40 *5 *2)) + (-4 *2 (-402 *5)) + (-4 *2 + (-13 (-335) (-275) + (-10 -8 (-15 -2855 ((-1034 *5 (-558 $)) $)) + (-15 -2866 ((-1034 *5 (-558 $)) $)) + (-15 -2217 ($ (-1034 *5 (-558 $)))))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3)))) + ((*1 *1 *1) (-4 *1 (-1106)))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) - (-5 *2 - (-2 (|:| -1725 (-703)) (|:| -1570 *5) (|:| |radicand| (-583 *5)))) - (-5 *1 (-290 *5)) (-5 *4 (-703)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-921)) (-5 *2 (-517))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-813 *5 *3)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) - (-4 *3 (-150 *6)) (-4 (-876 *6) (-810 *5)) - (-4 *6 (-13 (-810 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-813 *4 *1)) (-5 *3 (-816 *4)) (-4 *1 (-810 *4)) - (-4 *4 (-1006)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-813 *5 *6)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) - (-4 *6 (-13 (-1006) (-955 *3))) (-4 *3 (-810 *5)) - (-5 *1 (-855 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006)) - (-4 *3 (-13 (-400 *6) (-558 *4) (-810 *5) (-955 (-556 $)))) - (-5 *4 (-816 *5)) (-4 *6 (-13 (-509) (-779) (-810 *5))) - (-5 *1 (-856 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-813 (-517) *3)) (-5 *4 (-816 (-517))) (-4 *3 (-502)) - (-5 *1 (-857 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-813 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1006)) - (-4 *6 (-13 (-779) (-955 (-556 $)) (-558 *4) (-810 *5))) - (-5 *4 (-816 *5)) (-5 *1 (-858 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-809 *5 *6 *3)) (-5 *4 (-816 *5)) (-4 *5 (-1006)) - (-4 *6 (-810 *5)) (-4 *3 (-603 *6)) (-5 *1 (-859 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-813 *6 *3) *8 (-816 *6) (-813 *6 *3))) - (-4 *8 (-779)) (-5 *2 (-813 *6 *3)) (-5 *4 (-816 *6)) - (-4 *6 (-1006)) (-4 *3 (-13 (-873 *9 *7 *8) (-558 *4))) - (-4 *7 (-725)) (-4 *9 (-13 (-964) (-779) (-810 *6))) - (-5 *1 (-860 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006)) - (-4 *3 (-13 (-873 *8 *6 *7) (-558 *4))) (-5 *4 (-816 *5)) - (-4 *7 (-810 *5)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *8 (-13 (-964) (-779) (-810 *5))) (-5 *1 (-860 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-813 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-912 *6)) - (-4 *6 (-13 (-509) (-810 *5) (-558 *4))) (-5 *4 (-816 *5)) - (-5 *1 (-863 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-813 *5 (-1077))) (-5 *3 (-1077)) (-5 *4 (-816 *5)) - (-4 *5 (-1006)) (-5 *1 (-864 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-583 (-816 *7))) (-5 *5 (-1 *9 (-583 *9))) - (-5 *6 (-1 (-813 *7 *9) *9 (-816 *7) (-813 *7 *9))) (-4 *7 (-1006)) - (-4 *9 (-13 (-964) (-558 (-816 *7)) (-955 *8))) (-5 *2 (-813 *7 *9)) - (-5 *3 (-583 *9)) (-4 *8 (-13 (-964) (-779))) - (-5 *1 (-865 *7 *8 *9))))) -(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1085 (-583 *4))) (-4 *4 (-779)) - (-5 *2 (-583 (-583 *4))) (-5 *1 (-1084 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-51))))) + (-12 (-5 *3 (-585 (-714 *5 (-792 *6)))) (-5 *4 (-108)) (-4 *5 (-423)) + (-14 *6 (-585 (-1082))) (-5 *2 (-585 (-965 *5 *6))) + (-5 *1 (-570 *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-511)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-901 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-558 (-816 *3))) (-4 *3 (-810 *3)) - (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-558 (-816 *3))) (-4 *2 (-810 *3)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-890 *2 *4)) - (-4 *4 (-1134 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-787))))) + (-12 (-4 *3 (-280)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) + (-5 *1 (-1033 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) - (-4 *4 (-13 (-779) (-509)))))) -(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5))))) + (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-169)) (-5 *3 (-519)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-717 *2)) (-4 *2 (-157)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-869)) (-5 *3 (-519))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-201)) + (-5 *2 (-957)) (-5 *1 (-690)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-65 DOT)))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-360)) + (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-690))))) (((*1 *2 *3) - (-12 (-5 *3 (-1073 *7)) (-4 *7 (-873 *6 *4 *5)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-964)) (-5 *2 (-1073 *6)) - (-5 *1 (-291 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) - (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-897 *5 *6 *7 *8))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-827 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-333)) (-4 *3 (-964)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1))) - (-4 *1 (-781 *3))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) - (-5 *2 (-953)) (-5 *1 (-690))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1041)))) -(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-109))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-845)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-798)) - (-5 *2 (-1163)) (-5 *1 (-1159))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) + (-12 (-5 *3 (-585 (-451 *4 *5))) (-14 *4 (-585 (-1082))) + (-4 *5 (-423)) (-5 *2 (-585 (-223 *4 *5))) (-5 *1 (-573 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) - (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-377 (-876 (-153 (-517)))))) - (-5 *4 (-583 (-1077))) (-5 *2 (-583 (-583 (-153 *5)))) - (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777)))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-703)) - (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) - (-5 *1 (-220 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) - (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) (-4 *4 (-421)) (-4 *4 (-779)) - (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4))))) -(((*1 *1 *1) (-4 *1 (-502)))) -(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-623 *4)) (-5 *3 (-845)) (|has| *4 (-6 (-4197 "*"))) - (-4 *4 (-964)) (-5 *1 (-946 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-845)) - (|has| *4 (-6 (-4197 "*"))) (-4 *4 (-964)) (-5 *1 (-946 *4))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1161))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-964)) - (-4 *5 (-779)) (-5 *2 (-876 *4)))) + (-12 (-5 *3 (-1078 *1)) (-5 *4 (-1082)) (-4 *1 (-27)) + (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1078 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-879 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-964)) - (-4 *5 (-779)) (-5 *2 (-876 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-1149 *4)) (-4 *4 (-964)) - (-5 *2 (-876 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-1149 *4)) (-4 *4 (-964)) - (-5 *2 (-876 *4))))) + (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-585 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *2 (-585 *1)) (-4 *1 (-29 *3))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))) - (-5 *2 - (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) - (|:| |expense| (-349)) (|:| |accuracy| (-349)) - (|:| |intermediateResults| (-349)))) - (-5 *1 (-735))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1098) (-882)))))) -(((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *4 *5)) + (-4 *5 (-13 (-27) (-1103) (-402 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *4 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-379 (-519))) + (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *5 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-267 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5))) + (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-267 *3)) (-5 *5 (-379 (-519))) + (-4 *3 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-519))) (-5 *4 (-267 *6)) + (-4 *6 (-13 (-27) (-1103) (-402 *5))) + (-4 *5 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-519))) (-5 *4 (-267 *7)) (-5 *5 (-1130 (-519))) + (-4 *7 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-5 *6 (-1130 (-519))) + (-4 *3 (-13 (-27) (-1103) (-402 *7))) + (-4 *7 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-379 (-519)))) (-5 *4 (-267 *8)) + (-5 *5 (-1130 (-379 (-519)))) (-5 *6 (-379 (-519))) + (-4 *8 (-13 (-27) (-1103) (-402 *7))) + (-4 *7 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1082)) (-5 *5 (-267 *3)) (-5 *6 (-1130 (-379 (-519)))) + (-5 *7 (-379 (-519))) (-4 *3 (-13 (-27) (-1103) (-402 *8))) + (-4 *8 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-51)) (-5 *1 (-430 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1063 (-2 (|:| |k| (-519)) (|:| |c| *3)))) + (-4 *3 (-968)) (-5 *1 (-544 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-545 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1063 (-2 (|:| |k| (-519)) (|:| |c| *3)))) + (-4 *3 (-968)) (-4 *1 (-1123 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1073 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) - (-4 *2 (-156))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-297 *3)))) + (-12 (-5 *2 (-705)) + (-5 *3 (-1063 (-2 (|:| |k| (-379 (-519))) (|:| |c| *4)))) + (-4 *4 (-968)) (-4 *1 (-1144 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-480 *3 *4)) - (-14 *4 (-517))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-128)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-131))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109))))) -(((*1 *2) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1060)) - (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) - (-4 *4 (-319))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) - (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) - (-4 *3 (-13 (-1098) (-29 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1073 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) - (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) - (-5 *1 (-897 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-867 *4))) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) -(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) - ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160))))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-4 *1 (-1154 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1063 (-2 (|:| |k| (-705)) (|:| |c| *3)))) + (-4 *3 (-968)) (-4 *1 (-1154 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) - (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) - (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *1 (-897 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) - (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-953)) - (-5 *1 (-681))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-867 *5)) (-5 *3 (-703)) (-4 *5 (-964)) - (-5 *1 (-1066 *4 *5)) (-14 *4 (-845))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3)))) + ((*1 *1 *1) (-4 *1 (-1106)))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300))))) -(((*1 *1) (-5 *1 (-1159)))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276))))) -(((*1 *2 *1) - (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-973)) (-4 *3 (-1098)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) - ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) - ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851))))) + (-12 (-5 *2 (-154 *4)) (-5 *1 (-164 *4 *3)) + (-4 *4 (-13 (-335) (-780))) (-4 *3 (-1139 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-377 (-876 (-517))))) (-5 *2 (-583 (-286 (-517)))) - (-5 *1 (-949))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-421)) (-4 *4 (-509)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2589 *4))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))) - (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-618 *2)) (-4 *2 (-1011)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-585 *5) (-585 *5))) (-5 *4 (-519)) + (-5 *2 (-585 *5)) (-5 *1 (-618 *5)) (-4 *5 (-1011))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -1931 *7) (|:| |sol?| (-108))) + (-519) *7)) + (-5 *6 (-585 (-379 *8))) (-4 *7 (-335)) (-4 *8 (-1139 *7)) + (-5 *3 (-379 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-529 *7 *8))))) +(((*1 *1 *1 *1) (-4 *1 (-600))) ((*1 *1 *1 *1) (-5 *1 (-1029)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-585 (-879 *4))) (-5 *3 (-585 (-1082))) (-4 *4 (-423)) + (-5 *1 (-845 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-329 *3)) (-4 *3 (-321))))) (((*1 *2 *3) - (-12 (-4 *4 (-421)) - (-5 *2 - (-583 - (-2 (|:| |eigval| (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4)))) - (|:| |eigmult| (-703)) - (|:| |eigvec| (-583 (-623 (-377 (-876 *4)))))))) - (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-876 *4))))))) + (-12 (-5 *3 (-1163 (-288 (-201)))) (-5 *2 (-1163 (-288 (-351)))) + (-5 *1 (-278))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1114)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1114))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-333)) (-4 *5 (-509)) - (-5 *2 - (-2 (|:| |minor| (-583 (-845))) (|:| -3817 *3) - (|:| |minors| (-583 (-583 (-845)))) (|:| |ops| (-583 *3)))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-845)) (-4 *3 (-593 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-949))))) -(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| -3896 *4) (|:| -1191 (-517))))) - (-4 *4 (-1134 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1058 (-876 *4)) (-1058 (-876 *4)))) - (-5 *1 (-1166 *4)) (-4 *4 (-333))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *3 (-1163 (-288 (-201)))) (-5 *2 - (-583 - (-2 - (|:| -2576 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (|:| -1846 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1058 (-199))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3177 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-512)))) - ((*1 *2 *1) - (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112)) - (-5 *2 (-583 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) - (-5 *2 (-2 (|:| |num| (-1158 *4)) (|:| |den| *4)))))) -(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502))))) + (-2 (|:| |additions| (-519)) (|:| |multiplications| (-519)) + (|:| |exponentiations| (-519)) (|:| |functionCalls| (-519)))) + (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-51))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1049 *3))))) -(((*1 *2) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1161)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1161))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517))))) -(((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-387 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2)) - (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196))))))) -(((*1 *2) - (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-1006))))) -(((*1 *1) (-5 *1 (-128)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159))))) -(((*1 *2 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-1073 *4)) (-5 *1 (-487 *4)) - (-4 *4 (-319))))) -(((*1 *2 *3) - (-12 (-5 *3 (-517)) (|has| *1 (-6 -4186)) (-4 *1 (-374)) - (-5 *2 (-845))))) -(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-953))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-583 (-1073 *7))) (-5 *3 (-1073 *7)) - (-4 *7 (-873 *5 *6 *4)) (-4 *5 (-833)) (-4 *6 (-725)) - (-4 *4 (-779)) (-5 *1 (-830 *5 *6 *4 *7))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-782)))) + ((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3)))) + ((*1 *1 *1) (-4 *1 (-1106)))) (((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) - (-5 *2 (-107)))) + (|partial| -12 + (-4 *3 (-13 (-782) (-959 (-519)) (-581 (-519)) (-423))) + (-5 *2 (-775 *4)) (-5 *1 (-285 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1103) (-402 *3))) (-14 *5 (-1082)) + (-14 *6 *4))) ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-775))))) -(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1098)))) - ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779))))) -(((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779))))) + (|partial| -12 + (-4 *3 (-13 (-782) (-959 (-519)) (-581 (-519)) (-423))) + (-5 *2 (-775 *4)) (-5 *1 (-1149 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1103) (-402 *3))) (-14 *5 (-1082)) + (-14 *6 *4)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1139 *5)) + (-4 *5 (-13 (-27) (-402 *4))) + (-4 *4 (-13 (-782) (-511) (-959 (-519)))) + (-4 *7 (-1139 (-379 *6))) (-5 *1 (-507 *4 *5 *6 *7 *2)) + (-4 *2 (-314 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-800 (-891 *3) (-891 *3))) (-5 *1 (-891 *3)) + (-4 *3 (-892))))) +(((*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-757))))) +(((*1 *1) (-5 *1 (-302)))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-830 *3)) (-4 *3 (-1011)) (-5 *2 (-1013 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1011)) (-5 *2 (-1013 (-585 *4))) (-5 *1 (-831 *4)) + (-5 *3 (-585 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1011)) (-5 *2 (-1013 (-1013 *4))) (-5 *1 (-831 *4)) + (-5 *3 (-1013 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1013 *3)) (-5 *1 (-831 *3)) (-4 *3 (-1011))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-623 (-377 (-876 (-517))))) - (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-949))))) + (-12 (-5 *3 (-705)) (-5 *2 (-625 (-879 *4))) (-5 *1 (-950 *4)) + (-4 *4 (-968))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-944 (-772 (-517)))) - (-5 *3 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-964)) - (-5 *1 (-542 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) - (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1006)) - (-4 *2 (-1112))))) -(((*1 *2) - (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) + (-12 (-5 *2 (-379 (-519))) (-5 *1 (-544 *3)) (-4 *3 (-37 *2)) + (-4 *3 (-968))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-556 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-968)) (-4 *3 (-782)) + (-4 *5 (-241 *3)) (-4 *6 (-727)) (-5 *2 (-585 (-705))))) + ((*1 *2 *1) + (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-782)) + (-4 *5 (-241 *4)) (-4 *6 (-727)) (-5 *2 (-585 (-705)))))) (((*1 *2 *2) - (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) - (-5 *1 (-158 *3))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -1800 (-583 (-787))) (|:| -3505 (-583 (-787))) - (|:| |presup| (-583 (-787))) (|:| -1710 (-583 (-787))) - (|:| |args| (-583 (-787))))) - (-5 *1 (-1077)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1077))))) -(((*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) - ((*1 *1 *1) - (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) - (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-845)))) - ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) - ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) - ((*1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964))))) -(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-684))))) -(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-973)))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-303 *2)) (-4 *2 (-782)))) ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-973)))) - ((*1 *1 *1) (-4 *1 (-777))) - ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156)) (-4 *2 (-973)))) - ((*1 *1 *1) (-4 *1 (-973))) ((*1 *1 *1) (-4 *1 (-1041)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) - (-4 *6 (-725)) (-5 *2 (-377 (-876 *4))) (-5 *1 (-848 *4 *5 *6 *3)) - (-4 *3 (-873 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-873 *4 *6 *5)) - (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) - (-4 *6 (-725)) (-5 *2 (-623 (-377 (-876 *4)))) - (-5 *1 (-848 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5)) - (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) - (-4 *6 (-725)) (-5 *2 (-583 (-377 (-876 *4)))) - (-5 *1 (-848 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-509) (-779))) - (-4 *2 (-13 (-400 (-153 *4)) (-921) (-1098))) - (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-921) (-1098)))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-517)) (-5 *1 (-215)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-517)) (-5 *1 (-215))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-845)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703))))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3)))) + ((*1 *1 *1) (-4 *1 (-1106)))) +(((*1 *2 *1) + (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-782)) + (-4 *5 (-241 *4)) (-4 *6 (-727)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) - (-4 *4 (-13 (-779) (-509)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) - (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) + (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) + (-5 *2 (-154 (-288 *4))) (-5 *1 (-166 *4 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 (-154 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-154 *3)) (-5 *1 (-1107 *4 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-955 (-517))) (-4 *3 (-13 (-779) (-509))) - (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) - ((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-1073 *4)) (-5 *1 (-149 *3 *4)) - (-4 *3 (-150 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-964)) (-4 *1 (-273)))) - ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1073 *3)))) - ((*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-777) (-333))) - (-4 *2 (-1134 *3))))) -(((*1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517))))) - ((*1 *2 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-377 (-876 (-517))))) (-5 *4 (-583 (-1077))) - (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) - (-4 *5 (-13 (-777) (-333))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) - (-4 *4 (-13 (-777) (-333)))))) + (|partial| -12 (-5 *2 (-379 *4)) (-4 *4 (-1139 *3)) + (-4 *3 (-13 (-335) (-135) (-959 (-519)))) (-5 *1 (-523 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-421)) + (-12 (-5 *3 (-451 *4 *5)) (-14 *4 (-585 (-1082))) (-4 *5 (-968)) + (-5 *2 (-223 *4 *5)) (-5 *1 (-871 *4 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-585 (-1078 *7))) (-5 *3 (-1078 *7)) + (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-836)) (-4 *5 (-727)) + (-4 *6 (-782)) (-5 *1 (-833 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-585 (-1078 *5))) (-5 *3 (-1078 *5)) + (-4 *5 (-1139 *4)) (-4 *4 (-836)) (-5 *1 (-834 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1096))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) + (-4 *4 (-157)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *1 (-144 *4 *2)) + (-4 *2 (-402 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1004 *2)) (-4 *2 (-402 *4)) (-4 *4 (-13 (-782) (-511))) + (-5 *1 (-144 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-146)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1082)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-436 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-5 *1 (-1181 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-157))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-583 - (-2 (|:| |eigval| (-3 (-377 (-876 *4)) (-1067 (-1077) (-876 *4)))) - (|:| |geneigvec| (-583 (-623 (-377 (-876 *4)))))))) - (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-876 *4))))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) + (-2 (|:| -1286 *3) (|:| |coef1| (-716 *3)) (|:| |coef2| (-716 *3)))) + (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-420 *4 *5 *6 *2))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-870 (-201))) (-5 *4 (-801)) (-5 *2 (-1168)) + (-5 *1 (-439)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-968)) (-4 *1 (-904 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-870 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-968)) (-4 *1 (-1043 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-870 *3)) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-870 (-201))) (-5 *1 (-1114)) (-5 *3 (-201))))) +(((*1 *1 *1) (-4 *1 (-571))) ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *1 *1) (-5 *1 (-976)))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-692))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1073 (-1073 *5)))) - (-5 *1 (-1111 *5)) (-5 *3 (-1073 (-1073 *5)))))) -(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) - ((*1 *1 *1) (-4 *1 (-1046)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) - (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1084 *5))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925) (-1103)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) + ((*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) - (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-897 *3 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-1099 *2)) (-4 *2 (-1006))))) + (|partial| -12 (-4 *3 (-335)) (-5 *1 (-823 *2 *3)) + (-4 *2 (-1139 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-51)) (-5 *1 (-764))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-585 *11)) + (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1890 *11)))))) + (-5 *6 (-705)) + (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1890 *11)))) + (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-982 *7 *8 *9)) + (-4 *11 (-987 *7 *8 *9 *10)) (-4 *7 (-423)) (-4 *8 (-727)) + (-4 *9 (-782)) (-5 *1 (-985 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-585 *11)) + (|:| |todo| (-585 (-2 (|:| |val| *3) (|:| -1890 *11)))))) + (-5 *6 (-705)) + (-5 *2 (-585 (-2 (|:| |val| (-585 *10)) (|:| -1890 *11)))) + (-5 *3 (-585 *10)) (-5 *4 (-585 *11)) (-4 *10 (-982 *7 *8 *9)) + (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-423)) (-4 *8 (-727)) + (-4 *9 (-782)) (-5 *1 (-1052 *7 *8 *9 *10 *11))))) +(((*1 *1 *1) (-12 (-5 *1 (-891 *2)) (-4 *2 (-892))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-833)) (-4 *6 (-725)) - (-4 *8 (-873 *5 *6 *7)) (-5 *2 (-388 (-1073 *8))) - (-5 *1 (-830 *5 *6 *7 *8)) (-5 *4 (-1073 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5))) - (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5))))) -(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1018)) (-5 *2 (-845))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-517)) (-5 *5 (-1060)) (-5 *6 (-623 (-199))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682))))) -(((*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-964))))) -(((*1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-338)))) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 *4)) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-585 (-879 *6))) (-5 *4 (-585 (-1082))) (-4 *6 (-423)) + (-5 *2 (-585 (-585 *7))) (-5 *1 (-497 *6 *7 *5)) (-4 *7 (-335)) + (-4 *5 (-13 (-335) (-780)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) (-5 *3 (-519))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *8 (-982 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-585 *8)) (|:| |towers| (-585 (-949 *5 *6 *7 *8))))) + (-5 *1 (-949 *5 *6 *7 *8)) (-5 *3 (-585 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *8 (-982 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-585 *8)) + (|:| |towers| (-585 (-1053 *5 *6 *7 *8))))) + (-5 *1 (-1053 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-508))))) +(((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1168)) (-5 *1 (-1045)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-790))) (-5 *2 (-1168)) (-5 *1 (-1045))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-511)) + (-4 *8 (-876 *7 *5 *6)) + (-5 *2 (-2 (|:| -1690 (-705)) (|:| -3031 *3) (|:| |radicand| *3))) + (-5 *1 (-880 *5 *6 *7 *8 *3)) (-5 *4 (-705)) + (-4 *3 + (-13 (-335) + (-10 -8 (-15 -2855 (*8 $)) (-15 -2866 (*8 $)) (-15 -2217 ($ *8)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *1 *2) (-12 (-5 *2 (-848)) (-4 *1 (-340)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4)) - (-4 *4 (-319)))) + (-12 (-5 *3 (-848)) (-5 *2 (-1163 *4)) (-5 *1 (-489 *4)) + (-4 *4 (-321)))) ((*1 *2 *1) - (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1006)) + (-12 (-4 *2 (-782)) (-5 *1 (-648 *2 *3 *4)) (-4 *3 (-1011)) (-14 *4 - (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *3)) - (-2 (|:| -2803 *2) (|:| -1725 *3))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) - (-4 *7 (-873 *3 *5 *6)) - (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *8) (|:| |radicand| *8))) - (-5 *1 (-877 *5 *6 *3 *7 *8)) (-5 *4 (-703)) - (-4 *8 - (-13 (-333) - (-10 -8 (-15 -3858 (*7 $)) (-15 -2082 (*7 $)) (-15 -2262 ($ *7)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-502)))) -(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) - (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) - (-5 *1 (-897 *6 *7 *8 *9))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) - (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) - (-4 *6 (-421))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) - (-5 *2 (-623 (-199))) (-5 *1 (-240))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) - (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-873 *6 *5 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1112)) (-5 *2 (-703))))) -(((*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-703)) - (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) - (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1077))))) - (-5 *6 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1010)) - (-5 *1 (-367)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1077))))) - (-5 *6 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1010)) - (-5 *1 (-367)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-583 (-1077))) (-5 *5 (-1080)) (-5 *3 (-1077)) - (-5 *2 (-1010)) (-5 *1 (-367))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) - (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) - (-4 *2 (-1149 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) - (-4 *5 (-1134 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) - (-4 *2 (-1149 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) - (-5 *1 (-499 *4 *2)) (-4 *2 (-1149 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) - (-5 *1 (-1054 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-993 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-993 *2))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-779)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-889 *2)) (-4 *2 (-779))))) + (-1 (-108) (-2 (|:| -2770 *2) (|:| -1690 *3)) + (-2 (|:| -2770 *2) (|:| -1690 *3))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1077)) (-4 *5 (-1116)) (-4 *6 (-1134 *5)) - (-4 *7 (-1134 (-377 *6))) (-5 *2 (-583 (-876 *5))) - (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1077)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1116)) - (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) (-4 *4 (-333)) - (-5 *2 (-583 (-876 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) - (-5 *1 (-158 *3))))) + (-12 (-4 *4 (-968)) (-5 *2 (-519)) (-5 *1 (-414 *4 *3 *5)) + (-4 *3 (-1139 *4)) + (-4 *5 (-13 (-376) (-959 *4) (-335) (-1103) (-258)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-705)) (-5 *2 (-108)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1118 *3)) (-4 *3 (-1011)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1011)) (-5 *2 (-108)) + (-5 *1 (-1118 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) + ((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *1 *1) (-4 *1 (-1046)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-333 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-5 *2 (-705)) (-5 *1 (-358 *4)) (-4 *4 (-1011)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-4 *2 (-23)) (-5 *1 (-588 *4 *2 *5)) + (-4 *4 (-1011)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-5 *2 (-705)) (-5 *1 (-754 *4)) (-4 *4 (-782))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-898))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-770)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-769)))) - ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-953)) (-5 *1 (-769)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) - (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-953)) - (-5 *1 (-769)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) - (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-953)) (-5 *1 (-769)))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *7)) (-4 *7 (-782)) + (-4 *8 (-876 *5 *6 *7)) (-4 *5 (-511)) (-4 *6 (-727)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1163 (-379 *8)) "failed")) + (|:| -2070 (-585 (-1163 (-379 *8)))))) + (-5 *1 (-608 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-1082))) (-5 *2 (-1168)) (-5 *1 (-1085)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-1082))) (-5 *3 (-1082)) (-5 *2 (-1168)) + (-5 *1 (-1085)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-585 (-1082))) (-5 *3 (-1082)) (-5 *2 (-1168)) + (-5 *1 (-1085))))) +(((*1 *2 *3) + (-12 (-5 *3 (-288 *4)) (-4 *4 (-13 (-763) (-782) (-968))) + (-5 *2 (-1065)) (-5 *1 (-761 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-953)) - (-5 *1 (-769)))) + (-12 (-5 *3 (-288 *5)) (-5 *4 (-108)) + (-4 *5 (-13 (-763) (-782) (-968))) (-5 *2 (-1065)) + (-5 *1 (-761 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) - (-5 *2 (-953)) (-5 *1 (-769))))) -(((*1 *1) (-5 *1 (-1080)))) -(((*1 *2 *1) + (-12 (-5 *3 (-757)) (-5 *4 (-288 *5)) + (-4 *5 (-13 (-763) (-782) (-968))) (-5 *2 (-1168)) + (-5 *1 (-761 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-757)) (-5 *4 (-288 *6)) (-5 *5 (-108)) + (-4 *6 (-13 (-763) (-782) (-968))) (-5 *2 (-1168)) + (-5 *1 (-761 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-763)) (-5 *2 (-1065)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *3 (-108)) (-5 *2 (-1065)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-763)) (-5 *3 (-757)) (-5 *2 (-1168)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-763)) (-5 *3 (-757)) (-5 *4 (-108)) (-5 *2 (-1168))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-314 *4 *3 *5)) (-4 *4 (-1121)) (-4 *3 (-1139 *4)) + (-4 *5 (-1139 (-379 *3))) (-5 *2 (-108)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108))))) +(((*1 *1 *1) (-4 *1 (-571))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925) (-1103)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-583 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-517))))) - (-5 *1 (-388 *3)) (-4 *3 (-509)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1134 *3)) - (-5 *2 (-583 (-1073 *3))) (-5 *1 (-463 *3 *5 *6)) - (-4 *6 (-1134 *5))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) - (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) - (-5 *1 (-720)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) - (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) - (-5 *1 (-720))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) - (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) - (-5 *1 (-681))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) - (-5 *2 (-787)) (-5 *1 (-31 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-583 *6)) (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) - (-4 *3 (-509))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-873 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) - (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-779)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1134 *4)) - (-5 *1 (-846 *4 *2))))) + (-2 (|:| -2292 (-716 *3)) (|:| |coef1| (-716 *3)) + (|:| |coef2| (-716 *3)))) + (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-511)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *2 (-2 (|:| -2292 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-982 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) - (|:| |explanations| (-583 (-1060))))) - (-5 *2 (-953)) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -3661 (-349)) (|:| -2981 (-1060)) - (|:| |explanations| (-583 (-1060))) (|:| |extra| (-953)))) - (-5 *2 (-953)) (-5 *1 (-276))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) + (-585 + (-2 (|:| -3229 (-705)) + (|:| |eqns| + (-585 + (-2 (|:| |det| *7) (|:| |rows| (-585 (-519))) + (|:| |cols| (-585 (-519)))))) + (|:| |fgb| (-585 *7))))) + (-4 *7 (-876 *4 *6 *5)) (-4 *4 (-13 (-280) (-135))) + (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-705)) + (-5 *1 (-851 *4 *5 *6 *7))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-335)) (-4 *3 (-1139 *4)) (-4 *5 (-1139 (-379 *3))) + (-4 *1 (-307 *4 *3 *5 *2)) (-4 *2 (-314 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-519)) (-4 *2 (-335)) (-4 *4 (-1139 *2)) + (-4 *5 (-1139 (-379 *4))) (-4 *1 (-307 *2 *4 *5 *6)) + (-4 *6 (-314 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-335)) (-4 *3 (-1139 *2)) (-4 *4 (-1139 (-379 *3))) + (-4 *1 (-307 *2 *3 *4 *5)) (-4 *5 (-314 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-335)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) + (-4 *1 (-307 *3 *4 *5 *2)) (-4 *2 (-314 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-385 *4 (-379 *4) *5 *6)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-4 *6 (-314 *3 *4 *5)) (-4 *3 (-335)) + (-4 *1 (-307 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-421))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1158 *1)))) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *2) + (-12 (-4 *3 (-782)) (-5 *1 (-856 *3 *2)) (-4 *2 (-402 *3)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-833)) - (-5 *2 (-1158 *1))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-873 *4 *5 *6)) - (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *1 (-418 *4 *5 *6 *7))))) -(((*1 *2) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) - (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-974 (-942 *4) (-1073 (-942 *4)))) (-5 *3 (-787)) - (-5 *1 (-942 *4)) (-4 *4 (-13 (-777) (-333) (-940)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-753))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) - ((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964))))) -(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) - (-14 *6 (-583 (-1077))) - (-5 *2 - (-583 (-1048 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) - (-5 *1 (-568 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) - (-4 *2 (-400 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-999 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) - (-5 *1 (-143 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-145)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) - (-4 *6 (-1134 *5)) (-4 *7 (-1134 (-377 *6))) - (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-955 (-517)))) - (-5 *2 (-2 (|:| -3250 (-703)) (|:| -2218 *8))) - (-5 *1 (-835 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) - (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4))) - (-4 *6 (-312 (-377 (-517)) *4 *5)) - (-5 *2 (-2 (|:| -3250 (-703)) (|:| -2218 *6))) - (-5 *1 (-836 *4 *5 *6))))) + (-12 (-5 *3 (-1082)) (-5 *2 (-288 (-519))) (-5 *1 (-857))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-4 *8 (-873 *5 *7 *6)) - (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) - (-4 *7 (-725)) - (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) - (|:| |wcond| (-583 (-876 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) - (-5 *1 (-848 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1077))) (-4 *8 (-873 *5 *7 *6)) - (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) - (-4 *7 (-725)) - (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) - (|:| |wcond| (-583 (-876 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) - (-5 *1 (-848 *5 *6 *7 *8)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *3 (-345 *2)) (-4 *4 (-345 *2)) + (|has| *2 (-6 (-4223 "*"))) (-4 *2 (-968)))) ((*1 *2 *3) - (-12 (-5 *3 (-623 *7)) (-4 *7 (-873 *4 *6 *5)) - (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) - (-4 *6 (-725)) - (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) - (|:| |wcond| (-583 (-876 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *4)))))))))) - (-5 *1 (-848 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 *9)) (-5 *5 (-845)) (-4 *9 (-873 *6 *8 *7)) - (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1077)))) - (-4 *8 (-725)) - (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) - (|:| |wcond| (-583 (-876 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1158 (-377 (-876 *6)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *6)))))))))) - (-5 *1 (-848 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1077))) (-5 *5 (-845)) - (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) - (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) - (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) - (|:| |wcond| (-583 (-876 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1158 (-377 (-876 *6)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *6)))))))))) - (-5 *1 (-848 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-845)) (-4 *8 (-873 *5 *7 *6)) - (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) - (-4 *7 (-725)) - (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) - (|:| |wcond| (-583 (-876 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1158 (-377 (-876 *5)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *5)))))))))) - (-5 *1 (-848 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1060)) - (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) - (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517)) - (-5 *1 (-848 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1077))) (-5 *5 (-1060)) - (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) - (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517)) - (-5 *1 (-848 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *8)) (-5 *4 (-1060)) (-4 *8 (-873 *5 *7 *6)) - (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1077)))) - (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-848 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-845)) - (-5 *6 (-1060)) (-4 *10 (-873 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) - (-4 *8 (-13 (-779) (-558 (-1077)))) (-4 *9 (-725)) (-5 *2 (-517)) - (-5 *1 (-848 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1077))) (-5 *5 (-845)) - (-5 *6 (-1060)) (-4 *10 (-873 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) - (-4 *8 (-13 (-779) (-558 (-1077)))) (-4 *9 (-725)) (-5 *2 (-517)) - (-5 *1 (-848 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-623 *9)) (-5 *4 (-845)) (-5 *5 (-1060)) - (-4 *9 (-873 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) - (-4 *7 (-13 (-779) (-558 (-1077)))) (-4 *8 (-725)) (-5 *2 (-517)) - (-5 *1 (-848 *6 *7 *8 *9))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112)) - (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) - (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1006))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4)) - (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1041)))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) - (-5 *2 (-953)) (-5 *1 (-685))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) - (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1077))) (-5 *1 (-571 *5 *6))))) + (-12 (-4 *4 (-345 *2)) (-4 *5 (-345 *2)) (-4 *2 (-157)) + (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1032 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) + (-4 *5 (-214 *3 *2)) (|has| *2 (-6 (-4223 "*"))) (-4 *2 (-968))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-335) (-135) (-959 (-519)))) + (-4 *5 (-1139 *4)) (-5 *2 (-585 (-379 *5))) (-5 *1 (-939 *4 *5)) + (-5 *3 (-379 *5))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-1092 *2)) (-4 *2 (-335))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1098) (-400 *3))) - (-14 *4 (-1077)) (-14 *5 *2))) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) + (-5 *1 (-912 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-4 *2 (-13 (-27) (-1098) (-400 *3) (-10 -8 (-15 -2262 ($ *4))))) - (-4 *4 (-777)) - (-4 *5 - (-13 (-1136 *2 *4) (-333) (-1098) - (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $))))) - (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-903 *5)) (-14 *7 (-1077))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1042 *3 *2)) (-4 *3 (-13 (-1006) (-33))) - (-4 *2 (-13 (-1006) (-33)))))) -(((*1 *1 *1 *1) (-4 *1 (-694)))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1073 *3)) - (-4 *3 (-13 (-400 *6) (-27) (-1098))) - (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) - (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1073 *3))) - (-4 *3 (-13 (-400 *6) (-27) (-1098))) - (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) - (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1006))))) -(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1073 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509))))) + (-12 (-5 *2 (-585 *7)) (-4 *7 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) + (-5 *1 (-1018 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-690))))) +(((*1 *1) (-5 *1 (-143)))) +(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1168)) (-5 *1 (-757))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4196)) (-4 *1 (-456 *3)) - (-4 *3 (-1112))))) -(((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *2) - (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) + (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519)))))) (((*1 *2) - (-12 (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) - (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) - (-4 *4 (-1134 *3)) - (-5 *2 - (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-623 *3)))) - (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1134 (-517))) - (-5 *2 - (-2 (|:| -3700 (-623 (-517))) (|:| |basisDen| (-517)) - (|:| |basisInv| (-623 (-517))))) - (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) - ((*1 *2) - (-12 (-4 *3 (-319)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 *4)) - (-5 *2 - (-2 (|:| -3700 (-623 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-623 *4)))) - (-5 *1 (-905 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-319)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 *4)) - (-5 *2 - (-2 (|:| -3700 (-623 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-623 *4)))) - (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5))))) + (-12 (-5 *2 (-848)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) + ((*1 *2 *2) + (-12 (-5 *2 (-848)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-705))))) (((*1 *2 *1) - (-12 (-5 *2 (-867 *4)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) + (-12 (-4 *1 (-552 *2 *3)) (-4 *3 (-1117)) (-4 *2 (-1011)) + (-4 *2 (-782))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *6 (-1139 *5)) + (-5 *2 (-585 (-2 (|:| -2730 *5) (|:| -3257 *3)))) + (-5 *1 (-744 *5 *6 *3 *7)) (-4 *3 (-595 *6)) + (-4 *7 (-595 (-379 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-968)) (-5 *2 (-108)) (-5 *1 (-415 *4 *3)) + (-4 *3 (-1139 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *1 (-1113 *2)) (-4 *2 (-898))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-335)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-471 *4 *5 *6 *3)) (-4 *3 (-876 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-335)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1154 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1011)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-619 *4 *5)) (-4 *4 (-1011)))) + ((*1 *2 *2) + (-12 (-4 *3 (-782)) (-5 *1 (-856 *3 *2)) (-4 *2 (-402 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1082)) (-5 *2 (-288 (-519))) (-5 *1 (-857)))) + ((*1 *2 *1) (-12 (-4 *1 (-1178 *3 *2)) (-4 *3 (-782)) (-4 *2 (-968)))) + ((*1 *2 *1) (-12 (-4 *2 (-968)) (-5 *1 (-1184 *2 *3)) (-4 *3 (-778))))) +(((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1163 *1)) (-4 *1 (-339 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-870 *3)) (-4 *3 (-13 (-335) (-1103) (-925))) + (-5 *1 (-160 *3))))) +(((*1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-961))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1063 (-1063 *4))) (-5 *2 (-1063 *4)) (-5 *1 (-1067 *4)) + (-4 *4 (-968))))) +(((*1 *1 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-782)) (-4 *2 (-511)))) + ((*1 *1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511))))) (((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1143 *4 *5 *6)) - (|:| |%expon| (-289 *4 *5 *6)) - (|:| |%expTerms| - (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) - (|:| |%type| (-1060)))) - (-5 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3))) - (-14 *5 (-1077)) (-14 *6 *4)))) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-585 (-585 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-585 (-585 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-585 *3))) (-5 *1 (-1090 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-687))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) - (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-921) (-1098))) - (-4 *3 (-13 (-400 (-153 *4)) (-921) (-1098)))))) + (-12 (-5 *3 (-879 (-519))) (-5 *2 (-585 *1)) (-4 *1 (-935)))) + ((*1 *2 *3) + (-12 (-5 *3 (-879 (-379 (-519)))) (-5 *2 (-585 *1)) (-4 *1 (-935)))) + ((*1 *2 *3) (-12 (-5 *3 (-879 *1)) (-4 *1 (-935)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1078 (-519))) (-5 *2 (-585 *1)) (-4 *1 (-935)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1078 (-379 (-519)))) (-5 *2 (-585 *1)) (-4 *1 (-935)))) + ((*1 *2 *3) (-12 (-5 *3 (-1078 *1)) (-4 *1 (-935)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-780) (-335))) (-4 *3 (-1139 *4)) (-5 *2 (-585 *1)) + (-4 *1 (-984 *4 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-265 (-876 (-517)))) - (-5 *2 - (-2 (|:| |varOrder| (-583 (-1077))) - (|:| |inhom| (-3 (-583 (-1158 (-703))) "failed")) - (|:| |hom| (-583 (-1158 (-703)))))) - (-5 *1 (-210))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-102 *3))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1011)) (-4 *5 (-1011)) + (-4 *6 (-1011)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-620 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-143)))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *3) + (-12 (-5 *2 (-585 (-1078 (-519)))) (-5 *1 (-169)) (-5 *3 (-519))))) (((*1 *2 *1) - (-12 (-4 *2 (-873 *3 *5 *4)) (-5 *1 (-907 *3 *4 *5 *2)) - (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) - (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-685))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1073 *1)) (-5 *4 (-1077)) (-4 *1 (-27)) - (-5 *2 (-583 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3))))) + (-12 (-4 *3 (-968)) (-5 *2 (-1163 *3)) (-5 *1 (-647 *3 *4)) + (-4 *4 (-1139 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) (-4 *4 (-511)) (-4 *4 (-782)) + (-5 *1 (-528 *4 *2)) (-4 *2 (-402 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-319)) - (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3633 *3)))) - (-5 *1 (-191 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199)))))) -(((*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-761))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1006)) - (-5 *1 (-613 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1006)) (-5 *1 (-616 *3))))) -(((*1 *1 *1) (-5 *1 (-976)))) -(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-215))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1006)))) - ((*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1006))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6))))) + (-12 (-5 *3 (-1163 *4)) (-4 *4 (-321)) (-5 *2 (-1078 *4)) + (-5 *1 (-489 *4))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) +(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1085))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-1021)) (-5 *3 (-519))))) (((*1 *2 *3 *2) - (-12 - (-5 *2 - (-583 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-725)) (-4 *6 (-873 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) - (-5 *1 (-418 *4 *3 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) - ((*1 *1 *1) (-4 *1 (-973)))) -(((*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-1001 (-199))))) - ((*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199)))))) + (-12 (-5 *3 (-585 (-625 *4))) (-5 *2 (-625 *4)) (-4 *4 (-968)) + (-5 *1 (-951 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-519)) (-5 *5 (-108)) (-5 *6 (-625 (-201))) + (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-690))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1006)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) - (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1006))))) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1139 (-519))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-901 *4 *5 *6 *3)) (-4 *3 (-982 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-335) (-959 (-379 *2)))) (-5 *2 (-519)) + (-5 *1 (-111 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-519)) (-5 *1 (-1100 *3)) (-4 *3 (-968))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-2 (|:| -3493 *4) (|:| -3711 (-519))))) + (-4 *4 (-1011)) (-5 *2 (-1 *4)) (-5 *1 (-940 *4))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *5 (-201)) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) (-5 *2 (-957)) + (-5 *1 (-684))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) + (-5 *2 (-2 (|:| -1265 (-379 *6)) (|:| |coeff| (-379 *6)))) + (-5 *1 (-529 *5 *6)) (-5 *3 (-379 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-1011))))) +(((*1 *2 *1) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103))))) + ((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-790))))) +(((*1 *2 *3) (-12 (-5 *3 (-351)) (-5 *2 (-201)) (-5 *1 (-1166)))) + ((*1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-1166))))) +(((*1 *2 *2) + (-12 (-4 *2 (-157)) (-4 *2 (-968)) (-5 *1 (-649 *2 *3)) + (-4 *3 (-587 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-769 *2)) (-4 *2 (-157)) (-4 *2 (-968))))) +(((*1 *2) + (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-790))) ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *3) + (-12 (-4 *4 (-968)) + (-4 *2 (-13 (-376) (-959 *4) (-335) (-1103) (-258))) + (-5 *1 (-414 *4 *3 *2)) (-4 *3 (-1139 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *1 *1 *1) (-4 *1 (-504)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1163 *4)) (-5 *3 (-519)) (-4 *4 (-321)) + (-5 *1 (-489 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-625 *6)) (-5 *5 (-1 (-390 (-1078 *6)) (-1078 *6))) + (-4 *6 (-335)) + (-5 *2 + (-585 + (-2 (|:| |outval| *7) (|:| |outmult| (-519)) + (|:| |outvect| (-585 (-625 *7)))))) + (-5 *1 (-492 *6 *7 *4)) (-4 *7 (-335)) (-4 *4 (-13 (-335) (-780)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-302))))) +(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-537 *3)) (-4 *3 (-504))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-168))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) - (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) - (-4 *1 (-983 *4 *5 *6 *3))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) - (-14 *4 (-583 (-1077))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5))))) + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (-5 *2 (-108)) (-5 *1 (-273))))) +(((*1 *2 *1) + (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-982 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-955 (-377 *2)))) (-5 *2 (-517)) - (-5 *1 (-110 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-876 (-517)))) (-5 *1 (-407)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1077)) (-5 *4 (-623 (-199))) (-5 *2 (-1010)) - (-5 *1 (-692)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1077)) (-5 *4 (-623 (-517))) (-5 *2 (-1010)) - (-5 *1 (-692))))) + (-12 (-4 *4 (-321)) (-5 *2 (-390 (-1078 (-1078 *4)))) + (-5 *1 (-1116 *4)) (-5 *3 (-1078 (-1078 *4)))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-157)) (-4 *2 (-511)))) + ((*1 *1 *1) (|partial| -4 *1 (-657)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1149 *4)) - (-4 *4 (-37 (-377 (-517)))) - (-5 *2 (-1 (-1058 *4) (-1058 *4) (-1058 *4))) (-5 *1 (-1151 *4 *5))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) + (-4 *4 (-13 (-782) (-511)))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-585 (-108))) (-5 *5 (-625 (-201))) + (-5 *6 (-625 (-519))) (-5 *7 (-201)) (-5 *3 (-519)) (-5 *2 (-957)) + (-5 *1 (-689))))) +(((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1065)) (-5 *1 (-170)))) + ((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1065)) (-5 *1 (-273)))) + ((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1065)) (-5 *1 (-278))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-110)) (-4 *4 (-968)) (-5 *1 (-649 *4 *2)) + (-4 *2 (-587 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-769 *2)) (-4 *2 (-968))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) + (-4 *7 (-1139 (-379 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -1239 *3))) + (-5 *1 (-517 *5 *6 *7 *3)) (-4 *3 (-314 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) + (-5 *2 + (-2 (|:| |answer| (-379 *6)) (|:| -1239 (-379 *6)) + (|:| |specpart| (-379 *6)) (|:| |polypart| *6))) + (-5 *1 (-518 *5 *6)) (-5 *3 (-379 *6))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-705)) (-4 *5 (-968)) (-4 *2 (-1139 *5)) + (-5 *1 (-1157 *5 *2 *6 *3)) (-4 *6 (-595 *2)) (-4 *3 (-1154 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) + (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1065)) (-5 *4 (-1029)) (-5 *2 (-108)) (-5 *1 (-756))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1163 *4)) (-4 *4 (-581 *5)) (-4 *5 (-335)) + (-4 *5 (-511)) (-5 *2 (-1163 *5)) (-5 *1 (-580 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1163 *4)) (-4 *4 (-581 *5)) + (-2445 (-4 *5 (-335))) (-4 *5 (-511)) (-5 *2 (-1163 (-379 *5))) + (-5 *1 (-580 *5 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1082)) (-4 *4 (-968)) (-4 *4 (-782)) + (-5 *2 (-2 (|:| |var| (-558 *1)) (|:| -1690 (-519)))) + (-4 *1 (-402 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-110)) (-4 *4 (-968)) (-4 *4 (-782)) + (-5 *2 (-2 (|:| |var| (-558 *1)) (|:| -1690 (-519)))) + (-4 *1 (-402 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1023)) (-4 *3 (-782)) + (-5 *2 (-2 (|:| |var| (-558 *1)) (|:| -1690 (-519)))) + (-4 *1 (-402 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-819 *3)) (|:| -1690 (-705)))) + (-5 *1 (-819 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-876 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-2 (|:| |var| *5) (|:| -1690 (-705)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) + (-4 *7 (-876 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -1690 (-519)))) + (-5 *1 (-877 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-335) + (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) + (-15 -2866 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) + (-4 *6 (-727)) (-5 *2 (-379 (-879 *4))) (-5 *1 (-851 *4 *5 *6 *3)) + (-4 *3 (-876 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-625 *7)) (-4 *7 (-876 *4 *6 *5)) + (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) + (-4 *6 (-727)) (-5 *2 (-625 (-379 (-879 *4)))) + (-5 *1 (-851 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-876 *4 *6 *5)) + (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) + (-4 *6 (-727)) (-5 *2 (-585 (-379 (-879 *4)))) + (-5 *1 (-851 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-790)) (-5 *1 (-362 *3 *4 *5)) (-14 *3 (-705)) + (-14 *4 (-705)) (-4 *5 (-157))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2292 *3))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-295 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-124))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790))))) (((*1 *2 *1) - (-12 (-4 *3 (-964)) (-5 *2 (-1158 *3)) (-5 *1 (-645 *3 *4)) - (-4 *4 (-1134 *3))))) + (-12 (-5 *2 (-948 (-775 (-519)))) (-5 *1 (-544 *3)) (-4 *3 (-968))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) + (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 + (-3 (|:| |%expansion| (-285 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065)))))) + (-5 *1 (-392 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1103) (-402 *5))) + (-14 *6 (-1082)) (-14 *7 *3)))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-585 *1)) (-4 *1 (-847))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-4 *4 (-335)) (-4 *4 (-511)) (-4 *5 (-1139 *4)) + (-5 *2 (-2 (|:| -2084 (-566 *4 *5)) (|:| -2610 (-379 *5)))) + (-5 *1 (-566 *4 *5)) (-5 *3 (-379 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-1071 *3 *4))) (-5 *1 (-1071 *3 *4)) + (-14 *3 (-848)) (-4 *4 (-968)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-423)) (-4 *3 (-968)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1139 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-558 *4)) (-5 *1 (-557 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-782))))) +(((*1 *1) (-5 *1 (-758)))) +(((*1 *2) + (-12 (-4 *2 (-13 (-402 *3) (-925))) (-5 *1 (-251 *3 *2)) + (-4 *3 (-13 (-782) (-511)))))) +(((*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157))))) +(((*1 *2) + (-12 (-5 *2 (-848)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) + ((*1 *2 *2) + (-12 (-5 *2 (-848)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519)))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-5 *4 (-705)) (-4 *5 (-511)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-894 *5 *3)) (-4 *3 (-1139 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1065)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-238))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1073 *7))) (-5 *3 (-1073 *7)) - (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-833)) (-4 *5 (-725)) - (-4 *6 (-779)) (-5 *1 (-830 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1073 *5))) (-5 *3 (-1073 *5)) - (-4 *5 (-1134 *4)) (-4 *4 (-833)) (-5 *1 (-831 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-1001 (-199))))) - ((*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-1001 (-199)))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-982 *4 *5 *6)) (-4 *4 (-511)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-901 *4 *5 *6 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) - (-5 *2 (-107))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-689))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1077)) (-5 *3 (-404)) (-4 *5 (-779)) - (-5 *1 (-1012 *5 *4)) (-4 *4 (-400 *5))))) + (-12 (-14 *3 (-585 (-1082))) (-4 *4 (-157)) + (-4 *5 (-214 (-3532 *3) (-705))) + (-14 *6 + (-1 (-108) (-2 (|:| -2770 *2) (|:| -1690 *5)) + (-2 (|:| -2770 *2) (|:| -1690 *5)))) + (-4 *2 (-782)) (-5 *1 (-432 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-876 *4 *5 (-792 *3)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-335)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1154 *3))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) - (-4 *3 (-1006))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850))))) + (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1123 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3633 *5)))) - (-4 *5 (-1134 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) - (-5 *1 (-191 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-2 (|:| -3896 *5) (|:| -1191 (-517))))) - (-5 *4 (-517)) (-4 *5 (-1134 *4)) (-5 *2 (-583 *5)) - (-5 *1 (-629 *5))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-964)) - (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1134 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-964)) - (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1134 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-964)) - (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2))))) + (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-519)) (-5 *1 (-631 *2)) (-4 *2 (-1139 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-13 (-278) (-134))) - (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) - (-5 *2 (-583 (-377 (-876 *4)))) (-5 *1 (-848 *4 *5 *6 *7)) - (-4 *7 (-873 *4 *6 *5))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) - (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-873 *4 *3 *5))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-845)) (-5 *1 (-411 *2)) - (-4 *2 (-1134 (-517))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-845)) (-5 *4 (-703)) (-5 *1 (-411 *2)) - (-4 *2 (-1134 (-517))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) - (-4 *2 (-1134 (-517))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) - (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-845)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) - (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1134 (-517))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-388 *2)) (-4 *2 (-1134 *5)) - (-5 *1 (-413 *5 *2)) (-4 *5 (-964))))) + (-12 (-5 *3 (-585 *5)) (-4 *5 (-402 *4)) (-4 *4 (-13 (-782) (-511))) + (-5 *2 (-790)) (-5 *1 (-31 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) + (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1011)) + (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-544 *3)) (-4 *3 (-968)))) + ((*1 *2 *1) + (-12 (-4 *3 (-511)) (-5 *2 (-108)) (-5 *1 (-566 *3 *4)) + (-4 *4 (-1139 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-670 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-661)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) + (-5 *2 (-108))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1011)) (-4 *2 (-782)) + (-5 *1 (-109 *2))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-302)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-302))))) +(((*1 *2 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-793 *4 *5 *6 *7)) + (-4 *4 (-968)) (-14 *5 (-585 (-1082))) (-14 *6 (-585 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-705)) (-4 *4 (-968)) (-4 *5 (-782)) (-4 *6 (-727)) + (-14 *8 (-585 *5)) (-5 *2 (-1168)) + (-5 *1 (-1173 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-876 *4 *6 *5)) + (-14 *9 (-585 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-108))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-876 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-727)) (-4 *5 (-968)) (-4 *6 (-876 *5 *4 *2)) + (-4 *2 (-782)) (-5 *1 (-877 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-335) + (-10 -8 (-15 -2217 ($ *6)) (-15 -2855 (*6 $)) + (-15 -2866 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) + (-5 *2 (-1082)) (-5 *1 (-964 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-37 (-377 (-517)))) - (-5 *2 (-2 (|:| -1459 (-1058 *4)) (|:| -1471 (-1058 *4)))) - (-5 *1 (-1064 *4)) (-5 *3 (-1058 *4))))) + (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-280)) (-5 *2 (-390 *3)) + (-5 *1 (-677 *4 *5 *6 *3)) (-4 *3 (-876 *6 *4 *5))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-1011))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1065)) (-5 *2 (-585 (-1087))) (-5 *1 (-1044))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181))))) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) + (-5 *1 (-31 *4 *5)) (-4 *5 (-402 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) + (-5 *1 (-144 *4 *5)) (-4 *5 (-402 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) + (-5 *1 (-251 *4 *5)) (-4 *5 (-13 (-402 *4) (-925))))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-274 *4)) (-4 *4 (-275)))) + ((*1 *2 *3) (-12 (-4 *1 (-275)) (-5 *3 (-110)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *5 (-782)) (-5 *2 (-108)) + (-5 *1 (-401 *4 *5)) (-4 *4 (-402 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) + (-5 *1 (-403 *4 *5)) (-4 *5 (-402 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-110)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-108)) + (-5 *1 (-572 *4 *5)) (-4 *5 (-13 (-402 *4) (-925) (-1103)))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1112)) (-4 *3 (-964)) - (-5 *2 (-623 *3))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) - ((*1 *1 *1) (|partial| -4 *1 (-655)))) -(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-787))) - ((*1 *1) - (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) - (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3)))) - ((*1 *1) - (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) - (-4 *3 (-13 (-1006) (-33))))) - ((*1 *1) (-5 *1 (-1080))) ((*1 *1) (-5 *1 (-1081)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1077)) (-5 *2 (-107)) - (-5 *1 (-236))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-844))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1077)) - (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1077)) - (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) - ((*1 *2 *1) - (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-703))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1158 (-1158 (-517)))) (-5 *3 (-845)) (-5 *1 (-435))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-4 *4 (-1112)) (-5 *2 (-107)) - (-5 *1 (-1058 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1041)))) + (-12 (-4 *3 (-335)) (-4 *3 (-968)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1397 *1))) + (-4 *1 (-784 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107)))) - ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) + (-12 (-4 *1 (-345 *3)) (-4 *3 (-1117)) (-4 *3 (-782)) (-5 *2 (-108)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) - (-4 *3 (-1134 *4)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-680))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-754))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) - (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) - (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5)))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) - (-5 *2 (-953)) (-5 *1 (-690))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-421)))) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-345 *4)) (-4 *4 (-1117)) + (-5 *2 (-108))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *5 (-833)) (-5 *1 (-426 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-833))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1046)))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1065)) (-5 *3 (-519)) (-5 *1 (-980))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108))))) (((*1 *2 *3) - (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1090 *4 *5)) - (-4 *4 (-1006)) (-4 *5 (-1006))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-107))))) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-739 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1103) (-885)))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1134 (-517)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) - (-4 *2 (-1149 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3)) - (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) - (-4 *2 (-1149 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134))) - (-5 *1 (-1054 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514))))) + (-12 (-5 *3 (-1163 (-1163 *4))) (-4 *4 (-968)) (-5 *2 (-625 *4)) + (-5 *1 (-951 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-558 *5))) (-4 *4 (-782)) (-5 *2 (-558 *5)) + (-5 *1 (-528 *4 *5)) (-4 *5 (-402 *4))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-519)) (-5 *5 (-625 (-201))) (-5 *6 (-613 (-201))) + (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-685))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1063 *2)) (-4 *2 (-280)) (-5 *1 (-158 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-705)) (-5 *1 (-416 *3)) (-4 *3 (-968)))) + ((*1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-416 *3)) (-4 *3 (-968))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) (((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-897 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 (-377 (-876 *6)))) - (-5 *3 (-377 (-876 *6))) - (-4 *6 (-13 (-509) (-955 (-517)) (-134))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-523 *6))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1016))))) + (-12 (-4 *2 (-280)) (-4 *3 (-916 *2)) (-4 *4 (-1139 *3)) + (-5 *1 (-385 *2 *3 *4 *5)) (-4 *5 (-13 (-381 *3 *4) (-959 *3)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) + (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) (-5 *2 (-957)) + (-5 *1 (-683))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-870 (-201))) (-5 *4 (-801)) (-5 *5 (-848)) + (-5 *2 (-1168)) (-5 *1 (-439)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-870 (-201))) (-5 *2 (-1168)) (-5 *1 (-439)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-585 (-870 (-201)))) (-5 *4 (-801)) (-5 *5 (-848)) + (-5 *2 (-1168)) (-5 *1 (-439))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-968)) (-5 *1 (-821 *2 *3)) (-4 *2 (-1139 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-854))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-585 (-1078 *7))) (-5 *3 (-1078 *7)) + (-4 *7 (-876 *5 *6 *4)) (-4 *5 (-836)) (-4 *6 (-727)) + (-4 *4 (-782)) (-5 *1 (-833 *5 *6 *4 *7))))) (((*1 *2 *1) - (-12 (-4 *2 (-1006)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1006))))) + (-12 (-4 *3 (-13 (-335) (-135))) + (-5 *2 (-585 (-2 (|:| -1690 (-705)) (|:| -1896 *4) (|:| |num| *4)))) + (-5 *1 (-371 *3 *4)) (-4 *4 (-1139 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-423)) (-4 *4 (-511)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3159 *4))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1065)) (-4 *1 (-361))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) - (-4 *2 (-156))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-953)) - (-5 *1 (-689))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 (-377 *2))) - (-4 *2 (-1134 *4)) (-5 *1 (-311 *3 *4 *2 *5)) - (-4 *3 (-312 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1116)) - (-4 *4 (-1134 (-377 *2))) (-4 *2 (-1134 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-845)) (-5 *1 (-950 *2)) - (-4 *2 (-13 (-1006) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-583 (-945 *5 *6 *7 *3))) (-5 *1 (-945 *5 *6 *7 *3)) - (-4 *3 (-978 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-583 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) - (-4 *3 (-978 *5 *6 *7))))) -(((*1 *1 *1) (-4 *1 (-569))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921) (-1098)))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) - (-5 *2 (-953)) (-5 *1 (-687))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) - (-4 *7 (-1134 (-377 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -2249 *3))) - (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) - (-5 *2 - (-2 (|:| |answer| (-377 *6)) (|:| -2249 (-377 *6)) - (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) - (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4196)) (-4 *1 (-929 *3)) - (-4 *3 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1060)) (-5 *2 (-583 (-1082))) (-5 *1 (-1039))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-845)) (-4 *5 (-509)) (-5 *2 (-623 *5)) - (-5 *1 (-879 *5 *3)) (-4 *3 (-593 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) + (-12 (-4 *2 (-13 (-335) (-780))) (-5 *1 (-164 *2 *3)) + (-4 *3 (-1139 (-154 *2))))) ((*1 *2 *3) - (-12 (-5 *3 (-1073 *4)) (-4 *4 (-319)) (-5 *2 (-107)) - (-5 *1 (-327 *4))))) -(((*1 *2) - (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) - ((*1 *2 *2) - (-12 (-5 *2 (-845)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) - (-5 *2 (-953)) (-5 *1 (-682))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) - (-4 *5 (-1134 *4)) - (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3817 *5)))) - (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) - (-4 *6 (-593 (-377 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1073 (-876 *6))) (-4 *6 (-509)) - (-4 *2 (-873 (-377 (-876 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) - (-4 *5 (-725)) - (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)))))))) -(((*1 *1 *1) (-4 *1 (-502)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))) - ((*1 *1 *1) (-4 *1 (-372)))) + (-12 (-4 *2 (-13 (-335) (-780))) (-5 *1 (-164 *2 *3)) + (-4 *3 (-1139 (-154 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *1) (-5 *1 (-980)))) (((*1 *2 *3) (-12 (-5 *3 - (-583 - (-2 (|:| -3778 (-703)) - (|:| |eqns| - (-583 - (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) - (|:| |cols| (-583 (-517)))))) - (|:| |fgb| (-583 *7))))) - (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) - (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-703)) - (-5 *1 (-848 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506))))) + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (-5 *2 (-519)) (-5 *1 (-182))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1134 (-517))) (-5 *1 (-453 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) - ((*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) - ((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1106 *5 *6 *7 *8)) (-4 *5 (-509)) - (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-978 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) - (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-107)) (-5 *1 (-897 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-109)) (-4 *4 (-964)) (-5 *1 (-647 *4 *2)) - (-4 *2 (-585 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-964))))) -(((*1 *1 *1) - (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-964)) (-4 *3 (-779)) - (-4 *4 (-239 *3)) (-4 *5 (-725))))) -(((*1 *1) (-5 *1 (-128)))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-517)) (-5 *5 (-1060)) (-5 *6 (-623 (-199))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) - (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) - (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) - (-5 *3 (-199)) (-5 *2 (-953)) (-5 *1 (-682))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-1099 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1006))))) + (-12 (-4 *4 (-1011)) (-5 *2 (-816 *3 *4)) (-5 *1 (-812 *3 *4 *5)) + (-4 *3 (-1011)) (-4 *5 (-605 *4))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-754 *3)) (-4 *3 (-782)) (-5 *1 (-610 *3))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112)) - (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) + (-12 (-5 *3 (-519)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1117)) + (-4 *4 (-345 *2)) (-4 *5 (-345 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) - (-4 *5 (-343 *2)) (-4 *2 (-1112)))) + (-12 (-5 *3 (-519)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-345 *2)) + (-4 *5 (-345 *2)) (-4 *2 (-1117)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1117)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) - (-14 *4 (-517)) (-14 *5 (-703)))) + (-12 (-5 *3 (-585 (-519))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 (-519)) (-14 *5 (-705)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-703)))) + (-12 (-5 *3 (-519)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-705)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-703)))) + (-12 (-5 *3 (-519)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-705)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-703)))) + (-12 (-5 *3 (-519)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-705)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-703)))) + (-12 (-5 *3 (-519)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-705)))) ((*1 *2 *1) - (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) - (-14 *4 (-703)))) + (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-519)) + (-14 *4 (-705)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1077)) (-5 *2 (-219 (-1060))) (-5 *1 (-189 *4)) + (-12 (-5 *3 (-1082)) (-5 *2 (-221 (-1065))) (-5 *1 (-191 *4)) (-4 *4 - (-13 (-779) - (-10 -8 (-15 -2612 ((-1060) $ *3)) (-15 -1744 ((-1163) $)) - (-15 -3012 ((-1163) $))))))) + (-13 (-782) + (-10 -8 (-15 -2598 ((-1065) $ *3)) (-15 -1691 ((-1168) $)) + (-15 -2056 ((-1168) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-909)) (-5 *1 (-189 *3)) + (-12 (-5 *2 (-913)) (-5 *1 (-191 *3)) (-4 *3 - (-13 (-779) - (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) - (-15 -3012 ((-1163) $))))))) + (-13 (-782) + (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 ((-1168) $)) + (-15 -2056 ((-1168) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) + (-12 (-5 *3 "count") (-5 *2 (-705)) (-5 *1 (-221 *4)) (-4 *4 (-782)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-221 *3)) (-4 *3 (-782)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) + (-12 (-5 *2 "unique") (-5 *1 (-221 *3)) (-4 *3 (-782)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))) + (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1117)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))) + (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1117)))) ((*1 *2 *1 *2) - (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1134 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *3 (-157)) (-5 *1 (-263 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1139 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-585 *1)) (-4 *1 (-275)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-275)) (-5 *2 (-110)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1116)) (-4 *3 (-1134 *2)) - (-4 *4 (-1134 (-377 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1060)) (-5 *1 (-467)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-51)) (-5 *1 (-572)))) + (-12 (-4 *1 (-314 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-1139 *2)) + (-4 *4 (-1139 (-379 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-4 *1 (-389 *2)) (-4 *2 (-157)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1065)) (-5 *1 (-469)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-574)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-1130 (-519))) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1006)))) + (-12 (-5 *3 (-705)) (-5 *1 (-613 *2)) (-4 *2 (-1011)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) + (-12 (-5 *2 (-585 (-519))) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-109)) (-5 *3 (-583 (-816 *4))) (-5 *1 (-816 *4)) - (-4 *4 (-1006)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1006)))) + (-12 (-5 *2 (-110)) (-5 *3 (-585 (-819 *4))) (-5 *1 (-819 *4)) + (-4 *4 (-1011)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1011)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-829 *4)) (-5 *1 (-828 *4)) - (-4 *4 (-1006)))) + (-12 (-5 *3 (-705)) (-5 *2 (-832 *4)) (-5 *1 (-831 *4)) + (-4 *4 (-1011)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-845)) (-4 *2 (-333)) - (-5 *1 (-913 *4 *2)))) + (-12 (-5 *3 (-216 *4 *2)) (-14 *4 (-848)) (-4 *2 (-335)) + (-5 *1 (-917 *4 *2)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-929 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) + (-12 (-5 *3 "value") (-4 *1 (-933 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1) (-12 (-5 *1 (-948 *2)) (-4 *2 (-1117)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7)) (-4 *2 (-964)) - (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) + (-12 (-5 *3 (-519)) (-4 *1 (-971 *4 *5 *2 *6 *7)) (-4 *2 (-968)) + (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7)) - (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-964)))) + (-12 (-5 *3 (-519)) (-4 *1 (-971 *4 *5 *2 *6 *7)) + (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2)) (-4 *2 (-968)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-845)) (-4 *4 (-1006)) - (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) - (-5 *1 (-986 *4 *5 *2)) - (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))))) + (-12 (-5 *3 (-848)) (-4 *4 (-1011)) + (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) + (-5 *1 (-990 *4 *5 *2)) + (-4 *2 (-13 (-402 *5) (-813 *4) (-560 (-819 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-845)) (-4 *4 (-1006)) - (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) - (-5 *1 (-987 *4 *5 *2)) - (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))))) + (-12 (-5 *3 (-848)) (-4 *4 (-1011)) + (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) + (-5 *1 (-991 *4 *5 *2)) + (-4 *2 (-13 (-402 *5) (-813 *4) (-560 (-819 *4)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1009 *3 *4 *5 *6 *7)) - (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) - (-4 *7 (-1006)))) + (-12 (-5 *2 (-585 (-519))) (-4 *1 (-1014 *3 *4 *5 *6 *7)) + (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) + (-4 *7 (-1011)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-517)) (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) - (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)))) - ((*1 *1 *1 *1) (-4 *1 (-1046))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077)))) + (-12 (-5 *2 (-519)) (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) + (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)))) + ((*1 *1 *1 *1) (-4 *1 (-1051))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-1082)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-377 *1)) (-4 *1 (-1134 *2)) (-4 *2 (-964)) - (-4 *2 (-333)))) + (-12 (-5 *3 (-379 *1)) (-4 *1 (-1139 *2)) (-4 *2 (-968)) + (-4 *2 (-335)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-377 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-964)) - (-4 *3 (-509)))) + (-12 (-5 *2 (-379 *1)) (-4 *1 (-1139 *3)) (-4 *3 (-968)) + (-4 *3 (-511)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) + (-12 (-4 *1 (-1141 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1146 *2)) (-4 *2 (-1112)))) + (-12 (-5 *3 "last") (-4 *1 (-1151 *2)) (-4 *2 (-1117)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 "rest") (-4 *1 (-1151 *3)) (-4 *3 (-1117)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1112)) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517))))) + (-12 (-5 *3 "first") (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-625 *2)) (-5 *4 (-705)) + (-4 *2 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) + (-4 *5 (-1139 *2)) (-5 *1 (-466 *2 *5 *6)) (-4 *6 (-381 *2 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-335)) (-5 *2 (-585 (-1063 *4))) (-5 *1 (-259 *4 *5)) + (-5 *3 (-1063 *4)) (-4 *5 (-1154 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-108))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1158 (-1077))) (-5 *3 (-1158 (-422 *4 *5 *6 *7))) - (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-845)) - (-14 *6 (-583 (-1077))) (-14 *7 (-1158 (-623 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-422 *4 *5 *6 *7))) - (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-845)) - (-14 *6 (-583 *2)) (-14 *7 (-1158 (-623 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) - (-14 *6 (-1158 (-623 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-1077))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-156)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))) - (-14 *6 (-1158 (-623 *3))))) + (-12 (-5 *3 (-585 (-1082))) (-5 *2 (-1082)) (-5 *1 (-302))))) +(((*1 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-423)) + (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-901 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-108)) (-4 *7 (-982 *4 *5 *6)) + (-4 *4 (-423)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *1 (-901 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-705)) (-4 *4 (-321)) (-5 *1 (-193 *4 *2)) + (-4 *2 (-1139 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-238))) (-5 *1 (-1164)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-238))) (-5 *1 (-1164)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-238))) (-5 *1 (-1165)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-238))) (-5 *1 (-1165))))) +(((*1 *2 *2) (-12 (-5 *1 (-887 *2)) (-4 *2 (-504))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) + (-5 *2 (-957)) (-5 *1 (-686))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) + (-5 *2 + (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) + (|:| |success| (-108)))) + (-5 *1 (-723)) (-5 *5 (-519))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-519)) (-5 *5 (-625 (-201))) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G)))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) (-5 *3 (-201)) + (-5 *2 (-957)) (-5 *1 (-684))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1013 (-1013 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1011))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-519)) (|has| *1 (-6 -4222)) (-4 *1 (-345 *3)) + (-4 *3 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-439)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1164)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1165))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-870 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1077)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) - (-14 *4 (-845)) (-14 *5 (-583 *2)) (-14 *6 (-1158 (-623 *3))))) - ((*1 *1) - (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-845)) - (-14 *4 (-583 (-1077))) (-14 *5 (-1158 (-623 *2)))))) -(((*1 *2) - (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-1006))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-964)) (-5 *2 (-1158 *4)) - (-5 *1 (-1078 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-845)) (-5 *2 (-1158 *3)) (-5 *1 (-1078 *3)) - (-4 *3 (-964))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) - (-5 *4 (-703)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) - (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1163)) - (-5 *1 (-981 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) - (-5 *4 (-703)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) - (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1163)) - (-5 *1 (-1047 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) - (-5 *2 (-953)) (-5 *1 (-685))))) -(((*1 *1 *1) (-5 *1 (-493)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-964)) (-5 *1 (-542 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1118 *3)) (-4 *3 (-964)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1149 *3)) (-4 *3 (-964))))) + (-12 (-5 *2 (-585 (-870 *3))) (-4 *3 (-968)) (-4 *1 (-1043 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-870 *3))) (-4 *1 (-1043 *3)) (-4 *3 (-968))))) +(((*1 *1 *1 *1) (-4 *1 (-892)))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1082)) (-5 *6 (-108)) + (-4 *7 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-4 *3 (-13 (-1103) (-885) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-775 *3)) (|:| |f2| (-585 (-775 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-195 *7 *3)) (-5 *5 (-775 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -2833 (-585 (-790))) (|:| -2494 (-585 (-790))) + (|:| |presup| (-585 (-790))) (|:| -2693 (-585 (-790))) + (|:| |args| (-585 (-790))))) + (-5 *1 (-1082))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-705))) (-5 *3 (-156)) (-5 *1 (-1071 *4 *5)) + (-14 *4 (-848)) (-4 *5 (-968))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-585 (-585 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-585 (-3 (|:| |array| (-585 *3)) (|:| |scalar| (-1082))))) + (-5 *6 (-585 (-1082))) (-5 *3 (-1082)) (-5 *2 (-1015)) + (-5 *1 (-369)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-585 (-585 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-585 (-3 (|:| |array| (-585 *3)) (|:| |scalar| (-1082))))) + (-5 *6 (-585 (-1082))) (-5 *3 (-1082)) (-5 *2 (-1015)) + (-5 *1 (-369)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-585 (-1082))) (-5 *5 (-1085)) (-5 *3 (-1082)) + (-5 *2 (-1015)) (-5 *1 (-369))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) + (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *3 (-982 *4 *5 *6)) + (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *1)))) + (-4 *1 (-987 *4 *5 *6 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *5 (-201)) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-59 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-85 BDYVAL)))) + (-5 *2 (-957)) (-5 *1 (-684)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *5 (-201)) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-59 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-85 BDYVAL)))) + (-5 *8 (-360)) (-5 *2 (-957)) (-5 *1 (-684))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-900 *4 *5 *6 *3)) (-4 *4 (-968)) (-4 *5 (-727)) + (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-4 *4 (-511)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) - (-4 *4 (-779)) (-5 *1 (-1084 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *6 *5)) - (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) - (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-848 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-13 (-278) (-134))) - (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-107)) - (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359))))) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *1 (-739 *4 *2)) (-4 *2 (-13 (-29 *4) (-1103) (-885)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-870 *4)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) +(((*1 *1) (-5 *1 (-409)))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-354 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1011)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-519)) (-5 *2 (-1063 *3)) (-5 *1 (-1067 *3)) + (-4 *3 (-968)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-754 *4)) (-4 *4 (-782)) (-4 *1 (-1178 *4 *3)) + (-4 *3 (-968))))) +(((*1 *2 *3) + (-12 (-4 *4 (-968)) + (-4 *2 (-13 (-376) (-959 *4) (-335) (-1103) (-258))) + (-5 *1 (-414 *4 *3 *2)) (-4 *3 (-1139 *4)))) + ((*1 *1 *1) (-4 *1 (-504))) + ((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-614 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-754 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-820 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) (-12 (-4 *1 (-918 *3)) (-4 *3 (-1117)) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-1115 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-925)) + (-4 *2 (-968))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1130 (-519)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-265 (-377 (-876 *5)))) (-5 *4 (-1077)) - (-4 *5 (-13 (-278) (-779) (-134))) - (-5 *2 (-1067 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) - (-5 *1 (-1033 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) - (-4 *5 (-13 (-278) (-779) (-134))) - (-5 *2 (-1067 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) - (-5 *1 (-1033 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4)) - (-4 *4 (-964))))) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-585 (-1063 *7))) (-4 *6 (-782)) + (-4 *7 (-876 *5 (-491 *6) *6)) (-4 *5 (-968)) + (-5 *2 (-1 (-1063 *7) *7)) (-5 *1 (-1035 *5 *6 *7))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-511)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *2 (-585 *1)) (-4 *1 (-982 *3 *4 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-798)) (-5 *3 (-583 (-236))) (-5 *1 (-234))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-168)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-271)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1058 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-276))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) - (-4 *3 (-13 (-333) (-1098) (-921)))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-688))))) + (-12 (-5 *2 (-385 *3 *4 *5 *6)) (-4 *6 (-959 *4)) (-4 *3 (-280)) + (-4 *4 (-916 *3)) (-4 *5 (-1139 *4)) (-4 *6 (-381 *4 *5)) + (-14 *7 (-1163 *6)) (-5 *1 (-386 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1163 *6)) (-4 *6 (-381 *4 *5)) (-4 *4 (-916 *3)) + (-4 *5 (-1139 *4)) (-4 *3 (-280)) (-5 *1 (-386 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-819 *6))) + (-5 *5 (-1 (-816 *6 *8) *8 (-819 *6) (-816 *6 *8))) (-4 *6 (-1011)) + (-4 *8 (-13 (-968) (-560 (-819 *6)) (-959 *7))) (-5 *2 (-816 *6 *8)) + (-4 *7 (-13 (-968) (-782))) (-5 *1 (-868 *6 *7 *8))))) +(((*1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-690))))) +(((*1 *2 *1) + (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-1163 + (-2 (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) + (|:| |deltaX| (-201)) (|:| |deltaY| (-201)) (|:| -2239 (-519)) + (|:| -3821 (-519)) (|:| |spline| (-519)) (|:| -3502 (-519)) + (|:| |axesColor| (-801)) (|:| -1977 (-519)) + (|:| |unitsColor| (-801)) (|:| |showing| (-519))))) + (-5 *1 (-1164))))) +(((*1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-764))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1134 *6)) - (-4 *6 (-13 (-27) (-400 *5))) - (-4 *5 (-13 (-779) (-509) (-955 (-517)))) (-4 *8 (-1134 (-377 *7))) - (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) - (-4 *3 (-312 *6 *7 *8))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1006)) (-4 *2 (-779)) - (-5 *1 (-108 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) - ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) - ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) - ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) - ((*1 *2 *1) - (-12 (-5 *2 (-377 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) - ((*1 *1 *1) (-4 *1 (-973)))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-890 *2 *3)) - (-4 *3 (-1134 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-964)) (-4 *3 (-779)) - (-4 *4 (-239 *3)) (-4 *5 (-725))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1159)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1160)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1160))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-1118 *4)) (-4 *4 (-964)) (-4 *4 (-509)) - (-5 *2 (-377 (-876 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-1118 *4)) (-4 *4 (-964)) (-4 *4 (-509)) - (-5 *2 (-377 (-876 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2791 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-333)) (-4 *7 (-1134 *6)) - (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) - (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *3 (-585 (-801))) + (-5 *4 (-585 (-848))) (-5 *5 (-585 (-238))) (-5 *1 (-439)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *3 (-585 (-801))) + (-5 *4 (-585 (-848))) (-5 *1 (-439)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *1 (-439)))) + ((*1 *1 *1) (-5 *1 (-439)))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *1 *1) (-5 *1 (-790)))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240))))) + (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) + (-4 *4 (-321))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) (-5 *2 (-1 (-201) (-201))) (-5 *1 (-639 *3)) + (-4 *3 (-560 (-495))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1082)) (-5 *2 (-1 (-201) (-201) (-201))) + (-5 *1 (-639 *3)) (-4 *3 (-560 (-495)))))) (((*1 *2 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) - (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-209 *3)) - (-4 *3 (-1006)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112))))) -(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) - ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *1 *1) (-4 *1 (-1041)))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) - (-4 *3 (-1134 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) - (-4 *5 (-593 (-377 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-377 *5)) - (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-1134 *4)) - (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1077))) - (-4 *4 (-421)) (-5 *1 (-571 *3 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)))) - ((*1 *1) (-4 *1 (-1053)))) -(((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) - ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1159)))) - ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1160))))) + (-12 (-14 *4 (-585 (-1082))) (-14 *5 (-705)) + (-5 *2 + (-585 + (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) + (-223 *4 (-379 (-519)))))) + (-5 *1 (-472 *4 *5)) + (-5 *3 + (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) + (-223 *4 (-379 (-519)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-978 *5 *6 *7)) - (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) - (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) - (-5 *1 (-897 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) -(((*1 *2 *3) - (-12 (-4 *4 (-964)) - (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) - (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4))))) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) + (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 *10)) + (-5 *1 (-567 *5 *6 *7 *8 *9 *10)) (-4 *9 (-987 *5 *6 *7 *8)) + (-4 *10 (-1020 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-714 *5 (-792 *6)))) (-5 *4 (-108)) (-4 *5 (-423)) + (-14 *6 (-585 (-1082))) (-5 *2 (-585 (-965 *5 *6))) + (-5 *1 (-570 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-714 *5 (-792 *6)))) (-5 *4 (-108)) (-4 *5 (-423)) + (-14 *6 (-585 (-1082))) + (-5 *2 + (-585 (-1053 *5 (-491 (-792 *6)) (-792 *6) (-714 *5 (-792 *6))))) + (-5 *1 (-570 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) + (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-585 (-949 *5 *6 *7 *8))) (-5 *1 (-949 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) + (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-585 (-949 *5 *6 *7 *8))) (-5 *1 (-949 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-585 (-714 *5 (-792 *6)))) (-5 *4 (-108)) (-4 *5 (-423)) + (-14 *6 (-585 (-1082))) (-5 *2 (-585 (-965 *5 *6))) + (-5 *1 (-965 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) + (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-987 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) + (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-585 (-1053 *5 *6 *7 *8))) (-5 *1 (-1053 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) + (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-585 (-1053 *5 *6 *7 *8))) (-5 *1 (-1053 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-511)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-1111 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-5 *2 (-1008 (-1008 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006))))) + (-12 (-5 *2 (-1063 (-2 (|:| |k| (-519)) (|:| |c| *3)))) + (-5 *1 (-544 *3)) (-4 *3 (-968))))) +(((*1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166)))) + ((*1 *2 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166))))) +(((*1 *1) (-5 *1 (-409)))) (((*1 *2 *3) - (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1006))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3))))) -(((*1 *2 *1) - (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) - (-14 *6 - (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *2)) - (-2 (|:| -2803 *5) (|:| -1725 *2)))) - (-4 *2 (-212 (-3573 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-779)) (-4 *7 (-873 *4 *2 (-789 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1112)) (-5 *1 (-797 *3 *2)) (-4 *3 (-1112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *2 (-583 *3)) (-5 *1 (-897 *4 *5 *6 *3)) - (-4 *3 (-978 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-891))))) -(((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-300))))) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-335)) (-5 *2 (-625 *4)) + (-5 *1 (-749 *4 *5)) (-4 *5 (-595 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-705)) (-4 *5 (-335)) + (-5 *2 (-625 *5)) (-5 *1 (-749 *5 *6)) (-4 *6 (-595 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-335)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-471 *4 *5 *6 *3)) (-4 *3 (-876 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) + (-5 *2 (-108))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *3 (-519)) + (-5 *2 (-957)) (-5 *1 (-691))))) +(((*1 *1 *1) (-5 *1 (-980)))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) + ((*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1134 *3)))) + (-12 (-4 *3 (-280)) (-5 *1 (-426 *3 *2)) (-4 *2 (-1139 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1134 *3)))) + (-12 (-4 *3 (-280)) (-5 *1 (-431 *3 *2)) (-4 *2 (-1139 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) - (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1134 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-107))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-517)))) - ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) - (-5 *2 (-953)) (-5 *1 (-688))))) -(((*1 *2) - (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) - (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) - (-5 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) - (-4 *5 (-343 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1112)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *2 *6 *7)) - (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-964))))) + (-12 (-4 *3 (-280)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-705))) + (-5 *1 (-498 *3 *2 *4 *5)) (-4 *2 (-1139 *3))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-968)) + (-5 *1 (-785 *5 *2)) (-4 *2 (-784 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-583 - (-2 (|:| -3778 (-703)) - (|:| |eqns| - (-583 - (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) - (|:| |cols| (-583 (-517)))))) - (|:| |fgb| (-583 *7))))) - (-4 *7 (-873 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) - (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725)) (-5 *2 (-703)) - (-5 *1 (-848 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-886 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) - (-4 *3 (-964)) (-4 *2 (-724)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-1073 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-891)) (-4 *2 (-123)) (-5 *1 (-1079 *3)) (-4 *3 (-509)) - (-4 *3 (-964)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-1131 *4 *3)) (-14 *4 (-1077)) - (-4 *3 (-964))))) + (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-108)) + (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 (-154 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-108)) (-5 *1 (-1107 *4 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *4)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1029)) (-5 *2 (-1168)) (-5 *1 (-766))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-682))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 (-288 (-201)))) (-5 *1 (-242))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *3 (-519)) + (-5 *2 (-957)) (-5 *1 (-691))))) +(((*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) +(((*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-335)) (-4 *1 (-301 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1163 *3)) (-4 *3 (-1139 *4)) (-4 *4 (-1121)) + (-4 *1 (-314 *4 *3 *5)) (-4 *5 (-1139 (-379 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1163 *4)) (-5 *3 (-1163 *1)) (-4 *4 (-157)) + (-4 *1 (-339 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1163 *4)) (-5 *3 (-1163 *1)) (-4 *4 (-157)) + (-4 *1 (-342 *4 *5)) (-4 *5 (-1139 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1163 *3)) (-4 *3 (-157)) (-4 *1 (-381 *3 *4)) + (-4 *4 (-1139 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-157)) (-4 *1 (-389 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-159))) (-5 *1 (-998))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-333)) - (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1158 *5))))) - (-5 *1 (-898 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1158 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) - (-5 *2 - (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) - (|:| |success| (-107)))) - (-5 *1 (-721)) (-5 *5 (-517))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-377 (-876 *6)) (-1067 (-1077) (-876 *6)))) - (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *6))))) - (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-876 *6)))))) - ((*1 *2 *3 *4) (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-377 (-876 *5)) (-1067 (-1077) (-876 *5)))) - (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) - (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-876 *5))))) - (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-876 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-876 *4))) (-5 *3 (-583 (-1077))) (-4 *4 (-421)) - (-5 *1 (-842 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) - (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-682))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) - ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112))))) -(((*1 *1) (-5 *1 (-755)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1046)) (-5 *2 (-107))))) -(((*1 *1 *1) (-5 *1 (-976)))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-519)))) + (-4 *4 (-13 (-1139 *3) (-511) (-10 -8 (-15 -2292 ($ $ $))))) + (-4 *3 (-511)) (-5 *1 (-1142 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1286 *4))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-2 (|:| -1921 *4) (|:| -4178 (-519))))) + (-4 *4 (-1139 (-519))) (-5 *2 (-672 (-705))) (-5 *1 (-413 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-390 *5)) (-4 *5 (-1139 *4)) (-4 *4 (-968)) + (-5 *2 (-672 (-705))) (-5 *1 (-415 *4 *5))))) (((*1 *1 *1) - (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779))) - (-14 *3 (-583 (-1077)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-703)) (-4 *5 (-509)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5))))) + (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) + (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 *4)))) - (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) (((*1 *2 *2) - (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-623 *4)) (-5 *3 (-845)) (-4 *4 (-964)) - (-5 *1 (-946 *4)))) + (-12 (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-335) (-275) + (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) + (-15 -2866 ((-1034 *3 (-558 $)) $)) + (-15 -2217 ($ (-1034 *3 (-558 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) + (-4 *2 + (-13 (-335) (-275) + (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) + (-15 -2866 ((-1034 *3 (-558 $)) $)) + (-15 -2217 ($ (-1034 *3 (-558 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-845)) (-4 *4 (-964)) - (-5 *1 (-946 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) - (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) + (-12 (-5 *3 (-585 *2)) + (-4 *2 + (-13 (-335) (-275) + (-10 -8 (-15 -2855 ((-1034 *4 (-558 $)) $)) + (-15 -2866 ((-1034 *4 (-558 $)) $)) + (-15 -2217 ($ (-1034 *4 (-558 $))))))) + (-4 *4 (-511)) (-5 *1 (-40 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-585 (-558 *2))) + (-4 *2 + (-13 (-335) (-275) + (-10 -8 (-15 -2855 ((-1034 *4 (-558 $)) $)) + (-15 -2866 ((-1034 *4 (-558 $)) $)) + (-15 -2217 ($ (-1034 *4 (-558 $))))))) + (-4 *4 (-511)) (-5 *1 (-40 *4 *2))))) +(((*1 *1) (-5 *1 (-998)))) +(((*1 *2 *3) + (-12 (-4 *4 (-335)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) + (-5 *2 (-705)) (-5 *1 (-486 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) - (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-4 *3 (-511)) (-5 *2 (-705)))) ((*1 *2 *3) - (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) - (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) + (-12 (-4 *4 (-511)) (-4 *4 (-157)) (-4 *5 (-345 *4)) + (-4 *6 (-345 *4)) (-5 *2 (-705)) (-5 *1 (-624 *4 *5 *6 *3)) + (-4 *3 (-623 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) - (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) - (-5 *2 (-583 (-867 *4))) (-5 *1 (-1109)) (-5 *3 (-867 *4))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) - (-5 *2 (-953)) (-5 *1 (-684))))) -(((*1 *2) - (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-387 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155))))) -(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964))))) -(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-953)) (-5 *1 (-769)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) - (-5 *2 (-953)) (-5 *1 (-769))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-437)) (-5 *4 (-845)) (-5 *2 (-1163)) (-5 *1 (-1159))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) - (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) - (-4 *3 (-13 (-333) (-1098) (-921)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1077)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) - (-4 *3 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112)) - (-4 *7 (-1112)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) - (-4 *3 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112))))) -(((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112))))) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-511)) + (-5 *2 (-705))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-968)) (-5 *1 (-415 *3 *2)) (-4 *2 (-1139 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1006 (-775 (-201)))) (-5 *1 (-278))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-848)) (-5 *4 (-351)) (-5 *2 (-1168)) (-5 *1 (-1164)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-511) (-135))) (-5 *1 (-496 *3 *2)) + (-4 *2 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-4 *4 (-1139 *3)) + (-4 *5 (-659 *3 *4)) (-5 *1 (-500 *3 *4 *5 *2)) (-4 *2 (-1154 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-5 *1 (-501 *3 *2)) + (-4 *2 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-13 (-511) (-135))) + (-5 *1 (-1059 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1117)) (-4 *2 (-782)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-256 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-782))))) (((*1 *2 *1) - (-12 (-4 *4 (-1006)) (-5 *2 (-107)) (-5 *1 (-809 *3 *4 *5)) - (-4 *3 (-1006)) (-4 *5 (-603 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-813 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-1006))))) -(((*1 *2 *3) - (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1028 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) - (-5 *2 (-953)) (-5 *1 (-689))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-964)) (-4 *4 (-156)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)) - (-4 *3 (-156))))) + (-12 (-5 *2 (-1078 (-379 (-879 *3)))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) + (-4 *3 (-13 (-335) (-1103) (-925)))))) +(((*1 *1) (-5 *1 (-998)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1078 *1)) (-4 *1 (-935))))) (((*1 *2 *1) - (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) - (-5 *2 (-703)))) + (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-504)) + (-5 *2 (-379 (-519))))) + ((*1 *2 *1) + (-12 (-5 *2 (-379 (-519))) (-5 *1 (-390 *3)) (-4 *3 (-504)) + (-4 *3 (-511)))) + ((*1 *2 *1) (-12 (-4 *1 (-504)) (-5 *2 (-379 (-519))))) ((*1 *2 *1) - (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) - (-5 *2 (-703)))) + (-12 (-4 *1 (-732 *3)) (-4 *3 (-157)) (-4 *3 (-504)) + (-5 *2 (-379 (-519))))) ((*1 *2 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-659))))) + (-12 (-5 *2 (-379 (-519))) (-5 *1 (-768 *3)) (-4 *3 (-504)) + (-4 *3 (-1011)))) + ((*1 *2 *1) + (-12 (-5 *2 (-379 (-519))) (-5 *1 (-775 *3)) (-4 *3 (-504)) + (-4 *3 (-1011)))) + ((*1 *2 *1) + (-12 (-4 *1 (-920 *3)) (-4 *3 (-157)) (-4 *3 (-504)) + (-5 *2 (-379 (-519))))) + ((*1 *2 *3) + (-12 (-5 *2 (-379 (-519))) (-5 *1 (-931 *3)) (-4 *3 (-959 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) + (-12 + (-5 *3 + (-2 (|:| -2488 (-625 (-379 (-879 *4)))) + (|:| |vec| (-585 (-379 (-879 *4)))) (|:| -3229 (-705)) + (|:| |rows| (-585 (-519))) (|:| |cols| (-585 (-519))))) + (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) + (-4 *6 (-727)) + (-5 *2 + (-2 (|:| |partsol| (-1163 (-379 (-879 *4)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *4))))))) + (-5 *1 (-851 *4 *5 *6 *7)) (-4 *7 (-876 *4 *6 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-228 *2 *3 *4 *5)) (-4 *2 (-968)) (-4 *3 (-782)) + (-4 *4 (-241 *3)) (-4 *5 (-727))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-217)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-1168)) (-5 *1 (-217))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4221)) (-4 *1 (-211 *3)) + (-4 *3 (-1011)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4221)) (-4 *1 (-211 *2)) (-4 *2 (-1011)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-256 *2)) (-4 *2 (-1117)) (-4 *2 (-1011)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-256 *3)) (-4 *3 (-1117)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-556 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-519)) (-4 *4 (-1011)) + (-5 *1 (-672 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-5 *1 (-672 *2)) (-4 *2 (-1011)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) + (-4 *4 (-13 (-1011) (-33))) (-5 *1 (-1048 *3 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-308 *5 *6 *7 *8)) (-4 *5 (-402 *4)) + (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) + (-4 *8 (-314 *5 *6 *7)) (-4 *4 (-13 (-782) (-511) (-959 (-519)))) + (-5 *2 (-2 (|:| -3709 (-705)) (|:| -2112 *8))) + (-5 *1 (-838 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-308 (-379 (-519)) *4 *5 *6)) + (-4 *4 (-1139 (-379 (-519)))) (-4 *5 (-1139 (-379 *4))) + (-4 *6 (-314 (-379 (-519)) *4 *5)) + (-5 *2 (-2 (|:| -3709 (-705)) (|:| -2112 *6))) + (-5 *1 (-839 *4 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-1117)) (-4 *2 (-782)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-345 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-782)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-968)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 (-1071 *3 *4))) (-5 *1 (-1071 *3 *4)) + (-14 *3 (-848)) (-4 *4 (-968)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-511)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1139 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1139 *2)) (-4 *2 (-1121)) (-5 *1 (-136 *2 *4 *3)) + (-4 *3 (-1139 (-379 *4)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-998))))) (((*1 *2 *3) - (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-964))) - (-5 *2 (-1060)) (-5 *1 (-758 *4)))) + (-12 (-4 *4 (-321)) (-5 *2 (-390 *3)) (-5 *1 (-193 *4 *3)) + (-4 *3 (-1139 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) - (-4 *5 (-13 (-760) (-779) (-964))) (-5 *2 (-1060)) - (-5 *1 (-758 *5)))) + (-12 (-5 *4 (-705)) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) + (-4 *3 (-1139 (-519))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) - (-4 *5 (-13 (-760) (-779) (-964))) (-5 *2 (-1163)) - (-5 *1 (-758 *5)))) + (-12 (-5 *4 (-585 (-705))) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) + (-4 *3 (-1139 (-519))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) - (-4 *6 (-13 (-760) (-779) (-964))) (-5 *2 (-1163)) - (-5 *1 (-758 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1060)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1060)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1163)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1163))))) + (-12 (-5 *4 (-585 (-705))) (-5 *5 (-705)) (-5 *2 (-390 *3)) + (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-705)) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) + (-4 *3 (-1139 (-519))))) + ((*1 *2 *3) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-930 *3)) + (-4 *3 (-1139 (-379 (-519)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-836)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-876 *4 *5 *6)) (-5 *2 (-390 (-1078 *7))) + (-5 *1 (-833 *4 *5 *6 *7)) (-5 *3 (-1078 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-836)) (-4 *5 (-1139 *4)) (-5 *2 (-390 (-1078 *5))) + (-5 *1 (-834 *4 *5)) (-5 *3 (-1078 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103))))) + ((*1 *1 *1 *1) (-4 *1 (-727)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-705)) (-5 *1 (-537 *2)) (-4 *2 (-504))))) +(((*1 *2 *3) + (-12 (-4 *4 (-37 (-379 (-519)))) + (-5 *2 (-2 (|:| -2800 (-1063 *4)) (|:| -2812 (-1063 *4)))) + (-5 *1 (-1069 *4)) (-5 *3 (-1063 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1073 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278))))) -(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-493))) (-5 *1 (-493))))) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *3)) + (-4 *3 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) + (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-982 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-912 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) + (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-982 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-1018 *5 *6 *7 *8 *3))))) +(((*1 *1) + (-12 (-4 *1 (-376)) (-2445 (|has| *1 (-6 -4212))) + (-2445 (|has| *1 (-6 -4204))))) + ((*1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1011)) (-4 *2 (-782)))) + ((*1 *1 *1 *1) (-4 *1 (-782))) + ((*1 *2 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-782)))) + ((*1 *1) (-5 *1 (-1029)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-201))) (-5 *4 (-705)) (-5 *2 (-625 (-201))) + (-5 *1 (-278))))) +(((*1 *2) + (-12 (-4 *3 (-511)) (-5 *2 (-585 (-625 *3))) (-5 *1 (-42 *3 *4)) + (-4 *4 (-389 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-1087)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1087)))) + ((*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-1087)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1087))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-379 (-519))) (-5 *1 (-201)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-379 (-519))) (-5 *1 (-201)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-379 (-519))) (-5 *1 (-351)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-379 (-519))) (-5 *1 (-351))))) (((*1 *2 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1163)) - (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-867 *4)) (-4 *4 (-964)) (-5 *1 (-1066 *3 *4)) - (-14 *3 (-845))))) -(((*1 *2 *1) - (-12 (-4 *1 (-343 *3)) (-4 *3 (-1112)) (-4 *3 (-779)) (-5 *2 (-107)))) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1139 (-47))))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1112)) - (-5 *2 (-107))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) + (-5 *1 (-117 *3)) (-4 *3 (-782)))) + ((*1 *2 *2) + (-12 (-5 *2 (-536 *4)) (-4 *4 (-13 (-29 *3) (-1103))) + (-4 *3 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) + (-5 *1 (-534 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-536 (-379 (-879 *3)))) + (-4 *3 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) + (-5 *1 (-539 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1139 *5)) (-4 *5 (-335)) + (-5 *2 (-2 (|:| -3688 *3) (|:| |special| *3))) (-5 *1 (-662 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1163 *5)) (-4 *5 (-335)) (-4 *5 (-968)) + (-5 *2 (-585 (-585 (-625 *5)))) (-5 *1 (-951 *5)) + (-5 *3 (-585 (-625 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1163 (-1163 *5))) (-4 *5 (-335)) (-4 *5 (-968)) + (-5 *2 (-585 (-585 (-625 *5)))) (-5 *1 (-951 *5)) + (-5 *3 (-585 (-625 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-585 *1)) (-4 *1 (-1051)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-585 *1)) (-4 *1 (-1051))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) + (-4 *3 (-13 (-335) (-1103) (-925)))))) +(((*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-585 *4)) (-4 *4 (-335)) (-5 *2 (-1163 *4)) + (-5 *1 (-749 *4 *3)) (-4 *3 (-595 *4))))) +(((*1 *2) + (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) + (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) + (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-423)) (-4 *4 (-727)) (-4 *5 (-782)) + (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-1168)) + (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-987 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-423)) (-4 *3 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) + (-5 *1 (-420 *4 *3 *5 *6)) (-4 *6 (-876 *4 *3 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1082)) (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1077)) - (|:| |arrayIndex| (-583 (-876 (-517)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1077)) (|:| |rand| (-787)) - (|:| |ints2Floats?| (-107)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1076)) (|:| |thenClause| (-300)) - (|:| |elseClause| (-300)))) - (|:| |returnBranch| - (-2 (|:| -1754 (-107)) - (|:| -3112 - (-2 (|:| |ints2Floats?| (-107)) (|:| -3756 (-787)))))) - (|:| |blockBranch| (-583 (-300))) - (|:| |commentBranch| (-583 (-1060))) (|:| |callBranch| (-1060)) - (|:| |forBranch| - (-2 (|:| -3177 (-999 (-876 (-517)))) - (|:| |span| (-876 (-517))) (|:| |body| (-300)))) - (|:| |labelBranch| (-1024)) - (|:| |loopBranch| (-2 (|:| |switch| (-1076)) (|:| |body| (-300)))) - (|:| |commonBranch| - (-2 (|:| -2981 (-1077)) (|:| |contents| (-583 (-1077))))) - (|:| |printBranch| (-583 (-787))))) - (-5 *1 (-300))))) -(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) + (-2 (|:| |zeros| (-1063 (-201))) (|:| |ones| (-1063 (-201))) + (|:| |singularities| (-1063 (-201))))) + (-5 *1 (-100))))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1163 (-1163 (-519)))) (-5 *3 (-848)) (-5 *1 (-437))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-519)) (-5 *5 (-1065)) (-5 *6 (-625 (-201))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) + (-5 *9 (-3 (|:| |fn| (-360)) (|:| |fp| (-69 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-684))))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 (-288 (-201)))) (-5 *2 (-351)) (-5 *1 (-183))))) +(((*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-729))) (-5 *1 (-104)))) + ((*1 *2 *1) (-12 (-5 *2 (-44 (-1065) (-708))) (-5 *1 (-110))))) +(((*1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166)))) + ((*1 *2 *2) (-12 (-5 *2 (-801)) (-5 *1 (-1166))))) +(((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-968)) + (-14 *4 (-585 (-1082))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1117)))) ((*1 *2 *1) - (-12 (-4 *3 (-1006)) - (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))) - (-5 *1 (-986 *3 *4 *2)) - (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))))) + (-12 (-5 *2 (-108)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-968) (-782))) + (-14 *4 (-585 (-1082))))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-782))))) +(((*1 *2 *1) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *2 (-1006)) (-5 *1 (-1067 *3 *2)) (-4 *3 (-1006))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-976))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894))))) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-585 (-879 (-519)))) (-5 *4 (-585 (-1082))) + (-5 *2 (-585 (-585 (-351)))) (-5 *1 (-945)) (-5 *5 (-351)))) + ((*1 *2 *3) + (-12 (-5 *3 (-965 *4 *5)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) + (-14 *5 (-585 (-1082))) (-5 *2 (-585 (-585 (-946 (-379 *4))))) + (-5 *1 (-1187 *4 *5 *6)) (-14 *6 (-585 (-1082))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-585 (-585 (-946 (-379 *5))))) (-5 *1 (-1187 *5 *6 *7)) + (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-585 (-585 (-946 (-379 *5))))) (-5 *1 (-1187 *5 *6 *7)) + (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-585 (-585 (-946 (-379 *5))))) (-5 *1 (-1187 *5 *6 *7)) + (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-879 *4))) + (-4 *4 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-585 (-585 (-946 (-379 *4))))) (-5 *1 (-1187 *4 *5 *6)) + (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-705)) (-4 *4 (-335)) (-4 *5 (-1139 *4)) (-5 *2 (-1168)) + (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1139 (-379 *5))) (-14 *7 *6)))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) + (-4 *3 (-982 *6 *7 *8)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) + (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1890 *9)))) + (-5 *5 (-108)) (-4 *8 (-982 *6 *7 *4)) (-4 *9 (-987 *6 *7 *4 *8)) + (-4 *6 (-423)) (-4 *7 (-727)) (-4 *4 (-782)) + (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1890 *9)))) + (-5 *1 (-1019 *6 *7 *4 *8 *9))))) (((*1 *2 *1) - (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-583 (-155))))))) + (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-108))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-982 *4 *5 *6)) (-4 *4 (-968)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-108)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1111 *5 *6 *7 *3)) + (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-108))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))) - (-5 *2 (-349)) (-5 *1 (-181))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-278)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1))) - (-4 *1 (-278))))) -(((*1 *2 *1) (-12 (-5 *2 (-891)) (-5 *1 (-829 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1006)) - (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3)))) - (-5 *1 (-986 *3 *4 *2)) - (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1006)) (-5 *1 (-1067 *2 *3)) (-4 *3 (-1006))))) + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (-5 *2 (-1063 (-201))) (-5 *1 (-170)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-288 (-201))) (-5 *4 (-585 (-1082))) + (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-1063 (-201))) (-5 *1 (-273)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1163 (-288 (-201)))) (-5 *4 (-585 (-1082))) + (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-1063 (-201))) (-5 *1 (-273))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -1265 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-335)) (-4 *7 (-1139 *6)) + (-5 *2 (-2 (|:| |answer| (-536 (-379 *7))) (|:| |a0| *6))) + (-5 *1 (-529 *6 *7)) (-5 *3 (-379 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1158 *5)) (-4 *5 (-278)) - (-4 *5 (-964)) (-5 *2 (-623 *5)) (-5 *1 (-947 *5))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1030 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) - (-4 *4 (-964)) (-4 *3 (-779)) (-5 *1 (-1030 *4 *3 *5)) - (-4 *5 (-873 *4 (-489 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1107 *4))) (-5 *3 (-1077)) (-5 *1 (-1107 *4)) - (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-964))))) -(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) + (-12 (-5 *3 (-1082)) (-4 *5 (-335)) (-5 *2 (-1063 (-1063 (-879 *5)))) + (-5 *1 (-1171 *5)) (-5 *4 (-1063 (-879 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) + ((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-154 (-201))) (-5 *5 (-519)) (-5 *6 (-1065)) + (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-4 *5 (-1139 *4)) (-5 *2 (-585 (-592 (-379 *5)))) + (-5 *1 (-596 *4 *5)) (-5 *3 (-592 (-379 *5)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1006)) (-4 *3 (-824 *5)) (-5 *2 (-623 *3)) - (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) - (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195))))))) -(((*1 *1 *1) (-4 *1 (-509)))) + (-12 (-5 *3 (-585 (-238))) (-5 *4 (-1082)) (-5 *2 (-108)) + (-5 *1 (-238))))) +(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110))) + ((*1 *1 *1) (-5 *1 (-156))) ((*1 *1 *1) (-4 *1 (-504))) + ((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-968)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) + (-4 *3 (-13 (-1011) (-33)))))) +(((*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) - (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) - (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *9)) (-4 *9 (-964)) (-4 *5 (-779)) (-4 *6 (-725)) - (-4 *8 (-964)) (-4 *2 (-873 *9 *7 *5)) - (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) - (-4 *4 (-873 *8 *6 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-964)) (-5 *1 (-1130 *3 *2)) (-4 *2 (-1134 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) + (-12 + (-5 *2 + (-471 (-379 (-519)) (-216 *4 (-705)) (-792 *3) + (-223 *3 (-379 (-519))))) + (-14 *3 (-585 (-1082))) (-14 *4 (-705)) (-5 *1 (-472 *3 *4))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-519)) (-5 *1 (-351))))) +(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1) (-4 *1 (-892))) ((*1 *1 *1) (-5 *1 (-1029)))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810)) + (-5 *3 (-585 (-519)))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-968)) (-4 *2 (-1011))))) +(((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-232))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-819 *4)) (-4 *4 (-1011)) (-5 *1 (-817 *4 *3)) + (-4 *3 (-1117)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *5 (-108)) + (-5 *2 (-957)) (-5 *1 (-680))))) +(((*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-288 (-201))) (-5 *4 (-1082)) + (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-585 (-201))) (-5 *1 (-170)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-288 (-201))) (-5 *4 (-1082)) + (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-585 (-201))) (-5 *1 (-273))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-398 *4 *2)) (-4 *2 (-13 (-1103) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-1082)) (-4 *5 (-135)) + (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) + (-5 *2 (-288 *5)) (-5 *1 (-539 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-4 *1 (-211 *3)))) + ((*1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1011))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-585 (-990 *4 *5 *2))) (-4 *4 (-1011)) + (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) + (-4 *2 (-13 (-402 *5) (-813 *4) (-560 (-819 *4)))) + (-5 *1 (-53 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-585 (-990 *5 *6 *2))) (-5 *4 (-848)) (-4 *5 (-1011)) + (-4 *6 (-13 (-968) (-813 *5) (-782) (-560 (-819 *5)))) + (-4 *2 (-13 (-402 *6) (-813 *5) (-560 (-819 *5)))) + (-5 *1 (-53 *5 *6 *2))))) (((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1082)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1082)))) - ((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1082)))) - ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1082))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) - (-5 *2 (-583 (-2 (|:| -1373 *5) (|:| -3817 *3)))) - (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) - (-4 *7 (-593 (-377 *6)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1) (-4 *1 (-888))) ((*1 *1 *1) (-5 *1 (-1024)))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) - (-14 *4 (-703)) (-4 *5 (-156))))) -(((*1 *2 *1) - (-12 (-4 *3 (-964)) (-5 *2 (-1158 *3)) (-5 *1 (-645 *3 *4)) - (-4 *4 (-1134 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-406))))) -(((*1 *2) - (-12 (-4 *3 (-1116)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) - (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-703)) (-5 *3 (-867 *4)) (-4 *1 (-1038 *4)) - (-4 *4 (-964)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-703)) (-5 *4 (-867 (-199))) (-5 *2 (-1163)) - (-5 *1 (-1160))))) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-585 *6) "failed") (-519) *6 *6)) (-4 *6 (-335)) + (-4 *7 (-1139 *6)) + (-5 *2 (-2 (|:| |answer| (-536 (-379 *7))) (|:| |a0| *6))) + (-5 *1 (-529 *6 *7)) (-5 *3 (-379 *7))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-1082))))) (((*1 *2 *3) - (-12 (-5 *3 (-1060)) (-5 *2 (-517)) (-5 *1 (-1095 *4)) - (-4 *4 (-964))))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) + (-12 (-4 *4 (-511)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3677 *4))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) (((*1 *2 *3) - (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) - (-4 *3 (-1134 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) + (|partial| -12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-447 *4 *5 *6 *7)) (|:| -1365 (-585 *7)))) + (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-351)) (-5 *1 (-719 *3)) (-4 *3 (-560 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) - (-4 *3 (-1134 (-517))))) + (-12 (-5 *4 (-848)) (-5 *2 (-351)) (-5 *1 (-719 *3)) + (-4 *3 (-560 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-879 *4)) (-4 *4 (-968)) (-4 *4 (-560 *2)) + (-5 *2 (-351)) (-5 *1 (-719 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) - (-4 *3 (-1134 (-517))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) - (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) - (-4 *3 (-1134 (-517))))) + (-12 (-5 *3 (-879 *5)) (-5 *4 (-848)) (-4 *5 (-968)) + (-4 *5 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-388 *3)) (-5 *1 (-926 *3)) - (-4 *3 (-1134 (-377 (-517)))))) + (-12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) (-4 *4 (-560 *2)) + (-5 *2 (-351)) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-848)) (-4 *5 (-511)) + (-4 *5 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-388 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-838 *2)))) + (-12 (-5 *3 (-288 *4)) (-4 *4 (-511)) (-4 *4 (-782)) + (-4 *4 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-1077)) - (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-839 *5)))) + (-12 (-5 *3 (-288 *5)) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-782)) + (-4 *5 (-560 *2)) (-5 *2 (-351)) (-5 *1 (-719 *5))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-108)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) + (-4 *3 (-982 *6 *7 *8)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) + (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-388 (-876 *6))) (-5 *5 (-1077)) (-5 *3 (-876 *6)) - (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-839 *6))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) - (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) - (|:| |ub| (-583 (-772 (-199)))))) - (-5 *1 (-240))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-583 *3)) (-5 *5 (-845)) (-4 *3 (-1134 *4)) - (-4 *4 (-278)) (-5 *1 (-429 *4 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) - (-4 *4 (-319))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-798)) (-5 *2 (-1163)) (-5 *1 (-1159)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159))))) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1890 *9)))) + (-5 *5 (-108)) (-4 *8 (-982 *6 *7 *4)) (-4 *9 (-987 *6 *7 *4 *8)) + (-4 *6 (-423)) (-4 *7 (-727)) (-4 *4 (-782)) + (-5 *2 (-585 (-2 (|:| |val| *8) (|:| -1890 *9)))) + (-5 *1 (-988 *6 *7 *4 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-845))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-845)) - (-14 *4 (-845))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) - (-5 *1 (-1043 *3 *4)) (-4 *3 (-13 (-1006) (-33))) - (-4 *4 (-13 (-1006) (-33)))))) -(((*1 *2 *3) - (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1086 (-845) (-703)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) - (-4 *3 (-978 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) + (-12 (-4 *3 (-423)) (-4 *4 (-782)) (-4 *5 (-727)) (-5 *2 (-585 *6)) + (-5 *1 (-911 *3 *4 *5 *6)) (-4 *6 (-876 *3 *5 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-511)) (-4 *3 (-968)) + (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-784 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-511)) (-4 *5 (-968)) + (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-785 *5 *3)) + (-4 *3 (-784 *5))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-108)) (-5 *5 (-1013 (-705))) (-5 *6 (-705)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) - (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-908 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3864 *8))) - (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-1013 *4 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) + (-2 (|:| |contp| (-519)) + (|:| -3433 (-585 (-2 (|:| |irr| *3) (|:| -1258 (-519))))))) + (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *2 *3) (-12 (-5 *3 (-870 *2)) (-5 *1 (-906 *2)) (-4 *2 (-968))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1073 *1)) (-5 *4 (-1077)) (-4 *1 (-27)) - (-5 *2 (-583 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1077))) - (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271))))) -(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-109))) - ((*1 *1 *1) (-5 *1 (-155))) ((*1 *1 *1) (-4 *1 (-502))) - ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) - (-4 *3 (-13 (-1006) (-33)))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) - (-4 *6 (-964)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-947 *6)) - (-5 *3 (-583 (-623 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-964)) - (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-947 *4)) - (-5 *3 (-583 (-623 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964)) - (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) - (-5 *3 (-583 (-623 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-845)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-964)) - (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) - (-5 *3 (-583 (-623 *5)))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) - (-5 *1 (-908 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) - (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) - (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1006)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-964)) - (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-787)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-787)))) - ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1073 *3)) (-4 *3 (-964))))) -(((*1 *2 *3) - (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1028 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-517)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-725)) (-4 *4 (-873 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) - (-5 *1 (-418 *5 *6 *7 *4))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)) - (-4 *2 (-1006))))) -(((*1 *2) - (-12 (-4 *1 (-319)) - (-5 *2 (-583 (-2 (|:| -3896 (-517)) (|:| -1725 (-517)))))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1158 (-583 *3))) (-4 *4 (-278)) - (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) - (|:| |cols| (-583 (-517))))) - (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-876 *9)))) - (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) - (-4 *9 (-13 (-278) (-134))) (-4 *12 (-873 *9 *11 *10)) - (-4 *10 (-13 (-779) (-558 (-1077)))) (-4 *11 (-725)) - (-5 *2 - (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) - (|:| |wcond| (-583 (-876 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1158 (-377 (-876 *9)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *9))))))))) - (-5 *1 (-848 *9 *10 *11 *12))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1006))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1060)) (-5 *2 (-706)) (-5 *1 (-109))))) -(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1060)) (-5 *1 (-276))))) + (-12 (-5 *3 (-379 *6)) (-4 *5 (-1121)) (-4 *6 (-1139 *5)) + (-5 *2 (-2 (|:| -1690 (-705)) (|:| -3031 *3) (|:| |radicand| *6))) + (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-705)) (-4 *7 (-1139 *3))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1112)) - (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) + (-12 (-5 *3 (-519)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1117)) + (-4 *4 (-345 *2)) (-4 *5 (-345 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4196)) (-4 *1 (-114 *3)) - (-4 *3 (-1112)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4222)) (-4 *1 (-115 *3)) + (-4 *3 (-1117)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4196)) (-4 *1 (-114 *3)) - (-4 *3 (-1112)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4222)) (-4 *1 (-115 *3)) + (-4 *3 (-1117)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1006)) - (-4 *2 (-1112)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1077)) (-5 *1 (-572)))) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-262 *3 *2)) (-4 *3 (-1011)) + (-4 *2 (-1117)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1082)) (-5 *1 (-574)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1125 (-517))) (|has| *1 (-6 -4196)) (-4 *1 (-588 *2)) - (-4 *2 (-1112)))) + (-12 (-5 *3 (-1130 (-519))) (|has| *1 (-6 -4222)) (-4 *1 (-590 *2)) + (-4 *2 (-1117)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) + (-12 (-5 *2 (-585 (-519))) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4196)) (-4 *1 (-929 *2)) - (-4 *2 (-1112)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-944 *2)) (-4 *2 (-1112)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4222)) (-4 *1 (-933 *2)) + (-4 *2 (-1117)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-948 *2)) (-4 *2 (-1117)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) + (-12 (-4 *1 (-1094 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) - (-4 *2 (-1112)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) + (-4 *2 (-1117)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *3)) - (-4 *3 (-1112)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4222)) (-4 *1 (-1151 *3)) + (-4 *3 (-1117)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) - (-4 *2 (-1112))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) + (-4 *2 (-1117))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1087))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-759))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-558 *3)) (-5 *5 (-1078 *3)) + (-4 *3 (-13 (-402 *6) (-27) (-1103))) + (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *2 (-2 (|:| -1265 *3) (|:| |coeff| *3))) + (-5 *1 (-515 *6 *3 *7)) (-4 *7 (-1011)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-558 *3)) (-5 *5 (-379 (-1078 *3))) + (-4 *3 (-13 (-402 *6) (-27) (-1103))) + (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *2 (-2 (|:| -1265 *3) (|:| |coeff| *3))) + (-5 *1 (-515 *6 *3 *7)) (-4 *7 (-1011))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-519)) (-5 *4 (-390 *2)) (-4 *2 (-876 *7 *5 *6)) + (-5 *1 (-677 *5 *6 *7 *2)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-280))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-220 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-92)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-92))))) +(((*1 *1 *2) + (-12 (-5 *2 (-625 *5)) (-4 *5 (-968)) (-5 *1 (-972 *3 *4 *5)) + (-14 *3 (-705)) (-14 *4 (-705))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1082)) (-5 *5 (-1006 (-201))) (-5 *2 (-854)) + (-5 *1 (-852 *3)) (-4 *3 (-560 (-495))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1082)) (-5 *5 (-1006 (-201))) (-5 *2 (-854)) + (-5 *1 (-852 *3)) (-4 *3 (-560 (-495))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-853)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) + (-5 *1 (-853)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) + (-5 *1 (-853)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-854)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) + (-5 *1 (-854)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) + (-5 *1 (-854)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-585 (-1 (-201) (-201)))) (-5 *3 (-1006 (-201))) + (-5 *1 (-854)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-585 (-1 (-201) (-201)))) (-5 *3 (-1006 (-201))) + (-5 *1 (-854)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) + (-5 *1 (-854)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) + (-5 *1 (-854))))) +(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-157)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-869)) (-5 *3 (-519))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-933 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-321)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -3433 (-585 (-2 (|:| |irr| *3) (|:| -1258 (-519))))))) + (-5 *1 (-193 *5 *3)) (-4 *3 (-1139 *5))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-585 (-1082))) (-4 *2 (-157)) + (-4 *3 (-214 (-3532 *4) (-705))) + (-14 *6 + (-1 (-108) (-2 (|:| -2770 *5) (|:| -1690 *3)) + (-2 (|:| -2770 *5) (|:| -1690 *3)))) + (-5 *1 (-432 *4 *2 *5 *3 *6 *7)) (-4 *5 (-782)) + (-4 *7 (-876 *2 *3 (-792 *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1078 *9)) (-5 *4 (-585 *7)) (-5 *5 (-585 *8)) + (-4 *7 (-782)) (-4 *8 (-968)) (-4 *9 (-876 *8 *6 *7)) (-4 *6 (-727)) + (-5 *2 (-1078 *8)) (-5 *1 (-293 *6 *7 *8 *9))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-625 *7)) (-5 *3 (-585 *7)) (-4 *7 (-876 *4 *6 *5)) + (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) + (-4 *6 (-727)) (-5 *1 (-851 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-691))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-687))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) + (-5 *2 + (-2 (|:| |ir| (-536 (-379 *6))) (|:| |specpart| (-379 *6)) + (|:| |polypart| *6))) + (-5 *1 (-529 *5 *6)) (-5 *3 (-379 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-625 (-288 (-519)))) (-5 *1 (-953))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) (((*1 *2 *3) - (-12 (-5 *3 (-876 *5)) (-4 *5 (-964)) (-5 *2 (-449 *4 *5)) - (-5 *1 (-868 *4 *5)) (-14 *4 (-583 (-1077)))))) -(((*1 *2 *2 *2) - (-12 + (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3677 *4))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-519)) (-5 *1 (-390 *2)) (-4 *2 (-511))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-5 *2 - (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-623 *3)))) - (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) - (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) - (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-379 *5)) + (|:| |c2| (-379 *5)) (|:| |deg| (-705)))) + (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1139 (-379 *5)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-848)) (-5 *2 (-439)) (-5 *1 (-1164))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2)) + (-4 *2 (-1117))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1065)) (-5 *1 (-1099))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-388 *6)) (-4 *6 (-1134 *5)) - (-4 *5 (-964)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-387 *4))))) -(((*1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1161))))) -(((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) - ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) - ((*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1106 *2 *3 *4 *5)) (-4 *2 (-509)) - (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-978 *2 *3 *4)))) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) + (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-379 *6)) (|:| |h| *6) + (|:| |c1| (-379 *6)) (|:| |c2| (-379 *6)) (|:| -1652 *6))) + (-5 *1 (-939 *5 *6)) (-5 *3 (-379 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) + (-4 *3 (-13 (-335) (-1103) (-925))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1121)) (-4 *5 (-1139 (-379 *2))) + (-4 *2 (-1139 *4)) (-5 *1 (-313 *3 *4 *2 *5)) + (-4 *3 (-314 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-314 *3 *2 *4)) (-4 *3 (-1121)) + (-4 *4 (-1139 (-379 *2))) (-4 *2 (-1139 *3))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-819 *4)) (-4 *4 (-1011)) (-5 *1 (-816 *4 *3)) + (-4 *3 (-1011))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-625 (-154 (-379 (-519))))) + (-5 *2 + (-585 + (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-519)) + (|:| |outvect| (-585 (-625 (-154 *4))))))) + (-5 *1 (-699 *4)) (-4 *4 (-13 (-335) (-780)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-462))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-51)) (-5 *1 (-764))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-738))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1037 *3 *4)) (-4 *3 (-1139 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1037 *4 *3)) (-4 *4 (-1139 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) + (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) + (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4221)) (-4 *1 (-458 *4)) + (-4 *4 (-1117)) (-5 *2 (-108))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1136 *5 *4)) (-4 *4 (-423)) (-4 *4 (-755)) + (-14 *5 (-1082)) (-5 *2 (-519)) (-5 *1 (-1025 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-790)))) + ((*1 *1 *1) (-5 *1 (-790)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-968)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-870 (-201))) (-5 *1 (-1114)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-968))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-587 *3)) (-4 *3 (-968)) + (-5 *1 (-649 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-769 *3))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) + (-5 *2 (-957)) (-5 *1 (-687))))) +(((*1 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-423)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-420 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) - (-5 *1 (-829 *3)) (-4 *3 (-1006))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964)) - (-5 *1 (-1062 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) - (-14 *4 (-1077)) (-14 *5 *3)))) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) + (-5 *2 (-585 (-585 (-585 (-870 *3)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406))))) +(((*1 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 *3)) + (-5 *1 (-901 *4 *5 *6 *3)) (-4 *3 (-982 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-982 *4 *5 *6)) (-4 *4 (-511)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *1 (-901 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-585 *7) (-585 *7))) (-5 *2 (-585 *7)) + (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *1 (-901 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-566 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -1931 *4) (|:| |sol?| (-108))) + (-519) *4)) + (-4 *4 (-335)) (-4 *5 (-1139 *4)) (-5 *1 (-529 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-870 (-201))) (-5 *2 (-1168)) (-5 *1 (-439))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4221)) (-4 *1 (-139 *2)) (-4 *2 (-1117)) + (-4 *2 (-1011))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-708)) (-5 *1 (-51))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1286 *4))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *1) (-5 *1 (-1085)))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-519))) (-5 *1 (-966))))) +(((*1 *1 *1 *1) (-4 *1 (-600))) ((*1 *1 *1 *1) (-5 *1 (-1029)))) (((*1 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) + (-12 (-5 *2 (-1168)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-1011))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-686))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-519)) (-5 *5 (-108)) (-5 *6 (-625 (-201))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-75 OBJFUN)))) + (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-688))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1011))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) - (-5 *1 (-161 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 *8)) - (-5 *4 - (-583 - (-2 (|:| -3700 (-623 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-623 *7))))) - (-5 *5 (-703)) (-4 *8 (-1134 *7)) (-4 *7 (-1134 *6)) (-4 *6 (-319)) + (-12 (-4 *4 (-755)) (-14 *5 (-1082)) (-5 *2 (-585 (-1136 *5 *4))) + (-5 *1 (-1025 *4 *5)) (-5 *3 (-1136 *5 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-585 (-379 (-879 *6)))) + (-5 *3 (-379 (-879 *6))) + (-4 *6 (-13 (-511) (-959 (-519)) (-135))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-525 *6))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-558 *3)) (-4 *3 (-782))))) +(((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) (-4 *4 (-1011)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-158 *3)) (-4 *3 (-280))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-585 *8))) (-5 *3 (-585 *8)) + (-4 *8 (-876 *5 *7 *6)) (-4 *5 (-13 (-280) (-135))) + (-4 *6 (-13 (-782) (-560 (-1082)))) (-4 *7 (-727)) (-5 *2 (-108)) + (-5 *1 (-851 *5 *6 *7 *8))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1163 *4)) (-5 *3 (-1029)) (-4 *4 (-321)) + (-5 *1 (-489 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-782) (-511) (-959 (-519)))) (-5 *2 (-379 (-519))) + (-5 *1 (-405 *4 *3)) (-4 *3 (-402 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-558 *3)) (-4 *3 (-402 *5)) + (-4 *5 (-13 (-782) (-511) (-959 (-519)))) + (-5 *2 (-1078 (-379 (-519)))) (-5 *1 (-405 *5 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-1065))) (-5 *2 (-1065)) (-5 *1 (-170)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-288 (-201)))) (-5 *4 (-705)) + (-5 *2 (-625 (-201))) (-5 *1 (-242))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-129)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-132))))) +(((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) + ((*1 *1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) + ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-782)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1111 *2 *3 *4 *5)) (-4 *2 (-511)) + (-4 *3 (-727)) (-4 *4 (-782)) (-4 *5 (-982 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-1151 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1082)) + (-5 *2 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) (-5 *1 (-1085))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1139 *9)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *9 (-280)) + (-4 *10 (-876 *9 *7 *8)) (-5 *2 - (-2 (|:| -3700 (-623 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-623 *7)))) - (-5 *1 (-463 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) + (-2 (|:| |deter| (-585 (-1078 *10))) + (|:| |dterm| + (-585 (-585 (-2 (|:| -4128 (-705)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-585 *6)) (|:| |nlead| (-585 *10)))) + (-5 *1 (-712 *6 *7 *8 *9 *10)) (-5 *3 (-1078 *10)) (-5 *4 (-585 *6)) + (-5 *5 (-585 *10))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) - (-5 *2 - (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) - (|:| |success| (-107)))) - (-5 *1 (-721)) (-5 *5 (-517))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) - (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-686))))) + (|partial| -12 (-5 *2 (-705)) (-4 *1 (-1139 *3)) (-4 *3 (-968))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-848)) (-5 *1 (-720))))) (((*1 *2 *1) - (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1006)) (-4 *3 (-779)) - (-4 *2 (-1112)))) - ((*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) - ((*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) + (-12 (-5 *2 (-585 (-51))) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *6 (-201)) + (-5 *3 (-519)) (-5 *2 (-957)) (-5 *1 (-686))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-511) (-135))) (-5 *1 (-496 *3 *2)) + (-4 *2 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-4 *4 (-1139 *3)) + (-4 *5 (-659 *3 *4)) (-5 *1 (-500 *3 *4 *5 *2)) (-4 *2 (-1154 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-5 *1 (-501 *3 *2)) + (-4 *2 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-13 (-511) (-135))) + (-5 *1 (-1059 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-511))))) +(((*1 *2 *1) + (-12 (-4 *1 (-552 *3 *2)) (-4 *3 (-1011)) (-4 *3 (-782)) + (-4 *2 (-1117)))) + ((*1 *2 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) + ((*1 *2 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) ((*1 *2 *1) - (-12 (-4 *2 (-1112)) (-5 *1 (-797 *2 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) + (-12 (-4 *2 (-1117)) (-5 *1 (-800 *2 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-610 *3)) (-5 *1 (-820 *3)) (-4 *3 (-782)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) - (-4 *4 (-793 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-517)) (-4 *1 (-1120 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-1149 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1120 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1149 *2))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) - (-5 *2 (-953)) (-5 *1 (-688))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1131 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) - (-14 *5 (-1077)) (-5 *2 (-517)) (-5 *1 (-1020 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1006)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-517)) (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) - (-4 *3 (-964)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1173 *4 *3)) - (-4 *3 (-964))))) -(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1001 (-199))) - (-5 *5 (-107)) (-5 *2 (-1160)) (-5 *1 (-230))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-517)))) - ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073 *1)) (-4 *1 (-931))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-953))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-5 *2 (-107))))) + (-12 (-5 *2 (-705)) (-4 *1 (-1151 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (-5 *2 (-517)) (-5 *1 (-180))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) - ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1098) (-400 *5))) - (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 - (-3 (-772 *3) - (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) - (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) - "failed")) - (-5 *1 (-576 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1060)) - (-4 *3 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) + (-5 *2 (-1163 (-625 *4))))) + ((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-1163 (-625 *4))) (-5 *1 (-388 *3 *4)) + (-4 *3 (-389 *4)))) + ((*1 *2) + (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-1163 (-625 *3))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-265 (-772 (-876 *5)))) (-4 *5 (-421)) - (-5 *2 - (-3 (-772 (-377 (-876 *5))) - (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-876 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-772 (-377 (-876 *5))) "failed"))) - "failed")) - (-5 *1 (-577 *5)) (-5 *3 (-377 (-876 *5))))) + (-12 (-5 *3 (-585 (-1082))) (-4 *5 (-335)) + (-5 *2 (-1163 (-625 (-379 (-879 *5))))) (-5 *1 (-999 *5)) + (-5 *4 (-625 (-379 (-879 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-265 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5))) - (-4 *5 (-421)) - (-5 *2 - (-3 (-772 *3) - (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) - (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) - "failed")) - (-5 *1 (-577 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-265 (-377 (-876 *6)))) (-5 *5 (-1060)) - (-5 *3 (-377 (-876 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) - (-5 *1 (-577 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1158 *4)) (-4 *4 (-579 (-517))) - (-5 *2 (-1158 (-377 (-517)))) (-5 *1 (-1183 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1112)))) - ((*1 *2 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1112)) - (-14 *4 (-517))))) + (-12 (-5 *3 (-585 (-1082))) (-4 *5 (-335)) + (-5 *2 (-1163 (-625 (-879 *5)))) (-5 *1 (-999 *5)) + (-5 *4 (-625 (-879 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-625 *4))) (-4 *4 (-335)) + (-5 *2 (-1163 (-625 *4))) (-5 *1 (-999 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-496 *4 *2 *5 *6)) - (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703)))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) - (-5 *2 (-953)) (-5 *1 (-683))))) -(((*1 *2) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-1006)) - (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) - (-5 *1 (-53 *4 *5 *2)) - (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4))))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1006)))) - ((*1 *1 *2) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1006))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-134)) - (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-897 *3 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-107)) (|:| -4041 (-703)) (|:| |period| (-703)))) - (-5 *1 (-1058 *4)) (-4 *4 (-1112)) (-5 *3 (-703))))) -(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349)))) - ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1006)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) - (-4 *4 (-1006)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-377 *6)) (-4 *5 (-1116)) (-4 *6 (-1134 *5)) - (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| *6))) - (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1134 *3))))) -(((*1 *1 *1) (-5 *1 (-976)))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-639 *3 *4)) (-4 *3 (-1112)) (-4 *4 (-1112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4)))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1112)) (-5 *2 (-703)) - (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-123)) - (-5 *2 (-703)))) + (-12 (-5 *3 (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029)))))) + (-4 *4 (-321)) (-5 *2 (-705)) (-5 *1 (-318 *4)))) ((*1 *2) - (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) - (-4 *3 (-299 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1006)))) - ((*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) + (-12 (-5 *2 (-705)) (-5 *1 (-323 *3 *4)) (-14 *3 (-848)) + (-14 *4 (-848)))) ((*1 *2) - (-12 (-4 *4 (-1006)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) - (-4 *3 (-395 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006)) - (-4 *4 (-23)) (-14 *5 *4))) + (-12 (-5 *2 (-705)) (-5 *1 (-324 *3 *4)) (-4 *3 (-321)) + (-14 *4 + (-3 (-1078 *3) + (-1163 (-585 (-2 (|:| -3493 *3) (|:| -2770 (-1029))))))))) ((*1 *2) - (-12 (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-703)) - (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) - ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-925)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) - (-4 *3 (-1134 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-957))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1180 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-156)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) + (-12 (-5 *2 (-705)) (-5 *1 (-325 *3 *4)) (-4 *3 (-321)) + (-14 *4 (-848))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-335)) (-5 *1 (-598 *4 *2)) + (-4 *2 (-595 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-108)) + (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-4 *3 (-13 (-27) (-1103) (-402 *6) (-10 -8 (-15 -2217 ($ *7))))) + (-4 *7 (-780)) + (-4 *8 + (-13 (-1141 *3 *7) (-335) (-1103) + (-10 -8 (-15 -2181 ($ $)) (-15 -4142 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065)))))) + (-5 *1 (-394 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1065)) (-4 *9 (-907 *8)) + (-14 *10 (-1082))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1121)) (-4 *5 (-1139 *3)) (-4 *6 (-1139 (-379 *5))) + (-5 *2 (-108)) (-5 *1 (-313 *4 *3 *5 *6)) (-4 *4 (-314 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-379 *5)) (-4 *4 (-1121)) (-4 *5 (-1139 *4)) + (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1139 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1084 (-379 (-519)))) (-5 *2 (-379 (-519))) + (-5 *1 (-168)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-625 (-288 (-201)))) (-5 *3 (-585 (-1082))) + (-5 *4 (-1163 (-288 (-201)))) (-5 *1 (-183)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-267 *3))) (-4 *3 (-282 *3)) (-4 *3 (-1011)) + (-4 *3 (-1117)) (-5 *1 (-267 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) + (-12 (-4 *2 (-282 *2)) (-4 *2 (-1011)) (-4 *2 (-1117)) + (-5 *1 (-267 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-275)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-275)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-110))) (-5 *3 (-585 (-1 *1 (-585 *1)))) + (-4 *1 (-275)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-110))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-275)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1 *1 *1)) (-4 *1 (-275)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1 *1 (-585 *1))) (-4 *1 (-275)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-585 (-1 *1 (-585 *1)))) + (-4 *1 (-275)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-585 (-1 *1 *1))) (-4 *1 (-275)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-751 *3)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-964)))) + (-12 (-5 *2 (-585 (-267 *3))) (-4 *1 (-282 *3)) (-4 *3 (-1011)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964))))) -(((*1 *1) (-5 *1 (-107)))) -(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1077)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) - (-4 *4 (-558 (-493))) (-4 *5 (-1112)) (-4 *6 (-1112)) - (-4 *7 (-1112))))) -(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) - ((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1) (-4 *1 (-793 *2))) + (-12 (-5 *2 (-267 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1011)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-519))) (-5 *4 (-1084 (-379 (-519)))) + (-5 *1 (-283 *2)) (-4 *2 (-37 (-379 (-519)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *1)) (-4 *1 (-346 *4 *5)) + (-4 *4 (-782)) (-4 *5 (-157)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-346 *2 *3)) (-4 *2 (-782)) (-4 *3 (-157)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1082)) (-5 *3 (-705)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-402 *5)) (-4 *5 (-782)) (-4 *5 (-968)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1082)) (-5 *3 (-705)) (-5 *4 (-1 *1 (-585 *1))) + (-4 *1 (-402 *5)) (-4 *5 (-782)) (-4 *5 (-968)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-585 (-705))) + (-5 *4 (-585 (-1 *1 (-585 *1)))) (-4 *1 (-402 *5)) (-4 *5 (-782)) + (-4 *5 (-968)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-585 (-705))) + (-5 *4 (-585 (-1 *1 *1))) (-4 *1 (-402 *5)) (-4 *5 (-782)) + (-4 *5 (-968)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-585 (-110))) (-5 *3 (-585 *1)) (-5 *4 (-1082)) + (-4 *1 (-402 *5)) (-4 *5 (-782)) (-4 *5 (-560 (-495))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1082)) (-4 *1 (-402 *4)) (-4 *4 (-782)) + (-4 *4 (-560 (-495))))) ((*1 *1 *1) - (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-724)) - (-4 *4 (-779))))) -(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703))) - ((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-1006) (-33))) (-5 *1 (-1042 *3 *2)) - (-4 *3 (-13 (-1006) (-33)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1134 *6)) - (-4 *6 (-13 (-27) (-400 *5))) - (-4 *5 (-13 (-779) (-509) (-955 (-517)))) (-4 *8 (-1134 (-377 *7))) - (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) - (-4 *3 (-312 *6 *7 *8))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) (-5 *3 (-517))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230))))) -(((*1 *1) (-5 *1 (-755)))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1163) (-1158 *5) (-1158 *5) (-349))) - (-5 *3 (-1158 (-349))) (-5 *5 (-349)) (-5 *2 (-1163)) - (-5 *1 (-720))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-964)) - (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) - (-5 *2 (-953)) (-5 *1 (-680))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) - (-5 *1 (-526 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-813 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) + (-12 (-4 *1 (-402 *2)) (-4 *2 (-782)) (-4 *2 (-560 (-495))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-1082))) (-4 *1 (-402 *3)) (-4 *3 (-782)) + (-4 *3 (-560 (-495))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1082)) (-4 *1 (-402 *3)) (-4 *3 (-782)) + (-4 *3 (-560 (-495))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-480 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1117)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 *5)) (-4 *1 (-480 *4 *5)) + (-4 *4 (-1011)) (-4 *5 (-1117)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-768 *3)) (-4 *3 (-335)) (-5 *1 (-653 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-830 *2)) (-4 *2 (-1011)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-379 (-879 *4))) (-5 *3 (-1082)) (-4 *4 (-511)) + (-5 *1 (-964 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-585 (-1082))) (-5 *4 (-585 (-379 (-879 *5)))) + (-5 *2 (-379 (-879 *5))) (-4 *5 (-511)) (-5 *1 (-964 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-267 (-379 (-879 *4)))) (-5 *2 (-379 (-879 *4))) + (-4 *4 (-511)) (-5 *1 (-964 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-585 (-267 (-379 (-879 *4))))) (-5 *2 (-379 (-879 *4))) + (-4 *4 (-511)) (-5 *1 (-964 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1063 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1113 *2)) - (-4 *2 (-1006)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-779)) - (-5 *1 (-1113 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-1099 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1006))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-703)) (-4 *4 (-964)) (-5 *1 (-1130 *4 *2)) - (-4 *2 (-1134 *4))))) + (-12 (-5 *3 (-625 *8)) (-4 *8 (-876 *5 *7 *6)) + (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) + (-4 *7 (-727)) + (-5 *2 + (-585 + (-2 (|:| -3229 (-705)) + (|:| |eqns| + (-585 + (-2 (|:| |det| *8) (|:| |rows| (-585 (-519))) + (|:| |cols| (-585 (-519)))))) + (|:| |fgb| (-585 *8))))) + (-5 *1 (-851 *5 *6 *7 *8)) (-5 *4 (-705))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-280)) (-5 *1 (-635 *3))))) (((*1 *2 *3) - (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-869 *2 *3)) - (-4 *3 (-1134 *2))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-964)) - (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-964)) - (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))) - ((*1 *1 *1) - (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-964)) (-14 *3 (-583 (-1077))))) - ((*1 *1 *1) - (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-964) (-779))) - (-14 *3 (-583 (-1077))))) - ((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-964)) (-4 *3 (-1006)))) - ((*1 *1 *1) - (-12 (-14 *2 (-583 (-1077))) (-4 *3 (-156)) - (-4 *5 (-212 (-3573 *2) (-703))) - (-14 *6 - (-1 (-107) (-2 (|:| -2803 *4) (|:| -1725 *5)) - (-2 (|:| -2803 *4) (|:| -1725 *5)))) - (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) - (-4 *7 (-873 *3 *5 (-789 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-779)))) - ((*1 *1 *1) - (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-964)))) - ((*1 *1 *1) - (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-964)) - (-4 *3 (-659)))) - ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)))) - ((*1 *1 *1) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775))))) + (-12 (-14 *4 (-585 (-1082))) (-4 *5 (-423)) + (-5 *2 + (-2 (|:| |glbase| (-585 (-223 *4 *5))) (|:| |glval| (-585 (-519))))) + (-5 *1 (-573 *4 *5)) (-5 *3 (-585 (-223 *4 *5)))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-154 (-201))) (-5 *5 (-519)) (-5 *6 (-1065)) + (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1082)) (-4 *5 (-560 (-819 (-519)))) + (-4 *5 (-813 (-519))) + (-4 *5 (-13 (-782) (-959 (-519)) (-423) (-581 (-519)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-522 *5 *3)) (-4 *3 (-571)) + (-4 *3 (-13 (-27) (-1103) (-402 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-585 (-1082))) (-4 *4 (-1011)) + (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) + (-5 *1 (-53 *4 *5 *2)) + (-4 *2 (-13 (-402 *5) (-813 *4) (-560 (-819 *4))))))) +(((*1 *1) (-5 *1 (-108)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-870 *4)) (-4 *4 (-968)) (-5 *1 (-1071 *3 *4)) + (-14 *3 (-848))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-729))) (-5 *1 (-104))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-168)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) + (|partial| -12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) + (-4 *5 (-402 *4)) (-5 *2 (-390 (-1078 (-379 (-519))))) + (-5 *1 (-407 *4 *5 *3)) (-4 *3 (-1139 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-439)) (-5 *4 (-848)) (-5 *2 (-1168)) (-5 *1 (-1164))))) +(((*1 *1 *1 *1) (-4 *1 (-280))) ((*1 *1 *1 *1) (-5 *1 (-705))) + ((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *1) (-5 *1 (-1165)))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -1931 *6) (|:| |sol?| (-108))) (-519) + *6)) + (-4 *6 (-335)) (-4 *7 (-1139 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-379 *7)) (|:| |a0| *6)) + (-2 (|:| -1265 (-379 *7)) (|:| |coeff| (-379 *7))) "failed")) + (-5 *1 (-529 *6 *7)) (-5 *3 (-379 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) ((*1 *2 *1) - (-12 (-5 *2 (-1044 *3 *4)) (-5 *1 (-913 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-333)))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-964)) - (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) - (-4 *7 (-212 *3 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) - ((*1 *1 *1 *1) (-4 *1 (-421))) + (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) + (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-778))))) +(((*1 *2 *2) + (-12 (-4 *3 (-511)) (-4 *4 (-916 *3)) (-5 *1 (-130 *3 *4 *2)) + (-4 *2 (-345 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *5 (-916 *4)) (-4 *2 (-345 *4)) + (-5 *1 (-470 *4 *5 *2 *3)) (-4 *3 (-345 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-625 *5)) (-4 *5 (-916 *4)) (-4 *4 (-511)) + (-5 *2 (-625 *4)) (-5 *1 (-628 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-511)) (-4 *4 (-916 *3)) (-5 *1 (-1132 *3 *4 *2)) + (-4 *2 (-1139 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-705)) (-5 *4 (-1163 *2)) (-4 *5 (-280)) + (-4 *6 (-916 *5)) (-4 *2 (-13 (-381 *6 *7) (-959 *6))) + (-5 *1 (-385 *5 *6 *7 *2)) (-4 *7 (-1139 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-775 (-351))) (-5 *2 (-775 (-201))) (-5 *1 (-278))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-585 (-558 *4))) (-4 *4 (-402 *3)) (-4 *3 (-782)) + (-5 *1 (-528 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011))))) +(((*1 *2 *1) (-12 (-4 *1 (-1056 *3)) (-4 *3 (-1117)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-585 (-585 (-870 (-201))))))) + ((*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-585 (-585 (-870 (-201)))))))) +(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-238))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-4 *1 (-830 *3))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-585 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-705)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-727)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-423)) (-4 *5 (-782)) + (-5 *1 (-420 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-408))))) +(((*1 *2) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-335)) (-4 *3 (-968)) + (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-784 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-335)) (-4 *5 (-968)) + (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-785 *5 *3)) + (-4 *3 (-784 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-801)) (-5 *3 (-585 (-238))) (-5 *1 (-236))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-423)))) + ((*1 *1 *1 *1) (-4 *1 (-423))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1134 (-517))))) + (-12 (-5 *3 (-585 *2)) (-5 *1 (-455 *2)) (-4 *2 (-1139 (-519))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-703))) + (-12 (-5 *3 (-519)) (-5 *1 (-631 *2)) (-4 *2 (-1139 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-705))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) - (-5 *1 (-840 *3 *4 *5 *2)) (-4 *2 (-873 *5 *3 *4)))) + (-12 (-4 *3 (-727)) (-4 *4 (-782)) (-4 *5 (-280)) + (-5 *1 (-843 *3 *4 *5 *2)) (-4 *2 (-876 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *6 *4 *5)) - (-5 *1 (-840 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) - (-4 *6 (-278)))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-876 *6 *4 *5)) + (-5 *1 (-843 *4 *5 *6 *2)) (-4 *4 (-727)) (-4 *5 (-782)) + (-4 *6 (-280)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1073 *6)) (-4 *6 (-873 *5 *3 *4)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-840 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1078 *6)) (-4 *6 (-876 *5 *3 *4)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *5 (-280)) (-5 *1 (-843 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-1073 *7))) (-4 *4 (-725)) (-4 *5 (-779)) - (-4 *6 (-278)) (-5 *2 (-1073 *7)) (-5 *1 (-840 *4 *5 *6 *7)) - (-4 *7 (-873 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-845))) + (-12 (-5 *3 (-585 (-1078 *7))) (-4 *4 (-727)) (-4 *5 (-782)) + (-4 *6 (-280)) (-5 *2 (-1078 *7)) (-5 *1 (-843 *4 *5 *6 *7)) + (-4 *7 (-876 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-848))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) - (-4 *2 (-1134 *3)))) + (-12 (-4 *3 (-423)) (-4 *3 (-511)) (-5 *1 (-894 *3 *2)) + (-4 *2 (-1139 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-421))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-867 *5)) (-4 *5 (-964)) (-5 *2 (-703)) - (-5 *1 (-1066 *4 *5)) (-14 *4 (-845)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1066 *4 *5)) - (-14 *4 (-845)) (-4 *5 (-964)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-703))) (-5 *3 (-867 *5)) (-4 *5 (-964)) - (-5 *1 (-1066 *4 *5)) (-14 *4 (-845))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *2 (-583 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1134 *3))))) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-423))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-335)) (-4 *7 (-1139 *5)) (-4 *4 (-659 *5 *7)) + (-5 *2 (-2 (|:| -2488 (-625 *6)) (|:| |vec| (-1163 *5)))) + (-5 *1 (-746 *5 *6 *7 *4 *3)) (-4 *6 (-595 *5)) (-4 *3 (-595 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406))))) (((*1 *2 *3) - (-12 + (-12 (-4 *1 (-771)) (-5 *3 - (-2 (|:| -3725 (-623 (-377 (-876 *4)))) - (|:| |vec| (-583 (-377 (-876 *4)))) (|:| -3778 (-703)) - (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) - (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) - (-4 *6 (-725)) - (-5 *2 - (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *4))))))) - (-5 *1 (-848 *4 *5 *6 *7)) (-4 *7 (-873 *4 *6 *5))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1134 *5)) - (-5 *1 (-739 *5 *2 *3 *6)) - (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) - (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1134 *5)) - (-5 *1 (-739 *5 *2 *3 *6)) - (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2)) - (-4 *6 (-593 (-377 *2)))))) -(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703))) - ((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-509)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-509))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) - (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1077)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-873 *3 *4 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1077)) - (-4 *4 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) - (-14 *4 (-703)) (-4 *5 (-156))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))) -(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) - ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) - (-5 *1 (-751 *3)) (-4 *3 (-779)))) - ((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1134 *3))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-556 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1077))) - (-4 *2 (-13 (-400 *5) (-27) (-1098))) - (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1006))))) + (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) + (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) + (|:| |ub| (-585 (-775 (-201)))))) + (-5 *2 (-957)))) + ((*1 *2 *3) + (-12 (-4 *1 (-771)) + (-5 *3 + (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) + (-5 *2 (-957))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-558 *3)) (-5 *5 (-1 (-1078 *3) (-1078 *3))) + (-4 *3 (-13 (-27) (-402 *6))) (-4 *6 (-13 (-782) (-511))) + (-5 *2 (-536 *3)) (-5 *1 (-506 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-780)) (-5 *2 (-519)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-832 *3)) (-4 *3 (-1011)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-780) (-335))) + (-4 *3 (-1139 *4)) (-5 *2 (-519)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-511) (-782) (-959 *2) (-581 *2) (-423))) + (-5 *2 (-519)) (-5 *1 (-1026 *4 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-775 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-511) (-782) (-959 *2) (-581 *2) (-423))) + (-5 *2 (-519)) (-5 *1 (-1026 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-1065)) + (-4 *6 (-13 (-511) (-782) (-959 *2) (-581 *2) (-423))) + (-5 *2 (-519)) (-5 *1 (-1026 *6 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-423)) (-5 *2 (-519)) + (-5 *1 (-1027 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-775 (-379 (-879 *6)))) + (-5 *3 (-379 (-879 *6))) (-4 *6 (-423)) (-5 *2 (-519)) + (-5 *1 (-1027 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-379 (-879 *6))) (-5 *4 (-1082)) + (-5 *5 (-1065)) (-4 *6 (-423)) (-5 *2 (-519)) (-5 *1 (-1027 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-519)) (-5 *1 (-1100 *3)) (-4 *3 (-968))))) +(((*1 *1 *1 *1) (-4 *1 (-280))) ((*1 *1 *1 *1) (-5 *1 (-705))) + ((*1 *1 *1 *1) (-5 *1 (-790)))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |k| (-1077)) (|:| |c| (-1178 *3))))) - (-5 *1 (-1178 *3)) (-4 *3 (-964)))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1180 *3 *4))))) - (-5 *1 (-1180 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) - (|:| -1701 *6))) - (-5 *1 (-934 *5 *6)) (-5 *3 (-377 *6))))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112))))) -(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1081))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) - ((*1 *2 *1) - (-12 (-4 *2 (-964)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1077))))) - ((*1 *2 *1) - (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) - (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) - ((*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-964)))) - ((*1 *2 *1) - (-12 (-14 *3 (-583 (-1077))) (-4 *5 (-212 (-3573 *3) (-703))) - (-14 *6 - (-1 (-107) (-2 (|:| -2803 *4) (|:| -1725 *5)) - (-2 (|:| -2803 *4) (|:| -1725 *5)))) - (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) - (-4 *7 (-873 *2 *5 (-789 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1006)))) - ((*1 *2 *1) - (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-964)))) - ((*1 *2 *1) - (-12 (-4 *2 (-964)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) - (-4 *3 (-659)))) - ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)))) - ((*1 *2 *1) - (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) - (-4 *2 (-964)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779))))) + (-12 (-4 *1 (-307 *3 *4 *5 *6)) (-4 *3 (-335)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-4 *6 (-314 *3 *4 *5)) + (-5 *2 + (-2 (|:| -1794 (-385 *4 (-379 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -3688 (-379 *6)) + (|:| |special| (-379 *6)))) + (-5 *1 (-662 *5 *6)) (-5 *3 (-379 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-335)) (-5 *2 (-585 *3)) (-5 *1 (-823 *3 *4)) + (-4 *3 (-1139 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-705)) (-4 *5 (-335)) + (-5 *2 (-2 (|:| -1917 *3) (|:| -1931 *3))) (-5 *1 (-823 *3 *5)) + (-4 *3 (-1139 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-108)) + (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) + (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-108)) + (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) + (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-108)) + (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-423)) + (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-1052 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-585 *9)) (-5 *3 (-585 *8)) (-5 *4 (-108)) + (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-423)) + (-4 *6 (-727)) (-4 *7 (-782)) (-5 *1 (-1052 *5 *6 *7 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-1086))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-519)) (-5 *5 (-625 (-201))) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-684))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1078 *6)) (-4 *6 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *2 (-1078 *7)) (-5 *1 (-293 *4 *5 *6 *7)) + (-4 *7 (-876 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-819 *4)) (-4 *4 (-1011)) (-5 *1 (-816 *4 *3)) + (-4 *3 (-1011))))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-754 *3)) (|:| |rm| (-754 *3)))) + (-5 *1 (-754 *3)) (-4 *3 (-782)))) + ((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-314 *4 *5 *6)) (-4 *4 (-1121)) + (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) + (-5 *2 (-2 (|:| |num| (-625 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-725)) - (-4 *5 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *6 (-509)) - (-5 *2 (-2 (|:| -3505 (-876 *6)) (|:| -2720 (-876 *6)))) - (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-873 (-377 (-876 *6)) *4 *5))))) + (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-217)) (-5 *3 (-1065)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-217)))) + ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-154 (-201)))) (-5 *2 (-957)) + (-5 *1 (-691))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-423)) + (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-901 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1065)) (-5 *5 (-625 (-201))) (-5 *6 (-201)) + (-5 *7 (-625 (-519))) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-687))))) +(((*1 *2 *1) + (-12 (-5 *2 (-800 (-891 *3) (-891 *3))) (-5 *1 (-891 *3)) + (-4 *3 (-892))))) +(((*1 *1) (-5 *1 (-201))) ((*1 *1) (-5 *1 (-351)))) +(((*1 *2) + (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-389 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-519)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-705)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-727)) (-4 *4 (-876 *5 *6 *7)) (-4 *5 (-423)) (-4 *7 (-782)) + (-5 *1 (-420 *5 *6 *7 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-948 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-369))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1085)))) + ((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) + (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-511)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)) - (-4 *2 (-509)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-509))) + (|partial| -12 (-4 *1 (-298 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)) + (-4 *2 (-511)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-511))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) - (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-703))) + (|partial| -12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) + (-4 *3 (-345 *2)) (-4 *4 (-345 *2)) (-4 *2 (-511)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-705))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-509)))) - ((*1 *1 *1 *1) (-5 *1 (-787))) + (|partial| -12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-511)))) + ((*1 *1 *1 *1) (-5 *1 (-790))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1158 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-509)) - (-5 *1 (-890 *3 *4)))) + (-12 (-5 *2 (-1163 *4)) (-4 *4 (-1139 *3)) (-4 *3 (-511)) + (-5 *1 (-894 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-964)) - (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) + (|partial| -12 (-4 *1 (-971 *3 *4 *2 *5 *6)) (-4 *2 (-968)) + (-4 *5 (-214 *4 *2)) (-4 *6 (-214 *3 *2)) (-4 *2 (-511)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1006)) (-4 *2 (-338))))) -(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107))))) -(((*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-236)))) - ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) - (-4 *9 (-779)) (-4 *3 (-978 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) - (-4 *3 (-978 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) - (-4 *9 (-779)) (-4 *3 (-978 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-1047 *7 *8 *9 *3 *4)) (-4 *4 (-1015 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) - (-4 *3 (-978 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-1047 *6 *7 *8 *3 *4)) (-4 *4 (-1015 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-1006)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1006)) (-5 *2 (-107)) - (-5 *1 (-1113 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-583 (-867 *4))) (-4 *1 (-1038 *4)) (-4 *4 (-964)) - (-5 *2 (-703))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-583 *2)) (-4 *2 (-1006)) (-4 *2 (-1112))))) -(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))) - ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1006)))) - ((*1 *2 *1) - (-12 (-14 *3 (-583 (-1077))) (-4 *4 (-156)) - (-4 *6 (-212 (-3573 *3) (-703))) - (-14 *7 - (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6)) - (-2 (|:| -2803 *5) (|:| -1725 *6)))) - (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-779)) (-4 *8 (-873 *4 *6 (-789 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) - (-4 *3 (-964)))) + (|partial| -12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-346 *2 *3)) (-4 *2 (-782)) (-4 *3 (-157)))) ((*1 *1 *1) - (-12 (-4 *1 (-893 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-724)) - (-4 *4 (-779))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-964)) (-4 *2 (-1006))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) - ((*1 *1 *1 *1) (-4 *1 (-421)))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) - (-14 *3 (-517)) (-14 *4 (-703))))) -(((*1 *2 *1) - (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1098))) (-5 *2 (-107)))) - ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) - (-4 *3 (-1134 *4)) (-5 *2 (-107))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) - (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) - (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) - (|:| |f4| (-583 *5)))) - (-5 *1 (-1084 *6)) (-5 *4 (-583 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1006)) - (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) - (-5 *2 (-583 (-1077))) (-5 *1 (-986 *3 *4 *5)) - (-4 *5 (-13 (-400 *4) (-810 *3) (-558 (-816 *3))))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *3)) - (-4 *3 (-1112)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1106 *4 *5 *3 *2)) (-4 *4 (-509)) - (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-978 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-5 *1 (-1110 *2)) (-4 *2 (-1112))))) + (-12 (-5 *1 (-569 *2 *3 *4)) (-4 *2 (-782)) + (-4 *3 (-13 (-157) (-652 (-379 (-519))))) (-14 *4 (-848)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) + ((*1 *1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) + ((*1 *1 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968))))) +(((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-775 *3)) (-4 *3 (-1011))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-896 *3 *4 *2 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)) (-4 *5 (-978 *3 *4 *2))))) -(((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1077))))) -(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1079 (-377 (-517)))) (-5 *2 (-377 (-517))) - (-5 *1 (-166))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156))))) -(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) - ((*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-703)) (-4 *5 (-509)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5))))) + (-12 (-5 *2 (-519)) (|has| *1 (-6 -4222)) (-4 *1 (-1151 *3)) + (-4 *3 (-1117))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-509)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-897 *4 *5 *6 *2))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-724)) (-4 *3 (-156))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) - (-4 *7 (-1134 *6)) - (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) - (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) - ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) - ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-685))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1116)) - (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) - (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5)))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) - (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-873 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-964)) (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) - (-4 *1 (-1134 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) (-4 *4 (-724)) - (-5 *2 (-107)))) - ((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-583 (-986 *4 *5 *2))) (-4 *4 (-1006)) - (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) - (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))) - (-5 *1 (-53 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-583 (-986 *5 *6 *2))) (-5 *4 (-845)) (-4 *5 (-1006)) - (-4 *6 (-13 (-964) (-810 *5) (-779) (-558 (-816 *5)))) - (-4 *2 (-13 (-400 *6) (-810 *5) (-558 (-816 *5)))) - (-5 *1 (-53 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) - (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1112)) - (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *6 *7 *2)) (-4 *6 (-964)) - (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) - (-4 *7 (-1134 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-527 *6 *7))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1024)) (-5 *2 (-107)) (-5 *1 (-753))))) -(((*1 *1 *1) (-4 *1 (-217))) - ((*1 *1 *1) - (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-3786 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1112))) - (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1112))))) - ((*1 *1 *1) (-4 *1 (-442))) - ((*1 *2 *2) (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333))))) -(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112))))) + (-12 (-4 *4 (-727)) + (-4 *3 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))) (-4 *5 (-511)) + (-5 *1 (-667 *4 *3 *5 *2)) (-4 *2 (-876 (-379 (-879 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-968)) (-4 *5 (-727)) + (-4 *3 + (-13 (-782) + (-10 -8 (-15 -1446 ((-1082) $)) + (-15 -1622 ((-3 $ "failed") (-1082)))))) + (-5 *1 (-908 *4 *5 *3 *2)) (-4 *2 (-876 (-879 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-585 *6)) + (-4 *6 + (-13 (-782) + (-10 -8 (-15 -1446 ((-1082) $)) + (-15 -1622 ((-3 $ "failed") (-1082)))))) + (-4 *4 (-968)) (-4 *5 (-727)) (-5 *1 (-908 *4 *5 *6 *2)) + (-4 *2 (-876 (-879 *4) *5 *6))))) (((*1 *2) - (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-313 *3 *4)) (-14 *3 (-845)) - (-14 *4 (-845)))) - ((*1 *2) - (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) - (-14 *4 (-1073 *3)))) - ((*1 *2) - (-12 (-5 *2 (-881 (-1024))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) - (-14 *4 (-845))))) + (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-423)))) + ((*1 *1 *1 *1) (-4 *1 (-423)))) +(((*1 *1) + (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-511)) (-4 *2 (-157))))) +(((*1 *2) + (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-389 *3))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-511) (-135))) (-5 *1 (-1133 *3 *2)) + (-4 *2 (-1139 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-845)) (-4 *6 (-13 (-509) (-779))) - (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) - (-4 *5 (-964)))) - ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) - ((*1 *2 *3) - (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1098))) - (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) - (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-534 (-377 (-876 *4)))) - (-4 *4 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) - (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1051 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 *1)) (-4 *1 (-1002 *4 *2)) (-4 *4 (-777)) - (-4 *2 (-1051 *4)))) + (-12 (-4 *5 (-511)) + (-5 *2 (-2 (|:| -2488 (-625 *5)) (|:| |vec| (-1163 (-585 (-848)))))) + (-5 *1 (-88 *5 *3)) (-5 *4 (-848)) (-4 *3 (-595 *5))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) + ((*1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) + (-4 *4 (-157)))) + ((*1 *1) (-4 *1 (-661))) ((*1 *1) (-5 *1 (-1082)))) +(((*1 *1 *1) + (-12 (-4 *2 (-135)) (-4 *2 (-280)) (-4 *2 (-423)) (-4 *3 (-782)) + (-4 *4 (-727)) (-5 *1 (-911 *2 *3 *4 *5)) (-4 *5 (-876 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-288 (-519))) (-5 *1 (-1028)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1171 (-1077) *3)) (-5 *1 (-1178 *3)) (-4 *3 (-964)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1180 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-964))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-1134 (-153 *3)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) - (-14 *4 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) - ((*1 *1 *1 *1) (-5 *1 (-1024)))) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-585 + (-2 (|:| -3229 (-705)) + (|:| |eqns| + (-585 + (-2 (|:| |det| *7) (|:| |rows| (-585 (-519))) + (|:| |cols| (-585 (-519)))))) + (|:| |fgb| (-585 *7))))) + (-4 *7 (-876 *4 *6 *5)) (-4 *4 (-13 (-280) (-135))) + (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) (-5 *2 (-705)) + (-5 *1 (-851 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) +(((*1 *2 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-1168)) + (-5 *1 (-420 *4 *5 *6 *3)) (-4 *3 (-876 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-516)) (-5 *3 (-519)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1078 (-379 (-519)))) (-5 *1 (-869)) (-5 *3 (-519))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-517))))) - (-5 *1 (-331 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-703))))) - (-5 *1 (-356 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| -3896 *3) (|:| -1725 (-517))))) - (-5 *1 (-388 *3)) (-4 *3 (-509)))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3898 (-703))))) - (-5 *1 (-751 *3)) (-4 *3 (-779))))) -(((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-779))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1016))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-993 *3)) (-4 *3 (-124))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-138 *3)))) + (-12 (-4 *3 (-209)) (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-241 *4)) + (-4 *6 (-727)) (-5 *2 (-1 *1 (-705))) (-4 *1 (-228 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-968)) (-4 *3 (-782)) (-4 *5 (-241 *3)) (-4 *6 (-727)) + (-5 *2 (-1 *1 (-705))) (-4 *1 (-228 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-705)) (-4 *1 (-241 *2)) (-4 *2 (-782))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-705)) (-4 *1 (-207 *4)) + (-4 *4 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-207 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-209)) (-5 *2 (-705)))) + ((*1 *1 *1) (-4 *1 (-209))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *3 (-13 (-335) (-135))) (-5 *1 (-371 *3 *4)) + (-4 *4 (-1139 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-335) (-135))) (-5 *1 (-371 *2 *3)) + (-4 *3 (-1139 *2)))) + ((*1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-968)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-705))) (-4 *1 (-827 *4)) + (-4 *4 (-1011)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-705)) (-4 *1 (-827 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *1 (-827 *3)) (-4 *3 (-1011)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1011))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519))))) +(((*1 *2 *2) + (-12 (-4 *3 (-423)) (-4 *3 (-782)) (-4 *3 (-959 (-519))) + (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3)) + (-4 *2 + (-13 (-335) (-275) + (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) + (-15 -2866 ((-1034 *3 (-558 $)) $)) + (-15 -2217 ($ (-1034 *3 (-558 $)))))))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-625 (-379 (-879 (-519))))) + (-5 *2 (-625 (-288 (-519)))) (-5 *1 (-953))))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-625 (-201))) (-5 *6 (-108)) (-5 *7 (-625 (-519))) + (-5 *8 (-3 (|:| |fn| (-360)) (|:| |fp| (-63 QPHESS)))) + (-5 *3 (-519)) (-5 *4 (-201)) (-5 *2 (-957)) (-5 *1 (-688))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1011)) (-4 *6 (-813 *5)) (-5 *2 (-812 *5 *6 (-585 *6))) + (-5 *1 (-814 *5 *6 *4)) (-5 *3 (-585 *6)) (-4 *4 (-560 (-819 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1011)) (-5 *2 (-585 (-267 *3))) (-5 *1 (-814 *5 *3 *4)) + (-4 *3 (-959 (-1082))) (-4 *3 (-813 *5)) (-4 *4 (-560 (-819 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1011)) (-5 *2 (-585 (-267 (-879 *3)))) + (-5 *1 (-814 *5 *3 *4)) (-4 *3 (-968)) + (-2445 (-4 *3 (-959 (-1082)))) (-4 *3 (-813 *5)) + (-4 *4 (-560 (-819 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1011)) (-5 *2 (-816 *5 *3)) (-5 *1 (-814 *5 *3 *4)) + (-2445 (-4 *3 (-959 (-1082)))) (-2445 (-4 *3 (-968))) + (-4 *3 (-813 *5)) (-4 *4 (-560 (-819 *5)))))) +(((*1 *1 *1 *1) (-4 *1 (-504)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) + (-5 *2 (-2 (|:| -3031 (-379 *5)) (|:| |poly| *3))) + (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1139 (-379 *5)))))) +(((*1 *2) (-12 (-5 *2 (-585 (-705))) (-5 *1 (-1166)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-705))) (-5 *1 (-1166))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-4 *1 (-139 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-583 (-2 (|:| -1725 (-703)) (|:| -3605 *4) (|:| |num| *4)))) - (-4 *4 (-1134 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) + (-5 *2 (-585 (-2 (|:| -1690 (-705)) (|:| -1896 *4) (|:| |num| *4)))) + (-4 *4 (-1139 *3)) (-4 *3 (-13 (-335) (-135))) (-5 *1 (-371 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-5 *3 (-583 (-876 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) + (-12 (-5 *2 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-5 *3 (-585 (-879 (-519)))) (-5 *4 (-108)) (-5 *1 (-409)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-5 *3 (-583 (-1077))) (-5 *4 (-107)) (-5 *1 (-407)))) + (-12 (-5 *2 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-5 *3 (-585 (-1082))) (-5 *4 (-108)) (-5 *1 (-409)))) ((*1 *2 *1) - (-12 (-5 *2 (-1058 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) + (-12 (-5 *2 (-1063 *3)) (-5 *1 (-549 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-576 *2)) (-4 *2 (-157)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) - (-4 *4 (-156)))) + (-12 (-5 *2 (-610 *3)) (-4 *3 (-782)) (-5 *1 (-603 *3 *4)) + (-4 *4 (-157)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) - (-4 *4 (-156)))) + (-12 (-5 *2 (-610 *3)) (-4 *3 (-782)) (-5 *1 (-603 *3 *4)) + (-4 *4 (-157)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) - (-4 *4 (-156)))) + (-12 (-5 *2 (-610 *3)) (-4 *3 (-782)) (-5 *1 (-603 *3 *4)) + (-4 *4 (-157)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1006)) - (-5 *1 (-611 *3)))) + (-12 (-5 *2 (-585 (-585 (-585 *3)))) (-4 *3 (-1011)) + (-5 *1 (-613 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1006)) + (-12 (-5 *1 (-648 *2 *3 *4)) (-4 *2 (-782)) (-4 *3 (-1011)) (-14 *4 - (-1 (-107) (-2 (|:| -2803 *2) (|:| -1725 *3)) - (-2 (|:| -2803 *2) (|:| -1725 *3)))))) + (-1 (-108) (-2 (|:| -2770 *2) (|:| -1690 *3)) + (-2 (|:| -2770 *2) (|:| -1690 *3)))))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-797 *2 *3)) (-4 *2 (-1112)) (-4 *3 (-1112)))) + (-12 (-5 *1 (-800 *2 *3)) (-4 *2 (-1117)) (-4 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 *4)))) - (-4 *4 (-1006)) (-5 *1 (-813 *3 *4)) (-4 *3 (-1006)))) + (-12 (-5 *2 (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 *4)))) + (-4 *4 (-1011)) (-5 *1 (-816 *3 *4)) (-4 *3 (-1011)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1006) (-33))) - (-5 *2 (-583 (-1042 *3 *5))) (-5 *1 (-1042 *3 *5)) - (-4 *3 (-13 (-1006) (-33))))) + (-12 (-5 *4 (-585 *5)) (-4 *5 (-13 (-1011) (-33))) + (-5 *2 (-585 (-1047 *3 *5))) (-5 *1 (-1047 *3 *5)) + (-4 *3 (-13 (-1011) (-33))))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3864 *5)))) - (-4 *4 (-13 (-1006) (-33))) (-4 *5 (-13 (-1006) (-33))) - (-5 *2 (-583 (-1042 *4 *5))) (-5 *1 (-1042 *4 *5)))) + (-12 (-5 *3 (-585 (-2 (|:| |val| *4) (|:| -1890 *5)))) + (-4 *4 (-13 (-1011) (-33))) (-4 *5 (-13 (-1011) (-33))) + (-5 *2 (-585 (-1047 *4 *5))) (-5 *1 (-1047 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3864 *4))) - (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33))) - (-5 *1 (-1042 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1890 *4))) + (-4 *3 (-13 (-1011) (-33))) (-4 *4 (-13 (-1011) (-33))) + (-5 *1 (-1047 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) - (-4 *3 (-13 (-1006) (-33))))) + (-12 (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) + (-4 *3 (-13 (-1011) (-33))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-107)) (-5 *1 (-1042 *2 *3)) (-4 *2 (-13 (-1006) (-33))) - (-4 *3 (-13 (-1006) (-33))))) + (-12 (-5 *4 (-108)) (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) + (-4 *3 (-13 (-1011) (-33))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1006) (-33))) - (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-13 (-1011) (-33))) + (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1011) (-33))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1042 *2 *3))) (-4 *2 (-13 (-1006) (-33))) - (-4 *3 (-13 (-1006) (-33))) (-5 *1 (-1043 *2 *3)))) + (-12 (-5 *4 (-585 (-1047 *2 *3))) (-4 *2 (-13 (-1011) (-33))) + (-4 *3 (-13 (-1011) (-33))) (-5 *1 (-1048 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1043 *2 *3))) (-5 *1 (-1043 *2 *3)) - (-4 *2 (-13 (-1006) (-33))) (-4 *3 (-13 (-1006) (-33))))) + (-12 (-5 *4 (-585 (-1048 *2 *3))) (-5 *1 (-1048 *2 *3)) + (-4 *2 (-13 (-1011) (-33))) (-4 *3 (-13 (-1011) (-33))))) ((*1 *1 *2) - (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) - (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4)))) + (-12 (-5 *2 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) + (-4 *4 (-13 (-1011) (-33))) (-5 *1 (-1048 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) -(((*1 *2 *1) (-12 (-4 *1 (-955 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) - ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-829 *3)) (-4 *3 (-1006))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-107)) (-5 *1 (-1082)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1077))) (-5 *2 (-107)) (-5 *1 (-1082)))) + (-12 (-5 *1 (-1072 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-705)) (-4 *1 (-675 *4 *5)) (-4 *4 (-968)) + (-4 *5 (-782)) (-5 *2 (-879 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-199))) (-5 *2 (-107)) (-5 *1 (-1082)))) + (-12 (-5 *3 (-705)) (-4 *1 (-675 *4 *5)) (-4 *4 (-968)) + (-4 *5 (-782)) (-5 *2 (-879 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-705)) (-4 *1 (-1154 *4)) (-4 *4 (-968)) + (-5 *2 (-879 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-107)) (-5 *1 (-1082))))) + (-12 (-5 *3 (-705)) (-4 *1 (-1154 *4)) (-4 *4 (-968)) + (-5 *2 (-879 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406)))) + ((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-524 *3)) (-4 *3 (-959 (-519))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-625 *5))) (-4 *5 (-280)) (-4 *5 (-968)) + (-5 *2 (-1163 (-1163 *5))) (-5 *1 (-951 *5)) (-5 *4 (-1163 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1077))) - (-4 *5 (-421)) - (-5 *2 - (-2 (|:| |gblist| (-583 (-221 *4 *5))) - (|:| |gvlist| (-583 (-517))))) - (-5 *1 (-571 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25)))))) -(((*1 *1 *1 *1) (-4 *1 (-888)))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-851))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-107)) - (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-4 *3 (-13 (-27) (-1098) (-400 *6) (-10 -8 (-15 -2262 ($ *7))))) - (-4 *7 (-777)) - (-4 *8 - (-13 (-1136 *3 *7) (-333) (-1098) - (-10 -8 (-15 -2042 ($ $)) (-15 -3296 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060)))))) - (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1060)) (-4 *9 (-903 *8)) - (-14 *10 (-1077))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-1062 *4)) (-4 *4 (-964)) - (-5 *3 (-517))))) + (-12 (-5 *2 (-585 (-451 *3 *4))) (-14 *3 (-585 (-1082))) + (-4 *4 (-423)) (-5 *1 (-573 *3 *4))))) (((*1 *2 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-335)) (-4 *3 (-968)) + (-5 *1 (-1067 *3))))) +(((*1 *2 *1) (-12 (-5 *2 - (-583 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-725)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) - (-5 *1 (-418 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-222))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-779)) - (-4 *3 (-1006))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-685))))) -(((*1 *2 *1) - (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1134 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1134 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-964)))) + (-585 + (-2 + (|:| -2583 + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (|:| -3100 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1063 (-201))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1710 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-514)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517))))) -(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))) + (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1117)) + (-5 *2 (-585 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-519))) (-4 *3 (-968)) (-5 *1 (-544 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-519))) (-4 *1 (-1123 *3)) (-4 *3 (-968)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-519))) (-4 *1 (-1154 *3)) (-4 *3 (-968))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-585 (-1163 *4))) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-4 *3 (-511)) + (-5 *2 (-585 (-1163 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-157)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 *3)) (-4 *3 (-333)) (-14 *6 (-1158 (-623 *3))) - (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-845)) (-14 *5 (-583 (-1077))))) - ((*1 *1 *2) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-1163 *3)) (-4 *3 (-335)) (-14 *6 (-1163 (-625 *3))) + (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-848)) (-14 *5 (-585 (-1082))))) + ((*1 *1 *2) (-12 (-5 *2 (-1034 (-519) (-558 (-47)))) (-5 *1 (-47)))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1117)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279 'JINT 'X 'ELAM) (-2279) (-632)))) - (-5 *1 (-59 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228 'JINT 'X 'ELAM) (-2228) (-634)))) + (-5 *1 (-59 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 'XC) (-632)))) - (-5 *1 (-61 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228) (-2228 'XC) (-634)))) + (-5 *1 (-61 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-309 (-2279 'X) (-2279) (-632))) (-5 *1 (-62 *3)) - (-14 *3 (-1077)))) + (-12 (-5 *2 (-311 (-2228 'X) (-2228) (-634))) (-5 *1 (-62 *3)) + (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-623 (-309 (-2279) (-2279 'X 'HESS) (-632)))) - (-5 *1 (-63 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-625 (-311 (-2228) (-2228 'X 'HESS) (-634)))) + (-5 *1 (-63 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-309 (-2279) (-2279 'XC) (-632))) (-5 *1 (-64 *3)) - (-14 *3 (-1077)))) + (-12 (-5 *2 (-311 (-2228) (-2228 'XC) (-634))) (-5 *1 (-64 *3)) + (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279 'X) (-2279 '-1318) (-632)))) - (-5 *1 (-69 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228 'X) (-2228 '-1361) (-634)))) + (-5 *1 (-69 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 'X) (-632)))) - (-5 *1 (-72 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228) (-2228 'X) (-634)))) + (-5 *1 (-72 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279 'X 'EPS) (-2279 '-1318) (-632)))) - (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1077)) (-14 *4 (-1077)) - (-14 *5 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228 'X 'EPS) (-2228 '-1361) (-634)))) + (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1082)) (-14 *4 (-1082)) + (-14 *5 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279 'EPS) (-2279 'YA 'YB) (-632)))) - (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1077)) (-14 *4 (-1077)) - (-14 *5 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228 'EPS) (-2228 'YA 'YB) (-634)))) + (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1082)) (-14 *4 (-1082)) + (-14 *5 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-309 (-2279) (-2279 'X) (-632))) (-5 *1 (-75 *3)) - (-14 *3 (-1077)))) + (-12 (-5 *2 (-311 (-2228) (-2228 'X) (-634))) (-5 *1 (-75 *3)) + (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-309 (-2279) (-2279 'X) (-632))) (-5 *1 (-76 *3)) - (-14 *3 (-1077)))) + (-12 (-5 *2 (-311 (-2228) (-2228 'X) (-634))) (-5 *1 (-76 *3)) + (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 'XC) (-632)))) - (-5 *1 (-77 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228) (-2228 'XC) (-634)))) + (-5 *1 (-77 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 'X) (-632)))) - (-5 *1 (-78 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228) (-2228 'X) (-634)))) + (-5 *1 (-78 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279) (-2279 'X) (-632)))) - (-5 *1 (-79 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228) (-2228 'X) (-634)))) + (-5 *1 (-79 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279 'X '-1318) (-2279) (-632)))) - (-5 *1 (-80 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228 'X '-1361) (-2228) (-634)))) + (-5 *1 (-80 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-623 (-309 (-2279 'X '-1318) (-2279) (-632)))) - (-5 *1 (-81 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-625 (-311 (-2228 'X '-1361) (-2228) (-634)))) + (-5 *1 (-81 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-623 (-309 (-2279 'X) (-2279) (-632)))) (-5 *1 (-82 *3)) - (-14 *3 (-1077)))) + (-12 (-5 *2 (-625 (-311 (-2228 'X) (-2228) (-634)))) (-5 *1 (-82 *3)) + (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279 'X) (-2279) (-632)))) - (-5 *1 (-83 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228 'X) (-2228) (-634)))) + (-5 *1 (-83 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-309 (-2279 'X) (-2279 '-1318) (-632)))) - (-5 *1 (-84 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-1163 (-311 (-2228 'X) (-2228 '-1361) (-634)))) + (-5 *1 (-84 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-623 (-309 (-2279 'XL 'XR 'ELAM) (-2279) (-632)))) - (-5 *1 (-85 *3)) (-14 *3 (-1077)))) + (-12 (-5 *2 (-625 (-311 (-2228 'XL 'XR 'ELAM) (-2228) (-634)))) + (-5 *1 (-85 *3)) (-14 *3 (-1082)))) ((*1 *1 *2) - (-12 (-5 *2 (-309 (-2279 'X) (-2279 '-1318) (-632))) (-5 *1 (-87 *3)) - (-14 *3 (-1077)))) - ((*1 *2 *1) (-12 (-5 *2 (-923 2)) (-5 *1 (-103)))) - ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) + (-12 (-5 *2 (-311 (-2228 'X) (-2228 '-1361) (-634))) (-5 *1 (-87 *3)) + (-14 *3 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-927 2)) (-5 *1 (-103)))) + ((*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-103)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) - (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) + (-12 (-5 *2 (-585 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) + (-14 *3 (-519)) (-14 *4 (-705)) (-4 *5 (-157)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) - (-14 *3 (-517)) (-14 *4 (-703)))) + (-12 (-5 *2 (-585 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) + (-14 *3 (-519)) (-14 *4 (-705)))) ((*1 *1 *2) - (-12 (-5 *2 (-1044 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) - (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) + (-12 (-5 *2 (-1049 *4 *5)) (-14 *4 (-705)) (-4 *5 (-157)) + (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)))) ((*1 *1 *2) - (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) - (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) + (-12 (-5 *2 (-216 *4 *5)) (-14 *4 (-705)) (-4 *5 (-157)) + (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-519)))) ((*1 *2 *3) - (-12 (-5 *3 (-1158 (-623 *4))) (-4 *4 (-156)) - (-5 *2 (-1158 (-623 (-377 (-876 *4))))) (-5 *1 (-165 *4)))) + (-12 (-5 *3 (-1163 (-625 *4))) (-4 *4 (-157)) + (-5 *2 (-1163 (-625 (-379 (-879 *4))))) (-5 *1 (-167 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) + (-12 (-5 *2 (-585 *3)) (-4 *3 - (-13 (-779) - (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) - (-15 -3012 ((-1163) $))))) - (-5 *1 (-189 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-923 10)) (-5 *1 (-192)))) - ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-999 (-286 *4))) - (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-999 (-349))) - (-5 *1 (-231 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) + (-13 (-782) + (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 ((-1168) $)) + (-15 -2056 ((-1168) $))))) + (-5 *1 (-191 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-927 10)) (-5 *1 (-194)))) + ((*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-194)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 *3)) (-5 *1 (-221 *3)) (-4 *3 (-782)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-221 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1004 (-288 *4))) + (-4 *4 (-13 (-782) (-511) (-560 (-351)))) (-5 *2 (-1004 (-351))) + (-5 *1 (-233 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-241 *2)) (-4 *2 (-782)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-250)))) ((*1 *2 *1) - (-12 (-4 *2 (-1134 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *2 (-1139 *3)) (-5 *1 (-263 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-157)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1143 *4 *5 *6)) (-4 *4 (-13 (-27) (-1098) (-400 *3))) - (-14 *5 (-1077)) (-14 *6 *4) - (-4 *3 (-13 (-779) (-955 (-517)) (-579 (-517)) (-421))) - (-5 *1 (-283 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) + (-12 (-5 *2 (-1148 *4 *5 *6)) (-4 *4 (-13 (-27) (-1103) (-402 *3))) + (-14 *5 (-1082)) (-14 *6 *4) + (-4 *3 (-13 (-782) (-959 (-519)) (-581 (-519)) (-423))) + (-5 *1 (-285 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-302)))) ((*1 *2 *1) - (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) - (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) + (-12 (-5 *2 (-288 *5)) (-5 *1 (-311 *3 *4 *5)) + (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) ((*1 *2 *3) - (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) - (-4 *3 (-299 *4)))) + (-12 (-4 *4 (-321)) (-4 *2 (-301 *4)) (-5 *1 (-319 *3 *4 *2)) + (-4 *3 (-301 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) - (-4 *3 (-299 *4)))) + (-12 (-4 *4 (-321)) (-4 *2 (-301 *4)) (-5 *1 (-319 *2 *4 *3)) + (-4 *3 (-301 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) - (-5 *2 (-1180 *3 *4)))) + (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) + (-5 *2 (-1185 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) - (-5 *2 (-1171 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) + (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) + (-5 *2 (-1176 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-346 *2 *3)) (-4 *2 (-782)) (-4 *3 (-157)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) - (-4 *1 (-353)))) - ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) - ((*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) + (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) + (-4 *1 (-355)))) + ((*1 *1 *2) (-12 (-5 *2 (-302)) (-4 *1 (-355)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-4 *1 (-355)))) + ((*1 *1 *2) (-12 (-5 *2 (-625 (-634))) (-4 *1 (-355)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) - (-4 *1 (-354)))) - ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) - ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-4 *1 (-359)))) - ((*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1006)))) - ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) + (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) + (-4 *1 (-356)))) + ((*1 *1 *2) (-12 (-5 *2 (-302)) (-4 *1 (-356)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-4 *1 (-356)))) + ((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-1065)))) + ((*1 *1 *2) (-12 (-5 *2 (-1065)) (-4 *1 (-361)))) + ((*1 *2 *3) (-12 (-5 *2 (-366)) (-5 *1 (-365 *3)) (-4 *3 (-1011)))) + ((*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-366)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) - (-4 *1 (-366)))) - ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) + (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) + (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-302)) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-4 *1 (-368)))) ((*1 *1 *2) - (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-267 (-288 (-154 (-351))))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-267 (-288 (-351)))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-267 (-288 (-519)))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-288 (-154 (-351)))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-288 (-351))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-288 (-519))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-267 (-288 (-629)))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-267 (-288 (-634)))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-267 (-288 (-636)))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-288 (-629))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-288 (-634))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-288 (-636))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) - (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) - (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) + (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) + (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) - (-14 *3 (-1077)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-585 (-302))) (-5 *1 (-370 *3 *4 *5 *6)) + (-14 *3 (-1082)) (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1077)) - (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) - (-14 *5 (-583 (-1077))) (-14 *6 (-1081)))) + (-12 (-5 *2 (-302)) (-5 *1 (-370 *3 *4 *5 *6)) (-14 *3 (-1082)) + (-14 *4 (-3 (|:| |fst| (-406)) (|:| -1378 "void"))) + (-14 *5 (-585 (-1082))) (-14 *6 (-1086)))) ((*1 *1 *2) - (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) - (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) + (-12 (-5 *2 (-303 *4)) (-4 *4 (-13 (-782) (-21))) + (-5 *1 (-399 *3 *4)) (-4 *3 (-13 (-157) (-37 (-379 (-519))))))) ((*1 *1 *2) - (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) - (-4 *3 (-13 (-779) (-21))))) + (-12 (-5 *1 (-399 *2 *3)) (-4 *2 (-13 (-157) (-37 (-379 (-519))))) + (-4 *3 (-13 (-782) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-377 (-876 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) - (-4 *1 (-400 *3)))) + (-12 (-5 *2 (-379 (-879 (-379 *3)))) (-4 *3 (-511)) (-4 *3 (-782)) + (-4 *1 (-402 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-876 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) - (-4 *1 (-400 *3)))) + (-12 (-5 *2 (-879 (-379 *3))) (-4 *3 (-511)) (-4 *3 (-782)) + (-4 *1 (-402 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) - (-4 *1 (-400 *3)))) + (-12 (-5 *2 (-379 *3)) (-4 *3 (-511)) (-4 *3 (-782)) + (-4 *1 (-402 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1029 *3 (-556 *1))) (-4 *3 (-964)) (-4 *3 (-779)) - (-4 *1 (-400 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-404)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-404)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-404)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-404)))) - ((*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) + (-12 (-5 *2 (-1034 *3 (-558 *1))) (-4 *3 (-968)) (-4 *3 (-782)) + (-4 *1 (-402 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-406)))) + ((*1 *1 *2) (-12 (-5 *2 (-406)) (-5 *1 (-409)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-409)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) - (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-1158 (-632))) (-4 *1 (-409)))) + (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) + (-4 *1 (-411)))) + ((*1 *1 *2) (-12 (-5 *2 (-302)) (-4 *1 (-411)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-4 *1 (-411)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 (-634))) (-4 *1 (-411)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1081)) (|:| -2507 (-583 (-300))))) - (-4 *1 (-410)))) - ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) + (-5 *2 (-2 (|:| |localSymbols| (-1086)) (|:| -2046 (-585 (-302))))) + (-4 *1 (-412)))) + ((*1 *1 *2) (-12 (-5 *2 (-302)) (-4 *1 (-412)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-4 *1 (-412)))) ((*1 *1 *2) - (-12 (-5 *2 (-1158 (-377 (-876 *3)))) (-4 *3 (-156)) - (-14 *6 (-1158 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) - (-14 *4 (-845)) (-14 *5 (-583 (-1077))))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) + (-12 (-5 *2 (-1163 (-379 (-879 *3)))) (-4 *3 (-157)) + (-14 *6 (-1163 (-625 *3))) (-5 *1 (-424 *3 *4 *5 *6)) + (-14 *4 (-848)) (-14 *5 (-585 (-1082))))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *1 (-439)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-439)))) ((*1 *1 *2) - (-12 (-5 *2 (-1143 *3 *4 *5)) (-4 *3 (-964)) (-14 *4 (-1077)) - (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) + (-12 (-5 *2 (-1148 *3 *4 *5)) (-4 *3 (-968)) (-14 *4 (-1082)) + (-14 *5 *3) (-5 *1 (-445 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-923 16)) (-5 *1 (-454)))) - ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) - ((*1 *1 *2) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-467)))) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-445 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-5 *2 (-927 16)) (-5 *1 (-456)))) + ((*1 *2 *1) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-456)))) + ((*1 *1 *2) (-12 (-5 *2 (-1034 (-519) (-558 (-462)))) (-5 *1 (-462)))) + ((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-469)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-333)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-335)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-471 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-964)))) + (-12 (-4 *3 (-157)) (-5 *1 (-553 *3 *2)) (-4 *2 (-679 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2) (-12 (-4 *1 (-563 *2)) (-4 *2 (-968)))) ((*1 *2 *1) - (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) - (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) + (-12 (-5 *2 (-1181 *3 *4)) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) + (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848)))) ((*1 *2 *1) - (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) - (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) + (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) + (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848)))) ((*1 *1 *2) - (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) + (-12 (-4 *3 (-157)) (-5 *1 (-577 *3 *2)) (-4 *2 (-679 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-754 *3)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) ((*1 *2 *1) - (-12 (-5 *2 (-881 (-881 (-881 *3)))) (-5 *1 (-611 *3)) - (-4 *3 (-1006)))) + (-12 (-5 *2 (-884 (-884 (-884 *3)))) (-5 *1 (-613 *3)) + (-4 *3 (-1011)))) ((*1 *1 *2) - (-12 (-5 *2 (-881 (-881 (-881 *3)))) (-4 *3 (-1006)) - (-5 *1 (-611 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1006)))) + (-12 (-5 *2 (-884 (-884 (-884 *3)))) (-4 *3 (-1011)) + (-5 *1 (-613 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-754 *3)) (-5 *1 (-614 *3)) (-4 *3 (-782)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1011)))) ((*1 *1 *2) - (-12 (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) - (-4 *2 (-343 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) - ((*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) - ((*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) - ((*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) - ((*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) - ((*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) - ((*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) - ((*1 *2 *3) - (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))) - ((*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1006)))) + (-12 (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *2)) (-4 *4 (-345 *3)) + (-4 *2 (-345 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-154 (-351))) (-5 *1 (-629)))) + ((*1 *1 *2) (-12 (-5 *2 (-154 (-636))) (-5 *1 (-629)))) + ((*1 *1 *2) (-12 (-5 *2 (-154 (-634))) (-5 *1 (-629)))) + ((*1 *1 *2) (-12 (-5 *2 (-154 (-519))) (-5 *1 (-629)))) + ((*1 *1 *2) (-12 (-5 *2 (-154 (-351))) (-5 *1 (-629)))) + ((*1 *1 *2) (-12 (-5 *2 (-636)) (-5 *1 (-634)))) + ((*1 *2 *1) (-12 (-5 *2 (-351)) (-5 *1 (-634)))) + ((*1 *2 *3) + (-12 (-5 *3 (-288 (-519))) (-5 *2 (-288 (-636))) (-5 *1 (-636)))) + ((*1 *1 *2) (-12 (-5 *1 (-638 *2)) (-4 *2 (-1011)))) ((*1 *2 *1) - (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-157)) (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3)))) + (-12 (-4 *3 (-968)) (-5 *1 (-647 *3 *2)) (-4 *2 (-1139 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2803 *3) (|:| -1725 *4))) - (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1006)) - (-14 *5 (-1 (-107) *2 *2)))) + (-12 (-5 *2 (-2 (|:| -2770 *3) (|:| -1690 *4))) + (-5 *1 (-648 *3 *4 *5)) (-4 *3 (-782)) (-4 *4 (-1011)) + (-14 *5 (-1 (-108) *2 *2)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -2803 *3) (|:| -1725 *4))) (-4 *3 (-779)) - (-4 *4 (-1006)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) + (-12 (-5 *2 (-2 (|:| -2770 *3) (|:| -1690 *4))) (-4 *3 (-782)) + (-4 *4 (-1011)) (-5 *1 (-648 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-157)) (-5 *1 (-650 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-2 (|:| -1570 *3) (|:| -2416 *4)))) (-4 *3 (-964)) - (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))) + (-12 (-5 *2 (-585 (-2 (|:| -3031 *3) (|:| -2569 *4)))) (-4 *3 (-968)) + (-4 *4 (-661)) (-5 *1 (-670 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-698)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) (|:| |mdnia| - (-2 (|:| |fn| (-286 (-199))) - (|:| -3177 (-583 (-1001 (-772 (-199))))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) - (-5 *1 (-701)))) + (-2 (|:| |fn| (-288 (-201))) + (|:| -1710 (-585 (-1006 (-775 (-201))))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) + (-5 *1 (-703)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-286 (-199))) - (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (-5 *1 (-701)))) + (-2 (|:| |fn| (-288 (-201))) + (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (-5 *1 (-703)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (-5 *1 (-701)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) - ((*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1112)))) + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (-5 *1 (-703)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-703)))) + ((*1 *2 *3) (-12 (-5 *2 (-708)) (-5 *1 (-707 *3)) (-4 *3 (-1117)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))) - (-5 *1 (-740)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))) + (-5 *1 (-743)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-743)))) ((*1 *2 *1) - (-12 (-4 *2 (-824 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1006)) + (-12 (-4 *2 (-827 *3)) (-5 *1 (-752 *3 *2 *4)) (-4 *3 (-1011)) (-14 *4 *3))) ((*1 *1 *2) - (-12 (-4 *3 (-1006)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) - (-4 *2 (-824 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-756)))) + (-12 (-4 *3 (-1011)) (-14 *4 *3) (-5 *1 (-752 *3 *2 *4)) + (-4 *2 (-827 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-759)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) - (|:| |lb| (-583 (-772 (-199)))) - (|:| |cf| (-583 (-286 (-199)))) - (|:| |ub| (-583 (-772 (-199)))))) + (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) + (|:| |lb| (-585 (-775 (-201)))) + (|:| |cf| (-585 (-288 (-201)))) + (|:| |ub| (-585 (-775 (-201)))))) (|:| |lsa| - (-2 (|:| |lfn| (-583 (-286 (-199)))) - (|:| -2578 (-583 (-199))))))) - (-5 *1 (-770)))) + (-2 (|:| |lfn| (-585 (-288 (-201)))) + (|:| -3816 (-585 (-201))))))) + (-5 *1 (-773)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) - (-5 *1 (-770)))) + (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) + (-5 *1 (-773)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) - (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) - (|:| |ub| (-583 (-772 (-199)))))) - (-5 *1 (-770)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) + (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) + (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) + (|:| |ub| (-585 (-775 (-201)))))) + (-5 *1 (-773)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-773)))) ((*1 *1 *2) - (-12 (-5 *2 (-1154 *3)) (-14 *3 (-1077)) (-5 *1 (-784 *3 *4 *5 *6)) - (-4 *4 (-964)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) + (-12 (-5 *2 (-1159 *3)) (-14 *3 (-1082)) (-5 *1 (-787 *3 *4 *5 *6)) + (-4 *4 (-968)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-789)))) ((*1 *1 *2) - (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-5 *1 (-790 *3 *4 *5 *6)) - (-14 *4 (-583 (-1077))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) + (-12 (-5 *2 (-879 *3)) (-4 *3 (-968)) (-5 *1 (-793 *3 *4 *5 *6)) + (-14 *4 (-585 (-1082))) (-14 *5 (-585 (-705))) (-14 *6 (-705)))) ((*1 *2 *1) - (-12 (-5 *2 (-876 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-964)) - (-14 *4 (-583 (-1077))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) - ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798)))) + (-12 (-5 *2 (-879 *3)) (-5 *1 (-793 *3 *4 *5 *6)) (-4 *3 (-968)) + (-14 *4 (-585 (-1082))) (-14 *5 (-585 (-705))) (-14 *6 (-705)))) + ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801)))) ((*1 *2 *3) - (-12 (-5 *3 (-876 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-799)))) + (-12 (-5 *3 (-879 (-47))) (-5 *2 (-288 (-519))) (-5 *1 (-802)))) ((*1 *2 *3) - (-12 (-5 *3 (-377 (-876 (-47)))) (-5 *2 (-286 (-517))) - (-5 *1 (-799)))) - ((*1 *1 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-817 *3)) (-4 *3 (-779)))) + (-12 (-5 *3 (-379 (-879 (-47)))) (-5 *2 (-288 (-519))) + (-5 *1 (-802)))) + ((*1 *1 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-782)))) + ((*1 *2 *1) (-12 (-5 *2 (-754 *3)) (-5 *1 (-820 *3)) (-4 *3 (-782)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-583 (-286 (-199)))) + (-2 (|:| |pde| (-585 (-288 (-201)))) (|:| |constraints| - (-583 - (-2 (|:| |start| (-199)) (|:| |finish| (-199)) - (|:| |grid| (-703)) (|:| |boundaryType| (-517)) - (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) - (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1060)) - (|:| |tol| (-199)))) - (-5 *1 (-822)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-822)))) + (-585 + (-2 (|:| |start| (-201)) (|:| |finish| (-201)) + (|:| |grid| (-705)) (|:| |boundaryType| (-519)) + (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) + (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) + (|:| |tol| (-201)))) + (-5 *1 (-825)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-825)))) ((*1 *2 *1) - (-12 (-5 *2 (-1099 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1006)))) + (-12 (-5 *2 (-1104 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1011)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-829 *3))) (-4 *3 (-1006)) (-5 *1 (-828 *3)))) + (-12 (-5 *2 (-585 (-832 *3))) (-4 *3 (-1011)) (-5 *1 (-831 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-829 *3)))) + (-12 (-5 *2 (-585 (-832 *3))) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-832 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-829 *3)))) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1011)) (-5 *1 (-832 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-838 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278)))) - ((*1 *2 *3) - (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-843 *4)) - (-4 *4 (-13 (-779) (-509))))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-891)))) + (-12 (-5 *2 (-379 (-390 *3))) (-4 *3 (-280)) (-5 *1 (-841 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-379 *3)) (-5 *1 (-841 *3)) (-4 *3 (-280)))) + ((*1 *2 *3) + (-12 (-5 *3 (-448)) (-5 *2 (-288 *4)) (-5 *1 (-846 *4)) + (-4 *4 (-13 (-782) (-511))))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-891 *3)) (-4 *3 (-892)))) + ((*1 *1 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-892)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-895)))) ((*1 *2 *1) - (-12 (-5 *2 (-377 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517)))) - ((*1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *1 (-951 *3)) (-4 *3 (-1112)))) - ((*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-951 *2)) (-4 *2 (-1112)))) + (-12 (-5 *2 (-379 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519)))) + ((*1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *1 (-955 *3)) (-4 *3 (-1117)))) + ((*1 *2 *3) (-12 (-5 *3 (-284)) (-5 *1 (-955 *2)) (-4 *2 (-1117)))) ((*1 *1 *2) - (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-952 *3 *4 *5 *2 *6)) (-4 *2 (-873 *3 *4 *5)) - (-14 *6 (-583 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-955 *2)) (-4 *2 (-1112)))) + (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-956 *3 *4 *5 *2 *6)) (-4 *2 (-876 *3 *4 *5)) + (-14 *6 (-585 *2)))) + ((*1 *1 *2) (-12 (-4 *1 (-959 *2)) (-4 *2 (-1117)))) ((*1 *2 *3) - (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-960 *3)) (-4 *3 (-509)))) - ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-964)))) + (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-964 *3)) (-4 *3 (-511)))) + ((*1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-968)))) ((*1 *2 *1) - (-12 (-5 *2 (-623 *5)) (-5 *1 (-968 *3 *4 *5)) (-14 *3 (-703)) - (-14 *4 (-703)) (-4 *5 (-964)))) + (-12 (-5 *2 (-625 *5)) (-5 *1 (-972 *3 *4 *5)) (-14 *3 (-705)) + (-14 *4 (-705)) (-4 *5 (-968)))) ((*1 *1 *2) - (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-5 *1 (-1030 *3 *4 *2)) - (-4 *2 (-873 *3 (-489 *4) *4)))) + (-12 (-4 *3 (-968)) (-4 *4 (-782)) (-5 *1 (-1035 *3 *4 *2)) + (-4 *2 (-876 *3 (-491 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-964)) (-4 *2 (-779)) (-5 *1 (-1030 *3 *2 *4)) - (-4 *4 (-873 *3 (-489 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-787)))) + (-12 (-4 *3 (-968)) (-4 *2 (-782)) (-5 *1 (-1035 *3 *2 *4)) + (-4 *4 (-876 *3 (-491 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-790)))) ((*1 *2 *1) - (-12 (-5 *2 (-623 *4)) (-5 *1 (-1044 *3 *4)) (-14 *3 (-703)) - (-4 *4 (-964)))) - ((*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1046)))) + (-12 (-5 *2 (-625 *4)) (-5 *1 (-1049 *3 *4)) (-14 *3 (-705)) + (-4 *4 (-968)))) + ((*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1051)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3)))) ((*1 *2 *3) - (-12 (-5 *2 (-1058 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-964)))) + (-12 (-5 *2 (-1063 *3)) (-5 *1 (-1067 *3)) (-4 *3 (-968)))) ((*1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1073 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1079 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1080 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1131 *4 *3)) (-4 *3 (-964)) (-14 *4 (-1077)) - (-14 *5 *3) (-5 *1 (-1075 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1076)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1077)))) - ((*1 *2 *1) (-12 (-5 *2 (-1086 (-1077) (-407))) (-5 *1 (-1081)))) - ((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1082)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1082)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1082)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1082)))) - ((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-1082)))) - ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1082)))) - ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1082)))) - ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1082)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1085 *3)) (-4 *3 (-1006)))) - ((*1 *2 *3) (-12 (-5 *2 (-1093)) (-5 *1 (-1092 *3)) (-4 *3 (-1006)))) - ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1093)))) - ((*1 *1 *2) (-12 (-5 *2 (-876 *3)) (-4 *3 (-964)) (-5 *1 (-1107 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1107 *3)) (-4 *3 (-964)))) + (-12 (-5 *2 (-1136 *4 *3)) (-4 *3 (-968)) (-14 *4 (-1082)) + (-14 *5 *3) (-5 *1 (-1080 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1081)))) + ((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091 (-1082) (-409))) (-5 *1 (-1086)))) + ((*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-1087)))) + ((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1087)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1087)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1087)))) + ((*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-1087)))) + ((*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-1087)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1087)))) + ((*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-1087)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1090 *3)) (-4 *3 (-1011)))) + ((*1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *1 (-1097 *3)) (-4 *3 (-1011)))) + ((*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1098)))) + ((*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-968)) (-5 *1 (-1112 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1112 *3)) (-4 *3 (-968)))) ((*1 *1 *2) - (-12 (-5 *2 (-881 *3)) (-4 *3 (-1112)) (-5 *1 (-1110 *3)))) + (-12 (-5 *2 (-884 *3)) (-4 *3 (-1117)) (-5 *1 (-1115 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-964)) (-4 *1 (-1120 *3 *2)) (-4 *2 (-1149 *3)))) + (-12 (-4 *3 (-968)) (-4 *1 (-1125 *3 *2)) (-4 *2 (-1154 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1127 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1112)) (-5 *1 (-1125 *3)))) + (-12 (-5 *2 (-1006 *3)) (-4 *3 (-1117)) (-5 *1 (-1130 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1154 *3)) (-14 *3 (-1077)) (-5 *1 (-1131 *3 *4)) - (-4 *4 (-964)))) + (-12 (-5 *2 (-1159 *3)) (-14 *3 (-1082)) (-5 *1 (-1136 *3 *4)) + (-4 *4 (-968)))) ((*1 *1 *2) - (-12 (-4 *3 (-964)) (-4 *1 (-1141 *3 *2)) (-4 *2 (-1118 *3)))) + (-12 (-4 *3 (-968)) (-4 *1 (-1146 *3 *2)) (-4 *2 (-1123 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1148 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1155 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1131 *4 *3)) (-4 *3 (-964)) (-14 *4 (-1077)) - (-14 *5 *3) (-5 *1 (-1150 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1154 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1159)))) - ((*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1159)) (-5 *1 (-1162)))) - ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1163)))) + (-12 (-5 *2 (-1136 *4 *3)) (-4 *3 (-968)) (-14 *4 (-1082)) + (-14 *5 *3) (-5 *1 (-1155 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1159 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1164)))) + ((*1 *2 *3) (-12 (-5 *3 (-439)) (-5 *2 (-1164)) (-5 *1 (-1167)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1168)))) ((*1 *1 *2) - (-12 (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) - (-5 *1 (-1168 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-873 *3 *5 *4)) - (-14 *7 (-583 (-703))) (-14 *8 (-703)))) + (-12 (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-727)) (-14 *6 (-585 *4)) + (-5 *1 (-1173 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-876 *3 *5 *4)) + (-14 *7 (-585 (-705))) (-14 *8 (-705)))) ((*1 *2 *1) - (-12 (-4 *2 (-873 *3 *5 *4)) (-5 *1 (-1168 *3 *4 *5 *2 *6 *7 *8)) - (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) - (-14 *7 (-583 (-703))) (-14 *8 (-703)))) - ((*1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-964)))) - ((*1 *1 *2) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) + (-12 (-4 *2 (-876 *3 *5 *4)) (-5 *1 (-1173 *3 *4 *5 *2 *6 *7 *8)) + (-4 *3 (-968)) (-4 *4 (-782)) (-4 *5 (-727)) (-14 *6 (-585 *4)) + (-14 *7 (-585 (-705))) (-14 *8 (-705)))) + ((*1 *1 *2) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-968)))) + ((*1 *1 *2) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) ((*1 *2 *1) - (-12 (-5 *2 (-1180 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-156)))) + (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1181 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-157)))) ((*1 *2 *1) - (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-156)))) + (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-1181 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-157)))) ((*1 *1 *2) - (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) - (-5 *1 (-1176 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-1179 *3 *2)) (-4 *3 (-964)) (-4 *2 (-775))))) -(((*1 *2) - (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-387 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1171 (-1077) *3)) (-4 *3 (-964)) (-5 *1 (-1178 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) - (-5 *1 (-1180 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) - (-5 *1 (-869 *4 *5)) (-4 *5 (-1134 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-955 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *2 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-1158 (-583 (-517)))) (-5 *1 (-448)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-547 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1112)) (-5 *1 (-1058 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-788)))) - ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-788)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1060)) (-5 *4 (-787)) (-5 *2 (-1163)) (-5 *1 (-788)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1058 *4)) - (-4 *4 (-1006)) (-4 *4 (-1112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-377 (-517))) (-5 *1 (-942 *3)) - (-4 *3 (-13 (-777) (-333) (-940))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) - (-4 *3 (-1134 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-777) (-333))) - (-4 *3 (-1134 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-1036 *4 *2)) - (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4195) (-6 -4196)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-779)) (-4 *3 (-1112)) (-5 *1 (-1036 *3 *2)) - (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4195) (-6 -4196))))))) -(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-583 *3)) (-5 *1 (-884 *3)) (-4 *3 (-502))))) -(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753))))) + (-12 (-5 *2 (-603 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) + (-5 *1 (-1181 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-1184 *3 *2)) (-4 *3 (-968)) (-4 *2 (-778))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-583 - (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1073 *3)) - (|:| |logand| (-1073 *3))))) - (-5 *1 (-534 *3)) (-4 *3 (-333))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-333)) (-4 *3 (-964)) - (-5 *1 (-1062 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3374 (-517)) (|:| -2283 (-583 *3)))) - (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))) + (-12 (-5 *2 (-1013 *3)) (-5 *1 (-832 *3)) (-4 *3 (-340)) + (-4 *3 (-1011))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-404)) - (-5 *2 - (-583 - (-3 (|:| -2981 (-1077)) - (|:| |bounds| (-583 (-3 (|:| S (-1077)) (|:| P (-876 (-517))))))))) - (-5 *1 (-1081))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) - (-4 *5 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-1182 *5 *6 *7)) - (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) - (-4 *5 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-583 (-961 *5 *6))) (-5 *1 (-1182 *5 *6 *7)) - (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-876 *4))) - (-4 *4 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-583 (-961 *4 *5))) (-5 *1 (-1182 *4 *5 *6)) - (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *2 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006))))) + (-12 (-5 *3 (-832 *4)) (-4 *4 (-1011)) (-5 *2 (-585 (-705))) + (-5 *1 (-831 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-1073 *4)) - (-5 *1 (-487 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3))))) + (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-4 *5 (-402 *4)) + (-5 *2 (-390 *3)) (-5 *1 (-407 *4 *5 *3)) (-4 *3 (-1139 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1082)) (-4 *5 (-335)) (-5 *2 (-585 (-1112 *5))) + (-5 *1 (-1171 *5)) (-5 *4 (-1112 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-108)) (-5 *1 (-110))))) +(((*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-782))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-1006 (-201))) (-5 *1 (-854))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) + (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-77 LSFUN1)))) + (-5 *2 (-957)) (-5 *1 (-688))))) +(((*1 *1) (-5 *1 (-758)))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1117)) (-5 *1 (-165 *3 *2)) + (-4 *2 (-612 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) - (-14 *4 (-583 (-1077))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1112)))) + (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-263 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1139 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) - (-14 *4 (-583 (-1077))))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-817 *3)) (-4 *3 (-779))))) -(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1163)) - (-5 *1 (-418 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-896 *4 *5 *6 *3)) (-4 *4 (-964)) (-4 *5 (-725)) - (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-509)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-406))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1149 *3))))) -(((*1 *1) (-5 *1 (-128)))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) - (-5 *2 (-953)) (-5 *1 (-684))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) - (-4 *3 (-1134 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1077)) - (-5 *2 - (-2 (|:| |zeros| (-1058 (-199))) (|:| |ones| (-1058 (-199))) - (|:| |singularities| (-1058 (-199))))) - (-5 *1 (-100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-333)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 (-377 *3))) - (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1134 *2)) - (-4 *5 (-1134 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) - (-4 *6 (-312 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-333)) (-4 *3 (-1134 *2)) (-4 *4 (-1134 (-377 *3))) - (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) - (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) - (-4 *1 (-305 *3 *4 *5 *6))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-929 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-1015 *5 *6 *7 *8)) - (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-107)) - (-5 *1 (-539 *5 *6 *7 *8 *3))))) -(((*1 *2) - (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) - (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-703))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-333)) - (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *1 (-419 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) - (-5 *2 - (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) - (-5 *1 (-898 *6)) (-5 *3 (-623 *6))))) + (-12 (-4 *2 (-23)) (-5 *1 (-646 *3 *2 *4 *5 *6)) (-4 *3 (-157)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *2 (-1139 *3)) (-5 *1 (-647 *3 *2)) (-4 *3 (-968)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-650 *3 *2 *4 *5 *6)) (-4 *3 (-157)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-796 *3)) (-5 *2 (-519))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-873 *7 *5 *6)) - (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-278))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-218 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1077))) (-5 *3 (-1077)) (-5 *1 (-493)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1077)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-583 (-1077))) (-5 *2 (-1077)) (-5 *1 (-638 *3)) - (-4 *3 (-558 (-493)))))) -(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-107))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1159)))) - ((*1 *1 *1) (-5 *1 (-1159)))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-406))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-333)) (-5 *1 (-943 *3 *2)) (-4 *2 (-593 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -3817 *3) (|:| -1395 (-583 *5)))) - (-5 *1 (-943 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-703))))) -(((*1 *2 *3) - (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-921) (-1098))) - (-4 *4 (-13 (-509) (-779))) - (-4 *2 (-13 (-400 (-153 *4)) (-921) (-1098))) - (-5 *1 (-546 *4 *5 *2))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) - (-4 *1 (-983 *4 *5 *6 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077))))) + (-12 (-5 *3 (-1082)) (-5 *4 (-879 (-519))) (-5 *2 (-302)) + (-5 *1 (-304))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1077))) - (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-680))))) -(((*1 *2 *1) - (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) - (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) -(((*1 *1 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1073 *9))) - (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) - (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-873 *9 *10 *11)) - (-4 *10 (-725)) (-5 *2 (-583 (-1073 *12))) - (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1073 *12))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1001 *3)) (-5 *1 (-999 *3)) (-4 *3 (-1112)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) + (-12 (-4 *4 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *2 (-585 *4)) (-5 *1 (-1037 *3 *4)) (-4 *3 (-1139 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *2 (-585 *3)) (-5 *1 (-1037 *4 *3)) (-4 *4 (-1139 *3))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-333)) (-4 *3 (-964)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1306 *1))) - (-4 *1 (-781 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-502)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-123))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1158 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) - (-5 *2 (-107)) (-5 *1 (-578 *4 *5))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5))))) + (-12 (-5 *2 (-2 (|:| -2292 (-716 *3)) (|:| |coef1| (-716 *3)))) + (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-511)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *2 (-2 (|:| -2292 *1) (|:| |coef1| *1))) + (-4 *1 (-982 *3 *4 *5))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) - (-5 *3 (-517)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) + (-12 (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-108)) (-5 *1 (-1087)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) - (-5 *3 (-517)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) - (-5 *3 (-517)) (-4 *5 (-793 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-931)) (-5 *2 (-377 (-517))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-777) (-333))) - (-4 *3 (-1134 *2)))) + (-12 (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-108)) (-5 *1 (-1087)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1136 *2 *3)) (-4 *3 (-724)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2262 (*2 (-1077)))) - (-4 *2 (-964))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) - (-4 *4 (-319)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-327 *4)) - (-4 *4 (-319)))) - ((*1 *1) (-4 *1 (-338))) - ((*1 *2 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4)) - (-4 *4 (-319)))) - ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1) (-4 *1 (-502))) - ((*1 *1 *1) (-5 *1 (-517))) ((*1 *1 *1) (-5 *1 (-703))) - ((*1 *2 *1) (-12 (-5 *2 (-829 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) + (-12 (-5 *3 (|[\|\|]| (-201))) (-5 *2 (-108)) (-5 *1 (-1087)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-5 *2 (-829 *4)) (-5 *1 (-828 *4)) - (-4 *4 (-1006)))) - ((*1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-502)) (-4 *2 (-509))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850))))) + (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-108)) (-5 *1 (-1087))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-519)) (-5 *6 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) + (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) + (-5 *1 (-722)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-519)) (-5 *6 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) + (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) + (-5 *1 (-722))))) +(((*1 *2 *2) (-12 (-5 *2 (-848)) (|has| *1 (-6 -4212)) (-4 *1 (-376)))) + ((*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-848)))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-634)))) + ((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-634))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-848)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-238))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1063 *4)) (-5 *3 (-519)) (-4 *4 (-968)) + (-5 *1 (-1067 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-519)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-968)) + (-14 *4 (-1082)) (-14 *5 *3)))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-379 (-1078 (-288 *3)))) (-4 *3 (-13 (-511) (-782))) + (-5 *1 (-1039 *3))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-1047 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) + (-4 *4 (-13 (-1011) (-33))) (-4 *5 (-13 (-1011) (-33))) + (-5 *1 (-1048 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-585 (-1047 *3 *4))) (-4 *3 (-13 (-1011) (-33))) + (-4 *4 (-13 (-1011) (-33))) (-5 *1 (-1048 *3 *4))))) +(((*1 *1 *1) (-5 *1 (-980)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-780)) (-5 *1 (-276 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-585 (-2 (|:| -1921 (-1078 *6)) (|:| -1690 (-519))))) + (-4 *6 (-280)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) + (-5 *1 (-677 *4 *5 *6 *7)) (-4 *7 (-876 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1043 *2)) (-4 *2 (-968))))) +(((*1 *1) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-558 *3)) + (-4 *3 (-13 (-402 *5) (-27) (-1103))) + (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *2 (-2 (|:| -1265 *3) (|:| |coeff| *3))) + (-5 *1 (-521 *5 *3 *6)) (-4 *6 (-1011))))) (((*1 *2 *3) - (-12 (-5 *3 (-623 (-377 (-876 (-517))))) - (-5 *2 - (-583 - (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) - (|:| |radvect| (-583 (-623 (-286 (-517)))))))) - (-5 *1 (-949))))) + (-12 (-5 *3 (-1065)) (-5 *2 (-191 (-469))) (-5 *1 (-770))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-682))))) (((*1 *2 *3) (-12 (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-286 (-199))) (|:| -2578 (-583 (-199))) - (|:| |lb| (-583 (-772 (-199)))) - (|:| |cf| (-583 (-286 (-199)))) - (|:| |ub| (-583 (-772 (-199)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-583 (-286 (-199)))) - (|:| -2578 (-583 (-199))))))) - (-5 *2 (-583 (-1060))) (-5 *1 (-240))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) - (-5 *2 (-953)) (-5 *1 (-688)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) - (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) - (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) - (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) - (-4 *1 (-983 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) - (-5 *1 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) - (-5 *2 (-583 (-583 (-583 (-867 *3)))))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-694)))) -(((*1 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-1006))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) - (-5 *2 (-953)) (-5 *1 (-681))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) - (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *1)))) - (-4 *1 (-983 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) - (-4 *3 (-13 (-333) (-1098) (-921))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1116)) (-4 *5 (-1134 (-377 *2))) - (-4 *2 (-1134 *4)) (-5 *1 (-311 *3 *4 *2 *5)) - (-4 *3 (-312 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1116)) - (-4 *4 (-1134 (-377 *2))) (-4 *2 (-1134 *3))))) -(((*1 *2) - (-12 (-4 *4 (-333)) (-5 *2 (-845)) (-5 *1 (-298 *3 *4)) - (-4 *3 (-299 *4)))) - ((*1 *2) - (-12 (-4 *4 (-333)) (-5 *2 (-765 (-845))) (-5 *1 (-298 *3 *4)) - (-4 *3 (-299 *4)))) - ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-845)))) - ((*1 *2) - (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-845)))))) -(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-556 *4)) (-5 *6 (-1073 *4)) - (-4 *4 (-13 (-400 *7) (-27) (-1098))) - (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) - (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1073 *4))) - (-4 *4 (-13 (-400 *7) (-27) (-1098))) - (-4 *7 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) - (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1006))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1077))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1060)) (-5 *3 (-517)) (-5 *1 (-976))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) - (-4 *3 (-978 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) - (-4 *3 (-978 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-1047 *6 *7 *8 *3 *4)) (-4 *4 (-1015 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3864 *4)))))) - (-5 *1 (-1047 *5 *6 *7 *3 *4)) (-4 *4 (-1015 *5 *6 *7 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) - (-5 *2 (-107))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-890 *4 *2)) - (-4 *2 (-1134 *4))))) -(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1) (-4 *1 (-569))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921) (-1098)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-680))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) - (-4 *2 (-1134 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1077))) (-4 *6 (-421)) - (-5 *2 - (-2 (|:| |dpolys| (-583 (-221 *5 *6))) - (|:| |coords| (-583 (-517))))) - (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421))))) -(((*1 *2) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-623 (-377 *4)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1134 *4)) (-4 *4 (-1116)) - (-4 *6 (-1134 (-377 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-312 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-583 (-1073 *11))) (-5 *3 (-1073 *11)) - (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) - (-5 *7 (-1158 (-583 (-1073 *8)))) (-4 *10 (-779)) - (-4 *8 (-278)) (-4 *11 (-873 *8 *9 *10)) (-4 *9 (-725)) - (-5 *1 (-641 *9 *10 *8 *11))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) - (-5 *2 - (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) - (|:| |success| (-107)))) - (-5 *1 (-721)) (-5 *5 (-517))))) + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))) + (-5 *2 (-351)) (-5 *1 (-183))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-790) (-790) (-790))) (-5 *4 (-519)) (-5 *2 (-790)) + (-5 *1 (-588 *5 *6 *7)) (-4 *5 (-1011)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-790)) (-5 *1 (-786 *3 *4 *5)) (-4 *3 (-968)) + (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-790)))) + ((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-790)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-790)))) + ((*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1078 *3)) (-4 *3 (-968))))) +(((*1 *1) (-5 *1 (-132)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) - (-5 *1 (-302))))) -(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-703))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1112)) (-5 *2 (-517))))) -(((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-134) (-27) (-955 (-517)) (-955 (-377 (-517))))) - (-4 *5 (-1134 *4)) (-5 *2 (-1073 (-377 *5))) (-5 *1 (-559 *4 *5)) - (-5 *3 (-377 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) - (-4 *5 (-13 (-134) (-27) (-955 (-517)) (-955 (-377 (-517))))) - (-5 *2 (-1073 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) - (-4 *5 (-13 (-27) (-1098) (-400 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-377 (-517))) - (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) - (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) - (-4 *3 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) - (-5 *5 (-1125 (-377 (-517)))) (-5 *6 (-377 (-517))) - (-4 *8 (-13 (-27) (-1098) (-400 *7))) - (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-377 (-517)))) - (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1098) (-400 *8))) - (-4 *8 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-377 (-517))) (-4 *4 (-964)) (-4 *1 (-1141 *4 *3)) - (-4 *3 (-1118 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300))))) -(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112)) (-4 *2 (-779)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1112)))) - ((*1 *2 *2) - (-12 (-5 *2 (-583 (-829 *3))) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1078 *7)) (-4 *5 (-968)) + (-4 *7 (-968)) (-4 *2 (-1139 *5)) (-5 *1 (-468 *5 *2 *6 *7)) + (-4 *6 (-1139 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-968)) (-4 *7 (-968)) + (-4 *4 (-1139 *5)) (-5 *2 (-1078 *7)) (-5 *1 (-468 *5 *4 *6 *7)) + (-4 *6 (-1139 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-705)) (-4 *1 (-207 *4)) + (-4 *4 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-207 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-209)) (-5 *2 (-705)))) + ((*1 *1 *1) (-4 *1 (-209))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-241 *3)) (-4 *3 (-782)))) + ((*1 *1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-782)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) + (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *3 (-13 (-335) (-135))) (-5 *1 (-371 *3 *4)) + (-4 *4 (-1139 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-335) (-135))) (-5 *1 (-371 *2 *3)) + (-4 *3 (-1139 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-445 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) - (-4 *6 (-978 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -2713 *1) (|:| |upper| *1))) - (-4 *1 (-896 *4 *5 *3 *6))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-964)) - (-5 *1 (-624 *4))))) -(((*1 *1 *1) (-4 *1 (-973))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) + (-12 (-4 *2 (-335)) (-4 *2 (-827 *3)) (-5 *1 (-536 *2)) + (-5 *3 (-1082)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-536 *2)) (-4 *2 (-335)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-790)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 *4)) (-5 *3 (-585 (-705))) (-4 *1 (-827 *4)) + (-4 *4 (-1011)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-705)) (-4 *1 (-827 *2)) (-4 *2 (-1011)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1136 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724))))) -(((*1 *2) - (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-387 *3))))) + (-12 (-5 *2 (-585 *3)) (-4 *1 (-827 *3)) (-4 *3 (-1011)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1073 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1079 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1080 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1127 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1139 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1148 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1159 *4)) (-14 *4 (-1082)) (-5 *1 (-1155 *3 *4 *5)) + (-4 *3 (-968)) (-14 *5 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1063 *3))) (-5 *2 (-1063 *3)) (-5 *1 (-1067 *3)) + (-4 *3 (-37 (-379 (-519)))) (-4 *3 (-968))))) +(((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-511))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-143)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *1 *1) + (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)) + (-4 *2 (-423)))) + ((*1 *1 *1) + (-12 (-4 *1 (-314 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-1139 *2)) + (-4 *4 (-1139 (-379 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-423)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-876 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)) (-4 *3 (-423)))) + ((*1 *1 *1) + (-12 (-4 *1 (-876 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-423)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-280)) (-4 *3 (-511)) (-5 *1 (-1070 *3 *2)) + (-4 *2 (-1139 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1117)) (-5 *1 (-1041 *4 *2)) + (-4 *2 (-13 (-552 (-519) *4) (-10 -7 (-6 -4221) (-6 -4222)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-782)) (-4 *3 (-1117)) (-5 *1 (-1041 *3 *2)) + (-4 *2 (-13 (-552 (-519) *3) (-10 -7 (-6 -4221) (-6 -4222))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-519)) (-5 *1 (-288 *3)) (-4 *3 (-511)) (-4 *3 (-782))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1154 *4)) + (-4 *4 (-37 (-379 (-519)))) (-5 *2 (-1 (-1063 *4) (-1063 *4))) + (-5 *1 (-1156 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-155)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112))))) + (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) - (-4 *3 (-964))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) - (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) - (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) - (-5 *2 (-953)) (-5 *1 (-689))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1073 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5))))) + (-12 (-5 *2 (-2 (|:| -1286 *3) (|:| |coef1| (-716 *3)))) + (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968))))) (((*1 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) - (-4 *5 (-13 (-27) (-1098) (-400 *4))))) + (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) + (-4 *4 (-321))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-1163 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1182 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) + (-5 *2 (-754 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-778)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-968))))) +(((*1 *2 *1) + (-12 (-4 *1 (-987 *3 *4 *5 *6)) (-4 *3 (-423)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) + (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-895))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-625 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-955 *4) (-579 *4))) - (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *5))))) + (-12 (-4 *4 (-157)) (-4 *2 (-1139 *4)) (-5 *1 (-161 *4 *2 *3)) + (-4 *3 (-659 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) - (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-421) (-779) (-955 *5) (-579 *5))) (-5 *5 (-517)) - (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-517))) - (-4 *7 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-517))) - (-4 *3 (-13 (-27) (-1098) (-400 *7))) - (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-517)) (-4 *4 (-964)) (-4 *1 (-1120 *4 *3)) - (-4 *3 (-1149 *4)))) + (-12 (-5 *3 (-625 (-379 (-879 *5)))) (-5 *4 (-1082)) + (-5 *2 (-879 *5)) (-5 *1 (-265 *5)) (-4 *5 (-423)))) + ((*1 *2 *3) + (-12 (-5 *3 (-625 (-379 (-879 *4)))) (-5 *2 (-879 *4)) + (-5 *1 (-265 *4)) (-4 *4 (-423)))) ((*1 *2 *1) - (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1118 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) - (|:| |expense| (-349)) (|:| |accuracy| (-349)) - (|:| |intermediateResults| (-349)))) - (-5 *2 (-953)) (-5 *1 (-276))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *4 (-583 (-1077))) - (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) + (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1139 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-625 (-154 (-379 (-519))))) + (-5 *2 (-879 (-154 (-379 (-519))))) (-5 *1 (-699 *4)) + (-4 *4 (-13 (-335) (-780))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1006)) (-4 *6 (-824 *5)) (-5 *2 (-623 *6)) - (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) - (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195))))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) - (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) + (-12 (-5 *3 (-625 (-154 (-379 (-519))))) (-5 *4 (-1082)) + (-5 *2 (-879 (-154 (-379 (-519))))) (-5 *1 (-699 *5)) + (-4 *5 (-13 (-335) (-780))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) - (-4 *7 (-912 *4)) (-4 *2 (-621 *7 *8 *9)) - (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) - (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) - (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) - (-4 *2 (-621 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-964)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1027 *2 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1084 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) - (-14 *5 (-583 (-1077))) (-5 *2 (-583 (-583 (-942 (-377 *4))))) - (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) - (-4 *5 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) - (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-107)) - (-4 *5 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-583 (-583 (-942 (-377 *5))))) (-5 *1 (-1182 *5 *6 *7)) - (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-876 *4))) - (-4 *4 (-13 (-777) (-278) (-134) (-940))) - (-5 *2 (-583 (-583 (-942 (-377 *4))))) (-5 *1 (-1182 *4 *5 *6)) - (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077)))))) + (-12 (-5 *3 (-625 (-379 (-519)))) (-5 *2 (-879 (-379 (-519)))) + (-5 *1 (-713 *4)) (-4 *4 (-13 (-335) (-780))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-625 (-379 (-519)))) (-5 *4 (-1082)) + (-5 *2 (-879 (-379 (-519)))) (-5 *1 (-713 *5)) + (-4 *5 (-13 (-335) (-780)))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-853))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-558 *3)) (-5 *5 (-585 *3)) (-5 *6 (-1078 *3)) + (-4 *3 (-13 (-402 *7) (-27) (-1103))) + (-4 *7 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-515 *7 *3 *8)) (-4 *8 (-1011)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-558 *3)) (-5 *5 (-585 *3)) + (-5 *6 (-379 (-1078 *3))) (-4 *3 (-13 (-402 *7) (-27) (-1103))) + (-4 *7 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-515 *7 *3 *8)) (-4 *8 (-1011))))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-929))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-585 (-379 (-879 (-519))))) (-5 *4 (-585 (-1082))) + (-5 *2 (-585 (-585 *5))) (-5 *1 (-352 *5)) + (-4 *5 (-13 (-780) (-335))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-879 (-519)))) (-5 *2 (-585 *4)) (-5 *1 (-352 *4)) + (-4 *4 (-13 (-780) (-335)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-585 (-1078 *11))) (-5 *3 (-1078 *11)) + (-5 *4 (-585 *10)) (-5 *5 (-585 *8)) (-5 *6 (-585 (-705))) + (-5 *7 (-1163 (-585 (-1078 *8)))) (-4 *10 (-782)) + (-4 *8 (-280)) (-4 *11 (-876 *8 *9 *10)) (-4 *9 (-727)) + (-5 *1 (-643 *9 *10 *8 *11))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-107)) - (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) - (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)) (-4 *3 (-156)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-509)) (-5 *1 (-890 *2 *3)) (-4 *3 (-1134 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-509)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-156))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) + (-12 (-5 *3 (-379 (-519))) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-511)) (-4 *8 (-876 *7 *5 *6)) + (-5 *2 (-2 (|:| -1690 (-705)) (|:| -3031 *9) (|:| |radicand| *9))) + (-5 *1 (-880 *5 *6 *7 *8 *9)) (-5 *4 (-705)) + (-4 *9 + (-13 (-335) + (-10 -8 (-15 -2855 (*8 $)) (-15 -2866 (*8 $)) (-15 -2217 ($ *8)))))))) +(((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-280)))) + ((*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-280)))) + ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)) (-4 *2 (-280)))) + ((*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-519))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) (((*1 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) - (-4 *5 (-13 (-27) (-1098) (-400 *4))))) + (-12 (-5 *3 (-585 (-1082))) (-4 *4 (-13 (-280) (-135))) + (-4 *5 (-13 (-782) (-560 (-1082)))) (-4 *6 (-727)) + (-5 *2 (-585 (-379 (-879 *4)))) (-5 *1 (-851 *4 *5 *6 *7)) + (-4 *7 (-876 *4 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-1139 *5)) (-4 *5 (-280)) + (-5 *2 (-705)) (-5 *1 (-426 *5 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-423)) (-4 *4 (-511)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3159 *4))) (-5 *1 (-894 *4 *3)) + (-4 *3 (-1139 *4))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-108)) + (-5 *6 (-201)) (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-66 APROD)))) + (-5 *8 (-3 (|:| |fn| (-360)) (|:| |fp| (-71 MSOLVE)))) + (-5 *2 (-957)) (-5 *1 (-691))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-157)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-703)) - (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) - (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) - (-4 *3 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) - (-4 *6 (-13 (-27) (-1098) (-400 *5))) - (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1125 (-703))) - (-4 *7 (-13 (-27) (-1098) (-400 *6))) - (-4 *6 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1077)) (-5 *5 (-265 *3)) (-5 *6 (-1125 (-703))) - (-4 *3 (-13 (-27) (-1098) (-400 *7))) - (-4 *7 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-964)) (-4 *2 (-1149 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) - (-4 *4 (-725)) (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-873 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1023)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692))))) -(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) - ((*1 *1 *1 *1) (-4 *1 (-502))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) - ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-845)) - (-5 *2 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) - (-5 *1 (-316 *4)) (-4 *4 (-319))))) + (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-869)) (-5 *3 (-519))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-519)) (-4 *6 (-727)) (-4 *7 (-782)) (-4 *8 (-280)) + (-4 *9 (-876 *8 *6 *7)) + (-5 *2 (-2 (|:| -2714 (-1078 *9)) (|:| |polval| (-1078 *8)))) + (-5 *1 (-677 *6 *7 *8 *9)) (-5 *3 (-1078 *9)) (-5 *4 (-1078 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-848)) (-5 *2 (-1065)) (-5 *1 (-720))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) + (-5 *2 + (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) + (|:| |success| (-108)))) + (-5 *1 (-723)) (-5 *5 (-519))))) +(((*1 *2 *3) + (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-280)) + (-5 *2 (-585 (-705))) (-5 *1 (-712 *3 *4 *5 *6 *7)) + (-4 *3 (-1139 *6)) (-4 *7 (-876 *6 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-201))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-1 (-351))) (-5 *1 (-961)))) + ((*1 *1 *1 *1) (-4 *1 (-1046)))) (((*1 *2 *1) - (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) - (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4))))) + (-12 (-4 *1 (-509 *3)) (-4 *3 (-13 (-376) (-1103))) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-780)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-984 *4 *3)) (-4 *4 (-13 (-780) (-335))) + (-4 *3 (-1139 *4)) (-5 *2 (-108))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1065)) (-5 *3 (-758)) (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-108))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4195)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1006)) - (-4 *3 (-1112)) (-4 *3 (-1006)) (-5 *2 (-107))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) - (-5 *2 (-583 (-583 (-867 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-583 (-583 (-867 *4)))) (-5 *3 (-107)) (-4 *4 (-964)) - (-4 *1 (-1038 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 (-867 *3)))) (-4 *3 (-964)) - (-4 *1 (-1038 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) - (-4 *1 (-1038 *4)) (-4 *4 (-964)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-583 (-583 (-867 *4)))) (-5 *3 (-107)) - (-4 *1 (-1038 *4)) (-4 *4 (-964)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) - (-5 *4 (-155)) (-4 *1 (-1038 *5)) (-4 *5 (-964)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-583 (-583 (-867 *5)))) (-5 *3 (-583 (-155))) - (-5 *4 (-155)) (-4 *1 (-1038 *5)) (-4 *5 (-964))))) -(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1118 *3)) - (-5 *2 (-377 (-517)))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1134 *6)) - (-4 *6 (-13 (-333) (-134) (-955 *4))) (-5 *4 (-517)) + (-12 (-5 *3 (-406)) (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) - (|:| -3817 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-934 *6 *3))))) + (-585 + (-3 (|:| -2938 (-1082)) + (|:| |bounds| (-585 (-3 (|:| S (-1082)) (|:| P (-879 (-519))))))))) + (-5 *1 (-1086))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1011)) (-4 *3 (-827 *5)) (-5 *2 (-1163 *3)) + (-5 *1 (-627 *5 *3 *6 *4)) (-4 *6 (-345 *3)) + (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4221))))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1130 (-519))) (-4 *1 (-256 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-256 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1139 (-379 *2))) (-5 *2 (-519)) (-5 *1 (-840 *4 *3)) + (-4 *3 (-1139 (-379 *4)))))) +(((*1 *1 *1) (-5 *1 (-980)))) +(((*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-351)))) + ((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-351))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) + (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 -4048)))) (-5 *2 (-957)) + (-5 *1 (-681))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-519))) (-5 *4 (-832 (-519))) + (-5 *2 (-625 (-519))) (-5 *1 (-540)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-585 (-625 (-519)))) + (-5 *1 (-540)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-519))) (-5 *4 (-585 (-832 (-519)))) + (-5 *2 (-585 (-625 (-519)))) (-5 *1 (-540))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-504)))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-453 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-156)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-280)) (-5 *1 (-163 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-1 (-108) *8))) (-4 *8 (-982 *5 *6 *7)) + (-4 *5 (-511)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) + (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1058 (-1058 *4))) (-5 *2 (-1058 *4)) (-5 *1 (-1062 *4)) - (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-964))))) -(((*1 *1 *2) - (-12 + (-12 (-5 *3 (-848)) (-5 *2 - (-583 - (-2 - (|:| -2576 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) - (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) - (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (|:| -1846 - (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) - (|:| |expense| (-349)) (|:| |accuracy| (-349)) - (|:| |intermediateResults| (-349))))))) - (-5 *1 (-735))))) -(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) - (-4 *2 (-1006)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1006)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1006)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *2 (-1006)) (-5 *1 (-586 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-964)) (-5 *1 (-94 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-94 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-964)) (-5 *1 (-94 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-845)) (-4 *1 (-1136 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-724)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1139 *3)) (-4 *3 (-964))))) -(((*1 *2 *2) - (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) - (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))) - ((*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1006))))) + (-3 (-1078 *4) + (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029))))))) + (-5 *1 (-318 *4)) (-4 *4 (-321))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-705)) (-5 *5 (-585 *3)) (-4 *3 (-280)) (-4 *6 (-782)) + (-4 *7 (-727)) (-5 *2 (-108)) (-5 *1 (-568 *6 *7 *3 *8)) + (-4 *8 (-876 *3 *7 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1011)) (-4 *4 (-1011)) + (-4 *6 (-1011)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *4 *6))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-335) (-780))) + (-5 *2 (-585 (-2 (|:| -3433 (-585 *3)) (|:| -3026 *5)))) + (-5 *1 (-164 *5 *3)) (-4 *3 (-1139 (-154 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-335) (-780))) + (-5 *2 (-585 (-2 (|:| -3433 (-585 *3)) (|:| -3026 *4)))) + (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1006)) (-4 *2 (-824 *5)) (-5 *1 (-625 *5 *2 *3 *4)) - (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1134 *5)) - (-4 *7 (-1134 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) - (-4 *4 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-107)) - (-5 *1 (-835 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) - (-4 *4 (-1134 (-377 (-517)))) (-4 *5 (-1134 (-377 *4))) - (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) - (-5 *1 (-836 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-754))))) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-1020 *5 *6 *7 *8)) + (-4 *5 (-13 (-280) (-135))) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *8 (-982 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-541 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -1265 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-585 (-379 *8))) (-4 *7 (-335)) (-4 *8 (-1139 *7)) + (-5 *3 (-379 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-529 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3) + (-12 (-5 *3 (-288 (-351))) (-5 *2 (-288 (-201))) (-5 *1 (-278))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1134 (-517))) (-5 *1 (-453 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1073 (-377 (-876 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) - (-5 *1 (-389 *4)))) - ((*1 *1 *1) (-5 *1 (-850))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) - ((*1 *1 *1) (-5 *1 (-851))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) - (-5 *4 (-377 (-517))) (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))))) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1082)) (-5 *2 (-1086)) (-5 *1 (-1085))))) +(((*1 *2 *3) + (-12 (-5 *3 (-819 *4)) (-4 *4 (-1011)) (-5 *2 (-585 *5)) + (-5 *1 (-817 *4 *5)) (-4 *5 (-1117))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-705)) (-5 *1 (-717 *2)) (-4 *2 (-37 (-379 (-519)))) + (-4 *2 (-157))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1095 *4 *5)) + (-4 *4 (-1011)) (-4 *5 (-1011))))) +(((*1 *1) (-5 *1 (-143)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-1082)) (-5 *1 (-495)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1082)) (-5 *1 (-640 *3)) (-4 *3 (-560 (-495))))) ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) - (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))))) + (-12 (-5 *2 (-1082)) (-5 *1 (-640 *3)) (-4 *3 (-560 (-495))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1082)) (-5 *1 (-640 *3)) (-4 *3 (-560 (-495))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) - (-5 *4 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-1134 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) - (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-974 *2 *3)) - (-4 *3 (-1134 *2))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *3)) - (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) - (-4 *4 (-1134 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2)) - (-4 *3 (-13 (-779) (-509))))) - ((*1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *1) (-5 *1 (-446))) ((*1 *1) (-4 *1 (-1098)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-1099 *3)) (-4 *3 (-1006))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) - (-4 *2 (-593 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-867 *3) (-867 *3))) (-5 *1 (-158 *3)) - (-4 *3 (-13 (-333) (-1098) (-921)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) - (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-333)) (-4 *3 (-964)) - (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-781 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-964)) - (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-782 *5 *3)) - (-4 *3 (-781 *5))))) -(((*1 *2) - (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-387 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1073 *4))) (-5 *3 (-1073 *4)) - (-4 *4 (-833)) (-5 *1 (-600 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) + (-12 (-5 *4 (-585 (-1082))) (-5 *2 (-1082)) (-5 *1 (-640 *3)) + (-4 *3 (-560 (-495)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1082)) (-5 *4 (-879 (-519))) (-5 *2 (-302)) + (-5 *1 (-304))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *6)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) + (-5 *2 (-2 (|:| -1664 (-585 *6)) (|:| -1556 (-585 *6))))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1082)) (-5 *6 (-585 (-558 *3))) + (-5 *5 (-558 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *7))) + (-4 *7 (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-2 (|:| -1265 *3) (|:| |coeff| *3))) + (-5 *1 (-512 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-168)))) + (-12 (-4 *4 (-511)) (-4 *5 (-916 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3)) + (-4 *3 (-345 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-271)))) + (-12 (-4 *4 (-511)) (-4 *5 (-916 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-470 *4 *5 *6 *3)) (-4 *6 (-345 *4)) (-4 *3 (-345 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1060))) (-5 *1 (-276))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-964)) - (-5 *2 (-1158 (-1158 *5))) (-5 *1 (-947 *5)) (-5 *4 (-1158 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107))))) -(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-1006) (-33))) - (-4 *5 (-13 (-1006) (-33))) (-5 *2 (-107)) (-5 *1 (-1043 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1134 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-905 *4 *2 *3 *5)) - (-4 *4 (-319)) (-4 *5 (-657 *2 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1131 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1077)) - (-4 *5 (-333)) (-5 *1 (-847 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1073 *5)) - (-5 *1 (-847 *4 *5)) (-14 *4 (-1077)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) - (-5 *2 (-377 (-876 *6))) (-5 *1 (-965 *5 *6)) (-14 *5 (-1077))))) + (-12 (-5 *3 (-625 *5)) (-4 *5 (-916 *4)) (-4 *4 (-511)) + (-5 *2 (-2 (|:| |num| (-625 *4)) (|:| |den| *4))) + (-5 *1 (-628 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) + (-4 *6 (-1139 *5)) + (-5 *2 (-2 (|:| -3257 *7) (|:| |rh| (-585 (-379 *6))))) + (-5 *1 (-742 *5 *6 *7 *3)) (-5 *4 (-585 (-379 *6))) + (-4 *7 (-595 *6)) (-4 *3 (-595 (-379 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *5 (-916 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1132 *4 *5 *3)) + (-4 *3 (-1139 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-509) (-779))) - (-4 *2 (-13 (-400 *4) (-921) (-1098))) (-5 *1 (-546 *4 *2 *3)) - (-4 *3 (-13 (-400 (-153 *4)) (-921) (-1098)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) + (-12 + (-5 *3 + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) - (-5 *1 (-1028 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-867 *2)) (-5 *1 (-902 *2)) (-4 *2 (-964))))) -(((*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-47)))) (-5 *1 (-47)))) - ((*1 *2 *1) - (-12 (-4 *3 (-912 *2)) (-4 *4 (-1134 *3)) (-4 *2 (-278)) - (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-955 *3))))) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-170))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-389 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-2 (|:| |deg| (-705)) (|:| -2695 *5)))) + (-4 *5 (-1139 *4)) (-4 *4 (-321)) (-5 *2 (-585 *5)) + (-5 *1 (-193 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-2 (|:| -1921 *5) (|:| -4178 (-519))))) + (-5 *4 (-519)) (-4 *5 (-1139 *4)) (-5 *2 (-585 *5)) + (-5 *1 (-631 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-705)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-389 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1029 *3 (-556 *1))) - (-4 *1 (-400 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1029 (-517) (-556 (-460)))) (-5 *1 (-460)))) + (-12 (-5 *2 (-108)) (-5 *1 (-390 *3)) (-4 *3 (-504)) (-4 *3 (-511)))) + ((*1 *2 *1) (-12 (-4 *1 (-504)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) - (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))) + (-12 (-4 *1 (-732 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-108)))) ((*1 *2 *1) - (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) - (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509))))) -(((*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) - (-5 *2 (-583 (-1077))) (-5 *1 (-240)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1073 *7)) (-4 *7 (-873 *6 *4 *5)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-964)) (-5 *2 (-583 *5)) - (-5 *1 (-291 *4 *5 *6 *7)))) + (-12 (-5 *2 (-108)) (-5 *1 (-768 *3)) (-4 *3 (-504)) (-4 *3 (-1011)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-357)))) + (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-504)) (-4 *3 (-1011)))) ((*1 *2 *1) - (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1077))))) + (-12 (-4 *1 (-920 *3)) (-4 *3 (-157)) (-4 *3 (-504)) (-5 *2 (-108)))) + ((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-931 *3)) (-4 *3 (-959 (-379 (-519))))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-508))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-402 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) + (|partial| -12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) + (-4 *3 (-1011)))) ((*1 *2 *1) - (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-583 *5)))) + (|partial| -12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *2 (-585 *1)) (-4 *1 (-876 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) - (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *5)) - (-5 *1 (-874 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-968)) + (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-585 *3)) + (-5 *1 (-877 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-335) + (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) + (-15 -2866 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-1078 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 - (-13 (-333) - (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) + (-13 (-335) (-275) + (-10 -8 (-15 -2855 ((-1034 *4 (-558 $)) $)) + (-15 -2866 ((-1034 *4 (-558 $)) $)) + (-15 -2217 ($ (-1034 *4 (-558 $)))))))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1117)) (-5 *1 (-800 *3 *2)) (-4 *3 (-1117)))) + ((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-911 (-379 (-519)) (-792 *3) (-216 *4 (-705)) + (-223 *3 (-379 (-519))))) + (-14 *3 (-585 (-1082))) (-14 *4 (-705)) (-5 *1 (-910 *3 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-848)) (-4 *1 (-214 *3 *4)) (-4 *4 (-968)) + (-4 *4 (-1117)))) + ((*1 *1 *2) + (-12 (-14 *3 (-585 (-1082))) (-4 *4 (-157)) + (-4 *5 (-214 (-3532 *3) (-705))) + (-14 *6 + (-1 (-108) (-2 (|:| -2770 *2) (|:| -1690 *5)) + (-2 (|:| -2770 *2) (|:| -1690 *5)))) + (-5 *1 (-432 *3 *4 *2 *5 *6 *7)) (-4 *2 (-782)) + (-4 *7 (-876 *4 *5 (-792 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-870 (-201))) (-5 *1 (-1114))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1163 *4)) (-4 *4 (-968)) (-4 *2 (-1139 *4)) + (-5 *1 (-415 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-379 (-1078 (-288 *5)))) (-5 *3 (-1163 (-288 *5))) + (-5 *4 (-519)) (-4 *5 (-13 (-511) (-782))) (-5 *1 (-1039 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1139 (-519))) (-5 *1 (-455 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-511)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) + (-5 *1 (-1108 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1011)) (-4 *5 (-1011)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-619 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-968)) (-4 *4 (-1011)) (-5 *2 (-585 *1)) + (-4 *1 (-354 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-893 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-724)) - (-4 *5 (-779)) (-5 *2 (-583 *5)))) + (-12 (-5 *2 (-585 (-670 *3 *4))) (-5 *1 (-670 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-661)))) ((*1 *2 *1) - (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1077))) - (-5 *1 (-960 *4))))) + (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-585 *1)) + (-4 *1 (-876 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-280)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-418 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1065)) (-4 *7 (-876 *4 *5 *6)) + (-4 *4 (-280)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *1 (-418 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1065)) (-4 *7 (-876 *4 *5 *6)) + (-4 *4 (-280)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *1 (-418 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-884 *3)) (-5 *1 (-1070 *4 *3)) + (-4 *3 (-1139 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *2 (-583 (-199))) - (-5 *1 (-437))))) -(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) - ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *3 (-583 (-236))) - (-5 *1 (-234)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *1 (-236)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) - (-14 *5 (-583 (-1077))) (-4 *6 (-421)) (-5 *2 (-1158 *6)) - (-5 *1 (-571 *5 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (|has| *1 (-6 -4186)) (-4 *1 (-374)))) - ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-845))))) -(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107))))) -(((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) - (-5 *2 (-953)) (-5 *1 (-688))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1134 *4)) (-5 *1 (-739 *4 *2 *3 *5)) - (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *3 (-593 *2)) - (-4 *5 (-593 (-377 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1134 *4)) (-5 *1 (-739 *4 *2 *5 *3)) - (-4 *4 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *5 (-593 *2)) - (-4 *3 (-593 (-377 *2)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-517)) (|has| *1 (-6 -4196)) (-4 *1 (-1146 *3)) - (-4 *3 (-1112))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1073 (-377 (-1073 *2)))) (-5 *4 (-556 *2)) - (-4 *2 (-13 (-400 *5) (-27) (-1098))) - (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1006)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1073 *1)) (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964)) - (-4 *5 (-725)) (-4 *3 (-779)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1073 *4)) (-4 *4 (-964)) (-4 *1 (-873 *4 *5 *3)) - (-4 *5 (-725)) (-4 *3 (-779)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-1073 *2))) (-4 *5 (-725)) (-4 *4 (-779)) - (-4 *6 (-964)) - (-4 *2 - (-13 (-333) - (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))) - (-5 *1 (-874 *5 *4 *6 *7 *2)) (-4 *7 (-873 *6 *5 *4)))) + (-12 (-5 *3 (-585 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-170)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-273)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-201))) (-5 *2 (-585 (-1065))) (-5 *1 (-278))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-585 (-451 *5 *6))) (-5 *4 (-792 *5)) + (-14 *5 (-585 (-1082))) (-5 *2 (-451 *5 *6)) (-5 *1 (-573 *5 *6)) + (-4 *6 (-423)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-1073 (-377 (-876 *5))))) (-5 *4 (-1077)) - (-5 *2 (-377 (-876 *5))) (-5 *1 (-960 *5)) (-4 *5 (-509))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1058 *4))) (-5 *1 (-257 *4 *5)) - (-5 *3 (-1058 *4)) (-4 *5 (-1149 *4))))) + (-12 (-5 *3 (-585 (-451 *5 *6))) (-5 *4 (-792 *5)) + (-14 *5 (-585 (-1082))) (-5 *2 (-451 *5 *6)) (-5 *1 (-573 *5 *6)) + (-4 *6 (-423))))) (((*1 *2 *1) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) - (-5 *2 (-2 (|:| |num| (-1158 *4)) (|:| |den| *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186))))) -(((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-838 *3)) (-4 *3 (-278))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850))))) + (-12 (-4 *2 (-1139 *3)) (-5 *1 (-371 *3 *2)) + (-4 *3 (-13 (-335) (-135)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) - (-5 *1 (-95 *4 *3)) (-4 *3 (-1134 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-13 (-421) (-134))) - (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3))))) + (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1095 *4 *5)) + (-4 *4 (-1011)) (-4 *5 (-1011))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) + (-5 *2 (-957)) (-5 *1 (-687))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-831 *4)) + (-4 *4 (-1011)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-831 *3)) (-4 *3 (-1011))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-390 *3)) (-4 *3 (-511)) (-5 *1 (-391 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-345 *2)) (-4 *2 (-1117)) + (-4 *2 (-782)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4222)) + (-4 *1 (-345 *3)) (-4 *3 (-1117))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) - ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) - (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-873 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-583 (-2 (|:| -3896 (-1073 *9)) (|:| -1725 (-517))))))) - (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1073 *9))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2361 *3))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) + (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-585 *7)) (|:| |badPols| (-585 *7)))) + (-5 *1 (-901 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-157)) (-4 *2 (-511)))) + ((*1 *1 *1) (|partial| -4 *1 (-657)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1049 *4 *2)) (-14 *4 (-848)) + (-4 *2 (-13 (-968) (-10 -7 (-6 (-4223 "*"))))) (-5 *1 (-829 *4 *2))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-402 *3) (-925))) (-5 *1 (-251 *3 *2)) + (-4 *3 (-13 (-782) (-511)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1011)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-583 (-845))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-845)) - (-4 *2 (-333)) (-14 *5 (-913 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) - (-4 *6 (-212 (-3573 *4) (-703))) - (-14 *7 - (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *6)) - (-2 (|:| -2803 *5) (|:| -1725 *6)))) - (-14 *4 (-583 (-1077))) (-4 *2 (-156)) - (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-873 *2 *6 (-789 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-779)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) - (-4 *4 (-1134 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-964)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-964)) (-4 *3 (-659)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) - (-4 *4 (-964)) (-4 *5 (-779)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-964)) - (-4 *2 (-779)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-964)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-873 *4 *5 *6)) - (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-873 *4 *5 *2)) (-4 *4 (-964)) - (-4 *5 (-725)) (-4 *2 (-779)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-893 *4 *5 *6)) - (-4 *4 (-964)) (-4 *5 (-724)) (-4 *6 (-779)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-893 *4 *3 *2)) (-4 *4 (-964)) (-4 *3 (-724)) - (-4 *2 (-779))))) + (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1163 *4)) (-4 *4 (-389 *3)) (-4 *3 (-280)) + (-4 *3 (-511)) (-5 *1 (-42 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-848)) (-4 *4 (-335)) (-5 *2 (-1163 *1)) + (-4 *1 (-301 *4)))) + ((*1 *2) (-12 (-4 *3 (-335)) (-5 *2 (-1163 *1)) (-4 *1 (-301 *3)))) + ((*1 *2) + (-12 (-4 *3 (-157)) (-4 *4 (-1139 *3)) (-5 *2 (-1163 *1)) + (-4 *1 (-381 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-280)) (-4 *4 (-916 *3)) (-4 *5 (-1139 *4)) + (-5 *2 (-1163 *6)) (-5 *1 (-385 *3 *4 *5 *6)) + (-4 *6 (-13 (-381 *4 *5) (-959 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-280)) (-4 *4 (-916 *3)) (-4 *5 (-1139 *4)) + (-5 *2 (-1163 *6)) (-5 *1 (-386 *3 *4 *5 *6 *7)) + (-4 *6 (-381 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1163 *1)) (-4 *1 (-389 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-848)) (-5 *2 (-1163 (-1163 *4))) (-5 *1 (-489 *4)) + (-4 *4 (-321))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-250))))) +(((*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1117)) (-5 *2 (-705))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-790)))) + ((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1168)) (-5 *1 (-888))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-351)))) + ((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-351))))) +(((*1 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519)))))) (((*1 *2) - (-12 (-5 *2 (-1158 (-1007 *3 *4))) (-5 *1 (-1007 *3 *4)) - (-14 *3 (-845)) (-14 *4 (-845))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1006)) (-4 *6 (-810 *5)) (-5 *2 (-809 *5 *6 (-583 *6))) - (-5 *1 (-811 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-816 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1006)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-811 *5 *3 *4)) - (-4 *3 (-955 (-1077))) (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5))))) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-267 *6)) (-5 *4 (-110)) (-4 *6 (-402 *5)) + (-4 *5 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) + (-5 *1 (-289 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-267 *7)) (-5 *4 (-110)) (-5 *5 (-585 *7)) + (-4 *7 (-402 *6)) (-4 *6 (-13 (-782) (-511) (-560 (-495)))) + (-5 *2 (-51)) (-5 *1 (-289 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-585 (-267 *7))) (-5 *4 (-585 (-110))) (-5 *5 (-267 *7)) + (-4 *7 (-402 *6)) (-4 *6 (-13 (-782) (-511) (-560 (-495)))) + (-5 *2 (-51)) (-5 *1 (-289 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-585 (-267 *8))) (-5 *4 (-585 (-110))) (-5 *5 (-267 *8)) + (-5 *6 (-585 *8)) (-4 *8 (-402 *7)) + (-4 *7 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) + (-5 *1 (-289 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-585 *7)) (-5 *4 (-585 (-110))) (-5 *5 (-267 *7)) + (-4 *7 (-402 *6)) (-4 *6 (-13 (-782) (-511) (-560 (-495)))) + (-5 *2 (-51)) (-5 *1 (-289 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 (-110))) (-5 *6 (-585 (-267 *8))) + (-4 *8 (-402 *7)) (-5 *5 (-267 *8)) + (-4 *7 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) + (-5 *1 (-289 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-267 *5)) (-5 *4 (-110)) (-4 *5 (-402 *6)) + (-4 *6 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) + (-5 *1 (-289 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-110)) (-5 *5 (-267 *3)) (-4 *3 (-402 *6)) + (-4 *6 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) + (-5 *1 (-289 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-110)) (-5 *5 (-267 *3)) (-4 *3 (-402 *6)) + (-4 *6 (-13 (-782) (-511) (-560 (-495)))) (-5 *2 (-51)) + (-5 *1 (-289 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-110)) (-5 *5 (-267 *3)) (-5 *6 (-585 *3)) + (-4 *3 (-402 *7)) (-4 *7 (-13 (-782) (-511) (-560 (-495)))) + (-5 *2 (-51)) (-5 *1 (-289 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *2 (-982 *4 *5 *6)) (-5 *1 (-710 *4 *5 *6 *2 *3)) + (-4 *3 (-987 *4 *5 *6 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-4 *1 (-295 *4 *2)) (-4 *4 (-1011)) + (-4 *2 (-124))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-848)) (-5 *2 (-1168)) (-5 *1 (-191 *4)) + (-4 *4 + (-13 (-782) + (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 (*2 $)) + (-15 -2056 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1168)) (-5 *1 (-191 *3)) + (-4 *3 + (-13 (-782) + (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 (*2 $)) + (-15 -2056 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-469))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-511)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-585 (-1174 *4 *5 *6 *7))) + (-5 *1 (-1174 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-585 *9)) (-5 *4 (-1 (-108) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-982 *6 *7 *8)) (-4 *6 (-511)) + (-4 *7 (-727)) (-4 *8 (-782)) (-5 *2 (-585 (-1174 *6 *7 *8 *9))) + (-5 *1 (-1174 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-1063 *3)) (-5 *1 (-158 *3)) (-4 *3 (-280))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-585 (-519))) (-5 *3 (-108)) (-5 *1 (-1021))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-351)) (-5 *1 (-980))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-987 *4 *5 *6 *3)) (-4 *4 (-423)) (-4 *5 (-727)) + (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-108))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-957))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-519)) (-5 *1 (-455 *4)) + (-4 *4 (-1139 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *2)) (-4 *2 (-157)))) + ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-388 *3 *2)) (-4 *3 (-389 *2)))) + ((*1 *2) (-12 (-4 *1 (-389 *2)) (-4 *2 (-157))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-519)) (-5 *6 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) + (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) + (-5 *1 (-722))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1082)) + (|:| |arrayIndex| (-585 (-879 (-519)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-108)) (|:| -1587 (-790)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1082)) (|:| |rand| (-790)) + (|:| |ints2Floats?| (-108)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1081)) (|:| |thenClause| (-302)) + (|:| |elseClause| (-302)))) + (|:| |returnBranch| + (-2 (|:| -3108 (-108)) + (|:| -3493 + (-2 (|:| |ints2Floats?| (-108)) (|:| -1587 (-790)))))) + (|:| |blockBranch| (-585 (-302))) + (|:| |commentBranch| (-585 (-1065))) (|:| |callBranch| (-1065)) + (|:| |forBranch| + (-2 (|:| -1710 (-1004 (-879 (-519)))) + (|:| |span| (-879 (-519))) (|:| |body| (-302)))) + (|:| |labelBranch| (-1029)) + (|:| |loopBranch| (-2 (|:| |switch| (-1081)) (|:| |body| (-302)))) + (|:| |commonBranch| + (-2 (|:| -2938 (-1082)) (|:| |contents| (-585 (-1082))))) + (|:| |printBranch| (-585 (-790))))) + (-5 *1 (-302))))) +(((*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-1099)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-1099))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) + (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) (-5 *2 (-957)) + (-5 *1 (-683))))) +(((*1 *2 *3) + (-12 (-5 *3 (-558 *5)) (-4 *5 (-402 *4)) (-4 *4 (-959 (-519))) + (-4 *4 (-13 (-782) (-511))) (-5 *2 (-1078 *5)) (-5 *1 (-31 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-558 *1)) (-4 *1 (-968)) (-4 *1 (-275)) + (-5 *2 (-1078 *1))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) + (-4 *4 (-13 (-782) (-511)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-819 *4)) (-4 *4 (-1011)) (-5 *1 (-816 *4 *3)) + (-4 *3 (-1011))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *5 (-108)) + (-5 *2 (-957)) (-5 *1 (-680))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1176 *3 *4)) (-4 *3 (-782)) (-4 *4 (-157)) + (-5 *1 (-603 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-603 *3 *4)) (-5 *1 (-1181 *3 *4)) + (-4 *3 (-782)) (-4 *4 (-157))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1011)) (-5 *2 (-108)) (-5 *1 (-812 *3 *4 *5)) + (-4 *3 (-1011)) (-4 *5 (-605 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-816 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-1011))))) +(((*1 *2 *3) + (-12 (-5 *3 (-288 (-201))) (-5 *2 (-379 (-519))) (-5 *1 (-278))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1163 (-625 *4))) (-4 *4 (-157)) + (-5 *2 (-1163 (-625 (-879 *4)))) (-5 *1 (-167 *4))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-108)) (-5 *5 (-519)) (-4 *6 (-335)) (-4 *6 (-340)) + (-4 *6 (-968)) (-5 *2 (-585 (-585 (-625 *6)))) (-5 *1 (-951 *6)) + (-5 *3 (-585 (-625 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-335)) (-4 *4 (-340)) (-4 *4 (-968)) + (-5 *2 (-585 (-585 (-625 *4)))) (-5 *1 (-951 *4)) + (-5 *3 (-585 (-625 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1006)) (-5 *2 (-583 (-265 (-876 *3)))) - (-5 *1 (-811 *5 *3 *4)) (-4 *3 (-964)) - (-2479 (-4 *3 (-955 (-1077)))) (-4 *3 (-810 *5)) - (-4 *4 (-558 (-816 *5))))) + (-12 (-5 *4 (-108)) (-4 *5 (-335)) (-4 *5 (-340)) (-4 *5 (-968)) + (-5 *2 (-585 (-585 (-625 *5)))) (-5 *1 (-951 *5)) + (-5 *3 (-585 (-625 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1006)) (-5 *2 (-813 *5 *3)) (-5 *1 (-811 *5 *3 *4)) - (-2479 (-4 *3 (-955 (-1077)))) (-2479 (-4 *3 (-964))) - (-4 *3 (-810 *5)) (-4 *4 (-558 (-816 *5)))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-953)) - (-5 *1 (-687))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1060)) (-5 *3 (-755)) (-5 *1 (-754))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) - (-5 *1 (-555 *2 *4))))) + (-12 (-5 *4 (-848)) (-4 *5 (-335)) (-4 *5 (-340)) (-4 *5 (-968)) + (-5 *2 (-585 (-585 (-625 *5)))) (-5 *1 (-951 *5)) + (-5 *3 (-585 (-625 *5)))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-509)) (-4 *2 (-873 *3 *5 *4)) - (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-876 *6))) (-4 *5 (-725)) - (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $)))))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-705)) (-4 *4 (-335)) (-5 *1 (-823 *2 *4)) + (-4 *2 (-1139 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-690))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-1043 *3)) (-4 *3 (-968)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-379 *1)) (-4 *1 (-1139 *3)) (-4 *3 (-968)) + (-4 *3 (-511)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-511))))) (((*1 *2 *3) - (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1060)) (-5 *4 (-1024)) (-5 *2 (-107)) (-5 *1 (-753))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1090 *4 *5)) - (-4 *4 (-1006)) (-4 *5 (-1006))))) + (-12 (-5 *3 (-585 *2)) (-5 *1 (-455 *2)) (-4 *2 (-1139 (-519)))))) (((*1 *2 *3) - (-12 + (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) + (-4 *3 (-13 (-335) (-1103) (-925)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-968)) (-4 *5 (-1139 *4)) (-5 *2 (-1 *6 (-585 *6))) + (-5 *1 (-1157 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-1154 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-335)) (-5 *1 (-701 *2 *3)) (-4 *2 (-644 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) +(((*1 *1 *1 *1) (-4 *1 (-696)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-1082)) (-4 *6 (-402 *5)) + (-4 *5 (-782)) (-5 *2 (-585 (-558 *6))) (-5 *1 (-528 *5 *6))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-558 *3)) (-4 *3 (-13 (-402 *5) (-27) (-1103))) + (-4 *5 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *2 (-536 *3)) (-5 *1 (-521 *5 *3 *6)) (-4 *6 (-1011))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 (-288 (-201)))) (-5 *1 (-242))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-60 *3)) (-14 *3 (-1082)))) + ((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-67 *3)) (-14 *3 (-1082)))) + ((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-70 *3)) (-14 *3 (-1082)))) + ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1168)))) + ((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1168)) (-5 *1 (-369)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1065)) (-5 *4 (-790)) (-5 *2 (-1168)) (-5 *1 (-1045)))) + ((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1168)) (-5 *1 (-1045)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-790))) (-5 *2 (-1168)) (-5 *1 (-1045))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-5 *2 - (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) - (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))))) + (-2 (|:| |contp| (-519)) + (|:| -3433 (-585 (-2 (|:| |irr| *3) (|:| -1258 (-519))))))) + (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) ((*1 *2 *3 *4) - (-12 + (-12 (-5 *4 (-108)) (-5 *2 - (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) - (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))) - (-5 *4 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) + (-2 (|:| |contp| (-519)) + (|:| -3433 (-585 (-2 (|:| |irr| *3) (|:| -1258 (-519))))))) + (-5 *1 (-1128 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011))))) +(((*1 *2 *1) (-12 (-4 *3 (-1117)) (-5 *2 (-585 *1)) (-4 *1 (-933 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-1071 *3 *4))) (-5 *1 (-1071 *3 *4)) + (-14 *3 (-848)) (-4 *4 (-968))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-773)) (-5 *4 (-980)) (-5 *2 (-957)) (-5 *1 (-772)))) + ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-957)) (-5 *1 (-772)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-585 (-351))) (-5 *5 (-585 (-775 (-351)))) + (-5 *6 (-585 (-288 (-351)))) (-5 *3 (-288 (-351))) (-5 *2 (-957)) + (-5 *1 (-772)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-351))) + (-5 *5 (-585 (-775 (-351)))) (-5 *2 (-957)) (-5 *1 (-772)))) ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) - (-5 *1 (-938 *3)) (-4 *3 (-1134 (-517))) (-5 *4 (-377 (-517))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-377 (-517))) - (-5 *2 (-583 (-2 (|:| -3287 *5) (|:| -3302 *5)))) (-5 *1 (-938 *3)) - (-4 *3 (-1134 (-517))) (-5 *4 (-2 (|:| -3287 *5) (|:| -3302 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) - (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517)))))) + (-12 (-5 *3 (-288 (-351))) (-5 *4 (-585 (-351))) (-5 *2 (-957)) + (-5 *1 (-772)))) ((*1 *2 *3 *4) - (-12 + (-12 (-5 *3 (-585 (-288 (-351)))) (-5 *4 (-585 (-351))) + (-5 *2 (-957)) (-5 *1 (-772))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *3) + (-12 (-5 *3 (-854)) (-5 *2 - (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) - (-5 *1 (-939 *3)) (-4 *3 (-1134 (-377 (-517)))) - (-5 *4 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-377 (-517))) - (-5 *2 (-583 (-2 (|:| -3287 *4) (|:| -3302 *4)))) (-5 *1 (-939 *3)) - (-4 *3 (-1134 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-377 (-517))) - (-5 *2 (-583 (-2 (|:| -3287 *5) (|:| -3302 *5)))) (-5 *1 (-939 *3)) - (-4 *3 (-1134 *5)) (-5 *4 (-2 (|:| -3287 *5) (|:| -3302 *5)))))) + (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) + (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) + (-5 *1 (-141)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-854)) (-5 *4 (-379 (-519))) + (-5 *2 + (-2 (|:| |brans| (-585 (-585 (-870 (-201))))) + (|:| |xValues| (-1006 (-201))) (|:| |yValues| (-1006 (-201))))) + (-5 *1 (-141))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) + (-14 *3 (-519)) (-14 *4 (-705))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-519)))) + ((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-519))))) +(((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-756))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-585 (-965 *5 *6))) (-5 *1 (-1187 *5 *6 *7)) + (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-585 (-965 *5 *6))) (-5 *1 (-1187 *5 *6 *7)) + (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-879 *4))) + (-4 *4 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-585 (-965 *4 *5))) (-5 *1 (-1187 *4 *5 *6)) + (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-968)) (-4 *4 (-157)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)) + (-4 *3 (-157))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) + (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 - (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) - (|:| |success| (-107)))) - (-5 *1 (-721)) (-5 *5 (-517))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1058 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-964)) - (-5 *1 (-1062 *4))))) + (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) + (|:| |success| (-108)))) + (-5 *1 (-723)) (-5 *5 (-519))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-198 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-4 *1 (-229 *3)))) + ((*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-363))))) +(((*1 *2) (-12 (-5 *2 (-585 (-848))) (-5 *1 (-1166)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-848))) (-5 *1 (-1166))))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-957)) (-5 *1 (-772)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-288 (-351)))) (-5 *4 (-585 (-351))) + (-5 *2 (-957)) (-5 *1 (-772))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1090 (-585 *4))) (-4 *4 (-782)) + (-5 *2 (-585 (-585 *4))) (-5 *1 (-1089 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 *4)))) + (-5 *1 (-816 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) + (-4 *7 (-1011)) (-5 *2 (-585 *1)) (-4 *1 (-1014 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *2) - (-12 (-4 *1 (-719)) (-5 *2 (-953)) - (-5 *3 - (-2 (|:| |fn| (-286 (-199))) - (|:| -3177 (-583 (-1001 (-772 (-199))))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-719)) (-5 *2 (-953)) - (-5 *3 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199))))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) - (-4 *4 (-964)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) - ((*1 *1 *1) (-4 *1 (-207))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))) - ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) - (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) - (-4 *4 (-1134 *3)))) + (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-37 (-379 (-519)))) + (-4 *2 (-157))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-690))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-686))))) +(((*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) - (-4 *3 (-1134 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-443 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-333)) (-4 *2 (-824 *3)) (-5 *1 (-534 *2)) - (-5 *3 (-1077)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-824 *4)) - (-4 *4 (-1006)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-824 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *1 (-824 *3)) (-4 *3 (-1006)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1068 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1074 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1075 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1122 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1134 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1143 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1154 *4)) (-14 *4 (-1077)) (-5 *1 (-1150 *3 *4 *5)) - (-4 *3 (-964)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-4 *4 (-37 (-377 (-517)))) - (-5 *2 (-2 (|:| -1612 (-1058 *4)) (|:| -1622 (-1058 *4)))) - (-5 *1 (-1064 *4)) (-5 *3 (-1058 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1073 (-1073 *4)))) - (-5 *1 (-1111 *4)) (-5 *3 (-1073 (-1073 *4)))))) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-345 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1) + (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-585 *4)) + (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-982 *5 *6 *7)) + (-4 *9 (-987 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) + (-4 *7 (-782)) (-5 *2 (-705)) (-5 *1 (-985 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-585 *9)) (-4 *8 (-982 *5 *6 *7)) + (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-423)) (-4 *6 (-727)) + (-4 *7 (-782)) (-5 *2 (-705)) (-5 *1 (-1052 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-379 *6))) (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-4 *6 (-1139 *5)) (-5 *2 (-585 (-379 *6))) (-5 *1 (-747 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-592 (-379 *7))) (-5 *4 (-1 (-585 *6) *7)) + (-5 *5 (-1 (-390 *7) *7)) + (-4 *6 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-4 *7 (-1139 *6)) (-5 *2 (-585 (-379 *7))) (-5 *1 (-747 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-593 *6 (-379 *6))) (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-4 *6 (-1139 *5)) (-5 *2 (-585 (-379 *6))) (-5 *1 (-747 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-593 *7 (-379 *7))) (-5 *4 (-1 (-585 *6) *7)) + (-5 *5 (-1 (-390 *7) *7)) + (-4 *6 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-4 *7 (-1139 *6)) (-5 *2 (-585 (-379 *7))) (-5 *1 (-747 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-379 *5))) (-4 *5 (-1139 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-5 *2 (-585 (-379 *5))) (-5 *1 (-747 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-592 (-379 *6))) (-5 *4 (-1 (-390 *6) *6)) + (-4 *6 (-1139 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-5 *2 (-585 (-379 *6))) (-5 *1 (-747 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-593 *5 (-379 *5))) (-4 *5 (-1139 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-5 *2 (-585 (-379 *5))) (-5 *1 (-747 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-593 *6 (-379 *6))) (-5 *4 (-1 (-390 *6) *6)) + (-4 *6 (-1139 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-5 *2 (-585 (-379 *6))) (-5 *1 (-747 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-979)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-979))))) (((*1 *2 *3) - (-12 (-4 *4 (-1112)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) - (-4 *3 (-610 *4))))) -(((*1 *1 *1) (-4 *1 (-130))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))) + (-5 *2 (-351)) (-5 *1 (-183))))) +(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1168)) (-5 *1 (-363)))) + ((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-363))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) + ((*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *1 *1) (-4 *1 (-1046)))) +(((*1 *2 *3) + (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-585 (-1082))) (-4 *5 (-968)) + (-5 *2 (-451 *4 *5)) (-5 *1 (-871 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1082)) (-5 *5 (-585 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *6))) + (-4 *6 (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-512 *6 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-107)) - (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) + (-12 (-4 *5 (-335)) + (-5 *2 (-585 (-2 (|:| C (-625 *5)) (|:| |g| (-1163 *5))))) + (-5 *1 (-902 *5)) (-5 *3 (-625 *5)) (-5 *4 (-1163 *5))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-900 *3 *4 *2 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)) (-4 *5 (-982 *3 *4 *2))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 - (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1060)) (|:| |prob| (-1060)))))) - (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1098) (-400 *5))) - (-14 *6 (-1077)) (-14 *7 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-845)) (-4 *5 (-779)) - (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) - (-4 *3 (-1134 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) - (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) - (-5 *1 (-162 *4 *3)) (-4 *3 (-1134 (-153 *4)))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-377 (-876 *3))) (-5 *1 (-422 *3 *4 *5 *6)) - (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-1158 *3))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) - ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-349)) (-5 *2 (-1163)) (-5 *1 (-1159))))) + (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) + (|:| |success| (-108)))) + (-5 *1 (-723)) (-5 *5 (-519))))) (((*1 *2 *3) - (-12 (-5 *3 (-1158 (-1158 *4))) (-4 *4 (-964)) (-5 *2 (-623 *4)) - (-5 *1 (-947 *4))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1058 (-2 (|:| |k| (-517)) (|:| |c| *6)))) - (-5 *4 (-944 (-772 (-517)))) (-5 *5 (-1077)) (-5 *7 (-377 (-517))) - (-4 *6 (-964)) (-5 *2 (-787)) (-5 *1 (-542 *6))))) -(((*1 *1) (-5 *1 (-1163)))) -(((*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107))))) -(((*1 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-1006))))) -(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107))))) -(((*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) - ((*1 *2 *3) (-12 (-5 *3 - (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) - (-221 *4 (-377 (-517))))) - (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107)) - (-5 *1 (-470 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-884 *3)) (-4 *3 (-502)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116)) (-5 *2 (-107))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-583 (-1077))) (-4 *4 (-1006)) - (-4 *5 (-13 (-964) (-810 *4) (-779) (-558 (-816 *4)))) - (-5 *1 (-986 *4 *5 *2)) - (-4 *2 (-13 (-400 *5) (-810 *4) (-558 (-816 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1006)) - (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 (-816 *3)))) - (-5 *1 (-986 *3 *4 *2)) - (-4 *2 (-13 (-400 *4) (-810 *3) (-558 (-816 *3))))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1006))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-278)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) - (-5 *1 (-356 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2773 (-703)) (|:| -3292 (-703)))) - (-5 *1 (-703)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-850))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1060)) (-5 *1 (-718))))) -(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-725)) - (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *5 (-509)) - (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-873 (-377 (-876 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-964)) (-4 *5 (-725)) - (-4 *3 - (-13 (-779) - (-10 -8 (-15 -3367 ((-1077) $)) - (-15 -3791 ((-3 $ "failed") (-1077)))))) - (-5 *1 (-904 *4 *5 *3 *2)) (-4 *2 (-873 (-876 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *6)) - (-4 *6 - (-13 (-779) - (-10 -8 (-15 -3367 ((-1077) $)) - (-15 -3791 ((-3 $ "failed") (-1077)))))) - (-4 *4 (-964)) (-4 *5 (-725)) (-5 *1 (-904 *4 *5 *6 *2)) - (-4 *2 (-873 (-876 *4) *5 *6))))) + (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) + (-5 *2 (-351)) (-5 *1 (-242)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1163 (-288 (-201)))) (-5 *2 (-351)) (-5 *1 (-278))))) +(((*1 *2 *3) + (-12 (-4 *4 (-321)) (-4 *5 (-301 *4)) (-4 *6 (-1139 *5)) + (-5 *2 (-585 *3)) (-5 *1 (-711 *4 *5 *6 *3 *7)) (-4 *3 (-1139 *6)) + (-14 *7 (-848))))) +(((*1 *1 *2) (-12 (-5 *2 (-801)) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-351)) (-5 *1 (-238))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-585 (-351))) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-351))) (-5 *1 (-439)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-351))) (-5 *1 (-439)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-848)) (-5 *4 (-801)) (-5 *2 (-1168)) (-5 *1 (-1164)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1006)) - (-4 *2 (-123))))) + (-12 (-5 *3 (-585 *6)) (-4 *1 (-876 *4 *5 *6)) (-4 *4 (-968)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-705)))) + ((*1 *2 *1) + (-12 (-4 *1 (-876 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-705))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-537 *2)) (-4 *2 (-504))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-585 *3)) (|:| |image| (-585 *3)))) + (-5 *1 (-832 *3)) (-4 *3 (-1011))))) +(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-408)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-408))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1077)))) - (-4 *5 (-725)) (-5 *1 (-848 *3 *4 *5 *2)) (-4 *2 (-873 *3 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) - (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *5)) - (-4 *5 (-1134 (-377 *4)))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125))))) + (-12 (-5 *2 (-1163 *1)) (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) + (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4)))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-267 *2)) (-4 *2 (-661)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *6 (-1139 *5)) + (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3257 *3)))) + (-5 *1 (-744 *5 *6 *3 *7)) (-4 *3 (-595 *6)) + (-4 *7 (-595 (-379 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-4 *6 (-1139 *5)) + (-5 *2 (-585 (-2 (|:| |poly| *6) (|:| -3257 (-593 *6 (-379 *6)))))) + (-5 *1 (-747 *5 *6)) (-5 *3 (-593 *6 (-379 *6)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-705)) (-4 *6 (-1011)) (-4 *3 (-827 *6)) + (-5 *2 (-625 *3)) (-5 *1 (-627 *6 *3 *7 *4)) (-4 *7 (-345 *3)) + (-4 *4 (-13 (-345 *6) (-10 -7 (-6 -4221))))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-953)) - (-5 *1 (-679))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-199) (-199) (-199))) - (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) - (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199))) - (-5 *1 (-630)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-199))) - (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-630)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1037 (-199))) (-5 *3 (-1 (-867 (-199)) (-199) (-199))) - (-5 *4 (-1001 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630))))) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-72 FCN)))) (-5 *2 (-957)) + (-5 *1 (-681))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-451 *4 *5))) (-14 *4 (-585 (-1082))) + (-4 *5 (-423)) + (-5 *2 + (-2 (|:| |gblist| (-585 (-223 *4 *5))) + (|:| |gvlist| (-585 (-519))))) + (-5 *1 (-573 *4 *5))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-265 (-765 *3))) - (-4 *5 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-265 (-765 (-876 *5)))) (-4 *5 (-421)) - (-5 *2 (-765 (-377 (-876 *5)))) (-5 *1 (-577 *5)) - (-5 *3 (-377 (-876 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-265 (-377 (-876 *5)))) (-5 *3 (-377 (-876 *5))) - (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-502)))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1006))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-964))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) - ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3) - (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) - (-5 *2 (-876 *5)) (-5 *1 (-868 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-517)) (-4 *4 (-1134 (-377 *3))) (-5 *2 (-845)) - (-5 *1 (-837 *4 *5)) (-4 *5 (-1134 (-377 *4)))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1077)) - (-4 *2 (-13 (-27) (-1098) (-400 *5))) - (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-250 *5 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-925))))) + (-12 (-5 *3 (-1 *2 (-585 *2))) (-5 *4 (-585 *5)) + (-4 *5 (-37 (-379 (-519)))) (-4 *2 (-1154 *5)) + (-5 *1 (-1156 *5 *2))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-705)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-727)) (-4 *2 (-876 *4 *5 *6)) (-5 *1 (-420 *4 *5 *6 *2)) + (-4 *4 (-423)) (-4 *6 (-782))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1163 *4)) (-4 *4 (-1117)) (-4 *1 (-214 *3 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 (-2 (|:| -2583 (-1082)) (|:| -3100 (-409))))) + (-5 *1 (-1086))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1163 (-3 (-439) "undefined"))) (-5 *1 (-1164))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) - (-4 *5 (-1134 *4)) - (-5 *2 (-2 (|:| -2791 (-377 *5)) (|:| |coeff| (-377 *5)))) - (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1077)) - (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2026 "void"))) (-5 *1 (-1080))))) -(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-912 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1063 (-519))) (-5 *1 (-1067 *4)) (-4 *4 (-968)) + (-5 *3 (-519))))) +(((*1 *2 *3) + (-12 (-5 *2 (-390 (-1078 *1))) (-5 *1 (-288 *4)) (-5 *3 (-1078 *1)) + (-4 *4 (-423)) (-4 *4 (-511)) (-4 *4 (-782)))) + ((*1 *2 *3) + (-12 (-4 *1 (-836)) (-5 *2 (-390 (-1078 *1))) (-5 *3 (-1078 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-756))))) +(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-288 *4)) + (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 (-154 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-1107 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)) + (-5 *2 (-1078 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-351)) (-5 *1 (-92))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-377 (-876 (-517))))) - (-5 *2 (-583 (-583 (-265 (-876 *4))))) (-5 *1 (-350 *4)) - (-4 *4 (-13 (-777) (-333))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-265 (-377 (-876 (-517)))))) - (-5 *2 (-583 (-583 (-265 (-876 *4))))) (-5 *1 (-350 *4)) - (-4 *4 (-13 (-777) (-333))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 (-517)))) (-5 *2 (-583 (-265 (-876 *4)))) - (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 (-377 (-876 (-517))))) - (-5 *2 (-583 (-265 (-876 *4)))) (-5 *1 (-350 *4)) - (-4 *4 (-13 (-777) (-333))))) + (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-585 (-1082))) (-4 *5 (-511)) + (-5 *2 (-585 (-585 (-267 (-379 (-879 *5)))))) (-5 *1 (-704 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-879 *4))) (-4 *4 (-511)) + (-5 *2 (-585 (-585 (-267 (-379 (-879 *4)))))) (-5 *1 (-704 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1077)) - (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-4 *4 (-13 (-29 *6) (-1098) (-882))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3700 (-583 *4)))) - (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1077)) (-5 *5 (-583 *2)) - (-4 *2 (-13 (-29 *6) (-1098) (-882))) - (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1158 *5) "failed")) - (|:| -3700 (-583 (-1158 *5))))) - (-5 *1 (-604 *5)) (-5 *4 (-1158 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1158 *5) "failed")) - (|:| -3700 (-583 (-1158 *5))))) - (-5 *1 (-604 *5)) (-5 *4 (-1158 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) - (-5 *2 - (-583 - (-2 (|:| |particular| (-3 (-1158 *5) "failed")) - (|:| -3700 (-583 (-1158 *5)))))) - (-5 *1 (-604 *5)) (-5 *4 (-583 (-1158 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) - (-5 *2 - (-583 - (-2 (|:| |particular| (-3 (-1158 *5) "failed")) - (|:| -3700 (-583 (-1158 *5)))))) - (-5 *1 (-604 *5)) (-5 *4 (-583 (-1158 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) - (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196)))) + (-12 (-5 *3 (-625 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2070 (-585 *6))) + *7 *6)) + (-4 *6 (-335)) (-4 *7 (-595 *6)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3700 (-583 *4)))) - (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) + (-2 (|:| |particular| (-3 (-1163 *6) "failed")) + (|:| -2070 (-585 (-1163 *6))))) + (-5 *1 (-748 *6 *7)) (-5 *4 (-1163 *6))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-108)) + (-5 *2 (-957)) (-5 *1 (-688))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-968)) (-4 *2 (-335)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-335)) (-5 *1 (-598 *4 *2)) + (-4 *2 (-595 *4))))) +(((*1 *1 *1) (-4 *1 (-571))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-572 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925) (-1103)))))) +(((*1 *2) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-100))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-511) (-135))) (-5 *1 (-496 *3 *2)) + (-4 *2 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-4 *4 (-1139 *3)) + (-4 *5 (-659 *3 *4)) (-5 *1 (-500 *3 *4 *5 *2)) (-4 *2 (-1154 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-335) (-340) (-560 (-519)))) (-5 *1 (-501 *3 *2)) + (-4 *2 (-1154 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-13 (-511) (-135))) + (-5 *1 (-1059 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-848)) (-4 *5 (-511)) (-5 *2 (-625 *5)) + (-5 *1 (-882 *5 *3)) (-4 *3 (-595 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-511) (-782) (-959 (-519)))) (-5 *2 (-288 *4)) + (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1103) (-402 (-154 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-1107 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-585 (-625 (-519)))) + (-5 *1 (-1021))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) + (-5 *2 (-957)) (-5 *1 (-687))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-585 (-558 *2))) (-5 *4 (-1082)) + (-4 *2 (-13 (-27) (-1103) (-402 *5))) + (-4 *5 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-252 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-108))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) +(((*1 *2 *1) + (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-782)) + (-4 *5 (-241 *4)) (-4 *6 (-727)) (-5 *2 (-585 *4))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1065)) (-5 *2 (-708)) (-5 *1 (-110)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1015)) (-5 *1 (-729))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-790))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *4 (-801)) + (-5 *5 (-848)) (-5 *6 (-585 (-238))) (-5 *2 (-439)) (-5 *1 (-1167)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *2 (-439)) + (-5 *1 (-1167)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) - (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4196)))) + (-12 (-5 *3 (-585 (-585 (-870 (-201))))) (-5 *4 (-585 (-238))) + (-5 *2 (-439)) (-5 *1 (-1167))))) +(((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-796 *3)) (-5 *2 (-519)))) + ((*1 *1 *1) (-4 *1 (-925))) + ((*1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-935)))) + ((*1 *1 *2) (-12 (-5 *2 (-379 (-519))) (-4 *1 (-935)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-935)) (-5 *2 (-705)))) + ((*1 *1 *1) (-4 *1 (-935)))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4221)) (-4 *1 (-458 *3)) (-4 *3 (-1117)) + (-4 *3 (-1011)) (-5 *2 (-108)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-832 *4)) (-4 *4 (-1011)) (-5 *2 (-108)) + (-5 *1 (-831 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-848)) (-5 *2 (-108)) (-5 *1 (-1012 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-782)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) + ((*1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) + (-4 *3 (-1139 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-583 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3700 (-583 *7))))) - (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) - (-4 *3 (-621 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-876 *5))) (-5 *4 (-583 (-1077))) (-4 *5 (-509)) - (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-702 *5)))) + (-2 (|:| |mval| (-625 *3)) (|:| |invmval| (-625 *3)) + (|:| |genIdeal| (-471 *3 *4 *5 *6)))) + (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5))))) +(((*1 *1) (-5 *1 (-409)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1185 *3 *4)) (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-157)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-754 *2)) (-4 *2 (-782)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754 *3)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-968)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-625 *5))) (-5 *4 (-1163 *5)) (-4 *5 (-280)) + (-4 *5 (-968)) (-5 *2 (-625 *5)) (-5 *1 (-951 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-705))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1155 *2 *3 *4)) (-4 *2 (-968)) (-14 *3 (-1082)) + (-14 *4 *2)))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-585 (-1082))) (|:| |pred| (-51)))) + (-5 *1 (-819 *3)) (-4 *3 (-1011))))) +(((*1 *2) + (-12 (-4 *4 (-335)) (-5 *2 (-705)) (-5 *1 (-300 *3 *4)) + (-4 *3 (-301 *4)))) + ((*1 *2) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-705))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 (-47))) (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) + (-4 *3 (-1139 (-47))))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-876 *4))) (-4 *4 (-509)) - (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-702 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1077)) - (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1098) (-882))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1077)) - (-4 *7 (-13 (-29 *6) (-1098) (-882))) - (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 - (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7))))) - (-5 *1 (-734 *6 *7)) (-5 *4 (-1158 *7)))) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1139 (-47))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1077)) - (-4 *6 (-13 (-29 *5) (-1098) (-882))) - (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 (-583 (-1158 *6))) (-5 *1 (-734 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) - (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882))) - (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 - (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7))))) - (-5 *1 (-734 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) - (-5 *5 (-1077)) (-4 *7 (-13 (-29 *6) (-1098) (-882))) - (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 - (-2 (|:| |particular| (-1158 *7)) (|:| -3700 (-583 (-1158 *7))))) - (-5 *1 (-734 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1077)) - (-4 *7 (-13 (-29 *6) (-1098) (-882))) - (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -3700 (-583 *7))) *7 "failed")) - (-5 *1 (-734 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-109)) (-5 *5 (-1077)) - (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -3700 (-583 *3))) *3 "failed")) - (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1098) (-882))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) - (-4 *2 (-13 (-29 *6) (-1098) (-882))) (-5 *1 (-734 *6 *2)) - (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) - (-4 *2 (-13 (-29 *6) (-1098) (-882))) - (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *1 (-734 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-953)) (-5 *1 (-737)))) + (-12 (-5 *4 (-585 (-47))) (-4 *5 (-782)) (-4 *6 (-727)) + (-5 *2 (-390 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-876 (-47) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-740)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-737)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) - (-5 *2 (-953)) (-5 *1 (-737)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) - (-5 *2 (-953)) (-5 *1 (-737)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349))) - (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1158 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) - (-5 *2 (-953)) (-5 *1 (-737)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349))) - (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1158 (-286 *4))) (-5 *5 (-583 (-349))) - (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-953)) (-5 *1 (-737)))) + (-12 (-5 *4 (-585 (-47))) (-4 *5 (-782)) (-4 *6 (-727)) + (-4 *7 (-876 (-47) *6 *5)) (-5 *2 (-390 (-1078 *7))) + (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1078 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-280)) (-5 *2 (-390 *3)) (-5 *1 (-152 *4 *3)) + (-4 *3 (-1139 (-154 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -3700 (-583 *6))) "failed") - *7 *6)) - (-4 *6 (-333)) (-4 *7 (-593 *6)) - (-5 *2 (-2 (|:| |particular| (-1158 *6)) (|:| -3700 (-623 *6)))) - (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1158 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-953)) (-5 *1 (-821)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-822)) (-5 *4 (-976)) (-5 *2 (-953)) (-5 *1 (-821)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1060)) - (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) - (-5 *2 (-953)) (-5 *1 (-821)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1060)) - (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-953)) - (-5 *1 (-821)))) + (-12 (-5 *5 (-108)) (-4 *4 (-13 (-335) (-780))) (-5 *2 (-390 *3)) + (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *2 (-583 (-349))) - (-5 *1 (-941)) (-5 *4 (-349)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-876 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-941)) - (-5 *4 (-349)))) + (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-390 *3)) + (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *2 (-583 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1134 *4)))) + (-12 (-4 *4 (-13 (-335) (-780))) (-5 *2 (-390 *3)) + (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1035 *4)) - (-5 *3 (-286 *4)))) + (-12 (-4 *4 (-321)) (-5 *2 (-390 *3)) (-5 *1 (-193 *4 *3)) + (-4 *3 (-1139 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1035 *4)) - (-5 *3 (-265 (-286 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) - (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1035 *5)) - (-5 *3 (-265 (-286 *5))))) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) - (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1035 *5)) - (-5 *3 (-286 *5)))) + (-12 (-5 *4 (-705)) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) + (-4 *3 (-1139 (-519))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1077))) - (-4 *5 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1035 *5)) - (-5 *3 (-583 (-265 (-286 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-377 (-876 *5)))) (-5 *4 (-583 (-1077))) - (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) - (-5 *1 (-1083 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1077))) (-4 *5 (-509)) - (-5 *2 (-583 (-583 (-265 (-377 (-876 *5)))))) (-5 *1 (-1083 *5)) - (-5 *3 (-583 (-265 (-377 (-876 *5))))))) + (-12 (-5 *4 (-585 (-705))) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) + (-4 *3 (-1139 (-519))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-585 (-705))) (-5 *5 (-705)) (-5 *2 (-390 *3)) + (-5 *1 (-413 *3)) (-4 *3 (-1139 (-519))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-705)) (-5 *2 (-390 *3)) (-5 *1 (-413 *3)) + (-4 *3 (-1139 (-519))))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-377 (-876 *4)))) (-4 *4 (-509)) - (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) (-5 *1 (-1083 *4)))) + (-12 (-5 *2 (-390 (-154 (-519)))) (-5 *1 (-417)) + (-5 *3 (-154 (-519))))) ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-876 *4)))))) - (-5 *1 (-1083 *4)) (-5 *3 (-583 (-265 (-377 (-876 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) (-4 *5 (-509)) - (-5 *2 (-583 (-265 (-377 (-876 *5))))) (-5 *1 (-1083 *5)) - (-5 *3 (-377 (-876 *5))))) + (-12 + (-4 *4 + (-13 (-782) + (-10 -8 (-15 -1446 ((-1082) $)) + (-15 -1622 ((-3 $ "failed") (-1082)))))) + (-4 *5 (-727)) (-4 *7 (-511)) (-5 *2 (-390 *3)) + (-5 *1 (-427 *4 *5 *6 *7 *3)) (-4 *6 (-511)) + (-4 *3 (-876 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-280)) (-5 *2 (-390 (-1078 *4))) (-5 *1 (-429 *4)) + (-5 *3 (-1078 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-390 *6) *6)) (-4 *6 (-1139 *5)) (-4 *5 (-335)) + (-4 *7 (-13 (-335) (-135) (-659 *5 *6))) (-5 *2 (-390 *3)) + (-5 *1 (-461 *5 *6 *7 *3)) (-4 *3 (-1139 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-390 (-1078 *7)) (-1078 *7))) + (-4 *7 (-13 (-280) (-135))) (-4 *5 (-782)) (-4 *6 (-727)) + (-5 *2 (-390 *3)) (-5 *1 (-499 *5 *6 *7 *3)) + (-4 *3 (-876 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-390 (-1078 *7)) (-1078 *7))) + (-4 *7 (-13 (-280) (-135))) (-4 *5 (-782)) (-4 *6 (-727)) + (-4 *8 (-876 *7 *6 *5)) (-5 *2 (-390 (-1078 *8))) + (-5 *1 (-499 *5 *6 *7 *8)) (-5 *3 (-1078 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-390 *3)) (-5 *1 (-513 *3)) (-4 *3 (-504)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-585 *5) *6)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-4 *6 (-1139 *5)) (-5 *2 (-585 (-592 (-379 *6)))) + (-5 *1 (-596 *5 *6)) (-5 *3 (-592 (-379 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-4 *5 (-1139 *4)) (-5 *2 (-585 (-592 (-379 *5)))) + (-5 *1 (-596 *4 *5)) (-5 *3 (-592 (-379 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-754 *4)) (-4 *4 (-782)) (-5 *2 (-585 (-610 *4))) + (-5 *1 (-610 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) (-4 *5 (-509)) - (-5 *2 (-583 (-265 (-377 (-876 *5))))) (-5 *1 (-1083 *5)) - (-5 *3 (-265 (-377 (-876 *5)))))) + (-12 (-5 *4 (-519)) (-5 *2 (-585 *3)) (-5 *1 (-631 *3)) + (-4 *3 (-1139 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *4))))) - (-5 *1 (-1083 *4)) (-5 *3 (-377 (-876 *4))))) + (-12 (-4 *4 (-782)) (-4 *5 (-727)) (-4 *6 (-321)) (-5 *2 (-390 *3)) + (-5 *1 (-633 *4 *5 *6 *3)) (-4 *3 (-876 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-876 *4))))) - (-5 *1 (-1083 *4)) (-5 *3 (-265 (-377 (-876 *4))))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) - (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-777) (-333))) - (-4 *3 (-1134 *4)) (-5 *2 (-107))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-845)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) - ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) - ((*1 *2 *1) - (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1134 *2)) (-4 *2 (-156)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1158 *4)) (-5 *3 (-845)) (-4 *4 (-319)) - (-5 *1 (-487 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) - (-4 *5 (-212 *3 *2)) (-4 *2 (-964))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-333) (-134) (-955 (-517)))) - (-4 *5 (-1134 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-935 *4 *5)) - (-5 *3 (-377 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-946 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-964)) (-5 *1 (-946 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-946 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-964)) (-5 *1 (-946 *3))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) - (-4 *2 (-1112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-964)) - (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) - (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) - (-4 *4 (-156)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) - (-4 *2 (-400 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-999 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) - (-5 *1 (-143 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-145)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1077)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-156))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517))))) - (-5 *2 (-377 (-517))) (-5 *1 (-938 *4)) (-4 *4 (-1134 (-517)))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) - (-5 *1 (-689))))) -(((*1 *1 *1) - (-12 (-4 *2 (-278)) (-4 *3 (-912 *2)) (-4 *4 (-1134 *3)) - (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-955 *3)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2361 *3))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) - (-4 *2 (-156))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3302 *7) (|:| |sol?| (-107))) - (-517) *7)) - (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1134 *7)) - (-5 *3 (-377 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-527 *7 *8))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-4 *4 (-964)) - (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-1134 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) - (-5 *1 (-116 *3)) (-4 *3 (-779)))) - ((*1 *2 *2) - (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1098))) - (-4 *3 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) - (-5 *1 (-532 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-534 (-377 (-876 *3)))) - (-4 *3 (-13 (-421) (-955 (-517)) (-779) (-579 (-517)))) - (-5 *1 (-537 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333)) - (-5 *2 (-2 (|:| -1375 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1158 *5)) (-4 *5 (-333)) (-4 *5 (-964)) - (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) - (-5 *3 (-583 (-623 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1158 (-1158 *5))) (-4 *5 (-333)) (-4 *5 (-964)) - (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-947 *5)) - (-5 *3 (-583 (-623 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1046)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1046))))) -(((*1 *2 *1) - (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159))))) -(((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1 *1) (-4 *1 (-694)))) + (-12 (-4 *4 (-782)) (-4 *5 (-727)) (-4 *6 (-321)) + (-4 *7 (-876 *6 *5 *4)) (-5 *2 (-390 (-1078 *7))) + (-5 *1 (-633 *4 *5 *6 *7)) (-5 *3 (-1078 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-727)) + (-4 *5 + (-13 (-782) + (-10 -8 (-15 -1446 ((-1082) $)) + (-15 -1622 ((-3 $ "failed") (-1082)))))) + (-4 *6 (-280)) (-5 *2 (-390 *3)) (-5 *1 (-665 *4 *5 *6 *3)) + (-4 *3 (-876 (-879 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-727)) + (-4 *5 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $))))) (-4 *6 (-511)) + (-5 *2 (-390 *3)) (-5 *1 (-667 *4 *5 *6 *3)) + (-4 *3 (-876 (-379 (-879 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-13 (-280) (-135))) + (-5 *2 (-390 *3)) (-5 *1 (-668 *4 *5 *6 *3)) + (-4 *3 (-876 (-379 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-782)) (-4 *5 (-727)) (-4 *6 (-13 (-280) (-135))) + (-5 *2 (-390 *3)) (-5 *1 (-676 *4 *5 *6 *3)) + (-4 *3 (-876 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-782)) (-4 *5 (-727)) (-4 *6 (-13 (-280) (-135))) + (-4 *7 (-876 *6 *5 *4)) (-5 *2 (-390 (-1078 *7))) + (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1078 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-930 *3)) + (-4 *3 (-1139 (-379 (-519)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-962 *3)) + (-4 *3 (-1139 (-379 (-879 (-519))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1139 (-379 (-519)))) + (-4 *5 (-13 (-335) (-135) (-659 (-379 (-519)) *4))) + (-5 *2 (-390 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1139 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1139 (-379 (-879 (-519))))) + (-4 *5 (-13 (-335) (-135) (-659 (-379 (-879 (-519))) *4))) + (-5 *2 (-390 *3)) (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1139 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-423)) + (-4 *7 (-876 *6 *4 *5)) (-5 *2 (-390 (-1078 (-379 *7)))) + (-5 *1 (-1077 *4 *5 *6 *7)) (-5 *3 (-1078 (-379 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-390 *1)) (-4 *1 (-1121)))) + ((*1 *2 *3) + (-12 (-5 *2 (-390 *3)) (-5 *1 (-1128 *3)) (-4 *3 (-1139 (-519)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-519)) (-4 *7 (-876 *4 *5 *6)) + (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *1 (-420 *4 *5 *6 *7))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366))))) (((*1 *2 *1) - (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1112)) (-4 *2 (-1006)) - (-4 *2 (-779))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006)))) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108))))) +(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-782)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-782)))) + ((*1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) ((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) - (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-1179 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-775))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) - (-5 *7 (-623 (-517))) - (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) - (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-686))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) + (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) + (-4 *3 (-1139 *2))))) (((*1 *2) - (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3700 (-583 *1)))) - (-4 *1 (-337 *3)))) + (-12 (-5 *2 (-884 (-1029))) (-5 *1 (-315 *3 *4)) (-14 *3 (-848)) + (-14 *4 (-848)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-422 *3 *4 *5 *6)) - (|:| -3700 (-583 (-422 *3 *4 *5 *6))))) - (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-845)) - (-14 *5 (-583 (-1077))) (-14 *6 (-1158 (-623 *3)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779))))) -(((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1077)) (-5 *2 (-1 (-1073 (-876 *4)) (-876 *4))) - (-5 *1 (-1166 *4)) (-4 *4 (-333))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) - (-4 *5 (-955 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) - (-4 *2 (-400 *5)) - (-4 *2 - (-13 (-333) (-273) - (-10 -8 (-15 -3858 ((-1029 *5 (-556 $)) $)) - (-15 -2082 ((-1029 *5 (-556 $)) $)) - (-15 -2262 ($ (-1029 *5 (-556 $)))))))))) + (-12 (-5 *2 (-884 (-1029))) (-5 *1 (-316 *3 *4)) (-4 *3 (-321)) + (-14 *4 (-1078 *3)))) + ((*1 *2) + (-12 (-5 *2 (-884 (-1029))) (-5 *1 (-317 *3 *4)) (-4 *3 (-321)) + (-14 *4 (-848))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-873 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-725)) (-4 *5 (-964)) (-4 *6 (-873 *5 *4 *2)) - (-4 *2 (-779)) (-5 *1 (-874 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-333) - (-10 -8 (-15 -2262 ($ *6)) (-15 -3858 (*6 $)) - (-15 -2082 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) - (-5 *2 (-1077)) (-5 *1 (-960 *4))))) + (-12 (-4 *1 (-1125 *3 *2)) (-4 *3 (-968)) (-4 *2 (-1154 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-302))) (-5 *1 (-302))))) +(((*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103)))))) +(((*1 *1) (-5 *1 (-996)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) - (-4 *8 (-873 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) - (-4 *6 (-13 (-779) (-558 (-1077)))) (-4 *7 (-725)) (-5 *2 (-107)) - (-5 *1 (-848 *5 *6 *7 *8))))) + (-12 (-5 *3 (-585 (-1163 *5))) (-5 *4 (-519)) (-5 *2 (-1163 *5)) + (-5 *1 (-951 *5)) (-4 *5 (-335)) (-4 *5 (-340)) (-4 *5 (-968))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1082))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-703)) (-5 *4 (-1158 *2)) (-4 *5 (-278)) - (-4 *6 (-912 *5)) (-4 *2 (-13 (-379 *6 *7) (-955 *6))) - (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1134 *6))))) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1890 *9)))) + (-5 *4 (-705)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-987 *5 *6 *7 *8)) + (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-1168)) + (-5 *1 (-985 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-2 (|:| |val| (-585 *8)) (|:| -1890 *9)))) + (-5 *4 (-705)) (-4 *8 (-982 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) + (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) (-5 *2 (-1168)) + (-5 *1 (-1052 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) (((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) - (-4 *3 (-343 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 *5)) (-4 *5 (-912 *4)) (-4 *4 (-509)) - (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) - (-5 *1 (-626 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) - (-4 *6 (-1134 *5)) - (-5 *2 (-2 (|:| -3817 *7) (|:| |rh| (-583 (-377 *6))))) - (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) - (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) + (-12 (-5 *3 (-1136 *5 *4)) (-4 *4 (-755)) (-14 *5 (-1082)) + (-5 *2 (-519)) (-5 *1 (-1025 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-558 *3)) (-5 *5 (-1078 *3)) + (-4 *3 (-13 (-402 *6) (-27) (-1103))) + (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *2 (-536 *3)) (-5 *1 (-515 *6 *3 *7)) (-4 *7 (-1011)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-558 *3)) (-5 *5 (-379 (-1078 *3))) + (-4 *3 (-13 (-402 *6) (-27) (-1103))) + (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *2 (-536 *3)) (-5 *1 (-515 *6 *3 *7)) (-4 *7 (-1011))))) +(((*1 *1 *1) + (-12 (-4 *1 (-228 *2 *3 *4 *5)) (-4 *2 (-968)) (-4 *3 (-782)) + (-4 *4 (-241 *3)) (-4 *5 (-727))))) +(((*1 *2 *2) (-12 (-5 *2 (-585 (-625 (-288 (-519))))) (-5 *1 (-953))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-585 (-1 *4 (-585 *4)))) (-4 *4 (-1011)) + (-5 *1 (-109 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1011)) + (-5 *1 (-109 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-912 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1127 *4 *5 *3)) - (-4 *3 (-1134 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) - (-5 *2 (-2 (|:| -1712 (-583 *6)) (|:| -3723 (-583 *6))))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-725)) (-4 *7 (-873 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) - (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1008 *3)) (-5 *1 (-829 *3)) (-4 *3 (-338)) - (-4 *3 (-1006))))) -(((*1 *1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-964)) (-4 *3 (-1006))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-983 *6 *7 *8 *9)) - (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) - (-5 *2 - (-583 - (-2 (|:| -3817 (-583 *9)) (|:| -3864 *10) (|:| |ineq| (-583 *9))))) - (-5 *1 (-908 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-983 *6 *7 *8 *9)) - (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-978 *6 *7 *8)) - (-5 *2 - (-583 - (-2 (|:| -3817 (-583 *9)) (|:| -3864 *10) (|:| |ineq| (-583 *9))))) - (-5 *1 (-1013 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) - (-4 *3 (-1006)) (-5 *2 (-107)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-107)) - (-5 *1 (-828 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-845)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) - (-4 *3 (-978 *6 *7 *8)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) - (-5 *1 (-1014 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) - (-5 *5 (-107)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) - (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) - (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3864 *9)))) - (-5 *1 (-1014 *6 *7 *4 *8 *9))))) -(((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) - (-4 *4 (-13 (-779) (-509)))))) -(((*1 *1) (-5 *1 (-407)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-421)) - (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-897 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-850))))) -(((*1 *2 *3) - (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1134 *5)) - (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1134 *6)) - (-14 *7 (-845))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1073 *2)) (-4 *2 (-873 (-377 (-876 *6)) *5 *4)) - (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) - (-4 *4 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) - (-4 *6 (-509))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) + (|partial| -12 (-5 *3 (-110)) (-5 *2 (-585 (-1 *4 (-585 *4)))) + (-5 *1 (-109 *4)) (-4 *4 (-1011))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-964)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-964)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1077))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 (-845))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) - (-14 *4 (-845)) (-14 *5 (-913 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) - (-4 *3 (-13 (-964) (-779))) (-14 *4 (-583 (-1077))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-123)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-964)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) - (-4 *4 (-1134 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-964)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-964)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) - (-4 *4 (-964)) (-4 *5 (-779)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-964)) - (-4 *2 (-779)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-964)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-873 *4 *5 *6)) - (-4 *4 (-964)) (-4 *5 (-725)) (-4 *6 (-779)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-873 *4 *5 *2)) (-4 *4 (-964)) - (-4 *5 (-725)) (-4 *2 (-779)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-4 *2 (-873 *4 (-489 *5) *5)) - (-5 *1 (-1030 *4 *5 *2)) (-4 *4 (-964)) (-4 *5 (-779)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-876 *4)) (-5 *1 (-1107 *4)) - (-4 *4 (-964))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-493))))) -(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *3) - (-12 (-4 *4 (-964)) (-4 *5 (-1134 *4)) (-5 *2 (-1 *6 (-583 *6))) - (-5 *1 (-1152 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1149 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349))))) + (-12 (-5 *3 (-585 (-870 *4))) (-4 *1 (-1043 *4)) (-4 *4 (-968)) + (-5 *2 (-705))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) + (-5 *2 (-957)) (-5 *1 (-687))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-295 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-124)) + (-4 *3 (-726))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-879 (-519))) (-5 *3 (-1082)) + (-5 *4 (-1006 (-379 (-519)))) (-5 *1 (-30))))) +(((*1 *1 *1) (-5 *1 (-980)))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1065)) (-5 *3 (-519)) (-5 *1 (-217)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-585 (-1065))) (-5 *3 (-519)) (-5 *4 (-1065)) + (-5 *1 (-217)))) + ((*1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1065)) + (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-108)) (-5 *1 (-200 *4 *5)) (-4 *5 (-13 (-1103) (-29 *4)))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-705)) (-5 *1 (-613 *2)) (-4 *2 (-1011))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) - ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) - ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-335)) (-4 *6 (-1139 (-379 *2))) + (-4 *2 (-1139 *5)) (-5 *1 (-192 *5 *2 *6 *3)) + (-4 *3 (-314 *5 *2 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) + (-4 *3 (-13 (-1011) (-33)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-558 (-816 (-517)))) - (-4 *5 (-810 (-517))) - (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) - (-4 *3 (-13 (-27) (-1098) (-400 *5)))))) -(((*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502))))) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) (-5 *2 (-108)) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-558 *1))) (-4 *1 (-275))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-705)) (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *5)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-968)) (-4 *1 (-1032 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) + (-4 *5 (-214 *3 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-51))))) +(((*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-968)) (-4 *3 (-1139 *4)) (-4 *2 (-1154 *4)) + (-5 *1 (-1157 *4 *3 *5 *2)) (-4 *5 (-595 *3))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-980)) (-5 *3 (-1065))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-705)) (-4 *5 (-511)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-894 *5 *3)) (-4 *3 (-1139 *5))))) +(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166))))) +(((*1 *2 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-519)) + (-5 *1 (-420 *4 *5 *6 *3)) (-4 *3 (-876 *4 *5 *6))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3)) (-4 *3 (-1011))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-89 *3))))) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1139 (-519))) (-5 *1 (-455 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1058 *7))) (-4 *6 (-779)) - (-4 *7 (-873 *5 (-489 *6) *6)) (-4 *5 (-964)) - (-5 *2 (-1 (-1058 *7) *7)) (-5 *1 (-1030 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-583 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1006)) - (-4 *6 (-1112)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1006)) - (-4 *2 (-1112)) (-5 *1 (-580 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1006)) - (-4 *5 (-1112)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1006)) - (-4 *2 (-1112)) (-5 *1 (-580 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) - (-4 *5 (-1006)) (-4 *6 (-1112)) (-5 *1 (-580 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1006)) (-4 *2 (-1112)) (-5 *1 (-580 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-131)) (-5 *2 (-703))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-688))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-377 (-1073 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) - (-5 *1 (-1034 *3))))) + (-12 (-5 *3 (-1078 *5)) (-4 *5 (-423)) (-5 *2 (-585 *6)) + (-5 *1 (-497 *5 *6 *4)) (-4 *6 (-335)) (-4 *4 (-13 (-335) (-780))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-879 *5)) (-4 *5 (-423)) (-5 *2 (-585 *6)) + (-5 *1 (-497 *5 *6 *4)) (-4 *6 (-335)) (-4 *4 (-13 (-335) (-780)))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1178 *2 *3)) (-4 *2 (-782)) (-4 *3 (-968)))) + ((*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-968)) (-4 *3 (-778))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-819 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1011)) + (-4 *5 (-1117)) (-5 *1 (-817 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-819 *4)) (-5 *3 (-585 (-1 (-108) *5))) (-4 *4 (-1011)) + (-4 *5 (-1117)) (-5 *1 (-817 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-819 *5)) (-5 *3 (-585 (-1082))) + (-5 *4 (-1 (-108) (-585 *6))) (-4 *5 (-1011)) (-4 *6 (-1117)) + (-5 *1 (-817 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1117)) (-4 *4 (-782)) + (-5 *1 (-864 *4 *2 *5)) (-4 *2 (-402 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-585 (-1 (-108) *5))) (-4 *5 (-1117)) (-4 *4 (-782)) + (-5 *1 (-864 *4 *2 *5)) (-4 *2 (-402 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1082)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1117)) + (-5 *2 (-288 (-519))) (-5 *1 (-865 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1082)) (-5 *4 (-585 (-1 (-108) *5))) (-4 *5 (-1117)) + (-5 *2 (-288 (-519))) (-5 *1 (-865 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 (-1082))) (-5 *3 (-1 (-108) (-585 *6))) + (-4 *6 (-13 (-402 *5) (-813 *4) (-560 (-819 *4)))) (-4 *4 (-1011)) + (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) + (-5 *1 (-990 *4 *5 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-585 *3)) (-5 *1 (-887 *3)) (-4 *3 (-504))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) + (-5 *2 (-957)) (-5 *1 (-687))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1125 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1112))))) + (-12 (-5 *2 (-848)) (-4 *1 (-301 *3)) (-4 *3 (-335)) (-4 *3 (-340)))) + ((*1 *2 *1) (-12 (-4 *1 (-301 *2)) (-4 *2 (-335)))) + ((*1 *2 *1) + (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1139 *2)) (-4 *2 (-157)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1163 *4)) (-5 *3 (-848)) (-4 *4 (-321)) + (-5 *1 (-489 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1032 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) + (-4 *5 (-214 *3 *2)) (-4 *2 (-968))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *1 (-1037 *3 *2)) (-4 *3 (-1139 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-851)) - (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) - (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) - (-5 *1 (-140)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-851)) (-5 *4 (-377 (-517))) - (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-867 (-199))))) - (|:| |xValues| (-1001 (-199))) (|:| |yValues| (-1001 (-199))))) - (-5 *1 (-140))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92))))) -(((*1 *1) (-5 *1 (-407)))) -(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-754))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-685))))) + (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-585 (-1082))) (-4 *5 (-968)) + (-5 *2 (-879 *5)) (-5 *1 (-871 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-1117)))) + ((*1 *2 *2) + (-12 (-4 *3 (-968)) (-5 *1 (-415 *3 *2)) (-4 *2 (-1139 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *1 (-1113 *3)) + (-4 *3 (-898))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-757))))) (((*1 *2 *3) - (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-421)) - (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-845)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1073 *1)) - (-4 *1 (-299 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1073 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) - (-4 *2 (-1134 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1158 *4)) (-4 *4 (-319)) (-5 *2 (-1073 *4)) - (-5 *1 (-487 *4))))) + (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-876 *4 *5 *6)) (-5 *2 (-585 (-585 *7))) + (-5 *1 (-419 *4 *5 *6 *7)) (-5 *3 (-585 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-280) (-135))) (-4 *6 (-727)) + (-4 *7 (-782)) (-4 *8 (-876 *5 *6 *7)) (-5 *2 (-585 (-585 *8))) + (-5 *1 (-419 *5 *6 *7 *8)) (-5 *3 (-585 *8))))) +(((*1 *2 *3) + (-12 (-4 *1 (-836)) (-5 *2 (-390 (-1078 *1))) (-5 *3 (-1078 *1))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1139 *6)) + (-4 *6 (-13 (-27) (-402 *5))) + (-4 *5 (-13 (-782) (-511) (-959 (-519)))) (-4 *8 (-1139 (-379 *7))) + (-5 *2 (-536 *3)) (-5 *1 (-507 *5 *6 *7 *8 *3)) + (-4 *3 (-314 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-625 (-379 (-879 (-519))))) + (-5 *2 (-585 (-625 (-288 (-519))))) (-5 *1 (-953)) + (-5 *3 (-288 (-519)))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-377 (-517))) - (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4)))))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-335)) (-4 *3 (-968)) + (-5 *1 (-1067 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-625 *3)) + (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) + (-4 *4 (-1139 *3)) (-5 *1 (-466 *3 *4 *5)) (-4 *5 (-381 *3 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-705)) (-5 *3 (-108)) (-5 *1 (-106)))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (|has| *1 (-6 -4212)) (-4 *1 (-376)))) + ((*1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-848))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-511)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-511))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1011) (-33))) + (-5 *2 (-108)) (-5 *1 (-1047 *4 *5)) (-4 *4 (-13 (-1011) (-33)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1139 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-848)) (-4 *1 (-1141 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-726)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-379 (-519))) (-4 *1 (-1144 *3)) (-4 *3 (-968))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-511)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-511))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-848)) (-5 *4 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1164))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-201))) + (-5 *2 (-957)) (-5 *1 (-689))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-346 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-157)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-1182 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-968))))) (((*1 *2 *1) - (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-703)) (-4 *5 (-156)))) - ((*1 *1 *1) - (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) - (-4 *4 (-156)))) - ((*1 *1 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2)))) + (-12 (-4 *3 (-1011)) + (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))) + (-5 *2 (-585 (-1082))) (-5 *1 (-990 *3 *4 *5)) + (-4 *5 (-13 (-402 *4) (-813 *3) (-560 (-819 *3))))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-997 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-519) *2 *2)) (-4 *2 (-125)) (-5 *1 (-997 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-625 (-154 (-379 (-519))))) (-5 *2 (-585 (-154 *4))) + (-5 *1 (-699 *4)) (-4 *4 (-13 (-335) (-780)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-705)) (|:| -2714 *4))) (-5 *5 (-705)) + (-4 *4 (-876 *6 *7 *8)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-420 *6 *7 *8 *4))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-782)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-782)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-519)) (-4 *1 (-256 *3)) (-4 *3 (-1117)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-4 *1 (-256 *2)) (-4 *2 (-1117)))) ((*1 *1 *2) - (-12 (-4 *3 (-964)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) - (-4 *4 (-343 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1044 *2 *3)) (-14 *2 (-703)) (-4 *3 (-964))))) + (-12 + (-5 *2 + (-2 + (|:| -2583 + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (|:| -3100 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1063 (-201))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1710 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-514)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-705)) (-4 *1 (-630 *2)) (-4 *2 (-1011)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -2583 + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))) + (|:| -3100 + (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) + (|:| |expense| (-351)) (|:| |accuracy| (-351)) + (|:| |intermediateResults| (-351)))))) + (-5 *1 (-738)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1168)) (-5 *1 (-1095 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-1011))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 (-990 *3 *4 *5))) (-4 *3 (-1011)) + (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))) + (-4 *5 (-13 (-402 *4) (-813 *3) (-560 (-819 *3)))) + (-5 *1 (-991 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-625 *8)) (-5 *4 (-705)) (-4 *8 (-876 *5 *7 *6)) + (-4 *5 (-13 (-280) (-135))) (-4 *6 (-13 (-782) (-560 (-1082)))) + (-4 *7 (-727)) + (-5 *2 + (-585 + (-2 (|:| |det| *8) (|:| |rows| (-585 (-519))) + (|:| |cols| (-585 (-519)))))) + (-5 *1 (-851 *5 *6 *7 *8))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-504)))) +(((*1 *2) (-12 (-5 *2 (-1054 (-1065))) (-5 *1 (-363))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-758)) (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-302))))) +(((*1 *2 *2) (-12 (-5 *2 (-1063 (-585 (-519)))) (-5 *1 (-810))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 *4)) (-5 *1 (-1043 *3 *4)) - (-4 *3 (-13 (-1006) (-33))) (-4 *4 (-13 (-1006) (-33)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964))))) + (-12 (-5 *2 (-585 (-1104 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1011))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-978 (-946 *3) (-1078 (-946 *3)))) + (-5 *1 (-946 *3)) (-4 *3 (-13 (-780) (-335) (-944)))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1082)) (-5 *1 (-613 *3)) (-4 *3 (-1011))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) - (-5 *1 (-908 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-585 (-879 *3))) (-4 *3 (-423)) (-5 *1 (-332 *3 *4)) + (-14 *4 (-585 (-1082))))) ((*1 *2 *2) - (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-421)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) - (-5 *1 (-1013 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-628 *3)) (-4 *3 (-1006)) - (-5 *2 (-583 (-2 (|:| -1846 *3) (|:| -4140 (-703)))))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1006)) - (-5 *1 (-98 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (-5 *1 (-98 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-876 *4))) (-5 *3 (-583 (-1077))) (-4 *4 (-421)) - (-5 *1 (-842 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-142)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-331 (-109))) (-4 *2 (-964)) (-5 *1 (-647 *2 *4)) - (-4 *4 (-585 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-964))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-423)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-421 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1065)) (-4 *7 (-876 *4 *5 *6)) + (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *1 (-421 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-1065)) (-4 *7 (-876 *4 *5 *6)) + (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *1 (-421 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) + (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-585 (-714 *3 (-792 *4)))) (-4 *3 (-423)) + (-14 *4 (-585 (-1082))) (-5 *1 (-570 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1077)) (-5 *1 (-493))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) - (-5 *1 (-1128 *4 *2)) (-4 *2 (-1134 *4))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-407)) (-5 *1 (-1081))))) + (-12 (|has| *2 (-6 (-4223 "*"))) (-4 *5 (-345 *2)) (-4 *6 (-345 *2)) + (-4 *2 (-968)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1139 *2)) + (-4 *4 (-623 *2 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-625 (-201))) (-5 *5 (-108)) (-5 *6 (-201)) + (-5 *7 (-625 (-519))) + (-5 *8 (-3 (|:| |fn| (-360)) (|:| |fp| (-78 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-360)) (|:| |fp| (-75 OBJFUN)))) + (-5 *3 (-519)) (-5 *2 (-957)) (-5 *1 (-688))))) +(((*1 *2 *3) + (-12 (-5 *3 (-288 (-201))) (-5 *2 (-288 (-351))) (-5 *1 (-278))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-201)) (-5 *3 (-705)) (-5 *1 (-202)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-154 (-201))) (-5 *3 (-705)) (-5 *1 (-202)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1046)))) (((*1 *2 *1) - (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) - (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517))))) -(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1112)))) + (-12 (-4 *2 (-876 *3 *5 *4)) (-5 *1 (-911 *3 *4 *5 *2)) + (-4 *3 (-423)) (-4 *4 (-782)) (-4 *5 (-727))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-511) (-782) (-959 (-519)))) (-5 *1 (-166 *3 *2)) + (-4 *2 (-13 (-27) (-1103) (-402 (-154 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-511) (-782) (-959 (-519)))) + (-5 *1 (-166 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 (-154 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-964)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1134 *3)))) + (-12 (-4 *3 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-1107 *3 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-1107 *4 *2)) (-4 *2 (-13 (-27) (-1103) (-402 *4)))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1065)) (-5 *5 (-625 (-201))) (-5 *6 (-625 (-519))) + (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-692))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1098)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) - (-5 *2 - (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) - (|:| |success| (-107)))) - (-5 *1 (-721)) (-5 *5 (-517))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) - (-5 *1 (-691))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) - (-5 *2 (-953)) (-5 *1 (-689))))) + (-12 (-5 *1 (-1155 *2 *3 *4)) (-4 *2 (-968)) (-14 *3 (-1082)) + (-14 *4 *2)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-984 *5 *6 *7 *3 *4)) - (-4 *4 (-983 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-512))))) + (-12 (-5 *3 (-1078 *5)) (-4 *5 (-335)) (-5 *2 (-585 *6)) + (-5 *1 (-492 *5 *6 *4)) (-4 *6 (-335)) (-4 *4 (-13 (-335) (-780)))))) (((*1 *1 *2) - (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) - (-4 *3 (-13 (-374) (-1098))))) - ((*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1098)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-215)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1163)) (-5 *1 (-215))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-60 *3)) (-14 *3 (-1077)))) - ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-67 *3)) (-14 *3 (-1077)))) - ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-70 *3)) (-14 *3 (-1077)))) - ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1163)))) - ((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1163)) (-5 *1 (-367)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1060)) (-5 *4 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040)))) - ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-1011)) (-5 *1 (-1090 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) -(((*1 *1 *2) - (-12 (-5 *2 (-623 *4)) (-4 *4 (-964)) (-5 *1 (-1044 *3 *4)) - (-14 *3 (-703))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1077)) (-4 *5 (-558 (-816 (-517)))) - (-4 *5 (-810 (-517))) - (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) - (-4 *3 (-13 (-27) (-1098) (-400 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1077)) (-5 *4 (-772 *2)) (-4 *2 (-1041)) - (-4 *2 (-13 (-27) (-1098) (-400 *5))) - (-4 *5 (-558 (-816 (-517)))) (-4 *5 (-810 (-517))) - (-4 *5 (-13 (-779) (-955 (-517)) (-421) (-579 (-517)))) - (-5 *1 (-520 *5 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-964)) (-4 *2 (-621 *4 *5 *6)) - (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1134 *4)) (-4 *5 (-343 *4)) - (-4 *6 (-343 *4))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1077)) (-5 *2 (-493)) (-5 *1 (-492 *4)) - (-4 *4 (-1112))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-964)) - (-4 *2 (-1118 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-876 *4)) (-4 *4 (-13 (-278) (-134))) - (-4 *2 (-873 *4 *6 *5)) (-5 *1 (-848 *4 *5 *6 *2)) - (-4 *5 (-13 (-779) (-558 (-1077)))) (-4 *6 (-725))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-300))))) + (-12 (-5 *3 (-705)) (-5 *1 (-717 *2)) (-4 *2 (-37 (-379 (-519)))) + (-4 *2 (-157))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-705)) (-4 *3 (-1117)) (-4 *1 (-55 *3 *4 *5)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) + ((*1 *1) (-5 *1 (-156))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1065)) (-4 *1 (-361)))) + ((*1 *1) (-5 *1 (-366))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-705)) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) + ((*1 *1) + (-12 (-4 *3 (-1011)) (-5 *1 (-812 *2 *3 *4)) (-4 *2 (-1011)) + (-4 *4 (-605 *3)))) + ((*1 *1) (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011)))) + ((*1 *1) (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968)))) + ((*1 *1 *1) (-5 *1 (-1082))) ((*1 *1) (-5 *1 (-1082))) + ((*1 *1) (-5 *1 (-1098)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-135)) + (-4 *3 (-280)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-901 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) + (-12 (-4 *2 (-1139 *4)) (-5 *1 (-744 *4 *2 *3 *5)) + (-4 *4 (-13 (-335) (-135) (-959 (-379 (-519))))) (-4 *3 (-595 *2)) + (-4 *5 (-595 (-379 *2)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2) + (-12 (-5 *2 (-625 (-837 *3))) (-5 *1 (-323 *3 *4)) (-14 *3 (-848)) + (-14 *4 (-848)))) + ((*1 *2) + (-12 (-5 *2 (-625 *3)) (-5 *1 (-324 *3 *4)) (-4 *3 (-321)) + (-14 *4 + (-3 (-1078 *3) + (-1163 (-585 (-2 (|:| -3493 *3) (|:| -2770 (-1029))))))))) + ((*1 *2) + (-12 (-5 *2 (-625 *3)) (-5 *1 (-325 *3 *4)) (-4 *3 (-321)) + (-14 *4 (-848))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-280)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1397 *1))) + (-4 *1 (-280))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-585 *1)) (-4 *1 (-402 *4)) + (-4 *4 (-782)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1082)) (-4 *1 (-402 *3)) (-4 *3 (-782)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1082)) (-4 *1 (-402 *3)) (-4 *3 (-782)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1082)) (-4 *1 (-402 *3)) (-4 *3 (-782)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1082)) (-4 *1 (-402 *3)) (-4 *3 (-782))))) +(((*1 *2 *3) + (-12 (-4 *4 (-321)) + (-5 *2 (-585 (-2 (|:| |deg| (-705)) (|:| -2695 *3)))) + (-5 *1 (-193 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) + ((*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *3 (-879 *6)) (-5 *4 (-1082)) + (-5 *5 (-775 *7)) + (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-4 *7 (-13 (-1103) (-29 *6))) (-5 *1 (-200 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1078 *6)) (-5 *4 (-775 *6)) + (-4 *6 (-13 (-1103) (-29 *5))) + (-4 *5 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-200 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3)))) - ((*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-361))))) -(((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| -2583 *3) (|:| -3100 *4)))) + (-4 *3 (-1011)) (-4 *4 (-1011)) (-4 *1 (-1094 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1094 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011))))) +(((*1 *2 *3 *3) (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-705)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-727)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-423)) (-4 *6 (-782)) + (-5 *2 (-108)) (-5 *1 (-420 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) + ((*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *1 *1) (-4 *1 (-1046)))) +(((*1 *2 *3) + (-12 (-5 *3 (-703)) (-5 *2 - (-583 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199))))) - (-5 *1 (-512)))) - ((*1 *2 *1) - (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-5 *2 (-583 *3)))) - ((*1 *2 *1) - (-12 + (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) + (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957)))) + (-5 *1 (-520)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-703)) (-5 *4 (-980)) (-5 *2 - (-583 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199))))) - (-5 *1 (-735))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) - (-5 *2 (-2 (|:| -1570 *4) (|:| -2773 *3) (|:| -3292 *3))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *2 (-2 (|:| -2773 *1) (|:| -3292 *1))) (-4 *1 (-978 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-509)) (-4 *3 (-964)) - (-5 *2 (-2 (|:| -1570 *3) (|:| -2773 *1) (|:| -3292 *1))) - (-4 *1 (-1134 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) + (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) + (|:| |explanations| (-585 (-1065))) (|:| |extra| (-957)))) + (-5 *1 (-520)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-721)) (-5 *3 (-980)) + (-5 *4 + (-2 (|:| |fn| (-288 (-201))) + (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (-5 *2 + (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) + (|:| |extra| (-957)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-721)) (-5 *3 (-980)) + (-5 *4 + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (-5 *2 + (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)) + (|:| |extra| (-957)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-735)) (-5 *3 (-980)) + (-5 *4 + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))) + (-5 *2 (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-743)) + (-5 *2 + (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) + (|:| |explanations| (-585 (-1065))))) + (-5 *1 (-740)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-743)) (-5 *4 (-980)) + (-5 *2 + (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) + (|:| |explanations| (-585 (-1065))))) + (-5 *1 (-740)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-771)) (-5 *3 (-980)) + (-5 *4 + (-2 (|:| |lfn| (-585 (-288 (-201)))) (|:| -3816 (-585 (-201))))) + (-5 *2 (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-771)) (-5 *3 (-980)) + (-5 *4 + (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) + (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) + (|:| |ub| (-585 (-775 (-201)))))) + (-5 *2 (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-773)) + (-5 *2 + (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) + (|:| |explanations| (-585 (-1065))))) + (-5 *1 (-772)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-773)) (-5 *4 (-980)) + (-5 *2 + (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) + (|:| |explanations| (-585 (-1065))))) + (-5 *1 (-772)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-822)) (-5 *3 (-980)) + (-5 *4 + (-2 (|:| |pde| (-585 (-288 (-201)))) + (|:| |constraints| + (-585 + (-2 (|:| |start| (-201)) (|:| |finish| (-201)) + (|:| |grid| (-705)) (|:| |boundaryType| (-519)) + (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) + (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) + (|:| |tol| (-201)))) + (-5 *2 (-2 (|:| -1809 (-351)) (|:| |explanations| (-1065)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-825)) + (-5 *2 + (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) + (|:| |explanations| (-585 (-1065))))) + (-5 *1 (-824)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-825)) (-5 *4 (-980)) + (-5 *2 + (-2 (|:| -1809 (-351)) (|:| -2938 (-1065)) + (|:| |explanations| (-585 (-1065))))) + (-5 *1 (-824))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1011)))) + ((*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-1011))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1082)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-637 *4 *5 *6 *7)) + (-4 *4 (-560 (-495))) (-4 *5 (-1117)) (-4 *6 (-1117)) + (-4 *7 (-1117))))) (((*1 *1 *2) (-12 (-5 *2 - (-583 + (-585 (-2 - (|:| -2576 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (|:| -1846 + (|:| -2583 + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (|:| -3100 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -13393,10 +13831,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1058 (-199))) + (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3177 + (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -13404,3379 +13842,2762 @@ (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-512))))) + (-5 *1 (-514))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-333)) (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) - (-5 *2 (-1158 *6)) (-5 *1 (-306 *3 *4 *5 *6)) - (-4 *6 (-312 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-387 *4))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1077)) (-5 *6 (-107)) - (-4 *7 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-4 *3 (-13 (-1098) (-882) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964))))) + (-12 (-4 *3 (-782)) (-5 *1 (-856 *3 *2)) (-4 *2 (-402 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1082)) (-5 *2 (-288 (-519))) (-5 *1 (-857))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-819 *4)) (-4 *4 (-1011)) (-4 *2 (-1011)) + (-5 *1 (-816 *4 *2))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-168))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1077)) (-4 *5 (-400 *4)) - (-4 *4 (-779)) (-5 *1 (-526 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1163)) (-5 *1 (-361)))) - ((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-361))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-156)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-1177 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-964))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-680))))) -(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) - ((*1 *1 *1 *1) (-4 *1 (-442))) - ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-807)))) - ((*1 *1 *1) (-5 *1 (-891))) - ((*1 *1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156))))) + (-12 (-5 *3 (-1163 *4)) (-4 *4 (-581 (-519))) (-5 *2 (-108)) + (-5 *1 (-1188 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-275))) ((*1 *1 *1) (-4 *1 (-275)))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *3)) + (-4 *3 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-801))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-853))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-912 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-982 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) - (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) - (-4 *4 (-13 (-779) (-509)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2361 (-714 *3)) (|:| |coef1| (-714 *3)))) - (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *2 (-2 (|:| -2361 *1) (|:| |coef1| *1))) - (-4 *1 (-978 *3 *4 *5))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1011))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1042 (-201))) (-5 *3 (-585 (-238))) (-5 *1 (-1165)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1042 (-201))) (-5 *3 (-1065)) (-5 *1 (-1165)))) + ((*1 *1 *1) (-5 *1 (-1165)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-495))) (-5 *1 (-495))))) +(((*1 *1 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-21)) (-4 *2 (-1117))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-768 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-108)) + (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-4 *3 (-13 (-27) (-1103) (-402 *6) (-10 -8 (-15 -2217 ($ *7))))) + (-4 *7 (-780)) + (-4 *8 + (-13 (-1141 *3 *7) (-335) (-1103) + (-10 -8 (-15 -2181 ($ $)) (-15 -4142 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1065)) (|:| |prob| (-1065)))))) + (-5 *1 (-394 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1065)) (-4 *9 (-907 *8)) + (-14 *10 (-1082))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-201))) + (-5 *2 (-957)) (-5 *1 (-689))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-625 (-201))) (-5 *5 (-625 (-519))) (-5 *3 (-519)) + (-5 *2 (-957)) (-5 *1 (-689))))) +(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132))) + ((*1 *1 *1) (-4 *1 (-1051)))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2133 *4))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) - (-5 *2 (-221 *4 *5)) (-5 *1 (-868 *4 *5))))) + (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1286 *4))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-544 *2)) (-4 *2 (-968))))) +(((*1 *2 *3) + (-12 (-5 *3 (-308 *5 *6 *7 *8)) (-4 *5 (-402 *4)) (-4 *6 (-1139 *5)) + (-4 *7 (-1139 (-379 *6))) (-4 *8 (-314 *5 *6 *7)) + (-4 *4 (-13 (-782) (-511) (-959 (-519)))) (-5 *2 (-108)) + (-5 *1 (-838 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-308 (-379 (-519)) *4 *5 *6)) + (-4 *4 (-1139 (-379 (-519)))) (-4 *5 (-1139 (-379 *4))) + (-4 *6 (-314 (-379 (-519)) *4 *5)) (-5 *2 (-108)) + (-5 *1 (-839 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-4 *1 (-1009 *3)))) + ((*1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011))))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4221)) (-4 *1 (-458 *4)) + (-4 *4 (-1117)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1099))))) (((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-848)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-238))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126))))) +(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-108))))) +(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1086))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) + (-4 *3 (-1139 *2))))) (((*1 *2 *3) - (-12 + (-12 (-4 *4 (-335)) (-5 *2 (-585 *3)) (-5 *1 (-872 *4 *3)) + (-4 *3 (-1139 *4))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-721)) (-5 *2 (-957)) (-5 *3 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1058 (-199))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3177 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-512))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-703)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-680))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1149 *4)) - (-4 *4 (-37 (-377 (-517)))) - (-5 *2 (-1 (-1058 *4) (-583 (-1058 *4)))) (-5 *1 (-1151 *4 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-888)))) -(((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1112))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1006)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1006)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1006))))) -(((*1 *2 *3) - (-12 (-4 *4 (-964)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) - (-4 *3 (-1134 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-107))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-583 (-867 (-199))))) - (-5 *2 (-583 (-1001 (-199)))) (-5 *1 (-852))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1077))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) - (-4 *9 (-873 *8 *6 *7)) - (-5 *2 (-2 (|:| -2242 (-1073 *9)) (|:| |polval| (-1073 *8)))) - (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1073 *9)) (-5 *4 (-1073 *8))))) -(((*1 *2 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) - (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6))))) + (-2 (|:| |fn| (-288 (-201))) + (|:| -1710 (-585 (-1006 (-775 (-201))))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-721)) (-5 *2 (-957)) + (-5 *3 + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *3 (-585 (-238))) (-5 *1 (-236))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-351)) (-5 *3 (-1065)) (-5 *1 (-92)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-351)) (-5 *3 (-1065)) (-5 *1 (-92))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-5 *2 (-519))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1087))) (-5 *1 (-1087))))) +(((*1 *1 *1) (-4 *1 (-34))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) +(((*1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-694))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-68 APROD)))) (-5 *4 (-201)) + (-5 *2 (-957)) (-5 *1 (-691))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-809 *2)) (-4 *2 (-1117))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 (-2 (|:| -2576 (-1077)) (|:| -1846 (-407))))) - (-5 *1 (-1081))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-964)) (-5 *1 (-624 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) - (-5 *2 (-623 *4)))) - ((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) - (-4 *3 (-387 *4)))) - ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1158 *6)) (-5 *4 (-1158 (-517))) (-5 *5 (-517)) - (-4 *6 (-1006)) (-5 *2 (-1 *6)) (-5 *1 (-936 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1158 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) - (-5 *2 (-1158 *4)) (-5 *1 (-578 *4 *5))))) -(((*1 *1) (-5 *1 (-407)))) -(((*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-199))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1113 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1) (-12 (-4 *3 (-1112)) (-5 *2 (-583 *1)) (-4 *1 (-929 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-876 *5)) (-4 *5 (-964)) (-5 *2 (-221 *4 *5)) - (-5 *1 (-868 *4 *5)) (-14 *4 (-583 (-1077)))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) - (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) - (-4 *2 (-621 *3 *5 *6))))) + (-12 (-5 *2 (-585 *1)) (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *5)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *5)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-968)) (-5 *1 (-625 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 *4)) (-4 *4 (-968)) (-4 *1 (-1032 *3 *4 *5 *6)) + (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-302))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-935)) (-5 *2 (-790))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) (-4 *1 (-460))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) - (-4 *3 (-150 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1112)) (-5 *2 (-703)) - (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) - (-4 *3 (-400 *4)))) - ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))) - ((*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) - ((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) - (-4 *3 (-729 *4)))) - ((*1 *2) - (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-911 *3 *4)) - (-4 *3 (-912 *4)))) - ((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-915 *3 *4)) - (-4 *3 (-916 *4)))) - ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-930 *3)) (-4 *3 (-931)))) - ((*1 *2) (-12 (-4 *1 (-964)) (-5 *2 (-703)))) - ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-972 *3)) (-4 *3 (-973))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276))))) -(((*1 *1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-4 *1 (-273)))) -(((*1 *2 *1) (-12 (-5 *2 (-1058 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278))))) + (-12 (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) + (-5 *1 (-1048 *3 *4)) (-4 *3 (-13 (-1011) (-33))) + (-4 *4 (-13 (-1011) (-33)))))) +(((*1 *1 *2) (-12 (-5 *2 (-754 *3)) (-4 *3 (-782)) (-5 *1 (-610 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-625 (-519))) (-5 *5 (-108)) (-5 *7 (-625 (-201))) + (-5 *3 (-519)) (-5 *6 (-201)) (-5 *2 (-957)) (-5 *1 (-689))))) +(((*1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-790))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) + (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-585 (-949 *5 *6 *7 *8))) (-5 *1 (-949 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-585 *8)) (-5 *4 (-108)) (-4 *8 (-982 *5 *6 *7)) + (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-585 (-1053 *5 *6 *7 *8))) (-5 *1 (-1053 *5 *6 *7 *8))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-504)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-299 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-519)) (-5 *1 (-482 *3 *4)) (-4 *3 (-1117)) (-14 *4 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-5 *2 (-1163)) - (-5 *1 (-1113 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-1006)) (-5 *2 (-1163)) - (-5 *1 (-1113 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1112)) (-5 *2 (-703))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1134 *5)) - (-4 *5 (-13 (-27) (-400 *4))) - (-4 *4 (-13 (-779) (-509) (-955 (-517)))) - (-4 *7 (-1134 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) - (-4 *2 (-312 *5 *6 *7))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-955 (-47))) - (-4 *4 (-13 (-509) (-779) (-955 (-517)))) (-4 *5 (-400 *4)) - (-5 *2 (-388 (-1073 (-47)))) (-5 *1 (-405 *4 *5 *3)) - (-4 *3 (-1134 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-896 *4 *5 *3 *6)) (-4 *4 (-964)) (-4 *5 (-725)) - (-4 *3 (-779)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-107))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) - (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) + (-12 (-5 *3 (-965 *4 *5)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) + (-14 *5 (-585 (-1082))) (-5 *2 (-585 (-585 (-946 (-379 *4))))) + (-5 *1 (-1187 *4 *5 *6)) (-14 *6 (-585 (-1082))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-585 (-585 (-946 (-379 *5))))) (-5 *1 (-1187 *5 *6 *7)) + (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-108)) + (-4 *5 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-585 (-585 (-946 (-379 *5))))) (-5 *1 (-1187 *5 *6 *7)) + (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-879 *4))) + (-4 *4 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-585 (-585 (-946 (-379 *4))))) (-5 *1 (-1187 *4 *5 *6)) + (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-280)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-358 *3)) (|:| |rm| (-358 *3)))) + (-5 *1 (-358 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3573 (-705)) (|:| -1354 (-705)))) + (-5 *1 (-705)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2773 *3) (|:| -3292 *3))) (-5 *1 (-633 *3)) - (-4 *3 (-278))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) - (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-953)) - (-5 *1 (-687))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-517))) (-5 *4 (-829 (-517))) - (-5 *2 (-623 (-517))) (-5 *1 (-538)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) - (-5 *1 (-538)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-829 (-517)))) - (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538))))) + (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-574))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1065)) (-5 *4 (-154 (-201))) (-5 *5 (-519)) + (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (-5 *2 (-2 (|:| -1395 (-109)) (|:| |w| (-199)))) (-5 *1 (-180))))) -(((*1 *1) (-5 *1 (-128)))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (-5 *2 (-2 (|:| -1435 (-110)) (|:| |w| (-201)))) (-5 *1 (-182))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) - (-4 *2 (-621 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1163))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1073 (-377 (-517)))) (-5 *1 (-866)) (-5 *3 (-517))))) -(((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1112)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) - ((*1 *2 *3) - (-12 (-4 *4 (-964)) - (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) - (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) - ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) - ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-416 *3)) (-4 *3 (-968))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1082)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-637 *3 *5 *6 *7)) + (-4 *3 (-560 (-495))) (-4 *5 (-1117)) (-4 *6 (-1117)) + (-4 *7 (-1117)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *3 *5 *6)) + (-4 *3 (-560 (-495))) (-4 *5 (-1117)) (-4 *6 (-1117))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-705)) (-5 *1 (-516))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-280) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-565 *4 *2)) (-4 *2 (-13 (-1103) (-885) (-29 *4)))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-585 (-2 (|:| |func| *2) (|:| |pole| (-108))))) + (-4 *2 (-13 (-402 *4) (-925))) (-4 *4 (-13 (-782) (-511))) + (-5 *1 (-251 *4 *2))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) - (-5 *2 (-623 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1158 *3)) (-4 *3 (-1134 *4)) (-4 *4 (-1116)) - (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1134 (-377 *3)))))) + (|partial| -12 (-5 *2 (-1 (-495) (-585 (-495)))) (-5 *1 (-110)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-495) (-585 (-495)))) (-5 *1 (-110))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))) - (-5 *2 (-349)) (-5 *1 (-181))))) + (-12 (-5 *2 (-1078 (-519))) (-5 *1 (-869)) (-5 *3 (-519))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *1 *1 *1) (-5 *1 (-790))) ((*1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1078 (-519))) (-5 *3 (-519)) (-4 *1 (-796 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) + (-12 (-4 *4 (-13 (-511) (-135))) (-5 *2 (-585 *3)) + (-5 *1 (-1133 *4 *3)) (-4 *3 (-1139 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)))) (-5 *1 (-164 *3 *2)) - (-4 *2 (-13 (-27) (-1098) (-400 (-153 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-509) (-779) (-955 (-517)))) - (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 (-153 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-1102 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-1102 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) - (-4 *3 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) - (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) - ((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-867 (-199)) (-199) (-199))) - (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-196 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-4 *1 (-227 *3)))) - ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) + (-12 (-5 *2 - (-2 (|:| -3179 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) (-4 *5 (-333)) + (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) + (|:| |lb| (-585 (-775 (-201)))) (|:| |cf| (-585 (-288 (-201)))) + (|:| |ub| (-585 (-775 (-201)))))) + (-5 *1 (-242))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-775 *4)) (-5 *3 (-558 *4)) (-5 *5 (-108)) + (-4 *4 (-13 (-1103) (-29 *6))) + (-4 *6 (-13 (-423) (-782) (-959 (-519)) (-581 (-519)))) + (-5 *1 (-200 *6 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-423)) + (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-901 *3 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853))))) +(((*1 *1 *2) + (-12 (-5 *2 (-379 (-519))) (-4 *1 (-509 *3)) + (-4 *3 (-13 (-376) (-1103))))) + ((*1 *1 *2) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-509 *2)) (-4 *2 (-13 (-376) (-1103)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-592 *4)) (-4 *4 (-314 *5 *6 *7)) + (-4 *5 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))) + (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) (-5 *2 - (-2 (|:| |poly| *6) (|:| -1375 (-377 *6)) - (|:| |special| (-377 *6)))) - (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-820 *3 *4)) - (-4 *3 (-1134 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) - (-5 *2 (-2 (|:| -3287 *3) (|:| -3302 *3))) (-5 *1 (-820 *3 *5)) - (-4 *3 (-1134 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) - (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) - (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) - (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) - (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) - (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) - (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1047 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) - (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) - (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1047 *5 *6 *7 *8 *9))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-123)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *3 (-583 (-236))) - (-5 *1 (-234)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-236)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-437)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-349)))) (-5 *1 (-437))))) -(((*1 *2) - (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-387 *3))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) + (-5 *1 (-741 *5 *6 *7 *4))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-686))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1082)) + (-4 *4 (-13 (-782) (-280) (-959 (-519)) (-581 (-519)) (-135))) + (-5 *1 (-739 *4 *2)) (-4 *2 (-13 (-29 *4) (-1103) (-885))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-790))) ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1) (-5 *1 (-790))) + ((*1 *2 *3) + (-12 (-5 *2 (-1063 *3)) (-5 *1 (-1067 *3)) (-4 *3 (-968))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-335) (-780))) + (-5 *2 (-2 (|:| |start| *3) (|:| -3433 (-390 *3)))) + (-5 *1 (-164 *4 *3)) (-4 *3 (-1139 (-154 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157))))) (((*1 *2 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) - (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964)))) - ((*1 *2 *3) - (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) - (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) - (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4197 "*"))) (-4 *2 (-964))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) - (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) - (-5 *2 (-2 (|:| -1570 (-377 *5)) (|:| |poly| *3))) - (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1134 (-377 *5)))))) + (-12 (-5 *2 (-379 (-519))) (-5 *1 (-291 *3 *4 *5)) + (-4 *3 (-13 (-335) (-782))) (-14 *4 (-1082)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-5 *2 (-800 (-891 *3) (-891 *3))) (-5 *1 (-891 *3)) + (-4 *3 (-892))))) +(((*1 *2 *3) (-12 (-5 *3 (-351)) (-5 *2 (-201)) (-5 *1 (-278))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1078 *1)) (-4 *1 (-423)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1078 *6)) (-4 *6 (-876 *5 *3 *4)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *5 (-836)) (-5 *1 (-428 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1078 *1)) (-4 *1 (-836))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) (((*1 *2 *2) - (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-955 (-517))) - (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) + (-12 (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) (-4 *2 - (-13 (-333) (-273) - (-10 -8 (-15 -3858 ((-1029 *3 (-556 $)) $)) - (-15 -2082 ((-1029 *3 (-556 $)) $)) - (-15 -2262 ($ (-1029 *3 (-556 $)))))))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1024)) (-5 *1 (-104)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1006)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1060)) (-5 *1 (-1094))))) -(((*1 *1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1008 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1008 *3)) (-5 *1 (-829 *3)) (-4 *3 (-1006))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) - (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107))))) + (-13 (-335) (-275) + (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) + (-15 -2866 ((-1034 *3 (-558 $)) $)) + (-15 -2217 ($ (-1034 *3 (-558 $)))))))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-982 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782))))) +(((*1 *1) + (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-519)) (-14 *3 (-705)) + (-4 *4 (-157))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-1006 (-379 (-519))))) (-5 *1 (-238)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-1006 (-351)))) (-5 *1 (-238))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2133 *4))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-845)) (-4 *1 (-677 *3)) (-4 *3 (-156))))) + (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) + (-4 *3 (-13 (-335) (-1103) (-925)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1078 *4)) (-4 *4 (-321)) + (-5 *2 (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029)))))) + (-5 *1 (-318 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-705)) (-4 *4 (-321)) (-5 *1 (-193 *4 *2)) + (-4 *2 (-1139 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-519)) (-5 *1 (-631 *2)) (-4 *2 (-1139 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-4 *1 (-1139 *3)) (-4 *3 (-968))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| (-108)) (|:| -1890 *4)))) + (-5 *1 (-710 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1139 (-47)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-1131 *5 *4)) (-5 *1 (-1075 *4 *5 *6)) - (-4 *4 (-964)) (-14 *5 (-1077)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-1131 *5 *4)) (-5 *1 (-1150 *4 *5 *6)) - (-4 *4 (-964)) (-14 *5 (-1077)) (-14 *6 *4)))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-333)) (-4 *3 (-964)) - (-5 *1 (-1062 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (-517) (-199) (-1077) (-1060) (-1082))) - (-5 *1 (-1082))))) -(((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-414 *3)) (-4 *3 (-964))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3)) - (-4 *3 (-1006))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1006))))) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) - (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) - (-5 *1 (-907 *3 *4 *5 *6)) (-4 *6 (-873 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) - (-4 *4 (-13 (-1006) (-33)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-517)) (|has| *1 (-6 -4186)) (-4 *1 (-374)) - (-5 *2 (-845))))) -(((*1 *2 *3) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108))))) +(((*1 *2 *3) + (-12 (-4 *4 (-423)) (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *2 (-585 *3)) (-5 *1 (-901 *4 *5 *6 *3)) + (-4 *3 (-982 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438)))) + ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-438))))) +(((*1 *2 *3 *4) (-12 (-5 *3 - (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) - (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-938 *4)) - (-4 *4 (-1134 (-517)))))) + (-585 + (-2 (|:| |eqzro| (-585 *8)) (|:| |neqzro| (-585 *8)) + (|:| |wcond| (-585 (-879 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1163 (-379 (-879 *5)))) + (|:| -2070 (-585 (-1163 (-379 (-879 *5)))))))))) + (-5 *4 (-1065)) (-4 *5 (-13 (-280) (-135))) (-4 *8 (-876 *5 *7 *6)) + (-4 *6 (-13 (-782) (-560 (-1082)))) (-4 *7 (-727)) (-5 *2 (-519)) + (-5 *1 (-851 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1078 (-519))) (-5 *2 (-519)) (-5 *1 (-869))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-519))) (-4 *3 (-968)) (-5 *1 (-94 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-94 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-94 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-5 *1 (-1092 *2)) (-4 *2 (-335))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-782))))) (((*1 *1 *1) - (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) - (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1112)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1112)) (-5 *1 (-57 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-209 *3)) - (-4 *3 (-1006)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4195)) (-4 *1 (-209 *2)) (-4 *2 (-1006)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-254 *2)) (-4 *2 (-1112)) (-4 *2 (-1006)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1112)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1006)) - (-5 *1 (-670 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1006)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) - (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4))))) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) - (-5 *2 (-953)) (-5 *1 (-689))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-199) (-199) (-199))) - (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) - (-5 *5 (-1001 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1037 (-199))) - (-5 *1 (-630))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) + (-12 (-5 *3 (-1065)) (-5 *2 (-585 (-1087))) (-5 *1 (-807))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-790) (-790))) (-5 *1 (-110)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-790) (-585 (-790)))) (-5 *1 (-110)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) + (|partial| -12 (-5 *2 (-1 (-790) (-585 (-790)))) (-5 *1 (-110)))) ((*1 *2 *1) - (-12 (-5 *2 (-1163)) (-5 *1 (-189 *3)) + (-12 (-5 *2 (-1168)) (-5 *1 (-191 *3)) (-4 *3 - (-13 (-779) - (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 (*2 $)) - (-15 -3012 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-364)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-364)))) - ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-467)))) - ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1093)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1093))))) + (-13 (-782) + (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 (*2 $)) + (-15 -2056 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-366)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-366)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-469)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1098)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-1098))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1018)) (-4 *3 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-400 *3)))) + (-12 (-5 *2 (-1148 *3 *4 *5)) (-5 *1 (-291 *3 *4 *5)) + (-4 *3 (-13 (-335) (-782))) (-14 *4 (-1082)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-519)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-390 *3)) (-4 *3 (-511)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-634)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) - (-4 *3 (-1006)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) - (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *3)) - (-5 *1 (-874 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-333) - (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) - (-15 -2082 (*7 $)))))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-816 *3)) (|:| |den| (-816 *3)))) - (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1082))) (-5 *1 (-1082)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-1082))) (-5 *1 (-1082))))) -(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-953)) - (-5 *1 (-682))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-816 *6))) - (-5 *5 (-1 (-813 *6 *8) *8 (-816 *6) (-813 *6 *8))) (-4 *6 (-1006)) - (-4 *8 (-13 (-964) (-558 (-816 *6)) (-955 *7))) (-5 *2 (-813 *6 *8)) - (-4 *7 (-13 (-964) (-779))) (-5 *1 (-865 *6 *7 *8))))) -(((*1 *2) - (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-387 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-850))))) + (-12 (-4 *2 (-1011)) (-5 *1 (-648 *3 *2 *4)) (-4 *3 (-782)) + (-14 *4 + (-1 (-108) (-2 (|:| -2770 *3) (|:| -1690 *2)) + (-2 (|:| -2770 *3) (|:| -1690 *2))))))) +(((*1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1166)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1166))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-819 *4)) (-4 *4 (-1011)) (-5 *2 (-108)) + (-5 *1 (-816 *4 *5)) (-4 *5 (-1011)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-819 *5)) (-4 *5 (-1011)) (-5 *2 (-108)) + (-5 *1 (-817 *5 *3)) (-4 *3 (-1117)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 *6)) (-5 *4 (-819 *5)) (-4 *5 (-1011)) + (-4 *6 (-1117)) (-5 *2 (-108)) (-5 *1 (-817 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-641 *3 *4)) (-4 *3 (-1117)) (-4 *4 (-1117))))) +(((*1 *1 *1) (-5 *1 (-790))) ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2) (-12 (-5 *1 (-1130 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3) + (-12 (-5 *3 (-519)) (-4 *4 (-1139 (-379 *3))) (-5 *2 (-848)) + (-5 *1 (-840 *4 *5)) (-4 *5 (-1139 (-379 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1163 *1)) (-4 *1 (-339 *4)) (-4 *4 (-157)) + (-5 *2 (-625 *4)))) + ((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-625 *4)) (-5 *1 (-388 *3 *4)) + (-4 *3 (-389 *4)))) + ((*1 *2) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-625 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) + (-5 *2 (-2 (|:| |num| (-1163 *4)) (|:| |den| *4)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-585 *6)) (-4 *6 (-782)) (-4 *4 (-335)) (-4 *5 (-727)) + (-5 *2 + (-2 (|:| |mval| (-625 *4)) (|:| |invmval| (-625 *4)) + (|:| |genIdeal| (-471 *4 *5 *6 *7)))) + (-5 *1 (-471 *4 *5 *6 *7)) (-4 *7 (-876 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-1011) (-33))) (-5 *1 (-1047 *3 *2)) + (-4 *3 (-13 (-1011) (-33)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -1931 *6) (|:| |sol?| (-108))) (-519) + *6)) + (-4 *6 (-335)) (-4 *7 (-1139 *6)) + (-5 *2 (-2 (|:| |answer| (-536 (-379 *7))) (|:| |a0| *6))) + (-5 *1 (-529 *6 *7)) (-5 *3 (-379 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-585 (-585 (-585 *5)))) (-5 *3 (-1 (-108) *5 *5)) + (-5 *4 (-585 *5)) (-4 *5 (-782)) (-5 *1 (-1089 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *1 *1) (|partial| -4 *1 (-1058)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-351)))) + ((*1 *1 *1 *1) (-4 *1 (-504))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) + ((*1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-705))))) +(((*1 *2 *3) + (-12 (-4 *4 (-321)) (-5 *2 (-390 (-1078 (-1078 *4)))) + (-5 *1 (-1116 *4)) (-5 *3 (-1078 (-1078 *4)))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-519)) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1112))))) + (-12 (-5 *3 (-519)) (-4 *1 (-590 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-108)) (-5 *3 (-585 (-238))) (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-267 *2)) (-4 *2 (-661)) (-4 *2 (-1117))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -4003 *3) (|:| -1725 (-703)))) (-5 *1 (-535 *3)) - (-4 *3 (-502))))) + (-12 (-4 *4 (-1011)) (-4 *2 (-827 *4)) (-5 *1 (-627 *4 *2 *5 *3)) + (-4 *5 (-345 *2)) (-4 *3 (-13 (-345 *4) (-10 -7 (-6 -4221))))))) +(((*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2) + (-12 (-4 *1 (-321)) + (-5 *2 (-585 (-2 (|:| -1921 (-519)) (|:| -1690 (-519)))))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-201))) + (-5 *2 (-957)) (-5 *1 (-692))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1164)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-92))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1166))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1087))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1762 (-703)))) - (-5 *1 (-714 *3)) (-4 *3 (-964)))) + (-2 (|:| -3031 *3) (|:| |gap| (-705)) (|:| -3573 (-716 *3)) + (|:| -1354 (-716 *3)))) + (-5 *1 (-716 *3)) (-4 *3 (-968)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) + (-5 *2 + (-2 (|:| -3031 *1) (|:| |gap| (-705)) (|:| -3573 *1) + (|:| -1354 *1))) + (-4 *1 (-982 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1762 (-703)))) - (-4 *1 (-978 *3 *4 *5))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107)) - (-5 *1 (-774 *4 *5)) (-14 *4 (-703))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1006))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798))) - (-5 *4 (-583 (-845))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798))) - (-5 *4 (-583 (-845))) (-5 *1 (-437)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437)))) - ((*1 *1 *1) (-5 *1 (-437)))) -(((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *3 (-199)) - (-5 *2 (-953)) (-5 *1 (-681))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1143 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) - (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1077)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) - ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) - ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1006)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) - (-14 *4 - (-1 (-107) (-2 (|:| -2803 *3) (|:| -1725 *2)) - (-2 (|:| -2803 *3) (|:| -1725 *2))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-779)) - (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1044 *4 *2)) (-14 *4 (-845)) - (-4 *2 (-13 (-964) (-10 -7 (-6 (-4197 "*"))))) (-5 *1 (-826 *4 *2))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1091))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-908 *4 *5 *6 *7 *3)) - (-4 *3 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-107)) - (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-517)))) - ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517))))) -(((*1 *1 *1) (-4 *1 (-569))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921) (-1098)))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) - (-5 *4 (-199)) (-5 *2 (-953)) (-5 *1 (-688))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1158 *4)) (-5 *3 (-1024)) (-4 *4 (-319)) - (-5 *1 (-487 *4))))) -(((*1 *1) (-5 *1 (-1160)))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1159)))) - ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *1) - (-12 + (-12 (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 - (-1158 - (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) - (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1782 (-517)) - (|:| -2850 (-517)) (|:| |spline| (-517)) (|:| -3541 (-517)) - (|:| |axesColor| (-798)) (|:| -2464 (-517)) - (|:| |unitsColor| (-798)) (|:| |showing| (-517))))) - (-5 *1 (-1159))))) -(((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) - (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-349)) (-5 *1 (-976))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)) (-4 *2 (-333)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) - (-4 *2 (-593 *4))))) + (-2 (|:| -3031 *1) (|:| |gap| (-705)) (|:| -3573 *1) + (|:| -1354 *1))) + (-4 *1 (-982 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-585 *1)) (|has| *1 (-6 -4222)) (-4 *1 (-933 *3)) + (-4 *3 (-1117))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1071 *2 *3)) (-14 *2 (-848)) (-4 *3 (-968))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-687))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-517)) (|has| *1 (-6 -4196)) (-4 *1 (-343 *3)) - (-4 *3 (-1112))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1011)) (-5 *1 (-98 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1011))))) (((*1 *2 *3) - (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) - (-4 *3 (-343 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) - (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-623 *4)) (-4 *4 (-912 *2)) (-4 *2 (-509)) - (-5 *1 (-626 *2 *4)))) + (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-585 (-1082))) (-4 *5 (-423)) + (-5 *2 (-451 *4 *5)) (-5 *1 (-573 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *1 (-314 *4 *3 *5)) (-4 *4 (-1121)) (-4 *3 (-1139 *4)) + (-4 *5 (-1139 (-379 *3))) (-5 *2 (-108)))) ((*1 *2 *3) - (-12 (-4 *4 (-912 *2)) (-4 *2 (-509)) (-5 *1 (-1127 *2 *4 *3)) - (-4 *3 (-1134 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1081))))) -(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-957))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) - (-5 *2 (-107))))) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-760))))) +(((*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1 (-351))) (-5 *1 (-961))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-716 *2)) (-4 *2 (-968))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-108)) (-5 *1 (-544 *3)) (-4 *3 (-968))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1078 *3)) (-5 *1 (-841 *3)) (-4 *3 (-280))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1119))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-275)))) + ((*1 *1 *1) (-4 *1 (-275))) ((*1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1163 *5)) (-4 *5 (-726)) (-5 *2 (-108)) + (-5 *1 (-777 *4 *5)) (-14 *4 (-705))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1063 *4)) (-5 *3 (-519)) (-4 *4 (-968)) + (-5 *1 (-1067 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-519)) (-5 *1 (-1155 *3 *4 *5)) (-4 *3 (-968)) + (-14 *4 (-1082)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-104))) (-5 *1 (-159))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1117)) (-5 *2 (-705)) + (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-295 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-124)) + (-5 *2 (-705)))) + ((*1 *2) + (-12 (-4 *4 (-335)) (-5 *2 (-705)) (-5 *1 (-300 *3 *4)) + (-4 *3 (-301 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-333 *3)) (-4 *3 (-1011)))) + ((*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-358 *3)) (-4 *3 (-1011)))) + ((*1 *2) + (-12 (-4 *4 (-1011)) (-5 *2 (-705)) (-5 *1 (-396 *3 *4)) + (-4 *3 (-397 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-705)) (-5 *1 (-588 *3 *4 *5)) (-4 *3 (-1011)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-157)) (-4 *5 (-1139 *4)) (-5 *2 (-705)) + (-5 *1 (-658 *3 *4 *5)) (-4 *3 (-659 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-754 *3)) (-4 *3 (-782)))) + ((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-929)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) + (-4 *3 (-1139 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-1158 (-623 *4))) (-5 *1 (-88 *4 *5)) - (-5 *3 (-623 *4)) (-4 *5 (-593 *4))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1158 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) - (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-583 *4)) - (-5 *1 (-1014 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-703)) (-4 *5 (-509)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -1395 (-109)) (|:| |arg| (-583 (-816 *3))))) - (-5 *1 (-816 *3)) (-4 *3 (-1006)))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (-5 *2 (-351)) (-5 *1 (-170))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4221)) (-4 *1 (-139 *3)) + (-4 *3 (-1117)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1117)) (-5 *1 (-549 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-612 *3)) (-4 *3 (-1117)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-816 *4))) - (-5 *1 (-816 *4)) (-4 *4 (-1006))))) + (|partial| -12 (-4 *1 (-1111 *4 *5 *3 *2)) (-4 *4 (-511)) + (-4 *5 (-727)) (-4 *3 (-782)) (-4 *2 (-982 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-705)) (-5 *1 (-1115 *2)) (-4 *2 (-1117))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-583 *7) *7 (-1073 *7))) (-5 *5 (-1 (-388 *7) *7)) - (-4 *7 (-1134 *6)) (-4 *6 (-13 (-333) (-134) (-955 (-377 (-517))))) - (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -3817 *3)))) - (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) - (-4 *8 (-593 (-377 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1134 *5)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-5 *2 - (-583 (-2 (|:| |frac| (-377 *6)) (|:| -3817 (-591 *6 (-377 *6)))))) - (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6)))))) + (|partial| -12 (-5 *3 (-705)) (-4 *4 (-280)) (-4 *6 (-1139 *4)) + (-5 *2 (-1163 (-585 *6))) (-5 *1 (-426 *4 *6)) (-5 *5 (-585 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-964)) (-4 *3 (-724)) - (-4 *2 (-333)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-223 *3 *4)) + (-14 *3 (-585 (-1082))) (-4 *4 (-968)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-519))) (-14 *3 (-585 (-1082))) + (-5 *1 (-425 *3 *4 *5)) (-4 *4 (-968)) + (-4 *5 (-214 (-3532 *3) (-705))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-585 (-519))) (-5 *1 (-451 *3 *4)) + (-14 *3 (-585 (-1082))) (-4 *4 (-968))))) +(((*1 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-135)) + (-4 *3 (-280)) (-4 *3 (-511)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *1 (-901 *3 *4 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1029)) (-5 *2 (-108)) (-5 *1 (-756))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-519)) (-4 *3 (-157)) (-4 *5 (-345 *3)) + (-4 *6 (-345 *3)) (-5 *1 (-624 *3 *5 *6 *2)) + (-4 *2 (-623 *3 *5 *6))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1117)) (-5 *1 (-549 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1163 *5)) (-4 *5 (-581 *4)) (-4 *4 (-511)) + (-5 *2 (-1163 *4)) (-5 *1 (-580 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-968)) (-4 *3 (-726)) + (-4 *2 (-335)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-201)))) ((*1 *1 *1 *1) - (-3786 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1112))) - (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1112))))) - ((*1 *1 *1 *1) (-4 *1 (-333))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) + (-3730 (-12 (-5 *1 (-267 *2)) (-4 *2 (-335)) (-4 *2 (-1117))) + (-12 (-5 *1 (-267 *2)) (-4 *2 (-444)) (-4 *2 (-1117))))) + ((*1 *1 *1 *1) (-4 *1 (-335))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-351)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1029 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) - (-4 *1 (-400 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-442))) + (-12 (-5 *2 (-1034 *3 (-558 *1))) (-4 *3 (-511)) (-4 *3 (-782)) + (-4 *1 (-402 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-444))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1158 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-493))) + (-12 (-5 *2 (-1163 *3)) (-4 *3 (-321)) (-5 *1 (-489 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-495))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) - (-4 *3 (|SubsetCategory| (-659) *4)))) + (-12 (-4 *4 (-157)) (-5 *1 (-564 *2 *4 *3)) (-4 *2 (-37 *4)) + (-4 *3 (|SubsetCategory| (-661) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) - (-4 *2 (|SubsetCategory| (-659) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))) + (-12 (-4 *4 (-157)) (-5 *1 (-564 *3 *4 *2)) (-4 *3 (-37 *4)) + (-4 *2 (|SubsetCategory| (-661) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-157)) (-4 *2 (-335)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) - (-4 *3 (|SubsetCategory| (-659) *4)))) + (-12 (-4 *4 (-157)) (-5 *1 (-601 *2 *4 *3)) (-4 *2 (-652 *4)) + (-4 *3 (|SubsetCategory| (-661) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) - (-4 *2 (|SubsetCategory| (-659) *4)))) + (-12 (-4 *4 (-157)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-652 *4)) + (-4 *2 (|SubsetCategory| (-661) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2)) (-4 *2 (-333)))) - ((*1 *1 *1 *1) (-5 *1 (-787))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2)) (-4 *2 (-335)))) + ((*1 *1 *1 *1) (-5 *1 (-790))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) - (-4 *2 (-964)) (-14 *3 (-583 (-1077))) (-14 *4 (-583 (-703))) - (-14 *5 (-703)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509)))) + (|partial| -12 (-5 *1 (-793 *2 *3 *4 *5)) (-4 *2 (-335)) + (-4 *2 (-968)) (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-705))) + (-14 *5 (-705)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-967 *3 *4 *2 *5 *6)) (-4 *2 (-964)) - (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) + (-12 (-4 *1 (-971 *3 *4 *2 *5 *6)) (-4 *2 (-968)) + (-4 *5 (-214 *4 *2)) (-4 *6 (-214 *3 *2)) (-4 *2 (-335)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-333)))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-335)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-333)) (-4 *2 (-964)) (-4 *3 (-779)) - (-4 *4 (-725)) (-14 *6 (-583 *3)) - (-5 *1 (-1168 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-873 *2 *4 *3)) - (-14 *7 (-583 (-703))) (-14 *8 (-703)))) + (|partial| -12 (-4 *2 (-335)) (-4 *2 (-968)) (-4 *3 (-782)) + (-4 *4 (-727)) (-14 *6 (-585 *3)) + (-5 *1 (-1173 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-876 *2 *4 *3)) + (-14 *7 (-585 (-705))) (-14 *8 (-705)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-333)) (-4 *2 (-964)) - (-4 *3 (-775))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))) - (-5 *2 (-349)) (-5 *1 (-181))))) + (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-335)) (-4 *2 (-968)) + (-4 *3 (-778))))) (((*1 *2 *1) - (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) - (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) - ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107))))) -(((*1 *2 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-829 *4)) (-4 *4 (-1006)) (-5 *2 (-583 (-703))) - (-5 *1 (-828 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) - (-5 *3 (-583 (-517)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1073 (-517))) (-5 *1 (-866)) (-5 *3 (-517)))) - ((*1 *2 *2) - (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) - (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-34))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) - (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1149 *5)) (-5 *2 (-583 *6)) - (-5 *1 (-1151 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *2 *3) - (-12 + (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-504)) + (-5 *2 (-379 (-519))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-379 (-519))) (-5 *1 (-390 *3)) (-4 *3 (-504)) + (-4 *3 (-511)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-504)) (-5 *2 (-379 (-519))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-732 *3)) (-4 *3 (-157)) (-4 *3 (-504)) + (-5 *2 (-379 (-519))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-379 (-519))) (-5 *1 (-768 *3)) (-4 *3 (-504)) + (-4 *3 (-1011)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-379 (-519))) (-5 *1 (-775 *3)) (-4 *3 (-504)) + (-4 *3 (-1011)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-920 *3)) (-4 *3 (-157)) (-4 *3 (-504)) + (-5 *2 (-379 (-519))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-379 (-519))) (-5 *1 (-931 *3)) + (-4 *3 (-959 *2))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-585 *10)) (-5 *5 (-108)) (-4 *10 (-987 *6 *7 *8 *9)) + (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *9 (-982 *6 *7 *8)) (-5 *2 - (-2 (|:| |partsol| (-1158 (-377 (-876 *4)))) - (|:| -3700 (-583 (-1158 (-377 (-876 *4))))))) - (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) - (-4 *7 (-873 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1077)))) - (-4 *6 (-725)) (-5 *1 (-848 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-14 *4 (-583 (-1077))) (-4 *5 (-421)) + (-585 + (-2 (|:| -3257 (-585 *9)) (|:| -1890 *10) (|:| |ineq| (-585 *9))))) + (-5 *1 (-912 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-585 *10)) (-5 *5 (-108)) (-4 *10 (-987 *6 *7 *8 *9)) + (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) (-4 *9 (-982 *6 *7 *8)) (-5 *2 - (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) - (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5)))))) + (-585 + (-2 (|:| -3257 (-585 *9)) (|:| -1890 *10) (|:| |ineq| (-585 *9))))) + (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-585 *9))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-358 *2)) (-4 *2 (-1011)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-754 *2)) (-4 *2 (-782))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-587 *5)) (-4 *5 (-968)) + (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-784 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-625 *3)) (-4 *1 (-389 *3)) (-4 *3 (-157)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-968)) + (-5 *1 (-785 *2 *3)) (-4 *3 (-784 *2))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1117)) (-5 *1 (-549 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3))))) +(((*1 *1) (-4 *1 (-321))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 *5)) (-4 *5 (-402 *4)) + (-4 *4 (-13 (-511) (-782) (-135))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-585 (-1078 *5))) + (|:| |prim| (-1078 *5)))) + (-5 *1 (-404 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-511) (-782) (-135))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1078 *3)) + (|:| |pol2| (-1078 *3)) (|:| |prim| (-1078 *3)))) + (-5 *1 (-404 *4 *3)) (-4 *3 (-27)) (-4 *3 (-402 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-879 *5)) (-5 *4 (-1082)) (-4 *5 (-13 (-335) (-135))) + (-5 *2 + (-2 (|:| |coef1| (-519)) (|:| |coef2| (-519)) + (|:| |prim| (-1078 *5)))) + (-5 *1 (-886 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-585 (-879 *5))) (-5 *4 (-585 (-1082))) + (-4 *5 (-13 (-335) (-135))) + (-5 *2 + (-2 (|:| -3031 (-585 (-519))) (|:| |poly| (-585 (-1078 *5))) + (|:| |prim| (-1078 *5)))) + (-5 *1 (-886 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-585 (-879 *6))) (-5 *4 (-585 (-1082))) (-5 *5 (-1082)) + (-4 *6 (-13 (-335) (-135))) + (-5 *2 + (-2 (|:| -3031 (-585 (-519))) (|:| |poly| (-585 (-1078 *6))) + (|:| |prim| (-1078 *6)))) + (-5 *1 (-886 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968)) + (-5 *2 (-2 (|:| |k| (-754 *3)) (|:| |c| *4)))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-125))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-126))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-189 *2)) + (-12 (-5 *1 (-191 *2)) (-4 *2 - (-13 (-779) - (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) - (-15 -3012 ((-1163) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1112)))) + (-13 (-782) + (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 ((-1168) $)) + (-15 -2056 ((-1168) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-267 *2)) (-4 *2 (-21)) (-4 *2 (-1117)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-21)) (-4 *2 (-1117)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) + (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2)))) - ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2)))) + ((*1 *1 *1) (-5 *1 (-790))) ((*1 *1 *1 *1) (-5 *1 (-790))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-21))))) -(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502))))) -(((*1 *2 *3) - (-12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-5 *2 (-1 (-107) *5)) - (-5 *1 (-814 *4 *5)) (-4 *5 (-1112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-509)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-897 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-845)) (-5 *1 (-718))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-851))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514))))) -(((*1 *1) (-5 *1 (-300)))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-583 (-1077))) (-5 *1 (-1080)) (-5 *3 (-1077))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4196)) (-4 *4 (-333)) (-4 *5 (-343 *4)) - (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) - (-4 *3 (-621 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4196)) (-4 *4 (-509)) (-4 *5 (-343 *4)) - (-4 *6 (-343 *4)) (-4 *7 (-912 *4)) (-4 *8 (-343 *7)) - (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) - (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) - (-4 *10 (-621 *7 *8 *9)))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-870 (-201))) (-5 *1 (-1114)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-21))))) +(((*1 *2 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-782)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-792 *3)) (-14 *3 (-585 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-891 *3)) (-4 *3 (-892)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-913)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1004 *3)) (-4 *3 (-1117)))) ((*1 *2 *1) - (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) + (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-968)) (-4 *4 (-726)) + (-5 *2 (-1082)))) + ((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1159 *3)) (-14 *3 *2)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *2 + (-2 (|:| |solns| (-585 *5)) + (|:| |maps| (-585 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1037 *3 *5)) (-4 *3 (-1139 *5))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1065)) (-5 *1 (-913)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1006 *4)) (-4 *4 (-1117)) + (-5 *1 (-1004 *4))))) +(((*1 *1 *1) (-5 *1 (-980)))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-585 *2)) (-4 *2 (-1011)) (-4 *2 (-1117))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-511)) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-848)) (-4 *6 (-13 (-511) (-782))) + (-5 *2 (-585 (-288 *6))) (-5 *1 (-197 *5 *6)) (-5 *3 (-288 *6)) + (-4 *5 (-968)))) + ((*1 *2 *1) (-12 (-5 *1 (-390 *2)) (-4 *2 (-511)))) + ((*1 *2 *3) + (-12 (-5 *3 (-536 *5)) (-4 *5 (-13 (-29 *4) (-1103))) + (-4 *4 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) + (-5 *2 (-585 *5)) (-5 *1 (-534 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-536 (-379 (-879 *4)))) + (-4 *4 (-13 (-423) (-959 (-519)) (-782) (-581 (-519)))) + (-5 *2 (-585 (-288 *4))) (-5 *1 (-539 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-780)) (-4 *2 (-1056 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) - (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) - (-4 *3 (-621 *4 *5 *6)))) + (-12 (-5 *3 (-585 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-780)) + (-4 *2 (-1056 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1176 (-1082) *3)) (-5 *1 (-1183 *3)) (-4 *3 (-968)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) - (-5 *2 (-583 *7))))) + (-12 (-5 *2 (-1176 *3 *4)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-968))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) (-4 *1 (-458))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-333)) - (-5 *2 (-2 (|:| -1375 (-388 *3)) (|:| |special| (-388 *3)))) - (-5 *1 (-660 *5 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-703)) (-4 *6 (-1006)) (-4 *3 (-824 *6)) - (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) - (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4195))))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-142))) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-143))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-189 *2)) + (-12 (-5 *1 (-191 *2)) (-4 *2 - (-13 (-779) - (-10 -8 (-15 -2612 ((-1060) $ (-1077))) (-15 -1744 ((-1163) $)) - (-15 -3012 ((-1163) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1112)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1112)))) + (-13 (-782) + (-10 -8 (-15 -2598 ((-1065) $ (-1082))) (-15 -1691 ((-1168) $)) + (-15 -2056 ((-1168) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-267 *2)) (-4 *2 (-25)) (-4 *2 (-1117)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-267 *2)) (-4 *2 (-25)) (-4 *2 (-1117)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-123)))) + (-12 (-4 *1 (-295 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-124)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) - (-4 *2 (-1134 *3)))) + (-12 (-4 *3 (-13 (-335) (-135))) (-5 *1 (-371 *3 *2)) + (-4 *2 (-1139 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) + (-12 (-4 *1 (-441 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) - (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-493))) + (-12 (-4 *2 (-335)) (-4 *3 (-727)) (-4 *4 (-782)) + (-5 *1 (-471 *2 *3 *4 *5)) (-4 *5 (-876 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-495))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-345 *2)) + (-4 *4 (-345 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-25))))) -(((*1 *2 *2) (-12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -2242 *4))) (-5 *5 (-703)) - (-4 *4 (-873 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-418 *6 *7 *8 *4))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-867 (-199))) (-5 *4 (-798)) (-5 *5 (-845)) - (-5 *2 (-1163)) (-5 *1 (-437)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-867 (-199))) (-5 *2 (-1163)) (-5 *1 (-437)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *4 (-798)) (-5 *5 (-845)) - (-5 *2 (-1163)) (-5 *1 (-437))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-1159)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1159)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1159)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-583 (-1060))) (-5 *2 (-1060)) (-5 *1 (-1160)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1160)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1160))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) (-4 *1 (-458))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *1 *2) - (-12 + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-968)) (-5 *1 (-1067 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-870 (-201))) (-5 *1 (-1114)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-25))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-759)) (-5 *3 (-585 (-1082))) (-5 *1 (-760))))) +(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-694))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1163 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-335)) + (-4 *1 (-659 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1139 *5)) + (-5 *2 (-625 *5))))) +(((*1 *1) (-5 *1 (-409)))) +(((*1 *2 *3) + (-12 (-5 *3 (-379 *5)) (-4 *5 (-1139 *4)) (-4 *4 (-511)) + (-4 *4 (-968)) (-4 *2 (-1154 *4)) (-5 *1 (-1157 *4 *5 *6 *2)) + (-4 *6 (-595 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-625 *4)) (-5 *3 (-848)) (|has| *4 (-6 (-4223 "*"))) + (-4 *4 (-968)) (-5 *1 (-950 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-585 (-625 *4))) (-5 *3 (-848)) + (|has| *4 (-6 (-4223 "*"))) (-4 *4 (-968)) (-5 *1 (-950 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-585 *2)) (-4 *2 (-1011)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-558 *4)) (-5 *6 (-1078 *4)) + (-4 *4 (-13 (-402 *7) (-27) (-1103))) + (-4 *7 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 - (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) - (|:| |genIdeal| (-469 *3 *4 *5 *6)))) - (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787))))) -(((*1 *2 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1158 (-1158 (-517)))) (-5 *1 (-435))))) -(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1112)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-703)) (-4 *5 (-509)) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) + (-5 *1 (-515 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1011)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-558 *4)) (-5 *6 (-379 (-1078 *4))) + (-4 *4 (-13 (-402 *7) (-27) (-1103))) + (-4 *7 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-890 *5 *3)) (-4 *3 (-1134 *5))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-845)) (-4 *5 (-278)) (-4 *3 (-1134 *5)) - (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) - (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2070 (-585 *4)))) + (-5 *1 (-515 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1011))))) (((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-897 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) - (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -3292 *1))) - (-4 *1 (-978 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *2 (-2 (|:| -1570 *1) (|:| |gap| (-703)) (|:| -3292 *1))) - (-4 *1 (-978 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-1060)) (-5 *1 (-718))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1077)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-583 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2791 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1098) (-27) (-400 *8))) - (-4 *8 (-13 (-421) (-779) (-134) (-955 *3) (-579 *3))) - (-5 *3 (-517)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3302 *4) (|:| |sol?| (-107)))) - (-5 *1 (-932 *8 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) (-4 *1 (-458))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1042 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) - (-4 *4 (-13 (-1006) (-33))) (-4 *5 (-13 (-1006) (-33))) - (-5 *1 (-1043 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-583 (-1042 *3 *4))) (-4 *3 (-13 (-1006) (-33))) - (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851)) - (-5 *1 (-849 *3)) (-4 *3 (-558 (-493))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1077)) (-5 *5 (-1001 (-199))) (-5 *2 (-851)) - (-5 *1 (-849 *3)) (-4 *3 (-558 (-493))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) - (-5 *1 (-850)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) - (-5 *1 (-850)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) - (-5 *1 (-851)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) - (-5 *1 (-851)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1001 (-199))) - (-5 *1 (-851)))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-490 *3)) (-4 *3 (-13 (-661) (-25)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-108)) (-5 *1 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) + (-4 *4 (-13 (-1011) (-33)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2292 *3))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-1168)) (-5 *1 (-351))))) +(((*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-757))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1046)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-585 *2)) (-4 *2 (-1011)) (-4 *2 (-1117))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-791)))) + ((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1168)) (-5 *1 (-791)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1065)) (-5 *4 (-790)) (-5 *2 (-1168)) (-5 *1 (-791)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-519)) (-5 *2 (-1168)) (-5 *1 (-1063 *4)) + (-4 *4 (-1011)) (-4 *4 (-1117))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-585 *3)) (-5 *1 (-42 *4 *3)) + (-4 *3 (-389 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1063 (-379 *3))) (-5 *1 (-158 *3)) (-4 *3 (-280))))) +(((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -2833 (-585 (-790))) (|:| -2494 (-585 (-790))) + (|:| |presup| (-585 (-790))) (|:| -2693 (-585 (-790))) + (|:| |args| (-585 (-790))))) + (-5 *1 (-1082)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-585 (-790)))) (-5 *1 (-1082))))) +(((*1 *1 *2) (-12 (-4 *1 (-605 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-1082))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1163 *4)) (-5 *3 (-625 *4)) (-4 *4 (-335)) + (-5 *1 (-606 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-335)) + (-4 *5 (-13 (-345 *4) (-10 -7 (-6 -4222)))) + (-4 *2 (-13 (-345 *4) (-10 -7 (-6 -4222)))) + (-5 *1 (-607 *4 *5 *2 *3)) (-4 *3 (-623 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-585 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-335)) + (-5 *1 (-749 *2 *3)) (-4 *3 (-595 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *1 (-1037 *3 *2)) (-4 *3 (-1139 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-1163 (-585 (-519)))) (-5 *1 (-450)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-1001 (-199))) - (-5 *1 (-851)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) - (-5 *1 (-851)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-549 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-1001 (-199))) - (-5 *1 (-851))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1117)) (-5 *1 (-1063 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-848)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-705))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *2)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-759))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-968)) + (-4 *2 (-1123 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-552 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-1117)) (-5 *2 (-1168))))) +(((*1 *2 *1) + (-12 (-4 *1 (-228 *3 *4 *2 *5)) (-4 *3 (-968)) (-4 *4 (-782)) + (-4 *5 (-727)) (-4 *2 (-241 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-108)) (-5 *1 (-764))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-585 *1)) (-4 *1 (-280))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-201))) (-5 *2 (-1163 (-634))) (-5 *1 (-278))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-831 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-879 (-379 (-519)))) (-5 *4 (-1082)) + (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-585 (-201))) (-5 *1 (-273))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-585 + (-2 + (|:| -2583 + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) + (|:| |yinit| (-585 (-201))) (|:| |intvals| (-585 (-201))) + (|:| |g| (-288 (-201))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (|:| -3100 + (-2 (|:| |stiffness| (-351)) (|:| |stability| (-351)) + (|:| |expense| (-351)) (|:| |accuracy| (-351)) + (|:| |intermediateResults| (-351))))))) + (-5 *1 (-738))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1011) (-33))) + (-4 *3 (-13 (-1011) (-33)))))) +(((*1 *2 *3) (-12 (-5 *3 (-495)) (-5 *1 (-494 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-495))))) +(((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782))))) (((*1 *2 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1058 (-876 *4)) (-1058 (-876 *4)))) - (-5 *1 (-1166 *4)) (-4 *4 (-333))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1016))))) + (-12 (-5 *3 (-585 *7)) (-4 *7 (-876 *4 *5 *6)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-1168)) + (-5 *1 (-420 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) + (-4 *4 (-13 (-782) (-511)))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *1) + (-12 (-4 *3 (-335)) (-4 *4 (-727)) (-4 *5 (-782)) (-5 *2 (-108)) + (-5 *1 (-471 *3 *4 *5 *6)) (-4 *6 (-876 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-657)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-661)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-692))))) +(((*1 *2 *1) + (-12 (-5 *2 (-705)) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1081)) (-5 *1 (-302))))) +(((*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-1134 *5)) (-4 *5 (-278)) - (-5 *2 (-703)) (-5 *1 (-424 *5 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) - (-5 *2 (-953)) (-5 *1 (-680))))) + (-12 (-5 *3 (-625 *1)) (-5 *4 (-1163 *1)) (-4 *1 (-581 *5)) + (-4 *5 (-968)) + (-5 *2 (-2 (|:| -2488 (-625 *5)) (|:| |vec| (-1163 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-625 *1)) (-4 *1 (-581 *4)) (-4 *4 (-968)) + (-5 *2 (-625 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) + ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-830 *3)) (-4 *3 (-1011)) (-5 *2 (-108)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-831 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1009 *3)) (-4 *3 (-1011)) (-5 *2 (-108))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-997 *3)) (-4 *3 (-125))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1073 *7)) (-5 *3 (-517)) (-4 *7 (-873 *6 *4 *5)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) - (-5 *1 (-291 *4 *5 *6 *7))))) -(((*1 *1 *1) (|partial| -4 *1 (-1053)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1159)))) - ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *1 *1) (-4 *1 (-458))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) + (-12 (-4 *3 (-335)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1154 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-519))) (-5 *2 (-831 (-519))) (-5 *1 (-844)))) + ((*1 *2) (-12 (-5 *2 (-831 (-519))) (-5 *1 (-844))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1098) (-882) (-29 *4)))))) + (-12 (-5 *3 (-519)) (-4 *4 (-13 (-511) (-135))) (-5 *1 (-496 *4 *2)) + (-4 *2 (-1154 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-519)) (-4 *4 (-13 (-335) (-340) (-560 *3))) + (-4 *5 (-1139 *4)) (-4 *6 (-659 *4 *5)) (-5 *1 (-500 *4 *5 *6 *2)) + (-4 *2 (-1154 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-519)) (-4 *4 (-13 (-335) (-340) (-560 *3))) + (-5 *1 (-501 *4 *2)) (-4 *2 (-1154 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1063 *4)) (-5 *3 (-519)) (-4 *4 (-13 (-511) (-135))) + (-5 *1 (-1059 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-703)) (-4 *3 (-964)) (-4 *1 (-621 *3 *4 *5)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) + (-12 (-5 *3 (-1065)) (-4 *1 (-336 *2 *4)) (-4 *2 (-1011)) + (-4 *4 (-1011)))) ((*1 *1 *2) - (-12 (-4 *2 (-964)) (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) - (-4 *5 (-212 *3 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) - (-5 *1 (-302))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-816 *4)) (-4 *4 (-1006)) (-4 *2 (-1006)) - (-5 *1 (-813 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) - ((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131))))) -(((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1006)) (-5 *1 (-1085 *3))))) + (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1011)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) + (-5 *2 (-957)) (-5 *1 (-687))))) (((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *3) - (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *2 (-1163)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2)) - (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1094))))) -(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1163)) (-5 *1 (-1040)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1163)) (-5 *1 (-1040))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *1 *1) (-4 *1 (-458))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) - (-5 *2 (-953)) (-5 *1 (-687))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-867 (-199)))) (-5 *1 (-1159))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-684))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) - ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1006))))) -(((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1044 *3 *4)) (-14 *3 (-845)) (-4 *4 (-333)) - (-5 *1 (-913 *3 *4))))) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-982 *5 *6 *7)) (-4 *5 (-511)) + (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-2 (|:| |goodPols| (-585 *8)) (|:| |badPols| (-585 *8)))) + (-5 *1 (-901 *5 *6 *7 *8)) (-5 *4 (-585 *8))))) +(((*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1117)) (-4 *2 (-1011)))) + ((*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1011))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1158 *5)) (-4 *5 (-724)) (-5 *2 (-107)) - (-5 *1 (-774 *4 *5)) (-14 *4 (-703))))) -(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) - ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-1080))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *3 (-583 (-798))) - (-5 *1 (-437))))) + (-12 (-4 *4 (-511)) (-5 *2 (-585 (-705))) (-5 *1 (-894 *4 *3)) + (-4 *3 (-1139 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1006 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1117)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2) (-12 (-5 *1 (-1130 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1082)) (-5 *4 (-879 (-519))) (-5 *2 (-302)) + (-5 *1 (-304)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1082)) (-5 *4 (-1004 (-879 (-519)))) (-5 *2 (-302)) + (-5 *1 (-304)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-705)) (-5 *1 (-613 *3)) (-4 *3 (-968)) (-4 *3 (-1011))))) +(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-790))) + ((*1 *1) + (-12 (-4 *2 (-423)) (-4 *3 (-782)) (-4 *4 (-727)) + (-5 *1 (-911 *2 *3 *4 *5)) (-4 *5 (-876 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-998))) + ((*1 *1) + (-12 (-5 *1 (-1047 *2 *3)) (-4 *2 (-13 (-1011) (-33))) + (-4 *3 (-13 (-1011) (-33))))) + ((*1 *1) (-5 *1 (-1085))) ((*1 *1) (-5 *1 (-1086)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-705)) (-5 *1 (-98 *3)) (-4 *3 (-1011))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *1 *1) (-4 *1 (-458))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) - (-5 *3 (-517)) (-5 *2 (-953)) (-5 *1 (-684))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1008 *4)) (-4 *4 (-1006)) (-5 *2 (-1 *4)) - (-5 *1 (-936 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1001 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-962))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448))))) -(((*1 *2 *3) - (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) - (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) - ((*1 *2 *3) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) - ((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-421))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1108 *3)) (-4 *3 (-894))))) -(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509))))) -(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-267 *2)) (-4 *2 (-1117)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406)))) + ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-948 *3)) (-4 *3 (-1117))))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-509)) (-4 *8 (-873 *7 *5 *6)) - (-5 *2 (-2 (|:| -1725 (-703)) (|:| -1570 *9) (|:| |radicand| *9))) - (-5 *1 (-877 *5 *6 *7 *8 *9)) (-5 *4 (-703)) - (-4 *9 - (-13 (-333) - (-10 -8 (-15 -3858 (*8 $)) (-15 -2082 (*8 $)) (-15 -2262 ($ *8)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) - ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1006)) (-5 *2 (-107)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-107))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1006)) - (-5 *1 (-108 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006)) - (-5 *1 (-108 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) - (-5 *1 (-108 *4)) (-4 *4 (-1006))))) -(((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-1081))))) -(((*1 *2 *1) (-12 (-5 *1 (-1108 *2)) (-4 *2 (-894))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *1 *2) - (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) - (-4 *4 (-156))))) -(((*1 *2 *2) - (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) - (-5 *1 (-158 *3))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) - (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) - (-5 *4 (-286 (-349))) (-5 *1 (-300)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) - (-5 *4 (-286 (-517))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-153 (-349))))) - (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-349)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-517)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-153 (-349))))) - (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) - (-5 *4 (-286 (-627))) (-5 *1 (-300)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) - (-5 *4 (-286 (-632))) (-5 *1 (-300)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1077)) (-5 *3 (-583 (-876 (-517)))) - (-5 *4 (-286 (-634))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-627)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-632)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-286 (-634)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-627))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-632))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-1158 (-634))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) + (-12 (-5 *3 (-3 (-379 (-879 *5)) (-1072 (-1082) (-879 *5)))) + (-4 *5 (-423)) (-5 *2 (-585 (-625 (-379 (-879 *5))))) + (-5 *1 (-265 *5)) (-5 *4 (-625 (-379 (-879 *5))))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-220 *2)) (-4 *2 (-1117))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-870 (-201)) (-201))) (-5 *3 (-1006 (-201))) + (-5 *1 (-853)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) + (-12 (-5 *2 (-1 (-870 (-201)) (-201))) (-5 *3 (-1006 (-201))) + (-5 *1 (-853)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-870 (-201)) (-201))) (-5 *3 (-1006 (-201))) + (-5 *1 (-854)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1077)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-1060)) (-5 *1 (-300)))) - ((*1 *1 *1 *1) (-5 *1 (-787)))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1180 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-156)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751 *3)) (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-964)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-4 *6 (-1134 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) - (-5 *5 (-1 (-388 *7) *7)) - (-4 *6 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-4 *7 (-1134 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-4 *6 (-1134 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) - (-5 *5 (-1 (-388 *7) *7)) - (-4 *6 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-4 *7 (-1134 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1134 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) - (-4 *6 (-1134 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1134 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) - (-4 *6 (-1134 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1079 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517))))) -(((*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156))))) -(((*1 *2 *2) - (-12 (-5 *2 (-583 (-876 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) - (-14 *4 (-583 (-1077))))) - ((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) - (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *1 (-419 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-1060)) (-4 *7 (-873 *4 *5 *6)) - (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *1 (-419 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) - (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-873 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) - (-14 *4 (-583 (-1077))) (-5 *1 (-568 *3 *4))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1077)) (-5 *6 (-583 (-556 *3))) - (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *7))) - (-4 *7 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) - (-5 *1 (-510 *7 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-107)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107))))) + (-12 (-5 *2 (-1 (-870 (-201)) (-201))) (-5 *3 (-1006 (-201))) + (-5 *1 (-854))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-509))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-828 *3)) (-4 *3 (-1006))))) + (|partial| -12 (-4 *3 (-511)) (-4 *3 (-157)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *1 (-624 *3 *4 *5 *2)) + (-4 *2 (-623 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1006)) (-4 *6 (-1006)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1006))))) -(((*1 *2 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357)))) - ((*1 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1077))) - (-14 *4 (-583 (-1077))) (-4 *5 (-357))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) - ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-944 *3)) (-4 *3 (-1112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1134 *2)) (-4 *2 (-1116)) (-5 *1 (-135 *2 *4 *3)) - (-4 *3 (-1134 (-377 *4)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1180 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) - (-4 *2 (-156)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-751 *4)) (-4 *1 (-1173 *4 *2)) (-4 *4 (-779)) - (-4 *2 (-964)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-964)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-775))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-838 *3)) (-4 *3 (-278))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-964)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-107)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-107)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1106 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) - (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2361 (-714 *3)) (|:| |coef1| (-714 *3)) - (|:| |coef2| (-714 *3)))) - (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-509)) (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *2 (-2 (|:| -2361 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-978 *3 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506))))) + (-12 (-5 *3 (-585 (-2 (|:| |den| (-519)) (|:| |gcdnum| (-519))))) + (-4 *4 (-1139 (-379 *2))) (-5 *2 (-519)) (-5 *1 (-840 *4 *5)) + (-4 *5 (-1139 (-379 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) - (-4 *4 (-319)) (-5 *2 (-1163)) (-5 *1 (-487 *4))))) -(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-199))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *1 *1 *1) (-5 *1 (-349))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1163)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-502))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) - (-4 *7 (-779)) (-4 *8 (-964)) (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725)) - (-5 *2 (-1073 *8)) (-5 *1 (-291 *6 *7 *8 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) - (-5 *2 (-107)) (-5 *1 (-907 *3 *4 *5 *6)) - (-4 *6 (-873 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-107)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) - (-4 *4 (-13 (-1006) (-33)))))) -(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-798))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-903 *2)) (-4 *2 (-1098))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-964)) (-4 *2 (-509))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) - (-4 *3 (-13 (-400 *6) (-27) (-1098))) - (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) + (|partial| -12 (-5 *4 (-585 (-379 *6))) (-5 *3 (-379 *6)) + (-4 *6 (-1139 *5)) (-4 *5 (-13 (-335) (-135) (-959 (-519)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1006))))) -(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) - (-5 *1 (-1032 *3 *2)) (-4 *3 (-1134 *2))))) + (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-523 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-879 *4))) (-4 *4 (-423)) (-5 *2 (-108)) + (-5 *1 (-332 *4 *5)) (-14 *5 (-585 (-1082))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-714 *4 (-792 *5)))) (-4 *4 (-423)) + (-14 *5 (-585 (-1082))) (-5 *2 (-108)) (-5 *1 (-570 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-402 *2)) (-4 *2 (-782)) (-4 *2 (-968)))) + ((*1 *1 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1011)) (-5 *2 (-1168)) + (-5 *1 (-1118 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-1011)) (-5 *2 (-1168)) + (-5 *1 (-1118 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3864 *4)))) - (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) - (-4 *3 (-978 *6 *7 *8)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) - (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3864 *9)))) - (-5 *5 (-107)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) - (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) - (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3864 *9)))) - (-5 *1 (-984 *6 *7 *4 *8 *9))))) + (-12 (-5 *4 (-848)) (-5 *2 (-1078 *3)) (-5 *1 (-1092 *3)) + (-4 *3 (-335))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-801)) (-5 *3 (-585 (-238))) (-5 *1 (-236))))) +(((*1 *2 *3) + (-12 (-5 *3 (-965 *4 *5)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) + (-14 *5 (-585 (-1082))) + (-5 *2 + (-585 (-2 (|:| -2948 (-1078 *4)) (|:| -3399 (-585 (-879 *4)))))) + (-5 *1 (-1187 *4 *5 *6)) (-14 *6 (-585 (-1082))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 + (-585 (-2 (|:| -2948 (-1078 *5)) (|:| -3399 (-585 (-879 *5)))))) + (-5 *1 (-1187 *5 *6 *7)) (-5 *3 (-585 (-879 *5))) + (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 + (-585 (-2 (|:| -2948 (-1078 *5)) (|:| -3399 (-585 (-879 *5)))))) + (-5 *1 (-1187 *5 *6 *7)) (-5 *3 (-585 (-879 *5))) + (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-108)) (-4 *5 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 + (-585 (-2 (|:| -2948 (-1078 *5)) (|:| -3399 (-585 (-879 *5)))))) + (-5 *1 (-1187 *5 *6 *7)) (-5 *3 (-585 (-879 *5))) + (-14 *6 (-585 (-1082))) (-14 *7 (-585 (-1082))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 + (-585 (-2 (|:| -2948 (-1078 *4)) (|:| -3399 (-585 (-879 *4)))))) + (-5 *1 (-1187 *4 *5 *6)) (-5 *3 (-585 (-879 *4))) + (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082)))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-585 (-558 *2))) (-5 *4 (-585 (-1082))) + (-4 *2 (-13 (-402 (-154 *5)) (-925) (-1103))) + (-4 *5 (-13 (-511) (-782))) (-5 *1 (-548 *5 *6 *2)) + (-4 *6 (-13 (-402 *5) (-925) (-1103)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-1139 *4)) (-5 *1 (-498 *4 *2 *5 *6)) + (-4 *4 (-280)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-705)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1060)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) - (-5 *2 (-953)) (-5 *1 (-687))))) -(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) - ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-724))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-51))) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) + (-12 (-5 *4 (-585 (-792 *5))) (-14 *5 (-585 (-1082))) (-4 *6 (-423)) + (-5 *2 + (-2 (|:| |dpolys| (-585 (-223 *5 *6))) + (|:| |coords| (-585 (-519))))) + (-5 *1 (-442 *5 *6 *7)) (-5 *3 (-585 (-223 *5 *6))) (-4 *7 (-423))))) +(((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-511)) (-4 *2 (-504)))) + ((*1 *1 *1) (-4 *1 (-977)))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-585 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3) (-12 (-5 *2 (-519)) (-5 *1 (-524 *3)) (-4 *3 (-959 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1014 *3 *4 *2 *5 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011))))) +(((*1 *1 *1) (-5 *1 (-790))) + ((*1 *2 *1) + (-12 (-4 *1 (-1014 *2 *3 *4 *5 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011)))) + ((*1 *1 *2) (-12 (-5 *2 (-519)) (-4 *1 (-1064)))) + ((*1 *2 *1) (-12 (-5 *2 (-1065)) (-5 *1 (-1082))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) - (-4 *6 (-1134 *5)) (-4 *5 (-13 (-333) (-134) (-955 (-517)))) + (-12 (-5 *3 (-154 (-201))) (-5 *4 (-519)) (-5 *2 (-957)) + (-5 *1 (-693))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-585 (-379 *7))) + (-4 *7 (-1139 *6)) (-5 *3 (-379 *7)) (-4 *6 (-335)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-521 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1037 (-199))) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-803 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) - (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) - (-5 *1 (-232 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-803 *5)) (-5 *4 (-999 (-349))) - (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) - (-5 *1 (-232 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) - (-5 *2 (-1037 (-199))) (-5 *1 (-232 *3)) - (-4 *3 (-13 (-558 (-493)) (-1006))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1037 (-199))) (-5 *1 (-232 *3)) - (-4 *3 (-13 (-558 (-493)) (-1006))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-806 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) - (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) - (-5 *1 (-232 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-806 *5)) (-5 *4 (-999 (-349))) - (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1037 (-199))) - (-5 *1 (-232 *5))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1112)) (-5 *1 (-163 *3 *2)) - (-4 *2 (-610 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-814 *4 *3)) - (-4 *3 (-1112)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *1 *1) (-4 *1 (-91))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-684))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1073 *7)) (-4 *5 (-964)) - (-4 *7 (-964)) (-4 *2 (-1134 *5)) (-5 *1 (-466 *5 *2 *6 *7)) - (-4 *6 (-1134 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-964)) (-4 *7 (-964)) - (-4 *4 (-1134 *5)) (-5 *2 (-1073 *7)) (-5 *1 (-466 *5 *4 *6 *7)) - (-4 *6 (-1134 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) - (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1060)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1163)) - (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-703)) (-4 *5 (-156)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-703)) (-4 *5 (-156)))) - ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) - (-221 *4 (-377 (-517))))) - (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1077))) (-14 *5 (-703)) - (-5 *1 (-470 *4 *5))))) + (-585 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-529 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) (((*1 *2 *3) - (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-964))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *2 (-779)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779))))) -(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) - ((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)))) - ((*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-517)))) - (-4 *4 (-13 (-1134 *3) (-509) (-10 -8 (-15 -2361 ($ $ $))))) - (-4 *3 (-509)) (-5 *1 (-1137 *3 *4))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-816 *4)) (-4 *4 (-1006)) (-5 *1 (-813 *4 *3)) - (-4 *3 (-1006))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4195)) (-4 *1 (-456 *3)) (-4 *3 (-1112)) - (-5 *2 (-583 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349))))) -(((*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-300))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-964)) (-4 *2 (-621 *4 *5 *6)) - (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1134 *4)) (-4 *5 (-343 *4)) - (-4 *6 (-343 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3)))) - ((*1 *1 *1) (-4 *1 (-1101)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) - (-4 *2 (-1149 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1134 *3)) - (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1149 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) - (-4 *2 (-1149 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-13 (-509) (-134))) - (-5 *1 (-1054 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-964))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) + (-12 (-4 *4 (-1117)) (-5 *2 (-705)) (-5 *1 (-165 *4 *3)) + (-4 *3 (-612 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-390 *5)) (-4 *5 (-511)) (-5 *2 - (-2 (|:| -3112 *4) (|:| -3113 *4) (|:| |totalpts| (-517)) - (|:| |success| (-107)))) - (-5 *1 (-721)) (-5 *5 (-517))))) + (-2 (|:| -1690 (-705)) (|:| -3031 *5) (|:| |radicand| (-585 *5)))) + (-5 *1 (-292 *5)) (-5 *4 (-705)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-519))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *1 *1) (-4 *1 (-600))) ((*1 *1 *1) (-5 *1 (-1029)))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-873 *4 *5 *6))))) + (-12 (-5 *3 (-832 *4)) (-4 *4 (-1011)) (-5 *2 (-585 (-705))) + (-5 *1 (-831 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-335)) (-5 *1 (-701 *2 *3)) (-4 *2 (-644 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) (((*1 *2 *2) - (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1134 (-517)))))) -(((*1 *2 *1) (-12 (-4 *1 (-878)) (-5 *2 (-583 (-583 (-867 (-199))))))) - ((*1 *2 *1) (-12 (-4 *1 (-894)) (-5 *2 (-583 (-583 (-867 (-199)))))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-703)) (-4 *1 (-903 *2)) (-4 *2 (-1098))))) + (-12 (-4 *3 (-335)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) + (-5 *1 (-486 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-108))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406))))) +(((*1 *2 *3) + (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-901 *4 *5 *6 *3)) (-4 *3 (-982 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-280)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1084 (-379 (-519)))) (-5 *1 (-168)) (-5 *3 (-519)))) + ((*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1117)))) + ((*1 *1 *1) (-4 *1 (-796 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-897 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-726)) + (-4 *4 (-782))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) - (-4 *5 (-13 (-278) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) - (-4 *3 (-13 (-1098) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) (-4 *5 (-13 (-509) (-955 (-517)) (-134))) - (-5 *2 (-534 (-377 (-876 *5)))) (-5 *1 (-523 *5)) - (-5 *3 (-377 (-876 *5)))))) + (-12 (-4 *5 (-1011)) (-4 *2 (-827 *5)) (-5 *1 (-627 *5 *2 *3 *4)) + (-4 *3 (-345 *2)) (-4 *4 (-13 (-345 *5) (-10 -7 (-6 -4221))))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1117)) + (-5 *2 (-108))))) (((*1 *2 *1) - (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-964))))) -(((*1 *1) (-5 *1 (-407)))) -(((*1 *1 *1) (-5 *1 (-47))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1112)) - (-4 *2 (-1112)) (-5 *1 (-56 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (|has| *1 (-6 -4195)) - (-4 *1 (-138 *2)) (-4 *2 (-1112)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) - (-4 *2 (-1112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) - (-4 *2 (-1112)))) - ((*1 *2 *3) - (-12 (-4 *4 (-964)) - (-5 *2 (-2 (|:| -2242 (-1073 *4)) (|:| |deg| (-845)))) - (-5 *1 (-195 *4 *5)) (-5 *3 (-1073 *4)) (-4 *5 (-13 (-509) (-779))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) - (-4 *6 (-1112)) (-4 *2 (-1112)) (-5 *1 (-213 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1134 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) - ((*1 *1 *1) - (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1134 *2)) - (-4 *4 (-1134 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1112)) (-4 *2 (-1112)) - (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1006)) (-4 *2 (-1006)) - (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) - ((*1 *1 *1) (-5 *1 (-460))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1112)) - (-4 *2 (-1112)) (-5 *1 (-581 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-964)) (-4 *2 (-964)) - (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) - (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (-12 (-4 *1 (-1014 *3 *2 *4 *5 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-519)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-390 *2)) (-4 *2 (-511))))) +(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-108))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-912 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1168)) (-5 *1 (-1085))))) +(((*1 *2 *3) + (-12 (-4 *4 (-782)) (-5 *2 (-1090 (-585 *4))) (-5 *1 (-1089 *4)) + (-5 *3 (-585 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1117)))) ((*1 *1 *2) - (-12 (-4 *3 (-964)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1134 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (-12 (-5 *2 (-879 (-351))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1134 *3)) (-4 *3 (-333)) - (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) + (-12 (-5 *2 (-379 (-879 (-351)))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) ((*1 *1 *2) - (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1134 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-881 *5)) (-4 *5 (-1112)) - (-4 *2 (-1112)) (-5 *1 (-880 *5 *2)))) + (-12 (-5 *2 (-288 (-351))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) ((*1 *1 *2) - (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *1 (-952 *3 *4 *5 *2 *6)) (-4 *2 (-873 *3 *4 *5)) - (-14 *6 (-583 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-964)) (-4 *2 (-964)) - (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) - (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) - (-5 *1 (-969 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-967 *5 *6 *7 *8 *9)) (-4 *12 (-967 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1058 *5)) (-4 *5 (-1112)) - (-4 *2 (-1112)) (-5 *1 (-1056 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) - (-4 *1 (-1106 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) - (-4 *7 (-779)) (-4 *2 (-978 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1158 *5)) (-4 *5 (-1112)) - (-4 *2 (-1112)) (-5 *1 (-1157 *5 *2))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-583 (-2 (|:| -3287 (-377 (-517))) (|:| -3302 (-377 (-517)))))) - (-5 *2 (-583 (-199))) (-5 *1 (-276))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3)))) - ((*1 *1 *1) (-4 *1 (-1101)))) -(((*1 *1 *1) (-5 *1 (-787))) + (-12 (-5 *2 (-879 (-519))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) + ((*1 *1 *2) + (-12 (-5 *2 (-379 (-879 (-519)))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) + ((*1 *1 *2) + (-12 (-5 *2 (-288 (-519))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1082)) (-5 *1 (-311 *3 *4 *5)) (-14 *3 (-585 *2)) + (-14 *4 (-585 *2)) (-4 *5 (-359)))) + ((*1 *1 *2) + (-12 (-5 *2 (-288 *5)) (-4 *5 (-359)) (-5 *1 (-311 *3 *4 *5)) + (-14 *3 (-585 (-1082))) (-14 *4 (-585 (-1082))))) + ((*1 *1 *2) (-12 (-5 *2 (-625 (-379 (-879 (-519))))) (-4 *1 (-356)))) + ((*1 *1 *2) (-12 (-5 *2 (-625 (-379 (-879 (-351))))) (-4 *1 (-356)))) + ((*1 *1 *2) (-12 (-5 *2 (-625 (-879 (-519)))) (-4 *1 (-356)))) + ((*1 *1 *2) (-12 (-5 *2 (-625 (-879 (-351)))) (-4 *1 (-356)))) + ((*1 *1 *2) (-12 (-5 *2 (-625 (-288 (-519)))) (-4 *1 (-356)))) + ((*1 *1 *2) (-12 (-5 *2 (-625 (-288 (-351)))) (-4 *1 (-356)))) + ((*1 *1 *2) (-12 (-5 *2 (-379 (-879 (-519)))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-379 (-879 (-351)))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-879 (-519))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-879 (-351))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-288 (-519))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-288 (-351))) (-4 *1 (-368)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 (-379 (-879 (-519))))) (-4 *1 (-412)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 (-379 (-879 (-351))))) (-4 *1 (-412)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 (-879 (-519)))) (-4 *1 (-412)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 (-879 (-351)))) (-4 *1 (-412)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 (-288 (-519)))) (-4 *1 (-412)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 (-288 (-351)))) (-4 *1 (-412)))) ((*1 *2 *1) - (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) - ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1059)))) - ((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1077))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1016)) (-5 *3 (-517))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1150 *2 *3 *4)) (-4 *2 (-964)) (-14 *3 (-1077)) - (-14 *4 *2)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-964)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-509)) (-5 *1 (-890 *3 *2)) (-4 *2 (-1134 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-509)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *1)))) - (-4 *1 (-983 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1134 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-98 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-684))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1058 *4)) (-5 *3 (-517)) (-4 *4 (-964)) - (-5 *1 (-1062 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-517)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-964)) - (-14 *4 (-1077)) (-14 *5 *3)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1066 *4 *5)) - (-14 *4 (-845)) (-4 *5 (-964))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1098))) - (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *2 (-1073 (-377 (-1073 *6)))) (-5 *1 (-513 *5 *6 *7)) - (-5 *3 (-1073 *6)) (-4 *7 (-1006)))) + (-12 + (-5 *2 + (-3 + (|:| |nia| + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) + (|:| |mdnia| + (-2 (|:| |fn| (-288 (-201))) + (|:| -1710 (-585 (-1006 (-775 (-201))))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) + (-5 *1 (-703)))) ((*1 *2 *1) - (-12 (-4 *2 (-1134 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-964)))) + (-12 + (-5 *2 + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))) + (-5 *1 (-743)))) ((*1 *2 *1) - (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1134 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1073 *11)) (-5 *6 (-583 *10)) - (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) - (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-873 *11 *9 *10)) - (-5 *2 (-583 (-1073 *5))) (-5 *1 (-675 *9 *10 *11 *5)) - (-5 *3 (-1073 *5)))) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-288 (-201))) (|:| -3816 (-585 (-201))) + (|:| |lb| (-585 (-775 (-201)))) + (|:| |cf| (-585 (-288 (-201)))) + (|:| |ub| (-585 (-775 (-201)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-585 (-288 (-201)))) + (|:| -3816 (-585 (-201))))))) + (-5 *1 (-773)))) ((*1 *2 *1) - (-12 (-4 *2 (-873 *3 *4 *5)) (-5 *1 (-952 *3 *4 *5 *2 *6)) - (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2))))) -(((*1 *2) - (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) - (-4 *4 (-387 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3)))) - ((*1 *1 *1) (-4 *1 (-1101)))) -(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1087 *2)) (-4 *2 (-333))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (-5 *2 (-1058 (-199))) (-5 *1 (-168)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1077))) - (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *4 (-583 (-1077))) - (-5 *5 (-1001 (-772 (-199)))) (-5 *2 (-1058 (-199))) (-5 *1 (-271))))) + (-5 *2 + (-2 (|:| |pde| (-585 (-288 (-201)))) + (|:| |constraints| + (-585 + (-2 (|:| |start| (-201)) (|:| |finish| (-201)) + (|:| |grid| (-705)) (|:| |boundaryType| (-519)) + (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) + (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) + (|:| |tol| (-201)))) + (-5 *1 (-825)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *1 (-900 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2) + (-3730 + (-12 (-5 *2 (-879 *3)) + (-12 (-2445 (-4 *3 (-37 (-379 (-519))))) + (-2445 (-4 *3 (-37 (-519)))) (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) + (-4 *5 (-782))) + (-12 (-5 *2 (-879 *3)) + (-12 (-2445 (-4 *3 (-504))) (-2445 (-4 *3 (-37 (-379 (-519))))) + (-4 *3 (-37 (-519))) (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) + (-4 *5 (-782))) + (-12 (-5 *2 (-879 *3)) + (-12 (-2445 (-4 *3 (-916 (-519)))) (-4 *3 (-37 (-379 (-519)))) + (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) + (-4 *5 (-782))))) + ((*1 *1 *2) + (-3730 + (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) + (-12 (-2445 (-4 *3 (-37 (-379 (-519))))) (-4 *3 (-37 (-519))) + (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))) + (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))))) + ((*1 *1 *2) + (-12 (-5 *2 (-879 (-379 (-519)))) (-4 *1 (-982 *3 *4 *5)) + (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082))) (-4 *3 (-968)) + (-4 *4 (-727)) (-4 *5 (-782))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-51))) (-5 *2 (-1168)) (-5 *1 (-791))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-966))))) +(((*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1117)) (-5 *2 (-705))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-351)) (-5 *1 (-980))))) +(((*1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-694))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-610 *3)) (-4 *3 (-782)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-614 *3)) (-4 *3 (-782)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-754 *3)) (-4 *3 (-782))))) +(((*1 *1 *2) (-12 (-5 *2 (-288 (-154 (-351)))) (-5 *1 (-302)))) + ((*1 *1 *2) (-12 (-5 *2 (-288 (-519))) (-5 *1 (-302)))) + ((*1 *1 *2) (-12 (-5 *2 (-288 (-351))) (-5 *1 (-302)))) + ((*1 *1 *2) (-12 (-5 *2 (-288 (-629))) (-5 *1 (-302)))) + ((*1 *1 *2) (-12 (-5 *2 (-288 (-636))) (-5 *1 (-302)))) + ((*1 *1 *2) (-12 (-5 *2 (-288 (-634))) (-5 *1 (-302)))) + ((*1 *1) (-5 *1 (-302)))) (((*1 *2 *1) - (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-921)) - (-4 *2 (-964))))) -(((*1 *2 *1) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-1001 (-199))) (-5 *1 (-851))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364))))) + (-12 (-5 *2 (-790)) (-5 *1 (-362 *3 *4 *5)) (-14 *3 (-705)) + (-14 *4 (-705)) (-4 *5 (-157))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1011)) (-5 *1 (-672 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-672 *2)) (-4 *2 (-1011)))) + ((*1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-1011))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-968)) (-4 *2 (-623 *4 *5 *6)) + (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1139 *4)) (-4 *5 (-345 *4)) + (-4 *6 (-345 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) + (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1065)) (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-1168)) + (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-987 *4 *5 *6 *7))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-298 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-726)) (-4 *3 (-157))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-901 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-585 *7)) (-5 *3 (-108)) (-4 *7 (-982 *4 *5 *6)) + (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) + (-5 *1 (-901 *4 *5 *6 *7))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-339 *2)) (-4 *2 (-511)) (-4 *2 (-157))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-585 (-1078 *13))) (-5 *3 (-1078 *13)) + (-5 *4 (-585 *12)) (-5 *5 (-585 *10)) (-5 *6 (-585 *13)) + (-5 *7 (-585 (-585 (-2 (|:| -4128 (-705)) (|:| |pcoef| *13))))) + (-5 *8 (-585 (-705))) (-5 *9 (-1163 (-585 (-1078 *10)))) + (-4 *12 (-782)) (-4 *10 (-280)) (-4 *13 (-876 *10 *11 *12)) + (-4 *11 (-727)) (-5 *1 (-643 *11 *12 *10 *13))))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-634)))) + ((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-634))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 *4)) (-4 *4 (-780)) (-4 *4 (-335)) (-5 *2 (-705)) + (-5 *1 (-872 *4 *5)) (-4 *5 (-1139 *4))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1082)) (-5 *3 (-406)) (-4 *5 (-782)) + (-5 *1 (-1017 *5 *4)) (-4 *4 (-402 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-977)))) + ((*1 *1 *1) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-732 *2)) (-4 *2 (-157)) (-4 *2 (-977)))) + ((*1 *1 *1) (-4 *1 (-780))) + ((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-157)) (-4 *2 (-977)))) + ((*1 *1 *1) (-4 *1 (-977))) ((*1 *1 *1) (-4 *1 (-1046)))) (((*1 *2 *2) - (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) - (-5 *1 (-158 *3))))) + (-12 (-5 *2 (-1163 *1)) (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) + (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1082)) (-5 *2 (-1 (-1078 (-879 *4)) (-879 *4))) + (-5 *1 (-1171 *4)) (-4 *4 (-335))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1117)) (-5 *2 (-519))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-585 (-870 (-201))))) (-5 *1 (-439))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-705)) (-5 *2 (-108))))) (((*1 *2 *1) - (-12 (-4 *1 (-1173 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) - (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4)))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-918 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3))))) + (-12 (-4 *1 (-1032 *3 *4 *2 *5)) (-4 *4 (-968)) (-4 *5 (-214 *3 *4)) + (-4 *2 (-214 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) - (-4 *4 (-1134 *3)) - (-5 *2 - (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-623 *3)))) - (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-517)) (-4 *4 (-1134 *3)) - (-5 *2 - (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-623 *3)))) - (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-319)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 *3)) - (-5 *2 - (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-623 *3)))) - (-5 *1 (-905 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) + (-12 (-4 *3 (-1139 (-379 (-519)))) + (-5 *2 (-2 (|:| |den| (-519)) (|:| |gcdnum| (-519)))) + (-5 *1 (-840 *3 *4)) (-4 *4 (-1139 (-379 *3))))) ((*1 *2 *3) - (-12 (-4 *4 (-319)) (-4 *3 (-1134 *4)) (-4 *5 (-1134 *3)) + (-12 (-4 *4 (-1139 (-379 *2))) (-5 *2 (-519)) (-5 *1 (-840 *4 *3)) + (-4 *3 (-1139 (-379 *4)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (-132)) (-5 *2 (-108))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) (-5 *2 - (-2 (|:| -3700 (-623 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-623 *3)))) - (-5 *1 (-1167 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1159)) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-801 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1159)) (-5 *1 (-228)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-801 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1159)) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-803 (-1 (-199) (-199)))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1160)) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-867 (-199)) (-199))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1160)) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1160)) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-867 (-199)) (-199) (-199))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1160)) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) - (-5 *5 (-583 (-236))) (-5 *2 (-1160)) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-806 (-1 (-199) (-199) (-199)))) (-5 *4 (-1001 (-349))) - (-5 *2 (-1160)) (-5 *1 (-228)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-265 *7)) (-5 *4 (-1077)) (-5 *5 (-583 (-236))) - (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-955 (-517)))) - (-5 *2 (-1159)) (-5 *1 (-229 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1159)) - (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1159)) (-5 *1 (-232 *3)) - (-4 *3 (-13 (-558 (-493)) (-1006))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-801 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) - (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1159)) - (-5 *1 (-232 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-801 *5)) (-5 *4 (-999 (-349))) - (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1159)) - (-5 *1 (-232 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-803 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) - (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) - (-5 *1 (-232 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-803 *5)) (-5 *4 (-999 (-349))) - (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) - (-5 *1 (-232 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1160)) - (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1006))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-999 (-349))) (-5 *2 (-1160)) (-5 *1 (-232 *3)) - (-4 *3 (-13 (-558 (-493)) (-1006))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-806 *6)) (-5 *4 (-999 (-349))) (-5 *5 (-583 (-236))) - (-4 *6 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) - (-5 *1 (-232 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-806 *5)) (-5 *4 (-999 (-349))) - (-4 *5 (-13 (-558 (-493)) (-1006))) (-5 *2 (-1160)) - (-5 *1 (-232 *5)))) + (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) + (|:| |success| (-108)))) + (-5 *1 (-723)) (-5 *5 (-519))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-978 (-946 *4) (-1078 (-946 *4)))) (-5 *3 (-790)) + (-5 *1 (-946 *4)) (-4 *4 (-13 (-780) (-335) (-944)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1117)) (-4 *2 (-968)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-790)))) + ((*1 *1 *1) (-5 *1 (-790))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1159)) (-5 *1 (-233)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1159)) - (-5 *1 (-233)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *2 (-1159)) (-5 *1 (-233)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-867 (-199)))) (-5 *4 (-583 (-236))) - (-5 *2 (-1159)) (-5 *1 (-233)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1160)) (-5 *1 (-233)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1160)) - (-5 *1 (-233))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3)))) - ((*1 *1 *1) (-4 *1 (-1101)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-964)) (-4 *3 (-779)) - (-5 *2 (-2 (|:| |val| *1) (|:| -1725 (-517)))) (-4 *1 (-400 *3)))) + (-12 (-5 *3 (-870 (-201))) (-5 *2 (-201)) (-5 *1 (-1114)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-968))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-816 *3)) (|:| -1725 (-816 *3)))) - (-5 *1 (-816 *3)) (-4 *3 (-1006)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) - (-4 *7 (-873 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -1725 (-517)))) - (-5 *1 (-874 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-333) - (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) - (-15 -2082 (*7 $)))))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1073 *1)) (-5 *3 (-1077)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-876 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1077)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) - (-4 *3 (-1006))))) -(((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1006))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-583 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-725)) (-4 *6 (-873 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) - (-5 *1 (-418 *3 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1058 *4)) (-4 *4 (-37 *3)) (-4 *4 (-964)) - (-5 *3 (-377 (-517))) (-5 *1 (-1062 *4))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-583 (-1073 *13))) (-5 *3 (-1073 *13)) - (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) - (-5 *7 (-583 (-583 (-2 (|:| -2643 (-703)) (|:| |pcoef| *13))))) - (-5 *8 (-583 (-703))) (-5 *9 (-1158 (-583 (-1073 *10)))) - (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-873 *10 *11 *12)) - (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-964)) (-5 *1 (-1062 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-1149 *3))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-779) (-509) (-955 (-517)))) (-5 *2 (-1163)) - (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3))))) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1117)) (-4 *2 (-925)) + (-4 *2 (-968))))) +(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) - ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3)))) - ((*1 *1 *1) (-4 *1 (-1101)))) -(((*1 *2) - (-12 (-14 *4 (-703)) (-4 *5 (-1112)) (-5 *2 (-125)) - (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) + (-12 (-4 *3 (-959 (-519))) (-4 *3 (-13 (-782) (-511))) + (-5 *1 (-31 *3 *2)) (-4 *2 (-402 *3)))) ((*1 *2) - (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) - (-4 *3 (-299 *4)))) - ((*1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-156)))) + (-12 (-4 *4 (-157)) (-5 *2 (-1078 *4)) (-5 *1 (-150 *3 *4)) + (-4 *3 (-151 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-968)) (-4 *1 (-275)))) + ((*1 *2) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-5 *2 (-1078 *3)))) + ((*1 *2) (-12 (-4 *1 (-659 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1139 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) - (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) - (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-964)) (-5 *2 (-845)))) - ((*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-333)) (-5 *2 (-125))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1060)) (-5 *2 (-583 (-1082))) (-5 *1 (-804))))) -(((*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) - ((*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1158 *3)) (-4 *3 (-964)) (-5 *1 (-645 *3 *4)) - (-4 *4 (-1134 *3))))) + (-12 (-4 *1 (-984 *3 *2)) (-4 *3 (-13 (-780) (-335))) + (-4 *2 (-1139 *3))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4197 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) - (-4 *2 (-964)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1134 *2)) - (-4 *4 (-621 *2 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) - ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-509))))) -(((*1 *1 *1 *1) (-4 *1 (-130))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) - (-4 *2 (-400 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) - ((*1 *1 *1 *1) (-5 *1 (-787))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-962)) - (-5 *3 (-517))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) - (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) - (-5 *1 (-848 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-873 *4 *6 *5))))) -(((*1 *1) (-5 *1 (-300)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) - ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3)))) - ((*1 *1 *1) (-4 *1 (-1101)))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-1139 *4)) (-5 *1 (-498 *4 *2 *5 *6)) + (-4 *4 (-280)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-705)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-5 *2 (-2 (|:| -2576 *3) (|:| -1846 *4)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-583 (-2 (|:| -3896 (-1073 *6)) (|:| -1725 (-517))))) - (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) - (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-873 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-964))))) -(((*1 *1 *1 *1) (-5 *1 (-146))) - ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146))))) -(((*1 *2 *3) - (-12 (-5 *3 (-623 *2)) (-4 *4 (-1134 *2)) - (-4 *2 (-13 (-278) (-10 -8 (-15 -3306 ((-388 $) $))))) - (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))) + (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-5 *2 (-2 (|:| -2583 *3) (|:| -3100 *4)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-519)) (-5 *2 (-108)) (-5 *1 (-508))))) +(((*1 *2 *2) + (-12 (-4 *3 (-423)) (-4 *3 (-782)) (-4 *3 (-959 (-519))) + (-4 *3 (-511)) (-5 *1 (-40 *3 *2)) (-4 *2 (-402 *3)) + (-4 *2 + (-13 (-335) (-275) + (-10 -8 (-15 -2855 ((-1034 *3 (-558 $)) $)) + (-15 -2866 ((-1034 *3 (-558 $)) $)) + (-15 -2217 ($ (-1034 *3 (-558 $)))))))))) +(((*1 *2 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1117)))) ((*1 *2 *1) - (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) - (-4 *5 (-212 *3 *2)) (-4 *2 (-964))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1073 *1)) (-5 *3 (-1077)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1073 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-876 *1)) (-4 *1 (-27)))) + (|partial| -12 (-4 *1 (-1111 *3 *4 *5 *2)) (-4 *3 (-511)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *2 (-982 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1077)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1073 *2)) (-5 *4 (-1077)) (-4 *2 (-400 *5)) - (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1073 *1)) (-5 *3 (-845)) (-4 *1 (-931)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1073 *1)) (-5 *3 (-845)) (-5 *4 (-787)) - (-4 *1 (-931)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-845)) (-4 *4 (-13 (-777) (-333))) - (-4 *1 (-980 *4 *2)) (-4 *2 (-1134 *4))))) + (-12 (-5 *2 (-705)) (-4 *1 (-1151 *3)) (-4 *3 (-1117)))) + ((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-585 *6)) (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) + (-4 *4 (-727)) (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) + (-4 *3 (-511))))) +(((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1011))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-705)) (-4 *1 (-595 *3)) (-4 *3 (-968)) (-4 *3 (-335)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-705)) (-5 *4 (-1 *5 *5)) (-4 *5 (-335)) + (-5 *1 (-598 *5 *2)) (-4 *2 (-595 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-299 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 *3)) (-4 *3 (-1117)) (-5 *1 (-482 *3 *4)) + (-14 *4 (-519))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-335)) (-4 *4 (-345 *3)) (-4 *5 (-345 *3)) + (-5 *1 (-486 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-511)) (-4 *5 (-345 *4)) (-4 *6 (-345 *4)) + (-4 *7 (-916 *4)) (-4 *2 (-623 *7 *8 *9)) + (-5 *1 (-487 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-623 *4 *5 *6)) + (-4 *8 (-345 *7)) (-4 *9 (-345 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-968)) + (-4 *3 (-345 *2)) (-4 *4 (-345 *2)) (-4 *2 (-335)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-335)) (-4 *3 (-157)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *1 (-624 *3 *4 *5 *2)) + (-4 *2 (-623 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-625 *2)) (-4 *2 (-335)) (-4 *2 (-968)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1032 *2 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-214 *2 *3)) (-4 *5 (-214 *2 *3)) (-4 *3 (-335)))) + ((*1 *2 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-1089 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-585 (-519))) (-5 *2 (-705)) (-5 *1 (-540))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1029)) (-5 *1 (-105)))) + ((*1 *2 *1) (|partial| -12 (-5 *1 (-337 *2)) (-4 *2 (-1011)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1065)) (-5 *1 (-1099))))) +(((*1 *1) (-5 *1 (-108)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-705)) (-4 *6 (-335)) (-5 *4 (-1112 *6)) + (-5 *2 (-1 (-1063 *4) (-1063 *4))) (-5 *1 (-1171 *6)) + (-5 *5 (-1063 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1163 (-519))) (-5 *3 (-519)) (-5 *1 (-1021)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1163 (-519))) (-5 *3 (-585 (-519))) (-5 *4 (-519)) + (-5 *1 (-1021))))) (((*1 *2 *3) - (-12 (-5 *2 (-388 (-1073 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1073 *1)) - (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) + (-12 (-4 *5 (-13 (-560 *2) (-157))) (-5 *2 (-819 *4)) + (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1011)) (-4 *3 (-151 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-798)) - (-5 *5 (-845)) (-5 *6 (-583 (-236))) (-5 *2 (-1159)) - (-5 *1 (-1162)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-583 (-867 (-199))))) (-5 *4 (-583 (-236))) - (-5 *2 (-1159)) (-5 *1 (-1162))))) -(((*1 *1 *2) - (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-964) (-779))) - (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1077)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) - (-4 *4 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1098) (-400 *4))))) - ((*1 *1 *1) (-5 *1 (-349))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) - (-4 *3 (-978 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *4)))) - (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1112)) - (-5 *2 (-583 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-873 *4 *5 *6)) (-4 *6 (-558 (-1077))) - (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *2 (-1067 (-583 (-876 *4)) (-583 (-265 (-876 *4))))) - (-5 *1 (-469 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1112)))) + (-12 (-5 *3 (-585 (-1006 (-775 (-351))))) + (-5 *2 (-585 (-1006 (-775 (-201))))) (-5 *1 (-278)))) + ((*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-351)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-519)) (-5 *1 (-366)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1163 *3)) (-4 *3 (-157)) (-4 *1 (-381 *3 *4)) + (-4 *4 (-1139 *3)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1106 *3 *4 *5 *2)) (-4 *3 (-509)) - (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-978 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-4 *1 (-1146 *3)) (-4 *3 (-1112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *1 *1) (-4 *1 (-569))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921) (-1098)))))) -(((*1 *2 *2) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1139 *3)) + (-5 *2 (-1163 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1163 *3)) (-4 *3 (-157)) (-4 *1 (-389 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-157)) (-5 *2 (-1163 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-390 *1)) (-4 *1 (-402 *3)) (-4 *3 (-511)) + (-4 *3 (-782)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-968)) + (-4 *4 (-727)) (-4 *5 (-782)) (-5 *1 (-434 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-495)))) + ((*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2) + (-12 (-4 *3 (-157)) (-4 *1 (-659 *3 *2)) (-4 *2 (-1139 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-968)) (-4 *1 (-904 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-979)))) + ((*1 *1 *2) + (-12 (-5 *2 (-879 *3)) (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) + (-4 *5 (-560 (-1082))) (-4 *4 (-727)) (-4 *5 (-782)))) + ((*1 *1 *2) + (-3730 + (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) + (-12 (-2445 (-4 *3 (-37 (-379 (-519))))) (-4 *3 (-37 (-519))) + (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))) + (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))))) + ((*1 *1 *2) + (-12 (-5 *2 (-879 (-379 (-519)))) (-4 *1 (-982 *3 *4 *5)) + (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082))) (-4 *3 (-968)) + (-4 *4 (-727)) (-4 *5 (-782)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1890 *8))) + (-4 *7 (-982 *4 *5 *6)) (-4 *8 (-987 *4 *5 *6 *7)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-1065)) + (-5 *1 (-985 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-996)))) + ((*1 *1 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *2)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *2 (-1011)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1014 *3 *4 *5 *2 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *2 (-1011)) (-4 *6 (-1011)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1014 *3 *4 *2 *5 *6)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *2 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1014 *3 *2 *4 *5 *6)) (-4 *3 (-1011)) (-4 *2 (-1011)) + (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1014 *2 *3 *4 *5 *6)) (-4 *2 (-1011)) (-4 *3 (-1011)) + (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 *1)) (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) + (-4 *4 (-1011)) (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-585 *7)) (|:| -1890 *8))) + (-4 *7 (-982 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-423)) + (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-1065)) + (-5 *1 (-1052 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1087)))) + ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1087)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-790)) (-5 *3 (-519)) (-5 *1 (-1098)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-519)) (-5 *1 (-1098)))) + ((*1 *2 *3) + (-12 (-5 *3 (-714 *4 (-792 *5))) + (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-14 *5 (-585 (-1082))) + (-5 *2 (-714 *4 (-792 *6))) (-5 *1 (-1187 *4 *5 *6)) + (-14 *6 (-585 (-1082))))) + ((*1 *2 *3) + (-12 (-5 *3 (-879 *4)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-879 (-946 (-379 *4)))) (-5 *1 (-1187 *4 *5 *6)) + (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082))))) + ((*1 *2 *3) + (-12 (-5 *3 (-714 *4 (-792 *6))) + (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-14 *6 (-585 (-1082))) + (-5 *2 (-879 (-946 (-379 *4)))) (-5 *1 (-1187 *4 *5 *6)) + (-14 *5 (-585 (-1082))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1078 *4)) (-4 *4 (-13 (-780) (-280) (-135) (-944))) + (-5 *2 (-1078 (-946 (-379 *4)))) (-5 *1 (-1187 *4 *5 *6)) + (-14 *5 (-585 (-1082))) (-14 *6 (-585 (-1082))))) + ((*1 *2 *3) (-12 - (-5 *2 - (-907 (-377 (-517)) (-789 *3) (-214 *4 (-703)) - (-221 *3 (-377 (-517))))) - (-14 *3 (-583 (-1077))) (-14 *4 (-703)) (-5 *1 (-906 *3 *4))))) + (-5 *3 (-1053 *4 (-491 (-792 *6)) (-792 *6) (-714 *4 (-792 *6)))) + (-4 *4 (-13 (-780) (-280) (-135) (-944))) (-14 *6 (-585 (-1082))) + (-5 *2 (-585 (-714 *4 (-792 *6)))) (-5 *1 (-1187 *4 *5 *6)) + (-14 *5 (-585 (-1082)))))) (((*1 *2) - (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) - (-4 *4 (-387 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-964)) (-5 *1 (-1130 *3 *2)) (-4 *2 (-1134 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-400 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-583 (-816 *3))) (-5 *1 (-816 *3)) - (-4 *3 (-1006)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *2 (-583 *1)) (-4 *1 (-873 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-964)) - (-4 *7 (-873 *6 *4 *5)) (-5 *2 (-583 *3)) - (-5 *1 (-874 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-333) - (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) - (-15 -2082 (*7 $)))))))) -(((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-327 *3)) (-4 *3 (-319))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-873 *4 *5 *6)) (-4 *4 (-278)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278))))) -(((*1 *2 *3) - (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1077))) (-4 *5 (-964)) - (-5 *2 (-449 *4 *5)) (-5 *1 (-868 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-1093))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1046)) (-5 *3 (-131)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) - (-14 *5 (-583 (-1077))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) - (-4 *6 (-421)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) - (-14 *5 (-583 (-1077))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) - (-4 *6 (-421))))) -(((*1 *1) (-5 *1 (-107)))) -(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-107))))) + (-12 (-4 *4 (-335)) (-5 *2 (-848)) (-5 *1 (-300 *3 *4)) + (-4 *3 (-301 *4)))) + ((*1 *2) + (-12 (-4 *4 (-335)) (-5 *2 (-768 (-848))) (-5 *1 (-300 *3 *4)) + (-4 *3 (-301 *4)))) + ((*1 *2) (-12 (-4 *1 (-301 *3)) (-4 *3 (-335)) (-5 *2 (-848)))) + ((*1 *2) + (-12 (-4 *1 (-1180 *3)) (-4 *3 (-335)) (-5 *2 (-768 (-848)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-379 *4)) (-4 *4 (-1139 *3)) (-4 *3 (-13 (-335) (-135))) + (-5 *1 (-371 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) + (-4 *4 (-321))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 *5)) (-5 *4 (-1158 *5)) (-4 *5 (-333)) - (-5 *2 (-107)) (-5 *1 (-604 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4196)))) - (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4196)))) (-5 *2 (-107)) - (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-400 *3) (-1098)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) - (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725)) + (-12 (-5 *4 (-1082)) + (-4 *5 (-13 (-511) (-782) (-959 (-519)) (-581 (-519)))) (-5 *2 - (-2 (|:| |upol| (-1073 *8)) (|:| |Lval| (-583 *8)) - (|:| |Lfact| - (-583 (-2 (|:| -3896 (-1073 *8)) (|:| -1725 (-517))))) - (|:| |ctpol| *8))) - (-5 *1 (-675 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-1108 *3)) - (-4 *3 (-894))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) - (-4 *4 (-509)) (-5 *2 (-377 (-1073 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1098))) - (-4 *6 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *2 (-1073 (-377 (-1073 *3)))) (-5 *1 (-513 *6 *3 *7)) - (-5 *5 (-1073 *3)) (-4 *7 (-1006)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1154 *5)) (-14 *5 (-1077)) (-4 *6 (-964)) - (-5 *2 (-1131 *5 (-876 *6))) (-5 *1 (-871 *5 *6)) (-5 *3 (-876 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-873 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-5 *2 (-1073 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-964)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1073 *1)) - (-4 *1 (-873 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-964)) - (-4 *7 (-873 *6 *5 *4)) (-5 *2 (-377 (-1073 *3))) - (-5 *1 (-874 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-333) - (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1073 *3)) - (-4 *3 - (-13 (-333) - (-10 -8 (-15 -2262 ($ *7)) (-15 -3858 (*7 $)) (-15 -2082 (*7 $))))) - (-4 *7 (-873 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-964)) - (-5 *1 (-874 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) (-4 *5 (-509)) - (-5 *2 (-377 (-1073 (-377 (-876 *5))))) (-5 *1 (-960 *5)) - (-5 *3 (-377 (-876 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) - (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) - (-4 *3 (-1134 *6)) (-4 *7 (-873 *6 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) - (-4 *6 (-779)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-107))))) -(((*1 *2 *1) - (-12 (-4 *1 (-896 *3 *4 *5 *6)) (-4 *3 (-964)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-583 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-845)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) - ((*1 *1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-236))))) + (-2 (|:| |func| *3) (|:| |kers| (-585 (-558 *3))) + (|:| |vals| (-585 *3)))) + (-5 *1 (-252 *5 *3)) (-4 *3 (-13 (-27) (-1103) (-402 *5)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))) + (-5 *2 (-351)) (-5 *1 (-183))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-519)) (-5 *1 (-1063 *3)) (-4 *3 (-1117)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-690))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4195)) (-4 *1 (-138 *2)) (-4 *2 (-1112)) - (-4 *2 (-1006)))) + (-12 (|has| *1 (-6 -4221)) (-4 *1 (-139 *2)) (-4 *2 (-1117)) + (-4 *2 (-1011)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4195)) (-4 *1 (-138 *3)) - (-4 *3 (-1112)))) + (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4221)) (-4 *1 (-139 *3)) + (-4 *3 (-1117)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1112)))) + (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-612 *3)) (-4 *3 (-1117)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1006)) - (-5 *1 (-670 *4)))) + (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-519)) (-4 *4 (-1011)) + (-5 *1 (-672 *4)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1006)))) + (-12 (-5 *3 (-519)) (-5 *1 (-672 *2)) (-4 *2 (-1011)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1042 *3 *4)) (-4 *3 (-13 (-1006) (-33))) - (-4 *4 (-13 (-1006) (-33))) (-5 *1 (-1043 *3 *4))))) + (-12 (-5 *2 (-1047 *3 *4)) (-4 *3 (-13 (-1011) (-33))) + (-4 *4 (-13 (-1011) (-33))) (-5 *1 (-1048 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-703)))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-705)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703))))) -(((*1 *2 *3) - (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1134 *4)) - (-5 *2 (-2 (|:| -3191 (-564 *4 *5)) (|:| -3119 (-377 *5)))) - (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 (-1066 *3 *4))) (-5 *1 (-1066 *3 *4)) - (-14 *3 (-845)) (-4 *4 (-964)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-421)) (-4 *3 (-964)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1134 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-681))))) -(((*1 *1) (-5 *1 (-512)))) -(((*1 *1 *1) (-4 *1 (-569))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921) (-1098)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1001 (-772 (-199)))) (-5 *1 (-276))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-692))))) -(((*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-1112)) (-5 *2 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1099 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-583 (-1077))) (|:| |pred| (-51)))) - (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273))))) -(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125))))) -(((*1 *1 *1) (-4 *1 (-569))) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-705))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1011) (-33))) + (-4 *3 (-13 (-1011) (-33)))))) +(((*1 *1 *2) + (-12 (-4 *3 (-968)) (-5 *1 (-762 *2 *3)) (-4 *2 (-644 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166)))) + ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1166))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-848)) (-4 *1 (-679 *3)) (-4 *3 (-157))))) +(((*1 *2 *3) + (-12 (-4 *4 (-321)) (-5 *2 (-108)) (-5 *1 (-193 *4 *3)) + (-4 *3 (-1139 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-585 (-879 *3))) (-4 *3 (-423)) + (-5 *1 (-332 *3 *4)) (-14 *4 (-585 (-1082))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921) (-1098)))))) + (|partial| -12 (-5 *2 (-585 (-714 *3 (-792 *4)))) (-4 *3 (-423)) + (-14 *4 (-585 (-1082))) (-5 *1 (-570 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1163 (-585 (-2 (|:| -3493 *4) (|:| -2770 (-1029)))))) + (-4 *4 (-321)) (-5 *2 (-625 *4)) (-5 *1 (-318 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) (((*1 *2 *1) - (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-703)))) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-705)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703))))) -(((*1 *2) - (-12 (-5 *2 (-1163)) (-5 *1 (-1090 *3 *4)) (-4 *3 (-1006)) - (-4 *4 (-1006))))) -(((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) - ((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) - (-5 *2 (-953)) (-5 *1 (-682)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) - (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) - (-5 *8 (-358)) (-5 *2 (-953)) (-5 *1 (-682))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-881 *3)) (-5 *1 (-1065 *4 *3)) - (-4 *3 (-1134 *4))))) -(((*1 *1) (-5 *1 (-407)))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-867 (-199))))) (-5 *1 (-437))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1134 *3)) (-4 *3 (-964))))) -(((*1 *2 *1) (-12 (-4 *3 (-964)) (-5 *2 (-583 *1)) (-4 *1 (-1038 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1112)) (-5 *1 (-345 *4 *2)) - (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4196))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1134 *4)) (-5 *2 (-1163)) - (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1134 (-377 *5))) (-14 *7 *6)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1112)) - (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-517)) (-4 *1 (-967 *4 *5 *6 *2 *7)) (-4 *6 (-964)) - (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964)))) - ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964))))) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-705))))) (((*1 *1 *2) - (-12 (-4 *3 (-964)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3))))) + (-12 (-5 *2 (-625 *4)) (-4 *4 (-968)) (-5 *1 (-1049 *3 *4)) + (-14 *3 (-705))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-351)) (-5 *2 (-1168)) (-5 *1 (-1165))))) (((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-583 (-2 (|:| -1712 *1) (|:| -3723 (-583 *7))))) - (-5 *3 (-583 *7)) (-4 *1 (-1106 *4 *5 *6 *7))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) - (-4 *4 (-343 *3)) (-4 *5 (-343 *3))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-964))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) - (-5 *1 (-601 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1176 *3 *4)) - (-4 *3 (-779)) (-4 *4 (-156))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1016))))) -(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-975)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-975))))) + (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) + (-4 *3 (-13 (-335) (-1103) (-925)))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-335) (-1103))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) + ((*1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-335)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-848)) (-5 *4 (-351)) (-5 *2 (-1168)) (-5 *1 (-1164))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -3433 (-585 (-2 (|:| |irr| *10) (|:| -1258 (-519))))))) + (-5 *6 (-585 *3)) (-5 *7 (-585 *8)) (-4 *8 (-782)) (-4 *3 (-280)) + (-4 *10 (-876 *3 *9 *8)) (-4 *9 (-727)) + (-5 *2 + (-2 (|:| |polfac| (-585 *10)) (|:| |correct| *3) + (|:| |corrfact| (-585 (-1078 *3))))) + (-5 *1 (-568 *8 *9 *3 *10)) (-5 *4 (-585 (-1078 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) + (-12 (-4 *1 (-822)) + (-5 *3 + (-2 (|:| |pde| (-585 (-288 (-201)))) + (|:| |constraints| + (-585 + (-2 (|:| |start| (-201)) (|:| |finish| (-201)) + (|:| |grid| (-705)) (|:| |boundaryType| (-519)) + (|:| |dStart| (-625 (-201))) (|:| |dFinish| (-625 (-201)))))) + (|:| |f| (-585 (-585 (-288 (-201))))) (|:| |st| (-1065)) + (|:| |tol| (-201)))) + (-5 *2 (-957))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1139 *5)) (-4 *5 (-335)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-529 *5 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-634)) (-5 *1 (-278))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1009 *2)) (-4 *2 (-1011))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-898))))) +(((*1 *2 *1) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-108)))) + ((*1 *2 *1) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108))))) +(((*1 *1 *2) (-12 (-5 *2 (-379 (-519))) (-5 *1 (-103)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-495))) (-5 *1 (-495))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-870 (-201)))) (-5 *1 (-1164))))) +(((*1 *1 *1) (-4 *1 (-511)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1136 *5 *4)) (-4 *4 (-755)) (-14 *5 (-1082)) + (-5 *2 (-585 *4)) (-5 *1 (-1025 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) + (-5 *5 (-3 (|:| |fn| (-360)) (|:| |fp| (-62 G)))) (-5 *2 (-957)) + (-5 *1 (-683))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-726)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-49 *3 *4)) + (-14 *4 (-585 (-1082))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-845)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) - (-4 *3 (-558 (-349))))) - ((*1 *2 *3) - (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) - (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-153 *5)) (-5 *4 (-845)) (-4 *5 (-156)) - (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-876 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) - (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-519)) + (-14 *6 (-705)) (-4 *7 (-157)) (-4 *8 (-157)) + (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-876 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-156)) - (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 (-349))) - (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-154 *5)) (-4 *5 (-157)) + (-4 *6 (-157)) (-5 *2 (-154 *6)) (-5 *1 (-153 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-288 *3) (-288 *3))) (-4 *3 (-13 (-968) (-782))) + (-5 *1 (-199 *3 *4)) (-14 *4 (-585 (-1082))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) - (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) - (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-216 *5 *6)) (-14 *5 (-705)) + (-4 *6 (-1117)) (-4 *7 (-1117)) (-5 *2 (-216 *5 *7)) + (-5 *1 (-215 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) - (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-377 (-876 (-153 *4)))) (-4 *4 (-509)) - (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-267 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-267 *6)) (-5 *1 (-266 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-267 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1065)) (-5 *5 (-558 *6)) + (-4 *6 (-275)) (-4 *2 (-1117)) (-5 *1 (-270 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 (-153 *5)))) (-5 *4 (-845)) (-4 *5 (-509)) - (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) - (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-558 *5)) (-4 *5 (-275)) + (-4 *2 (-275)) (-5 *1 (-271 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-558 *1)) (-4 *1 (-275)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) (-4 *5 (-779)) - (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) - (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-625 *5)) (-4 *5 (-968)) + (-4 *6 (-968)) (-5 *2 (-625 *6)) (-5 *1 (-277 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-845)) (-4 *5 (-509)) - (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) - (-5 *1 (-717 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1058 (-517))) (-5 *1 (-1062 *4)) (-4 *4 (-964)) - (-5 *3 (-517))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) - (-5 *1 (-556 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-876 *4)) (-4 *4 (-964)) (-4 *4 (-558 *2)) - (-5 *2 (-349)) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-782)) + (-4 *6 (-782)) (-5 *2 (-288 *6)) (-5 *1 (-286 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-876 *5)) (-5 *4 (-845)) (-4 *5 (-964)) - (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-377 (-876 *4))) (-4 *4 (-509)) - (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-308 *5 *6 *7 *8)) (-4 *5 (-335)) + (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) (-4 *8 (-314 *5 *6 *7)) + (-4 *9 (-335)) (-4 *10 (-1139 *9)) (-4 *11 (-1139 (-379 *10))) + (-5 *2 (-308 *9 *10 *11 *12)) + (-5 *1 (-305 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-314 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1011)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-377 (-876 *5))) (-5 *4 (-845)) (-4 *5 (-509)) - (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) - (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1121)) (-4 *8 (-1121)) + (-4 *6 (-1139 *5)) (-4 *7 (-1139 (-379 *6))) (-4 *9 (-1139 *8)) + (-4 *2 (-314 *8 *9 *10)) (-5 *1 (-312 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-314 *5 *6 *7)) (-4 *10 (-1139 (-379 *9))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-845)) (-4 *5 (-509)) - (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) - (-5 *1 (-717 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1098))) - (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1006))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1082))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) - (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -4057)))) (-5 *2 (-953)) - (-5 *1 (-681))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1117)) (-4 *6 (-1117)) + (-4 *2 (-345 *6)) (-5 *1 (-343 *5 *4 *6 *2)) (-4 *4 (-345 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-354 *3 *4)) (-4 *3 (-968)) + (-4 *4 (-1011)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-390 *5)) (-4 *5 (-511)) + (-4 *6 (-511)) (-5 *2 (-390 *6)) (-5 *1 (-377 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-379 *5)) (-4 *5 (-511)) + (-4 *6 (-511)) (-5 *2 (-379 *6)) (-5 *1 (-378 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-385 *5 *6 *7 *8)) (-4 *5 (-280)) + (-4 *6 (-916 *5)) (-4 *7 (-1139 *6)) + (-4 *8 (-13 (-381 *6 *7) (-959 *6))) (-4 *9 (-280)) + (-4 *10 (-916 *9)) (-4 *11 (-1139 *10)) + (-5 *2 (-385 *9 *10 *11 *12)) + (-5 *1 (-384 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-381 *10 *11) (-959 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) + (-4 *2 (-389 *6)) (-5 *1 (-387 *4 *5 *2 *6)) (-4 *4 (-389 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-511)) (-5 *1 (-390 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-968) (-782))) + (-4 *6 (-13 (-968) (-782))) (-4 *2 (-402 *6)) + (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-402 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1011)) (-4 *6 (-1011)) + (-4 *2 (-397 *6)) (-5 *1 (-395 *5 *4 *6 *2)) (-4 *4 (-397 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-458 *3)) (-4 *3 (-1117)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-475 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-782)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-335)) + (-4 *6 (-335)) (-5 *2 (-536 *6)) (-5 *1 (-535 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -1265 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-335)) (-4 *6 (-335)) + (-5 *2 (-2 (|:| -1265 *6) (|:| |coeff| *6))) + (-5 *1 (-535 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-335)) (-4 *2 (-335)) (-5 *1 (-535 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-585 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-335)) (-4 *6 (-335)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-585 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-535 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-549 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-549 *6)) (-5 *1 (-546 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-549 *6)) (-5 *5 (-549 *7)) + (-4 *6 (-1117)) (-4 *7 (-1117)) (-4 *8 (-1117)) (-5 *2 (-549 *8)) + (-5 *1 (-547 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1063 *6)) (-5 *5 (-549 *7)) + (-4 *6 (-1117)) (-4 *7 (-1117)) (-4 *8 (-1117)) (-5 *2 (-1063 *8)) + (-5 *1 (-547 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-549 *6)) (-5 *5 (-1063 *7)) + (-4 *6 (-1117)) (-4 *7 (-1117)) (-4 *8 (-1117)) (-5 *2 (-1063 *8)) + (-5 *1 (-547 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1117)) (-5 *1 (-549 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-585 *6)) (-5 *1 (-583 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) + (-4 *6 (-1117)) (-4 *7 (-1117)) (-4 *8 (-1117)) (-5 *2 (-585 *8)) + (-5 *1 (-584 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-590 *3)) (-4 *3 (-1117)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-968)) (-4 *8 (-968)) + (-4 *6 (-345 *5)) (-4 *7 (-345 *5)) (-4 *2 (-623 *8 *9 *10)) + (-5 *1 (-621 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-623 *5 *6 *7)) + (-4 *9 (-345 *8)) (-4 *10 (-345 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-968)) + (-4 *8 (-968)) (-4 *6 (-345 *5)) (-4 *7 (-345 *5)) + (-4 *2 (-623 *8 *9 *10)) (-5 *1 (-621 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-623 *5 *6 *7)) (-4 *9 (-345 *8)) (-4 *10 (-345 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-511)) (-4 *7 (-511)) + (-4 *6 (-1139 *5)) (-4 *2 (-1139 (-379 *8))) + (-5 *1 (-645 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1139 (-379 *6))) + (-4 *8 (-1139 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-968)) (-4 *9 (-968)) (-4 *5 (-782)) + (-4 *6 (-727)) (-4 *2 (-876 *9 *7 *5)) + (-5 *1 (-663 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-727)) + (-4 *4 (-876 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-782)) (-4 *6 (-782)) (-4 *7 (-727)) + (-4 *9 (-968)) (-4 *2 (-876 *9 *8 *6)) + (-5 *1 (-664 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-727)) + (-4 *4 (-876 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-670 *5 *7)) (-4 *5 (-968)) + (-4 *6 (-968)) (-4 *7 (-661)) (-5 *2 (-670 *6 *7)) + (-5 *1 (-669 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-670 *3 *4)) + (-4 *4 (-661)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-716 *5)) (-4 *5 (-968)) + (-4 *6 (-968)) (-5 *2 (-716 *6)) (-5 *1 (-715 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) + (-4 *2 (-732 *6)) (-5 *1 (-733 *4 *5 *2 *6)) (-4 *4 (-732 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-768 *5)) (-4 *5 (-1011)) + (-4 *6 (-1011)) (-5 *2 (-768 *6)) (-5 *1 (-767 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-768 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-768 *5)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-5 *1 (-767 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1011)) + (-4 *6 (-1011)) (-5 *2 (-775 *6)) (-5 *1 (-774 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-5 *1 (-774 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-809 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-809 *6)) (-5 *1 (-808 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-816 *5 *6)) (-4 *5 (-1011)) + (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-816 *5 *7)) + (-5 *1 (-815 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1011)) + (-4 *6 (-1011)) (-5 *2 (-819 *6)) (-5 *1 (-818 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-968)) + (-4 *6 (-968)) (-5 *2 (-879 *6)) (-5 *1 (-873 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-782)) + (-4 *8 (-968)) (-4 *6 (-727)) + (-4 *2 + (-13 (-1011) + (-10 -8 (-15 -1614 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-705)))))) + (-5 *1 (-878 *6 *7 *8 *5 *2)) (-4 *5 (-876 *8 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-968)) + (-4 *6 (-968)) (-5 *2 (-870 *6)) (-5 *1 (-905 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-879 *4))) (-4 *4 (-968)) + (-4 *2 (-876 (-879 *4) *5 *6)) (-4 *5 (-727)) + (-4 *6 + (-13 (-782) + (-10 -8 (-15 -1446 ((-1082) $)) + (-15 -1622 ((-3 $ "failed") (-1082)))))) + (-5 *1 (-908 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-511)) (-4 *6 (-511)) + (-4 *2 (-916 *6)) (-5 *1 (-914 *5 *6 *4 *2)) (-4 *4 (-916 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) + (-4 *2 (-920 *6)) (-5 *1 (-921 *4 *5 *2 *6)) (-4 *4 (-920 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-971 *3 *4 *5 *6 *7)) + (-4 *5 (-968)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-968)) (-4 *10 (-968)) + (-14 *5 (-705)) (-14 *6 (-705)) (-4 *8 (-214 *6 *7)) + (-4 *9 (-214 *5 *7)) (-4 *2 (-971 *5 *6 *10 *11 *12)) + (-5 *1 (-973 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-971 *5 *6 *7 *8 *9)) (-4 *11 (-214 *6 *10)) + (-4 *12 (-214 *5 *10)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-1006 *6)) (-5 *1 (-1002 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-780)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-585 *6)) + (-5 *1 (-1002 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-1004 *6)) (-5 *1 (-1003 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-780)) + (-4 *2 (-1056 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1063 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-1063 *6)) (-5 *1 (-1061 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1063 *6)) (-5 *5 (-1063 *7)) + (-4 *6 (-1117)) (-4 *7 (-1117)) (-4 *8 (-1117)) (-5 *2 (-1063 *8)) + (-5 *1 (-1062 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1078 *5)) (-4 *5 (-968)) + (-4 *6 (-968)) (-5 *2 (-1078 *6)) (-5 *1 (-1076 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1094 *3 *4)) (-4 *3 (-1011)) + (-4 *4 (-1011)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1127 *5 *7 *9)) (-4 *5 (-968)) + (-4 *6 (-968)) (-14 *7 (-1082)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1127 *6 *8 *10)) (-5 *1 (-1122 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1082)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-1130 *6)) (-5 *1 (-1129 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5)) (-4 *5 (-780)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1063 *6)) + (-5 *1 (-1129 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1136 *5 *6)) (-14 *5 (-1082)) + (-4 *6 (-968)) (-4 *8 (-968)) (-5 *2 (-1136 *7 *8)) + (-5 *1 (-1131 *5 *6 *7 *8)) (-14 *7 (-1082)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-968)) (-4 *6 (-968)) + (-4 *2 (-1139 *6)) (-5 *1 (-1137 *5 *4 *6 *2)) (-4 *4 (-1139 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5 *7 *9)) (-4 *5 (-968)) + (-4 *6 (-968)) (-14 *7 (-1082)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1148 *6 *8 *10)) (-5 *1 (-1143 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1082)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-968)) (-4 *6 (-968)) + (-4 *2 (-1154 *6)) (-5 *1 (-1152 *5 *6 *4 *2)) (-4 *4 (-1154 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1163 *5)) (-4 *5 (-1117)) + (-4 *6 (-1117)) (-5 *2 (-1163 *6)) (-5 *1 (-1162 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1163 *5)) + (-4 *5 (-1117)) (-4 *6 (-1117)) (-5 *2 (-1163 *6)) + (-5 *1 (-1162 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1178 *3 *4)) (-4 *3 (-782)) + (-4 *4 (-968)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-968)) (-5 *1 (-1184 *3 *4)) + (-4 *4 (-778))))) +(((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) + ((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-438)))) + ((*1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-854))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-703)) (-4 *5 (-964)) (-4 *2 (-1134 *5)) - (-5 *1 (-1152 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1149 *5))))) + (-12 (-4 *6 (-511)) (-4 *2 (-876 *3 *5 *4)) + (-5 *1 (-667 *5 *4 *6 *2)) (-5 *3 (-379 (-879 *6))) (-4 *5 (-727)) + (-4 *4 (-13 (-782) (-10 -8 (-15 -1446 ((-1082) $)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |k| (-1082)) (|:| |c| (-1183 *3))))) + (-5 *1 (-1183 *3)) (-4 *3 (-968)))) + ((*1 *2 *1) + (-12 (-5 *2 (-585 (-2 (|:| |k| *3) (|:| |c| (-1185 *3 *4))))) + (-5 *1 (-1185 *3 *4)) (-4 *3 (-782)) (-4 *4 (-968))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1078 *1)) (-4 *1 (-935))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-682))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-509)) - (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-897 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-978 *4 *5 *6)) - (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) - (-5 *1 (-897 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-838 *3)) (-4 *3 (-278))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) - (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-690))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-349))) (-5 *1 (-957)) (-5 *3 (-349))))) -(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-964))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1006)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-617 *4 *5)) (-4 *4 (-1006)))) - ((*1 *2 *2) - (-12 (-4 *3 (-779)) (-5 *1 (-853 *3 *2)) (-4 *2 (-400 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1077)) (-5 *2 (-286 (-517))) (-5 *1 (-854)))) - ((*1 *2 *1) (-12 (-4 *1 (-1173 *3 *2)) (-4 *3 (-779)) (-4 *2 (-964)))) - ((*1 *2 *1) (-12 (-4 *2 (-964)) (-5 *1 (-1179 *2 *3)) (-4 *3 (-775))))) + (-12 (-5 *2 (-625 *3)) (-4 *3 (-968)) (-5 *1 (-626 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 (-867 (-199)) (-867 (-199)))) (-5 *1 (-236)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) - (-5 *2 (-623 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1158 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) - (-5 *2 (-623 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) - (-5 *2 (-1158 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) - (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) - (-4 *5 (-1134 *4)) (-5 *2 (-1158 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) - (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) + (-12 (-5 *2 (-705)) (-5 *1 (-49 *3 *4)) (-4 *3 (-968)) + (-14 *4 (-585 (-1082))))) + ((*1 *1 *2) + (-12 (-5 *2 (-705)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-968) (-782))) + (-14 *4 (-585 (-1082))))) + ((*1 *1) (-12 (-4 *1 (-301 *2)) (-4 *2 (-340)) (-4 *2 (-335)))) ((*1 *2 *1) - (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) - (-5 *2 (-1158 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) - (-5 *2 (-623 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1158 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) - (-5 *2 (-1158 *5)) (-5 *1 (-994 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-876 (-199))) (-5 *2 (-199)) (-5 *1 (-276))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1060)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) - (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1163)) - (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-983 *6 *7 *8 *4))))) + (|partial| -12 (-4 *1 (-307 *3 *4 *5 *2)) (-4 *3 (-335)) + (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) + (-4 *2 (-314 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-705)) (-5 *1 (-362 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-157)))) + ((*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-659 *2 *3)) (-4 *3 (-1139 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-533))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-585 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-705)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-727)) (-4 *6 (-876 *3 *4 *5)) (-4 *3 (-423)) (-4 *5 (-782)) + (-5 *1 (-420 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-406))))) (((*1 *2 *3) - (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1116)) (-4 *3 (-1134 *4)) - (-4 *5 (-1134 (-377 *3))) (-5 *2 (-107)))) - ((*1 *2 *3) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107))))) -(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-964)))) - ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) - (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3)) - (-4 *3 (-585 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-156)) (-4 *2 (-964)) (-5 *1 (-647 *2 *3)) - (-4 *3 (-585 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964)))) - ((*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-964))))) -(((*1 *2) - (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) - (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) - (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1163)) - (-5 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-361))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-400 *3) (-921))) (-5 *1 (-249 *3 *2)) - (-4 *3 (-13 (-779) (-509)))))) + (-12 (-5 *3 (-848)) (-5 *2 (-1078 *4)) (-5 *1 (-329 *4)) + (-4 *4 (-321))))) (((*1 *2 *1) - (-12 (-4 *4 (-1006)) (-5 *2 (-813 *3 *4)) (-5 *1 (-809 *3 *4 *5)) - (-4 *3 (-1006)) (-4 *5 (-603 *4))))) + (-12 (-4 *3 (-1011)) (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 *2))) + (-5 *2 (-819 *3)) (-5 *1 (-990 *3 *4 *5)) + (-4 *5 (-13 (-402 *4) (-813 *3) (-560 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *1) (-5 *1 (-129)))) (((*1 *2 *1) - (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) - (-5 *2 (-1073 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (-5 *2 (-107)) (-5 *1 (-271))))) + (-12 (-5 *2 (-585 (-870 *4))) (-5 *1 (-1071 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-968))))) +(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-705)) + (-4 *3 (-13 (-661) (-340) (-10 -7 (-15 ** (*3 *3 (-519)))))) + (-5 *1 (-222 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-908 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-421)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) - (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1077))) (-4 *6 (-333)) - (-5 *2 (-583 (-265 (-876 *6)))) (-5 *1 (-495 *5 *6 *7)) - (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-688))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1060))) (-5 *1 (-364))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-828 *4)) - (-4 *4 (-1006)))) - ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-828 *3)) (-4 *3 (-1006))))) + (-12 (-4 *4 (-13 (-280) (-135))) (-4 *5 (-13 (-782) (-560 (-1082)))) + (-4 *6 (-727)) (-4 *7 (-876 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-108)) (|:| |z0| (-585 *7)) (|:| |n0| (-585 *7)))) + (-5 *1 (-851 *4 *5 *6 *7)) (-5 *3 (-585 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1011)) (-5 *2 (-705))))) +(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) + (-5 *4 (-288 (-154 (-351)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) + (-5 *4 (-288 (-351))) (-5 *1 (-302)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) + (-5 *4 (-288 (-519))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-154 (-351))))) + (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-351)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-519)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-154 (-351))))) + (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-351)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-519)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-154 (-351)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-351))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-519))) (-5 *1 (-302)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) + (-5 *4 (-288 (-629))) (-5 *1 (-302)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) + (-5 *4 (-288 (-634))) (-5 *1 (-302)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1082)) (-5 *3 (-585 (-879 (-519)))) + (-5 *4 (-288 (-636))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-629)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-634)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-288 (-636)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-629)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-634)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-288 (-636)))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-629))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-634))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-1163 (-636))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-629))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-634))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-625 (-636))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-629))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-634))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1082)) (-5 *3 (-288 (-636))) (-5 *1 (-302)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-1065)) (-5 *1 (-302)))) + ((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-687))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-335) (-135) (-959 (-519)))) + (-4 *5 (-1139 *4)) + (-5 *2 (-2 (|:| -1265 (-379 *5)) (|:| |coeff| (-379 *5)))) + (-5 *1 (-523 *4 *5)) (-5 *3 (-379 *5))))) +(((*1 *1) (-5 *1 (-1168)))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 (-585 *3))) (-4 *3 (-968)) (-4 *1 (-623 *3 *4 *5)) + (-4 *4 (-345 *3)) (-4 *5 (-345 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-585 (-790)))) (-5 *1 (-790)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1049 *3 *4)) (-5 *1 (-917 *3 *4)) (-14 *3 (-848)) + (-4 *4 (-335)))) + ((*1 *1 *2) + (-12 (-5 *2 (-585 (-585 *5))) (-4 *5 (-968)) + (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *6 (-214 *4 *5)) + (-4 *7 (-214 *3 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) + (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-321)) (-5 *2 (-1163 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1001 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276))))) -(((*1 *2 *3) - (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1073 (-1073 *4)))) - (-5 *1 (-1111 *4)) (-5 *3 (-1073 (-1073 *4)))))) + (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-133)) (-4 *1 (-836)) + (-5 *2 (-1163 *1))))) +(((*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-302))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-377 (-876 (-153 (-517)))))) - (-5 *2 (-583 (-583 (-265 (-876 (-153 *4)))))) (-5 *1 (-348 *4)) - (-4 *4 (-13 (-333) (-777))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-265 (-377 (-876 (-153 (-517))))))) - (-5 *2 (-583 (-583 (-265 (-876 (-153 *4)))))) (-5 *1 (-348 *4)) - (-4 *4 (-13 (-333) (-777))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-377 (-876 (-153 (-517))))) - (-5 *2 (-583 (-265 (-876 (-153 *4))))) (-5 *1 (-348 *4)) - (-4 *4 (-13 (-333) (-777))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 (-377 (-876 (-153 (-517)))))) - (-5 *2 (-583 (-265 (-876 (-153 *4))))) (-5 *1 (-348 *4)) - (-4 *4 (-13 (-333) (-777)))))) -(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118)))) -(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-851))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-685))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-1163)) (-5 *1 (-671))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1077)) - (-4 *5 (-13 (-421) (-779) (-134) (-955 (-517)) (-579 (-517)))) - (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) - (-4 *3 (-13 (-27) (-1098) (-400 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1163)) (-5 *1 (-349)))) - ((*1 *2) (-12 (-5 *2 (-1163)) (-5 *1 (-349))))) -(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-957))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-964)) (-4 *2 (-333))))) -(((*1 *1 *1) (-5 *1 (-976)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1073 *6)) (-4 *6 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) - (-5 *2 (-1073 *7)) (-5 *1 (-291 *4 *5 *6 *7)) - (-4 *7 (-873 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1109))))) -(((*1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161)))) - ((*1 *2 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1161))))) -(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160)))) - ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1160))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1073 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3))))) -(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1134 *4)) - (-5 *2 (-1158 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509))))) -(((*1 *2 *3) - (-12 (-4 *4 (-779)) - (-5 *2 - (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) - (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) - (-5 *1 (-1084 *4)) (-5 *3 (-583 (-583 (-583 *4))))))) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-585 (-1082))) (-4 *4 (-1011)) + (-4 *5 (-13 (-968) (-813 *4) (-782) (-560 (-819 *4)))) + (-5 *1 (-990 *4 *5 *2)) + (-4 *2 (-13 (-402 *5) (-813 *4) (-560 (-819 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1011)) + (-4 *4 (-13 (-968) (-813 *3) (-782) (-560 (-819 *3)))) + (-5 *1 (-990 *3 *4 *2)) + (-4 *2 (-13 (-402 *4) (-813 *3) (-560 (-819 *3))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-335)) (-4 *4 (-1139 *3)) (-4 *5 (-1139 (-379 *4))) + (-5 *2 (-1163 *6)) (-5 *1 (-308 *3 *4 *5 *6)) + (-4 *6 (-314 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-4 *3 (-511)) + (-5 *2 (-1078 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (-519) (-201) (-1082) (-1065) (-1087))) + (-5 *1 (-1087))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-703)) (-4 *1 (-1134 *4)) (-4 *4 (-964)) - (-5 *2 (-1158 *4))))) + (-12 (-5 *3 (-519)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-390 *4)) (-4 *4 (-511))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1117)) + (-4 *5 (-1117)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-216 *6 *7)) (-14 *6 (-705)) + (-4 *7 (-1117)) (-4 *5 (-1117)) (-5 *2 (-216 *6 *5)) + (-5 *1 (-215 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1117)) (-4 *5 (-1117)) + (-4 *2 (-345 *5)) (-5 *1 (-343 *6 *4 *5 *2)) (-4 *4 (-345 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1011)) (-4 *5 (-1011)) + (-4 *2 (-397 *5)) (-5 *1 (-395 *6 *4 *5 *2)) (-4 *4 (-397 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-585 *6)) (-4 *6 (-1117)) + (-4 *5 (-1117)) (-5 *2 (-585 *5)) (-5 *1 (-583 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-884 *6)) (-4 *6 (-1117)) + (-4 *5 (-1117)) (-5 *2 (-884 *5)) (-5 *1 (-883 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1063 *6)) (-4 *6 (-1117)) + (-4 *3 (-1117)) (-5 *2 (-1063 *3)) (-5 *1 (-1061 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1163 *6)) (-4 *6 (-1117)) + (-4 *5 (-1117)) (-5 *2 (-1163 *5)) (-5 *1 (-1162 *6 *5))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *2 (-957)) + (-5 *1 (-689))))) +(((*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-1117))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-379 (-879 *3))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) + (-5 *6 (-3 (|:| |fn| (-360)) (|:| |fp| (-76 FUNCTN)))) + (-5 *2 (-957)) (-5 *1 (-683))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) - (-4 *3 (-387 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-107))))) -(((*1 *2) - (-12 (-4 *3 (-964)) (-5 *2 (-881 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) - (-4 *4 (-1134 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) - (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) - (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-1 (-1063 *4) (-1063 *4))) (-5 *2 (-1063 *4)) + (-5 *1 (-1186 *4)) (-4 *4 (-1117)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-978 *5 *6 *7)) - (-4 *9 (-1015 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) - (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1047 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1 (-585 (-1063 *5)) (-585 (-1063 *5)))) (-5 *4 (-519)) + (-5 *2 (-585 (-1063 *5))) (-5 *1 (-1186 *5)) (-4 *5 (-1117))))) (((*1 *2 *1) - (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-978 *3 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1077)) (-5 *1 (-534 *2)) (-4 *2 (-955 *3)) - (-4 *2 (-333)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1077)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) - (-4 *2 (-13 (-400 *4) (-921) (-1098))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-999 *2)) (-4 *2 (-13 (-400 *4) (-921) (-1098))) - (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-882)) (-5 *2 (-1077)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-999 *1)) (-4 *1 (-882))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-964) (-810 *3) (-779) (-558 *2))) - (-5 *2 (-816 *3)) (-5 *1 (-986 *3 *4 *5)) - (-4 *5 (-13 (-400 *4) (-810 *3) (-558 *2)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-1001 (-199))) - (-5 *2 (-1160)) (-5 *1 (-230))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-509)) - (-5 *2 (-2 (|:| -3725 (-623 *5)) (|:| |vec| (-1158 (-583 (-845)))))) - (-5 *1 (-88 *5 *3)) (-5 *4 (-845)) (-4 *3 (-593 *5))))) + (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-5 *2 (-585 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) - (-4 *4 (-400 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-703)) (-5 *1 (-109)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-109)))) - ((*1 *2 *2) - (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) - (-4 *4 (-400 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-109)) (-5 *1 (-147)))) - ((*1 *2 *2) - (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) - (-4 *4 (-13 (-400 *3) (-921))))) - ((*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) - ((*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) - ((*1 *2 *2) - (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) - (-4 *3 (-400 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) - (-4 *4 (-400 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) - ((*1 *2 *2) - (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) - (-4 *4 (-13 (-400 *3) (-921) (-1098)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-680))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1006)) (-4 *3 (-824 *5)) (-5 *2 (-1158 *3)) - (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) - (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4195))))))) -(((*1 *1 *1) - (-12 (-4 *1 (-873 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779)) (-4 *2 (-421)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *3 (-978 *4 *5 *6)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3864 *1)))) - (-4 *1 (-983 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1116))) - ((*1 *2 *2) - (-12 (-4 *3 (-509)) (-5 *1 (-1137 *3 *2)) - (-4 *2 (-13 (-1134 *3) (-509) (-10 -8 (-15 -2361 ($ $ $)))))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-725)) - (-4 *3 (-13 (-779) (-10 -8 (-15 -3367 ((-1077) $))))) (-4 *5 (-509)) - (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-873 (-377 (-876 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-964)) (-4 *5 (-725)) - (-4 *3 - (-13 (-779) - (-10 -8 (-15 -3367 ((-1077) $)) - (-15 -3791 ((-3 $ "failed") (-1077)))))) - (-5 *1 (-904 *4 *5 *3 *2)) (-4 *2 (-873 (-876 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *6)) - (-4 *6 - (-13 (-779) - (-10 -8 (-15 -3367 ((-1077) $)) - (-15 -3791 ((-3 $ "failed") (-1077)))))) - (-4 *4 (-964)) (-4 *5 (-725)) (-5 *1 (-904 *4 *5 *6 *2)) - (-4 *2 (-873 (-876 *4) *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-1173 *2 *3)) (-4 *2 (-779)) (-4 *3 (-964)))) - ((*1 *1 *1) (-12 (-5 *1 (-1179 *2 *3)) (-4 *2 (-964)) (-4 *3 (-775))))) -(((*1 *2 *1) (-12 (-4 *1 (-914 *2)) (-4 *2 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1058 *4) (-1058 *4))) (-5 *2 (-1058 *4)) - (-5 *1 (-1181 *4)) (-4 *4 (-1112)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-583 (-1058 *5)) (-583 (-1058 *5)))) (-5 *4 (-517)) - (-5 *2 (-583 (-1058 *5))) (-5 *1 (-1181 *5)) (-4 *5 (-1112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-961 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-940))) - (-14 *5 (-583 (-1077))) - (-5 *2 - (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4)))))) - (-5 *1 (-1182 *4 *5 *6)) (-14 *6 (-583 (-1077))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) + (|partial| -12 (-5 *2 (-585 (-819 *3))) (-5 *1 (-819 *3)) + (-4 *3 (-1011))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2292 (-716 *3)) (|:| |coef2| (-716 *3)))) + (-5 *1 (-716 *3)) (-4 *3 (-511)) (-4 *3 (-968)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-511)) (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-5 *2 (-2 (|:| -2292 *1) (|:| |coef2| *1))) + (-4 *1 (-982 *3 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-907 *2)) (-4 *2 (-1103))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-519)) (-4 *1 (-1005 *3)) (-4 *3 (-1117))))) +(((*1 *2 *3) + (-12 (-5 *2 - (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) - (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5))) - (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) + (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) + (-5 *1 (-942 *3)) (-4 *3 (-1139 (-519))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 - (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) - (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5))) - (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) + (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) + (-5 *1 (-942 *3)) (-4 *3 (-1139 (-519))) + (-5 *4 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-940))) + (-12 (-5 *2 - (-583 (-2 (|:| -2914 (-1073 *5)) (|:| -1372 (-583 (-876 *5)))))) - (-5 *1 (-1182 *5 *6 *7)) (-5 *3 (-583 (-876 *5))) - (-14 *6 (-583 (-1077))) (-14 *7 (-583 (-1077))))) + (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) + (-5 *1 (-942 *3)) (-4 *3 (-1139 (-519))) (-5 *4 (-379 (-519))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-379 (-519))) + (-5 *2 (-585 (-2 (|:| -1917 *5) (|:| -1931 *5)))) (-5 *1 (-942 *3)) + (-4 *3 (-1139 (-519))) (-5 *4 (-2 (|:| -1917 *5) (|:| -1931 *5))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-777) (-278) (-134) (-940))) + (-12 (-5 *2 - (-583 (-2 (|:| -2914 (-1073 *4)) (|:| -1372 (-583 (-876 *4)))))) - (-5 *1 (-1182 *4 *5 *6)) (-5 *3 (-583 (-876 *4))) - (-14 *5 (-583 (-1077))) (-14 *6 (-583 (-1077)))))) -(((*1 *2 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-278))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-517)) (-4 *1 (-1000 *3)) (-4 *3 (-1112))))) -(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1060))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) - (-5 *1 (-1128 *4 *3)) (-4 *3 (-1134 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1158 *4)) (-5 *3 (-517)) (-4 *4 (-319)) - (-5 *1 (-487 *4))))) + (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) + (-5 *1 (-943 *3)) (-4 *3 (-1139 (-379 (-519)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-585 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519)))))) + (-5 *1 (-943 *3)) (-4 *3 (-1139 (-379 (-519)))) + (-5 *4 (-2 (|:| -1917 (-379 (-519))) (|:| -1931 (-379 (-519))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-379 (-519))) + (-5 *2 (-585 (-2 (|:| -1917 *4) (|:| -1931 *4)))) (-5 *1 (-943 *3)) + (-4 *3 (-1139 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-379 (-519))) + (-5 *2 (-585 (-2 (|:| -1917 *5) (|:| -1931 *5)))) (-5 *1 (-943 *3)) + (-4 *3 (-1139 *5)) (-5 *4 (-2 (|:| -1917 *5) (|:| -1931 *5)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-900 *4 *5 *6 *3)) (-4 *4 (-968)) (-4 *5 (-727)) + (-4 *6 (-782)) (-4 *3 (-982 *4 *5 *6)) (-4 *4 (-511)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-379 (-519))) (-5 *1 (-946 *3)) + (-4 *3 (-13 (-780) (-335) (-944))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-780) (-335))) (-5 *1 (-978 *2 *3)) + (-4 *3 (-1139 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-984 *2 *3)) (-4 *2 (-13 (-780) (-335))) + (-4 *3 (-1139 *2))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-366)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-1098))))) (((*1 *2 *3) - (-12 (-4 *4 (-1134 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-837 *4 *3)) - (-4 *3 (-1134 (-377 *4)))))) + (-12 (-5 *3 (-585 (-585 (-585 *4)))) (-5 *2 (-585 (-585 *4))) + (-5 *1 (-1089 *4)) (-4 *4 (-782))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1078 *3)) (-4 *3 (-321)) (-5 *1 (-329 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-519)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-705)) (-4 *5 (-157)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-519)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-705)) (-4 *5 (-157)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) + (-223 *4 (-379 (-519))))) + (-5 *3 (-585 (-792 *4))) (-14 *4 (-585 (-1082))) (-14 *5 (-705)) + (-5 *1 (-472 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-1117))))) +(((*1 *2 *3) (-12 (-5 *3 (-879 (-201))) (-5 *2 (-201)) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2) + (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-157)) (-5 *2 (-108))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1065) (-708))) (-5 *1 (-110))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-108))))) +(((*1 *1 *1) (-5 *1 (-980)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-848)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-705))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *1)) (-4 *1 (-275)))) + ((*1 *1 *1) (-4 *1 (-275))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-790))) (-5 *1 (-790)))) + ((*1 *1 *1) (-5 *1 (-790)))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-705)) (-5 *1 (-716 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-889 *3 *2)) (-4 *2 (-124)) (-4 *3 (-511)) + (-4 *3 (-968)) (-4 *2 (-726)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-705)) (-5 *1 (-1078 *3)) (-4 *3 (-968)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-895)) (-4 *2 (-124)) (-5 *1 (-1084 *3)) (-4 *3 (-511)) + (-4 *3 (-968)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-705)) (-5 *1 (-1136 *4 *3)) (-14 *4 (-1082)) + (-4 *3 (-968))))) (((*1 *2 *1) - (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1058 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) + (-12 (-5 *2 (-1063 (-519))) (-5 *1 (-927 *3)) (-14 *3 (-519))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-110))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 *3)) (-4 *3 (-782)) (-5 *1 (-117 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) + (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1168)) (-5 *1 (-1045)))) ((*1 *2 *3) - (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))) - ((*1 *2 *1) - (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) - ((*1 *2 *1) - (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) - (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060)) (-5 *1 (-1094)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-1094))))) -(((*1 *2 *3) (-12 (-5 *3 (-1077)) (-5 *2 (-1163)) (-5 *1 (-1080)))) - ((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-1081))))) -(((*1 *1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) - (-14 *4 (-583 (-1077))))) - ((*1 *1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) - (-14 *4 (-583 (-1077))))) - ((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) - (-4 *4 (-1134 *3)) (-4 *5 (-1134 (-377 *4))) - (-4 *2 (-312 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-156)))) - ((*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1134 *2))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-900 *2)) (-4 *2 (-964)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-867 (-199))) (-5 *1 (-1109)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1112)) (-4 *2 (-964))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2133 *4))) - (-5 *1 (-890 *4 *3)) (-4 *3 (-1134 *4))))) + (-12 (-5 *3 (-585 (-790))) (-5 *2 (-1168)) (-5 *1 (-1045))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1158 (-632))) (-5 *1 (-276))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-845)) (-5 *4 (-1060)) (-5 *2 (-1163)) (-5 *1 (-1159))))) -(((*1 *2 *3) - (-12 (-4 *4 (-833)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *7 (-873 *4 *5 *6)) (-5 *2 (-388 (-1073 *7))) - (-5 *1 (-830 *4 *5 *6 *7)) (-5 *3 (-1073 *7)))) + (-12 (-5 *3 (-585 (-288 (-201)))) (-5 *2 (-108)) (-5 *1 (-242)))) + ((*1 *2 *3) (-12 (-5 *3 (-288 (-201))) (-5 *2 (-108)) (-5 *1 (-242)))) ((*1 *2 *3) - (-12 (-4 *4 (-833)) (-4 *5 (-1134 *4)) (-5 *2 (-388 (-1073 *5))) - (-5 *1 (-831 *4 *5)) (-5 *3 (-1073 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-964)) (-4 *4 (-1006)) (-5 *2 (-583 *1)) - (-4 *1 (-352 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-964)) - (-4 *4 (-659)))) - ((*1 *2 *1) - (-12 (-4 *3 (-964)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) - (-4 *1 (-873 *3 *4 *5))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-583 (-1077))) (-4 *2 (-156)) - (-4 *3 (-212 (-3573 *4) (-703))) - (-14 *6 - (-1 (-107) (-2 (|:| -2803 *5) (|:| -1725 *3)) - (-2 (|:| -2803 *5) (|:| -1725 *3)))) - (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) - (-4 *7 (-873 *2 *3 (-789 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-964)) (-4 *5 (-212 *3 *4)) - (-4 *2 (-212 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-4 *5 (-1134 *4)) (-5 *2 (-583 (-590 (-377 *5)))) - (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) - (-4 *8 (-873 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1158 (-377 *8)) "failed")) - (|:| -3700 (-583 (-1158 (-377 *8)))))) - (-5 *1 (-606 *5 *6 *7 *8))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-801 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-803 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-806 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) - (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-107))))) -(((*1 *2) - (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) - (-4 *3 (-337 *4)))) - ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) + (-12 (-4 *4 (-511)) (-4 *5 (-727)) (-4 *6 (-782)) (-5 *2 (-108)) + (-5 *1 (-901 *4 *5 *6 *3)) (-4 *3 (-982 *4 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-1051)))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1117))))) +(((*1 *1 *2) + (-12 (-5 *2 (-705)) (-5 *1 (-613 *3)) (-4 *3 (-968)) (-4 *3 (-1011))))) (((*1 *2 *1) - (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1134 *2))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1112)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-583 (-867 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 (-867 *3))) (-4 *3 (-964)) (-4 *1 (-1038 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-867 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-964))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) - (|:| |fn| (-1158 (-286 (-199)))) (|:| |yinit| (-583 (-199))) - (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) - (|:| |abserr| (-199)) (|:| |relerr| (-199)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) - (-5 *1 (-181))))) -(((*1 *2) - (-12 (-4 *4 (-1116)) (-4 *5 (-1134 *4)) (-4 *6 (-1134 (-377 *5))) - (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1116)) (-4 *4 (-1134 *3)) - (-4 *5 (-1134 (-377 *4))) (-5 *2 (-107))))) + (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-585 (-585 (-156))))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1065)) (-5 *4 (-519)) (-5 *5 (-625 (-154 (-201)))) + (-5 *2 (-957)) (-5 *1 (-689))))) +(((*1 *1 *2) + (-12 (-5 *2 (-585 (-848))) (-5 *1 (-1012 *3 *4)) (-14 *3 (-848)) + (-14 *4 (-848))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) + (-2 (|:| |var| (-1082)) (|:| |fn| (-288 (-201))) + (|:| -1710 (-1006 (-775 (-201)))) (|:| |abserr| (-201)) + (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -16790,1271 +16611,1499 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1058 (-199))) + (-3 (|:| |str| (-1063 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3177 + (|:| -1710 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-512))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) - (-4 *2 (-13 (-779) (-21)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-349)) (-5 *1 (-92))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-845)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-349)) (-5 *1 (-976))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1077)) - (-4 *6 (-13 (-779) (-278) (-955 (-517)) (-579 (-517)) (-134))) - (-4 *4 (-13 (-29 *6) (-1098) (-882))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3700 (-583 *4)))) - (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2))))) -(((*1 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161)))) - ((*1 *2 *2) (-12 (-5 *2 (-845)) (-5 *1 (-1161))))) -(((*1 *2 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1073 *4)) (-5 *1 (-536 *4)) - (-4 *4 (-319))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1158 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) - (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)))) - ((*1 *2) - (-12 (-4 *4 (-156)) (-4 *5 (-1134 *4)) (-5 *2 (-623 *4)) - (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1134 *3)) - (-5 *2 (-623 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-867 *3)) (-4 *3 (-13 (-333) (-1098) (-921))) - (-5 *1 (-158 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1077)) - (-4 *5 (-13 (-509) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) - (|:| |vals| (-583 *3)))) - (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1098) (-400 *5)))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1134 *5)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) - (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -1701 *6))) - (-5 *1 (-935 *5 *6)) (-5 *3 (-377 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1158 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) - ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) - ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156))))) -(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-156))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4195)) (-4 *1 (-456 *4)) - (-4 *4 (-1112)) (-5 *2 (-107))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1073 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) - (-4 *9 (-873 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) - (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703))))) -(((*1 *2 *1) (-12 (-5 *2 (-1010)) (-5 *1 (-300))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-222))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1158 (-583 (-2 (|:| -3112 *4) (|:| -2803 (-1024)))))) - (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) - ((*1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-845)) - (-14 *4 (-845)))) - ((*1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) - (-14 *4 - (-3 (-1073 *3) - (-1158 (-583 (-2 (|:| -3112 *3) (|:| -2803 (-1024))))))))) + (-5 *1 (-514))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4222)) (-4 *1 (-115 *2)) (-4 *2 (-1117))))) +(((*1 *2) + (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) + (-5 *2 (-705)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-314 *4 *5 *6)))) ((*1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) - (-14 *4 (-845))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-953)) - (-5 *1 (-688))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1077)) (|:| |fn| (-286 (-199))) - (|:| -3177 (-1001 (-772 (-199)))) (|:| |abserr| (-199)) - (|:| |relerr| (-199)))) - (-5 *2 (-583 (-199))) (-5 *1 (-180))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1077)) (-4 *5 (-333)) (-5 *2 (-583 (-1107 *5))) - (-5 *1 (-1166 *5)) (-5 *4 (-1107 *5))))) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-705)))) + ((*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-705))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -2057 (-585 (-1082))) (|:| -2966 (-585 (-1082))))) + (-5 *1 (-1119))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-511)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1286 *4))) + (-5 *1 (-894 *4 *3)) (-4 *3 (-1139 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-154 (-519))) (-5 *2 (-108)) (-5 *1 (-417)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-471 (-379 (-519)) (-216 *5 (-705)) (-792 *4) + (-223 *4 (-379 (-519))))) + (-14 *4 (-585 (-1082))) (-14 *5 (-705)) (-5 *2 (-108)) + (-5 *1 (-472 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-887 *3)) (-4 *3 (-504)))) + ((*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *5 (-625 (-201))) (-5 *4 (-201)) + (-5 *2 (-957)) (-5 *1 (-685))))) +(((*1 *1 *1 *1) (-5 *1 (-790)))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-720))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-625 (-201))) (-5 *5 (-201)) + (-5 *2 (-957)) (-5 *1 (-686))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1082)) + (-4 *5 (-13 (-423) (-782) (-135) (-959 (-519)) (-581 (-519)))) + (-5 *2 (-2 (|:| -1265 *3) (|:| |coeff| *3))) (-5 *1 (-512 *5 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *5)))))) +(((*1 *1 *1) (-4 *1 (-131))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-144 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504))))) +(((*1 *2 *1) (-12 (-4 *1 (-1043 *3)) (-4 *3 (-968)) (-5 *2 (-108))))) +(((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-511))))) +(((*1 *2 *1) (-12 (-4 *3 (-968)) (-5 *2 (-585 *1)) (-4 *1 (-1043 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3))))) + (-12 (-4 *3 (-335)) (-5 *1 (-947 *3 *2)) (-4 *2 (-595 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-335)) (-5 *2 (-2 (|:| -3257 *3) (|:| -1435 (-585 *5)))) + (-5 *1 (-947 *5 *3)) (-5 *4 (-585 *5)) (-4 *3 (-595 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1063 *4)) (-5 *3 (-1 *4 (-519))) (-4 *4 (-968)) + (-5 *1 (-1067 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-51)) (-5 *1 (-766))))) +(((*1 *2 *1) + (-12 (-4 *1 (-630 *3)) (-4 *3 (-1011)) + (-5 *2 (-585 (-2 (|:| -3100 *3) (|:| -4155 (-705)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-1086))))) +(((*1 *2 *3) + (-12 (-5 *2 (-519)) (-5 *1 (-416 *3)) (-4 *3 (-376)) (-4 *3 (-968))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-948 *2)) (-4 *2 (-1117))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) - (-4 *3 (-873 *7 *5 *6)) + (-12 (-4 *5 (-727)) (-4 *6 (-782)) (-4 *7 (-511)) + (-4 *3 (-876 *7 *5 *6)) (-5 *2 - (-2 (|:| -1725 (-703)) (|:| -1570 *3) (|:| |radicand| (-583 *3)))) - (-5 *1 (-877 *5 *6 *7 *3 *8)) (-5 *4 (-703)) + (-2 (|:| -1690 (-705)) (|:| -3031 *3) (|:| |radicand| (-585 *3)))) + (-5 *1 (-880 *5 *6 *7 *3 *8)) (-5 *4 (-705)) (-4 *8 - (-13 (-333) - (-10 -8 (-15 -3858 (*3 $)) (-15 -2082 (*3 $)) (-15 -2262 ($ *3)))))))) + (-13 (-335) + (-10 -8 (-15 -2855 (*3 $)) (-15 -2866 (*3 $)) (-15 -2217 ($ *3)))))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-848)) (-5 *4 (-201)) (-5 *5 (-519)) (-5 *6 (-801)) + (-5 *2 (-1168)) (-5 *1 (-1164))))) (((*1 *2 *3) - (-12 (-4 *4 (-964)) - (-4 *2 (-13 (-374) (-955 *4) (-333) (-1098) (-256))) - (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1134 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-845)) (-4 *5 (-964)) - (-4 *2 (-13 (-374) (-955 *5) (-333) (-1098) (-256))) - (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1134 *5))))) + (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-879 (-351))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-379 (-879 (-351)))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-288 (-351))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-351))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-879 (-519))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-379 (-879 (-519)))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-288 (-519))) (-5 *1 (-311 *3 *4 *5)) + (-4 *5 (-959 (-519))) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))) (-4 *5 (-359)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-311 *3 *4 *5)) + (-14 *3 (-585 *2)) (-14 *4 (-585 *2)) (-4 *5 (-359)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-288 *5)) (-4 *5 (-359)) + (-5 *1 (-311 *3 *4 *5)) (-14 *3 (-585 (-1082))) + (-14 *4 (-585 (-1082))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-625 (-379 (-879 (-519))))) (-4 *1 (-356)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-625 (-379 (-879 (-351))))) (-4 *1 (-356)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-625 (-879 (-519)))) (-4 *1 (-356)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-625 (-879 (-351)))) (-4 *1 (-356)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-625 (-288 (-519)))) (-4 *1 (-356)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-625 (-288 (-351)))) (-4 *1 (-356)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-379 (-879 (-519)))) (-4 *1 (-368)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-379 (-879 (-351)))) (-4 *1 (-368)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-879 (-519))) (-4 *1 (-368)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-879 (-351))) (-4 *1 (-368)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-288 (-519))) (-4 *1 (-368)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-288 (-351))) (-4 *1 (-368)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1163 (-379 (-879 (-519))))) (-4 *1 (-412)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1163 (-379 (-879 (-351))))) (-4 *1 (-412)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1163 (-879 (-519)))) (-4 *1 (-412)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1163 (-879 (-351)))) (-4 *1 (-412)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1163 (-288 (-519)))) (-4 *1 (-412)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1163 (-288 (-351)))) (-4 *1 (-412)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-321)) (-4 *5 (-301 *4)) (-4 *6 (-1139 *5)) + (-5 *2 (-1078 (-1078 *4))) (-5 *1 (-711 *4 *5 *6 *3 *7)) + (-4 *3 (-1139 *6)) (-14 *7 (-848)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-585 *6)) (-4 *6 (-982 *3 *4 *5)) + (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782)) + (-4 *1 (-900 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1117)))) + ((*1 *1 *2) + (|partial| -3730 + (-12 (-5 *2 (-879 *3)) + (-12 (-2445 (-4 *3 (-37 (-379 (-519))))) + (-2445 (-4 *3 (-37 (-519)))) (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) + (-4 *5 (-782))) + (-12 (-5 *2 (-879 *3)) + (-12 (-2445 (-4 *3 (-504))) (-2445 (-4 *3 (-37 (-379 (-519))))) + (-4 *3 (-37 (-519))) (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) + (-4 *5 (-782))) + (-12 (-5 *2 (-879 *3)) + (-12 (-2445 (-4 *3 (-916 (-519)))) (-4 *3 (-37 (-379 (-519)))) + (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *1 (-982 *3 *4 *5)) (-4 *4 (-727)) + (-4 *5 (-782))))) + ((*1 *1 *2) + (|partial| -3730 + (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) + (-12 (-2445 (-4 *3 (-37 (-379 (-519))))) (-4 *3 (-37 (-519))) + (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))) + (-12 (-5 *2 (-879 (-519))) (-4 *1 (-982 *3 *4 *5)) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082)))) + (-4 *3 (-968)) (-4 *4 (-727)) (-4 *5 (-782))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-879 (-379 (-519)))) (-4 *1 (-982 *3 *4 *5)) + (-4 *3 (-37 (-379 (-519)))) (-4 *5 (-560 (-1082))) (-4 *3 (-968)) + (-4 *4 (-727)) (-4 *5 (-782))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-224))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-968)) (-5 *1 (-1135 *3 *2)) (-4 *2 (-1139 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-335)) (-5 *1 (-701 *2 *3)) (-4 *2 (-644 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-784 *2)) (-4 *2 (-968)) (-4 *2 (-335))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-108)) (-5 *5 (-625 (-201))) + (-5 *2 (-957)) (-5 *1 (-690))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-827 *3)) (-4 *3 (-1006)) (-5 *2 (-1008 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1006)) (-5 *2 (-1008 (-583 *4))) (-5 *1 (-828 *4)) - (-5 *3 (-583 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1006)) (-5 *2 (-1008 (-1008 *4))) (-5 *1 (-828 *4)) - (-5 *3 (-1008 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1008 *3)) (-5 *1 (-828 *3)) (-4 *3 (-1006))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-1077))) (-5 *2 (-1163)) (-5 *1 (-1080)))) + (-12 (-5 *3 (-705)) (-4 *4 (-968)) + (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-1139 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-959 (-519))) (-4 *1 (-275)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-504)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1011))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-705)) (-5 *6 (-108)) (-4 *7 (-423)) (-4 *8 (-727)) + (-4 *9 (-782)) (-4 *3 (-982 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-985 *7 *8 *9 *3 *4)) (-4 *4 (-987 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-705)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) + (-4 *3 (-982 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-987 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1163)) - (-5 *1 (-1080)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-583 (-1077))) (-5 *3 (-1077)) (-5 *2 (-1163)) - (-5 *1 (-1080))))) -(((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) - ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) - ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) - ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) - ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) - ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) - ((*1 *1) (-5 *1 (-300)))) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-705)) (-5 *6 (-108)) (-4 *7 (-423)) (-4 *8 (-727)) + (-4 *9 (-782)) (-4 *3 (-982 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-1052 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-705)) (-4 *6 (-423)) (-4 *7 (-727)) (-4 *8 (-782)) + (-4 *3 (-982 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-1052 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-585 *4)) + (|:| |todo| (-585 (-2 (|:| |val| (-585 *3)) (|:| -1890 *4)))))) + (-5 *1 (-1052 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) +(((*1 *1) + (-12 (-5 *1 (-588 *2 *3 *4)) (-4 *2 (-1011)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-585 (-1082))) (-5 *1 (-495))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-625 *3)) + (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) + (-4 *4 (-1139 *3)) (-5 *1 (-466 *3 *4 *5)) (-4 *5 (-381 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-625 *3)) + (-4 *3 (-13 (-280) (-10 -8 (-15 -3093 ((-390 $) $))))) + (-4 *4 (-1139 *3)) (-5 *1 (-466 *3 *4 *5)) (-4 *5 (-381 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-796 *3)) (-5 *2 (-519))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) (((*1 *2 *1) - (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-964)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *2 (-107)))) + (-12 (-5 *2 (-1078 (-379 (-879 *3)))) (-5 *1 (-424 *3 *4 *5 *6)) + (-4 *3 (-511)) (-4 *3 (-157)) (-14 *4 (-848)) + (-14 *5 (-585 (-1082))) (-14 *6 (-1163 (-625 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-876 *3 *4 *2)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)) (-4 *3 (-157)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-511)) (-5 *1 (-894 *2 *3)) (-4 *3 (-1139 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-511)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-157))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-585 *3)) (-4 *3 (-876 *5 *6 *7)) (-4 *5 (-423)) + (-4 *6 (-727)) (-4 *7 (-782)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-420 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-519)) (-5 *6 (-1 (-1168) (-1163 *5) (-1163 *5) (-351))) + (-5 *3 (-1163 (-351))) (-5 *5 (-351)) (-5 *2 (-1168)) + (-5 *1 (-722))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-558 *1)) (-4 *1 (-402 *4)) (-4 *4 (-782)) + (-4 *4 (-511)) (-5 *2 (-379 (-1078 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-558 *3)) (-4 *3 (-13 (-402 *6) (-27) (-1103))) + (-4 *6 (-13 (-423) (-959 (-519)) (-782) (-135) (-581 (-519)))) + (-5 *2 (-1078 (-379 (-1078 *3)))) (-5 *1 (-515 *6 *3 *7)) + (-5 *5 (-1078 *3)) (-4 *7 (-1011)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1159 *5)) (-14 *5 (-1082)) (-4 *6 (-968)) + (-5 *2 (-1136 *5 (-879 *6))) (-5 *1 (-874 *5 *6)) (-5 *3 (-879 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-967 *3 *4 *5 *6 *7)) (-4 *5 (-964)) - (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-517)) (-5 *2 (-1163)) (-5 *1 (-1160)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-349)) (-5 *2 (-1163)) (-5 *1 (-1160))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-556 *3)) - (-4 *3 (-13 (-400 *5) (-27) (-1098))) - (-4 *5 (-13 (-421) (-955 (-517)) (-779) (-134) (-579 (-517)))) - (-5 *2 (-2 (|:| -2791 *3) (|:| |coeff| *3))) - (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1006))))) -(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-953)) - (-5 *1 (-680))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) - (-5 *3 (-583 (-517))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1058 (-583 (-517)))) (-5 *1 (-807)) - (-5 *3 (-583 (-517)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1112)) - (-4 *5 (-1112)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) - (-4 *7 (-1112)) (-4 *5 (-1112)) (-5 *2 (-214 *6 *5)) - (-5 *1 (-213 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1112)) (-4 *5 (-1112)) - (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1006)) (-4 *5 (-1006)) - (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1112)) - (-4 *5 (-1112)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-881 *6)) (-4 *6 (-1112)) - (-4 *5 (-1112)) (-5 *2 (-881 *5)) (-5 *1 (-880 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1058 *6)) (-4 *6 (-1112)) - (-4 *3 (-1112)) (-5 *2 (-1058 *3)) (-5 *1 (-1056 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1158 *6)) (-4 *6 (-1112)) - (-4 *5 (-1112)) (-5 *2 (-1158 *5)) (-5 *1 (-1157 *6 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156))))) + (-12 (-4 *1 (-876 *3 *4 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-5 *2 (-1078 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-968)) (-4 *5 (-727)) (-4 *3 (-782)) (-5 *2 (-1078 *1)) + (-4 *1 (-876 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-727)) (-4 *4 (-782)) (-4 *6 (-968)) + (-4 *7 (-876 *6 *5 *4)) (-5 *2 (-379 (-1078 *3))) + (-5 *1 (-877 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-335) + (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1078 *3)) + (-4 *3 + (-13 (-335) + (-10 -8 (-15 -2217 ($ *7)) (-15 -2855 (*7 $)) (-15 -2866 (*7 $))))) + (-4 *7 (-876 *6 *5 *4)) (-4 *5 (-727)) (-4 *4 (-782)) (-4 *6 (-968)) + (-5 *1 (-877 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) (-4 *5 (-511)) + (-5 *2 (-379 (-1078 (-379 (-879 *5))))) (-5 *1 (-964 *5)) + (-5 *3 (-379 (-879 *5)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-544 *2)) (-4 *2 (-37 (-379 (-519)))) (-4 *2 (-968))))) +(((*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1117)) (-5 *2 (-585 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1134 (-47)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1038 *3)) (-4 *3 (-964)) (-5 *2 (-1066 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-845)) (-4 *3 (-964)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1160)))) - ((*1 *2 *1) (-12 (-5 *2 (-1037 (-199))) (-5 *1 (-1160))))) + (|partial| -12 (-5 *3 (-1065)) (-5 *2 (-351)) (-5 *1 (-720))))) +(((*1 *2) + (-12 (-4 *4 (-1121)) (-4 *5 (-1139 *4)) (-4 *6 (-1139 (-379 *5))) + (-5 *2 (-585 (-585 *4))) (-5 *1 (-313 *3 *4 *5 *6)) + (-4 *3 (-314 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-4 *3 (-340)) (-5 *2 (-585 (-585 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-1163 (-1012 *3 *4))) (-5 *1 (-1012 *3 *4)) + (-14 *3 (-848)) (-14 *4 (-848))))) (((*1 *2 *3) - (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) - (-5 *1 (-608 *4))))) + (-12 (-5 *2 (-1 (-870 *3) (-870 *3))) (-5 *1 (-160 *3)) + (-4 *3 (-13 (-335) (-1103) (-925)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-900 *3 *4 *5 *6)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *5 (-782)) (-4 *6 (-982 *3 *4 *5)) (-4 *3 (-511)) + (-5 *2 (-108))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-585 (-1078 *4))) (-5 *3 (-1078 *4)) + (-4 *4 (-836)) (-5 *1 (-602 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-333 (-110))) (-4 *2 (-968)) (-5 *1 (-649 *2 *4)) + (-4 *4 (-587 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-333 (-110))) (-5 *1 (-769 *2)) (-4 *2 (-968))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-1065))) (-5 *1 (-302)))) + ((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-302))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-900 *3 *4 *2 *5)) (-4 *3 (-968)) (-4 *4 (-727)) + (-4 *2 (-782)) (-4 *5 (-982 *3 *4 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-623 (-1073 *8))) (-4 *5 (-964)) (-4 *8 (-964)) - (-4 *6 (-1134 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) - (-4 *7 (-1134 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-876 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) - ((*1 *2 *3) - (-12 (-5 *3 (-876 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) - ((*1 *2 *3) (-12 (-5 *3 (-876 *1)) (-4 *1 (-931)) (-5 *2 (-583 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1073 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1073 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-931)))) - ((*1 *2 *3) (-12 (-5 *3 (-1073 *1)) (-4 *1 (-931)) (-5 *2 (-583 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1134 *4)) (-5 *2 (-583 *1)) - (-4 *1 (-980 *4 *3))))) + (-12 (-5 *3 (-201)) (-5 *4 (-519)) (-5 *2 (-957)) (-5 *1 (-693))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1139 *3)) (-4 *3 (-968)) (-5 *2 (-1078 *3))))) +(((*1 *2) + (-12 (-4 *1 (-314 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-1139 *3)) + (-4 *5 (-1139 (-379 *4))) (-5 *2 (-625 (-379 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-585 (-558 *1))) (-4 *1 (-275))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-585 *5)) (-5 *4 (-519)) (-4 *5 (-780)) (-4 *5 (-335)) + (-5 *2 (-705)) (-5 *1 (-872 *5 *6)) (-4 *6 (-1139 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1011)) (-5 *2 (-1065))))) +(((*1 *2 *1) (-12 (-5 *1 (-536 *2)) (-4 *2 (-335))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *2) (-12 (-5 *2 (-519)) (-5 *1 (-853))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -1265 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-335)) (-5 *1 (-529 *4 *2)) (-4 *2 (-1139 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-351) (-351))) (-5 *4 (-351)) + (-5 *2 + (-2 (|:| -3493 *4) (|:| -3026 *4) (|:| |totalpts| (-519)) + (|:| |success| (-108)))) + (-5 *1 (-723)) (-5 *5 (-519))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) - (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-583 *1)) - (-4 *1 (-983 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 + (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-1011) (-33))) + (-4 *5 (-13 (-1011) (-33))) (-5 *2 (-108)) (-5 *1 (-1048 *4 *5))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-519)) (-5 *3 - (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) - (-221 *4 (-377 (-517))))) - (-14 *4 (-583 (-1077))) (-14 *5 (-703)) (-5 *2 (-107)) - (-5 *1 (-470 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-828 (-517))) (-5 *1 (-841)))) - ((*1 *2) (-12 (-5 *2 (-828 (-517))) (-5 *1 (-841))))) -(((*1 *2 *1) (-12 (-5 *2 (-1163)) (-5 *1 (-754))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-509) (-779) (-955 (-517)))) - (-4 *5 (-400 *4)) (-5 *2 (-388 (-1073 (-377 (-517))))) - (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1134 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156))))) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-705)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-727)) (-4 *4 (-876 *5 *6 *7)) (-4 *5 (-423)) (-4 *7 (-782)) + (-5 *1 (-420 *5 *6 *7 *4))))) +(((*1 *2) + (-12 (-4 *3 (-968)) (-5 *2 (-884 (-647 *3 *4))) (-5 *1 (-647 *3 *4)) + (-4 *4 (-1139 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-912 *4 *5 *6 *7 *3)) + (-4 *3 (-987 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *7 (-982 *4 *5 *6)) (-5 *2 (-108)) + (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-987 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2578 (-583 (-199))))) - (-5 *2 (-349)) (-5 *1 (-240)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1158 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276))))) + (-12 (-5 *3 (-1163 *5)) (-4 *5 (-581 *4)) (-4 *4 (-511)) + (-5 *2 (-108)) (-5 *1 (-580 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-333) (-134) (-955 (-377 (-517))))) (-4 *6 (-1134 *5)) - (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3817 *3)))) - (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) - (-4 *7 (-593 (-377 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-333) (-134) (-955 (-517)) (-955 (-377 (-517))))) - (-4 *6 (-1134 *5)) - (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3817 (-591 *6 (-377 *6)))))) - (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1058 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278))))) -(((*1 *1 *2) (-12 (-5 *1 (-1099 *2)) (-4 *2 (-1006)))) - ((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-1099 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-583 (-1099 *2))) (-5 *1 (-1099 *2)) (-4 *2 (-1006))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) - (-4 *2 (-13 (-400 *3) (-921))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925))))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1149 *3)) - (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1120 *3 *4)))) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1154 *3)) + (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1125 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1118 *3)) - (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1141 *3 *4)) (-4 *5 (-903 *4)))) - ((*1 *1 *1) (-4 *1 (-256))) + (-12 (-4 *3 (-37 (-379 (-519)))) (-4 *4 (-1123 *3)) + (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1146 *3 *4)) (-4 *5 (-907 *4)))) + ((*1 *1 *1) (-4 *1 (-258))) ((*1 *2 *3) - (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) - (-5 *2 (-583 (-2 (|:| -1570 (-703)) (|:| |logand| *4)))) - (-5 *1 (-290 *4)))) + (-12 (-5 *3 (-390 *4)) (-4 *4 (-511)) + (-5 *2 (-585 (-2 (|:| -3031 (-705)) (|:| |logand| *4)))) + (-5 *1 (-292 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1077))) - (-14 *3 (-583 (-1077))) (-4 *4 (-357)))) + (-12 (-5 *1 (-311 *2 *3 *4)) (-14 *2 (-585 (-1082))) + (-14 *3 (-585 (-1082))) (-4 *4 (-359)))) ((*1 *2 *1) - (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) - (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) + (-12 (-5 *2 (-603 *3 *4)) (-5 *1 (-569 *3 *4 *5)) (-4 *3 (-782)) + (-4 *4 (-13 (-157) (-652 (-379 (-519))))) (-14 *5 (-848)))) ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1063 *3)))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1068 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) - (-5 *1 (-1064 *3)))) + (-12 (-5 *2 (-1063 *3)) (-4 *3 (-37 (-379 (-519)))) + (-5 *1 (-1069 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-703)) (-4 *4 (-13 (-964) (-650 (-377 (-517))))) - (-4 *5 (-779)) (-5 *1 (-1172 *4 *5 *2)) (-4 *2 (-1177 *5 *4)))) + (-12 (-5 *3 (-705)) (-4 *4 (-13 (-968) (-652 (-379 (-519))))) + (-4 *5 (-782)) (-5 *1 (-1177 *4 *5 *2)) (-4 *2 (-1182 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-1176 *3 *4)) - (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) - (-5 *1 (-302))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502))))) -(((*1 *2 *1) - (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) - (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-873 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) - (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-873 *4 *5 *6))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) - (-4 *4 (-13 (-1098) (-29 *6))) - (-4 *6 (-13 (-421) (-779) (-955 (-517)) (-579 (-517)))) - (-5 *1 (-198 *6 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) - (-4 *4 (-779))))) + (-12 (-5 *2 (-705)) (-5 *1 (-1181 *3 *4)) + (-4 *4 (-652 (-379 (-519)))) (-4 *3 (-782)) (-4 *4 (-157))))) +(((*1 *2 *1) (-12 (-5 *2 (-705)) (-5 *1 (-819 *3)) (-4 *3 (-1011)))) + ((*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1117)) (-5 *2 (-705))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-37 (-379 (-519)))) (-5 *1 (-1156 *3 *2)) + (-4 *2 (-1154 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1006)) - (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |k| (-817 *3)) (|:| |c| *4)))) - (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) - (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-845)))) - ((*1 *2 *1) - (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-817 *3)) (-4 *3 (-779))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2133 *3) (|:| |coef2| (-714 *3)))) - (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-964))))) -(((*1 *1 *1) - (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-964))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-517)) (-5 *1 (-1058 *3)) (-4 *3 (-1112)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) - ((*1 *2 *3) - (-12 (-5 *3 (-845)) (-5 *2 (-1158 *4)) (-5 *1 (-487 *4)) - (-4 *4 (-319))))) + (-12 (-4 *1 (-1014 *3 *4 *5 *6 *7)) (-4 *3 (-1011)) (-4 *4 (-1011)) + (-4 *5 (-1011)) (-4 *6 (-1011)) (-4 *7 (-1011)) (-5 *2 (-108))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-625 (-201))) (-5 *4 (-519)) (-5 *2 (-957)) + (-5 *1 (-683))))) +(((*1 *2) + (-12 (-4 *1 (-321)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1077)))) - (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-848 *4 *5 *6 *3)) - (-4 *3 (-873 *4 *6 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) - (-5 *1 (-1103 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3302 *6) (|:| |sol?| (-107))) (-517) - *6)) - (-4 *6 (-333)) (-4 *7 (-1134 *6)) - (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) - (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4196)) (-4 *1 (-1146 *2)) (-4 *2 (-1112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1106 *4 *5 *6 *7)) - (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-978 *4 *5 *6)) - (-5 *2 (-107))))) -(((*1 *1 *1) - (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-725)) - (-4 *4 (-779))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1060) (-706))) (-5 *1 (-109))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-502)))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1077)) (-5 *2 (-1081)) (-5 *1 (-1080))))) -(((*1 *1) (-5 *1 (-976)))) -(((*1 *2 *3) (-12 (-5 *3 (-1060)) (-5 *2 (-51)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-104)))) - ((*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1112)) - (-4 *3 (-1006)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-343 *3)) (-4 *3 (-1112)) (-4 *3 (-1006)) - (-5 *2 (-517)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1112)) - (-5 *2 (-517)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-517)) (-5 *3 (-128)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-517))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-1060)) (-5 *5 (-623 (-199))) - (-5 *2 (-953)) (-5 *1 (-680))))) + (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-290)) (-5 *3 (-201))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1006))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-691))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1060)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) - (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-953)) (-5 *1 (-685))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1006)) (-5 *1 (-670 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1006)))) - ((*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1006))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1079 (-377 (-517)))) - (-5 *1 (-166))))) -(((*1 *2 *1) - (-12 (-4 *3 (-207)) (-4 *3 (-964)) (-4 *4 (-779)) (-4 *5 (-239 *4)) - (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-964)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) - (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-402 *4)) (-5 *1 (-144 *4 *2)) + (-4 *4 (-13 (-782) (-511)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) - (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) - (-5 *2 (-953)) (-5 *1 (-684))))) -(((*1 *2 *3) - (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-1134 *4)) (-5 *1 (-496 *4 *2 *5 *6)) - (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703)))))) + (-12 (-5 *4 (-519)) (-5 *2 (-585 (-2 (|:| -1921 *3) (|:| -4178 *4)))) + (-5 *1 (-631 *3)) (-4 *3 (-1139 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) - (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) - (-4 *7 (-912 *4)) (-4 *2 (-621 *7 *8 *9)) - (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) - (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-964)) (-4 *3 (-343 *2)) - (-4 *4 (-343 *2)) (-4 *2 (-278)))) - ((*1 *2 *2) - (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) - (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) - (-4 *2 (-621 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-967 *2 *3 *4 *5 *6)) (-4 *4 (-964)) - (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1077)) (-5 *4 (-876 (-517))) (-5 *2 (-300)) - (-5 *1 (-302)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1077)) (-5 *4 (-999 (-876 (-517)))) (-5 *2 (-300)) - (-5 *1 (-302)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-964)) (-4 *3 (-1006))))) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-251 *3 *2)) + (-4 *2 (-13 (-402 *3) (-925)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) (((*1 *2 *3) - (-12 (-5 *2 (-388 (-1073 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1073 *1)) - (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) + (-12 (-5 *2 (-154 (-351))) (-5 *1 (-719 *3)) (-4 *3 (-560 (-351))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-848)) (-5 *2 (-154 (-351))) (-5 *1 (-719 *3)) + (-4 *3 (-560 (-351))))) + ((*1 *2 *3) + (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-560 (-351))) + (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-154 *5)) (-5 *4 (-848)) (-4 *5 (-157)) + (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-879 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-560 (-351))) + (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-879 (-154 *5))) (-5 *4 (-848)) (-4 *5 (-157)) + (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-879 *4)) (-4 *4 (-968)) (-4 *4 (-560 (-351))) + (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-879 *5)) (-5 *4 (-848)) (-4 *5 (-968)) + (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-379 (-879 *4))) (-4 *4 (-511)) (-4 *4 (-560 (-351))) + (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-879 *5))) (-5 *4 (-848)) (-4 *5 (-511)) + (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-379 (-879 (-154 *4)))) (-4 *4 (-511)) + (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-379 (-879 (-154 *5)))) (-5 *4 (-848)) (-4 *5 (-511)) + (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) ((*1 *2 *3) - (-12 (-4 *1 (-833)) (-5 *2 (-388 (-1073 *1))) (-5 *3 (-1073 *1))))) + (-12 (-5 *3 (-288 *4)) (-4 *4 (-511)) (-4 *4 (-782)) + (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-288 *5)) (-5 *4 (-848)) (-4 *5 (-511)) (-4 *5 (-782)) + (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-288 (-154 *4))) (-4 *4 (-511)) (-4 *4 (-782)) + (-4 *4 (-560 (-351))) (-5 *2 (-154 (-351))) (-5 *1 (-719 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-288 (-154 *5))) (-5 *4 (-848)) (-4 *5 (-511)) + (-4 *5 (-782)) (-4 *5 (-560 (-351))) (-5 *2 (-154 (-351))) + (-5 *1 (-719 *5))))) +(((*1 *1) (-5 *1 (-514)))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1163 *5)) (-5 *3 (-705)) (-5 *4 (-1029)) (-4 *5 (-321)) + (-5 *1 (-489 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-288 (-519))) (-5 *4 (-1 (-201) (-201))) + (-5 *5 (-1006 (-201))) (-5 *6 (-585 (-238))) (-5 *2 (-1042 (-201))) + (-5 *1 (-632))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-517))) (-5 *1 (-923 *3)) (-14 *3 (-517))))) -(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-816 *3)) (-4 *3 (-1006))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-703)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-845)) - (-4 *4 (-964))))) -(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-964)) (-4 *2 (-724)))) - ((*1 *2 *1) - (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-964)) - (-14 *4 (-583 (-1077))))) + (-12 + (-5 *2 + (-585 + (-2 (|:| |scalar| (-379 (-519))) (|:| |coeff| (-1078 *3)) + (|:| |logand| (-1078 *3))))) + (-5 *1 (-536 *3)) (-4 *3 (-335))))) +(((*1 *2 *1) + (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1117)) (-4 *4 (-345 *3)) + (-4 *5 (-345 *3)) (-5 *2 (-519)))) ((*1 *2 *1) - (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-964) (-779))) - (-14 *4 (-583 (-1077))))) + (-12 (-4 *1 (-971 *3 *4 *5 *6 *7)) (-4 *5 (-968)) + (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-519))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892))))) +(((*1 *2 *3) + (-12 (-5 *3 (-585 (-495))) (-5 *2 (-1082)) (-5 *1 (-495))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-1011))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-105))))) +(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-891 *3)) (-4 *3 (-892))))) +(((*1 *2) + (-12 (-4 *3 (-511)) (-5 *2 (-585 *4)) (-5 *1 (-42 *3 *4)) + (-4 *4 (-389 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-1168)) (-5 *1 (-1165))))) +(((*1 *1) (-5 *1 (-129)))) +(((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-504)))) + ((*1 *1 *2) (-12 (-5 *2 (-585 (-519))) (-5 *1 (-895))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))) + (-5 *2 (-351)) (-5 *1 (-183))))) +(((*1 *2 *3) + (-12 (-5 *3 (-451 *4 *5)) (-14 *4 (-585 (-1082))) (-4 *5 (-968)) + (-5 *2 (-879 *5)) (-5 *1 (-871 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *1 (-735)) + (-5 *3 + (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) + (|:| |fn| (-1163 (-288 (-201)))) (|:| |yinit| (-585 (-201))) + (|:| |intvals| (-585 (-201))) (|:| |g| (-288 (-201))) + (|:| |abserr| (-201)) (|:| |relerr| (-201)))) + (-5 *2 (-957))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-423)) (-4 *6 (-727)) (-4 *7 (-782)) + (-4 *3 (-982 *5 *6 *7)) + (-5 *2 (-585 (-2 (|:| |val| *3) (|:| -1890 *4)))) + (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-987 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-37 (-379 (-519)))) + (-5 *2 (-2 (|:| -2934 (-1063 *4)) (|:| -2946 (-1063 *4)))) + (-5 *1 (-1069 *4)) (-5 *3 (-1063 *4))))) +(((*1 *1 *1) (-5 *1 (-201))) + ((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) + ((*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *1 (-403 *3 *2)) + (-4 *2 (-402 *3)))) + ((*1 *1 *1) (-4 *1 (-1046))) ((*1 *1 *1 *1) (-4 *1 (-1046)))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-335) (-10 -8 (-15 ** ($ $ (-379 (-519))))))) + (-5 *1 (-1037 *3 *2)) (-4 *3 (-1139 *2))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-726)) (-4 *2 (-968)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-968)) (-5 *1 (-49 *2 *3)) (-14 *3 (-585 (-1082))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-964)) (-4 *3 (-779)) - (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1073 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) - (-4 *8 (-873 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-964)) - (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-845)))) - ((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) - (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) - (-4 *4 (-1134 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-964)) (-5 *2 (-703)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-828 *3)) (-4 *3 (-1006)))) - ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-829 *3)) (-4 *3 (-1006)))) + (-12 (-5 *3 (-585 (-848))) (-4 *2 (-335)) (-5 *1 (-140 *4 *2 *5)) + (-14 *4 (-848)) (-14 *5 (-917 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-288 *3)) (-5 *1 (-199 *3 *4)) + (-4 *3 (-13 (-968) (-782))) (-14 *4 (-585 (-1082))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-295 *3 *2)) (-4 *3 (-1011)) (-4 *2 (-124)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *1 (-873 *4 *5 *6)) (-4 *4 (-964)) - (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) + (-12 (-4 *1 (-354 *2 *3)) (-4 *3 (-1011)) (-4 *2 (-968)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-873 *4 *5 *3)) (-4 *4 (-964)) (-4 *5 (-725)) - (-4 *3 (-779)) (-5 *2 (-703)))) - ((*1 *2 *1) - (-12 (-4 *1 (-893 *3 *2 *4)) (-4 *3 (-964)) (-4 *4 (-779)) - (-4 *2 (-724)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1106 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) - (-4 *5 (-779)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-703)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1120 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1149 *3)) - (-5 *2 (-517)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-964)) (-4 *4 (-1118 *3)) - (-5 *2 (-377 (-517))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1175 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-845))))) + (-12 (-5 *3 (-519)) (-4 *2 (-511)) (-5 *1 (-566 *2 *4)) + (-4 *4 (-1139 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-4 *1 (-644 *2)) (-4 *2 (-968)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-968)) (-5 *1 (-670 *2 *3)) (-4 *3 (-661)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 *5)) (-5 *3 (-585 (-705))) (-4 *1 (-675 *4 *5)) + (-4 *4 (-968)) (-4 *5 (-782)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-705)) (-4 *1 (-675 *4 *2)) (-4 *4 (-968)) + (-4 *2 (-782)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-705)) (-4 *1 (-784 *2)) (-4 *2 (-968)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-585 *6)) (-5 *3 (-585 (-705))) (-4 *1 (-876 *4 *5 *6)) + (-4 *4 (-968)) (-4 *5 (-727)) (-4 *6 (-782)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-705)) (-4 *1 (-876 *4 *5 *2)) (-4 *4 (-968)) + (-4 *5 (-727)) (-4 *2 (-782)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-705)) (-4 *2 (-876 *4 (-491 *5) *5)) + (-5 *1 (-1035 *4 *5 *2)) (-4 *4 (-968)) (-4 *5 (-782)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-705)) (-5 *2 (-879 *4)) (-5 *1 (-1112 *4)) + (-4 *4 (-968))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-900 *4 *5 *3 *6)) (-4 *4 (-968)) (-4 *5 (-727)) + (-4 *3 (-782)) (-4 *6 (-982 *4 *5 *3)) (-5 *2 (-108))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-511)) (-5 *1 (-894 *3 *2)) (-4 *2 (-1139 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-968)) (-4 *3 (-727)) + (-4 *4 (-782)) (-4 *2 (-511)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-968)) (-4 *2 (-511))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) + (-4 *5 (-13 (-782) (-959 (-519)) (-423) (-581 (-519)))) + (-5 *2 (-2 (|:| -3880 *3) (|:| |nconst| *3))) (-5 *1 (-522 *5 *3)) + (-4 *3 (-13 (-27) (-1103) (-402 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-132))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-379 (-879 *6)) (-1072 (-1082) (-879 *6)))) + (-5 *5 (-705)) (-4 *6 (-423)) (-5 *2 (-585 (-625 (-379 (-879 *6))))) + (-5 *1 (-265 *6)) (-5 *4 (-625 (-379 (-879 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-379 (-879 *5)) (-1072 (-1082) (-879 *5)))) + (|:| |eigmult| (-705)) (|:| |eigvec| (-585 *4)))) + (-4 *5 (-423)) (-5 *2 (-585 (-625 (-379 (-879 *5))))) + (-5 *1 (-265 *5)) (-5 *4 (-625 (-379 (-879 *5))))))) +(((*1 *1 *2) (-12 (-5 *2 (-585 (-132))) (-5 *1 (-129)))) + ((*1 *1 *2) (-12 (-5 *2 (-1065)) (-5 *1 (-129))))) +(((*1 *2 *3) (-12 (-5 *3 (-1065)) (-5 *2 (-848)) (-5 *1 (-720))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-757))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1078 *1)) (-5 *4 (-1082)) (-4 *1 (-27)) + (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1078 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-879 *1)) (-4 *1 (-27)) (-5 *2 (-585 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-782) (-511))) (-5 *2 (-585 *1)) + (-4 *1 (-29 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1177 *3 *4)) (-4 *3 (-779)) (-4 *4 (-964)) - (-5 *2 (-703))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1043 *2 *3)) (-4 *2 (-13 (-1006) (-33))) - (-4 *3 (-13 (-1006) (-33)))))) -((-1190 . 722136) (-1191 . 720036) (-1192 . 719938) (-1193 . 719867) - (-1194 . 719787) (-1195 . 719570) (-1196 . 719271) (-1197 . 718456) - (-1198 . 718311) (-1199 . 718228) (-1200 . 718095) (-1201 . 717977) - (-1202 . 717840) (-1203 . 717476) (-1204 . 717379) (-1205 . 717200) - (-1206 . 717002) (-1207 . 716915) (-1208 . 716775) (-1209 . 716650) - (-1210 . 716129) (-1211 . 716062) (-1212 . 716034) (-1213 . 715961) - (-1214 . 715924) (-1215 . 715855) (-1216 . 715759) (-1217 . 715581) - (-1218 . 715497) (-1219 . 715217) (-1220 . 715084) (-1221 . 714906) - (-1222 . 714747) (-1223 . 714585) (-1224 . 714500) (-1225 . 714370) - (-1226 . 713987) (-1227 . 713891) (-1228 . 713668) (-1229 . 713373) - (-1230 . 713283) (-1231 . 713185) (-1232 . 711948) (-1233 . 711730) - (-1234 . 711647) (-1235 . 711131) (-1236 . 711024) (-1237 . 710806) - (-1238 . 710751) (-1239 . 710565) (-1240 . 710512) (-1241 . 710375) - (-1242 . 710177) (-1243 . 710030) (-1244 . 709450) (-1245 . 709223) - (-1246 . 709130) (-1247 . 708860) (-1248 . 708782) (-1249 . 708727) - (-1250 . 707546) (-1251 . 707357) (-1252 . 707257) (-1253 . 707206) - (-1254 . 706935) (-1255 . 706783) (-1256 . 706539) (-1257 . 706162) - (-1258 . 705882) (-1259 . 705510) (-1260 . 705212) (-1261 . 704885) - (-1262 . 704807) (-1263 . 704682) (-1264 . 704440) (-1265 . 704334) - (-1266 . 703855) (-1267 . 703781) (-1268 . 703728) (-1269 . 703621) - (-1270 . 703568) (-1271 . 703362) (-1272 . 703238) (-1273 . 703130) - (-1274 . 702935) (-1275 . 702624) (-1276 . 702366) (-1277 . 702267) - (-1278 . 701934) (-1279 . 701840) (-1280 . 701739) (-1281 . 701637) - (-1282 . 701379) (-1283 . 701305) (-1284 . 701198) (-1285 . 701128) - (-1286 . 701009) (-1287 . 699713) (-1288 . 699440) (-1289 . 699081) - (-1290 . 698632) (-1291 . 698553) (-1292 . 698460) (-1293 . 698302) - (-1294 . 698149) (-1295 . 697931) (-1296 . 697653) (-1297 . 697446) - (-1298 . 697334) (-1299 . 697041) (-1300 . 696728) (-1301 . 696432) - (-1302 . 696339) (-1303 . 696255) (-1304 . 696125) (-1305 . 695931) - (-1306 . 695322) (-1307 . 695200) (-1308 . 695091) (-1309 . 694582) - (-1310 . 694467) (-1311 . 694370) (-1312 . 694256) (-1313 . 694178) - (-1314 . 694125) (-1315 . 694048) (-1316 . 693993) (-1317 . 692697) - (-1318 . 692428) (-1319 . 692372) (-1320 . 692226) (-1321 . 691571) - (-1322 . 691127) (-1323 . 690952) (-1324 . 690852) (-1325 . 689816) - (-1326 . 689646) (-1327 . 689518) (-1328 . 689338) (-1329 . 688809) - (-1330 . 688695) (-1331 . 688275) (-1332 . 688168) (-1333 . 688097) - (-1334 . 688002) (-1335 . 687904) (-1336 . 687667) (-1337 . 687594) - (-1338 . 687434) (-1339 . 687333) (-1340 . 687247) (-1341 . 687146) - (-1342 . 687045) (-1343 . 686961) (-1344 . 686797) (-1345 . 686766) - (-1346 . 686614) (-1347 . 686565) (-1348 . 686449) (-1349 . 686208) - (-1350 . 686139) (-1351 . 686012) (-1352 . 685960) (-1353 . 685895) - (-1354 . 685243) (-1355 . 685121) (-1356 . 684873) (-1357 . 684705) - (-1358 . 684645) (-1359 . 684533) (-1360 . 684345) (-1361 . 683962) - (-1362 . 683752) (-1363 . 683658) (-1364 . 683536) (-1365 . 683432) - (-1366 . 683382) (-1367 . 683045) (-1368 . 682466) (-1369 . 682214) - (-1370 . 682017) (-1371 . 681943) (-1372 . 680752) (-1373 . 680342) - (-1374 . 680275) (-1375 . 680198) (-1376 . 680045) (-1377 . 679975) - (-1378 . 679668) (-1379 . 679524) (-1380 . 679359) (-1381 . 679306) - (-1382 . 679093) (-1383 . 678255) (-1384 . 678182) (-1385 . 677875) - (-1386 . 677822) (-1387 . 677723) (-1388 . 675593) (-1389 . 675490) - (-1390 . 675407) (-1391 . 675183) (-1392 . 675095) (-1393 . 674972) - (-1394 . 674767) (-1395 . 674689) (-1396 . 674554) (-1397 . 674304) - (-1398 . 674148) (-1399 . 674011) (-1400 . 673937) (-1401 . 673863) - (-1402 . 673790) (-1403 . 673722) (-1404 . 673694) (-1405 . 673590) - (-1406 . 673049) (-1407 . 672948) (-1408 . 672854) (-1409 . 672610) - (-1410 . 672466) (-1411 . 672414) (-1412 . 672352) (-1413 . 672232) - (-1414 . 672091) (-1415 . 672041) (-1416 . 671988) (-1417 . 671921) - (-1418 . 671777) (-1419 . 671749) (-1420 . 671650) (-1421 . 671229) - (-1422 . 670985) (-1423 . 670386) (-1424 . 670257) (-1425 . 670116) - (-1426 . 669975) (-1427 . 669805) (-1428 . 668404) (-1429 . 668307) - (-1430 . 667941) (-1431 . 667832) (-1432 . 667517) (-1433 . 667446) - (-1434 . 667418) (-1435 . 667097) (-1436 . 667023) (-1437 . 666959) - (-1438 . 666830) (-1439 . 666775) (-1440 . 666631) (-1441 . 666561) - (-1442 . 665956) (-1443 . 665873) (-1444 . 665778) (-1445 . 665598) - (-1446 . 665454) (-1447 . 665133) (-1448 . 664906) (-1449 . 664808) - (-1450 . 664265) (-1451 . 664147) (-1452 . 663867) (-1453 . 663650) - (-1454 . 662875) (-1455 . 662598) (-1456 . 662514) (-1457 . 662254) - (-1458 . 662116) (-1459 . 661375) (-1460 . 661347) (-1461 . 661140) - (-1462 . 660820) (-1463 . 660697) (-1464 . 660485) (-1465 . 660408) - (-1466 . 660227) (-1467 . 660126) (-1468 . 660025) (-1469 . 659947) - (-1470 . 659213) (-1471 . 658472) (-1472 . 658351) (-1473 . 658252) - (-1474 . 658172) (-1475 . 657751) (-1476 . 657629) (-1477 . 657393) - (-1478 . 657337) (-1479 . 657238) (-1480 . 656908) (-1481 . 656325) - (-1482 . 655637) (-1483 . 651585) (-1484 . 651374) (-1485 . 651303) - (-1486 . 650424) (-1487 . 650270) (-1488 . 650145) (-1489 . 650046) - (-1490 . 649983) (-1491 . 649865) (-1492 . 649773) (-1493 . 649259) - (-1494 . 649185) (-1495 . 648609) (-1496 . 648507) (-1497 . 647661) - (-1498 . 647538) (-1499 . 647322) (-1500 . 647249) (-1501 . 647137) - (-1502 . 647059) (-1503 . 646399) (-1504 . 645951) (-1505 . 645780) - (-1506 . 645697) (-1507 . 645427) (-1508 . 644851) (-1509 . 644708) - (-1510 . 641098) (-1511 . 641070) (-1512 . 640992) (-1513 . 640643) - (-1514 . 640557) (-1515 . 640413) (-1516 . 640333) (-1517 . 640192) - (-1518 . 639973) (-1519 . 639918) (-1520 . 639472) (-1521 . 638896) - (-1522 . 638740) (-1523 . 638687) (-1524 . 638371) (-1525 . 638152) - (-1526 . 637769) (-1527 . 637662) (-1528 . 637427) (-1529 . 637222) - (-1530 . 637023) (-1531 . 636936) (-1532 . 636496) (-1533 . 636109) - (-1534 . 635779) (-1535 . 635676) (-1536 . 634990) (-1537 . 634818) - (-1538 . 634723) (-1539 . 632384) (-1540 . 632076) (-1541 . 631997) - (-1542 . 631897) (-1543 . 631798) (-1544 . 631651) (-1545 . 631595) - (-1546 . 631508) (-1547 . 630984) (-1548 . 630768) (-1549 . 630629) - (-1550 . 629943) (-1551 . 629887) (-1552 . 629515) (-1553 . 629430) - (-1554 . 629356) (-1555 . 629198) (-1556 . 629132) (-1557 . 629080) - (-1558 . 628805) (-1559 . 628753) (-1560 . 628547) (-1561 . 628492) - (-1562 . 628439) (-1563 . 628352) (-1564 . 627603) (-1565 . 627461) - (-1566 . 627406) (-1567 . 627056) (-1568 . 626535) (-1569 . 626462) - (-1570 . 626107) (-1571 . 625992) (-1572 . 625724) (-1573 . 625471) - (-1574 . 625331) (-1575 . 625244) (-1576 . 625124) (-1577 . 624550) - (-1578 . 624464) (-1579 . 623829) (-1580 . 623756) (-1581 . 623463) - (-1582 . 622646) (-1583 . 622594) (-1584 . 622510) (-1585 . 620748) - (-1586 . 620194) (-1587 . 617413) (-1588 . 616839) (-1589 . 616740) - (-1590 . 616644) (-1591 . 616559) (-1592 . 616503) (-1593 . 616449) - (-1594 . 616274) (-1595 . 615946) (-1596 . 615640) (-1597 . 615570) - (-1598 . 615232) (-1599 . 615180) (-1600 . 615107) (-1601 . 614533) - (-1602 . 614481) (-1603 . 614360) (-1604 . 614249) (-1605 . 614176) - (-1606 . 614089) (-1607 . 613837) (-1608 . 613782) (-1609 . 613630) - (-1610 . 613379) (-1611 . 613224) (-1612 . 612537) (-1613 . 612434) - (-1614 . 612315) (-1615 . 612199) (-1616 . 612098) (-1617 . 611957) - (-1618 . 611798) (-1619 . 611689) (-1620 . 611622) (-1621 . 611484) - (-1622 . 610797) (-1623 . 610652) (-1624 . 610598) (-1625 . 610461) - (-1626 . 610307) (-1627 . 610149) (-1628 . 610065) (-1629 . 610013) - (-1630 . 609926) (-1631 . 609852) (-1632 . 609738) (-1633 . 609640) - (-1634 . 609410) (-1635 . 609236) (-1636 . 608549) (-1637 . 608443) - (-1638 . 608388) (-1639 . 608346) (-1640 . 608183) (-1641 . 608052) - (-1642 . 607934) (-1643 . 607844) (-1644 . 607719) (-1645 . 606539) - (-1646 . 606229) (-1647 . 605654) (-1648 . 605135) (-1649 . 605067) - (-1650 . 604738) (-1651 . 604651) (-1652 . 604513) (-1653 . 604331) - (-1654 . 604150) (-1655 . 604078) (-1656 . 603993) (-1657 . 603941) - (-1658 . 603705) (-1659 . 603130) (-1660 . 602736) (-1661 . 602621) - (-1662 . 602294) (-1663 . 602004) (-1664 . 601830) (-1665 . 601756) - (-1666 . 600572) (-1667 . 600502) (-1668 . 600310) (-1669 . 600142) - (-1670 . 599567) (-1671 . 598683) (-1672 . 598601) (-1673 . 598573) - (-1674 . 598518) (-1675 . 598466) (-1676 . 598398) (-1677 . 598236) - (-1678 . 598115) (-1679 . 598042) (-1680 . 596864) (-1681 . 596666) - (-1682 . 596372) (-1683 . 596285) (-1684 . 596114) (-1685 . 595540) - (-1686 . 595335) (-1687 . 595238) (-1688 . 595134) (-1689 . 595054) - (-1690 . 594816) (-1691 . 594524) (-1692 . 592326) (-1693 . 591755) - (-1694 . 591499) (-1695 . 591339) (-1696 . 591161) (-1697 . 591030) - (-1698 . 590456) (-1699 . 590332) (-1700 . 590237) (-1701 . 590165) - (-1702 . 590104) (-1703 . 589682) (-1704 . 589578) (-1705 . 589401) - (-1706 . 588827) (-1707 . 588754) (-1708 . 588683) (-1709 . 588467) - (-1710 . 588433) (-1711 . 588073) (-1712 . 587914) (-1713 . 587829) - (-1714 . 587800) (-1715 . 587699) (-1716 . 587551) (-1717 . 587407) - (-1718 . 587163) (-1719 . 586816) (-1720 . 586788) (-1721 . 586734) - (-1722 . 586160) (-1723 . 586027) (-1724 . 585895) (-1725 . 585414) - (-1726 . 585221) (-1727 . 585110) (-1728 . 584725) (-1729 . 584585) - (-1730 . 584469) (-1731 . 584401) (-1732 . 584088) (-1733 . 583898) - (-1734 . 583742) (-1735 . 583690) (-1736 . 583595) (-1737 . 583321) - (-1738 . 583121) (-1739 . 583066) (-1740 . 582922) (-1741 . 582850) - (-1742 . 582646) (-1743 . 582039) (-1744 . 581352) (-1745 . 581273) - (-1746 . 581053) (-1747 . 580898) (-1748 . 580814) (-1749 . 580071) - (-1750 . 579927) (-1751 . 579804) (-1752 . 579625) (-1753 . 579531) - (-1754 . 579226) (-1755 . 579125) (-1756 . 579040) (-1757 . 578936) - (-1758 . 578868) (-1759 . 578774) (-1760 . 578690) (-1761 . 578594) - (-1762 . 578496) (-1763 . 578363) (-1764 . 578093) (-1765 . 578038) - (-1766 . 577929) (-1767 . 577820) (-1768 . 577747) (-1769 . 577597) - (-1770 . 577543) (-1771 . 577419) (-1772 . 577267) (-1773 . 577212) - (-1774 . 577023) (-1775 . 576722) (-1776 . 576556) (-1777 . 576472) - (-1778 . 576256) (-1779 . 575861) (-1780 . 575766) (-1781 . 575471) - (-1782 . 575378) (-1783 . 575334) (-1784 . 573765) (-1785 . 573568) - (-1786 . 573441) (-1787 . 573350) (-1788 . 573003) (-1789 . 572412) - (-1790 . 572328) (-1791 . 572036) (-1792 . 571902) (-1793 . 571731) - (-1794 . 571648) (-1795 . 571223) (-1796 . 571089) (-1797 . 570934) - (-1798 . 570863) (-1799 . 570700) (-1800 . 570666) (-1801 . 570586) - (-1802 . 570513) (-1803 . 570485) (-1804 . 570216) (-1805 . 569891) - (-1806 . 569705) (-1807 . 569408) (-1808 . 569267) (-1809 . 569215) - (-1810 . 569010) (-1811 . 568759) (-1812 . 568679) (-1813 . 568608) - (-1814 . 568415) (-1815 . 568341) (-1816 . 568279) (-1817 . 568031) - (-1818 . 567175) (-1819 . 567080) (-1820 . 566971) (-1821 . 566815) - (-1822 . 566689) (-1823 . 566615) (-1824 . 566546) (-1825 . 566462) - (-1826 . 566409) (-1827 . 566381) (-1828 . 566249) (-1829 . 566109) - (-1830 . 565850) (-1831 . 565769) (-1832 . 565667) (-1833 . 565529) - (-1834 . 565279) (-1835 . 565216) (-1836 . 565108) (-1837 . 564902) - (-1838 . 564615) (-1839 . 564559) (-1840 . 564525) (-1841 . 564358) - (-1842 . 564255) (-1843 . 564103) (-1844 . 563994) (-1845 . 563887) - (-1846 . 562685) (-1847 . 562600) (-1848 . 562471) (-1849 . 562341) - (-1850 . 562044) (-1851 . 561932) (-1852 . 561801) (-1853 . 561522) - (-1854 . 561416) (-1855 . 561225) (-1856 . 561090) (-1857 . 561012) - (-1858 . 560947) (-1859 . 560822) (-1860 . 560331) (-1861 . 560257) - (-1862 . 559916) (-1863 . 559818) (-1864 . 559658) (-1865 . 559572) - (-1866 . 558126) (-1867 . 558046) (-1868 . 557622) (-1869 . 557027) - (-1870 . 556977) (-1871 . 556848) (-1872 . 556764) (-1873 . 556651) - (-1874 . 556473) (-1875 . 556377) (-1876 . 556285) (-1877 . 556200) - (-1878 . 556042) (-1879 . 555886) (-1880 . 555779) (-1881 . 555181) - (-1882 . 555083) (-1883 . 555003) (-1884 . 554908) (-1885 . 554357) - (-1886 . 554212) (-1887 . 553979) (-1888 . 553929) (-1889 . 553541) - (-1890 . 553404) (-1891 . 553307) (-1892 . 553088) (-1893 . 553019) - (-1894 . 552795) (-1895 . 552658) (-1896 . 552517) (-1897 . 552445) - (-1898 . 552318) (-1899 . 552241) (-1900 . 552171) (-1901 . 552013) - (-1902 . 551827) (-1903 . 551771) (-1904 . 551694) (-1905 . 551583) - (-1906 . 551402) (-1907 . 551287) (-1908 . 550940) (-1909 . 550863) - (-1910 . 550740) (-1911 . 550254) (-1912 . 550010) (-1913 . 549840) - (-1914 . 549465) (-1915 . 549336) (-1916 . 549233) (-1917 . 549180) - (-1918 . 549152) (-1919 . 549017) (-1920 . 548619) (-1921 . 548463) - (-1922 . 548350) (-1923 . 548241) (-1924 . 547368) (-1925 . 547294) - (-1926 . 547104) (-1927 . 547031) (-1928 . 546924) (-1929 . 546869) - (-1930 . 546552) (-1931 . 546406) (-1932 . 546229) (-1933 . 546174) - (-1934 . 546121) (-1935 . 545969) (-1936 . 545941) (-1937 . 545886) - (-1938 . 545823) (-1939 . 544248) (-1940 . 544196) (-1941 . 543992) - (-1942 . 543827) (-1943 . 543761) (-1944 . 543599) (-1945 . 543571) - (-1946 . 543459) (-1947 . 543318) (-1948 . 542792) (-1949 . 542476) - (-1950 . 541853) (-1951 . 541765) (-1952 . 541670) (-1953 . 541432) - (-1954 . 541248) (-1955 . 540379) (-1956 . 540196) (-1957 . 539972) - (-1958 . 539497) (-1959 . 539157) (-1960 . 539039) (-1961 . 538898) - (-1962 . 538699) (-1963 . 538291) (-1964 . 538225) (-1965 . 537822) - (-1966 . 537633) (-1967 . 537301) (-1968 . 537046) (-1969 . 536951) - (-1970 . 536886) (-1971 . 536793) (-1972 . 536740) (-1973 . 536650) - (-1974 . 536406) (-1975 . 535303) (-1976 . 535181) (-1977 . 534695) - (-1978 . 534589) (-1979 . 534459) (-1980 . 534316) (-1981 . 534207) - (-1982 . 534052) (-1983 . 533444) (-1984 . 533303) (-1985 . 533203) - (-1986 . 532891) (-1987 . 532782) (-1988 . 532730) (-1989 . 532659) - (-1990 . 532482) (-1991 . 532057) (-1992 . 531759) (-1993 . 522229) - (-1994 . 522177) (-1995 . 522064) (-1996 . 521850) (-1997 . 521782) - (-1998 . 521568) (-1999 . 521438) (-2000 . 521312) (-2001 . 521259) - (-2002 . 521204) (-2003 . 521067) (-2004 . 521009) (-2005 . 520819) - (-2006 . 520782) (-2007 . 520280) (-2008 . 519735) (-2009 . 519553) - (-2010 . 519504) (-2011 . 519325) (-2012 . 519168) (-2013 . 519071) - (-2014 . 518416) (-2015 . 518360) (-2016 . 518292) (-2017 . 518243) - (-2018 . 517808) (-2019 . 517673) (-2020 . 517611) (-2021 . 517223) - (-2022 . 516834) (-2023 . 516782) (-2024 . 516689) (-2025 . 516637) - (-2026 . 516608) (-2027 . 516400) (-2028 . 516295) (-2029 . 516016) - (-2030 . 515939) (-2031 . 515884) (-2032 . 515726) (-2033 . 515547) - (-2034 . 515485) (-2035 . 515098) (-2036 . 514971) (-2037 . 514643) - (-2038 . 514467) (-2039 . 514370) (-2040 . 514248) (-2041 . 514093) - (-2042 . 511941) (-2043 . 511536) (-2044 . 511430) (-2045 . 511208) - (-2046 . 509784) (-2047 . 509668) (-2048 . 509576) (-2049 . 509524) - (-2050 . 509441) (-2051 . 509226) (-2052 . 509033) (-2053 . 508924) - (-2054 . 508850) (-2055 . 508765) (-2056 . 508652) (-2057 . 507947) - (-2058 . 507839) (-2059 . 506220) (-2060 . 506070) (-2061 . 505752) - (-2062 . 505615) (-2063 . 505369) (-2064 . 505317) (-2065 . 505244) - (-2066 . 505185) (-2067 . 505019) (-2068 . 504889) (-2069 . 504028) - (-2070 . 503926) (-2071 . 503586) (-2072 . 503533) (-2073 . 503403) - (-2074 . 503346) (-2075 . 503294) (-2076 . 503105) (-2077 . 502760) - (-2078 . 502659) (-2079 . 502559) (-2080 . 501271) (-2081 . 501221) - (-2082 . 500544) (-2083 . 500471) (-2084 . 500260) (-2085 . 500093) - (-2086 . 499704) (-2087 . 499576) (-2088 . 499431) (-2089 . 499330) - (-2090 . 499259) (-2091 . 499110) (-2092 . 499044) (-2093 . 498796) - (-2094 . 498730) (-2095 . 498609) (-2096 . 498514) (-2097 . 498105) - (-2098 . 498045) (-2099 . 497931) (-2100 . 497754) (-2101 . 497677) - (-2102 . 497412) (-2103 . 497242) (-2104 . 496177) (-2105 . 496123) - (-2106 . 495936) (-2107 . 495853) (-2108 . 495800) (-2109 . 495367) - (-2110 . 495214) (-2111 . 495107) (-2112 . 494977) (-2113 . 494727) - (-2114 . 494498) (-2115 . 494006) (-2116 . 493957) (-2117 . 493411) - (-2118 . 493276) (-2119 . 492934) (-2120 . 492829) (-2121 . 492777) - (-2122 . 491977) (-2123 . 491870) (-2124 . 491734) (-2125 . 491599) - (-2126 . 491442) (-2127 . 491193) (-2128 . 491141) (-2129 . 491088) - (-2130 . 490756) (-2131 . 488928) (-2132 . 488843) (-2133 . 488462) - (-2134 . 488385) (-2135 . 487995) (-2136 . 487121) (-2137 . 486158) - (-2138 . 485859) (-2139 . 485640) (-2140 . 484139) (-2141 . 483979) - (-2142 . 483707) (-2143 . 483604) (-2144 . 483547) (-2145 . 483467) - (-2146 . 483365) (-2147 . 483177) (-2148 . 483072) (-2149 . 482643) - (-2150 . 482584) (-2151 . 481044) (-2152 . 480615) (-2153 . 480542) - (-2154 . 480470) (-2155 . 480399) (-2156 . 480301) (-2157 . 480082) - (-2158 . 479737) (-2159 . 479511) (-2160 . 479377) (-2161 . 479127) - (-2162 . 479074) (-2163 . 479017) (-2164 . 478951) (-2165 . 478845) - (-2166 . 478745) (-2167 . 478658) (-2168 . 478514) (-2169 . 478461) - (-2170 . 478358) (-2171 . 478199) (-2172 . 477089) (-2173 . 477003) - (-2174 . 476950) (-2175 . 476298) (-2176 . 476232) (-2177 . 475901) - (-2178 . 475514) (-2179 . 475189) (-2180 . 474998) (-2181 . 474905) - (-2182 . 474868) (-2183 . 474768) (-2184 . 474716) (-2185 . 474622) - (-2186 . 474515) (-2187 . 473563) (-2188 . 473027) (-2189 . 472628) - (-2190 . 472416) (-2191 . 472364) (-2192 . 471714) (-2193 . 471627) - (-2194 . 470954) (-2195 . 470827) (-2196 . 470712) (-2197 . 470625) - (-2198 . 470524) (-2199 . 470490) (-2200 . 470347) (-2201 . 470205) - (-2202 . 470015) (-2203 . 469962) (-2204 . 469631) (-2205 . 469575) - (-2206 . 469396) (-2207 . 469258) (-2208 . 469155) (-2209 . 469012) - (-2210 . 468949) (-2211 . 468791) (-2212 . 468603) (-2213 . 468492) - (-2214 . 468261) (-2215 . 468192) (-2216 . 468082) (-2217 . 468011) - (-2218 . 467565) (-2219 . 467513) (-2220 . 467430) (-2221 . 467345) - (-2222 . 467183) (-2223 . 466824) (-2224 . 466551) (-2225 . 466342) - (-2226 . 466259) (-2227 . 465501) (-2228 . 465435) (-2229 . 465258) - (-2230 . 465163) (-2231 . 465036) (-2232 . 465008) (-2233 . 464926) - (-2234 . 464857) (-2235 . 464678) (-2236 . 464491) (-2237 . 464439) - (-2238 . 464279) (-2239 . 464205) (-2240 . 463703) (-2241 . 463630) - (-2242 . 463532) (-2243 . 463394) (-2244 . 462756) (-2245 . 462697) - (-2246 . 462513) (-2247 . 462391) (-2248 . 462293) (-2249 . 462115) - (-2250 . 462063) (-2251 . 461985) (-2252 . 461911) (-2253 . 461615) - (-2254 . 461541) (-2255 . 461238) (-2256 . 460906) (-2257 . 460591) - (-2258 . 460382) (-2259 . 460252) (-2260 . 460068) (-2261 . 459966) - (-2262 . 437221) (-2263 . 436511) (-2264 . 436399) (-2265 . 436327) - (-2266 . 436165) (-2267 . 436112) (-2268 . 435873) (-2269 . 435774) - (-2270 . 435283) (-2271 . 435231) (-2272 . 435197) (-2273 . 435109) - (-2274 . 434902) (-2275 . 434795) (-2276 . 434463) (-2277 . 434378) - (-2278 . 434185) (-2279 . 431433) (-2280 . 431365) (-2281 . 431309) - (-2282 . 431235) (-2283 . 430783) (-2284 . 430685) (-2285 . 430514) - (-2286 . 430412) (-2287 . 429407) (-2288 . 429109) (-2289 . 429050) - (-2290 . 428979) (-2291 . 428243) (-2292 . 428172) (-2293 . 428099) - (-2294 . 427796) (-2295 . 427546) (-2296 . 427465) (-2297 . 427298) - (-2298 . 427146) (-2299 . 427093) (-2300 . 426653) (-2301 . 426492) - (-2302 . 426242) (-2303 . 426058) (-2304 . 425946) (-2305 . 425800) - (-2306 . 425557) (-2307 . 425390) (-2308 . 425276) (-2309 . 425132) - (-2310 . 424951) (-2311 . 424825) (-2312 . 424752) (-2313 . 424655) - (-2314 . 424599) (-2315 . 424484) (-2316 . 424358) (-2317 . 423872) - (-2318 . 423670) (-2319 . 423445) (-2320 . 423195) (-2321 . 422948) - (-2322 . 422832) (-2323 . 422745) (-2324 . 422480) (-2325 . 421842) - (-2326 . 421765) (-2327 . 421661) (-2328 . 421400) (-2329 . 419682) - (-2330 . 419580) (-2331 . 419509) (-2332 . 419438) (-2333 . 418583) - (-2334 . 418344) (-2335 . 418235) (-2336 . 417075) (-2337 . 417014) - (-2338 . 416894) (-2339 . 416817) (-2340 . 416783) (-2341 . 416510) - (-2342 . 416256) (-2343 . 415980) (-2344 . 415901) (-2345 . 415738) - (-2346 . 415637) (-2347 . 415579) (-2348 . 415466) (-2349 . 415279) - (-2350 . 415165) (-2351 . 415035) (-2352 . 414958) (-2353 . 414732) - (-2354 . 414667) (-2355 . 414580) (-2356 . 414483) (-2357 . 414082) - (-2358 . 413634) (-2359 . 413334) (-2360 . 412973) (-2361 . 411873) - (-2362 . 411443) (-2363 . 411308) (-2364 . 410185) (-2365 . 409797) - (-2366 . 409700) (-2367 . 409593) (-2368 . 409508) (-2369 . 409399) - (-2370 . 409342) (-2371 . 409140) (-2372 . 409031) (-2373 . 408978) - (-2374 . 408617) (-2375 . 408489) (-2376 . 408363) (-2377 . 408178) - (-2378 . 408150) (-2379 . 408098) (-2380 . 407841) (-2381 . 407594) - (-2382 . 407489) (-2383 . 407392) (-2384 . 407075) (-2385 . 406910) - (-2386 . 406839) (-2387 . 406811) (-2388 . 406257) (-2389 . 406190) - (-2390 . 405188) (-2391 . 404926) (-2392 . 404796) (-2393 . 404765) - (-2394 . 404554) (-2395 . 404194) (-2396 . 404078) (-2397 . 403915) - (-2398 . 403738) (-2399 . 403625) (-2400 . 403421) (-2401 . 403297) - (-2402 . 403161) (-2403 . 403016) (-2404 . 402852) (-2405 . 402719) - (-2406 . 401409) (-2407 . 401310) (-2408 . 401100) (-2409 . 401002) - (-2410 . 400950) (-2411 . 400884) (-2412 . 400777) (-2413 . 400533) - (-2414 . 400387) (-2415 . 400237) (-2416 . 399964) (-2417 . 399828) - (-2418 . 399686) (-2419 . 399092) (-2420 . 398480) (-2421 . 398256) - (-2422 . 398034) (-2423 . 397952) (-2424 . 397366) (-2425 . 397314) - (-2426 . 397237) (-2427 . 397021) (-2428 . 396896) (-2429 . 396470) - (-2430 . 396353) (-2431 . 396258) (-2432 . 396122) (-2433 . 395900) - (-2434 . 395654) (-2435 . 395528) (-2436 . 394227) (-2437 . 394159) - (-2438 . 394076) (-2439 . 394014) (-2440 . 393380) (-2441 . 393331) - (-2442 . 393282) (-2443 . 393137) (-2444 . 393059) (-2445 . 392962) - (-2446 . 392863) (-2447 . 392610) (-2448 . 392428) (-2449 . 391868) - (-2450 . 391810) (-2451 . 391431) (-2452 . 390762) (-2453 . 390436) - (-2454 . 389862) (-2455 . 389704) (-2456 . 389670) (-2457 . 389217) - (-2458 . 388661) (-2459 . 388576) (-2460 . 388467) (-2461 . 388383) - (-2462 . 388225) (-2463 . 388122) (-2464 . 387738) (-2465 . 387644) - (-2466 . 387520) (-2467 . 387301) (-2468 . 386944) (-2469 . 386791) - (-2470 . 385994) (-2471 . 385960) (-2472 . 385868) (-2473 . 385668) - (-2474 . 385540) (-2475 . 385490) (-2476 . 385416) (-2477 . 385315) - (-2478 . 385199) (-2479 . 385082) (-2480 . 385016) (-2481 . 384763) - (-2482 . 384555) (-2483 . 384470) (-2484 . 384383) (-2485 . 384317) - (-2486 . 384234) (-2487 . 384149) (-2488 . 384083) (-2489 . 383684) - (-2490 . 383577) (-2491 . 383546) (-2492 . 383372) (-2493 . 383265) - (-2494 . 383133) (-2495 . 383105) (-2496 . 383050) (-2497 . 382737) - (-2498 . 382597) (-2499 . 382288) (-2500 . 382217) (-2501 . 382004) - (-2502 . 381712) (-2503 . 381625) (-2504 . 381554) (-2505 . 381498) - (-2506 . 381189) (-2507 . 380007) (-2508 . 379816) (-2509 . 379715) - (-2510 . 379576) (-2511 . 379496) (-2512 . 379444) (-2513 . 379365) - (-2514 . 378556) (-2515 . 378418) (-2516 . 378142) (-2517 . 377935) - (-2518 . 377789) (-2519 . 377716) (-2520 . 377506) (-2521 . 377297) - (-2522 . 377241) (-2523 . 376929) (-2524 . 376815) (-2525 . 376674) - (-2526 . 376582) (-2527 . 376406) (-2528 . 376333) (-2529 . 376281) - (-2530 . 376186) (-2531 . 376053) (-2532 . 375911) (-2533 . 375389) - (-2534 . 375192) (-2535 . 375113) (-2536 . 374970) (-2537 . 374884) - (-2538 . 374724) (-2539 . 374624) (-2540 . 374536) (-2541 . 374505) - (-2542 . 374449) (-2543 . 374421) (-2544 . 374364) (-2545 . 374227) - (-2546 . 373934) (-2547 . 373823) (-2548 . 373740) (-2549 . 373653) - (-2550 . 373168) (-2551 . 372949) (-2552 . 372896) (-2553 . 372734) - (-2554 . 372625) (-2555 . 372133) (-2556 . 371740) (-2557 . 371406) - (-2558 . 371069) (-2559 . 370920) (-2560 . 370676) (-2561 . 370521) - (-2562 . 370465) (-2563 . 370175) (-2564 . 370122) (-2565 . 370070) - (-2566 . 369911) (-2567 . 369779) (-2568 . 369672) (-2569 . 369388) - (-2570 . 369231) (-2571 . 369087) (-2572 . 368999) (-2573 . 368914) - (-2574 . 368773) (-2575 . 368527) (-2576 . 368373) (-2577 . 368316) - (-2578 . 368193) (-2579 . 368078) (-2580 . 367727) (-2581 . 367496) - (-2582 . 367305) (-2583 . 367167) (-2584 . 367084) (-2585 . 366824) - (-2586 . 366585) (-2587 . 366345) (-2588 . 366228) (-2589 . 366128) - (-2590 . 365780) (-2591 . 365676) (-2592 . 365429) (-2593 . 365320) - (-2594 . 365206) (-2595 . 364955) (-2596 . 364876) (-2597 . 364799) - (-2598 . 364692) (-2599 . 364311) (-2600 . 364252) (-2601 . 363861) - (-2602 . 363740) (-2603 . 363493) (-2604 . 363462) (-2605 . 363326) - (-2606 . 362826) (-2607 . 362632) (-2608 . 362538) (-2609 . 361542) - (-2610 . 361468) (-2611 . 361396) (-2612 . 356297) (-2613 . 356212) - (-2614 . 356160) (-2615 . 355839) (-2616 . 355811) (-2617 . 355694) - (-2618 . 355524) (-2619 . 355442) (-2620 . 355390) (-2621 . 355203) - (-2622 . 355001) (-2623 . 354828) (-2624 . 354745) (-2625 . 354693) - (-2626 . 354300) (-2627 . 354216) (-2628 . 354185) (-2629 . 353974) - (-2630 . 353746) (-2631 . 353483) (-2632 . 353399) (-2633 . 353244) - (-2634 . 353100) (-2635 . 352970) (-2636 . 352885) (-2637 . 352806) - (-2638 . 352702) (-2639 . 352251) (-2640 . 352111) (-2641 . 351967) - (-2642 . 351315) (-2643 . 351205) (-2644 . 351139) (-2645 . 350864) - (-2646 . 350742) (-2647 . 350689) (-2648 . 350637) (-2649 . 350531) - (-2650 . 350454) (-2651 . 350364) (-2652 . 350282) (-2653 . 349957) - (-2654 . 349798) (-2655 . 349702) (-2656 . 349595) (-2657 . 349525) - (-2658 . 349079) (-2659 . 348996) (-2660 . 348882) (-2661 . 348769) - (-2662 . 348660) (-2663 . 348573) (-2664 . 348314) (-2665 . 348240) - (-2666 . 348121) (-2667 . 347888) (-2668 . 347835) (-2669 . 347732) - (-2670 . 347639) (-2671 . 347392) (-2672 . 347149) (-2673 . 347035) - (-2674 . 346947) (-2675 . 346706) (-2676 . 346432) (-2677 . 346364) - (-2678 . 346266) (-2679 . 345943) (-2680 . 345822) (-2681 . 345724) - (-2682 . 345641) (-2683 . 345486) (-2684 . 344736) (-2685 . 344589) - (-2686 . 344371) (-2687 . 344262) (-2688 . 344157) (-2689 . 343699) - (-2690 . 343387) (-2691 . 343338) (-2692 . 343239) (-2693 . 343120) - (-2694 . 343042) (-2695 . 342989) (-2696 . 342883) (-2697 . 342727) - (-2698 . 342595) (-2699 . 342543) (-2700 . 342425) (-2701 . 342094) - (-2702 . 341872) (-2703 . 341771) (-2704 . 341604) (-2705 . 341344) - (-2706 . 341224) (-2707 . 341085) (-2708 . 341002) (-2709 . 340387) - (-2710 . 339814) (-2711 . 339609) (-2712 . 339491) (-2713 . 339392) - (-2714 . 339305) (-2715 . 339066) (-2716 . 338925) (-2717 . 338866) - (-2718 . 338750) (-2719 . 338679) (-2720 . 338610) (-2721 . 338579) - (-2722 . 338389) (-2723 . 338332) (-2724 . 338272) (-2725 . 338133) - (-2726 . 337703) (-2727 . 337520) (-2728 . 337397) (-2729 . 337323) - (-2730 . 337106) (-2731 . 336921) (-2732 . 336446) (-2733 . 336348) - (-2734 . 335350) (-2735 . 335174) (-2736 . 335117) (-2737 . 334890) - (-2738 . 334783) (-2739 . 334728) (-2740 . 334654) (-2741 . 334054) - (-2742 . 334020) (-2743 . 333912) (-2744 . 333396) (-2745 . 333236) - (-2746 . 333112) (-2747 . 332869) (-2748 . 332721) (-2749 . 332650) - (-2750 . 332418) (-2751 . 328258) (-2752 . 328151) (-2753 . 328072) - (-2754 . 327525) (-2755 . 327189) (-2756 . 326966) (-2757 . 326907) - (-2758 . 326849) (-2759 . 326762) (-2760 . 326671) (-2761 . 326618) - (-2762 . 326545) (-2763 . 326404) (-2764 . 326271) (-2765 . 326137) - (-2766 . 325972) (-2767 . 325781) (-2768 . 325670) (-2769 . 325618) - (-2770 . 325285) (-2771 . 325182) (-2772 . 324965) (-2773 . 324715) - (-2774 . 324553) (-2775 . 324470) (-2776 . 324411) (-2777 . 324285) - (-2778 . 324120) (-2779 . 323758) (-2780 . 323423) (-2781 . 323394) - (-2782 . 322722) (-2783 . 322623) (-2784 . 322271) (-2785 . 322053) - (-2786 . 321886) (-2787 . 321361) (-2788 . 320840) (-2789 . 320237) - (-2790 . 320070) (-2791 . 320015) (-2792 . 319943) (-2793 . 319799) - (-2794 . 319690) (-2795 . 319579) (-2796 . 319399) (-2797 . 319172) - (-2798 . 318950) (-2799 . 318831) (-2800 . 318794) (-2801 . 318742) - (-2802 . 318426) (-2803 . 318099) (-2804 . 318043) (-2805 . 317656) - (-2806 . 317384) (-2807 . 317067) (-2808 . 317010) (-2809 . 316848) - (-2810 . 316705) (-2811 . 316619) (-2812 . 316479) (-2813 . 316429) - (-2814 . 316398) (-2815 . 315824) (-2816 . 315582) (-2817 . 315295) - (-2818 . 315140) (-2819 . 314646) (-2820 . 314517) (-2821 . 314408) - (-2822 . 314296) (-2823 . 314188) (-2824 . 314045) (-2825 . 313960) - (-2826 . 313891) (-2827 . 313724) (-2828 . 313117) (-2829 . 312620) - (-2830 . 312508) (-2831 . 312442) (-2832 . 312368) (-2833 . 311995) - (-2834 . 311717) (-2835 . 311618) (-2836 . 311442) (-2837 . 311234) - (-2838 . 311017) (-2839 . 310871) (-2840 . 310751) (-2841 . 310655) - (-2842 . 310460) (-2843 . 310274) (-2844 . 310194) (-2845 . 310001) - (-2846 . 309949) (-2847 . 309898) (-2848 . 309804) (-2849 . 309710) - (-2850 . 309617) (-2851 . 309589) (-2852 . 309495) (-2853 . 309358) - (-2854 . 309263) (-2855 . 309115) (-2856 . 309000) (-2857 . 308923) - (-2858 . 308827) (-2859 . 308720) (-2860 . 308650) (-2861 . 308484) - (-2862 . 306942) (-2863 . 306890) (-2864 . 306765) (-2865 . 306560) - (-2866 . 306487) (-2867 . 306248) (-2868 . 306089) (-2869 . 305821) - (-2870 . 305760) (-2871 . 305707) (-2872 . 305630) (-2873 . 305407) - (-2874 . 305242) (-2875 . 305135) (-2876 . 304989) (-2877 . 304857) - (-2878 . 304790) (-2879 . 304705) (-2880 . 304676) (-2881 . 304617) - (-2882 . 304465) (-2883 . 304174) (-2884 . 304052) (-2885 . 303888) - (-2886 . 303140) (-2887 . 303039) (-2888 . 302934) (-2889 . 302776) - (-2890 . 302563) (-2891 . 302414) (-2892 . 302229) (-2893 . 302135) - (-2894 . 302069) (-2895 . 301982) (-2896 . 301842) (-2897 . 301718) - (-2898 . 301666) (-2899 . 301556) (-2900 . 301386) (-2901 . 301280) - (-2902 . 301137) (-2903 . 300947) (-2904 . 300468) (-2905 . 300046) - (-2906 . 299995) (-2907 . 299742) (-2908 . 299670) (-2909 . 299639) - (-2910 . 299509) (-2911 . 299368) (-2912 . 299258) (-2913 . 299112) - (-2914 . 298797) (-2915 . 298712) (-2916 . 298627) (-2917 . 298575) - (-2918 . 298417) (-2919 . 298361) (-2920 . 298274) (-2921 . 298206) - (-2922 . 297931) (-2923 . 297897) (-2924 . 297800) (-2925 . 297672) - (-2926 . 297529) (-2927 . 297455) (-2928 . 297257) (-2929 . 297093) - (-2930 . 296869) (-2931 . 296810) (-2932 . 296698) (-2933 . 296645) - (-2934 . 296542) (-2935 . 296341) (-2936 . 296289) (-2937 . 296177) - (-2938 . 296108) (-2939 . 293856) (-2940 . 293626) (-2941 . 293552) - (-2942 . 293499) (-2943 . 293347) (-2944 . 293292) (-2945 . 293219) - (-2946 . 293089) (-2947 . 292834) (-2948 . 292761) (-2949 . 292699) - (-2950 . 292617) (-2951 . 292550) (-2952 . 292133) (-2953 . 292021) - (-2954 . 291679) (-2955 . 291651) (-2956 . 291538) (-2957 . 291393) - (-2958 . 291286) (-2959 . 291213) (-2960 . 290987) (-2961 . 290847) - (-2962 . 290466) (-2963 . 290271) (-2964 . 290045) (-2965 . 289892) - (-2966 . 289621) (-2967 . 289518) (-2968 . 289407) (-2969 . 289288) - (-2970 . 289044) (-2971 . 288940) (-2972 . 288828) (-2973 . 288713) - (-2974 . 288685) (-2975 . 288550) (-2976 . 288333) (-2977 . 287531) - (-2978 . 287413) (-2979 . 287304) (-2980 . 286856) (-2981 . 286446) - (-2982 . 286351) (-2983 . 286141) (-2984 . 285798) (-2985 . 285658) - (-2986 . 285488) (-2987 . 285371) (-2988 . 285154) (-2989 . 285036) - (-2990 . 284895) (-2991 . 284781) (-2992 . 284636) (-2993 . 284418) - (-2994 . 284295) (-2995 . 284007) (-2996 . 283711) (-2997 . 283617) - (-2998 . 283358) (-2999 . 283305) (-3000 . 283146) (-3001 . 283046) - (-3002 . 282966) (-3003 . 282884) (-3004 . 282775) (-3005 . 282666) - (-3006 . 282493) (-3007 . 282249) (-3008 . 282154) (-3009 . 281795) - (-3010 . 281696) (-3011 . 281160) (-3012 . 280738) (-3013 . 280672) - (-3014 . 280514) (-3015 . 280387) (-3016 . 280302) (-3017 . 280268) - (-3018 . 279890) (-3019 . 279691) (-3020 . 279568) (-3021 . 279486) - (-3022 . 278956) (-3023 . 278815) (-3024 . 278700) (-3025 . 278384) - (-3026 . 277868) (-3027 . 277498) (-3028 . 276957) (-3029 . 276858) - (-3030 . 276743) (-3031 . 276614) (-3032 . 276365) (-3033 . 276295) - (-3034 . 275998) (-3035 . 275669) (-3036 . 275620) (-3037 . 275517) - (-3038 . 275321) (-3039 . 275074) (-3040 . 274895) (-3041 . 274798) - (-3042 . 274640) (-3043 . 274588) (-3044 . 273517) (-3045 . 273415) - (-3046 . 273319) (-3047 . 273166) (-3048 . 273070) (-3049 . 273036) - (-3050 . 272951) (-3051 . 272885) (-3052 . 272788) (-3053 . 272705) - (-3054 . 272502) (-3055 . 272379) (-3056 . 272270) (-3057 . 272171) - (-3058 . 272065) (-3059 . 271928) (-3060 . 271805) (-3061 . 271697) - (-3062 . 271466) (-3063 . 271369) (-3064 . 271218) (-3065 . 271165) - (-3066 . 270950) (-3067 . 270841) (-3068 . 270043) (-3069 . 269672) - (-3070 . 269541) (-3071 . 269420) (-3072 . 269333) (-3073 . 269282) - (-3074 . 269254) (-3075 . 269223) (-3076 . 269151) (-3077 . 268977) - (-3078 . 268831) (-3079 . 268774) (-3080 . 268704) (-3081 . 268578) - (-3082 . 268423) (-3083 . 268014) (-3084 . 267788) (-3085 . 267714) - (-3086 . 267441) (-3087 . 267354) (-3088 . 267211) (-3089 . 267087) - (-3090 . 267021) (-3091 . 266918) (-3092 . 266719) (-3093 . 266592) - (-3094 . 266523) (-3095 . 266418) (-3096 . 266341) (-3097 . 265851) - (-3098 . 265360) (-3099 . 265054) (-3100 . 264947) (-3101 . 264824) - (-3102 . 264677) (-3103 . 264462) (-3104 . 263543) (-3105 . 262939) - (-3106 . 262829) (-3107 . 262767) (-3108 . 262644) (-3109 . 262456) - (-3110 . 262300) (-3111 . 262269) (-3112 . 262009) (-3113 . 261700) - (-3114 . 261520) (-3115 . 260819) (-3116 . 260742) (-3117 . 260496) - (-3118 . 260389) (-3119 . 260222) (-3120 . 260124) (-3121 . 260064) - (-3122 . 259955) (-3123 . 259927) (-3124 . 259875) (-3125 . 259624) - (-3126 . 259525) (-3127 . 259399) (-3128 . 259057) (-3129 . 258911) - (-3130 . 258824) (-3131 . 258600) (-3132 . 258444) (-3133 . 258370) - (-3134 . 258297) (-3135 . 258190) (-3136 . 258138) (-3137 . 257997) - (-3138 . 257614) (-3139 . 257534) (-3140 . 257363) (-3141 . 257141) - (-3142 . 256620) (-3143 . 256568) (-3144 . 256537) (-3145 . 256428) - (-3146 . 256350) (-3147 . 256243) (-3148 . 256177) (-3149 . 256094) - (-3150 . 255963) (-3151 . 255740) (-3152 . 255570) (-3153 . 255414) - (-3154 . 255386) (-3155 . 254946) (-3156 . 254747) (-3157 . 254576) - (-3158 . 254518) (-3159 . 254425) (-3160 . 254318) (-3161 . 254152) - (-3162 . 254030) (-3163 . 253908) (-3164 . 253877) (-3165 . 253782) - (-3166 . 253705) (-3167 . 253499) (-3168 . 253412) (-3169 . 253380) - (-3170 . 253224) (-3171 . 253169) (-3172 . 253111) (-3173 . 252975) - (-3174 . 252895) (-3175 . 251709) (-3176 . 251495) (-3177 . 251356) - (-3178 . 251300) (-3179 . 251244) (-3180 . 251161) (-3181 . 251133) - (-3182 . 251015) (-3183 . 250770) (-3184 . 250685) (-3185 . 250306) - (-3186 . 249803) (-3187 . 249682) (-3188 . 249602) (-3189 . 249525) - (-3190 . 249221) (-3191 . 249126) (-3192 . 248969) (** . 245892) - (-3194 . 245714) (-3195 . 245512) (-3196 . 245413) (-3197 . 245217) - (-3198 . 245121) (-3199 . 245011) (-3200 . 244677) (-3201 . 244575) - (-3202 . 244313) (-3203 . 244230) (-3204 . 243607) (-3205 . 243554) - (-3206 . 243471) (-3207 . 243405) (-3208 . 243296) (-3209 . 243222) - (-3210 . 242960) (-3211 . 242758) (-3212 . 242590) (-3213 . 242418) - (-3214 . 242344) (-3215 . 242019) (-3216 . 241953) (-3217 . 241880) - (-3218 . 241828) (-3219 . 241224) (-3220 . 236703) (-3221 . 236321) - (-3222 . 236268) (-3223 . 236173) (-3224 . 236078) (-3225 . 236011) - (-3226 . 235925) (-3227 . 235788) (-3228 . 235645) (-3229 . 235529) - (-3230 . 235476) (-3231 . 235350) (-3232 . 235296) (-3233 . 235102) - (-3234 . 234921) (-3235 . 234865) (-3236 . 234785) (-3237 . 234667) - (-3238 . 234563) (-3239 . 234444) (-3240 . 234165) (-3241 . 234078) - (-3242 . 234005) (-3243 . 233940) (-3244 . 233644) (-3245 . 233557) - (-3246 . 231605) (-3247 . 231552) (-3248 . 231393) (-3249 . 231096) - (-3250 . 228849) (-3251 . 228696) (-3252 . 228643) (-3253 . 228203) - (-3254 . 228123) (-3255 . 228010) (-3256 . 227957) (-3257 . 227923) - (-3258 . 227868) (-3259 . 227752) (-3260 . 227586) (-3261 . 227388) - (-3262 . 227024) (-3263 . 226847) (-3264 . 226675) (-3265 . 226588) - (-3266 . 226417) (-3267 . 226288) (-3268 . 226126) (-3269 . 225975) - (-3270 . 225873) (-3271 . 225788) (-3272 . 225736) (-3273 . 225564) - (-3274 . 225434) (-3275 . 225223) (-3276 . 225116) (-3277 . 225037) - (-3278 . 224930) (-3279 . 224656) (-3280 . 224561) (-3281 . 224364) - (-3282 . 224257) (-3283 . 224184) (-3284 . 224066) (-3285 . 223736) - (-3286 . 223564) (-3287 . 223227) (-3288 . 223036) (-3289 . 222925) - (-3290 . 222854) (-3291 . 222799) (-3292 . 222593) (-3293 . 222476) - (-3294 . 222425) (-3295 . 222100) (-3296 . 215154) (-3297 . 215087) - (-3298 . 214901) (-3299 . 214729) (-3300 . 214613) (-3301 . 214475) - (-3302 . 214138) (-3303 . 213979) (-3304 . 213870) (-3305 . 213760) - (-3306 . 212490) (-3307 . 212434) (-3308 . 212315) (-3309 . 212199) - (-3310 . 212081) (-3311 . 211943) (-3312 . 197885) (-3313 . 197736) - (-3314 . 197566) (-3315 . 197509) (-3316 . 197438) (-3317 . 197368) - (-3318 . 197285) (-3319 . 197186) (-3320 . 197120) (-3321 . 196897) - (-3322 . 196823) (-3323 . 196751) (-3324 . 196658) (-3325 . 196592) - (-3326 . 196434) (-3327 . 195574) (-3328 . 195477) (-3329 . 195303) - (-3330 . 195197) (-3331 . 194469) (-3332 . 194296) (-3333 . 194230) - (-3334 . 193826) (-3335 . 193666) (-3336 . 193599) (-3337 . 193496) - (-3338 . 193383) (-3339 . 193331) (-3340 . 193127) (-3341 . 193032) - (-3342 . 192949) (-3343 . 192329) (-3344 . 191969) (-3345 . 191858) - (-3346 . 191674) (-3347 . 191521) (-3348 . 190692) (-3349 . 190502) - (-3350 . 190384) (-3351 . 190260) (-3352 . 190179) (-3353 . 189805) - (-3354 . 189655) (-3355 . 189574) (-3356 . 189412) (-3357 . 189254) - (-3358 . 189195) (-3359 . 189139) (-3360 . 189073) (-3361 . 188989) - (-3362 . 188929) (-3363 . 188857) (-3364 . 188677) (-3365 . 188424) - (-3366 . 188119) (-3367 . 183417) (-3368 . 183347) (-3369 . 183281) - (-3370 . 183169) (-3371 . 183085) (-3372 . 183032) (-3373 . 182960) - (-3374 . 182876) (-3375 . 182061) (-3376 . 181994) (-3377 . 181836) - (-3378 . 181802) (-3379 . 181699) (-3380 . 181531) (-3381 . 181405) - (-3382 . 181279) (-3383 . 181224) (-3384 . 181160) (-3385 . 181031) - (-3386 . 180067) (-3387 . 179552) (-3388 . 179500) (-3389 . 178685) - (-3390 . 178401) (-3391 . 178285) (-3392 . 178219) (-3393 . 178110) - (-3394 . 177346) (-3395 . 177318) (-3396 . 177266) (-3397 . 177214) - (-3398 . 177055) (-3399 . 176971) (-3400 . 176749) (-3401 . 176659) - (-3402 . 171342) (-3403 . 171065) (-3404 . 170678) (-3405 . 169658) - (-3406 . 169575) (-3407 . 169509) (-3408 . 169415) (-3409 . 169358) - (-3410 . 169326) (-3411 . 169273) (-3412 . 169196) (-3413 . 169098) - (-3414 . 169000) (-3415 . 168903) (-3416 . 168823) (-3417 . 168719) - (-3418 . 168567) (-3419 . 168323) (-3420 . 168257) (-3421 . 168138) - (-3422 . 167893) (-3423 . 167680) (-3424 . 167607) (-3425 . 167548) - (-3426 . 167254) (-3427 . 165914) (-3428 . 165791) (-3429 . 165340) - (-3430 . 165255) (-3431 . 165146) (-3432 . 164520) (-3433 . 164434) - (-3434 . 164264) (-3435 . 164193) (-3436 . 164027) (-3437 . 163881) - (-3438 . 163737) (-3439 . 161322) (-3440 . 160258) (-3441 . 159910) - (-3442 . 159768) (-3443 . 159699) (-3444 . 159565) (-3445 . 159251) - (-3446 . 159148) (-3447 . 159007) (-3448 . 158814) (-3449 . 158116) - (-3450 . 157958) (-3451 . 157679) (-3452 . 154771) (-3453 . 154470) - (-3454 . 153887) (-3455 . 153550) (-3456 . 153332) (-3457 . 153225) - (-3458 . 153051) (-3459 . 152970) (-3460 . 152679) (-3461 . 152620) - (-3462 . 152279) (-3463 . 152180) (-3464 . 151942) (-3465 . 151862) - (-3466 . 151512) (-3467 . 151360) (-3468 . 151014) (-3469 . 150861) - (-3470 . 150771) (-3471 . 150647) (-3472 . 150453) (-3473 . 150274) - (-3474 . 150221) (-3475 . 150150) (-3476 . 148689) (-3477 . 148587) - (-3478 . 148507) (-3479 . 148401) (-3480 . 148122) (-3481 . 148022) - (-3482 . 147907) (-3483 . 147736) (-3484 . 147684) (-3485 . 147632) - (-3486 . 147571) (-3487 . 147515) (-3488 . 147403) (-3489 . 147259) - (-3490 . 146659) (-3491 . 146515) (-3492 . 146276) (-3493 . 145849) - (-3494 . 145793) (-3495 . 145432) (-3496 . 145300) (-3497 . 145186) - (-3498 . 145005) (-3499 . 144910) (-3500 . 144839) (-3501 . 143923) - (-3502 . 142558) (-3503 . 142505) (-3504 . 142386) (-3505 . 142285) - (-3506 . 142187) (-3507 . 141997) (-3508 . 141945) (-3509 . 141841) - (-3510 . 141671) (-3511 . 141312) (-3512 . 141203) (-3513 . 141132) - (-3514 . 140704) (-3515 . 140633) (-3516 . 140584) (-3517 . 140010) - (-3518 . 139767) (-3519 . 139581) (-3520 . 139466) (-3521 . 139247) - (-3522 . 137468) (-3523 . 137279) (-3524 . 137099) (-3525 . 137047) - (-3526 . 136737) (-3527 . 136594) (-3528 . 136431) (-3529 . 136375) - (-3530 . 136210) (-3531 . 136115) (-3532 . 135695) (-3533 . 135542) - (-3534 . 135465) (-3535 . 135302) (-3536 . 135219) (-3537 . 135006) - (-3538 . 134868) (-3539 . 134271) (-3540 . 133862) (-3541 . 133608) - (-3542 . 133490) (-3543 . 133424) (-3544 . 133266) (-3545 . 133194) - (-3546 . 132758) (-3547 . 132653) (-3548 . 132566) (-3549 . 132481) - (-3550 . 131269) (-3551 . 131216) (-3552 . 127228) (-3553 . 127200) - (-3554 . 127106) (-3555 . 127032) (-3556 . 126938) (-3557 . 126868) - (-3558 . 126524) (-3559 . 126239) (-3560 . 126186) (-3561 . 125974) - (-3562 . 125811) (-3563 . 125780) (-3564 . 125646) (-3565 . 125180) - (-3566 . 124970) (-3567 . 124897) (-3568 . 124699) (-3569 . 124629) - (-3570 . 124555) (-3571 . 124260) (-3572 . 124146) (-3573 . 123830) - (-3574 . 123749) (-3575 . 123700) (-3576 . 123622) (-3577 . 123536) - (-3578 . 123377) (-3579 . 123305) (-3580 . 123202) (-3581 . 122318) - (-3582 . 122026) (-3583 . 121955) (-3584 . 121841) (-3585 . 121618) - (-3586 . 121519) (-3587 . 121389) (-3588 . 120938) (-3589 . 120827) - (-3590 . 120725) (-3591 . 120435) (-3592 . 120262) (-3593 . 120165) - (-3594 . 119010) (-3595 . 118857) (-3596 . 118750) (-3597 . 118557) - (-3598 . 118523) (-3599 . 118433) (-3600 . 118114) (-3601 . 117977) - (-3602 . 117693) (-3603 . 117644) (-3604 . 117567) (-3605 . 117239) - (-3606 . 117136) (-3607 . 117070) (-3608 . 117004) (-3609 . 116801) - (-3610 . 116748) (-3611 . 116699) (-3612 . 116626) (-3613 . 116556) - (-3614 . 116387) (-3615 . 116234) (-3616 . 116149) (-3617 . 116075) - (-3618 . 115945) (-3619 . 115889) (-3620 . 115775) (-3621 . 115666) - (-3622 . 115229) (-3623 . 115174) (-3624 . 114989) (-3625 . 114937) - (-3626 . 114561) (-3627 . 114395) (-3628 . 114213) (-3629 . 114155) - (-3630 . 114102) (-3631 . 113986) (-3632 . 113863) (-3633 . 113766) - (-3634 . 113689) (-3635 . 113568) (-3636 . 113494) (-3637 . 113347) - (-3638 . 113245) (-3639 . 112829) (-3640 . 112309) (-3641 . 112188) - (-3642 . 112085) (-3643 . 111672) (-3644 . 111129) (-3645 . 111058) - (-3646 . 110467) (-3647 . 110396) (-3648 . 110238) (-3649 . 108953) - (-3650 . 108782) (-3651 . 108655) (-3652 . 108491) (-3653 . 108404) - (-3654 . 108206) (-3655 . 108011) (-3656 . 107881) (-3657 . 107594) - (-3658 . 107439) (-3659 . 107388) (-3660 . 107144) (-3661 . 103859) - (-3662 . 103736) (-3663 . 103565) (-3664 . 103460) (-3665 . 103380) - (-3666 . 103284) (-3667 . 103169) (-3668 . 103075) (-3669 . 102664) - (-3670 . 102604) (-3671 . 102469) (-3672 . 102391) (-3673 . 101756) - (-3674 . 101701) (-3675 . 101454) (-3676 . 101340) (-3677 . 101258) - (-3678 . 101209) (-3679 . 101108) (-3680 . 100963) (-3681 . 100895) - (-3682 . 100830) (-3683 . 100692) (-3684 . 100607) (-3685 . 100292) - (-3686 . 100173) (-3687 . 100000) (-3688 . 99929) (-3689 . 99799) - (-3690 . 99620) (-3691 . 99536) (-3692 . 99245) (-3693 . 98799) - (-3694 . 98706) (-3695 . 97456) (-3696 . 97366) (-3697 . 97295) - (-3698 . 97082) (-3699 . 96999) (-3700 . 96134) (-3701 . 96083) - (-3702 . 95880) (-3703 . 95793) (-3704 . 95727) (-3705 . 95676) - (-3706 . 95437) (-3707 . 95181) (-3708 . 94986) (-3709 . 94909) - (-3710 . 94782) (-3711 . 94450) (-3712 . 94384) (-3713 . 94304) - (-3714 . 94233) (-3715 . 93962) (-3716 . 93803) (-3717 . 93735) - (-3718 . 93707) (-3719 . 93613) (-3720 . 93458) (-3721 . 93421) - (-3722 . 91570) (-3723 . 91396) (-3724 . 91209) (-3725 . 91105) - (-3726 . 90997) (-3727 . 90286) (-3728 . 89615) (-3729 . 89410) - (-3730 . 89273) (-3731 . 88618) (-3732 . 88405) (-3733 . 88333) - (-3734 . 88261) (-3735 . 88170) (-3736 . 88006) (-3737 . 87860) - (-3738 . 87593) (-3739 . 87380) (-3740 . 87236) (-3741 . 87036) - (-3742 . 86628) (-3743 . 86526) (-3744 . 86246) (-3745 . 86037) - (-3746 . 85794) (-3747 . 85415) (-3748 . 84767) (-3749 . 84712) - (-3750 . 84458) (-3751 . 84378) (-3752 . 84031) (-3753 . 83944) - (-3754 . 83864) (-3755 . 83673) (-3756 . 83535) (-3757 . 83461) - (-3758 . 83343) (-3759 . 83228) (-3760 . 83048) (-3761 . 82942) - (-3762 . 82871) (-3763 . 82781) (-3764 . 82625) (-3765 . 82552) - (-3766 . 82311) (-3767 . 82225) (-3768 . 82166) (-3769 . 82047) - (-3770 . 81915) (-3771 . 81535) (-3772 . 81456) (-3773 . 81357) - (-3774 . 81244) (-3775 . 81186) (-3776 . 80987) (-3777 . 80905) - (-3778 . 79658) (-3779 . 79502) (-3780 . 79369) (-3781 . 79284) - (-3782 . 78934) (-3783 . 78881) (-3784 . 78738) (-3785 . 78579) - (-3786 . 78407) (-3787 . 78355) (-3788 . 78103) (-3789 . 78025) - (-3790 . 77951) (-3791 . 77533) (-3792 . 77314) (-3793 . 77213) - (-3794 . 77185) (-3795 . 77081) (-12 . 76909) (-3797 . 76684) - (-3798 . 76551) (-3799 . 76463) (-3800 . 76048) (-3801 . 75937) - (-3802 . 75852) (-3803 . 75781) (-3804 . 75407) (-3805 . 75343) - (-3806 . 75212) (-3807 . 75090) (-3808 . 74965) (-3809 . 74778) - (-3810 . 74467) (-3811 . 74367) (-3812 . 74020) (-3813 . 73781) - (-3814 . 73600) (-3815 . 73515) (-3816 . 73379) (-3817 . 73223) - (-3818 . 72840) (-3819 . 72703) (-3820 . 72548) (-3821 . 72386) - (-3822 . 72045) (-3823 . 71897) (-3824 . 71365) (-3825 . 70940) - (-3826 . 70785) (-3827 . 70684) (-3828 . 70549) (-3829 . 68695) - (-3830 . 68622) (-3831 . 68532) (-3832 . 68356) (-3833 . 68304) - (-3834 . 68140) (-3835 . 68056) (-3836 . 67962) (-3837 . 67903) - (-3838 . 67837) (-3839 . 67786) (-3840 . 67678) (-3841 . 67608) - (-3842 . 67460) (-3843 . 67336) (-3844 . 67183) (-3845 . 67083) - (-3846 . 66941) (-3847 . 66870) (-3848 . 65785) (-3849 . 65719) - (-3850 . 65140) (-3851 . 65070) (-3852 . 64949) (-3853 . 64856) - (-3854 . 64797) (-3855 . 64692) (-3856 . 64549) (-3857 . 64181) - (-3858 . 63482) (-3859 . 63378) (-3860 . 63094) (-3861 . 62426) - (-3862 . 61938) (-3863 . 61886) (-3864 . 61824) (-3865 . 61730) - (-3866 . 61628) (-3867 . 61253) (-3868 . 61179) (-3869 . 61068) - (-3870 . 61016) (-3871 . 60924) (-3872 . 60578) (-3873 . 60501) - (-3874 . 60434) (-3875 . 60368) (-3876 . 60174) (-3877 . 59950) - (-3878 . 59579) (-3879 . 59449) (-3880 . 59393) (-3881 . 59108) - (-3882 . 58965) (* . 54442) (-3884 . 54242) (-3885 . 54214) - (-3886 . 54165) (-3887 . 54056) (-3888 . 53961) (-3889 . 53902) - (-3890 . 53807) (-3891 . 53755) (-3892 . 53594) (-3893 . 53511) - (-3894 . 53458) (-3895 . 53307) (-3896 . 47801) (-3897 . 47683) - (-3898 . 46473) (-3899 . 46400) (-3900 . 46201) (-3901 . 46060) - (-3902 . 45834) (-3903 . 45348) (-3904 . 45142) (-3905 . 45048) - (-3906 . 44947) (-3907 . 44892) (-3908 . 44504) (-3909 . 44399) - (-3910 . 44195) (-3911 . 44072) (-3912 . 43758) (-3913 . 43700) - (-3914 . 43410) (-3915 . 43192) (-3916 . 42884) (-3917 . 42813) - (-3918 . 42745) (-3919 . 42292) (-3920 . 42144) (-3921 . 42018) - (-3922 . 41802) (-3923 . 41636) (-3924 . 41495) (-3925 . 41407) - (-3926 . 41328) (-3927 . 41236) (-3928 . 40854) (-3929 . 40745) - (-3930 . 40583) (-3931 . 40236) (-3932 . 40143) (-3933 . 39933) - (-3934 . 39846) (-3935 . 39766) (-3936 . 39670) (-3937 . 39476) - (-3938 . 39403) (-3939 . 39124) (-3940 . 39032) (-3941 . 38806) - (-3942 . 38348) (-3943 . 38208) (-3944 . 37821) (-3945 . 37772) - (-3946 . 37617) (-3947 . 37486) (-3948 . 37304) (-3949 . 37187) - (-3950 . 37101) (-3951 . 37016) (-3952 . 36923) (-3953 . 36862) - (-3954 . 36684) (-3955 . 36408) (-3956 . 36278) (-3957 . 36126) - (-3958 . 36057) (-3959 . 35953) (-3960 . 35769) (-3961 . 35598) - (-3962 . 35548) (-3963 . 35480) (-3964 . 35191) (-3965 . 35139) - (-3966 . 34992) (-3967 . 34800) (-3968 . 34704) (-3969 . 34598) - (-3970 . 34479) (-3971 . 34405) (-3972 . 34206) (-3973 . 34085) - (-3974 . 33806) (-3975 . 33732) (-3976 . 33647) (-3977 . 33566) - (-3978 . 33438) (-3979 . 33331) (-3980 . 33187) (-3981 . 33135) - (-3982 . 32901) (-3983 . 32800) (-3984 . 32572) (-3985 . 32489) - (-3986 . 32360) (-3987 . 32265) (-3988 . 32124) (-3989 . 31971) - (-3990 . 31769) (-3991 . 31595) (-3992 . 31527) (-3993 . 31403) - (-3994 . 31337) (-3995 . 31184) (-3996 . 31045) (-3997 . 30754) - (-3998 . 30637) (-3999 . 30512) (-4000 . 30445) (-4001 . 30289) - (-4002 . 30031) (-4003 . 29788) (-4004 . 29685) (-4005 . 29632) - (-4006 . 29545) (-4007 . 29462) (-4008 . 29295) (-4009 . 29181) - (-4010 . 29128) (-4011 . 29031) (-4012 . 28961) (-4013 . 28902) - (-4014 . 28779) (-4015 . 28650) (-4016 . 28492) (-4017 . 28367) - (-4018 . 28230) (-4019 . 27816) (-4020 . 27756) (-4021 . 27722) - (-4022 . 27691) (-4023 . 27617) (-4024 . 27520) (-4025 . 27082) - (-4026 . 27011) (-4027 . 26977) (-4028 . 26757) (-4029 . 26523) - (-4030 . 26442) (-4031 . 26390) (-4032 . 26327) (-4033 . 25573) - (-4034 . 25457) (-4035 . 25350) (-4036 . 25240) (-4037 . 25187) - (-4038 . 25072) (-4039 . 24896) (-4040 . 24711) (-4041 . 24649) - (-4042 . 24576) (-4043 . 24363) (-4044 . 24192) (-4045 . 24077) - (-4046 . 23619) (-4047 . 23550) (-4048 . 23286) (-4049 . 22814) - (-4050 . 22685) (-4051 . 22578) (-4052 . 22420) (-4053 . 22386) - (-4054 . 22249) (-4055 . 21956) (-4056 . 21845) (-4057 . 21768) - (-4058 . 21504) (-4059 . 21364) (-4060 . 21240) (-4061 . 21122) - (-4062 . 20961) (-4063 . 20841) (-4064 . 20738) (-4065 . 20499) - (-4066 . 20369) (-4067 . 20288) (-4068 . 20022) (-4069 . 19991) - (-4070 . 19849) (-4071 . 19775) (-4072 . 19309) (-4073 . 18981) - (-4074 . 18804) (-4075 . 18613) (-4076 . 18492) (-4077 . 18332) - (-4078 . 18184) (-4079 . 18004) (-4080 . 17933) (-4081 . 17776) - (-4082 . 17720) (-4083 . 17347) (-4084 . 17116) (-4085 . 16749) - (-4086 . 16642) (-4087 . 16571) (-4088 . 16488) (-4089 . 16407) - (-4090 . 16161) (-4091 . 16047) (-4092 . 15989) (-4093 . 15862) - (-4094 . 15483) (-4095 . 15203) (-4096 . 15035) (-4097 . 14648) - (-4098 . 14553) (-4099 . 14307) (-4100 . 14138) (-4101 . 14065) - (-4102 . 13907) (-4103 . 13824) (-4104 . 13706) (-4105 . 13491) - (-4106 . 13389) (-4107 . 13280) (-4108 . 13179) (-4109 . 12971) - (-4110 . 12888) (-4111 . 12826) (-4112 . 12673) (-4113 . 12442) - (-4114 . 12273) (-4115 . 11971) (-4116 . 11067) (-4117 . 10443) - (-4118 . 10187) (-4119 . 10079) (-4120 . 10023) (-4121 . 9965) - (-4122 . 9888) (-4123 . 9805) (-4124 . 9741) (-4125 . 9606) - (-4126 . 9494) (-4127 . 9163) (-4128 . 9038) (-4129 . 8982) - (-4130 . 8784) (-4131 . 8705) (-4132 . 8650) (-4133 . 8418) - (-4134 . 8295) (-4135 . 7994) (-4136 . 7887) (-4137 . 7708) - (-4138 . 7656) (-4139 . 7551) (-4140 . 7312) (-4141 . 7123) - (-4142 . 6996) (-4143 . 6841) (-4144 . 6753) (-4145 . 6252) - (-4146 . 6218) (-4147 . 5790) (-4148 . 5596) (-4149 . 5473) - (-4150 . 5207) (-4151 . 5151) (-4152 . 4947) (-4153 . 4765) - (-4154 . 4642) (-4155 . 4561) (-4156 . 4269) (-4157 . 4105) - (-4158 . 3981) (-4159 . 3812) (-4160 . 3683) (-4161 . 3539) - (-4162 . 3062) (-4163 . 2968) (-4164 . 2894) (-4165 . 2797) - (-4166 . 2720) (-4167 . 2637) (-4168 . 2548) (-4169 . 1383) - (-4170 . 1306) (-4171 . 1256) (-4172 . 665) (-4173 . 580) - (-4174 . 497) (-4175 . 30))
\ No newline at end of file + (-12 (-4 *3 (-13 (-782) (-511))) (-5 *2 (-585 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-288 (-201))) (-5 *4 (-585 (-1082))) + (-5 *5 (-1006 (-775 (-201)))) (-5 *2 (-1063 (-201))) (-5 *1 (-273))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-157)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-705)) (-5 *1 (-788 *2)) (-4 *2 (-157))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-335)) (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) + (-5 *1 (-701 *3 *4)) (-4 *3 (-644 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-335)) (-4 *3 (-968)) + (-5 *2 (-2 (|:| -3573 *1) (|:| -1354 *1))) (-4 *1 (-784 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-94 *5)) (-4 *5 (-335)) (-4 *5 (-968)) + (-5 *2 (-2 (|:| -3573 *3) (|:| -1354 *3))) (-5 *1 (-785 *5 *3)) + (-4 *3 (-784 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1082)) (-5 *5 (-1006 (-201))) (-5 *2 (-854)) + (-5 *1 (-852 *3)) (-4 *3 (-560 (-495))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1082)) (-5 *2 (-854)) (-5 *1 (-852 *3)) + (-4 *3 (-560 (-495))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-854)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1006 (-201))) + (-5 *1 (-854))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-379 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1139 *5)) + (-5 *1 (-662 *5 *2)) (-4 *5 (-335))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-957)) (-5 *3 (-1082)) (-5 *1 (-170))))) +(((*1 *2 *1) (-12 (-4 *3 (-968)) (-5 *2 (-585 *1)) (-4 *1 (-1043 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-705)) (-5 *1 (-250))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-519)) (-5 *4 (-1065)) (-5 *5 (-625 (-201))) + (-5 *2 (-957)) (-5 *1 (-682))))) +(((*1 *2 *1) + (-12 (-5 *2 (-585 (-267 *3))) (-5 *1 (-267 *3)) (-4 *3 (-511)) + (-4 *3 (-1117))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3307 *1) (|:| -4208 *1) (|:| |associate| *1))) + (-4 *1 (-511))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-848)) (-5 *2 (-705)) (-5 *1 (-1012 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-519)) (-5 *5 (-1065)) (-5 *6 (-625 (-201))) + (-5 *7 (-3 (|:| |fn| (-360)) (|:| |fp| (-87 G)))) + (-5 *8 (-3 (|:| |fn| (-360)) (|:| |fp| (-84 FCN)))) + (-5 *9 (-3 (|:| |fn| (-360)) (|:| |fp| (-86 OUTPUT)))) + (-5 *3 (-201)) (-5 *2 (-957)) (-5 *1 (-684))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-727)) (-4 *6 (-782)) (-4 *3 (-511)) + (-4 *7 (-876 *3 *5 *6)) + (-5 *2 (-2 (|:| -1690 (-705)) (|:| -3031 *8) (|:| |radicand| *8))) + (-5 *1 (-880 *5 *6 *3 *7 *8)) (-5 *4 (-705)) + (-4 *8 + (-13 (-335) + (-10 -8 (-15 -2855 (*7 $)) (-15 -2866 (*7 $)) (-15 -2217 ($ *7)))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-782) (-423))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-402 *3) (-1103)))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-423)) (-4 *5 (-727)) (-4 *6 (-782)) + (-4 *3 (-982 *4 *5 *6)) (-5 *2 (-3 *3 (-585 *1))) + (-4 *1 (-987 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-592 (-379 *2))) (-4 *2 (-1139 *4)) (-5 *1 (-745 *4 *2)) + (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-593 *2 (-379 *2))) (-4 *2 (-1139 *4)) + (-5 *1 (-745 *4 *2)) + (-4 *4 (-13 (-335) (-135) (-959 (-519)) (-959 (-379 (-519)))))))) +((-1195 . 724058) (-1196 . 723900) (-1197 . 723791) (-1198 . 723475) + (-1199 . 723154) (-1200 . 723045) (-1201 . 722939) (-1202 . 722838) + (-1203 . 722713) (-1204 . 722661) (-1205 . 722587) (-1206 . 722513) + (-1207 . 722391) (-1208 . 722010) (-1209 . 721601) (-1210 . 721452) + (-1211 . 720878) (-1212 . 720825) (-1213 . 720757) (-1214 . 720647) + (-1215 . 720162) (-1216 . 720110) (-1217 . 719897) (-1218 . 719631) + (-1219 . 719490) (-1220 . 717915) (-1221 . 717776) (-1222 . 717389) + (-1223 . 717234) (-1224 . 717021) (-1225 . 716729) (-1226 . 716603) + (-1227 . 716311) (-1228 . 716199) (-1229 . 716171) (-1230 . 716098) + (-1231 . 716003) (-1232 . 715933) (-1233 . 715877) (-1234 . 715800) + (-1235 . 715726) (-1236 . 715649) (-1237 . 715579) (-1238 . 715335) + (-1239 . 715157) (-1240 . 714980) (-1241 . 714864) (-1242 . 714836) + (-1243 . 712706) (-1244 . 712653) (-1245 . 712546) (-1246 . 712414) + (-1247 . 712302) (-1248 . 712221) (-1249 . 712130) (-1250 . 712027) + (-1251 . 711874) (-1252 . 711775) (-1253 . 711634) (-1254 . 710397) + (-1255 . 710282) (-1256 . 709935) (-1257 . 709883) (-1258 . 709776) + (-1259 . 709523) (-1260 . 709378) (-1261 . 709159) (-1262 . 708978) + (-1263 . 708926) (-1264 . 708819) (-1265 . 708764) (-1266 . 708710) + (-1267 . 708559) (-1268 . 708497) (-1269 . 708363) (-1270 . 708286) + (-1271 . 708199) (-1272 . 708073) (-1273 . 707962) (-1274 . 707776) + (-1275 . 707655) (-1276 . 707499) (-1277 . 707385) (-1278 . 707277) + (-1279 . 706966) (-1280 . 706886) (-1281 . 706812) (-1282 . 706727) + (-1283 . 705326) (-1284 . 705141) (-1285 . 704946) (-1286 . 704565) + (-1287 . 704495) (-1288 . 704308) (-1289 . 704223) (-1290 . 704168) + (-1291 . 703827) (-1292 . 703764) (-1293 . 703674) (-1294 . 701956) + (-1295 . 701763) (-1296 . 701641) (-1297 . 701499) (-1298 . 701347) + (-1299 . 701264) (-1300 . 701211) (-1301 . 696690) (-1302 . 696532) + (-1303 . 696205) (-1304 . 696146) (-1305 . 696059) (-1306 . 695998) + (-1307 . 695883) (-1308 . 695817) (-1309 . 695711) (-1310 . 695480) + (-1311 . 695406) (-1312 . 695295) (-1313 . 695224) (-1314 . 695048) + (-1315 . 694807) (-1316 . 694674) (-1317 . 694606) (-1318 . 694572) + (-1319 . 694436) (-1320 . 694047) (-1321 . 693917) (-1322 . 693807) + (-1323 . 693465) (-1324 . 693382) (-1325 . 692086) (-1326 . 692001) + (-1327 . 691898) (-1328 . 691751) (-1329 . 691664) (-1330 . 691576) + (-1331 . 691517) (-1332 . 691485) (-1333 . 691194) (-1334 . 691049) + (-1335 . 690834) (-1336 . 690761) (-1337 . 690705) (-1338 . 690624) + (-1339 . 690132) (-1340 . 689962) (-1341 . 689854) (-1342 . 689823) + (-1343 . 689709) (-1344 . 689640) (-1345 . 689482) (-1346 . 689429) + (-1347 . 689355) (-1348 . 689299) (-1349 . 688859) (-1350 . 688773) + (-1351 . 688655) (-1352 . 688530) (-1353 . 688227) (-1354 . 688021) + (-1355 . 686597) (-1356 . 686520) (-1357 . 686454) (-1358 . 686157) + (-1359 . 686058) (-1360 . 685917) (-1361 . 685648) (-1362 . 685562) + (-1363 . 685371) (-1364 . 685189) (-1365 . 685132) (-1366 . 685026) + (-1367 . 683845) (-1368 . 683725) (-1369 . 683631) (-1370 . 683537) + (-1371 . 683377) (-1372 . 682989) (-1373 . 682922) (-1374 . 682835) + (-1375 . 682782) (-1376 . 682591) (-1377 . 682161) (-1378 . 682132) + (-1379 . 681918) (-1380 . 681806) (-1381 . 679025) (-1382 . 678960) + (-1383 . 678889) (-1384 . 678625) (-1385 . 678551) (-1386 . 678405) + (-1387 . 678352) (-1388 . 678247) (-1389 . 678219) (-1390 . 678166) + (-1391 . 677986) (-1392 . 677892) (-1393 . 677840) (-1394 . 677604) + (-1395 . 677544) (-1396 . 677475) (-1397 . 676866) (-1398 . 676788) + (-1399 . 676688) (-1400 . 676635) (-1401 . 676569) (-1402 . 676315) + (-1403 . 676122) (-1404 . 675976) (-1405 . 661913) (-1406 . 661749) + (-1407 . 661692) (-1408 . 661568) (-1409 . 661481) (-1410 . 661450) + (-1411 . 661383) (-1412 . 661264) (-1413 . 661020) (-1414 . 660949) + (-1415 . 660889) (-1416 . 660822) (-1417 . 660664) (-1418 . 660236) + (-1419 . 660020) (-1420 . 659949) (-1421 . 659498) (-1422 . 659219) + (-1423 . 659105) (-1424 . 659033) (-1425 . 658935) (-1426 . 658691) + (-1427 . 658638) (-1428 . 658497) (-1429 . 658239) (-1430 . 658185) + (-1431 . 658088) (-1432 . 658015) (-1433 . 657914) (-1434 . 657848) + (-1435 . 657770) (-1436 . 657652) (-1437 . 657408) (-1438 . 656809) + (-1439 . 656706) (-1440 . 656544) (-1441 . 656252) (-1442 . 655994) + (-1443 . 655900) (-1444 . 655787) (-1445 . 655456) (-1446 . 650754) + (-1447 . 650563) (-1448 . 650405) (-1449 . 650377) (-1450 . 650188) + (-1451 . 650114) (-1452 . 649151) (-1453 . 648981) (-1454 . 648772) + (-1455 . 648716) (-1456 . 648554) (-1457 . 648233) (-1458 . 647932) + (-1459 . 647862) (-1460 . 647724) (-1461 . 647579) (-1462 . 647085) + (-1463 . 647028) (-1464 . 646936) (-1465 . 646714) (-1466 . 646400) + (-1467 . 646259) (-1468 . 646037) (-1469 . 645963) (-1470 . 645891) + (-1471 . 645617) (-1472 . 645505) (-1473 . 645436) (-1474 . 645363) + (-1475 . 645291) (-1476 . 645173) (-1477 . 645042) (-1478 . 644545) + (-1479 . 644426) (-1480 . 644296) (-1481 . 644197) (-1482 . 643776) + (-1483 . 643697) (-1484 . 643390) (-1485 . 643208) (-1486 . 643151) + (-1487 . 643037) (-1488 . 642650) (-1489 . 642494) (-1490 . 642315) + (-1491 . 642202) (-1492 . 641825) (-1493 . 641610) (-1494 . 641560) + (-1495 . 641489) (-1496 . 641418) (-1497 . 641357) (-1498 . 641283) + (-1499 . 635966) (-1500 . 635861) (-1501 . 635791) (-1502 . 635412) + (-1503 . 635360) (-1504 . 635237) (-1505 . 635099) (-1506 . 635001) + (-1507 . 634848) (-1508 . 634531) (-1509 . 634393) (-1510 . 634341) + (-1511 . 634289) (-1512 . 634160) (-1513 . 634008) (-1514 . 633904) + (-1515 . 633844) (-1516 . 633778) (-1517 . 633548) (-1518 . 633451) + (-1519 . 633398) (-1520 . 633095) (-1521 . 632998) (-1522 . 632728) + (-1523 . 632519) (-1524 . 632448) (-1525 . 632349) (-1526 . 632099) + (-1527 . 632028) (-1528 . 631883) (-1529 . 631659) (-1530 . 630363) + (-1531 . 630284) (-1532 . 630186) (-1533 . 629993) (-1534 . 629870) + (-1535 . 629608) (-1536 . 629300) (-1537 . 629121) (-1538 . 628958) + (-1539 . 628541) (-1540 . 628458) (-1541 . 628265) (-1542 . 628231) + (-1543 . 627963) (-1544 . 627856) (-1545 . 627790) (-1546 . 627717) + (-1547 . 627665) (-1548 . 627316) (-1549 . 627016) (-1550 . 626825) + (-1551 . 626718) (-1552 . 626592) (-1553 . 626353) (-1554 . 626195) + (-1555 . 626074) (-1556 . 625900) (-1557 . 625375) (-1558 . 625238) + (-1559 . 625156) (-1560 . 625088) (-1561 . 624782) (-1562 . 624527) + (-1563 . 624471) (-1564 . 624415) (-1565 . 624349) (-1566 . 624254) + (-1567 . 624151) (-1568 . 623913) (-1569 . 623826) (-1570 . 623699) + (-1571 . 623587) (-1572 . 623427) (-1573 . 623331) (-1574 . 623211) + (-1575 . 623106) (-1576 . 622560) (-1577 . 622415) (-1578 . 622256) + (-1579 . 622172) (-1580 . 622104) (-1581 . 622033) (-1582 . 621916) + (-1583 . 621792) (-1584 . 621696) (-1585 . 621644) (-1586 . 621557) + (-1587 . 621419) (-1588 . 621311) (-1589 . 621256) (-1590 . 620941) + (-1591 . 620358) (-1592 . 620243) (-1593 . 619965) (-1594 . 619933) + (-1595 . 619850) (-1596 . 619752) (-1597 . 619420) (-1598 . 619343) + (-1599 . 619201) (-1600 . 618958) (-1601 . 618905) (-1602 . 618837) + (-1603 . 618687) (-1604 . 618564) (-1605 . 618476) (-1606 . 617824) + (-1607 . 617747) (-1608 . 617494) (-1609 . 617332) (-1610 . 617304) + (-1611 . 617145) (-1612 . 617096) (-1613 . 617016) (-1614 . 615832) + (-1615 . 615723) (-1616 . 614718) (-1617 . 614663) (-1618 . 614586) + (-1619 . 614555) (-1620 . 614328) (-1621 . 614072) (-1622 . 613584) + (-1623 . 612406) (-1624 . 612281) (-1625 . 611116) (-1626 . 610949) + (-1627 . 610561) (-1628 . 610446) (-1629 . 610394) (-1630 . 609771) + (-1631 . 608956) (-1632 . 606758) (-1633 . 606626) (-1634 . 606459) + (-1635 . 606303) (-1636 . 606232) (-1637 . 606058) (-1638 . 605687) + (-1639 . 605527) (-1640 . 605041) (-1641 . 604831) (-1642 . 603829) + (-1643 . 603770) (-1644 . 603709) (-1645 . 603493) (-1646 . 603377) + (-1647 . 603265) (-1648 . 603214) (-1649 . 603135) (-1650 . 603047) + (-1651 . 602989) (-1652 . 602917) (-1653 . 602857) (-1654 . 602605) + (-1655 . 602476) (-1656 . 602305) (-1657 . 602184) (-1658 . 602107) + (-1659 . 602003) (-1660 . 601462) (-1661 . 601409) (-1662 . 601358) + (-1663 . 601309) (-1664 . 601150) (-1665 . 601022) (-1666 . 600925) + (-1667 . 600816) (-1668 . 600652) (-1669 . 600499) (-1670 . 600416) + (-1671 . 600287) (-1672 . 600131) (-1673 . 600009) (-1674 . 599760) + (-1675 . 599718) (-1676 . 599665) (-1677 . 599522) (-1678 . 599457) + (-1679 . 599177) (-1680 . 599072) (-1681 . 598987) (-1682 . 598733) + (-1683 . 598567) (-1684 . 598308) (-1685 . 598178) (-1686 . 598003) + (-1687 . 597873) (-1688 . 597498) (-1689 . 597381) (-1690 . 596900) + (-1691 . 596213) (-1692 . 596135) (-1693 . 596050) (-1694 . 595992) + (-1695 . 595918) (-1696 . 595689) (-1697 . 595612) (-1698 . 595164) + (-1699 . 595065) (-1700 . 594906) (-1701 . 594753) (-1702 . 594612) + (-1703 . 594503) (-1704 . 594425) (-1705 . 594209) (-1706 . 594135) + (-1707 . 593949) (-1708 . 593804) (-1709 . 593687) (-1710 . 593548) + (-1711 . 593453) (-1712 . 593254) (-1713 . 593026) (-1714 . 592939) + (-1715 . 592680) (-1716 . 592613) (-1717 . 592518) (-1718 . 592388) + (-1719 . 592333) (-1720 . 592176) (-1721 . 591835) (-1722 . 591729) + (-1723 . 591438) (-1724 . 591205) (-1725 . 591153) (-1726 . 590991) + (-1727 . 590768) (-1728 . 590549) (-1729 . 590435) (-1730 . 590292) + (-1731 . 590205) (-1732 . 590128) (-1733 . 590043) (-1734 . 589888) + (-1735 . 589697) (-1736 . 589523) (-1737 . 589453) (-1738 . 589141) + (-1739 . 589073) (-1740 . 588964) (-1741 . 588695) (-1742 . 588588) + (-1743 . 588469) (-1744 . 588417) (-1745 . 587982) (-1746 . 587108) + (-1747 . 586945) (-1748 . 586908) (-1749 . 586504) (-1750 . 586452) + (-1751 . 586270) (-1752 . 586197) (-1753 . 586039) (-1754 . 585464) + (-1755 . 585409) (-1756 . 585350) (-1757 . 584912) (-1758 . 584850) + (-1759 . 584648) (-1760 . 584598) (-1761 . 584024) (-1762 . 583963) + (-1763 . 583889) (-1764 . 583764) (-1765 . 583623) (-1766 . 583544) + (-1767 . 583139) (-1768 . 582565) (-1769 . 582465) (-1770 . 582370) + (-1771 . 582248) (-1772 . 582196) (-1773 . 582144) (-1774 . 581570) + (-1775 . 581441) (-1776 . 581356) (-1777 . 581303) (-1778 . 581179) + (-1779 . 581145) (-1780 . 581016) (-1781 . 580583) (-1782 . 580528) + (-1783 . 579954) (-1784 . 579824) (-1785 . 579738) (-1786 . 579610) + (-1787 . 579470) (-1788 . 578979) (-1789 . 578789) (-1790 . 578215) + (-1791 . 578145) (-1792 . 578065) (-1793 . 577867) (-1794 . 577811) + (-1795 . 577670) (-1796 . 577287) (-1797 . 577235) (-1798 . 577183) + (-1799 . 576836) (-1800 . 576717) (-1801 . 576559) (-1802 . 576497) + (-1803 . 576395) (-1804 . 576281) (-1805 . 576128) (-1806 . 574682) + (-1807 . 574517) (-1808 . 574404) (-1809 . 571119) (-1810 . 570888) + (-1811 . 570647) (-1812 . 570445) (-1813 . 569987) (-1814 . 569878) + (-1815 . 569739) (-1816 . 569330) (-1817 . 569117) (-1818 . 568758) + (-1819 . 568668) (-1820 . 568500) (-1821 . 568323) (-1822 . 567700) + (-1823 . 567594) (-1824 . 567510) (-1825 . 567361) (-1826 . 567190) + (-1827 . 567105) (-1828 . 566952) (-1829 . 566361) (-1830 . 566238) + (-1831 . 565963) (-1832 . 565880) (-1833 . 565477) (-1834 . 565296) + (-1835 . 564479) (-1836 . 564399) (-1837 . 564263) (-1838 . 564178) + (-1839 . 564111) (-1840 . 564058) (-1841 . 563987) (-1842 . 563929) + (-1843 . 563892) (-1844 . 563586) (-1845 . 563376) (-1846 . 560961) + (-1847 . 560671) (-1848 . 560534) (-1849 . 560367) (-1850 . 560165) + (-1851 . 559974) (-1852 . 559843) (-1853 . 559750) (-1854 . 559524) + (-1855 . 559274) (-1856 . 559122) (-1857 . 558896) (-1858 . 558707) + (-1859 . 558537) (-1860 . 558439) (-1861 . 558297) (-1862 . 558050) + (-1863 . 557966) (-1864 . 557586) (-1865 . 557514) (-1866 . 557417) + (-1867 . 557193) (-1868 . 556969) (-1869 . 556843) (-1870 . 556710) + (-1871 . 556285) (-1872 . 556155) (-1873 . 556077) (-1874 . 556022) + (-1875 . 554867) (-1876 . 554721) (-1877 . 554635) (-1878 . 554340) + (-1879 . 554257) (-1880 . 554180) (-1881 . 554042) (-1882 . 553941) + (-1883 . 553781) (-1884 . 553700) (-1885 . 553542) (-1886 . 553416) + (-1887 . 553347) (-1888 . 553296) (-1889 . 553066) (-1890 . 553004) + (-1891 . 552614) (-1892 . 552509) (-1893 . 552346) (-1894 . 552261) + (-1895 . 552092) (-1896 . 551764) (-1897 . 551733) (-1898 . 551612) + (-1899 . 551515) (-1900 . 551391) (-1901 . 551287) (-1902 . 550959) + (-1903 . 550886) (-1904 . 550769) (-1905 . 550279) (-1906 . 550161) + (-1907 . 550077) (-1908 . 550043) (-1909 . 549543) (-1910 . 549490) + (-1911 . 549337) (-1912 . 549309) (-1913 . 549240) (-1914 . 549181) + (-1915 . 549101) (-1916 . 548803) (-1917 . 548466) (-1918 . 548313) + (-1919 . 548250) (-1920 . 548085) (-1921 . 542579) (-1922 . 542420) + (-1923 . 542300) (-1924 . 542129) (-1925 . 542018) (-1926 . 541878) + (-1927 . 541324) (-1928 . 541296) (-1929 . 541060) (-1930 . 540919) + (-1931 . 540582) (-1932 . 540497) (-1933 . 540181) (-1934 . 539793) + (-1935 . 539426) (-1936 . 539374) (-1937 . 539221) (-1938 . 539086) + (-1939 . 539001) (-1940 . 538930) (-1941 . 538716) (-1942 . 538580) + (-1943 . 538486) (-1944 . 538033) (-1945 . 537903) (-1946 . 537680) + (-1947 . 537234) (-1948 . 537177) (-1949 . 537033) (-1950 . 536856) + (-1951 . 536705) (-1952 . 536101) (-1953 . 536029) (-1954 . 535978) + (-1955 . 535884) (-1956 . 535537) (-1957 . 535484) (-1958 . 535267) + (-1959 . 535168) (-1960 . 534785) (-1961 . 534623) (-1962 . 534521) + (-1963 . 534441) (-1964 . 534218) (-1965 . 534072) (-1966 . 533865) + (-1967 . 533683) (-1968 . 533491) (-1969 . 532975) (-1970 . 532892) + (-1971 . 532761) (-1972 . 532656) (-1973 . 532531) (-1974 . 532466) + (-1975 . 532379) (-1976 . 532138) (-1977 . 531754) (-1978 . 531652) + (-1979 . 531487) (-1980 . 531269) (-1981 . 531050) (-1982 . 530924) + (-1983 . 530762) (-1984 . 530655) (-1985 . 530307) (-1986 . 530234) + (-1987 . 530181) (-1988 . 530052) (-1989 . 529821) (-1990 . 529712) + (-1991 . 529577) (-1992 . 529285) (-1993 . 529182) (-1994 . 527420) + (-1995 . 527000) (-1996 . 526934) (-1997 . 526757) (-1998 . 526532) + (-1999 . 526420) (-2000 . 526311) (-2001 . 526205) (-2002 . 525916) + (-2003 . 525804) (-2004 . 525628) (-2005 . 525513) (-2006 . 525463) + (-2007 . 525266) (-2008 . 525044) (-2009 . 524837) (-2010 . 524199) + (-2011 . 524147) (-2012 . 523903) (-2013 . 523787) (-2014 . 523389) + (-2015 . 523302) (-2016 . 522630) (-2017 . 522545) (-2018 . 522364) + (-2019 . 522246) (-2020 . 521867) (-2021 . 521316) (-2022 . 521250) + (-2023 . 521037) (-2024 . 520894) (-2025 . 520860) (-2026 . 520708) + (-2027 . 520556) (-2028 . 520442) (-2029 . 520359) (-2030 . 520093) + (-2031 . 519978) (-2032 . 519878) (-2033 . 519791) (-2034 . 519122) + (-2035 . 519003) (-2036 . 518920) (-2037 . 518711) (-2038 . 518487) + (-2039 . 518369) (-2040 . 518265) (-2041 . 518153) (-2042 . 517909) + (-2043 . 517745) (-2044 . 517659) (-2045 . 517550) (-2046 . 516367) + (-2047 . 516188) (-2048 . 515993) (-2049 . 515892) (-2050 . 515840) + (-2051 . 515699) (-2052 . 515625) (-2053 . 515542) (-2054 . 515468) + (-2055 . 515053) (-2056 . 514631) (-2057 . 514574) (-2058 . 514477) + (-2059 . 514318) (-2060 . 512467) (-2061 . 512309) (-2062 . 512229) + (-2063 . 512176) (-2064 . 512060) (-2065 . 511983) (-2066 . 511864) + (-2067 . 511792) (-2068 . 511723) (-2069 . 511664) (-2070 . 510799) + (-2071 . 510703) (-2072 . 510592) (-2073 . 510483) (-2074 . 510379) + (-2075 . 510246) (-2076 . 510125) (-2077 . 509912) (-2078 . 509704) + (-2079 . 509505) (-2080 . 509427) (-2081 . 509259) (-2082 . 509132) + (-2083 . 509016) (-2084 . 508921) (-2085 . 508600) (-2086 . 508352) + (-2087 . 508248) (-2088 . 507782) (-2089 . 507469) (-2090 . 507348) + (-2091 . 507215) (-2092 . 507132) (-2093 . 506879) (-2094 . 506809) + (-2095 . 506729) (-2096 . 506292) (-2097 . 506112) (-2098 . 505980) + (-2099 . 505733) (-2100 . 505128) (-2101 . 505076) (-2102 . 504428) + (-2103 . 504333) (-2104 . 504021) (-2105 . 503926) (-2106 . 503353) + (-2107 . 502484) (-2108 . 502191) (-2109 . 502007) (-2110 . 501909) + (-2111 . 501852) (-2112 . 501406) (-2113 . 501378) (-2114 . 501265) + (-2115 . 501159) (-2116 . 501043) (-2117 . 500970) (-2118 . 500861) + (-2119 . 500778) (-2120 . 500707) (-2121 . 500240) (-2122 . 500031) + (-2123 . 499685) (-2124 . 499542) (-2125 . 499362) (-2126 . 499196) + (-2127 . 498950) (-2128 . 498872) (-2129 . 498792) (-2130 . 498719) + (-2131 . 498682) (-2132 . 498357) (-2133 . 498198) (-2134 . 498082) + (-2135 . 498051) (-2136 . 497936) (-2137 . 497780) (-2138 . 497714) + (-2139 . 497539) (-2140 . 497355) (-2141 . 497284) (-2142 . 497213) + (-2143 . 496966) (-2144 . 496616) (-2145 . 496446) (-2146 . 496227) + (-2147 . 496159) (-2148 . 495909) (-2149 . 495761) (-2150 . 495489) + (-2151 . 495341) (-2152 . 495223) (-2153 . 495005) (-2154 . 494918) + (-2155 . 494838) (-2156 . 494757) (-2157 . 494531) (-2158 . 494193) + (-2159 . 493848) (-2160 . 493795) (-2161 . 493508) (-2162 . 493459) + (-2163 . 492657) (-2164 . 492608) (-2165 . 491523) (-2166 . 491471) + (-2167 . 491194) (-2168 . 491025) (-2169 . 490948) (-2170 . 490882) + (-2171 . 490788) (-2172 . 490658) (-2173 . 490563) (-2174 . 490410) + (-2175 . 490320) (-2176 . 490024) (-2177 . 489433) (-2178 . 489356) + (-2179 . 489245) (-2180 . 489110) (-2181 . 486958) (-2182 . 486628) + (-2183 . 486600) (-2184 . 486040) (-2185 . 485748) (-2186 . 485648) + (-2187 . 485571) (-2188 . 485300) (-2189 . 485156) (-2190 . 485090) + (-2191 . 484830) (-2192 . 484757) (-2193 . 484691) (-2194 . 484660) + (-2195 . 484350) (-2196 . 484237) (-2197 . 484021) (-2198 . 483892) + (-2199 . 483674) (-2200 . 483312) (-2201 . 482980) (-2202 . 482683) + (-2203 . 482392) (-2204 . 482294) (-2205 . 481584) (-2206 . 481489) + (-2207 . 481461) (-2208 . 481291) (-2209 . 481173) (-2210 . 480869) + (-2211 . 480795) (-2212 . 480724) (-2213 . 480599) (-2214 . 480451) + (-2215 . 480347) (-2216 . 480252) (-2217 . 457383) (-2218 . 457276) + (-2219 . 457076) (-2220 . 456991) (-2221 . 456744) (-2222 . 455202) + (-2223 . 455104) (-2224 . 454989) (-2225 . 454840) (-2226 . 454560) + (-2227 . 454138) (-2228 . 451386) (-2229 . 451327) (-2230 . 451212) + (-2231 . 451046) (-2232 . 450959) (-2233 . 450925) (-2234 . 450220) + (-2235 . 449941) (-2236 . 449907) (-2237 . 449787) (-2238 . 449716) + (-2239 . 449623) (-2240 . 449322) (-2241 . 449238) (-2242 . 448409) + (-2243 . 448045) (-2244 . 447889) (-2245 . 447750) (-2246 . 447677) + (-2247 . 447284) (-2248 . 446952) (-2249 . 446756) (-2250 . 446586) + (-2251 . 446474) (-2252 . 446379) (-2253 . 446300) (-2254 . 446213) + (-2255 . 446106) (-2256 . 445930) (-2257 . 445275) (-2258 . 445173) + (-2259 . 445101) (-2260 . 444728) (-2261 . 443873) (-2262 . 443683) + (-2263 . 443623) (-2264 . 443567) (-2265 . 443311) (-2266 . 443259) + (-2267 . 443164) (-2268 . 443111) (-2269 . 443016) (-2270 . 442818) + (-2271 . 442656) (-2272 . 442534) (-2273 . 442348) (-2274 . 442164) + (-2275 . 442001) (-2276 . 441894) (-2277 . 441845) (-2278 . 441738) + (-2279 . 441630) (-2280 . 441466) (-2281 . 441217) (-2282 . 441132) + (-2283 . 441071) (-2284 . 440916) (-2285 . 439347) (-2286 . 439250) + (-2287 . 437885) (-2288 . 437696) (-2289 . 437328) (-2290 . 437276) + (-2291 . 437064) (-2292 . 435964) (-2293 . 435885) (-2294 . 435601) + (-2295 . 435477) (-2296 . 435408) (-2297 . 435169) (-2298 . 435095) + (-2299 . 434993) (-2300 . 434940) (-2301 . 434888) (-2302 . 434744) + (-2303 . 434672) (-2304 . 434311) (-2305 . 434228) (-2306 . 434045) + (-2307 . 433605) (-2308 . 433350) (-2309 . 433000) (-2310 . 432971) + (-2311 . 432874) (-2312 . 432782) (-2313 . 432596) (-2314 . 432509) + (-2315 . 432429) (-2316 . 432328) (-2317 . 432300) (-2318 . 432096) + (-2319 . 431779) (-2320 . 431642) (-2321 . 431444) (-2322 . 431363) + (-2323 . 430949) (-2324 . 426961) (-2325 . 426676) (-2326 . 426185) + (-2327 . 426008) (-2328 . 425529) (-2329 . 424831) (-2330 . 424767) + (-2331 . 424155) (-2332 . 424100) (-2333 . 423654) (-2334 . 423499) + (-2335 . 423420) (-2336 . 423352) (-2337 . 423269) (-2338 . 423217) + (-2339 . 423112) (-2340 . 423026) (-2341 . 422617) (-2342 . 422504) + (-2343 . 422078) (-2344 . 421968) (-2345 . 421857) (-2346 . 421722) + (-2347 . 421432) (-2348 . 421376) (-2349 . 421275) (-2350 . 421051) + (-2351 . 420977) (-2352 . 420859) (-2353 . 420776) (-2354 . 420451) + (-2355 . 420316) (-2356 . 420254) (-2357 . 420030) (-2358 . 419921) + (-2359 . 419827) (-2360 . 419761) (-2361 . 419677) (-2362 . 419648) + (-2363 . 419518) (-2364 . 419452) (-2365 . 419382) (-2366 . 419283) + (-2367 . 419203) (-2368 . 418985) (-2369 . 418898) (-2370 . 418150) + (-2371 . 418098) (-2372 . 417998) (-2373 . 417857) (-2374 . 417739) + (-2375 . 417559) (-2376 . 417365) (-2377 . 417281) (-2378 . 417145) + (-2379 . 417021) (-2380 . 416634) (-2381 . 416579) (-2382 . 416279) + (-2383 . 416229) (-2384 . 416162) (-2385 . 416055) (-2386 . 416000) + (-2387 . 415762) (-2388 . 415658) (-2389 . 415571) (-2390 . 415511) + (-2391 . 415124) (-2392 . 414813) (-2393 . 414601) (-2394 . 414537) + (-2395 . 414437) (-2396 . 414366) (-2397 . 414133) (-2398 . 414048) + (-2399 . 413975) (-2400 . 413848) (-2401 . 413752) (-2402 . 413686) + (-2403 . 413464) (-2404 . 413352) (-2405 . 413246) (-2406 . 413047) + (-2407 . 412841) (-2408 . 412548) (-2409 . 412349) (-2410 . 412266) + (-2411 . 412118) (-2412 . 412017) (-2413 . 410837) (-2414 . 410721) + (-2415 . 410586) (-2416 . 410503) (-2417 . 410341) (-2418 . 409741) + (-2419 . 409689) (-2420 . 409636) (-2421 . 408335) (-2422 . 408124) + (-2423 . 408051) (-2424 . 407817) (-2425 . 407533) (-2426 . 407392) + (-2427 . 406868) (-2428 . 405949) (-2429 . 405717) (-2430 . 405683) + (-2431 . 405536) (-2432 . 405473) (-2433 . 405230) (-2434 . 405149) + (-2435 . 404709) (-2436 . 404584) (-2437 . 404241) (-2438 . 403967) + (-2439 . 403894) (-2440 . 403776) (-2441 . 403604) (-2442 . 403552) + (-2443 . 403287) (-2444 . 403190) (-2445 . 403073) (-2446 . 403018) + (-2447 . 402838) (-2448 . 402730) (-2449 . 402404) (-2450 . 402306) + (-2451 . 402099) (-2452 . 401962) (-2453 . 401906) (-2454 . 401840) + (-2455 . 401685) (-2456 . 401545) (-2457 . 401285) (-2458 . 400771) + (-2459 . 400355) (-2460 . 400244) (-2461 . 399718) (-2462 . 399562) + (-2463 . 398312) (-2464 . 398068) (-2465 . 397566) (-2466 . 397465) + (-2467 . 397342) (-2468 . 397269) (-2469 . 397186) (-2470 . 396799) + (-2471 . 396711) (-2472 . 396645) (-2473 . 396538) (-2474 . 396504) + (-2475 . 396327) (-2476 . 396180) (-2477 . 396128) (-2478 . 395791) + (-2479 . 395654) (-2480 . 395581) (-2481 . 395467) (-2482 . 394364) + (-2483 . 394048) (-2484 . 393982) (-2485 . 393897) (-2486 . 393689) + (-2487 . 393587) (-2488 . 393483) (-2489 . 393203) (-2490 . 392475) + (-2491 . 392262) (-2492 . 392107) (-2493 . 392034) (-2494 . 391933) + (-2495 . 391637) (-2496 . 390840) (-2497 . 390785) (-2498 . 390670) + (-2499 . 390588) (-2500 . 390056) (-2501 . 389509) (-2502 . 388766) + (-2503 . 388621) (-2504 . 388504) (-2505 . 388056) (-2506 . 387345) + (-2507 . 387279) (-2508 . 387251) (-2509 . 387137) (-2510 . 386950) + (-2511 . 386732) (-2512 . 386286) (-2513 . 386177) (-2514 . 385932) + (-2515 . 385865) (-2516 . 385783) (-2517 . 385676) (-2518 . 385097) + (-2519 . 385069) (-2520 . 384105) (-2521 . 383998) (-2522 . 383875) + (-2523 . 383611) (-2524 . 383502) (-2525 . 383352) (-2526 . 383117) + (-2527 . 383058) (-2528 . 382461) (-2529 . 382391) (-2530 . 382245) + (-2531 . 382179) (-2532 . 382079) (-2533 . 382007) (-2534 . 381648) + (-2535 . 381522) (-2536 . 381232) (-2537 . 381135) (-2538 . 381042) + (-2539 . 380905) (-2540 . 380874) (-2541 . 380719) (-2542 . 380560) + (-2543 . 380419) (-2544 . 380169) (-2545 . 380141) (-2546 . 380040) + (-2547 . 379929) (-2548 . 377977) (-2549 . 377692) (-2550 . 377458) + (-2551 . 377364) (-2552 . 377333) (-2553 . 377175) (-2554 . 376790) + (-2555 . 376573) (-2556 . 376500) (-2557 . 376443) (-2558 . 376083) + (-2559 . 375904) (-2560 . 375795) (-2561 . 375718) (-2562 . 375444) + (-2563 . 375374) (-2564 . 375014) (-2565 . 374882) (-2566 . 374692) + (-2567 . 374625) (-2568 . 373954) (-2569 . 373681) (-2570 . 373653) + (-2571 . 373555) (-2572 . 373384) (-2573 . 373197) (-2574 . 372656) + (-2575 . 372331) (-2576 . 371728) (-2577 . 371605) (-2578 . 371338) + (-2579 . 370997) (-2580 . 370925) (-2581 . 370891) (-2582 . 370559) + (-2583 . 370405) (-2584 . 370301) (-2585 . 370216) (-2586 . 369972) + (-2587 . 369750) (-2588 . 369617) (-2589 . 369562) (-2590 . 369322) + (-2591 . 369219) (-2592 . 368885) (-2593 . 368804) (-2594 . 368677) + (-2595 . 368568) (-2596 . 368438) (-2597 . 368250) (-2598 . 363151) + (-2599 . 363066) (-2600 . 362944) (-2601 . 362888) (-2602 . 362781) + (-2603 . 362571) (-2604 . 362543) (-2605 . 362436) (-2606 . 362317) + (-2607 . 362112) (-2608 . 362053) (-2609 . 361888) (-2610 . 361721) + (-2611 . 361528) (-2612 . 361476) (-2613 . 361316) (-2614 . 360989) + (-2615 . 360824) (-2616 . 360681) (-2617 . 360572) (-2618 . 360414) + (-2619 . 360279) (-2620 . 360200) (-2621 . 359994) (-2622 . 359870) + (-2623 . 359800) (-2624 . 359695) (-2625 . 359505) (-2626 . 359352) + (-2627 . 359266) (-2628 . 359023) (-2629 . 358832) (-2630 . 358689) + (-2631 . 357785) (-2632 . 357706) (-2633 . 357613) (-2634 . 357472) + (-2635 . 356997) (-2636 . 356926) (-2637 . 356853) (-2638 . 356782) + (-2639 . 356404) (-2640 . 356291) (-2641 . 356187) (-2642 . 355657) + (-2643 . 355531) (-2644 . 355452) (-2645 . 355366) (-2646 . 355257) + (-2647 . 355173) (-2648 . 355093) (-2649 . 355011) (-2650 . 354724) + (-2651 . 354580) (-2652 . 354449) (-2653 . 354289) (-2654 . 354134) + (-2655 . 354079) (-2656 . 353975) (-2657 . 353947) (-2658 . 353851) + (-2659 . 353430) (-2660 . 353272) (-2661 . 353204) (-2662 . 352876) + (-2663 . 352790) (-2664 . 352731) (-2665 . 352630) (-2666 . 352500) + (-2667 . 352387) (-2668 . 351780) (-2669 . 350709) (-2670 . 350657) + (-2671 . 350591) (-2672 . 350272) (-2673 . 350180) (-2674 . 350039) + (-2675 . 349895) (-2676 . 349802) (-2677 . 349351) (-2678 . 349181) + (-2679 . 348981) (-2680 . 348795) (-2681 . 348683) (-2682 . 348562) + (-2683 . 348440) (-2684 . 348387) (-2685 . 348273) (-2686 . 348063) + (-2687 . 347993) (-2688 . 347937) (-2689 . 347647) (-2690 . 347550) + (-2691 . 347516) (-2692 . 347432) (-2693 . 347398) (-2694 . 347257) + (-2695 . 347160) (-2696 . 346984) (-2697 . 346820) (-2698 . 346704) + (-2699 . 346538) (-2700 . 346445) (-2701 . 346386) (-2702 . 346183) + (-2703 . 345983) (-2704 . 345852) (-2705 . 345769) (-2706 . 345649) + (-2707 . 345511) (-2708 . 345350) (-2709 . 345202) (-2710 . 345096) + (-2711 . 345013) (-2712 . 344962) (-2713 . 344913) (-2714 . 344815) + (-2715 . 344700) (-2716 . 344599) (-2717 . 344515) (-2718 . 344462) + (-2719 . 344434) (-2720 . 344291) (-2721 . 343711) (-2722 . 343608) + (-2723 . 343262) (-2724 . 343139) (-2725 . 343032) (-2726 . 342966) + (-2727 . 342917) (-2728 . 342818) (-2729 . 342747) (-2730 . 342337) + (-2731 . 342255) (-2732 . 342114) (-2733 . 342058) (-2734 . 341852) + (-2735 . 341599) (-2736 . 341514) (-2737 . 341419) (-2738 . 341348) + (-2739 . 341193) (-2740 . 341113) (-2741 . 341042) (-2742 . 340887) + (-2743 . 340859) (-2744 . 340750) (-2745 . 340698) (-2746 . 340351) + (-2747 . 340277) (-2748 . 340100) (-2749 . 339705) (-2750 . 339548) + (-2751 . 339499) (-2752 . 339346) (-2753 . 339261) (-2754 . 339168) + (-2755 . 338410) (-2756 . 338017) (-2757 . 337944) (-2758 . 337594) + (-2759 . 337450) (-2760 . 337067) (-2761 . 336258) (-2762 . 335978) + (-2763 . 335700) (-2764 . 335579) (-2765 . 335219) (-2766 . 335104) + (-2767 . 334873) (-2768 . 334612) (-2769 . 334456) (-2770 . 334129) + (-2771 . 334076) (-2772 . 333745) (-2773 . 333660) (-2774 . 333515) + (-2775 . 333460) (-2776 . 332959) (-2777 . 332907) (-2778 . 332823) + (-2779 . 332629) (-2780 . 332451) (-2781 . 332311) (-2782 . 332256) + (-2783 . 331458) (-2784 . 331391) (-2785 . 331293) (-2786 . 331240) + (-2787 . 331103) (-2788 . 330959) (-2789 . 330333) (-2790 . 330189) + (-2791 . 330028) (-2792 . 329418) (-2793 . 329364) (-2794 . 329255) + (-2795 . 328924) (-2796 . 328795) (-2797 . 328655) (-2798 . 328330) + (-2799 . 328198) (-2800 . 327457) (-2801 . 327178) (-2802 . 327088) + (-2803 . 326986) (-2804 . 326906) (-2805 . 326806) (-2806 . 326434) + (-2807 . 326406) (-2808 . 326354) (-2809 . 326259) (-2810 . 326008) + (-2811 . 325557) (-2812 . 324816) (-2813 . 324765) (-2814 . 324552) + (-2815 . 324450) (-2816 . 324380) (-2817 . 324269) (-2818 . 324203) + (-2819 . 323717) (-2820 . 323512) (-2821 . 323399) (-2822 . 323322) + (-2823 . 322634) (-2824 . 319726) (-2825 . 319296) (-2826 . 319153) + (-2827 . 318617) (-2828 . 318394) (-2829 . 318264) (-2830 . 318105) + (-2831 . 318039) (-2832 . 317868) (-2833 . 317834) (-2834 . 317258) + (-2835 . 316918) (-2836 . 316774) (-2837 . 316673) (-2838 . 316499) + (-2839 . 316446) (-2840 . 316153) (-2841 . 315955) (-2842 . 315775) + (-2843 . 315645) (-2844 . 315069) (-2845 . 314967) (-2846 . 314776) + (-2847 . 314748) (-2848 . 314615) (-2849 . 314335) (-2850 . 314226) + (-2851 . 314198) (-2852 . 314111) (-2853 . 314003) (-2854 . 313427) + (-2855 . 312728) (-2856 . 312645) (-2857 . 312432) (-2858 . 312345) + (-2859 . 311836) (-2860 . 311718) (-2861 . 311665) (-2862 . 311613) + (-2863 . 311559) (-2864 . 311280) (-2865 . 310594) (-2866 . 309917) + (-2867 . 309802) (-2868 . 309545) (-2869 . 309275) (-2870 . 309152) + (-2871 . 308780) (-2872 . 308643) (-2873 . 308572) (-2874 . 308401) + (-2875 . 307715) (-2876 . 307608) (-2877 . 307337) (-2878 . 307254) + (-2879 . 307174) (-2880 . 307037) (-2881 . 306762) (-2882 . 306639) + (-2883 . 306546) (-2884 . 306329) (-2885 . 306234) (-2886 . 305485) + (-2887 . 305405) (-2888 . 305140) (-2889 . 305087) (-2890 . 304551) + (-2891 . 304474) (-2892 . 304351) (-2893 . 304112) (-2894 . 303274) + (-2895 . 301420) (-2896 . 300929) (-2897 . 300598) (-2898 . 300024) + (-2899 . 299917) (-2900 . 299807) (-2901 . 299711) (-2902 . 298832) + (-2903 . 298355) (-2904 . 298168) (-2905 . 298083) (-2906 . 297993) + (-2907 . 297573) (-2908 . 297545) (-2909 . 297360) (-2910 . 296786) + (-2911 . 296735) (-2912 . 296625) (-2913 . 296460) (-2914 . 295726) + (-2915 . 295631) (-2916 . 295178) (-2917 . 294523) (-2918 . 294279) + (-2919 . 293644) (-2920 . 293515) (-2921 . 292994) (-2922 . 292420) + (-2923 . 292313) (-2924 . 292243) (-2925 . 292044) (-2926 . 291905) + (-2927 . 291810) (-2928 . 291718) (-2929 . 291577) (-2930 . 291393) + (-2931 . 291313) (-2932 . 291242) (-2933 . 290883) (-2934 . 290196) + (-2935 . 289863) (-2936 . 289756) (-2937 . 289597) (-2938 . 289085) + (-2939 . 289012) (-2940 . 288795) (-2941 . 288450) (-2942 . 288313) + (-2943 . 288034) (-2944 . 287792) (-2945 . 287722) (-2946 . 287035) + (-2947 . 286983) (-2948 . 286668) (-2949 . 286501) (-2950 . 286427) + (-2951 . 286355) (-2952 . 286289) (-2953 . 286146) (-2954 . 286076) + (-2955 . 286042) (-2956 . 285860) (-2957 . 285730) (-2958 . 285043) + (-2959 . 284736) (-2960 . 284248) (-2961 . 284190) (-2962 . 284076) + (-2963 . 283992) (-2964 . 283568) (-2965 . 283509) (-2966 . 283452) + (-2967 . 283204) (-2968 . 283066) (-2969 . 282491) (-2970 . 278429) + (-2971 . 278326) (-2972 . 278252) (-2973 . 278118) (-2974 . 277891) + (-2975 . 277744) (-2976 . 277447) (-2977 . 277117) (-2978 . 277064) + (-2979 . 276936) (-2980 . 276878) (-2981 . 276303) (-2982 . 276155) + (-2983 . 275639) (-2984 . 275535) (-2985 . 275465) (-2986 . 275375) + (-2987 . 275123) (-2988 . 274620) (-2989 . 274561) (-2990 . 274455) + (-2991 . 274303) (-2992 . 274216) (-2993 . 274185) (-2994 . 273974) + (-2995 . 273871) (-2996 . 273777) (-2997 . 273574) (-2998 . 273479) + (-2999 . 273267) (-3000 . 273239) (-3001 . 273166) (-3002 . 272928) + (-3003 . 272832) (-3004 . 272702) (-3005 . 272629) (-3006 . 272502) + (-3007 . 272428) (-3008 . 272312) (-3009 . 272039) (-3010 . 269694) + (-3011 . 269663) (-3012 . 269582) (-3013 . 269250) (-3014 . 269197) + (-3015 . 268996) (-3016 . 268940) (-3017 . 268802) (-3018 . 268563) + (-3019 . 267968) (-3020 . 267867) (-3021 . 267752) (-3022 . 267571) + (-3023 . 267441) (-3024 . 267323) (-3025 . 267289) (-3026 . 266980) + (-3027 . 266662) (-3028 . 266609) (-3029 . 266544) (-3030 . 266486) + (-3031 . 266131) (-3032 . 266081) (-3033 . 265805) (-3034 . 265678) + (-3035 . 265610) (-3036 . 265500) (-3037 . 265249) (-3038 . 264824) + (-3039 . 264773) (-3040 . 264705) (-3041 . 264615) (-3042 . 264530) + (-3043 . 264384) (-3044 . 264266) (-3045 . 264048) (-3046 . 263661) + (-3047 . 263547) (-3048 . 263397) (-3049 . 263334) (-3050 . 263232) + (-3051 . 263139) (-3052 . 262879) (-3053 . 262776) (-3054 . 262693) + (-3055 . 262619) (-3056 . 262585) (-3057 . 262532) (-3058 . 262281) + (-3059 . 262139) (-3060 . 262087) (-3061 . 261890) (-3062 . 261835) + (-3063 . 261705) (-3064 . 261649) (-3065 . 261597) (-3066 . 261472) + (-3067 . 261222) (-3068 . 260999) (-3069 . 260804) (-3070 . 260623) + (-3071 . 260541) (-3072 . 260422) (-3073 . 260260) (-3074 . 260178) + (-3075 . 259956) (-3076 . 259878) (-3077 . 259769) (-3078 . 259699) + (-3079 . 259539) (-3080 . 259404) (-3081 . 259224) (-3082 . 259171) + (-3083 . 259100) (-3084 . 258785) (-3085 . 258682) (-3086 . 258611) + (-3087 . 258552) (-3088 . 258173) (-3089 . 258111) (-3090 . 257953) + (-3091 . 257866) (-3092 . 257811) (-3093 . 256541) (-3094 . 256488) + (-3095 . 256355) (-3096 . 256214) (-3097 . 256129) (-3098 . 255982) + (-3099 . 255797) (-3100 . 254595) (-3101 . 254545) (-3102 . 254465) + (-3103 . 254250) (-3104 . 254219) (-3105 . 254110) (-3106 . 253905) + (-3107 . 253841) (-3108 . 253536) (-3109 . 253458) (-3110 . 251630) + (-3111 . 251602) (-3112 . 251501) (** . 248424) (-3114 . 248371) + (-3115 . 248252) (-3116 . 247947) (-3117 . 247810) (-3118 . 247678) + (-3119 . 247571) (-3120 . 246070) (-3121 . 245970) (-3122 . 245718) + (-3123 . 245456) (-3124 . 245310) (-3125 . 245210) (-3126 . 245107) + (-3127 . 245011) (-3128 . 244954) (-3129 . 244902) (-3130 . 244731) + (-3131 . 243191) (-3132 . 243163) (-3133 . 243129) (-3134 . 242961) + (-3135 . 242895) (-3136 . 242779) (-3137 . 242607) (-3138 . 242477) + (-3139 . 242279) (-3140 . 242158) (-3141 . 241842) (-3142 . 241717) + (-3143 . 241499) (-3144 . 241398) (-3145 . 241201) (-3146 . 241045) + (-3147 . 240696) (-3148 . 240625) (-3149 . 240516) (-3150 . 240407) + (-3151 . 239671) (-3152 . 239597) (-3153 . 239496) (-3154 . 239352) + (-3155 . 239299) (-3156 . 239142) (-3157 . 239069) (-3158 . 238935) + (-3159 . 238835) (-3160 . 238783) (-3161 . 238240) (-3162 . 238079) + (-3163 . 237921) (-3164 . 237728) (-3165 . 237315) (-3166 . 237213) + (-3167 . 237169) (-3168 . 237075) (-3169 . 236504) (-3170 . 236427) + (-3171 . 235362) (-3172 . 235296) (-3173 . 235170) (-3174 . 235142) + (-3175 . 235026) (-3176 . 234968) (-3177 . 234700) (-3178 . 234647) + (-3179 . 234562) (-3180 . 234500) (-3181 . 234413) (-3182 . 234328) + (-3183 . 234123) (-3184 . 233971) (-3185 . 233333) (-3186 . 233157) + (-3187 . 233014) (-3188 . 232929) (-3189 . 232530) (-3190 . 232465) + (-3191 . 232258) (-3192 . 232164) (-3193 . 232046) (-3194 . 231682) + (-3195 . 231575) (-3196 . 230760) (-3197 . 229600) (-3198 . 229551) + (-3199 . 229437) (-3200 . 229358) (-3201 . 229139) (-3202 . 229040) + (-3203 . 228728) (-3204 . 228601) (-3205 . 228535) (-3206 . 228401) + (-3207 . 228059) (-3208 . 227945) (-3209 . 227893) (-3210 . 227771) + (-3211 . 227599) (-3212 . 227543) (-3213 . 227380) (-3214 . 227297) + (-3215 . 227192) (-3216 . 227140) (-3217 . 227085) (-3218 . 225962) + (-3219 . 225874) (-3220 . 225691) (-3221 . 225519) (-3222 . 225395) + (-3223 . 225323) (-3224 . 225164) (-3225 . 224873) (-3226 . 224766) + (-3227 . 224682) (-3228 . 224506) (-3229 . 223259) (-3230 . 223137) + (-3231 . 223085) (-3232 . 222913) (-3233 . 222861) (-3234 . 222662) + (-3235 . 222598) (-3236 . 222511) (-3237 . 222431) (-3238 . 222187) + (-3239 . 222092) (-3240 . 222037) (-3241 . 221982) (-3242 . 221810) + (-3243 . 221737) (-3244 . 221628) (-3245 . 221534) (-3246 . 221442) + (-3247 . 221373) (-3248 . 221275) (-3249 . 220660) (-3250 . 220511) + (-3251 . 220404) (-3252 . 220351) (-3253 . 220227) (-3254 . 220049) + (-3255 . 219895) (-3256 . 219808) (-3257 . 219652) (-3258 . 219376) + (-3259 . 219302) (-3260 . 219076) (-3261 . 218973) (-3262 . 218835) + (-3263 . 218751) (-3264 . 218678) (-3265 . 218074) (-3266 . 217918) + (-3267 . 217821) (-3268 . 217720) (-3269 . 217423) (-3270 . 217221) + (-3271 . 217193) (-3272 . 217055) (-3273 . 216932) (-3274 . 216776) + (-3275 . 216197) (-3276 . 215768) (-3277 . 215472) (-3278 . 215143) + (-3279 . 215034) (-3280 . 214916) (-3281 . 214793) (-3282 . 214669) + (-3283 . 213753) (-3284 . 213595) (-3285 . 213285) (-3286 . 213114) + (-3287 . 213065) (-3288 . 212907) (-3289 . 212307) (-3290 . 212200) + (-3291 . 211565) (-3292 . 211512) (-3293 . 211342) (-3294 . 211043) + (-3295 . 210960) (-3296 . 210512) (-3297 . 209991) (-3298 . 209888) + (-3299 . 209814) (-3300 . 209293) (-3301 . 209109) (-3302 . 208952) + (-3303 . 208828) (-3304 . 208663) (-3305 . 208556) (-3306 . 208412) + (-3307 . 208223) (-3308 . 208154) (-3309 . 208008) (-3310 . 207941) + (-3311 . 207848) (-3312 . 207739) (-3313 . 207673) (-3314 . 207023) + (-3315 . 206971) (-3316 . 206886) (-3317 . 206836) (-3318 . 206552) + (-3319 . 206470) (-3320 . 206370) (-3321 . 206202) (-3322 . 206070) + (-3323 . 205956) (-3324 . 205835) (-3325 . 204625) (-3326 . 204277) + (-3327 . 204085) (-3328 . 203927) (-3329 . 203875) (-3330 . 203681) + (-3331 . 203455) (-3332 . 203399) (-3333 . 203120) (-3334 . 202976) + (-3335 . 202889) (-3336 . 202745) (-3337 . 202692) (-3338 . 202664) + (-3339 . 202609) (-3340 . 202532) (-3341 . 202426) (-3342 . 202339) + (-3343 . 202244) (-3344 . 202153) (-3345 . 202102) (-3346 . 201938) + (-3347 . 201511) (-3348 . 201393) (-3349 . 201327) (-3350 . 201183) + (-3351 . 201019) (-3352 . 200792) (-3353 . 200567) (-3354 . 200469) + (-3355 . 200396) (-3356 . 200285) (-3357 . 200173) (-3358 . 199963) + (-3359 . 199889) (-3360 . 199805) (-3361 . 199746) (-3362 . 199623) + (-3363 . 199400) (-3364 . 199121) (-3365 . 199065) (-3366 . 199009) + (-3367 . 198906) (-3368 . 198819) (-3369 . 198595) (-3370 . 198504) + (-3371 . 198231) (-3372 . 197167) (-3373 . 197064) (-3374 . 196965) + (-3375 . 196493) (-3376 . 196436) (-3377 . 196377) (-3378 . 196210) + (-3379 . 196103) (-3380 . 195766) (-3381 . 195595) (-3382 . 195507) + (-3383 . 195361) (-3384 . 195288) (-3385 . 195236) (-3386 . 195109) + (-3387 . 194957) (-3388 . 194886) (-3389 . 194745) (-3390 . 193635) + (-3391 . 193480) (-3392 . 193114) (-3393 . 193040) (-3394 . 192876) + (-3395 . 192767) (-3396 . 192711) (-3397 . 192624) (-3398 . 192590) + (-3399 . 191399) (-3400 . 191012) (-3401 . 190927) (-3402 . 190676) + (-3403 . 190574) (-3404 . 190327) (-3405 . 190153) (-3406 . 189631) + (-3407 . 189532) (-3408 . 189434) (-3409 . 189379) (-3410 . 189239) + (-3411 . 188995) (-3412 . 188604) (-3413 . 188329) (-3414 . 188086) + (-3415 . 188055) (-3416 . 187966) (-3417 . 187864) (-3418 . 187731) + (-3419 . 187484) (-3420 . 187422) (-3421 . 187129) (-3422 . 186970) + (-3423 . 186942) (-3424 . 186845) (-3425 . 186762) (-3426 . 186427) + (-3427 . 186319) (-3428 . 186205) (-3429 . 185995) (-3430 . 185864) + (-3431 . 185674) (-3432 . 185545) (-3433 . 185093) (-3434 . 185031) + (-3435 . 184925) (-3436 . 184767) (-3437 . 184392) (-3438 . 184290) + (-3439 . 184191) (-3440 . 184106) (-3441 . 183938) (-3442 . 174408) + (-3443 . 174197) (-3444 . 174104) (-3445 . 174045) (-3446 . 173960) + (-3447 . 173789) (-3448 . 173661) (-3449 . 173476) (-3450 . 173310) + (-3451 . 173095) (-3452 . 172943) (-3453 . 172842) (-3454 . 172689) + (-3455 . 172636) (-3456 . 172473) (-3457 . 172386) (-3458 . 172291) + (-3459 . 171431) (-3460 . 171400) (-3461 . 171307) (-3462 . 170557) + (-3463 . 170413) (-3464 . 170269) (-3465 . 169998) (-3466 . 169921) + (-3467 . 169793) (-3468 . 169684) (-3469 . 169511) (-3470 . 169398) + (-3471 . 169159) (-3472 . 169058) (-3473 . 168985) (-3474 . 168897) + (-3475 . 168844) (-3476 . 168770) (-3477 . 168676) (-3478 . 168363) + (-3479 . 168275) (-3480 . 168141) (-3481 . 167543) (-3482 . 167494) + (-3483 . 167199) (-3484 . 167126) (-3485 . 166640) (-3486 . 166587) + (-3487 . 166509) (-3488 . 166372) (-3489 . 166155) (-3490 . 165977) + (-3491 . 165852) (-3492 . 165451) (-3493 . 165140) (-3494 . 164912) + (-3495 . 164781) (-3496 . 164451) (-3497 . 164356) (-3498 . 164239) + (-3499 . 163632) (-3500 . 163534) (-3501 . 163426) (-3502 . 163172) + (-3503 . 163138) (-3504 . 163101) (-3505 . 162930) (-3506 . 162877) + (-3507 . 162356) (-3508 . 162252) (-3509 . 162182) (-3510 . 162129) + (-3511 . 162049) (-3512 . 161748) (-3513 . 160994) (-3514 . 160871) + (-3515 . 160745) (-3516 . 160599) (-3517 . 160570) (-3518 . 160514) + (-3519 . 159994) (-3520 . 159841) (-3521 . 159732) (-3522 . 159648) + (-3523 . 159595) (-3524 . 159389) (-3525 . 159361) (-3526 . 159303) + (-3527 . 159085) (-3528 . 158822) (-3529 . 158727) (-3530 . 158567) + (-3531 . 158374) (-3532 . 158058) (-3533 . 157729) (-3534 . 157601) + (-3535 . 157395) (-3536 . 157312) (-3537 . 157175) (-3538 . 157085) + (-3539 . 157002) (-3540 . 156620) (-3541 . 156104) (-3542 . 155984) + (-3543 . 155780) (-3544 . 155688) (-3545 . 155636) (-3546 . 155524) + (-3547 . 155366) (-3548 . 155274) (-3549 . 154927) (-3550 . 154373) + (-3551 . 153713) (-3552 . 153614) (-3553 . 153518) (-3554 . 153425) + (-3555 . 153333) (-3556 . 153230) (-3557 . 153127) (-3558 . 153059) + (-3559 . 152787) (-3560 . 152706) (-3561 . 152591) (-3562 . 152401) + (-3563 . 152081) (-3564 . 151995) (-3565 . 150531) (-3566 . 150416) + (-3567 . 150064) (-3568 . 149971) (-3569 . 149673) (-3570 . 149574) + (-3571 . 149475) (-3572 . 149244) (-3573 . 148994) (-3574 . 148938) + (-3575 . 148841) (-3576 . 148746) (-3577 . 148690) (-3578 . 148635) + (-3579 . 148565) (-3580 . 148494) (-3581 . 148421) (-3582 . 148242) + (-3583 . 148128) (-3584 . 147923) (-3585 . 147838) (-3586 . 147780) + (-3587 . 147654) (-3588 . 147381) (-3589 . 147262) (-3590 . 147089) + (-3591 . 146749) (-3592 . 146646) (-3593 . 146494) (-3594 . 145638) + (-3595 . 145531) (-3596 . 145369) (-3597 . 145271) (-3598 . 145116) + (-3599 . 144961) (-3600 . 144892) (-3601 . 144820) (-3602 . 144649) + (-3603 . 144542) (-3604 . 144489) (-3605 . 144326) (-3606 . 144140) + (-3607 . 144067) (-3608 . 143994) (-3609 . 143835) (-3610 . 143758) + (-3611 . 143511) (-3612 . 143437) (-3613 . 143054) (-3614 . 142876) + (-3615 . 142823) (-3616 . 142679) (-3617 . 142580) (-3618 . 138420) + (-3619 . 138143) (-3620 . 137848) (-3621 . 137747) (-3622 . 137652) + (-3623 . 137509) (-3624 . 137261) (-3625 . 136952) (-3626 . 136900) + (-3627 . 136795) (-3628 . 136696) (-3629 . 136633) (-3630 . 136337) + (-3631 . 136266) (-3632 . 136188) (-3633 . 135890) (-3634 . 135581) + (-3635 . 135095) (-3636 . 135045) (-3637 . 134886) (-3638 . 134784) + (-3639 . 134228) (-3640 . 134020) (-3641 . 133853) (-3642 . 133724) + (-3643 . 133205) (-3644 . 133150) (-3645 . 133113) (-3646 . 132522) + (-3647 . 131991) (-3648 . 131921) (-3649 . 131780) (-3650 . 131724) + (-3651 . 131650) (-3652 . 131555) (-3653 . 131432) (-3654 . 131318) + (-3655 . 131262) (-3656 . 131165) (-3657 . 131088) (-3658 . 130962) + (-3659 . 130628) (-3660 . 130382) (-3661 . 130136) (-3662 . 130058) + (-3663 . 129977) (-3664 . 129905) (-3665 . 129804) (-3666 . 129749) + (-3667 . 129680) (-3668 . 128682) (-3669 . 128608) (-3670 . 128541) + (-3671 . 128479) (-3672 . 128332) (-3673 . 128144) (-3674 . 128059) + (-3675 . 127962) (-3676 . 127789) (-3677 . 127088) (-3678 . 127017) + (-3679 . 126618) (-3680 . 126032) (-3681 . 124253) (-3682 . 124108) + (-3683 . 123997) (-3684 . 123833) (-3685 . 123646) (-3686 . 123590) + (-3687 . 123481) (-3688 . 123404) (-3689 . 122996) (-3690 . 122930) + (-3691 . 122736) (-3692 . 122662) (-3693 . 122539) (-3694 . 122461) + (-3695 . 122003) (-3696 . 121896) (-3697 . 121714) (-3698 . 121399) + (-3699 . 121331) (-3700 . 121092) (-3701 . 120922) (-3702 . 120854) + (-3703 . 120802) (-3704 . 120703) (-3705 . 120327) (-3706 . 120025) + (-3707 . 119966) (-3708 . 119859) (-3709 . 117612) (-3710 . 116272) + (-3711 . 115836) (-3712 . 115756) (-3713 . 115654) (-3714 . 115539) + (-3715 . 115470) (-3716 . 115366) (-3717 . 115167) (-3718 . 114988) + (-3719 . 114900) (-3720 . 114744) (-3721 . 114661) (-3722 . 114182) + (-3723 . 114126) (-3724 . 114071) (-3725 . 113898) (-3726 . 113791) + (-3727 . 113637) (-3728 . 113381) (-3729 . 113277) (-3730 . 113105) + (-3731 . 113002) (-3732 . 112932) (-3733 . 112763) (-3734 . 112693) + (-3735 . 112515) (-3736 . 112374) (-3737 . 112274) (-3738 . 112197) + (-3739 . 112123) (-3740 . 112051) (-12 . 111879) (-3742 . 111776) + (-3743 . 111523) (-3744 . 111387) (-3745 . 111250) (-3746 . 111071) + (-3747 . 110977) (-3748 . 110683) (-3749 . 110517) (-3750 . 110408) + (-3751 . 110342) (-3752 . 109306) (-3753 . 109250) (-3754 . 109139) + (-3755 . 108339) (-3756 . 107864) (-3757 . 107711) (-3758 . 107643) + (-3759 . 107453) (-3760 . 107326) (-3761 . 107239) (-3762 . 106922) + (-3763 . 106848) (-3764 . 106799) (-3765 . 106720) (-3766 . 105768) + (-3767 . 105697) (-3768 . 105103) (-3769 . 104715) (-3770 . 104293) + (-3771 . 104073) (-3772 . 103421) (-3773 . 103292) (-3774 . 103215) + (-3775 . 103141) (-3776 . 103070) (-3777 . 102918) (-3778 . 102824) + (-3779 . 102680) (-3780 . 102272) (-3781 . 102173) (-3782 . 102078) + (-3783 . 101991) (-3784 . 101904) (-3785 . 101321) (-3786 . 101265) + (-3787 . 101127) (-3788 . 101049) (-3789 . 100953) (-3790 . 100901) + (-3791 . 100753) (-3792 . 100574) (-3793 . 100331) (-3794 . 100058) + (-3795 . 99993) (-3796 . 99941) (-3797 . 99859) (-3798 . 99583) + (-3799 . 99517) (-3800 . 99338) (-3801 . 98996) (-3802 . 98613) + (-3803 . 98387) (-3804 . 97976) (-3805 . 97849) (-3806 . 97739) + (-3807 . 97536) (-3808 . 97480) (-3809 . 97362) (-3810 . 97209) + (-3811 . 97098) (-3812 . 97049) (-3813 . 96833) (-3814 . 96724) + (-3815 . 96580) (-3816 . 96457) (-3817 . 96211) (-3818 . 96127) + (-3819 . 96033) (-3820 . 95922) (-3821 . 95829) (-3822 . 95711) + (-3823 . 95059) (-3824 . 94975) (-3825 . 93979) (-3826 . 93876) + (-3827 . 93539) (-3828 . 93480) (-3829 . 93398) (-3830 . 93277) + (-3831 . 93164) (-3832 . 93047) (-3833 . 92598) (-3834 . 92538) + (-3835 . 92443) (-3836 . 92311) (-3837 . 92141) (-3838 . 91377) + (-3839 . 91306) (-3840 . 91201) (-3841 . 90812) (-3842 . 90144) + (-3843 . 90022) (-3844 . 89803) (-3845 . 89697) (-3846 . 89063) + (-3847 . 88858) (-3848 . 88645) (-3849 . 88544) (-3850 . 88317) + (* . 83794) (-3852 . 83714) (-3853 . 83587) (-3854 . 83532) + (-3855 . 83328) (-3856 . 83161) (-3857 . 83023) (-3858 . 82883) + (-3859 . 82743) (-3860 . 81897) (-3861 . 81814) (-3862 . 81744) + (-3863 . 81586) (-3864 . 81443) (-3865 . 81211) (-3866 . 81152) + (-3867 . 80957) (-3868 . 80337) (-3869 . 80254) (-3870 . 80159) + (-3871 . 80128) (-3872 . 79885) (-3873 . 79769) (-3874 . 76159) + (-3875 . 76019) (-3876 . 75869) (-3877 . 75623) (-3878 . 75461) + (-3879 . 75387) (-3880 . 75288) (-3881 . 74102) (-3882 . 74047) + (-3883 . 73951) (-3884 . 73899) (-3885 . 73015) (-3886 . 72941) + (-3887 . 72820) (-3888 . 72746) (-3889 . 72317) (-3890 . 72222) + (-3891 . 72170) (-3892 . 71956) (-3893 . 71760) (-3894 . 71583) + (-3895 . 71394) (-3896 . 71243) (-3897 . 71090) (-3898 . 70909) + (-3899 . 70832) (-3900 . 70801) (-3901 . 70728) (-3902 . 70358) + (-3903 . 70285) (-3904 . 70188) (-3905 . 69515) (-3906 . 69187) + (-3907 . 69050) (-3908 . 68883) (-3909 . 68785) (-3910 . 68650) + (-3911 . 68560) (-3912 . 68404) (-3913 . 68321) (-3914 . 68102) + (-3915 . 67972) (-3916 . 67914) (-3917 . 67840) (-3918 . 67769) + (-3919 . 67550) (-3920 . 67495) (-3921 . 67225) (-3922 . 67096) + (-3923 . 66962) (-3924 . 66832) (-3925 . 66801) (-3926 . 66723) + (-3927 . 66626) (-3928 . 66389) (-3929 . 65815) (-3930 . 65766) + (-3931 . 65409) (-3932 . 65182) (-3933 . 65109) (-3934 . 64870) + (-3935 . 64696) (-3936 . 64625) (-3937 . 64572) (-3938 . 64284) + (-3939 . 63905) (-3940 . 63852) (-3941 . 63648) (-3942 . 63470) + (-3943 . 63291) (-3944 . 63239) (-3945 . 63187) (-3946 . 63081) + (-3947 . 62980) (-3948 . 62828) (-3949 . 62477) (-3950 . 62378) + (-3951 . 62204) (-3952 . 61860) (-3953 . 61640) (-3954 . 61279) + (-3955 . 61079) (-3956 . 61011) (-3957 . 60466) (-3958 . 60268) + (-3959 . 60170) (-3960 . 59982) (-3961 . 59892) (-3962 . 59864) + (-3963 . 59742) (-3964 . 59606) (-3965 . 59505) (-3966 . 59288) + (-3967 . 59236) (-3968 . 59153) (-3969 . 59082) (-3970 . 58688) + (-3971 . 58307) (-3972 . 58137) (-3973 . 57853) (-3974 . 57751) + (-3975 . 57693) (-3976 . 57431) (-3977 . 57403) (-3978 . 57329) + (-3979 . 57252) (-3980 . 57041) (-3981 . 56897) (-3982 . 56761) + (-3983 . 56694) (-3984 . 56628) (-3985 . 56574) (-3986 . 56236) + (-3987 . 56097) (-3988 . 55077) (-3989 . 54982) (-3990 . 54908) + (-3991 . 54785) (-3992 . 54601) (-3993 . 54498) (-3994 . 54446) + (-3995 . 54227) (-3996 . 53880) (-3997 . 53783) (-3998 . 53698) + (-3999 . 53439) (-4000 . 52973) (-4001 . 52861) (-4002 . 52615) + (-4003 . 52494) (-4004 . 52351) (-4005 . 52152) (-4006 . 52017) + (-4007 . 51965) (-4008 . 51810) (-4009 . 51758) (-4010 . 51625) + (-4011 . 51558) (-4012 . 51461) (-4013 . 51337) (-4014 . 51177) + (-4015 . 51093) (-4016 . 50997) (-4017 . 50557) (-4018 . 50388) + (-4019 . 50301) (-4020 . 50193) (-4021 . 50114) (-4022 . 50041) + (-4023 . 49904) (-4024 . 49810) (-4025 . 49437) (-4026 . 49364) + (-4027 . 48589) (-4028 . 48537) (-4029 . 48379) (-4030 . 48270) + (-4031 . 47727) (-4032 . 47628) (-4033 . 47554) (-4034 . 47414) + (-4035 . 46129) (-4036 . 46077) (-4037 . 45983) (-4038 . 45744) + (-4039 . 45536) (-4040 . 45412) (-4041 . 45329) (-4042 . 43710) + (-4043 . 43266) (-4044 . 43183) (-4045 . 42989) (-4046 . 42936) + (-4047 . 42747) (-4048 . 42670) (-4049 . 42490) (-4050 . 42352) + (-4051 . 42171) (-4052 . 42028) (-4053 . 41976) (-4054 . 41853) + (-4055 . 41642) (-4056 . 41535) (-4057 . 41347) (-4058 . 41039) + (-4059 . 40547) (-4060 . 40424) (-4061 . 40302) (-4062 . 40111) + (-4063 . 39786) (-4064 . 39640) (-4065 . 38985) (-4066 . 38124) + (-4067 . 37920) (-4068 . 35668) (-4069 . 35511) (-4070 . 35402) + (-4071 . 35256) (-4072 . 34923) (-4073 . 34552) (-4074 . 34472) + (-4075 . 34356) (-4076 . 34262) (-4077 . 34095) (-4078 . 33736) + (-4079 . 33650) (-4080 . 33508) (-4081 . 32198) (-4082 . 31911) + (-4083 . 30544) (-4084 . 30461) (-4085 . 30100) (-4086 . 29883) + (-4087 . 29501) (-4088 . 29382) (-4089 . 29302) (-4090 . 29108) + (-4091 . 29054) (-4092 . 28912) (-4093 . 28805) (-4094 . 28755) + (-4095 . 28661) (-4096 . 27846) (-4097 . 27601) (-4098 . 27351) + (-4099 . 27189) (-4100 . 27112) (-4101 . 27018) (-4102 . 26705) + (-4103 . 26598) (-4104 . 26502) (-4105 . 26395) (-4106 . 26338) + (-4107 . 26151) (-4108 . 25985) (-4109 . 25900) (-4110 . 25705) + (-4111 . 25501) (-4112 . 24617) (-4113 . 24243) (-4114 . 24177) + (-4115 . 24093) (-4116 . 23851) (-4117 . 23649) (-4118 . 23576) + (-4119 . 23453) (-4120 . 23341) (-4121 . 23236) (-4122 . 23117) + (-4123 . 22982) (-4124 . 22927) (-4125 . 22790) (-4126 . 22647) + (-4127 . 22492) (-4128 . 22382) (-4129 . 22275) (-4130 . 22036) + (-4131 . 21949) (-4132 . 21878) (-4133 . 21806) (-4134 . 21601) + (-4135 . 20728) (-4136 . 20676) (-4137 . 20624) (-4138 . 20484) + (-4139 . 20286) (-4140 . 20237) (-4141 . 19812) (-4142 . 12858) + (-4143 . 12789) (-4144 . 12718) (-4145 . 12591) (-4146 . 12406) + (-4147 . 12351) (-4148 . 12195) (-4149 . 12114) (-4150 . 11490) + (-4151 . 11391) (-4152 . 11335) (-4153 . 11269) (-4154 . 11217) + (-4155 . 10978) (-4156 . 10834) (-4157 . 10760) (-4158 . 10680) + (-4159 . 10430) (-4160 . 10353) (-4161 . 10109) (-4162 . 10024) + (-4163 . 9856) (-4164 . 9341) (-4165 . 9125) (-4166 . 8985) + (-4167 . 8783) (-4168 . 8667) (-4169 . 8562) (-4170 . 8188) + (-4171 . 8064) (-4172 . 8009) (-4173 . 7890) (-4174 . 7748) + (-4175 . 7622) (-4176 . 7526) (-4177 . 7353) (-4178 . 5253) + (-4179 . 5123) (-4180 . 4968) (-4181 . 4871) (-4182 . 4819) + (-4183 . 4561) (-4184 . 4508) (-4185 . 4409) (-4186 . 4211) + (-4187 . 3709) (-4188 . 3657) (-4189 . 3199) (-4190 . 3113) + (-4191 . 3029) (-4192 . 2832) (-4193 . 1620) (-4194 . 1522) + (-4195 . 1300) (-4196 . 1126) (-4197 . 832) (-4198 . 404) + (-4199 . 210) (-4200 . 155) (-4201 . 30))
\ No newline at end of file |